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ARTICLE

VEGA is an interpretable generative model for
inferring biological network activity in single-cell
transcriptomics
Lucas Seninge1, Ioannis Anastopoulos 1, Hongxu Ding 1✉ & Joshua Stuart 1✉

Deep learning architectures such as variational autoencoders have revolutionized the analysis

of transcriptomics data. However, the latent space of these variational autoencoders offers

little to no interpretability. To provide further biological insights, we introduce a novel sparse

Variational Autoencoder architecture, VEGA (VAE Enhanced by Gene Annotations), whose

decoder wiring mirrors user-provided gene modules, providing direct interpretability to the

latent variables. We demonstrate the performance of VEGA in diverse biological contexts

using pathways, gene regulatory networks and cell type identities as the gene modules that

define its latent space. VEGA successfully recapitulates the mechanism of cellular-specific

response to treatments, the status of master regulators as well as jointly revealing the cell

type and cellular state identity in developing cells. We envision the approach could serve as

an explanatory biological model for development and drug treatment experiments.
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Recent advances in single-cell RNA sequencing (scRNA-Seq)
technologies have enabled the characterization of cellular
states at an unprecedented scale and resolution1. Among

the many widely-used frameworks for analyzing complex tran-
scriptomic patterns in single cells, artificial neural networks
(ANNs) such as autoencoders (AEs)2 have emerged as powerful
tools. AEs are neural networks that transform an input dataset
into a decoded representation while minimizing the information
loss3. The diversity in their architectural design makes AEs
suitable to tackle various important challenges of scRNA-Seq
analysis, such as dimensionality reduction4, clustering5, and data
denoising6.

More recently, deep generative models such as variational
autoencoders7 (VAEs) have proven to be extremely useful for the
probabilistic modeling of single-cell transcriptomes, such as scVI
and scGen8–10. While standard AEs learn to reconstruct an input
dataset, deep generative architectures explicitly model and learn
the true data distribution, which allows a broader set of queries
to be addressed. While deep generative models have shown
impressive performance for their dedicated modeling tasks, they
often lack interpretability thus cannot offer a biologically mean-
ingful latent representation of transcriptomes. For example, latent
perturbation vectors extracted with scGen cannot be directly
related to gene module variations10.

Integration of prior knowledge about gene modules to aid
interpretability has already been successfully applied to tran-
scriptomics data. DCell11 is a deep neural network integrating the
hierarchical information about the molecular subsystems involved
in cellular processes to guide supervised learning tasks, such as
predicting growth in yeast. Such a model yields an informative
biological interpretation of predictions by investigating the activa-
tion of the different subsystems embedded in the model’s archi-
tecture. However, this model only works in a supervised learning
setting where the goal is to predict a phenotypic outcome. On the
other hand, f-scLVM12 is a Bayesian hierarchical model with
explicit prior biological knowledge specification to infer the activity
of latent factors as a priori characterized gene modules. While this
approach enables the modeling of single-cell transcriptomes in an
interpretable manner, the computational cost of the inference
algorithm, as well as the absence of inference for out-of-sample
data, make the development of more efficient approaches highly
desirable.

Here we propose VEGA (VAE enhanced by gene annotations),
a VAE with a sparse linear decoder informed by biological
networks. VEGA offers an interpretable latent space to represent
various biological information, e.g., the status of biological
pathways or the activity of transcriptional regulators. Specifically,
the scope of VEGA is twofold, (1) encoding data over an inter-
pretable latent space and (2) inferring gene module activities for
out-of-sample data.

Results
Architectural design of VEGA. To create a readily interpretable
VAE, we propose a novel architecture we refer to as VEGA (VAE
enhanced by gene annotations) where the decoder (generative
part) connections of the neural network are guided by gene
module membership as recorded in gene annotation databases
(e.g., Gene Ontology, PANTHER, MolSigDB, or Reactome)
(Fig. 1a). In many standard VAE implementations, the infor-
mation bottleneck of the encoder-decoder architecture often
represents latent variables modeled as a multivariate normal
distribution. Despite providing highly informative representa-
tions of the input data, VAE latent variables are in general hard
to interpret. Svensson et al.13 proposed using a linear decoder
which directly connects latent variables to genes, providing

interpretability similar to that offered by standard factor models
such as PCA. Although providing valuable insights, such an
approach requires further statistical enrichment tests on the
weights of the decoder to infer biological processes contributing
to the single-cell expression dataset.

In contrast to previous approaches, VEGA implements a sparse
architecture that explicitly reflects knowledge about gene regulation.
In the service of biological pathways, genes work together in gene
modules, regulated by common transcription factors that often
produce correlated expression. Thus, if a given scRNA-Seq dataset
X reflects the patterns of known gene modules, then it is possible
for a VAE to learn a compact representation of the data by
incorporating those modules as latent variables Z. VAEs use
multiple layers to approximate the latent variable distribution and
produce a low dimensional, nonlinear representation of the original
feature data. Importantly, the first and last layers directly connect to
the input or predicted features and so can be fashioned to depict
intuitive groupings. Standard VAEs use a fully connected layer for
both the encoding first layer and the decoding final layer
(SFig. 1aiv). Instead, VEGA uses a gene membership mask M to
select a subset of trainable weights in the decoder layer that are
determined by a given set of gene modules (see Methods). The
mask is applied to the weights that connect to the predicted output
features to yield an interpretation of the latent variable layer where
each latent variable is viewed as a specific gene module, henceforth
referred to as a gene module variable (GMV). Specifically, the
generative part of VEGA (decoder) maintains a link from a GMV to
an output gene only if this gene is annotated to be a member of this
specific gene module. The two main advantages of this design are
(1) the latent variables are directly interpretable as the activity of
biological modules and (2) the flexibility in the gene module
specification allows it to generalize to different biological abstrac-
tions (such as pathways, gene regulatory networks (GRNs), or even
cell types) and can be taken from any of several curated databases of
gene sets (such as MSigDB14, Reactome pathways15, inferred
GRNs16). Additionally, VEGA incorporates information about
covariates such as technical replicates in its latent space. This can be
used to alleviate batch effects, as it has been demonstrated in
previous deep generative models for single-cell data9 (Fig. 1a and
SFig. 2)

Note that it is possible to implement gene module sparseness in
the encoder half of the neural network (inference part), in addition
to (or in place of) the decoder half (generative part), which gives
three possible VAE architectures that we considered for single-cell
RNA-seq analysis (SFig. 1ai–iii). As expected, we found that the
GMV-guided designs resulted in decent although slightly worse
performance compared to the full architecture (SFig. 1c). Among
these options, we chose the sparse decoding architecture over the
others for its improved separation of known cellular states and
types in the Kang et al. PBMC data17 (SFig. 1b). Intuitively, using a
deep encoder maintains a full VAE’s inference capacity to capture a
potentially complex latent space while together with a sparse
decoder approximates the posterior distribution of GMV activities
p(Z∣X) to provide interpretation over gene modules. Additionally,
we found that VEGA benefits from having a trainable, sparse
decoder to adequately capture the biological signal of a dataset
compared to simpler pathway transformations (SFig. 3).

Recapitulating biological information over an interpretable
latent space. We asked if VEGA could recapitulate the status of
biological pathways by applying it to a published and well-studied
peripheral blood mononuclear cells (PBMCs) dataset stimulated with
the chemokine interferon-β17 (Methods). We first found that VEGA
is able to capture cell types and stimulation status using the Reactome
collection of processes and pathways15 in the GMV decoding layer
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(Fig. 1b). Specifically, we found that the interferon-α/β signaling
GMV activity segregates stimulated and naive cells, confirming the
ability of VEGA to capture pathway activity in its latent space
(Fig. 1c, d). We further examined other known biological pathways
involved in interferon-induced immune cell activation and found
cell-type-specific activation of certain cellular processes. For
example, tryptophan catabolism response to interferon separates
innate immune cells (Dendritic cells, FCGR3A+monocytes, and
CD14+monocytes) from adaptive immune cells (NK cells, T-cell
CD8, T-cell CD4, and B cells) (Fig. 1d), as previously
investigated18,19. Together, these results suggest that VEGA’s
GMV’s reflect the expected major biological pathways in PBMCs
and therefore may be useful for other datasets to project cells into
an interpretable space, allowing investigation of cell-type-specific
patterns at the cellular process level.

We next asked whether the differential activities of the GMVs
accurately contrast pathway states as a function of a specific,
experimentally controlled context.

For this purpose, we propose a similar Bayesian hypothesis
testing procedure as introduced by Lopez et al.9 to study the
difference in GMV activities. As VEGA models the posterior
distribution of each GMV, we can formulate mutually exclusive
hypotheses similar to differential gene expression tests (i.e.,
GMVs are activated at different levels). We can approximate the
posterior probability of these hypotheses through Monte Carlo
sampling of VEGA’s latent variable distribution. The ratio of
hypothesis probabilities corresponds to the Bayes Factor20 (BF,
see Methods).

When applied to innate immune cells in the stimulated vs
control groups of the Kang et al.17 dataset, the BF analysis found
GMVs that correspond to pathways expected to be activated in
the stimulated groups (interferon signaling, tryptophan catabo-
lism; ∣loge(BF)∣ > 3, Fig. 1e). We compared the GMV BFs with the
false discovery rate (FDR) values of the standard GSEA toolkit
(Methods, Fig. 1f). While both methods found the expected
activation of the interferon-α/β signaling pathway GMV in the
stimulated groups, GSEA missed the tryptophan catabolism

activation in innate immune cells (Fig. 1f). Overall, VEGA seems
more robust than GSEA to gene set size bias (Fig. 1f and SFig. 4),
suggesting it may emphasize more context-relevant pathways.
Additionally, the differential GMV activity test can be applied in a
cell-type-specific fashion (similar to one-vs-rest differential gene
expression analyses). We found that such a procedure yields
informative results in terms of cell type-specific biological
processes activated independently of perturbation status (SFig. 5
and Supplementary Data 1).

Large-scale investigation of biological responses to drug
treatments in cell lines. Next, we investigated whether VEGA
could detect patterns of drug responses in large-scale experiments
over cancer cell lines, such as the data introduced in recent
experimental protocols like MIX-Seq21. To this end, we gathered
single-cell data for 97 cancer cell lines under five different con-
ditions: 24 h DMSO treatment (control), 24 h Trametinib treat-
ment (MEK inhibitor), 24 h Dabrafenib treatment (Mutated
BRAF inhibitor), 24 h Navitoclax treatment (Bcl-2 inhibitor), and
24 h BRD3379 treatment (tool compound with unknown mode of
action, MoA) (Methods). We trained one model for each different
drug treatment (four models in total) by combining the drug
treatment dataset and the control group (DMSO dataset), initi-
alizing the GMVs of VEGA with the hallmark gene sets from
MSigDB22 to focus on core cellular processes. Overall, each model
was able to separate cell lines and treatment conditions in the
GMV space (Fig. 2a, and SFig. 6). For Trametinib notably, the
important change in G2M checkpoint GMV activity (decrease in
the treated condition) agrees with the expected MoA of a MEK
inhibitor23,24 (Fig. 2b). Next, we sought to investigate whether we
could recapitulate the pattern of biological responses between
control and treated conditions for each cell line/drug treatment
pair. For each pair, we computed GMV BFs to approximate
differential pathway activities between the two conditions. The
resulting heatmap can be used to understand and interpret pat-
terns of response over all experimental conditions (Fig. 2c). As
found when visually investigating the low dimensional

Fig. 1 Designing a novel VAE architecture with interpretable latent space. a Overview of the VEGA model. Composed of a deep nonlinear encoder (μ, Σ)
and a masked linear decoder, VEGA represents single-cell transcriptomics data into a lower-dimensional interpretable latent space z that approximates a
set of user-supplied gene modules (GMV). Additionally, VEGA can integrate batch information as another variable s to condition its generative process on
batch labels. b UMAP embedding of the latent space of VEGA retains the biological signal of the Kang et al. PBMCs dataset17. c Inferred interferon-alpha/
beta signaling pathway activity segregates stimulated cells from the control population. d Bivariate GMV plot showing the ability of the model to recover
the tryptophan catabolism activity, an innate (Dendritic cells, FCGR3A+monocytes, CD14+monocytes) immune cell-specific response to the perturbation.
e Volcano plot showing differentially active GMVs between stimulated and control innate immune cells. The red dots indicate GMVs with ∣loge(Bayes
Factor)∣ > 3 and a mean absolute difference (MD) in the latent space of at least 5. f Comparison of VEGA Bayes Factor with GSEA -log10(FDR). The size of
the dots indicates the gene set size. The red, blue, and purple quadrants correspond respectively to significant hits unique to our model, unique to GSEA,
and common to both.
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embedding of each dataset (Fig. 2a and SFig. 6a–c), Trametinib
resulted in the strongest transcriptional response of all studied
drugs. Notably, the Trametinib-specific interferon-α and inter-
feron-γ response was correctly recapitulated in VEGA’s latent
space, consistent with previous experimental work25 and the
findings reported by the original MIX-Seq authors21. Further-
more, we found that Dabrafenib-treated BRAF-mutant mela-
noma cell lines exhibited larger ∣loge(BF)∣ than other Dabrafenib-
treated cell lines (average ∣loge(BF)∣ of 0.763 vs 0.668 for other cell
lines), clustering with the Trametinib-treated cell lines as reported
in the MIX-Seq study (Fig. 2c and SFig. 6d). Overall, the results
presented here agree with the previous gene set analysis results on
this dataset, and demonstrate VEGA’s GMVs can recapitulate
patterns of drug response in large-scale experiments.

Gene regulatory analysis of glioblastoma reveals stratification
of neoplastic cells. As previously mentioned, one of VEGA’s
strengths is the flexibility in the specification of the GMV con-
nectivity, as any gene module can be used in the decoder.
Transcription factors often exert tight regulation of gene
expression in many biological contexts26. Analyzing the activity
of transcriptional regulators is important in understanding bio-
logical states like cell types or diseases, as dysregulation in their
activity can have a dramatic impact on gene expression programs
and phenotypes27,28. To this end, we investigated whether using
master transcriptional regulators as the GMVs could help
understand the underlying GRNs in the context of a single-cell
glioblastoma (GBM) dataset29. We used the GBM ARACNe16

network reported in Carro et al.28 to guide the structural design of
our model. Specifically, VEGA’s GMVs were set to the reported
transcription factors and the connectivity matrix M, defining the
GMVs decoding architecture, was created from the set of pre-
dicted target genes of each transcription factor. After training, we
found that the pre-annotated cell types were well-separated in the
latent space (Fig. 2d). We examined the activity of STAT3 and

OLIG2, two well-known master regulators of the mesenchymal
(MES) and proneural (PN) GBM subtypes, respectively. We
confirmed that their GMV activity was largely anticorrelated in
neoplastic cells (Fig. 2e). Additionally, OLIG2, a known master
regulator of oligodendrocytes differentiation30, was inferred as
activated in oligodendrocyte precursor cells (OPCs). These results
demonstrate that VEGA is able to home-in on the relevant
transcriptional regulators when the decoder wiring is extended to
model known factor-to-target relationships.

Combining cell type and cellular state representations refines
cortical organoid development analysis. A great challenge of
modern cellular biology is to identify and define cell types and
cellular states, at the level of individual cells, in order to sys-
tematically study homeostasis and disease development under a
common vocabulary. In a typical single-cell study, a few “marker
sets” will be known, each containing a list of genes having
expected expression patterns for some of the cell types of interest.
Leveraging such marker sets often provides clues and helps orient
data analysis. We asked whether the information recorded in such
marker sets could be used in VEGA to produce a disentangled
representation of cell types and cellular states. To this end, we
added a GMV zt, with appropriate entries in M, for each latent
cell type t in addition to the Reactome pathway GMVs already in
VEGA’s model.

We applied VEGA to a dataset of cells assayed during the early
development of cortical organoids from Field et al.31, including all of
the major cell types defined in the study as GMVs (Fig. 3a). After
training, we found that the activity of each marker set GMV was able
to correctly segregate its corresponding cell type as annotated by the
original authors (Fig. 3b–d). Moreover, in a one-vs-rest differential
GMV analysis setting for each cell type population, the activity of the
corresponding marker set GMV showed significant enrichment
(∣loge(BF)∣ > 3), which suggests using GMV BFs could help annotate
the cell types of unknown clusters (Fig. 3e). We further noted that the

Fig. 2 The flexibility in the latent space specification sheds light on the activity of core cellular processes and transcription factors. a tSNE embedding
of the latent space of VEGA for the MIX-Seq data21. The color indicates the treatment condition, and the arrow indicates the median shift in coordinates of
each cell line between the two conditions. b Inferred G2M checkpoint activity of each cells, showing a decreased activity in the treated condition, as
expected from the MoA of Trametinib. c Heatmap with hierarchical clustering showing the average loge(Bayes Factor) of each pathway for each cell line/
drug treatment pair (test between DMSO and treatment condition). Each row corresponds to a hallmark gene set and each column to a different cell line/
drug pair. The first row of color indicates the drug, and the second row of color indicates the tissue identity (Tissue legend available in SFig. 2). Highlighted
cell lines correspond to BRAF-mutant melanoma. Highlighted activities correspond to Trametinib-specific responses. d tSNE embedding of the latent space
of the model for the glioblastoma dataset29, colored by cell type or e Inferred activity of the master regulators STAT3 and OLIG2.
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most differentially activated GMVs were coherent in the context of
early brain development (SFig. 7 and Supplementary Data 2). To
study whether VEGA could separate cell type identity from cellular
states such as dividing vs quiescent cell populations, we projected the
dataset into two components: (1) the cell type GMV representing the
neural epithelium marker set (a type of early brain progenitor) and
(2) the cell state GMV representing the cell cycle mitotic pathway
activity (Fig. 3f). As discussed previously, the activity of the neural
epithelium GMV separated the neural epithelium cells from the rest
of the dataset, while the activity of the cell cycle mitotic pathway
GMV separated quiescent from actively dividing cells in the two
progenitors populations (radial glia cells and neural epithelium). To
validate that the cells identified as dividing were proliferating, we
studied the correlation between the cell cycle mitotic pathway GMV
activity and the expression of the MKI67 gene, a canonical marker of
proliferation (external validator not present in the cell cycle mitotic
pathway set) (Fig. 3g). Overall, the expression of MKI67 correlates
well with the inferred activity of the cell cycle mitotic pathway GMV
(R2= 0.64). Together, these results demonstrate VEGA’s potential
use to jointly infer cell type and state for different populations of cells,
as combining different sources of information (pathways, master
regulators, and cell type markers) in the latent space can shed light on
different aspects of the identity of a single-cell.

Generalization of the inference process to out-of-sample data.
We next asked whether VEGA could generalize to correctly infer
an interpretable latent representation of data unseen at the time
of training (out-of-sample data). To this end, we evaluated VEGA
in two settings. In the first case, we measured the biological
generalization of VEGA’s inference by holding out (cell type,
condition) pairs during training. Specifically, we investigated
whether the inferred GMV activities for held-out cells were
conveying the same biological information as to when this

population is seen at the time of training. To this end, we
removed one cell type of the stimulated condition during training,
and then inferred the GMV activities for that held-out population
(out-of-sample) and compared them to the GMV activities
learned from the fully trained model. The experiment was con-
ducted using the Kang et al.17 PBMC dataset. In the second case,
we estimated the “technical generalization” of VEGA’s inference
by training on one dataset (study A) and then evaluating on a
second dataset (study B) that contains only control cells. We used
the Kang et al.17 PBMC dataset as study A and the Zheng et al.32

dataset as study B.
For the biological generalization test, we first checked that the

distribution of the interferon-α/β signaling pathway GMV activity
in the out-of-sample stimulated CD4 T cells matched the inferred
activity in the in-sample CD4 T cells (Fig. 4a). To perform a more
systematic comparison of the inferred latent space between out-
of-sample and in-sample cells, we used the differential BF
procedure (Methods) between (1) stimulated in-sample cells and
control cells for a given cell type (model trained with the whole
dataset) and (2) stimulated out-of-sample cells and control cells
for the same cell type (model trained with one cell type/condition
pair left out), and checked the amount of overlaps in the top 50
differentially activated GMVs (Fig. 4b). The results suggested
consistency between the in-sample and out-of-sample differen-
tially activated GMVs, with an average 72% overlap. To further
evaluate the capacity of data reconstruction, we measured the R2

between the original and decoded data in the in-sample and out-
of-sample settings (Fig. 4c). We found that the R2 decreases only
marginally in the out-of-sample setting, confirming the ability of
the model to generalize to unseen data produced in a similar
experimental setting.

For the technical generalization test, we again checked that the
interferon-α/β signaling pathway GMV activity distribution of
study B encoded control CD4 T cells matched that of study A

Fig. 3 Disentangling cellular states and cell types in the early development of cortical organoids. a UMAP embedding of the latent space of our model
for the week 2 cortical organoid dataset31. The cell type annotation corresponds to the original paper annotation. b, c, d The inferred activity of each cell
type GMVs (as defined by marker genes) correctly identifies the three main subpopulations of cells. e One-vs-rest differential GMV analysis of each cell
type population provides a statistical significance for each cell type signature. The significance threshold for positive enrichment was set to loge(BF)> 3.
f Identification of dividing and quiescent subpopulations of neural progenitors using pathway and cell-type activity projection. g CELL_CYCLE_MITOTIC
pathway activity correctly identifies dividing cells as reported by its correlation with MKI67 gene expression (an external canonical marker of dividing cells).
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control CD4 T cells (Fig. 4d). We also investigated whether the
top 50 differential GMVs of each cell type in a “one-vs-rest”
differential setting for the control cells of study A overlapped with
a similar procedure performed on the control cells of study B
(Fig. 4e). We found that on average 67% of the top 50 differential
GMVs for study A overlap with those of study B, showing that the
model can generalize across studies unseen at the time of training.
We then asked whether the model can use the inferred latent
space to accurately reconstruct the original expression profiles of
both studies. We found that the R2 between original and
reconstructed cells of study B, although lower than those for
study A, improves upon the baseline correlation between the
expression profiles of study A vs study B for most of the cell
types (Fig. 4f).

Discussion
In this study, we introduced VEGA, a novel VAE architecture with a
decoder inspired by known biology to infer the activity of various
gene modules at the level of individual cells. By encoding single-cell

transcriptomics data into an interpretable latent space specified a
priori, our method provides a fast and efficient way of analyzing the
activity of various biological abstractions in different contexts. In
contrast, previous approaches used a posteriori interpretations of the
latent variables to infer modules. VEGA’s flexibility in the specifi-
cation of the latent space paves the way for analyzing the activity of
biological modules such as pathways, transcriptional regulators, and
cell type-specific modules. We illustrated how VEGA could be used
to simultaneously investigate both cell type and cell state of cell
subpopulations, in both control and experimentally perturbed con-
ditions. Additionally, the weights of decoder connections provide
direct interpretability of the relationship between the latent variables
and the original features. For example, the decoder’s weights could be
used to contrast interaction confidence in inferred GRNs or to rank
genes by their importance in a certain biological module in a data-
driven way. We further note that it was possible to modify VEGA’s
architecture, following the same rationale as widely-used scVI9 and
linear scVI13, such that it could handle count data in place of nor-
malized expression profiles (SFig. 8).

Fig. 4 Generalization of VEGA architecture to out-of-sample data. a Violin plot (n= 10,000 randomly sampled cells per condition) representing the
distribution of the interferon-α/β pathway activity in control CD4-T cells, stimulated CD4 T cells unseen at the time of training (out-of-sample), and
stimulated CD4-T cells when included in the training procedure (in-sample). Boxes inside the violins represent the median of the distribution bounded by
the first and third quartile. Violin limits correspond to data extrema. b Proportion of overlap in the top 50 differentially activated GMVs in the in-sample and
out-of-sample settings with stimulated vs control differential procedures for the seven main cell types in the study. Data were presented as mean
values ± standard deviation over 100 random sampling. c R2 between the mean expression of real and reconstructed cells in the in-sample and out-of-
sample settings for the seven main cell types of the study. Data were presented as mean values ± standard deviation over 100 random samplings. d Violin
plot (n= 2000 randomly sampled cells per condition) of distribution of the interferon-α/β pathway activity in control CD4-T cells of study A (Kang
et al.17), stimulated CD4-T cells of study A and control CD4-T cells of study B (Zheng et al.32). Boxes inside the violins represent the median of the
distribution bounded by the first and third quartile. Violin limits correspond to data extrema. e Proportion of overlap in the top 50 differentially activated
GMVs of each study with one-vs-rest differential procedures for the control cells of the seven main PBMC cell types. Data were presented as mean
values ± standard deviation over 100 random samplings. f R2 between the mean expression of real and reconstructed cells of study A (Study A), mean
expression of real and reconstructed cells of study B (Study B), and mean expression of real cells of study A and real cells of study B (Study A vs Study B).
Data were presented as mean values ± standard deviation over 100 random samplings.
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The clear limitations of the current architecture resides in the
sparse, single-layer decoder of the model. In fact, such an archi-
tectural design prevents the further improvement of generalizability
and robustness. As a consequence, the generative capacity of VEGA
is limited. For example, while VEGA theoretically could be used for
interpretable response prediction using latent vector arithmetics in a
similar fashion to scGen10, VEGA’s limited generative capacity
sacrifices predictive performance for biological interpretability of the
latent space. We believe advanced insights in network biology, e.g.,
multi-layer GRNs that can describe regulatory machinery more
comprehensively, could alleviate these limitations. This would open
the possibility to perform targeted, in-silico activation, and repression
of biological programs on specific cell populations to study its effect
on development or disease progression. On the other hand, hard-
coded connections of the linear decoder do not leave any room for
correcting prior knowledge about gene modules when the context
requires it, as is the case in other latent variable models such as
f-scLVM12. In fact, prior biological knowledge obtained from
existing databases like MSigDB can be incomplete or not con-
text-specific, as additional unannotated genes can play an
important role in certain gene modules. In parallel to our work
on VEGA, Rybakov et al.33 introduced a regularization proce-
dure to incorporate prior knowledge from gene annotation
databases via a penalty term on the weights of the linear
decoder. We demonstrated that VEGA performs comparatively
to their interpretable autoencoder (SFig. 9), and that their
approach is complementary to the unique attributes of VEGA
and can be used to recover missing gene-GMV links in a data-
driven fashion (SFig. 10).

In summary, we found VEGA useful for understanding the
response of specific cell type populations to different perturbations,
providing interpretable insights on biological module activity. The
variational aspect of VEGA provides an advantage for addressing
queries about samples, or sample groups, that are not possible with a
regular AE. We illustrated how the latent multivariate Gaussian
distribution of the VAE, which approximates the posterior prob-
ability of every GMV, enables a new kind of differential test to be
performed. The BF reflects the likelihood of how active a gene
module is in one condition compared to another, providing a
straightforward method to perform differential activity analysis using
the RNA-Seq data similar to the approach described by Lopez et al.9.
Other types of queries are possible, for example, to automate the
annotation of unsupervised clusters or modules that dynamically
change across the branches of an inferred cellular trajectory. We
envision VEGA could also be useful to prioritize drugs based on
pathway expression in cancer, as studying the response of specific cell
populations may inform drug sensitivity and resistance. Integrating
drug response prediction models with such explanatory models could
benefit designing novel therapeutic strategies.

Methods
The VEGA architecture. VEGA is a deep generative VAE that aims at maximizing
the likelihood of a single-cell dataset X under a generative process7,10 described as:

pðXjθÞ ¼
Z

pðXjZ; θÞpðZjθÞdZ; ð1Þ

with θ being the learnable parameters of a neural network. VEGA uses a set of
latent variables Z that explicitly represent sets of genes (gene modules), such as
pathways, GRNs, or cell type marker sets. To enforce the VAE to interpret a
dataset from the viewpoint of a set of gene modules, VEGA’s decoder part is
made up of a single, masked, linear layer. Specifically, the connection of this
layer, between latent node z(j) and gene features, are specified using a binary
mask M in which Mi,j is true if gene i is a member of gene module j and false
otherwise. We refer to each latent variable z(j) as a GMV since each provides a
view of the data constrained to the subset of genes for a distinct gene module j.
During training, gradients associated with masked (false) weights are “zeroed
out” such that backpropagation only applies to weights originating from a user-
supplied given gene set. Additionally, the weights of the decoder are constrained

to be nonnegative (w ≥ 0) to maintain interpretability as to the directionality of
gene module activity.

Having explicitly specified the connections between genes and latent variables
in the decoder of VEGA (generative part), we incentivize that the latent space
represents a biological module activity interpretation of the data. We choose to
model the GMVs as a multivariate normal distribution, parametrized by our
inference network with learnable parameters ϕ As such, the distribution of the Z
latent variables can be expressed as:

qðZjX; ϕÞ ¼ N ðμϕðXÞ;ΣϕðXÞÞ ð2Þ
This choice of variational distribution is common and has proven to work well

in previous single-cell studies9,10. Following similar standard VAE
implementations7,10, the objective to be maximized during training is the evidence
of lower bound (ELBO):

LðXÞ ¼ EqðZjX;ϕÞ log pðXjZ; θÞ� �� KLðqðZjX; ϕÞjjpðZjθÞÞ ð3Þ
where the expectation over the variational distribution can be approximated using
Monte Carlo integration over a minibatch of data, and the Kullblack–Leibler
divergence term has a closed-form solution as we set the prior to:

pðZjθÞ � N ð0; IÞ ð4Þ
The reparametrization trick7 is used when sampling VEGA’s variational

distribution to allow standard backpropagation to be applied when training
the model.

To retain information of genes that are not present in our pre-annotated
biological networks, we add additional fully connected nodes to the latent space of
our model. This has two effects: (1) it allows VEGA to model the expression of
unannotated genes, which could be crucial for a good reconstruction of the data
during training, and (2) it can help capture additional variance of the data that is
unexplained by the provided gene modules, considerably improving the training of
the model. The number of additional fully connected nodes can be determined
based on a trade-off between model performances and the loss of information
encoded by pre-annotated GMV nodes. As a rule of thumb, we recommend picking
16 or fewer extra FC nodes to preserve the biological signals encoded by GMV
nodes (SFig. 11).

Additionally, the diagonal covariance prior used in the latent space modeling
discourages GMVs from being correlated. Thus, the VAE may be forced to choose
an arbitrary gene set among many equally informative but overlapping sets and
could fail to reveal a key annotation. To address this issue, we add a dropout layer
to the latent space of the model. This has been shown to force the VAE to preserve
redundancy between latent variables34, which is applicable when the gene
annotation database used to initialize VEGA’s latent space contains overlapping
gene sets (SFig. 12).

Finally, batch information or other categorical covariates can be encoded via
extra nodes in the latent space, conditioning the generative process of VEGA on
this additional covariate information (SFig. 2).

Measuring differential GMVs activity of the latent space with Bayes Factor
(BF). The difference in the activity of genes and/or pathways is often of interest
when contrasting two different groups of cells. To this end, we draw inspiration
from the Bayesian differential gene expression procedure introduced in Lopez
et al.9 and propose a similar differential GMV analysis procedure. We follow a
similar notation as Lopez et al. For a given GMV k, a pair of cells (xa, xb) and their
respective group ID (sa, sb) (e.g., two different treatment conditions), our two
mutually exclusive hypotheses are:

Hk
0 :¼ Es z

k
a

� �
> Es z

k
b

� �
vs: Hk

1 :¼ Es z
k
a

� �
≤ Es z

k
b

� � ð5Þ
This can intuitively be seen as testing whether a cell has a higher mean GMV

activation than another, the expectation representing empirical frequency. We
evaluate the most probable hypothesis by studying the log-Bayes factor K defined
as:

K ¼ log e
pðHk

0jxa; xbÞ
pðHk

1jxa; xbÞ
ð6Þ

Here, the sign of K tells us which hypothesis is more likely, and the magnitude
of K encodes a significance level. Having access to the conditional posterior
distribution q(Z∣X) over the GMVs activation (the encoding part of VEGA), we can
approximate each hypothesis’ probability distribution as:

p Hk
0jxa; xb

� � � ∑
s
p sð Þ

Z Z

sup:ðzaÞ; sup:ðzb Þ

p zka > zkb
� �

dq zkajxa
� �

dq zkbjxb
� �

ð7Þ

where p(s) is the relative abundance of cells in group s, and the integrals are
approximated with direct Monte Carlo sampling.

Similarly to Lopez et al.9, assuming cells are independent, we can compute the
average Bayes factor across many cell pairs randomly sampled from each group
respectively. This helps us decide whether a GMV is activated at a higher frequency
in one group or the other. Through the paper, we consider GMVs to be
significantly differentially activated if the absolute value of K is greater than 3
(equivalent to an odds ratio of ≈20)9,20.
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Datasets and preprocessing
Kang et al. dataset. The Kang et al.17 dataset consisted of two groups of PBMCs,
one control and one stimulated with interferon-β. We chose to use the same
preprocessing steps as described by scGen authors10, using the Scanpy package35.
Briefly, cells were annotated using the maximum correlation to one of the eight
original cell type clusters identified, using an average of the top 20 cluster genes.
Megakaryocytes were removed due to uncertainty about their annotation. Then
data were filtered to remove cells with less than 500 genes expressed and genes
expressed in five or less cells, using the scanpy.pp.filter_genes()and
scanpy.pp.filter_cells() functions. Count per cells were then normalized
and log-transformed using the scanpy.pp.normalize_per_cell() and
scanpy.pp.log1p() functions, and we selected the top 6998 highly variable
genes with scanpy.pp.highly_variable_genes(), resulting in a final
dataset of 18,868 cells. Raw data is available at GSE96583. We used the same
preprocessing functions for the rest of the datasets unless specified otherwise.

Zheng et al. dataset. The Zheng et al.32 dataset consists of 3K PBMCs from a healthy
donor. After filtering the cells, the count per cells were normalized and log-
transformed. We then subset the genes to use the same 6998 genes of the Kang et al.
PBMC dataset. The final dataset has 2623 cells and 6998 genes. Raw data are available
at https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.

MIX-seq dataset. The MIX-seq21 datasets were obtained from https://figshare.com/
s/139f64b495dea9d88c70, and we used the data from experiment 3 to have enough
cells to carry a smooth training of our model. For the five available datasets (97 cell
lines treated with respectively DMSO, Trametinib, Dabrafenib, Navitoclax, and
BRD3379), we removed cells with 200 or less expressed genes, and genes expressed
in less than three cells. We then normalized the number of counts per cell, and log-
transformed the data. Finally, each dataset that was a drug treatment experiment
was combined with a copy of the control dataset (DMSO treatment), and we
extracted the top 5000 highly variable genes. This resulted in final datasets of size
(16,732 cells and 4999 genes) for the Trametinib+DMSO data, (16,942 cells and
5000 genes) for the Dabrafenib+DMSO data, (14,507 cells and 5000 genes) for the
Navitoclax+DMSO data, and (15,304 cells and 5000 genes) for the
BRD3379+DMSO data.

Darmanis et al. dataset. The raw GBM data from Darmanis et al.29 were obtained
from http://www.gbmseq.org/ and preprocessed as followed: we removed cells with
200 or less expressed genes, and genes expressed in three or less cells. Count per
cells were normalized and data were then log-transformed. Finally, we restricted
the transcriptome to the top 6999 highly variable genes. The final dataset had a
total of 3566 cells. Raw data is available at GSE84465.

Field et al. dataset. The cortical organoid data from Field et al.31 was processed
similarly to the GBM dataset. After normalization and highly variable genes
selection, the dataset had a total of 4378 cells, with 6999 genes. Raw data is available
at GSE106245.

Shekhar et al. dataset. The mouse retina dataset from Shekhar et al.36 was processed
as described (see https://github.com/broadinstitute/BipolarCell2016). Briefly, we
removed cells with more than 10% mitochondrial transcripts. Then, cells with less
than 500 genes were removed, and genes expressed in less than 30 cells and with
less than 60 transcripts across all cells were removed. To be able to use human
versions of gene modules from the Reactome database, we performed one-to-one
ortholog mapping of mouse transcripts to human transcripts using BioMart from
the Ensembl project37. Genes without human orthologs were removed. We saved a
version of the dataset with the raw count data for the selected genes/cells, and
further processed the data by normalizing and log-transforming the libraries.
Finally, we restricted the transcriptome to the top 4000 highly variable genes. The
same highly variable genes were used to subset the raw QC count matrix. The final
datasets (for both count and log-normalized versions) had a total of 27,499 cells,
coming from two technical batches. We used the annotation with 15 cell types from
the original authors. Raw data is available at GSE81904.

Choice of gene annotations for the latent space of VEGA. When initializing the
latent space of our model, we chose to use pre-annotated gene sets from the
Molecular Signature Database (MSigDB, at https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp#C2)14. In particular, we chose to use the hallmark gene sets
annotation (50 gene sets) or the Reactome database (674 gene sets). Reactome was
used for the stimulated PBMCs analysis, and MSigDB’s Hallmark gene sets were
used in the MIX-Seq analysis part of this study. For the gene regulatory network
analysis of GBM cells, we derived an ARACNe16,38 network from bulk RNA-Seq
samples of GBM. Specifically, this network was obtained from a previously pub-
lished paper39 and repurposed for the study of GBM single-cell transcriptomics
profiles.

For the cell type marker genes in the cortical organoid analysis, we contacted
the authors to obtain relevant genes used in annotating those cell types. The GMT
file including these marker genes can be found along with the reproducibility code
at https://github.com/LucasESBS/vega-reproducibility.

Dimensionality reduction for visualization. For visualizing datasets, we used the
UMAP algorithm40 as implemented in the Scanpy35 python package, using
scanpy.pp.neighbors() for the k-NN computation with n_neigh-
bors=15, and scanpy.tl.umap() for the actual dimensionality reduction.
We used default parameters except for the min_dist parameter that we set to 0.5.
We also used tSNE41 implemented as sklearn.manifold.TSNE() in the
sklearn python package42, with default parameters.

Comparison with GSEA. We ran Gene Set Enrichment Analysis https://
www.zotero.org/google-docs/?grfpAv14 (GSEA) using the prerank function from the
gseapy package in Python. Briefly, we calculated differential expression scores for each
gene between the control and treatment group using a Wilcoxon rank-sum test, as
implemented in the scanpy.tl.rank_genes_groups() functionality of the
Scanpy package https://www.zotero.org/google-docs/?fKytT735. We ranked genes
according to their test statistics, and ran GSEA using the gseapy package function
gseapy.prerank() with the following settings: a minimum gene set size min_-
size=5, a maximum gene set size max_size=1000, and a number of permuta-
tions permutation_num=1000. We ranked gene sets according to their FDR and
considered significant hits when FDR ≤0.05. When the FDR returned by GSEA was
equal to 0, we replaced it with 1e-5 (to avoid math error when taking the logarithm).

Batch correction comparison. To assess batch information integration in VEGA’s
latent space, we compared the average silhouette scores on batch labels from the
Shekhar et al. retina dataset of (1) PCA with 50 principal components (computed
using scanpy.tl.pca() function), (2) linear scVI13 as implemented in the
scvi-tools package ran on the count version of the dataset with following
parameters: AnnData object setup with batch_key=Batch, model initialized
with n_hidden=800, n_layers=2, dropout_rate=0.2,
n_latent=677, training performed with max_epochs=300, ear-
ly_stopping=True, lr=5e-4, train_size=0.8, ear-
ly_stopping_patience=20, and (3) VEGA with following parameters:
AnnData object setup with batch_key=atch, model initialized using the
REACTOME pathway database with three extra FC nodes to initialize the latent
space and the same training hyperparameters as linear scVI.

Evaluation metrics. Silhouette scores were calculated to evaluate the separation of
cell types and states in the latent space of our model. We used Euclidean distance in
the latent space to compute the silhouette coefficient of each cell i defined as :

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ð8Þ

where a(i) and b(i) are respectively the mean intra-cluster distance and the mean
nearest-cluster distance for cell i. We used either the stimulation or cell type labels
from Kang et al.17 to assess the biological relevance of the latent space of our
model. The sklearn package17silhouette_score() implementation was used
for computation. For computing correlations throughout the paper, we used the
function numpy.corrcoef() from the Numpy package43.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this manuscript are publicly available. Please see the
section Datasets and preprocessing of Methods for details. These datasets are also
downloadable at https://github.com/LucasESBS/vega-reproducibility.

Code availability
The package and API for VEGA is available at https://github.com/LucasESBS/vega/tree/
vega_dev44. The code and data to reproduce the results of this manuscript is available at
https://github.com/LucasESBS/vega-reproducibility.
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