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Technology, Information and Decision Making in Health Care

Abstract

In this dissertation, I investigate how patients and providers respond to changes in

healthcare technology with information and resource constraints. The following chapters are

three diverse approaches to this core inquiry.

Pharmaceutical innovations in the 20th century were transformative in the prevention

and treatment of cardiovascular disease. Yet, the efficacy of medication may be lower than

clinical expectations due to adjustments in perceived risk that cause changes in behaviors,

a phenomenon known as risk compensation. In Chapter 1, the 1973 FDA approval of new

classes of drugs to treat high blood pressure and high cholesterol is used to identify the effect

of medication availability on nonsmoking, adherence to a diet, and body mass index. Results

show that medication approval significantly decreases the probability of engaging in healthy

behaviors, evidence of risk compensation. Once a diagnosis of cardiovascular disease (CVD)

is received, a patient has updated information about the state of her health which may induce

the adoption of healthy behaviors. For smoking, a diagnosis of CVD does partially attenuate

the risk-compensation effect of medication. After medication is approved, individuals at high

risk of CVD have increased take-up – an indication that risk screening is implemented. Also, a

CVD diagnosis prompts medication use as a complement to multiple healthy behaviors. The

evidence demonstrates the importance of promoting healthy behaviors to a broad population

and increasing risk-factor salience prior to diagnosis.

Chapter 2 provides new evidence on how technology affects healthcare markets by fo-

cusing on one area where adoption has been particularly rapid: surgery for prostate cancer.

Over just six years, robotic surgery grew to become the dominant intensive prostate cancer

treatment method. Changes in patient volume due to robot adoption are estimated using a

difference-in-differences design. Results indicate that adopting a robot drives prostate can-
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cer patients to the hospital. Estimating changes in patient volume at the market level tests

whether this result reflects market expansion or business stealing. The findings here are

significant but smaller, suggesting that adoption expands the market while also reallocating

some patients across hospitals. Marginal patients are relatively young and healthy, inconsis-

tent with the concern that adoption broadens the criteria for intervention to patients who

would gain little from it. The chapter concludes by discussing implications for the social

value of technology diffusion in healthcare markets.

Chapter 3 returns to the consideration of pharmaceutical drugs with a theoretical look

at the way information, through advertising, impacts the decision of a generic pharmaceuti-

cal manufacturer to enter the market after patent expiration. Brand-name pharmaceutical

firms with patent protection advertise in two ways: to physicians as detailing and direct-to-

consumers through mass media. Prior research shows that each type of advertising uniquely

influences markets. Physician advertising generates goodwill that the brand retains after

patent expiration while direct-to-consumer advertising (DTCA) expands demand for the en-

tire class of drugs. A potential generic competitor’s entry decision is based on its evaluation

of future market conditions, which are affected by brand loyalties created by detailing and

market size, as determined in part by DTCA. A two-stage vertical differentiation model is

used to develop testable hypotheses that physician advertising is necessary for entry to avoid

Bertrand competition, but in high levels acts as an entry deterrent. Conversely, DTCA pro-

motes entry through market expansion. During the period of patent protection, the brand

firm optimally chooses levels of detailing and DTCA to maximize expected profits over the

patent-protection period and the period after patent expiration, anticipating the effects of

its actions on generic entry. The analysis concludes by considering the impacts of pharma-

ceutical advertising and generic entry on consumer welfare.
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Chapter 1

From Prevention to Treatment:

Prescription Medication and Health

Behaviors
1

1.1 Introduction

Over 60% of adults in the United States (U.S.) have cardiovascular disease (CVD), which

is the number one cause of death, and accounts for $216 billion in annual health care costs

(CDC, 2018; AHA, 2021). Research over the past century has improved understanding of

CVD risk factors; yet, the unhealthy behaviors that contribute to CVD remain prevalent

(Saklayen and Deshpande, 2016; Virani et al., 2020). One possible explanation is risk com-

pensation (Peltzman, 1975). Individuals compensate for changes in perceived levels of risk by

adjusting their behavior. It is less "costly" to engage in risky behavior when new technology

can prevent catastrophic outcomes.
1This Manuscript was prepared using FRAMCOHORT Research Materials obtained from the NHLBI

Biologic Specimen and Data Repository Information Coordinating Center and does not necessarily reflect
the opinions or views of the FRAMCOHORT or the NHLBI.
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Invasive and non-invasive technologies have been introduced to address the prevention

and treatment of CVD, notably medication. Healthy behaviors also decrease the risk of

CVD. The efficacy of medication as a treatment for CVD would be reduced if medication

causes risk compensation by decreasing the perceived risk of poor diet, obesity and sedentary

lifestyle (Ha, 2014; Trap-Jensen, 1988). Conversely, a diagnosis of CVD provides updated

information about the consequences of past behavior choices and may increase the take-up

of healthy behaviors. This paper asks: Does the availability of new medication negatively

impact health behaviors? In turn, does a diagnosis of CVD offset the risk-compensation

effect of medication?

Risk compensation in health care is well established. There are numerous instances

of health interventions having lower efficacy in the real world than in clinical trials (Prasad

and Jena, 2014). A survey by Golub et al. (2010) on preexposure prophylaxis (PREP)

for the prevention of human immunodeficiency virus (HIV) found that of men who would

use PREP, 35% would also decrease condom use. Statins, used to treat high cholesterol,

are associated with increased waist size and poor diet (Mancino and Kuchler, 2009), and

increased BMI, obesity and alcohol-drinking behavior (Kaestner et al., 2014). Also, diabetes

patients view medication as more important that lifestyle changes, even though patients that

used medication in addition to healthy behaviors had better management of blood glucose

levels (Broadbent et al., 2011). In contrast, receiving the human papillomavirus (HPV)

vaccine is associated with less risky sexual behavior across a number of studies (Kasting

et al., 2016). A key difference is that it is often a parent, rather than the child, who makes

the decision for the child to receive the HPV vaccine.

With the exception of diabetes, the research cited above does not distinguish between

preventative care and treatment. Risk compensation often points to behavioral offsets that

occur before the "crash" (Peltzman, 1975; Mancino and Kuchler, 2009; Kaestner et al., 2014;

Golub et al., 2010). Once a diagnosis occurs, preventative care becomes treatment and the

2



patient has updated information about the state of their health. Oster (2018) links the

precise timing of a diabetes diagnosis to assess changes in food purchases. Results indicate

that a diagnosis of diabetes causes a small but significant decrease in consumption of high-

calorie and high-sugar foods. Other work confirms that the magnitude of dietary changes

after a diagnosis is generally small but statistically significant (Zhao et al., 2013; Shimokawa

and Shimokawa, 2015). A study by Kim et al. (2019) considered diabetes, hyperlipidemia

and obesity in Korea and found significant changes after diabetes diagnosis for weight loss,

taking diabetes medications and increased future health screenings. Despite mixed findings

for personal health information, the health shock of a family member causes a spillover

of information that induces individuals to increase personal take-up of healthy behaviors

(Fadlon and Nielsen, 2019; Thomas and Mentzakis, 2020; Hoagland, 2021).

I add to the existing literature by considering that risk compensation may occur in

response to having medication available regardless of take-up. In contrast to prior work, I

find that the option of FDA-approved medication, even if not taken, offsets healthy behavior.

I also link the risk-compensation literature to the literature on the impact of diagnoses on

behavior by considering how behavior changes from the initial risk of disease to diagnosis

in relation to new treatment modalities. I hypothesize that risk compensation explains the

limited impact of diagnostic information on inducing healthy behavior.

I consider how medication availability and a diagnosis affect behavior using the original

cohort of the Framingham Heart Study. This is a longitudinal study of individuals from

Framingham, Massachusetts who were clinically examined biennially from 1945 through

their lifespan to determine the epidemiology of heart disease. The advantage of these data

is that they allow for a long-study-sample period, between 1960 and 1982. This time frame

includes the FDA approval of the first beta blocker, propranolol, to treat high blood pressure

(hypertension) in the same year that the first bile-acid sequestrant, cholestyramine, to treat

high cholesterol (hyperlipidemia) was introduced. Both drugs were revolutionary at the

3



time. The seminal randomized-controlled trial (RCT) on beta blockers found a reduction in

cardiovascular mortality of 26% for individuals treated with propranolol (Srinivasan, 2019).

Also, clinical evidence finds that cholestyramine significantly reduces low-density lipoprotein

(LDL) cholesterol and reduces cardiovascular mortality by 24% (NHLBI, 1984). There were

no medication innovations in the 15 years prior to these new treatments and none for the

subsequent eight years for these conditions, see Table A1. This allows me to isolate behavior

and medication use in relation to new innovations that address the biggest risk factors for

CVD. During this period, the health benefits of dieting, nonsmoking and reducing BMI

were becoming widely known and promoted by clinicians (La Berge, 2007; CDC, 2014). The

panel design of the data and rich measures of health and behavior provide the ideal setting to

consider how medication and behavior interact before and after a diagnosis in a U.S. setting

while controlling for unobserved, time-invariant-individual characteristics.

I use a quasi-experimental design adapted from Fadlon and Nielsen (2019) and Desh-

pande and Li (2019) to estimate how the availability of new medication impacts health

behavior in total and after a diagnosis of CVD. The "treatment" group in my sample con-

sists of individuals who experience an initial diagnosis of CVD at one of six biennial exams

and are followed for the subsequent two exams (four years). They are matched with controls

who will also be diagnosed with CVD three or four exams in the future (6 to 8 years).2

The only differences between the treatment and control groups are idiosyncratic because

the timing of a CVD diagnosis can be unpredictable as is assumed in Chandra and Staiger

(2007) and Fadlon and Nielsen (2019). This is plausible given that the ten-year risk of a

CVD diagnosis is not systematically different between the treatment and control groups at

the time the treatment group is diagnosed, and ten-year risk is not significantly associated

with the timing of a diagnosis within my sample.3 Each sample individual is a candidate for
2The health economics literature has viewed the precise timing of an acute myocardial infarction (AMI)

or stroke as random (Chandra and Staiger, 2007; Fadlon and Nielsen, 2019). The main analysis broadens the
defined health shock to a diagnosis of CVD for which risk is assessed in a 10-year time frame. The diagnosis
of CVD falls within 10 years for both treatment and control individuals. As a test of robustness, the sample
is limited to people who gain the diagnosis through an AMI or stroke alone. See Appendix Table 1.5.

3Ten-year risk indicates the probability that an individual will be diagnosed with CVD within the next
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taking medication to prevent and treat CVD given future diagnosis. The model begins with

a basic difference-in-differences design that follows from this setup and is then expanded

to a triple-differences model that includes the fully-saturated interaction of CVD diagnostic

status with the exogenous introduction of newly FDA-approved medication in 1973.4 There

are two effects of interest. The first is the total impact of newly approved medication on

behavior, and the second is the interaction of new medication with being in the treated

group after diagnosis which demonstrates the marginal effect of receiving a diagnosis and

FDA approval on behavior.

The FDA approval of beta blockers and bile-acid sequestrants causes an 11 percentage

point (29.6%) increase in current smoking, a 4 percentage point (44.2%) decrease in following

a low-salt diet, a 1 percentage point (18.7%) decrease in following a low-fat diet, and a 0.49

(1%) increase in BMI.5 All estimates are statistically significant. These findings support the

idea that risk compensation is present in response to having a medication available to prevent

CVD, regardless of use. Once CVD diagnosis is received and patients gain information about

the consequences of past-behavior choices, the risk compensation response for smoking is

decreased - there is a positive probability of non-smoking after FDA approval and CVD

diagnosis. However, there is no change in the risk-compensation effect for dieting and BMI

after receiving a CVD diagnosis in response to medication availability.

I next investigate the use of medication in combination with healthy behaviors after

FDA approval. After new medication is available, patients may choose to use medication as

a substitute or complement to other healthy behaviors. The outcomes considered are combi-

ten years. The specific timing of a diagnosis cannot be determined within the ten-year-time frame without
updating the risk score which is recommend at least every six years (Wilson, 2021a). The mean ten-year-risk
score at the time the treatment group is diagnosed is not statistically different between the treatment and
control groups for those diagnosed before 1976. The last treatment group diagnosed has a risk score that is
1.7 percentage points higher than their matched control group. Also, regressing ten-year-risk score prior to
the treatment group’s diagnosis does not systematically predict being diagnosed. See Appendix Tables and
A2 and A3.

4The predicted probability of a CVD event is not significantly correlated with FDA approval of beta
blockers to treat hypertension and bile-acid sequestrants to treat hyperlipidemia in 1973.

5The results presented in Table 1.2 report coefficients for the probability of being a nonsmoker and
decrease in BMI to maintain the consistency of the direction of coefficients.
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nations of medication and behavior choices modeled using the same difference-in-differences

design (excluding the FDA-interaction terms) with additional controls for being at high

or low risk of CVD. Results show that experiencing a diagnosis increases the probability

of complementing medication use with healthy behaviors but does not increase take-up of

medication when controlling for risk status. Persons at the highest level of ten-year risk

for CVD (≥ 20%) are associated with increased take-up of medication and use medication

more often as a substitute than a complement to singular-healthy behaviors. This indicates

that risk screening is actively implemented. Concernedly, individuals with low-risk of CVD

(<10%), but who will eventually be diagnosed, are associated with a lower probability of

medication use and are less likely to use medication as a complement with multiple healthy

behaviors compared to individuals with intermediate risk. For this group, risk score may

underestimate true risk by not accounting for marginal factors that may influence disease

manifestation (Wilson, 2021b). If this is the case, individuals in the low-risk category may

not know their true risk of CVD and use fewer preventative measures that would be optimal.

Access to a medication to prevent and treat CVD can induce unhealthy behavior.

Yet if taken, medication is often used to complement healthy behaviors for those that have

a diagnosis or are at high risk of CVD. If individuals value unhealthy behaviors (such as

smoking and eating high-sodium or high-fat foods) and also value health, risk compensation

may be a utility-maximization strategy because the FDA approval of medication decreases

the cost of unhealthy behavior. The concern is that the risk of CVD may not be correctly

assessed. As a result, it is not until the true cost of unhealthy behavior is realized, via a CVD

diagnosis, that medication and healthy behaviors are more likely to be used as complements.

For clinicians and public health advocates, the findings highlight the importance of helping

all patients (not just those at high risk of CVD) understand the risk factors of CVD and

the importance of healthy behaviors, even when medication is available, before prevention

becomes treatment.
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The chapter proceeds as follows: Section 1.2 provides background on CVD and related

medications and risk factors. Section 1.3 discusses the data. Section 1.4 presents the primary

estimation strategy. Section 1.5 assesses the results. Section 1.6 explores treatment choice

after medication is available. Section 1.7 discusses the findings and concludes.

1.2 Background

1.2.1 Cardiovascular Disease

Cardiovascular disease is a broad term for diseases that primarily affect the heart and/or

blood vessels. The majority of CVD diagnoses are for coronary artery disease which is

commonly referred to heart disease. Heart disease occurs when there is decreased blood

flow to the heart muscle due to a build up of plaque (deposits of cholesterol) in the artery

walls. Over time, plaque causes arteries to narrow which leads to chest pain and shortness

of breath. If a plaque ruptures, it can form a blood clot that blocks the artery and causes a

portion of the heart muscle to die. This is known as a acute myocardial infarction (AMI or

heart attack). Since the 1950s, CVD has been diagnosed by laboratory tests, non-invasive

tests such as electrocardiogram and echocardiogram and/or invasive tests such as cardiac

catheterization (Hajar, 2017).

The behavioral risk factors for developing heart disease include a diet high in fat and/or

sodium, smoking, excessive alcohol use and a sedentary lifestyle. Over time, these behaviors

can lead to conditions that increase the probability of developing heart disease, including:

high blood pressure (hypertension), elevated cholesterol levels (hyperlipidemia), obesity and

diabetes. While heart disease can be treated with intensive interventions such as cardiac

catheterization and bypass surgery, treatment also involves addressing behavioral-risk factors

through lifestyle changes (CDC, 2018).
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1.2.2 Medication and Cardiovascular Disease

In the 1940s scientists began focusing on the causes of heart disease. Linking elevated

blood pressure to heart disease was an early discovery of this time, but even after the

connection was made, hypertension was considered untreatable (Saklayen and Deshpande,

2016). In 1953, the FDA approved the first medication to treat hypertension. Hydralazine

is a vasodilator that works by relaxing blood vessels thereby allowing blood to flow more

easily. Five years later, the first diuretic, chlorothiazide, was FDA approved. Chlorothiazide

lowers blood pressure by inducing the kidneys to clear excess water and salt from the body.

During the 1950s and 1960s there was additional debate about what constituted diagnosed

hypertension that was considered a risk for heart disease. The familiar reading of 120 systolic

over 80 diastolic blood pressure is a modern standard developed years after this early learning

period. This means that even though medications were available, hypertension as it would be

identified today was often untreated into the mid-century (Saklayen and Deshpande, 2016).

Vasodilators and diuretics were the only medications available to treat hypertension for

the next 15 years (FDA, 2020). The first beta-adrenergic blocking agent, propranolol, was

FDA approved in 1973. Beta blockers (as they are commonly referred to) work by decreasing

stress hormones in the body which brings down the heart rate and results in decreased blood

pressure. A landmark RCT for beta blockers demonstrated that they reduced cardiovas-

cular mortality by 26% (Srinivasan, 2019). Since beta blockers affect blood pressure from

a different avenue than vasodilators, they are often combined in treatment (Stevens et al.,

1983). After the introduction of beta blockers, 15 medications in this class of drugs have

been developed with the most recent reaching the market in 2007. After the introduction

of beta blockers, medication use to treat hypertension among study participants increased

from 8% to 24%.6 Appendix Table A1 for a timeline of FDA approvals.
6The increase is among study participants who attended exam 12 which spanned 1973 when propranolol

was approved by the FDA. The sample was not restricted to individuals with hypertension or who were at
high risk of CVD. Medication use to treat hypertension was 8% at exam 11, at exam 12 medication use
increased to 19% and increased again to 24% at exam 13 (the exam after approval).
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Medications to treat high-cholesterol levels were slower to be developed. In 1973,

cholestyramine, a bile-acid sequestrant, was the first FDA-approved medication for hyper-

lipidemia (FDA, 2020). This medication binds to bile acids in the intestine and prevents

their absorption. To compensate for the loss of bile acids, the liver converts cholesterol into

bile acids which reduces the level of cholesterol in the blood. Take-up of cholestyramine was

much slower than for hypertension medications despite evidence that bile-acid sequestrants

can reduce cardiovascular mortality by 24% (NHLBI, 1984). In the six years after approval,

79.3% of study participants were taking medication to treat hypertension compared to med-

ication to treat hyperlipidemia.

At the time these drugs were developed, pharmaceutical advertising was limited to

physicians. Yet, the clinical benefits of these medications and prevalence of heart disease

made their development headline news. Beta blockers and bile-acid sequestrants were both

covered in national media outlets and Massachusetts newspapers where my study sample is

located.7 For example, a 1976 Boston Globe article discussed the benefits and uses of pro-

pranolol and in large font declared, "Encouraging Reports from hospitals here and abroad"

(Galton, 1976). The media coverage of both drugs provides a path of information to increase

public awareness of the clinical benefits of the medications without visiting a doctor or pre-

scription. It also provides reasoning for the slower take-up of the cholesterol-lowering drug

which had sparser coverage.

Both beta blockers and bile-acid sequestrants remained the last innovations to treat

hypertension or hyperlipidemia until 1981. The introduction of these medications during a

drought of development before and after their FDA approval offers an opportunity to identify

the effect of medication availability on behavior.
7A search of term "propranolol" in The Boston Globe news archives using Newspapers Publishers Extra

from 1963 through 1983 resulted in 71 matches, and a search for "cholestyramine" returned 6 results. A
search of news archives using Nexis Uni of national media from 1963 through 1983 for the term "propranolol"
resulted in 70 articles from multiple publications. The search for "cholestyramine" resulted in 14 articles
from a similar grouping of media outlets.
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1.2.3 Behavior, Health and Medication

The first diet to receive attention for reducing hypertension was the Kempner Rice Diet

which was notable for its low-salt content (Kempner, 1948). Nine-years later in 1957, the

American Heart Association (AHA) recommended that decreasing dietary fat would reduce

the risk of heart disease (Krauss et al., 1996). This was promoted by Congress when the

Senate Committee on Nutrition and Human Needs published Dietary Goals for the United

States in 1977 (La Berge, 2007). By this time, the Surgeon General’s report on Smoking

and Health had been out for 13 years, and Americans had a clearer picture of how lifestyle

impacted their risk for CVD (CDC, 2014).

There have been many studies since that consider the combined efficacy of medication

and health behavior in the prevention and treatment of CVD. Khera et al. (2016) found

that even among people with genetic risk of heart disease, making healthy-lifestyle changes

reduced the risk of a coronary heart event by 46 percent. Multiple randomized-control trials

have demonstrated that the use of a beta blocker with sodium restriction was significantly

more effective at lowering blood pressure when compared to salt restriction or beta blockers

alone (Erwteman et al., 1984; Luft and Weinberger, 1988; Ha, 2014). Similarly, smoking

cessation complements the hypotensive effects of beta blockers while smoking blunts drug

efficacy (Trap-Jensen, 1988). In a study of men at risk for heart disease, adherence to five-

lifestyle factors (nonsmoking, moderate alcohol consumption, BMI under 25 kg/m2, healthy

diet and physical activity) could prevent 62% of potential coronary events; among the men

who were already on medication, adopting a "low-risk" lifestyle would reduce coronary events

by 57%. Only adopting two of the five lifestyle changes resulted in a 25% decrease in the risk

of a coronary event (Chiuve et al., 2006). Medication and a healthy lifestyle are biological

complements in reducing the risk of disease.

Despite ample evidence on the preventative effects of healthy behaviors, physician

recommendations about lifestyle changes to reduce the risk of CVD are generally reserved
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for patients that exhibit obvious high-risk behaviors such as obesity or sedentary lifestyle or

for whom medication is not an option (Grundy et al., 2004). Even with consistent evidence

of the complementary therapeutic nature of behavioral changes and medication use to treat

hypertension and hyperlipidemia, medication often remains the clinical focus (Hyman and

Pavlik, 2000).

1.3 Data

The Framingham Heart Study began in 1948 to collect epidemiological data on CVD (Mah-

mood et al., 2014). Undertaken at a time when thirty percent of men in the U.S. were

developing heart disease, the study was to determine the factors that influence disease de-

velopment and trajectory. The original cohort consisted of 5,209 participants who were

not initially exhibiting signs of heart disease. The participants underwent exams biennially

throughout their lifespans – a total of 32 exams. The tests administered and data collected

vary across exams but generally focus on all aspects of cardiovascular health with additional

measures of socioeconomic status and lifestyle. Eventually, the Framingham Heart study

expanded to include the children of the original cohort and recruited additional participants.

The Framingham Heart Study is unique in providing a long-run panel. All participants in the

original cohort are from Framingham, Massachusetts (Oppenheimer, 2005). This city was

selected in part because it was considered to be representative of the general U.S. population

at its inception (Kelleher, 2018). However, limiting the sample to one geographic area does

limit external validity. Prior research has found that the Framingham Heart Study does

predict heart disease well compared to a nationally representative sample of white adults

from the National Health and Nutrition Examination Survey (NHANES) I Epidemiologic

Followup Study (Leaverton et al., 1987).8 An additional concern with the sample is that
8Table A4 presents means for the Framingham sample population compared to a nationally representative

sample from the weighted National Health Interview Survey (NHIS) for years that CVD diagnostic questions
were asked during this study sample time period. The available statistics from the NHIS were limited during
this time period. Among participants in both samples who were diagnosed with CVD, the Framingham
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participants in the Framingham Heart Study volunteered be in the study. while individuals

did not initially exhibit signs or symptoms of heart disease, volunteering is a signal that they

may be more interested in heart health than the general population. This introduces the

potential for bias from sample selection into the results.

I focus exclusively on the original cohort from exam number 7 through 16 which span

the years 1960 through 1982. The FDA approval of propranolol (beta blocker) and cholestyra-

mine (bile-acid sequestrant) occurred during exam 12. There are no medication introductions

to treat hypertension or hyperlipidemia during any other exams in the sample time period

with the exception of exam 16.9

The research design relies on knowing if the participant has a diagnosis of CVD. Diag-

noses are validated through physical examination as part of the Framingham Heart Study

and by review of medical records generated between exams as opposed to self-reported diag-

nosis.10 In addition to a definitive diagnosis of CVD, the data includes validated measures

of age, sex, cholesterol, blood pressure and smoking status collected at each exam. These

measures are used to calculate the Framingham Risk Score (FRS), the 10-year risk proba-

bility of developing CVD, see Appendix A.1 for the formula (D’Agostino et al., 2008). To

be included in the sample, the individual must attend the exam prior to a CVD diagnosis,

the diagnosis exam and both exams after diagnosis. Deceased individuals are removed from

the sample when they die. The sample is lastly limited to exclude anyone who was over 60

years old at exam 1. The final sample is comprised of 1,275 individuals across 10 exams,

representing 34% of the non-deceased participants who attended exam 9.

participants are, on average, 7 years older than in the NHIS sample. The samples are comparable for the
percentage of individuals who are married, but NHIS has an 8 percentage point higher rate of people who are
divorced, widowed or separated. Lastly, 2% more men are in the Framingham sample compared to NHIS.

9In 1981, toward the end of the time frame for exam 14 (1979 - 1982), the FDA approved the first
angiotension-converting enzyme (ACE) inhibitors to treat high blood pressure and fibrates to treat high
cholesterol. See Table A1.

10If the study participant reports any symptoms of CVD such as chest pain, circulation problems or
arrhythmia, or if they report any cardiac procedures or diagnoses, the research team reviews the medical
records of the participant to confirm the diagnosis and timing of CVD and/or any other cardiac events such
as stroke or AMI.
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As described above, the time frame of the study aligns with the period where the impact

of behavior on CVD was becoming widely known. The behavioral outcomes considered are

those directly related to the prevention and treatment of heart disease and for which data

are available.11 The first outcome assessed is if the participant is a nonsmoker since smoking

is a well-documented threat to heart health. Two dietary outcomes that were recognised

to decrease the risk factors of CVD at the time are also considered: following a low-salt

diet and/or a low-fat diet.12 Regulating salt intake is an important behavioral treatment

for hypertension and is often advised to regulate blood pressure. Similarity, a low-fat diet

was advised to treat hyperlipidemia at the time (La Berge, 2007). Both of these outcomes

are self reported during a participant’s physical exams. Body-mass index (BMI) is used as

an outcome measure of body size as opposed to weight or obesity. Weight does not account

for height and obesity may not quickly respond to behavioral changes.13 Each regression

includes rich measures of age to control for any age-related BMI trends.14 BMI cannot

change in response to a diagnosis at the same exam a diagnosis is made. However, 98.4%

of first diagnoses are made between exams and validated at the biennial Framingham exam.

Thus, there is adequate time to detect changes in BMI that results from a CVD diagnosis.

1.3.1 Summary Statistics

Table 1.1 presents summary statistics for the sample of Framingham participants separating

by men and women. Women are 1.7 years older, on average, than men, at 64.7 years. More
11Alcohol usage and level of physical activity are both important behaviors that can contribute to CVD.

However, the Framingham Heart Study does not include consistent measures of these during the study-
sample-time period.

12At exam 7, participants were asked if they followed a "salt restriction" or "hypocholesterol" diet with
responses for yes, no or unknown. At exam 8, participants were asked if they followed a "salt restriction"
or "low fat" diet singularly, together or in combination with other diet types. At exam 9, participants were
asked if they avoid salt intake with responses for yes, no or unknown. Low fat or hypocholesterol dietary
questions were not asked at this exam. For exams 10 through 15, participants were each asked if they
followed a "low salt" or "low fat" diet with responses for yes, no or unknown. Additionally at exam 10,
participants were asked if they avoided salt or salty food.

13The calculation for BMI is 703 times the participant’s weight divided by their height squared.
14Age-related controls include: age, age squared, 5-year age group, and an indicator for being over 64

years old.

13



Table 1.1: Summary Statistics for Individuals in Sample

Notes: This table reports summary statistics for the sample of individual men and women
included in the main analysis. See the Research Design section for detail on sample construction.
Each characteristic and behavior is at the individual-exam level spanning exams 7 through 16.
Risk score is defined as the Framingham Risk Score (FRS), see Appendix A.1 for formula
details.

men are married, 75.3%, compared to women at 46.4%; conversely, more women are widowed,

divorced or separated. Also, less than 45% of the sample did not graduate high school, and

while women have a 6 percentage point higher high school graduation rate, men are more

likely to earn college and post-college degrees.

With respect to overall health, by design 100% of the sample will experience a diagnosis
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of CVD, but 61.8% of men and 48.6% of women will also experience an AMI or stroke.

Cancer and diabetes have similar rates of diagnosis across the samples at 2.4% and 7.2%

respectively. Men have a 7 percentage point higher probability of a CVD event within ten

years based on their Framingham risk score (FRS) compared to women who have an average

ten-year risk score of 7.9%. Men are more often classified as high or intermediate risk (10%

or greater probability of a CVD event within 10 years) compared to women for whom 67.2%

are classified as low risk (less than 10%).

Women have a 9.2 percentage point higher rate of nonsmoking compared to men at

73.5%. Men and women have comparable BMIs, but women follow diets at higher rates than

men. Considering salt, 10.1% of women report being on a low-salt diet versus men at 5.8%,

and 6.3% of women follow a low-fat diet compared to 5.5% of men.

1.4 Research Design

The research design is described in stages for clarity. It begins with estimating risk com-

pensation and is then extended to incorporate the impact of a CVD diagnosis on behavior.

Central to identifying the risk-compensation effect of new medication on behavior is the

exogenous FDA approval of beta blockers and bile-acid sequestrants in 1973 which occurred

during Framingham exam 12. Both medications are used to prevent CVD prior to a diagnosis

and as a treatment after CVD has manifest. This effect can be estimated with a fixed-effects

regression:

Yit = η1FDAt + αi + ΛXit + ϵit (1.1)

Four behavioral outcomes, Yit, are considered: nonsmoking at exam time t, if individual i is

on a low-salt diet at exam time t, if individual i is on a low-fat diet at exam time t, and the

decrease in individual i′s BMI. Outcomes are presented as healthy behaviors. The variable
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FDAt indicates the FDA approval of new medication beginning at exam 12. Individual-

level controls are indicated by Xit and include age, age-squared, 5-year age groups, if the

participant is over 64-years old, marital status, and if they are under treatment for cancer

or diabetes. Individual-fixed effects, αi, account for unobserved personal characteristics that

do not change over time. Individual-fixed effects are important in this model to control for

unobserved personal characteristics that may impact behavior.

This basic regression model is expanded to consider how a diagnosis of CVD impacts

the risk-compensation effect of new medication. For the moment, I set aside FDAt, to

develop a difference-in-differences model that identifies the impact of a CVD diagnosis on

healthy behavior. This helps to simplify each component of the model before combining

them. The difference-in-differences research design follows and extends a quasi-experimental

approach proposed by Fadlon and Nielsen (2019) based on matching estimators as detailed in

Imbens and Wooldridge (2009). A diagnosis of CVD is not random in the broad population,

but treatment and control groups can be constructed such that within the study sample,

the manifestation of CVD is assumed random within a specified time frame.15 I begin by

constructing a treatment group of individuals who receive an initial diagnosis of CVD at

exam time, t, where t = [9, ..., 14]. I estimate the impact of the diagnosis on behavior for

the exam the diagnosis occurs and for the two subsequent exams, t+ 1 and t+ 2, a total of

four years after the diagnosis.

The corresponding control group consists of individuals who also experience a first

diagnosis of CVD three or four exams after the treatment group, t+3 and t+4, six or eight

years later. No one in the treatment or control group experiences CVD prior to exam 9.

See Figure 1.1 for a visual representation of the sample. The identifying assumption is that

absent a diagnosis, the treatment and control groups would experience similar trends in

15The majority of CVD diagnoses, 63%, were due to an AMI or stroke which is thought to have uncertain
timing in prior research (Chandra and Staiger, 2007; Fadlon and Nielsen, 2019). As a robustness exercise,
the sample is limited to individuals in the treatment and control groups that have an AMI or stroke as the
first episode of CVD. See Appendix Table 1.5.
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Figure 1.1: Sample Construction by Group Based on Treatment Timing

Notes: The treatment group is comprised of individuals who receive a diagnosis of CVD at one of the exams 9 to 14. The corresponding
control group is individuals who receive the same diagnosis 3 or 4 exams after each treated group. Each group of combined treatment
and control individuals are observed for two exams prior to the diagnosis of the treatment group and for the subsequent two exams after
diagnosis. Hence, the sample time period is exams 7 through 16.
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behavior. It would be ideal to select a control group who experience the diagnosis at exam

time t + 1, but there is a trade-off between the length of time that the effects of the shock

can be identified with the comparability of the control group. The control group selected is

diagnosed with CVD within a 10-year time period (the standard window used in calculations

of CVD risk) from their treated comparisons, but still allows for estimating the impacts of

a diagnosis on behavior over a longer time period.

I check for randomness in the timing of a CVD diagnosis between the treatment and

control groups in the sample in two ways. First, Appendix Table A2 presents the mean ten-

year risk of a CVD diagnosis for the treatment and control groups at the time the treated

group is diagnosed. For all exams, with the exception of exam 14, there is no statistical

difference between the ten-year risk of CVD between treatment and control groups. At

exam 14, the treated group is 1.7 percentage points more likely to be diagnosed with CVD

in the subsequent ten years. Second, Table A3 presents results from regressing ten-year

risk of CVD prior to the treated groups’ CVD diagnoses. I find that ten-year risk is not

a reliable predictor of being in the treated group. As a robustness exercise, an alternative

control group is developed using risk score matching at t− 1. The method for this exercise

is described in Appendix A.2.

For clarity, the final model will be constructed by starting with a single group of

treatment-and-control individuals (based on the timing of the treated-individuals’ diagnosis)

and then pooled with all groups. First, consider a treated group of individuals who are

diagnosed with CVD at exam 11. The corresponding control group is individuals who are

diagnosed with CVD at exam 14 or 15. This sub-sample of treatment and control individuals

are observed from exam 9 through 13. The impact of a diagnosis on behavior for this sample

is can be estimated using a simple difference-in-differences design:

Yit = σ1POSTt + σ2(CVDi × POSTt) + αi + ΛXit + ϵit (1.2)
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The variable POSTt indicates the exam of the treated group’s diagnosis and following

two exams. POSTt serves as a counterfactual – as if the control group had also experienced

the shock at exam time t (Fadlon and Nielsen, 2019). In this example, POSTt is equal to 1

for exams 11, 12 and 13 and is zero otherwise for both the treatment and control groups. The

treatment group is denoted as CVDi which is an indicator for individuals who are diagnosed

with CVD at exam 11 and is equal to 1 for all exam time t. Hence, (CVDi × POSTt)

indicates the effect of being diagnosed with CVD. As in equation 1.1, αi denotes individual-

fixed effects and Xit are controls. Note that αi in equation 1.2 is collinear with the effect of

being in the treatment group, CVDi, in this single treatment-and-control-group model. As

a robustness check, the model is estimated without individual-fixed effects, see Table 1.5.

To capture the effect of medication before and after receiving a CVD diagnosis, the

FDA approval of new medications, FDAt, is fully interacted with the difference-in-differences

variables as constructed in equation 1.2. This results in the following triple-differences spec-

ification for a single grouping of treatment and control individuals:

Yit = ρ1FDAt + ρ2POSTt + ρ3(POSTt × FDAt)

+ ρ4(CVDi × FDAt) + ρ6(CVDi × POSTt)

+ ρ7(CVDi × (POSTt × FDAt)) + αi + ΛXit + ϵit

(1.3)

As in equation 1.2, αi is collinear with CVDi. Equation 1.3 above is estimated by

group sub-sample based on treatment timing in each of the 5-exam-time-period windows.

This is done to address potential weighing issues resulting from the difference-in-differences

design with variation in treatment timing (Goodman-Bacon, 2021). This exercise reveals

any variation in the estimates due to the particular timing of a diagnosis and gets around

issues concerning negative weighting related to treatment effects that may change over time.

Results are presented in Table 1.2. Note that each sub-group regression covers 5 exam time

periods: two exams prior to diagnosis, the diagnosis exam and two exams after diagnosis.
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Certain cells in the sub-group results are missing due to the timing of the FDA approval

of new medication at exam 12. For example, the sample time period for group 9 is exam 7

through exam 11 which all occur before FDA approval. The sample time period for group

14 is exam 12 through exam 16 which all occur after the FDA approval.

The combined analysis with all treatment and control groups is done by appending

each sub-sample by exam following procedures outlined in Deshpande and Li (2019). The

variable, τ , indexes the sub-sample group diagnosis timing to which a treatment or control

individual belongs; hence, i(τ) refers to individual i in group τ . Groups are defined by

the exam that the treated individuals experience a diagnosis of CVD. Thus, the variable

POSTt becomes POSTi(τ)t and varies based on which sub-sample each individual is in.

This counterfactual variable is equal to one for the exam the treatment group receives a

diagnosis and for the two subsequent exams and is zero otherwise for treatment and control

individuals in the sub-sample. The treatment variable, CVDi(τ)t, is equal to one for all

exams prior to a treated individual’s diagnosis and for the two exams after diagnosis and

is zero otherwise. Individuals who are treated in exams 12, 13, and 14 serve as controls

for exams 9, 10, 11 and are repeated in the sample, but they are distinguished by τ and

are assessed as separate individuals. The time frame considered is from exam 7 (two exams

prior to the first diagnosed treatment group) through exam 16 (two years after the last

treatment group is diagnosed). The corresponding control groups are made up of individuals

who experience the same diagnosis, but between exams 12 and 18. See Figure 1.1 for an

illustration of treatment and control groups by exam. Beginning with the difference-in-

differences specification, equation 1.2 expands to encompass the total sample as follows:

Yi(τ)t = γ1CVDi(τ)t + γ2POSTi(τ)t + γ3(CVDi(τ)t × POSTi(τ)t)

+ αi(τ) + ΛXi(τ)t + ϵi(τ)t

(1.4)

The above specification of this portion of the model averages over the impacts of a health
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shock after it occurs. To address the comparability of the treatment group with the con-

structed counterfactual including matched controls, Figure 1.2 presents a plot of the behav-

ioral outcomes considered in the analysis. The plots demonstrate similar patterns in behavior

before the treated group is diagnosed with CVD.

Equation 1.4 is expanded to the full-triple-differences model which includes the FDA

approval of beta blockers and bile-acid sequestrants as additional interaction terms. The

final specification is as follows:

Yi(τ)t = β1FDAt + β2CVDi(τ)t + β3POSTi(τ)t + β4(POSTi(τ)t × FDAt)

+ β5(CVDi(τ)t × FDAt) + β6(CVDi(τ)t × POSTi(τ)t)

+ β7(CVDi(τ)t × (POSTi(τ)t × FDAt)) + ΛXi(τ)t + αi(τ) + ϵi(τ)t

(1.5)

The variables FDAt, CVDi(τ)t and POSTi(τ)t are as described above. The interaction term,

(CVDi(τ)t × (POSTi(τ)t × FDAt)) indicates whether the medication was available at the

time the diagnosis was experienced by treated individuals. All regressions are estimated

with robust standard errors clustered at the individual level.16

The coefficients of interest are: β6 is the impact of a diagnosis on behavior before

the FDA approval (when FDAt is zero and CVDi(τ)t and POSTi(τ)t are one), and β7 is

the additional effect of a diagnosis on behavior after the FDA approval (when CVDi(τ)t,

POSTi(τ)t and FDAt are equal to one). The total impact of the FDA approval of new

medication on behavior is calculated as β1 + β4π
′
+ β5π

′′
+ β7π

′′′ where π
′ is the mean of

POST , π′′ is the mean of CVD and π
′′′ is the mean of (CVD × POST ) for the regression

16One concern is that the FDA approval of new medication may be associated with the probability of
being diagnosed with CVD if the medication is taken once available and prevents disease from manifesting.
Individuals successful in preventing diagnosis are not included as controls in the sample. This is addressed in
two ways. First, the probability of a diagnosis prior to FDA approval was estimated using a two-way, fixed-
effects model. The individual predicted probability of CVD is not significantly correlated with FDA approval
- the correlation was calculated to be 0.39. Secondly, for robustness, a secondary model was estimated using
Framingham risk score (FRS) matching at the exam prior to each treated group’s diagnosis. The results
from this exercise do not demonstrate a significant change in findings. See Appendix Table 1.5.
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Figure 1.2: Trends in Behavior by Diagnosis Timing

Notes: This figure shows each of the behavioral outcomes for treatment and control individuals in the sample by event time with a
diagnosis of CVD occurring at t = 0 and also the behavior of the constructed counterfactual group including control individuals with
event time constructed such that t = 0 is three exams before a diagnosis of CVD.

22



sample (Solon et al., 2015). The hypothesis is that medication availability decreases the

motivation to engage in healthy behaviors, but a diagnosis of CVD, mitigates the risk-

compensation effect due to the updated information about one’s health. Thus, there would

be a positive probability of healthy behaviors when medication is available as a treatment

option after a diagnosis.

1.5 Results

1.5.1 Impact of Medication Approval and Diagnosis on Behavior

Table 1.2 presents the results from estimating equation 1.5 for the sample in total, column (1),

and for each of the sub-samples as defined by the exam in which the treated group receives

a diagnosis of CVD, Columns (2) thorough (7), labeled as "Group #" where "#" represents

the diagnosis exam. The sub-sample group results are presented to address recent concerns

about difference-in-differences research designs with variation in the timing of treatment

(Goodman-Bacon, 2021). Considering the results as a whole and by sub-sample allows for

nuances in the estimates by the timing of a diagnosis in relation to the FDA approval of

beta blockers and bile-acid sequestrants at exam 12.

The FDA approval of new medication causes a consistent and statistically significant

decrease in the probability of engaging in healthy behaviors. For each behavior, the calcu-

lated coefficient for the total impact of FDA approval is negative and all are statistically

significant. This result points to clear evidence of risk compensation caused by the availabil-

ity of beta blockers and bile-acid sequestrants, regardless of take-up. However, the marginal

impact of a CVD diagnosis after FDA approval is less consistent. There is a decrease in smok-

ing (reported as a increase in the healthy behavior of nonsmoking in Table 1.2) in response

to being diagnosed after the FDA approval. Yet, for following a diet and BMI decrease,

there is no additional impact of a CVD diagnosis after FDA approval on risk compensation.
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Table 1.2: Impact of Medication Availability and Cardiovascular Disease Diagnosis on Behavior

Notes: Estimation results demonstrating the impact of FDA approval and diagnosis of CVD on behavior with fixed effects. The total
impact of FDA approval is calculated from equation 1.5 as: β1 + β4π

′
+ β5π

′′
+ β7π

′′′
where π

′
is the mean of POST , π

′′
is the mean of

CV D and π
′′′

is the mean of (CV D×POST ). Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and
under treatment for diabetes and/or cancer diagnosis. The time period is exams 7 through 16. Column (1) includes the total sample of
treatment and control individuals. Columns (2) through (7) are the results for each group, τ , where the diagnosis of CVD occurs at the
exam indicated. The group time period is two exams prior to diagnosis through two exams after diagnosis. If the respondent was on a
low-fat diet was not asked at exam 9. Dietary questions were not asked at exam 16. Robust standard errors clustered at the individual
level are in parenthesis. * Significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level.
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This is evidenced by the coefficients in column (1) on (FDA × CVD × POST ). Hence,

the effect of a diagnosis is particularly meaningful for smoking behavior which motivates a

decrease in current smoking after medication is available. The results by each behavioral

outcome in Table 1.2 are assessed below:

Nonsmoker

The most striking estimates are on current smoking behavior as measured by an indi-

cator for nonsmoking. In the absence of new medication, there is not a significant change

in smoking in response to a diagnosis. However, there is a significant 11 percentage point

increase in the probability of smoking due to the availability of new medication. This rep-

resents a 29.6% increase in current smoking, significant at the 1% level.17 The negative and

significant result in the total sample persists in most sub-samples. For this addictive behav-

ior, the mere availability of medication presents a strong incentive to not give up smoking.

Also significant is the marginal impact a CVD diagnosis on smoking behavior after

medication availability. There is an 8 percentage point, 13.3%, increase in nonsmoking,

significant at the 1% level. This finding is consistently positive across sub-groups. The effect

is not large enough to offset the total risk-compensation effect as the full impact of new

medication on health behavior is negative.

Low-Salt Diet and Low-Fat Diet

When new medication is not yet available, there is an increase in the probability of

following a low-salt or low-fat diet in response to receiving a CVD diagnosis of 7 and 6 per-

centage points respectively, significant at the 1% level. The FDA approval of new medication

causes a statistically significant 4 percentage point, 44.2%, decrease in following a low-salt

diet and a 1 percentage point, 18.7%, decrease in low-fat dieting; however, the impact on

low-fat dieting is only significant at the 10% level. The additional impact of a CVD diagnosis
17Table 1.2 reports changes in nonsmoking to maintain consistency in the direction of the estimates across

health behaviors.
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after medication approval is not statistically different from zero. For both dietary outcomes,

the sub-group sample sizes are small, and the findings are mostly null with some exceptions.

Particularly with dieting, there is a stark change in approach from treating CVD before

and after medication approval. Both low-salt and low-fat diets are used at higher rates prior

to new medication in response to a CVD diagnosis, but after the medication is available,

risk compensation adjusts behavior such that there are no detectable changes in healthy

behavior.

BMI Decrease

BMI is reported in Table 1.2 as a BMI decrease - a negative value represents an increase

in BMI (a decrease in healthy behavior). Before the FDA approval of new medication, a

diagnosis of CVD prompts a larger and significant decrease in BMI of 0.54, 2.0%. However,

after the medications are approved, there is a statistically-significant increase in BMI of 0.27,

1.0%. A diagnosis of CVD, after when medication is available, does not impact BMI. People

are inclined to increase BMI in response to the FDA approval of medication to treat and

prevent CVD, regardless of use.

Considering results by sub-sample, estimates are consistent in direction for a diagnosis

prior to FDA approval and for total impact of FDA approval. However, the estimated impact

of a CVD diagnosis after new medication is available varies by sub-sample.

Participants selected into the Framingham Heart Study by volunteering. This raises

concern that the study participants may be more interested in preventing heart disease than

the general population. If there is selection bias in the estimates, it would be in the direction

of engaging in healthier behaviors to prevent and treat CVD assuming that participants

wanted to maintain heart health. The direction of this bias would be toward healthier

behaviors, in the opposite direction of risk compensation (a increase in the probability of

engaging in healthy behavior). Hence, the findings on the total impact of FDA approval,
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which are less than zero for all behaviors, would be an upper bound. In contrast, the positive

estimates for diet prior to FDA approval and for smoking after FDA approval in response to

CVD diagnosis may be lower than is estimated for a general population.

1.5.2 Heterogeneity: Personal Characteristics

Table 1.3 displays estimates from equation 1.5 by a variety of different personal charac-

teristics. Women are more likely than men to have a negative behavioral response to the

availability of new medication with the exception of smoking where men’s response is of larger

magnitude. Men are more likely to engage in healthy behavior in response to a diagnosis

prior to the FDA approval which is mainly due to the behavior of married men. Non-married

people have a significant increase in the probability of nonsmoking after a CVD diagnosis

when medication is available as compared to smoking. The responses to the FDA approval

of new medication are relatively similar between married and non-married people for low-

salt dieting, but non-married people have a significant increase in BMI of 1.0 due to new

medication for which is driven by non-married females.

The estimates by level of education, find that individuals with less than a high school

education are less likely than others to engage in healthy behaviors of nonsmoking, low-

fat diet and BMI decrease and when new medication is available, and have no change in

behavior in response to a diagnosis with the exception of BMI which decreases BMI by 1.2

prior to FDA approval and increases BMI by an 0.88 after FDA approval. On the other

hand, college graduates are more likely to follow a low-fat diet or be nonsmokers in absence

of new medication after a diagnosis, and they are significantly more likely to decrease BMI

by 1.2 after a CVD diagnosis and FDA approval.
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Table 1.3: Heterogeneity by Individual Characteristics

Notes: Estimation results demonstrating the impact of FDA approval and diagnosis of CVD on behavior with fixed effects. The total
impact of FDA approval is calculated from equation 1.5 as: β1 + β4π

′
+ β5π

′′
+ β7π

′′′
where π

′
is the mean of POST , π

′′
is the mean of

CV D and π
′′′

is the mean of (CV D×POST ). Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and
under treatment for diabetes and/or cancer diagnosis. The time period is exams 7 through 16. The sample is limited to the characteristic
indicated in each column. If the respondent was on a low-fat diet was not asked at exam 9. Dietary questions were not asked at exam
16. Robust standard errors clustered at the individual level are in parenthesis. * Significant at the 10% level, ** significant at the 5%
level, *** significant at the 1% level.
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1.5.3 Heterogeneity: Behavior Prior to FDA Approval

To determine if the risk-compensation response to new medication varies based on behavior

prior to FDA approval, I segment the sample into people that have healthy and unhealthy

behavior prior to exam 10. Equation 1.5 is re-estimated for exams 10 through 16 for the

aggregated sample. The behavior during exams 7 through 9 from which the sample is selected

is excluded from the data included in the analysis period.18 Segmenting the sample in this

way may bias the estimates for (CVDi(τ)×POSTi(τ)t) and (CVDi(τ)× (POSTi(τ)t×FDAt))

because the sample is selected on behavior which can impact the timing of a CVD diagnosis.

Results in Table 1.4 report the total impact of FDA approval only.19 Odd-numbered columns

present the results of people with healthy behavior and even numbered columns present

results from people with unhealthy behavior prior to exam 10. The outcomes remain the

same as in the baseline analysis.

I find that risk compensation for nonsmoking is driven by people who smoked prior to

the FDA approval. Smokers are 21 percentage points less likely to become nonsmokers after

medication is available, significant at the 1% level. This points to a lack of persistent action

by people who have already engaged in an addictive behavior. However, for diet, I find that

people who follow a low-salt or low-fat diet prior to FDA approval, have a significantly higher

probability of switching behavior as compared to those who did not diet. The FDA approval

of new medication as a preventative decreases the probability of being on a low-salt diet by

14 percentage points and a low-fat diet by 12 percentage points for people that dieted before

exam 10. In this case, the "cost" of dieting paid prior to new medication is forgone once the

medication is available. Interestingly, is does not matter if an individual’s BMI is above or

below the average BMI for their 5-year age group, the response to the FDA approval of new

medication is to increase BMI. There is a slightly greater increase in BMI from those below

the 5-year age group mean compared to those below the mean of 0.40 and 0.38 respectively.

18Diet questions were not asked prior to exam 7 which limits the time frame for which behavior prior to
FDA approval can be selected upon.

19This analysis relies on the assumption that the variable FDA is exogenous to all other regressors.
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Table 1.4: Risk Compensation Segmented by Behavior Prior to FDA Approval

Notes: Notes: Estimation results demonstrating the impact of FDA approval and diagnosis of CVD on behavior with fixed effects. The
total impact of FDA approval is calculated from equation 1.5 as: β1+β4π

′
+β5π

′′
+β7π

′′′
where π

′
is the mean of POST , π

′′
is the mean

of CV D and π
′′′

is the mean of (CV D×POST ). Controls include age, age-squared, 5-year age group, marital status, over 64-years-old
and under treatment for diabetes and/or cancer diagnosis. The sample is segmented to the behavior listed prior to exam 10. The sample
time period is limited to exams 10 through 16. If the respondent was on a low-fat diet was not asked at exam 9. Dietary questions were
not asked at exam 16. Robust standard errors clustered at the individual level are in parenthesis. * Significant at the 10% level, **
significant at the 5% level, *** significant at the 1% level.
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1.5.4 Robustness

Table 1.5 presents estimates from three robustness checks. Column (1) shows the baseline

results from Table 1.2. Column (2) re-estimates equation 1.5 but excludes individual-fixed

effects. Excluding fixed effects changes the significance of certain estimates. However, the

direction of the estimates is consistent for most behavioral outcomes. The exceptions are

smoking and low-fat diet for which the total impact of FDA approval are not statistically

different from zero, and BMI for which the estimate estimated impact of a CVD diagnosis

prior to medication availability is no longer significant but does remain positive. This exercise

demonstrates that some proportion of individuals who do not change their behavior over the

sample-time period in response to FDA approval. Hence, including fixed effects controls for

individual-specific persistent non-response in behavior.

As a second check of robustness, an alternative matching method was used to generate

the control group for estimating equation 1.5. The details for this procedure are outlined in

Appendix A.2. Table 1.5, column (3), presents the results from this exercise. The estimated

impact of FDA approval maintains similar magnitude and significance for all behaviors. Also,

the impact of a diagnosis (prior to FDA approval) is positive and significant for both dietary

outcomes and BMI decrease. The additional impact of a diagnosis on nonsmoking behavior

after FDA approval is positive and significant.

The remaining test of robustness limits the diagnosis of CVD to AMI or stroke as the

first instance of diagnosis. The results are presented in Appendix Table 1.5, column (4).

Limiting the sample in this way does not affect the direction of the results. There is still

significant evidence of risk compensation in relation to the availability of medication for all

healthy behaviors. The evidence that prior to medication, individuals followed a low-salt

diet or low-fat diet and /or decrease BMI remains and is significant at the 1% level for each

outcome. The direction of the coefficient on a CVD diagnosis after FDA approval maintains
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Table 1.5: Impact of Medication Availability and Cardiovascular Disease Diagnosis on Be-
havior: Robustness

Notes: Estimation results demonstrating the impact of FDA approval and diagnosis of cardio-
vascular disease on behavior with fixed effects. Total impact of FDA approval is calculated
from equation 1.5 as: β1+β4π

′
+β5π

′′
+β7π

′′′
where π

′
is the mean of POST , π

′′
is the mean

of CV D and π
′′′

is the mean of (CV D × POST ). Controls include age, age-squared, 5-year
age group, marital status, over 64-years-old and under treatment for diabetes and/or cancer
diagnosis. Column (1) is the baseline result from Table 1.2. Column (2) excludes individual-
fixed effects. Column (3) presents results from using risk-score matching. The treatment group
is individuals who will have a diagnosis of CVD between exam 9 and exam 14. Controls are
matched based on Framingham risk score at the exam prior to diagnosis and weighted based
on the representation in each match cell. In column (4), treatment is limited to individuals
who will have a CVD shock (AMI or stroke). The time period is exams 7 through 16. If the
respondent was on a low-fat diet was not asked at exam 9. Dietary questions were not asked
at exam 16. Robust standard errors clustered at the individual level are in parenthesis.
* Significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level.
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the direction of the estimate but is not significant for smoking status. This is possibly due

to the lower sample size as a result of limiting the definition of who is diagnosed.

1.6 Cardiovascular Disease and Selection of Treatment

1.6.1 Approach

Assessing the impact of medication availability resulting from the FDA approval of new med-

ication does not answer questions about treatment choices patients make after a diagnosis.

Cardiovascular disease is treated non-invasively with medication and behavior, and these

treatment choices are often made simultaneously. Medication and behavior can be com-

plements in treatment or substitutes. To extend the initial analysis, I consider treatment

choices after FDA approval of beta blockers and bile-acid sequestrants. The first outcome

to consider is the choice to take medication regardless of behavior.20 Next, I examine med-

ication as a complement or substitute to healthy behavior. For brevity, I have simplified

the outcomes presented in the main text. Medication as a complement is defined as taking

medication and engaging in at least two healthy behaviors of nonsmoking, on low-salt diet,

on low-fat diet or BMI decrease (calculated as BMI in the current exam, t, minus BMI from

the prior exam, t−1). Medication as a substitute is defined as taking medication and having

zero healthy behaviors.

Each behavior is considered independently in Appendix A.4. This results in eight pos-

sible outcomes. The complementary outcomes for individual behaviors are taking medication

and engaging in one healthy behavior (nonsmoking, on a low-salt, on a low-fat diet or de-

creased BMI). The substitute outcomes for individual behavior are taking medication and

engaging in an unhealthy behavior (smoking, not on a low-salt diet, not on a low-fat diet or

an increase in BMI).
20Taking medication as an outcome is defined as self-reported medication use to treat hypertension or

hyperlipidemia collected during each Framingham examination.
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The same quasi-experimental difference-and-differences design as in equation 1.4 is used

to estimate the impact of a shock on treatment choice. Hence, the sample cohorts and iden-

tifying assumption for CVD diagnosis are as previously described. The model specification

for the impact of a diagnosis on treatment choice is as follows:

Ci(τ)t = δ1CV Di(τ)t + δ2POSTi(τ)t + δ3(CVDi(τ)t × POSTi(τ)t)

+ δ4LOWi(τ)t + δ5HIGHi(τ)t + αi(τ) + ΛXi(τ)t + εi(τ)t

(1.6)

The dependent variable, Cit is an indicator corresponding to each of the treatment choices

explained above. The variables POSTi(τ)t and CVDi(τ)t are as defined in equation 1.4

and identify the treatment and control groups as they relate to each exam. Variables are

included to indicate if an individual has low risk, FRS < 10%, for developing CVD, notated

LOWi(τ)t, or high risk, FRS ≥ 20%, for developing CVD, notated HIGHi(τ)t. Low-risk and

high-risk variables are relative to intermediate risk (≥ 10% and < 20%) which is excluded

as a reference category. The specification includes the same control variables as used in

estimating equation 1.5 and individual-fixed effects, αi. Equation 1.6 is estimated with

robust standard errors clustered at the individual level. The sample is limited to exams 12

through 16 after beta blockers and bile-acid sequestrates are FDA approved.

The coefficient of interest is δ3 which indicates the average treatment effect of receiving

a CVD diagnosis on the combined choice of medication and behavior. The hypothesis is

that a diagnosis will increase the probability that the patient will take medication and

make positive lifestyle changes. Also of interest are δ4 and δ5 on LOWi(τ)t and HIGHi(τ)t

respectively. With the inclusion of individual-fixed effects, the categorical-risk variables are

identified off of the individuals whose risk changes from one exam to the next. Between

14% and 35% of participants change risk classification at each exam in the sample period.

The estimates provide useful signposts to how people approach preventative care absent a

diagnosis but who have some level of risk.
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1.6.2 Medication and Behavior as Substitutes or Complements

Figure 1.3 plots the impacts of CVD diagnosis, low-risk (FRS under 10%) and high-risk (FRS

of 20% or more) on medication use. Having a greater than 20% chance of CVD in the next

ten years is associated with a 11.6 percentage point, 27.3%, increase in the probability of

taking hypertension or hyperlipidemia medication compared to individuals with intermedi-

ate risk, significant at the 1% level. This implies that risk screening is being implemented for

medication use. On the other hand, being low risk for CVD is associated with a 7.9 percent-

age point, 64.9%, decrease in the probability of taking medication compared to intermediate

risk. The coefficient on receiving a CVD diagnosis is positive but not a significant. Hence,

results suggest there is no difference in the probability of taking medication for individuals

diagnosed now as compared to individuals who will experience a CVD diagnosis in the future

when controlling for level of risk.

Figure 1.4 plots the coefficients from estimating equation 1.6 for taking medication and

engaging in two-or-more-healthy behaviors (Panel A) or taking medication and engaging in

zero-healthy behaviors (Panel B). Once medication is available, having high risk of CVD is

associated with treatment - both complementary treatment where medication and healthy

behaviors are used together and where medication is used to substitute not engaging in

healthy behaviors. Having a diagnosis of CVD increases the use of medication as a comple-

ment to multiple healthy behaviors by a statistically significant 9.2 percentage points which

is greater than using medication without any healthy behaviors. High-risk individuals also

use medication to complement at least two healthy behaviors at a greater rate than they

use medication in lieu of any healthy behavior. However, when behaviors are considered

individually (see Appendix A.4), there is a higher likelihood that any one behavior is used

as a substitute to medication than a complement for high-risk individuals. This implies that

individuals mix-and-match behaviors which choosing which healthy behaviors to adopt when

they are at high risk of CVD because medication is more likely to be used as a substitute to
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Figure 1.3: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice to Take
Medication

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is an
indicator for taking hypertension and/or hyperlipidemia medication. There are three variable
coefficients reported: the impact of a CVD diagnosis for treated individuals (those who had
a diagnosis of CVD at exam 12, 13 or 14) as compared to matched controls who will have a
diagnosis of CVD three or four exams after the treated group, low risk for CVD in the next 10
years (<10%), and high risk of CVD in the next 10 years (20% or more). The time frame is
exam 12 through exam 16 after the FDA approval of beta blockers and bile-acid sequestrants.
Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under
treatment for diabetes and/or cancer diagnosis plus individual-fixed effects. Error bars show
95% confidence intervals estimated with robust standard errors clustered at the individual level.
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Figure 1.4: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice to Use Medication as a Complement or
Substitute in Treatment

Panel A Panel B

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is an indicator for taking hypertension or
hyperlipidemia medication and engaging in 2 or more healthy behaviors (green bar) or zero healthy behaviors (blue bar). There are
three variable coefficients reported: the impact of a CVD diagnosis for treated individuals (those who had a diagnosis of CVD at exam
12, 13 or 14) as compared to matched controls who will have a diagnosis of CVD two or three exams after the treated group, low risk for
CVD in the next 10 years (<10%), and high risk of CVD in the next 10 years (20% or more). The time frame is exam 12 through exam
16 after the FDA approval of beta blockers and bile-acid sequestrants. Controls include age, age-squared, 5-year age group, marital
status, over 64-years-old and under treatment for diabetes and/or cancer diagnosis plus individual-fixed effects. Error bars show 95%
confidence intervals estimated with robust standard errors clustered at the individual level.
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any one behavior but a complement to multiple healthy behaviors.

The group of concern is those with low-risk of developing CVD in the next 10 years.

Individuals in this group will eventually be diagnosed with CVD (based on the sample

design which only includes individuals diagnosed with CVD) even though their 10-year risk

of disease is less than 10%. This group is less likely to use medication as a complement by 6.1

percentage points, significant at the 1% level. Low-risk individuals also select into medication

use at a lower rate compared to individuals with intermediate risk which is partially driving

these estimates. Considering behaviors individually, being low risk is associated with a

significant decrease in probability of using medication as a substitute. This implies that if

a low-risk individual does take medication they are generally more likely to engage in other

healthy behaviors.

1.7 Discussion and Conclusion

Medication and behavior are the two non-invasive means of preventing and treating CVD.

While clinical research has demonstrated that they serve as complements in efficacy for treat-

ing hypertension and hyperlipidemia, the implementation of these treatments is subject to

risk compensation. The mere availability of a new medication through FDA approval causes

a significant decrease in healthy behaviors. There is an 11 percentage point (29.6%) increase

in the probability of smoking, a 4 percentage point (44.2%) decrease in the probability of

following a low-salt diet, 1 percentage point (18.7%) decrease in the probability of following

a low-fat diet and a 0.27 (1.0%) increase in BMI. A CVD diagnosis does partially offset the

negative response to new medication for smoking - one of the largest risk factors for CVD.

However, for dieting and BMI, a diagnosis after the FDA approval has no impact on the

risk-compensation effects of new medication. Conversely, when medication is not available,

a CVD diagnosis causes a modest increase in diet usage for both low-salt and low-fat diets.

Behavior change in response to a diagnosis after medication is available is not consistent
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across behaviors. Prior research on diabetes found that there is not a big dietary response

to a diagnosis, and individuals generally view medication as more important to treatment

than healthy behaviors (Oster, 2018; Kim et al., 2019). The findings for diet and BMI

support this. Yet, individuals are more likely to become nonsmokers (partially offsetting risk

compensation) after a diagnosis when medication is available. It may be that care providers

emphasize the detrimental effects of smoking more stringently than other behaviors or that

quitting smoking is easier to understand than diet modification. Even still, the positive

probability of nonsmoking after a CVD diagnosis and FDA approval is not large enough to

fully offset the total risk-compensation effect of new medication.

Medication effectively decreases the "expense" of avoiding CVD through positive be-

havior change. As was seen with car-safety regulations, PREP, statins and diabetes medica-

tion, risk compensation can cause increased take-up of risky behavior behavior. Furthermore,

even the possibility of using a drug can prompt risk compensation. For smokers, there is

a decreased incentive to change behavior. For people dieting, new medication prompts a

behavior switch.

It is an open question if medication availability decreases the current cost of prevention

or the expected future cost of disease. Individuals may offset unhealthy behavior with

medication as a disease preventative. In contrast, they may engage in unhealthful behavior

before disease manifestation knowing that a treatment is available if necessary. There is a

rational paradox in health care. Individuals often wait until a disease is diagnosed to take-up

the treatments that could have prevented it (Zweifel, 2017). This is rational in the sense

that preventative care requires upfront costs of time and money but does not guarantee the

absence of disease and its associated costs. Furthermore, health behaviors are often hard to

change resulting in sparse adoption patterns (Ogden et al., 2014; Kaestner et al., 2014). I

assume individuals derive utility from unhealthy behaviors but also from health. This may

partially explain the risk-compensation trade-off between medication and healthy behavior
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as a utility maximization strategy. Unfortunately, for many patients this presently rational

calculation may result in long-run-health spending and decreased life expectancy, especially

if present risk of CVD is incorrectly assessed.

I do find that once medication is FDA approved, having a 20% or greater chance for

CVD is associated with medication use, but a CVD diagnosis does not change medication

take-up. The implication is that risk screening for prescription medication is implemented

and that people use medication. High-risk individuals are also associated with a higher

probability of using medication to complement two-or-more healthy behaviors, but they

still have a positive probability of using medication as a substitute. However, diagnosed

individuals have the highest probability of using medication as a complement for multiple

healthy behaviors. Of concern is the negative association between having a low risk of CVD

(< 10%) and medication use. Low risk is still risk. Each respondent in the analysis will be

diagnosed with CVD (by study design), but they are less likely to be treated. This group’s

risk may be incorrectly assessed in risk formulas or formulas may not take into account a

broad-enough spectrum of factors to predict disease (Wilson, 2021b). For those that do take

medication, they are less likely to use it as a substitute when considering individual behaviors.

These individuals may be prevention minded and cluster positive health behaviors.

This study does have some limitations. The outcomes available in the data did not

include consistent measures of physical activity and alcohol consumption which are both risk

factors for heart disease. The criteria restrictions placed on the data to create a balanced

panel resulted in a relatively small sample size from 1960 through 1981. Additionally, the

sample was limited to Framingham, Massachusetts which reduces the external validity of

these estimates especially for non-white populations (Leaverton et al., 1987). Despite these

shortcomings, this study has implications for preventative health care.

There is clear clinical evidence that healthy behaviors increase the efficacy of medica-

tions (Erwteman et al., 1984; Luft and Weinberger, 1988; Trap-Jensen, 1988; Chiuve et al.,
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2006). Yet, recommendations to adopt healthy behaviors are often reserved for patients

with obvious CVD risk factors or a diagnosis (Grundy et al., 2004; Hyman and Pavlik,

2000). Broader promotion of healthy living through diet modification, physical activity and

smoking cessation targeted toward individuals at low-clinical risk of CVD, or those without

obvious risk factors such as obesity, may benefit from a better understanding how behav-

ior contributes to CVD. The findings also highlight the importance of disease salience for

motivating patients to adopt medication use and positive-lifestyle changes ahead of a diag-

nosis. The introduction of new medication to treat high blood pressure and high cholesterol

leads to risk compensation. However, when prevention does not work, receiving a diagnosis

attenuates the risk-compensation effect and increase the likelihood of adopting healthy be-

haviors. Finding ways to motivate patients ahead of a diagnosis is of paramount importance

to decrease the risk and prevalence of cardiovascular disease.
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Chapter 2

Technology Adoption and Market

Allocation: The Case of Robotic Surgery
1

2.1 Introduction

The healthcare sector accounts for almost one-fifth of the U.S. economy, a share that has

grown dramatically in the last quarter-century (CMS, 2020b). Technology adoption in health

care is a key determinant of productivity in this sector, and technology is widely considered

the central driver of long-term productivity gains in the broader economy (Jorgenson, 2011).

However, unique features of the healthcare sector, like information frictions and insurance,

can distort the quality and quantity of technology adoption. If patients or their agents (such

as referring physicians) have a preference for technology or use it as a proxy for quality,

the introduction of a new technology will increase demand and prompt adoption by care

providers. New technology has the potential to promote a wave of adoption as hospitals

compete over the same set of patients, resulting in service duplication and increased cost. In
1This chapter is joint work with Adam Sacarny and Annetta Zhou. We thank Maurice Dalton, Mohan

Ramanujan, and Jean Roth for their assistance with CMS data. We gratefully acknowledge support from
the National Institute on Aging P01-AG005842. The authors declare that they have no relevant or material
financial interests that relate to the research described in this chapter. This research was approved by the
Institutional Review Boards of Columbia University and the National Bureau of Economic Research.
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this way, adoption could theoretically go beyond the socially optimal level, a phenomenon

known in health care as the “medical arms race.”

In this study, we ask how technology adoption impacts utilization of hospital care to

better understand its role in the performance of the healthcare sector. We use the diffusion

of robotic surgery for the treatment of prostate cancer to investigate how patients or their

agents respond. Adoption of surgical robotics proceeded exceptionally rapidly: from its in-

troduction in 2001 through 2015, more than half of hospitals in the U.S. that treat cancer

patients adopted a robot (Figure 2.1). Focusing on surgical removal of the prostate, termed

prostatectomy, allows us to assess how patient volume changes in response to a new tech-

nology from inception along its trajectory to becoming the predominant method of intensive

intervention for these patients. Additionally, surgical robots are a frequent focus of hospital

advertising, pointing toward their potential use by patients as a signal of quality (Schwartz

and Woloshin, 2019; Sheetz et al., 2020).

Our differences-in-differences research design exploits variation in the timing of adop-

tion across hospitals in the U.S. to estimate the effect of robotic surgery on patient volume

and characteristics. We show that adoption leads to a statistically significant and economi-

cally meaningful rise in hospital volume: prostate cancer admissions (the risk set for robotic

surgical intervention) increase by 59 log points and prostatectomies (in which the robot can

be used) increase by 69 log points. In event study plots, we show that these estimates average

over effects that increase over time. These results suggest that patients – or their agents –

have a preference for robotic surgery or view it as as signal of quality.

Increases in patient admissions would arise if robotic device adoption expands the

market for robotic surgery. On the other hand, our estimates are also consistent with business

stealing in which hospitals adopt surgical robots to compete over the same patients. To

distinguish between market expansion and business stealing, we also implement our research

design at the healthcare market level. We show that as hospitals in a market adopt surgical
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Figure 2.1: Robotic Adoption Over Time
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Notes: This figure shows the share of U.S. hospitals adopting a surgical robot according
to data from the Intuitive Surgical Website (2001-2005) and the AHA survey (2005-
2015). Adoption assumed to be 0% in 2000, the year in which surgical robots were first
approved for use in the U.S.

robots, the volume of prostate cancer patients and prostatectomies in the entire market rises

in response. Surgical robot adoption thus leads to meaningful expansions in the market

for intensive intervention. These effects are statistically and economically significant, but

are just under half the magnitude of the hospital-level results. Using event study plots

to illustrate dynamics of the effects, we find that they grow over time but on a shallower

trajectory than their hospital-level counterparts. Taking these findings together, we conclude

that some of the hospital-level effects also reflect business stealing in which adoption leads

to a re-shuffling of patients.

Our results raise the question of who receives treatment at the margin when a hospital

adopts a surgical robot and patient volume expands. We apply our main estimation strategy

to study two key characteristics of patients, age and pre-existing burden of illness. We
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find that adoption of surgical robots brings relatively younger and healthier patients to the

hospital for treatment. A key concern is that prostatectomy induced by robot adoption could

provide little value to patients and society because the recipients may have short remaining

life expectancy (they would likely die of another competing health risk) or have severe existing

health conditions (they are at a high risk of adverse surgical outcomes) (Lepor, 2000). Our

findings reject the idea that surgical robotics is expanding treatment among this group. Thus

we find no sign that adoption broadens eligibility criteria for surgical intervention in a way

that would attract patients who, at least on observable characteristics, are likely to benefit

little from treatment.2

Robotic surgery is well-suited to the study of healthcare technology and its diffusion

for several reasons. First, barriers to entry are relatively low for surgical robots. The initial

capital investment of $1 to $2.5 million is significantly less than other intensive technologies

like cardiac catheterization laboratories which have been the focus of much prior research

(Barbash and Glied, 2010; Cutler et al., 2010). Additionally, a majority of states do not have

certificate of need (CON) laws or have laws that would not be triggered by the purchase

of a surgical robot (NCSL, 2019).3 Second, whether physicians use a robot for prostate

surgery has no bearing on the Medicare physician or hospital payment for the procedure,

and evidence for clinical benefit of the robot for prostate cancer treatment relative to non-

robotic surgery is essentially nonexistent (Sandoval Salinas et al., 2013; Yaxley et al., 2016;

Ilic et al., 2017). The lack of direct financial incentive and clinical benefit points to the

potential adoption of surgical robots as a pure signal to patients, rather than an attempt

to improve outcomes or bill more for the same cases. Third, Medicare patients are largely

protected from the costs of intervention, and so out-of-pocket costs should play little role
2While these results show that adoption of surgical robots did not lead to the clearest socially wasteful

overuse for prostate cancer treatment, we cannot ascertain that the expansion of the intervention to the
younger, healthy group is necessarily cost-effective. Such analysis is beyond the scope of this study but an
important topic for future work.

3Thirty states either do not have certificate of need (CON) laws or the law does not apply to medical
equipment purchases, and an additional 10 states have low-stringency laws as defined by Jacobs et al. (2013)
as having an equipment expenditure threshold over $1.3 million (NCSL, 2019).
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in the decision to initiate surgery with or without the robot. Finally, robots are sufficiently

new that we observe hospital adoption and the universe of Original Medicare prostate cancer

patients starting from initial FDA approval.

This study contributes to the literature in three key ways. First, we add to the evidence

on the efficiency of technology diffusion in the health care sector. The most relevant prior

studies have focused on the potential for a socially wasteful medical arms race in which

hospitals compete for patients by providing care of questionable value and acquiring costly

high-tech equipment (Dranove et al., 1992; Kessler and McClellan, 2000). This research is

related to the concept that free entry can lead to social inefficiencies through business stealing

(Mankiw and Whinston, 1986). As we show, adoption of surgical robots leads to business

stealing as well as market expansion, which the literature would interpret as a signpost of an

arms race – though the presence of market expansion rules out that adoption was wholly the

result of such a phenomenon. Still, the welfare impacts of technology adoption depend on the

costs and benefits of the technology for patients who use it at the margin. Our finding that

the patients who are induced to get treatment due to the robot are younger and healthier

suggests that the worst fears for social inefficiencies were not realized. However, combining

our results with clinical literature finding minimal benefits of the robot for patient outcomes

calls into question whether this adoption was socially beneficial.

These results also relate to research on productivity variations in the health care sector.

Much of this work has focused on the adoption of evidence-based, low-cost technology like

beta blockers in the treatment of heart attacks (Skinner and Staiger, 2007; Chandra and

Staiger, 2007). Disparities in the use of these technologies are hypothesized to be a key

determinant of productivity variations across regions (Baicker and Chandra, 2004; Skinner

and Staiger, 2015). The benefits of adopting costly, high-tech equipment for the efficiency

of the sector are more equivocal as, for example, Cutler et al. (2010) shows in the case of

coronary bypass surgery for heart attacks. We add new evidence on the adoption of costly
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technology with few de jure restrictions on adoption and even less evidence backing its use.

As we show, the surgical robot drove large volumes of patients to the hospital even as its

clinical value remained unsubstantiated.

Finally, our work connects research on demand responses to quality information with

the literature on hospital market responses to technology adoption. One piece of conven-

tional wisdom suggests that unique characteristics of the health care market, such as the

lack of accurate quality information and the prevalence of insurance coverage, dampens

demand-side competition and gives providers little incentive to innovate (Cutler et al., 2010;

Skinner, 2011). More recent studies challenge this view and show evidence that the alloca-

tion of patient volume across hospitals does respond to quality information (Chandra et al.,

2016). Recent developments in health care markets like increased public reporting of patient

outcomes may make the demand response to quality, or perceived quality, even stronger.

The strong volume increases we see in response to innovation demonstrates that there can

be strong demand-side competition in health care. Our results suggest that patients and

their agents view hospitals that have adopted the robot as higher quality and thus more

preferable. This robust response to innovation has been found in technologies relating to

treatments for cardiovascular disease, but the magnitude is not as stark as what we have

found here (Hodgkin, 1996; Grossman and Banks, 1998).

The chapter continues as follows: Section 2.2 provides background on robotic surgery

devices and prostate cancer. Section 2.3 presents the data used in the analysis. Section 2.4

describes the estimation methodologies. Section 2.5 details the results. Section 2.6 discusses

the findings and concludes.

2.2 Background

Robotic assisted surgical devices were first introduced to the general U.S. hospital setting

in 2000 when Intuitive Surgical, Inc. received FDA approval to bring its da Vinci device to
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market. Due to patent protection, the da Vinci surgical robot remained the only surgical

robot available in the U.S. through our analysis period.4 This device augments laparoscopic

surgery, assisting physicians in procedures conducted through small incisions (Mack, 2001).

Robotics aim to expand a surgeon’s capabilities by increasing their dexterity, flexibility and

visual field. During a robot-assisted procedure the surgeon sits at a console and controls

robotic arms with specially-designed instruments. In contrast, in traditional laparoscopic

surgery the physician would manipulate instruments directly.

Purchasing a robotic surgical system requires an initial capital investment of approx-

imately $1 to $2.5 million, and robotic procedures cost hospitals an average of 13 percent

more than traditional laparoscopic or open-site surgical procedures (Barbash and Glied,

2010). However, Medicare hospital and physician reimbursement do not differentiate be-

tween robotic surgery and laparoscopic surgery (the reimbursement systems are agnostic to

the surgical instrument, though pay differs more for invasive open procedures). Given Medi-

care’s tendency to reimburse at average rather than marginal cost, robot adoption and use

can still be profitable for hospitals, particularly if the device receives heavy use. Hospitals

may thus seek to increase the volume of procedures after adoption (Sheetz et al., 2020).

Perhaps unsurprisingly given the appeal of a volume-oriented strategy, hospitals heavily

advertise their surgical robots (Schwartz and Woloshin, 2019).

We focus on robotics in the context of prostate cancer because the robot has played a

notably large role in transforming how prostatectomy is performed in comparison to other

conditions intensively treated with the robot (Chandra et al., 2011). Prior to robotics,

prostatectomy was usually an open-site procedure because the prostate is hard to access with

a laparoscope (Finkelstein et al., 2010). Figure 2.2 shows that by 2008, just 8 years after

the FDA approval of the robot, open-site procedures were no longer the dominant method

of prostatectomy. The market implications of this phenomenon have received surprisingly
4Intuitive Surgical faced one major competitor, Computer Motion, Inc., whose ZEUS surgical-robotic

system received FDA approval in 2001. After patent battles, the firms merged in 2003 and ZEUS was
removed from the market (SEC, 2003).
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little study; perhaps the most relevant work in this area is Ko and Glied (2021), which found

that hospital robot adoption increased robot use and decreased costs for New York state

Medicaid patients.

Figure 2.2: Use of Robotic Surgery for Prostatectomies Over Time
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Notes: This figure depicts the share of prostatectomies conducted using surgical robots
from 1998 to 2015. The blue dashed line plots the robotic share, defined as the share
of prostatectomies with a robot-assisted procedure code (it begins in 2009 because the
robot-assist hospital procedure code was only created in late 2008). The red solid line
plots the laparoscopic share for the full period, which we can observe well throughout by
linking to physician procedural billing. In this series, the denominator is the subset of
prostatectomy hospitalizations for which there was concurrent physician billing for any
prostatectomy procedure during the stay (patient admission through discharge) while
the numerator is further restricted to those with physician billing for a laparoscopic
prostatectomy procedure. All procedure codes are listed in Appendix Table B1. Essen-
tially all robotic prostatectomies are laparoscopic and the vast majority of laparoscopic
prostatectomies use a robot.

The transition to laparoscopic intervention was driven by adoption of the robots, and we

exploit this rapid roll-out in our differences-in-differences research design. Yet this dramatic

change in intervention modality was backed by essentially no randomized trial data. To date,
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only one randomized trial has compared the robotic and open approaches head-to-head; it

was published after our sample period and detected no benefit of the robotic approach

(Yaxley et al., 2016). Systematic reviews of randomized trials find that the outcomes of

open, laparoscopic, and robotic prostatectomy are similar (Sandoval Salinas et al., 2013; Ilic

et al., 2017).

Prostate cancer is the second most common cancer behind skin cancer in men and

results in approximately 33,000 deaths each year (ACS, 2020; CDC, 2020). Prostatectomy,

or the removal of the prostate gland, is the key surgical treatment for prostate cancer.

However, the treatment can come with significant side effects like incontinence and sexual

dysfunction that may dramatically impact a patient’s life. The high personal and accounting

costs of aggressively treating this slow-growing cancer has led to a shift toward a watch-and-

wait strategy to avoid over-treating a disease that may not become fatal (Lepor, 2000).

Prostatectomy hospitalizations decreased by 32 percent in Medicare over our sample period

as watch-and-wait became more widespread in managing prostate cancer (Appendix Figure

B1). The introduction of robots overlays this reduction in aggressively treating prostate can-

cer, and so increases in prostatectomy volume induced by surgical robots may only partially

offset the general decline in intensive intervention.

2.3 Data

The key allocation analyses in this study measure the volume of prostate cancer and prosta-

tectomy inpatients at each hospital in each year. Both volume measures are key to this

study because adoption of a surgical robot could attract patients to the hospital whether or

not they ultimately receive surgical intervention; they provide, respectively, a broader and

narrower view of the impact of adoption on allocation. We source these measures from 1998-

2015 inpatient hospitalization records (called MEDPAR) for 100% of Medicare beneficiaries.5

5We focus on inpatient stays because Medicare only covers open and robotic/laparoscopic prostatectomy
in this setting during our analysis period (CMS, 2015). A related procedure, transurethral resection of the

50



We count patients with a principal diagnosis of prostate cancer and, separately, those with

prostate cancer who also received a prostatectomy. Appendix Table B1 lists the diagnosis

and procedure codes we use to identify patients. When we analyze patient characteristics,

we do so through a linkage to patient summary data (the Master Beneficiary Summary File).

We omit patients under age 65, who can enter Medicare due to disability or end-stage renal

disease, to focus on the older adult population for whom coverage is near-universal. We also

exclude managed care patients, for whom reporting is incomplete, from all analyses.

To observe if and when hospitals acquire surgical robots, we rely on snapshots of the

Intuitive Surgical website posted on the Wayback Machine (archive.org) from 2002-2005 and

American Hospital Association (AHA) survey data from 2005-2015. Intuitive Surgical is

the manufacturer of the da Vindi robot which was the only surgical robot available in the

U.S. through our analysis period. The Intuitive Surgical website listed da Vinci providers

by state and year starting in 2002. Hence, our first view of adoption thus occurs 12 to 18

months after the robot was approved by the FDA.6. To account for the lag between very

early adoption and initial reporting, we assign hospitals listed in the 2002 archive of the

website an adoption year of 2001.

The Medicare setting has a number of advantages for this research. The size of the

program allows us to observe patient allocation in essentially all U.S. markets and the vast

majority of hospitals. The Original Medicare program imposes no network restrictions on

patients. The cost-sharing structure of Medicare and patients’ frequent enrollment in sec-

ondary coverage of these costs mean that patients have little financial incentive to choose

one hospital over another. Together, these features of Medicare insulate our findings from

potentially endogenous changes in networks and cost-sharing that might occur in private

insurance.

prostate (TURP), is covered in the outpatient setting but is most often used to treat an enlarged prostate as
opposed to prostate cancer (Hopkins, 2021). In more recent years post-dating our analysis period, Medicare
began expanding its coverage of prostatectomy procedures in the outpatient setting (CMS, 2020a).

6The FDA approved the da Vinci surgical robot on July 17, 2000 (FDA, 2000)
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Our analysis period spans 1998 through 2015. All analyses presented in this study use

a balanced panel of hospitals that treated at least 1 patient with any condition in every

year.7 To ensure we observe at least 3 years of pre- and post-adoption patient volumes at

all facilities, hospital-level analyses omit facilities that acquire a robot after 2012. We also

restrict to the plausible hospital choice set for patients seeking cancer care. First, we limit

to short-term and critical access hospitals. Second, hospitals in the analysis sample must

admit a minimum of 50 patients annually with at least 5 of those patients being admitted

for cancer treatment (we do not count skin cancer). In robustness analyses we show that

our findings are preserved when we add back late adopters and facilities that fail to meet

the patient thresholds.8

Table 2.1 provides summary statistics for the 2,261 hospitals in our sample, split nearly

evenly into those that do and do not adopt. Compared to non-adopters, hospitals that adopt

a robot tend to be larger, in urban areas and are more often teaching institutions. Adopters

also treat more cancer patients overall and treat more prostate cancer patients. In turn,

adopting hospitals also have three to four times the prostate cancer and prostatectomy

market shares of non-adopting hospitals. These differences may partly reflect the effect of

robot adoption itself in driving these patients to the hospitals.

2.4 Analytic Approach

Our research design exploits the staggered adoption of surgical robots across hospitals to

identify the effect of acquiring a robot on patient volume and characteristics. We conduct

analyses at the hospital and market levels. Analyses at the latter level are key to evaluating
7To ensure that hospitals that change Medicare provider numbers are consistently tracked, we draw on

a provider number transition matrix graciously provided to us by Jon Skinner and the Dartmouth Institute
for Health Policy and Clinical Practice. We map together all provider numbers that ever refer to the same
facility into one synthetic hospital. A synthetic hospital is considered to have adopted a robot if any of its
component provider numbers has adopted one.

8The hospitals in our main analysis sample capture 87 percent of all Original Medicare prostate can-
cer patients and 88 percent of all prostatectomy patients. The expanded set of hospitals analyzed in the
robustness section captures 94 percent of prostate cancer patients and 95 percent of prostatectomy patients.
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Table 2.1: Summary Statistics for Hospitals in Sample
(1) (2)

Non-Adopters Adopters
Beds 186.4 413.7

(139.1) (272.6)

Urban 0.61 0.94
(0.49) (0.24)

Teaching Hospital 0.13 0.32
(0.34) (0.47)

Patients (Annual)

Cancer (ex. skin) 87.2 324.9
(77.9) (308.9)

Prostate Cancer 4.5 18.9
(6.4) (23.3)

Prostatectomy 3.3 15.7
(5.2) (21.0)

Market Share

Prostate Cancer 0.06 0.20
(0.12) (0.23)

Prostatectomy 0.05 0.20
(0.12) (0.24)

Hospitals 1,168 1,093
Observations 21,024 19,674
Notes: This table shows summary statistics for the sam-
ple of hospitals included in the main hospital-level anal-
yses. See text for more information on sample construc-
tion. All characteristics are at the hospital-year level
spanning 1998-2015. Market share defined as the hos-
pital’s patient count divided by the patient count in its
market. Standard deviations presented in parentheses.
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the market-expanding effect of surgical robots because there is less scope for patients to

reallocate across markets than across hospitals. When analyses at the hospital-level show

stronger allocation effects than those at the market-level, it suggests the presence of business

stealing since patients have more scope to change the hospital where they receive treatment

within a market.

We implement this research design at the hospital level by estimating differences-in-

differences Poisson regressions of the following form:

Nht = exp (αt + αh + β · interimht + γ · postht +XhtΩ) + εht, (2.1)

where h and t index hospitals and years, respectively. The outcome Nht is a measure of

patient volume; αt and αh are year and hospital fixed effects, respectively; interimht indicates

whether the hospital adopted the robot in year t; postht indicates whether the hospital

adopted the robot in year t − 1 or earlier; and Xht is a vector of time-varying hospital

controls. Our primary analyses include no controls in Xht, but in robustness analyses we

show our results are similar as we add controls of varying richness. The key coefficient of

interest is γ, the log-point effect of adopting a robot on volume omitting the initial adoption

year. This log-point interpretation is similar to that of a log-linear model.

The identifying assumption of this model is that absent acquiring a surgical robot,

adopters and non-adopters would have followed common proportional trends in patient vol-

ume. Equivalently, it assumes that patient volume at adopters and non-adopters would have

grown at common rates. To this end, we run event-study specifications:

Nht = exp
(
αt + αh + δ−3adopt

pre
h,t−3 + γ−2adopth,t−2 + . . .+ γ2adopth,t+2 + δ3adopt

post
h,t+3

)
+ εht, (2.2)

where adoptpreh,t−k indicates that the hospital adopted robotics in year t−k or earlier, adopth,t
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indicates adoption in year t, and adoptposth,t+k indicates adoption in year t + k or later. We

omit adopth,t−1 as the reference year. This specification emits pre-trend coefficients (δ−3, δ−2)

to test if volume grew at common rates before adoption, a key falsification exercise for the

counterfactual parallel trends assumption. It also yields post-adoption coefficients (δ0, . . . , δ3)

illustrating the dynamics of the impacts.

The Poisson model has several advantages for our setting. First, compared to a log-

linear regression, it accommodates zeroes without adding an arbitrary constant or switching

to an alternative functional form like inverse hyperbolic sine (though we show that our

findings are preserved under such alternatives). Second, unlike the bulk of nonlinear models

it is robust to fixed effects, which we use in our core models and (in higher dimensional

form) in our robustness exercises (Hausman et al., 1984). Finally, the model makes few

assumptions about the data-generating process beyond that the conditional mean takes the

form in equations 2.1 and 2.2; it does not require that Nht is Poissonian much as linear

regression does not require the outcome to be normally distributed (Gourieroux et al., 1984;

Wooldridge, 1999).

We also run the models given by equations 2.1 and 2.2 at the market level, replacing

all hospital subscripts h with market subscripts r. As a market concept, we use Dartmouth

Hospital Referral Regions (HRRs), which partition the U.S. into 306 regions within which

patients tend stay when they receive specialty care. The outcome Nrt counts patient volume

at all hospitals in the market rather than at one hospital. To measure market-wide adoption

of the robot, we define interimrt as the beds-weighted share of hospitals in market r that

adopted the robot in year t and postrt as the beds-weighted share of hospitals that adopted

the robot in year t − 1 or earlier. For the event study we define the adoptrt variables

analogously as the beds-weighted averages of adoptht across the hospitals in the market. We

construct the adoption measures this way to maximize their comparability with the hospital-

level estimates; the market-level coefficients we report give the log-point effect of all hospitals

55



in the market adopting a robot.

2.5 Results

2.5.1 Patient Allocation

Table 2.2 presents our main estimates of the effect of robot adoption on patient volume based

on equation 2.1. We focus on γ, the coefficient on post, which provides a single estimate of

the long-term effect of adoption averaging over its dynamics. At the hospital level, adoption

raises prostate cancer patient volume unconditional on surgical intervention by 59 log points,

an expected absolute increase of 7.8 patients per year at the average hospital. Prostatectomy

patient volume rises 69 log points or 7.6 patients. Effects at the market level are just under

half the log-point magnitude. Going from 0% to 100% adoption in a market is expected

to raise market-wide prostate cancer patient volume by 28 log points (27.8 patients) and

prostatectomy patient volume by 34 log points (27.7 patients). All of these effects are highly

statistically significant.

Figure 2.3 plots the event study estimates from equation 2.2 for prostate cancer volume

(Panel A) and prostatectomy volume (Panel B) outcomes. The panels illustrate three key

facts. First, they show limited differences in pre-adoption trends in patient volume between

adopting and non-adopting hospitals and between relatively slow-adopting and fast-adopting

markets, a key falsification exercise for the parallel counterfactual trends assumption of

differences-in-differences. Pre-trends are quantitatively small at the hospital level; at the

market level they reverse trajectories after adoption, suggesting our findings will be, if any-

thing, conservative.

Second, the effect of adopting a robot on patient volume grows over time. For example,

hospital-level prostate cancer patient volume increases by a statistically significant 17 log

points in the adoption year, an effect that rises to 73 log points in the third year and
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Table 2.2: Estimates of Effect of Adoption on Patient Volume
(1) (2) (3) (4)

Hospital-Level Market-Level
Patients: Prostate Cancer Prostatectomy Prostate Cancer Prostatectomy
Interim 0.17 0.19 -0.04 -0.05

(0.03) (0.03) (0.06) (0.07)

Post 0.59 0.69 0.28 0.34
(0.04) (0.04) (0.07) (0.08)

Marginal Effect 7.8 7.6 27.8 27.8
(0.5) (0.5) (7.8) (6.8)

DV Average 11.5 9.5 90.2 73.1
Hospitals/Markets 2,255 2,212 306 306
Observations 40,590 39,816 5,508 5,508
Notes: This table depicts the results of estimating equation 2.1 (columns 1 and 2) and its market-
level analog (columns 3 and 4). The dependent variable is prostate cancer patient volume (columns
1 and 3) and prostatectomy patient volume (columns 2 and 4). Interim indicates the first year the
hospital reports having a robot while Post indicates the subsequent years. Coefficients have a log-
point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change. Marginal effect is the
expected absolute change in patient volume derived from the Post coefficient. DV average is the
average dependent variable (patient volume) in the regression. Robust standard errors clustered at
the market level in parentheses. Regressions control for year and level (hospital or market) fixed
effects.

beyond. Essentially the same pattern holds for prostatectomy patients, though magnitudes

are slightly larger. These results highlight the importance of effect dynamics for patient

allocation following robot adoption. They suggest that the long-term effect is greater than

the single average effect estimated in Table 2.2.

Third, effects at the market level are also highly significant and growing over time, but

they expand on a shallower trajectory than hospital-level effects. The market-level estimates

are very roughly half the magnitude of those at the hospital level, much as we found in Table

2.2. The divergence in magnitudes between the regressions at the two levels informs whether

adoption leads to market expansion or business stealing. The economically meaningful and

statistically significant market-level impacts suggest that robots expand the market, since

there is less scope for patients to be “stolen” across markets. Yet the greater magnitudes at

the hospital level imply that adoption further leads to business stealing as patients re-allocate
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Figure 2.3: Event Studies of Patient Allocation
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Notes: This figure plots event study coefficients from estimating equation 2.2 and its
market-level analog. The outcome is prostate cancer patients in Panel A and prosta-
tectomy patients in Panel B. The year prior to adoption is the reference year. The
outcome is the volume of prostate cancer patients. Coefficients have a log-point inter-
pretation, e.g. a coefficient of 0.2 implies a 20 log point change. Shaded areas depict
95% confidence intervals based on robust standard errors clustered at the market level.
Regressions control for year and level (hospital or market) fixed effects.

across facilities in the same market.9

9The market-level estimates report the effect of 100% of hospitals in a market adopting to make them
comparable to the hospital-level estimates. Since the typical market has lower levels of adoption, the effect
of surgical robots on total volume would be attenuated accordingly.
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2.5.2 Robustness

Appendix Tables B2 and B3 provide a number of robustness checks on the hospital-level

prostate cancer and prostatectomy results, respectively. The tables first test adding vary-

ing controls to the baseline estimating equation 2.1. Our key findings are preserved when

adding hospital-specific trends, hospital size decile-by-year interactions, and market by year

interactions (effects attenuate somewhat with the inclusion of trends and expand somewhat

when controlling for markets). We also consider controls for rest-of-market robot adoption

to directly model the potential for one hospital’s adoption to attract patients away from

other facilities. Point estimates on the rest-of-market coefficients are negative, as expected,

but own-adoption effects are unchanged.

The tables next test robustness to alternative hospital samples. In a more restrictive

approach, we limit the sample to adopters so that identification comes solely from compar-

ing hospitals that acquired a robot early vs. late in the period. Estimates shrink somewhat

but remain highly economically and statistically significant.10 Results are qualitatively un-

changed from baseline when we use the broadest sample possible by including hospitals that

acquired a robot after 2012 as well as those that failed to meet the minimum total patient and

cancer patient thresholds. We additionally test robustness to alternative functional forms

by running linear regressions with ln (Nht + 1) and asinh (Nht) as the outcomes, respectively.

Our results are little changed under these alternatives.

Appendix Tables B4 and B5 report robustness checks for the market-level analyses.

Effects remain significant with the inclusion of market-specific trends, and while they atten-

uate somewhat, the ratios of these effects to their hospital-level analogs reported in the prior
10One reason for this attenuation may be that restricting the sample puts more weight on the short-term

effects of adoption, which are smaller according to the event studies. To explore this concern, we model
the adoption effect dynamics as having a constant (given by γ, as before) and a linear slope (we add the
interaction postht× [t− adoptyearh − 1], where the bracketed term is the hospital’s adoption year relative to
the post period). Columns 10 and 11 of Appendix Tables B2 and B3 augment the baseline and adopters-only
models, respectively, with this interaction. The results are consistent with this concern: the constant terms
converge and the slope terms are similar between the models.
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robustness tables remain similar. We also show estimates nearly identical to those reported

in the main text when we calculate market-level patient volume and adoption rates from the

broadest possible set of hospitals (adding those that had failed to meet minimum patient

and cancer patient thresholds). Finally, we provide estimates from linear models which yield

significant (albeit expanded) coefficients.

2.5.3 Characteristics of Marginal Patients

Having demonstrated substantial increases in patient volume in response to robot adoption,

we now analyze the characteristics of the marginal patients drawn in to treatment. We focus

on prostatectomy patients for brevity and since their hospital stay makes direct use of the

robot; results for prostate cancer yield essentially identical patterns and are presented in

Appendix Table B6. We characterize patients on two dimensions, each key for assessing

their suitability for surgical intervention: age and burden of illness. We measure illness by

counting the number of chronic conditions (CCs) according to the patients diagnoses prior

to the hospitalization.11

Figure 2.4 plots the coefficient γ on post from estimating equation 2.1 with the outcome

redefined as the number of prostatectomy patients in the specified age or CC bin (Appendix

Figure B2 presents the results for prostate cancer). The volume increases at both the hospital

and market levels are driven by younger patients. At both levels, effects attenuate greatly

as the age bin rises; at the market-level we fail to detect effects at age 75 and up and point

estimates are close to zero for ages 80 and up.

Effects by history of illness follow an upside-down U-shaped path. At both the hospital

and market levels we detect significant increases in the volume of patients with up to 4 CCs,

those with low and intermediate levels of prior illness. Point estimates for the volume of
11We track 22 CCs measured in the Medicare Chronic Conditions data at 6-month intervals using the

observation most immediately predating the patient’s admission. This data was not available before 1999 so
these estimates are limited to the years 2000 to 2015.
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Figure 2.4: Effect on Prostatectomy Volume by Patient Age and Chronic Conditions

Hospital-Level

Market-Level

5+ CCs

4 CCs

3 CCs

2 CCs

1 CC

No CCs

Age 85+

Age 80-84

Age 75-79

Age 70-74

Age 65-69

Baseline

-0.20 0.00 0.20 0.40 0.60 0.80
Coefficient

Notes: This figure plots estimates from equation 2.1 of the effect of adopting a robot on
the volume of prostatectomy patients in the specified age and chronic condition (CC)
bins. Hospital-level effects depicted with diamonds and market-level effects depicted
with squares. Estimates of effects on the total volume of patients reported at the
top of the figure (“Baseline”, repeated from Table 2.2). Coefficients have a log-point
interpretation, e.g. a coefficient of 0.2 implies a 20 log point change. Error bars depict
95% confidence intervals based on robust standard errors clustered at the market level.
Regressions control for year and level (hospital or market) fixed effects.

patients with no CCs, those who are observably the healthiest, are slightly smaller. Effects

on the volume of patients with 5 or more CCs are the smallest; they are still significant at

the hospital level but not the market level.
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To provide a sense of how the patients induced to receive treatment due to robot

adoption compare to incumbent patients, we directly estimate the effect of adoption on the

average characteristics of the patients. Our approach draws on Gruber et al. (1999) and

adapts their two stage least squares method to our context, which uses a Poisson model.

Specifically, for each patient characteristic of interest we estimate two Poisson regressions:

a first stage on patient volume, which repeats equation 2.1, and a reduced form with the

same specification but the outcome redefined as the average characteristic of patients at

the hospital or in the market. We then report the first stage estimates, which repeat our

prior volume findings; the reduced form estimates, which indicate the log point effect of

adoption on the average characteristic of the patients; and the ratio of the reduced form to

the first stage, similar to an indirect least squares estimate. As the ratio of two log-point

effects, this object is an elasticity. Under the assumption that adopting a surgical robot

brings new patients into treatment without pushing old patients out of treatment (i.e. there

are no “defiers” to adoption), the elasticity can be interpreted as the log point difference

in the average characteristic between marginal patients and the incumbents. Appendix B.1

provides more details on this model.

Table 2.3 reports the estimates from these regressions. Panel A reports the first stage

with similar estimates to those presented earlier (when they differ, it is because we omit

observations where the average characteristic could not be calculated, e.g. when a hospital

or market has no patients or the characteristic is not observed). Panel B reports the reduced

forms. Columns 1-4 show the effect of adoption on average age and CCs. As expected,

adoption tends to lower the age of the average patient at both the hospital and market

level. For example, when a hospital adopts, average patient age is expected to fall by 2.9 log

points or 2.1 years off the average; when 100% of a market adopts, average age falls by 2.3 log

points or 1.6 years off the average. Panel C scales the reduced form by the first stage. These

elasticities indicate that the marginal prostatectomy patient is statistically significantly 5.4

log points younger at the hospital level (3.9 years off the average) and 6.7 log points younger
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at the market level (4.7 years off the average) than the incumbents. Results on CCs indicate

that marginal patients are healthier, with elasticities that are 4-5 times larger than age

elasticities at both levels but only statistically significant at the hospital level.

These results suggest that markets and hospitals grow in response to robot adoption

by attracting younger, healthier prostate cancer patients. The attraction to robotics does

not seem to be as strong for relatively sick patients. These findings imply that the influx of

patients after adoption is not caused by widening eligibility criteria to patients in observably

poorer health, particularly on the basis of age.

In columns 5-7 of Table 2.3 we consider how adoption changed the features of the

average hospital in a market performing prostatectomy. Specifically, we test if markets

that adopt tend to shift their prostatectomy patients to larger, higher-volume, and teaching

hospitals.12 The directions of these effects are a priori unclear: adoption by large well-

resourced hospitals could further entrench their market dominance while adoption by smaller

hospitals could give them a new opportunity to compete with their larger counterparts. While

we do not find any significant effects on these metrics, the point estimates are all positive

indicating that if there is adjustment in response to adoption it tends to concentrate patients

at bigger hospitals with teaching infrastructure.

12To ease interpretation, we measure hospital size and volume at baseline (1998) levels, which avoids
exploiting growth in size and volume due to adoption of the robot itself.
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Table 2.3: Effect of Adoption on Characteristics of Prostatectomy Patients
Hospital-Level Market-Level

(1) (2) (3) (4) (5) (6) (7)
Chronic Chronic Beds Volume Teaching

Characteristic: Age Conditions Age Conditions (Baseline) (Baseline) Hospital

A. First Stage: Outcome is Patient Volume
Post 0.542 0.490 0.342 0.260 0.342 0.342 0.342

(0.035) (0.040) (0.077) (0.082) (0.077) (0.077) (0.077)

B. Reduced Form: Outcome is Average Characteristic
Post -0.029 -0.136 -0.023 -0.064 0.021 0.037 0.084

(0.002) (0.015) (0.005) (0.034) (0.025) (0.029) (0.065)

C. Ratio of Reduced Form to First Stage: Elasticity of Average Characteristic with Respect to Volume
Elasticity -0.054 -0.277 -0.067 -0.248 0.061 0.107 0.245

(0.004) (0.033) (0.020) (0.149) (0.075) (0.088) (0.191)
Average Characteristic 73.32 2.68 72.24 2.50 413.08 22.02 0.46
Hospitals/Markets 2,191 2,164 306 306 306 306 306
Observations 62,046 53,808 10,956 9,732 10,956 10,942 8,925
Notes: This table reports results from estimating the impact of robotic adoption on the characteristics of prostatectomy
patients. Panel A reports the “first stage” results from estimating equation 2.1 and differs only from Table 2.2 because it
omits observations (hospital- or market-years) with no prostatectomy patients. Panel B reports the “reduced form” estimates
of the same specification with the outcome redefined as the average characteristic of prostatectomy patients. Coefficients in
Panels A and B have a log-point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change in volume or the average
characteristic. Panel C reports the ratio of the reduced form estimate to the first stage estimate. These coefficients have an
elasticity interpretation, i.e. the elasticity of the average characteristic with respect to volume. In columns 5-7, the outcome is
the average characteristic of the patients’ hospitals. Columns 5 and 6 measure the hospital’s beds and prostatectomy patient
volume at baseline (1998) levels. See text for more details. Robust standard errors clustered at the market level in parentheses.
Regressions control for year and level (hospital or market) fixed effects.
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2.6 Discussion and Conclusion

Robotic surgery diffused quickly through the health care system, and during our analysis

period it became the primary surgical modality to treat prostate cancer. Our results clearly

indicate that when hospitals adopt this technology they attract more prostate cancer pa-

tients. We find signs that this increase in patient volume occurs through both business

stealing and market expansion following adoption. As hospitals in a market adopt surgical

robots, prostate cancer volume increases in the whole market; since it is relatively difficult

to “steal” patients across regions, this result shows the market-expanding power of surgical

robots. Still, this phenomenon does not explain the totality of the increase in volume that

occurs after a hospital adopts, since we find a hospital-level effect that is roughly twice the

market-level effect. The gap between the results at each level points to a significant role for

business stealing.

The welfare implications of this result are nuanced. One interpretation of these find-

ings is that they indicate a wasteful medical arms race, since hospitals had few regulatory

constraints on adoption, frequently took up a new technology with nontrivial fixed costs,

and engaged in business stealing from one-another. If hospitals do not otherwise differ in

their quality of care, this service duplication could be welfare-damaging. However, when

hospitals differ in quality, business stealing has the potential to improve — or further reduce

— welfare by redirecting patients to better or worse hospitals. For example, outcomes from

robotic surgery are widely believed to depend on provider experience with the device (Savage

and Vickers, 2009). If low-volume facilities attract patients by adopting robots, patient out-

comes could deteriorate throughout the market because provider experience could become

more diluted. On the other hand, if facilities that adopt robots tend to be higher-performing,

the marginal patients attracted to them could benefit. Such a channel may operate here:

adopting hospitals tend to be bigger and are more likely to be teaching facilities, two fea-

tures that are associated with better patient outcomes (see e.g. Birkmeyer et al., 2002; Burke
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et al., 2017); we also note signs in Section 2.5.3 that as markets adopt, patients are more

likely to receive treatment at these facilities.

Market expansion is generally considered a sign of welfare improvement in traditional

sectors, since a rise in quantity would tend to signal more consumers with access to the

good. The market imperfections typical of the health care sector add some complication to

this interpretation, however. Market expansion may be welfare-decreasing if it occurs due to

moral hazard, when patients or their agents are shielded from the true costs of the technology

due to insurance and overuse it as a result, or from behavioral hazard, when patients or their

agents are attracted to hospitals with robotics because they have biased beliefs about the

benefits of the technology (Baicker et al., 2015).

A full accounting of these welfare effects would require detailed clinical data on patient

characteristics like cancer staging. Still, the relatively coarse data that we observe in claims

is informative for ruling out a key welfare-damaging moral and behavioral hazard story in

which poor candidates for intensive treatment are attracted to the hospital after adoption.

During our analysis period, prostate cancer treatment guidelines increasingly sought to dis-

courage older patients with competing risks from intensive testing for and management of

this condition (USPSTF, 2008; Lepor, 2000). We find that the increase in prostatectomy

patient volume in response to robot adoption is comprised of relatively younger patients that

have fewer chronic conditions; we fail to detect increases in volume for patients age 80 and

up or those with 5 or more chronic conditions. Our findings therefore suggest that robot

adoption had small-to-nonexistent market-expanding effects on poor matches for surgery, an

encouraging though not definitive sign that welfare was not harmed through at least one

channel.13

In this study, we sought to evaluate the effects of hospital technology adoption on
13While we can rule out that marginal patients are poor candidates because they are relatively old or have

competing risks, we cannot determine if they have early-stage prostate cancer and are seeking aggressive (and
potentially low-value) treatment. Such analyses would require electronic medical record or cancer registry
data and are an important topic for future study.
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hospital utilization through the lens of surgical robotics in prostate cancer. We found striking

impacts of adoption on patient volume at both the hospital- and market-level. These results

raise key questions for future work on robotics and technology in the health care sector.

While robotics has diffused particularly rapidly in prostate cancer treatment, its welfare

effects in other areas of health care remain an open question that merits further study. In

the space of prostate cancer treatment, future work could exploit electronic medical record or

cancer registry data to observe an even richer view of patient outcomes. Taken together, our

work highlights the power of technology diffusion to rapidly change the health care delivery

system with concomitant implications for patient welfare.
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Chapter 3

Direct-to-Consumer Pharmaceutical

Advertising Influence on Generic Market

Entry

3.1 Introduction

Prescription-drug spending increased by 58.3% in the ten years from 2005 to 2015 (CMS,

2018). By 2016, 12.1 per-capita prescriptions were filled at retail pharmacies amounting to

$379.2 billion (KFF, 2018). Over this same period, direct-to-consumer advertising (DTCA)

of pharmaceutical drugs increased 17.4% to $5.4 billion in 2015 (Mack, 2016). The advertising

and market-entry decisions of pharmaceutical firms shape the increases observed in recent

years.
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Figure 3.1: Per Capita Direct to Consumer Advertising and Prescription Drug Spending

Notes: This figure shows the increase in prescription-drug spending and direct-to-consumer
advertising (DTCA) from 1990 through 2017. The blue curve is per capita prescription drug
spending, and the yellow curve is per capita DTCA in millions of dollars. All dollar amounts
are real dollars adjusted using the 2010 consumer price index. Sources: CMS (2018); Census
(2020); Palumbo and Mullins (2002); Kornfield et al. (2013); Mack (2016); Mahoney (2018);
BLS (2010).

Prescription-drug companies receive a 20-year patent for new-drug formulations. Part

of profit maximization during the patent-protection period is advertising. Firms advertise to

physicians, termed detailing, to make them aware of the existence and quality of new pharma-

ceutical products (Gellad and Lyles, 2007). On top of physician advertising, the U.S., along

with New Zealand, are the only countries that allow DTCA of prescription-pharmaceutical

drugs. In 1997, DTCA regulations were relaxed by the Food and Drug Administration (FDA)

which facilitated radio and television advertising. This coincided with a significant rise in

both per-capita-advertising expenditures and prescription-drug spending. See Figure 3.1.

One study found that for a sample of 2,601 older adults exposed to DTCA, 31% requested
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the advertised drug. Of those that requested the drug, 69% received a prescription; though

the research was unable to distinguish if the prescription the patient received was for the

DTCA drug (Datti and Carter, 2006).

There is an active debate surrounding DTCA. Proponents believe DTCA provides valu-

able information to consumers about the existence of new pharmaceutical products to treat

conditions that may not otherwise receive medical attention. On the other hand, critics

of DTCA believe that these advertisements prompt clinically inappropriate prescribing of

DTCA drugs or that they have prompted non-medical conditions to be medicalized (Wein-

meyer, 2013). Both sides of the argument have direct implications for consumer welfare.

To understand how DTCA impacts welfare, it is vital to assess how DTCA influ-

ences generic entry into pharmaceutical markets. After a patent expires, the brand-name-

pharmaceutical manufacturer faces the potential for increased competition from generic man-

ufacturers entering the market. Generic drugs have bioequivalence to brand-name coun-

terparts but are often less expensive. Research by Fischer and Avorn (2003) found that

Medicaid could have saved $229 million from increased use of generic drugs in 2000. Even

though there is clinical equality, there can be perceived quality differences by physicians and

patients (Shrank et al., 2009, 2011).

In this paper I use a vertical-differentiation model to study the impact of DTCA on

detailing, price, demand and the resulting entry decision of generic pharmaceutical manufac-

turers after patent expiration. The approach taken can be illustrated with a simple example.

In 2004 the FDA approved eszopiclone for the treatment of insomnia. It is marketed under

the brand name Lunesta. During the patent-protection period for eszopiclone, its manu-

facturer, Sepracor, made decisions about how to advertise Lunesta to physicians and the

public.

Information on the benefits and clinical indications for prescribing Lunesta were di-

rected to physicians. The public became aware of Lunesta as a sleep aid through various
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forms of media advertising. Many people have now been made aware of Lunesta from com-

mercials that feature a luna moth. Some consumers would have visited their physician for

symptoms of insomnia regardless of seeing an advertisement. Yet, there is a portion of con-

sumers who were unaware of the existence of a treatment for insomnia and are prompted

to visit their physician after viewing an advertisement. In this way, the market for eszopi-

clone is expanded by the patients who would not have gone to the doctor without seeing an

advertisement for Lunesta.

The patent for Lunesta expired in 2014.1 As the patent neared expiration, a generic

manufacturer observed the market conditions around insomnia medication including market

size and the price of Lunesta and decided to enter the market. To enter, the manufac-

turer proved bioequivalence of a generic form of eszopiclone to Lunesta (as manufactured

by Sepracor) and received FDA approval. After 2014, Serpacore competed with the generic

manufacturer for market share.

For simplicity, my model considers the market for a pharmaceutical drug that treats

a condition not addressed by other medications on the market. During patent protection

there is only the brand-name drug available and the firm acts as a monopolist. After patent

expiration, a single generic manufacturer observes market conditions and makes an entry

decision. If the generic enters the market, oligopolistic competition ensues. If the generic

does not enter, the brand-name firm maintains its monopoly.

I find that DTCA increases market size and profit for both brand-name and generic

firms. Additionally, DTCA is a complement to detailing. DTCA prompts more consumers

to visit the doctor which increases the marginal revenue of detailing and creates incentives

for the brand-name firm to invest more in detailing as a response to DTCA allowance. Due

to this relationship between detailing and DTCA, DTCA indirectly increases the monopoly
1Patents for pharmaceutical products are approved for 20 years; however, FDA approval is post-patent

approval after clinical trials. This decreases the patent-protected marketing and sales period of new phar-
maceutical products.
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price during patent protection. After patent expiration, DTCA indirectly decreases price.

Additionally, where prior research has found that there is a threshold past which detailing

serves as an entry deterrent, DTCA extends this threshold and promotes generic entry.

Hence, brand-name firms that invest in DTCA during the patent-protection period face

increased competition after patent expiration.

This chapter is organized as follows. Section 3.2 is a review of the relevant literature.

Section 3.3 lays out the model. Section 3.4 considers model equilibrium. Section 3.5 assesses

the market entry decision of the generic firm. Section 3.6 analyzes the advertising decision of

the incumbent firm. Section 3.7 is a simulation of the vertical differentiation model. Lastly,

section 3.8 concludes.

3.2 Literature Review

Hurwitz and Caves (1988) completed one of the first studies to look at the market power of

brand-name versus generic pharmaceutical drugs. The authors found that during the patent-

protection period, goodwill accumulates with health-care providers for the brand-name drug

which is enhanced by advertising. This was confirmed by Shrank et al. (2011) who surveyed

506 physicians. The authors found that fifty-percent of respondents believed that generics

were of poorer quality than the equivalent brand-name counterpart, and over twenty-five

percent would not use generics as a first prescription for themselves or family members.

Considering that goodwill accumulates during the patent-protection period, the best

predictors of generic-manufacturing firms gaining market share were the passage of time

and an increase in the number of suppliers (Hurwitz and Caves, 1988). Grabowski and

Vernon (1992) extended this research to show that providers are price insensitive to what

they prescribe, which gives brand-name firms an extreme first-mover advantage. After entry,

generics compete in price; in contrast, brands decrease advertising and instead introduce a

variant to the original drug with a new feature, for example slow release (Grabowski and
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Vernon, 1992; Morton, 2002).

In 2007, Königbauer used a vertical-differentiation model to study the impact of per-

suasive detailing on the market entry decision of generic manufacturers. Königbauer’s model

predicts that, up to a certain threshold, advertising during the patent-protection period pro-

motes generic entry, reduces average market price and raises consumer welfare after patent

expiration. Beyond this threshold, advertising deters entry because the generic perceives

that it will be unable to compete considering existing brand loyalty. This results in a higher-

average price and reduction in consumer welfare.

Most pharmaceutical-market modeling has focused on advertising to physicians. Yet,

in 2000, DTCA made up 15.9% of pharmaceutical-advertising budgets. A study by Brekke

and Kuhn (2006) considered both forms of advertising. The authors used a horizontal dif-

ferentiation model to assess competition between two brand-name manufacturers during the

patent-protection period. Brekke and Kuhn find that detailing and DTCA are comple-

mentary strategies that result in higher price and decreased welfare if small co-payments

are assumed. Dave and Saffer (2012) demonstrated empirically that DTCA does increase

prescription drug prices and consumer demand by 9.5% and 21.0% respectively.

There are two additional studies which have brought together detailing and DTCA.

Rosenthal et al. (2002) and Wosinska (2002) distinguished the impacts of pharmaceutical

advertising as either informative or persuasive. Detailing generates brand goodwill. In con-

trast, DTCA increases demand for the overall drug class. Rosenthal et al. (2002) estimated

elasticities for DTCA and detailing for pharmaceutical drug classes and individual products.

DTCA elasticities are greater for the drug class than for individual brands while the opposite

is true for detailing.

In contrast to Brekke and Kuhn (2006), I assume that during patent protection the in-

cumbent firm is a monopolist. This approach lends itself to utilizing a vertical-differentiation

model which will allow for assessing market entry after patent expiration. I contribute to the
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existing literature by expanding the vertical-differentiation model from Königbauer (2007)

to include DTCA. The model is an assessment of the 1997 regulation change that allowed

for the expansion of DTCA and its influence on generic entry into pharmaceutical markets.

To my knowledge, this study is the first pharmaceutical research paper to distinguish the

impacts detailing and DTCA have on market entry in a single vertical-differentiation model.

3.3 Theoretical Model

This is a two-period model. During the first period the brand-name firm, B, has patent pro-

tection. During the second period, the patent has expired and a generic-drug manufacturer,

G, can enter the market. The notation, assumptions and structure of the model remain

consistent with Königbauer (2007) except where it has been extended to include DTCA.

This maintains comparability to discern how the addition of DTCA impacts market out-

comes. Hence, the foundation of Königbauer’s model is replicated below for completeness to

facilitate understanding the full impacts of DTCA.

My model begins with a proportion of consumers, h ∈ [0, 1] in the market who visit the

doctor based on their current experience of symptoms. In line with Brekke and Kuhn (2006),

I assume that patients cannot observe the specific condition they have nor the effectiveness

of available treatments. A higher h indicates a more widespread condition and symptom

severity.

For the portion of patients, h, that go to the doctor, the physician perfectly observes

each patient’s symptoms and determines the value the patient would receive from a prescrip-

tion drug, the "treatment" denoted by t. Assume each physician faces a uniform distribution

of patients who each have a corresponding treatment value of t on the interval [0, T ]. In Pe-

riod 1, there is only a brand-name drug available as treatment which is priced at pB. As the

patient’s agent, the physician maximizes her perception of the patient’s utility function.
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U = t− pB (3.1)

In this model, consumers pay the market price of the drug, pB. Currently, adults in the

United States pay 14% of prescription-drug costs out of pocket (Centers for Medicare and

Medicaid, 2018). Assuming that co-payments do not exist does not impact the qualitative

implications of the analysis presented here.

3.3.1 Period 1: Patent Protection - Monopoly

During Period 1, the brand-name firm has patent protection and can choose to advertise a

new drug in two ways: as detailing to physicians and as DTCA through mass media. The

firm chooses the proportion, k, of physicians to detail to and the proportion of consumers, m,

to expose to DTCA. Detailing and DTCA have differing impacts in pharmaceutical markets

(Wosinska, 2002). DTCA expands the market for the entire class of drugs by increasing the

proportion of patients who visit the doctor based on exposure to drug advertising. On the

other hand, detailing enhances brand loyalty by making physicians aware of the benefits of

the brand-name drug.

Direct-to-Consumer Advertising

DTCA enters the model by making consumers’ symptoms more salient which expands

the fraction of DTCA-exposed consumers, m, who visit the doctor by α, 1 < α < 2, with

the condition that max(αh) = 1. The α term can be interpreted as the brand-name firm’s

ability to impact symptom salience through advertising. DTCA will be more effective if the

condition targeted is more widespread or if belief in treatment and/or symptom salience is

malleable. With DTCA, the proportion of consumers who visit the doctor is now the sum of

the DTCA-exposed and non-exposed consumers and increases from h to m(αh) + (1−m)h.

See below for an illustrative example using values m = .5, h = 0.4 and α = 1.5:
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Figure 3.2: Consumer Market with DTCA

Notes: This figure illustrates that the proportion of consumers that visit a physician is the sum
of DTCA-exposed and non-exposed consumers. The green-shaded area indicates the proportion
of the population that would visit a physician in absence of DTCA based on his or her health.
The green-shaded area represents the additional share of the population that visits a physician
as a result of DTCA exposure.

Figure 3.2 demonstrates that the consumer market is the sum of DTCA-exposed and

non-exposed consumers. Exposing 50% of the market to advertising results in an additional

10% of patients choosing to visit the doctor. As the brand-name firm increases m by one-

percentage point, the market expands by h(α − 1) which is the percentage change in h

resulting from advertising effectiveness.

As will be shown, DTCA expands demand in the market by rotating the demand

curve out, but maintains the same price intercept. The demand derived in the vertical-

differentiation model as presented in Königbauer (2007) is scaled up by the inclusion of

DTCA. Therefore price derivations are unchanged, but profit is impacted.

Detailing

In Brekke and Kuhn (2006), physicians are assumed to be perfectly uninformed about

newly FDA-approved pharmaceutical drugs and only learn of them through detailing; how-

ever, this would imply that there is no market of un-detailed physicians. Here, I follow

Königbauer (2007) and assume that physicians have some information about the new drug

(for example by reading medical journals) and its corresponding benefits which is represented

as normalized quality of θ = 1. If a physician has been detailed to, she has an enhanced
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understanding of the drug’s properties and is aware of additional drug benefits. Detailed

physicians assess the drug’s quality at, θ > 1. Recall that k physicians are detailed to and

(1 − k) physicians are not exposed to advertising. Adding in that a patient may see either

a detailed or non-detailed physician, the utility function is expanded as follows:

U =


θt− pB utility perceived by a detailed physician

t− pB utility perceived by a non-detailed physician
(3.2)

The DTCA term αh does not enter the utility function, even if there is DTCA exposure.

This is due to the physician correctly assessing the patient’s health and corresponding value

of treatment as t even if DTCA exposure increased the salience of the patient’s symptoms.

Demand and Profit in Period 1

For consumers who visit the doctor in Period 1, the brand-name drug is prescribed

if U ≥ 0. The points of indifference are based on the advertising exposure present in each

physician-patient pairing.

t ≥ 1

θ
pB if the patient visits a detailed physician

t ≥ pB if the patient visits a non-detailed physician
(3.3)

Given k and m with the above indifference points, the brand-name firm’s demand

function in Period 1 is constructed. The inclusion of DTCA in the equation below expresses

how DTCA impacts the size of the market, which is the sum of the DTCA-exposed, m,

and non-exposed, (1−m), market segments times the sum of the detailed and non-detailed

markets, k and (1 − k). The resulting formulation reflects the four physician-patient pairs

in the market:
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1. Detailed physician and DTCA-exposed patient

2. Detailed physician and non-DTCA-exposed patient

3. Non-detailed physician and DTCA-exposed patient

4. Non-detailed physician and non-DTCA exposed patient

The superscript 1 in the demand function represents the first period.

D1
B = k

[[
mαh+ (1−m)h

][
T − 1

θ
p1B

]]
+ (1− k)

[[
mαh+ (1−m)h

][
T − p1B

]]

=

[
mαh+ (1−m)h

][
k
[
T − 1

θ
p1B

]
+ (1− k)

[
T − p1B

]] (3.4)

Period 1 variable profit is equal to gross revenue minus the cost of production, the cost

of advertising to physicians, C(k), and the cost of DTCA, C(m). Marginal cost is assumed

to be constant and is normalized to zero. The fixed cost of product development and FDA

approval is sunk and does not enter the profit function. The brand-name firm’s revenue in

Period 1 is scaled by the length of the patent, δ. The timing of patent protection is an

important policy variable that can be regulated.

π1
B(θ, h, k,m) = δD1

Bp
1
B − C(k)− C(m) (3.5)

The advertising cost functions follow Cabrales (2003) and Königbauer (2007) with

γ > 0 and ρ > 0. The functions are strictly convex and increasing in the proportion of

physicians, k, and consumers, m, advertised to. The parameters in the cost functions, γ

for detailing and ρ for DTCA, reflect cost differences in the deployment of these advertising

strategies. Plugging in demand and cost, Period 1 brand-name profit is:
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π1
B(θ, h, k,m, p1B) = δ

[
p1B

[
mαh+ (1−m)h

][
k
[
T − 1

θ
p1B

]
+ (1− k)

[
T − p1B

]]]

−
[ 1

1 + γ

]
k1+γ −

[ 1

1 + ρ

]
m1+ρ

(3.6)

3.3.2 Period 2: Patent Expiration

In this period, the generic manufacturing firm observes the market conditions and makes its

entry decision. To enter, the generic firm faces fixed-entry costs of F . If the firm enters the

market, then the brand-name and generic firms compete in price. If the firm does not enter,

the brand-name firm continues to act as a monopolist. There is no advertising in Period 2

(Grabowski and Vernon, 1992). Hence, k and m are exogenous in this period.

Scenario 1: The generic does not enter:

In this case, the brand-name firm maximizes the sum of its Period 1 and Period 2 profit

functions. The patent-protection period has length δ; thus, Period 2 is length (1 − δ) such

that the sum of both periods has normalized length 1. Without entry, the brand-name firm

will reaffirm its monopoly price, p1B, such that p1B = p2B = pMB . The brand-name firm’s profit

over both periods is:

πB = δπ1
B + (1− δ)π2

B = δπM
B + (1− δ)πM

B = πM
B (3.7)

Plugging in the demand derived during Period 1 the complete formulation is:
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πB(θ, h, k,m) = p1B

[
mαh+ (1−m)h

][
k
[
T − 1

θ
p1B

]
+ (1− k)

[
T − p1B

]]

−
[ 1

1 + γ

]
k1+γ −

[ 1

1 + ρ

]
m1+ρ

(3.8)

Scenario 2: The generic enters:

With entry, the utility function now includes that the brand, B, or generic, G, may

be prescribed. In this case, detailed physicians believe there is a difference in effectiveness

between the brand and generic. Non-detailed physicians know that the brand and generic

drugs are bioequivalent and therefore conclude quality to be equivalent, θ = 1. Hence,

non-detailed physicians exclusively prescribe the drug with the lowest price, and detailed

physicians choose between the brand or generic based on whichever yields the higher per-

ceived patient utility.

To determine if the brand or generic has the lowest price, observe that if the generic

enters and p2G > p2B then the generic captures zero demand, D2
G = 0, which results in a profit

loss of the generics firm’s fixed entry costs, π2
G = −F . This is true regardless of DTCA,

m = 0 or m > 0, because detailed physicians would still prefer the brand and non-detailed

physicians would prescribe whatever is cheapest to maximize patient utility. In all physician-

patient pairs, if pG > pB ⇒ UG < UB. In this scenario, the generic would have an incentive

to reduce its price below the brand. For the generic to observe positive profit and enter the

market, p2G < p2B. It follows from this that non-detailed physicians exclusively prescribe the

generic drug, p2G < p2B ⇒ U(t, pG) = t − p2G > U(t, pB) = t − p2B. The utility function with

generic entry is:
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U =


θt− pB utility perceived by a detailed physician prescribing the brand-name drug

t− pG utility perceived by a physician prescribing the generic drug

(3.9)

To construct the demand functions for the brand-name and generic firms, the points of

indifference are found. Non-detailed physicians will prescribe the generic drug if U(t, pG) ≥ 0.

Detailed physicians will prescribe the generic drug if U(t, θ, pB) < 0 and U(t, pG) ≥ 0 and

will prescribe the brand-name drug if U(t, θ, pB) ≥ U(t, pG) ≥ 0. Hence, to prescribe the

drug, the utility will need to be at least as great as the utility at the lowest-prescribing

threshold which is t − pG = 0 ⇒ t = pG since p2G < p2B. The indifference points relative to

advertising exposure are as derived in Königbauer (2007) and follow:

Detailed Physician

Prescribes the brand-name drug if:

θt− pB ≥ t− pG

θt− t ≥ pB − pG

t(θ − 1) ≥ pB − pG

t ≥ 1

(θ − 1)
(pB − pG)

(3.10)

Prescribes the generic drug if:

t− pG ≥ 0

t ≥ pG

(3.11)

In the non-detailed market, physicians do not believe that there is a quality differ-

ence between brand and generic; thus, they will exclusively prescribe the drug that is less
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expensive, which, given the above, is the generic, pB > pG.

Non-detailed Physician

Prescribes the generic drug if:

t− pG ≥ 0

t ≥ pG

(3.12)

With the above indifference points, brand-name and generic demand is constructed.

DTCA again enters as an increase in the number of patients who visit the doctor based

on advertising exposure and health status. In Period 2, detailing, k, and DTCA, m, are

exogenous.

D2
B = [mαh+ (1−m)h]

[
k

(
T −

(
1

(θ − 1)
(pB − pG)

))]
(3.13)

D2
G = [mαh+ (1−m)h]

[
k
(( 1

(θ − 1)
(pB − pG)

)
− p2G

)
+ (1− k)

(
T − p2G

)]
(3.14)

Period 2 profits for the brand-name and generic firms with detailing and DTCA are as

follows. The generic firm’s fixed cost of entry is included as F .

π2
B(θ, h, k,m) = (1− δ)p2B

[
mαh+ (1−m)h

] [
k
(
T −

( 1

(θ − 1)
(p2B − p2G)

))]
(3.15)

π2
G(θ, h, k,m, F ) = (1− δ)p2G

[
mαh+ (1−m)h

][
k
(( 1

(θ − 1)
(p2B − p2G)

)
− p2G

)
+ (1− k)

(
T − p2G

)]
− F

(3.16)
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3.4 Equilibrium Prices

The price and advertising levels are solved for recursively. First by maximizing Period 2

profit and then using p2∗B to solve for advertising levels of k∗ and m∗ in Period 1. The brand-

name firm considers two possible scenarios in Period 2: Either the generic firm does not

enter, or the generic firm enters.

If the generic does not enter. The brand-name firm will reaffirm its monopoly price.

This is found by maximizing the brand-name firm’s total profit function without entry:

max
p2B

πB(θ, h, k,m) = p1B

[
mαh+ (1−m)h

][
k
[
T − 1

θ
p1B

]
+ (1− k)

[
T − p1B

]]

−
[ 1

1 + γ

]
k1+γ −

[ 1

1 + ρ

]
m1+ρ

(3.17)

The first-order condition and Period 2 monopoly price derivation is below:

∂πB

∂p2B
=

[
mαh+ (1−m)h

][
T − 2k(

1

θ
p2∗B )− 2(1− k)(p2∗B )

]
= 0 (3.18)

Solving equation 3.19 for p2∗B results in the brand-name firm’s monopoly price.

pM∗
B = p2∗B =

1

2

[
θT

[k + θ − kθ]

]
(3.19)

The monopoly price, pM∗
B , does not depend on the proportion of consumers exposed to

DTCA, m. As stated earlier, this is because DTCA expands the demand in the market by

rotating the demand curve out, but maintains the same price intercept. Hence, pM∗
B is the

same as was derived in Königbauer (2007). The derived monopoly price is used in Period 1
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to determine advertising levels of k and m without entry. The Period 1 monopoly price is

increasing in the proportion of physicians detailed to, k, and belief in brand quality, θ.

∂pM∗
B

∂k
=

(θ − 1)θT

2(θ − θk + k)2
> 0 (3.20)

∂pM∗
B

∂θ
=

kT

2(θ − θk + k)2
> 0 (3.21)

The equilibrium monopoly prices are also higher with DTCA. Even though DTCA

scales the market up by rotating the demand curve out but maintaining the same price

intercept, DTCA indirectly impacts price by increasing the incentive to invest in detailing,

k which directly increases price. This will be demonstrated in Section 3.6.

To determine the Period 2 price, assuming generic entry, the firms simultaneously

maximize Period 2 profit and compete on price. As with the monopoly price, the presence of

DTCA does not impact price under generic entry for the brand-name or generic firms. This

can be seen in comparison with Königbauer (2007) which derives the same Period 2 price

for both generic and brand-name firms.

max
p2B

π2
B(θ, h, k,m) = (1− δ)p2B

[
mαh+ (1−m)h

][
k
(
T −

( 1

(θ − 1)
(p2B − p2G)

))]
(3.22)

max
p2G

π2
G(θ, h, k,m) = (1− δ)p2G

[
mαh+ (1−m)h

]
[
k
(( 1

(θ − 1)
(p2B − p2G)

)
− p2G

)
+ (1− k)

(
T − p2G

)]
− F

(3.23)

The resulting Bertrand-Nash equilibrium prices are as follows:
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p2∗B (k,m) =
T (θ − 1)(k + 2θ − 1)

3k + 4θ − 4
(3.24)

p2∗G (k,m) =
T (θ − 1)(2− k)

3k + 4θ − 4
(3.25)

The brand-name price, with entry, in Period 2 is decreasing with detailing. This is

because the larger detailing, k, is the greater the incentive for the brand-name firm to

rationally reduce price to compete more aggressively in the detailed market for demand since

now detailed physicians can prescribe the brand or generic drug. However, the brand-name

price is increasing in advertising effectiveness. This implies that the larger the proportion of

physicians exposed to advertising the lower the Period 2 Bertrand-Nash equilibrium brand

price, but that downward pressure is offset by how effective the detailing is, which would

increase brand loyalty. This is due to the Period 2 competition with generic entry only

happening in the detailed segment of the market as the generic manufacturer captures the

entirety of the non-detailed market.

∂p2∗B
∂k

= −T (θ − 1)(2θ + 1)

(4θ + 3k − 4)2
< 0 (3.26)

∂p2∗B
∂θ

=
1

2
T

(
1− 3(k − 2)k

(4θ + 3k − 4)2

)
> 0 (3.27)

In Period 2, DTCA decreases price for the brand-name and generic firms through in-

creased competition. Since DTCA incentivizes detailing, detailing with entry puts downward

pressure on price. Hence, m > 0 indirectly decreases price in Period 2.

For the generic firm in Period 2, price decreases as detailing increases and decreases as

advertising effectiveness, θ increases.
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∂p2∗G
∂k

= −2T (θ − 1)(2θ + 1)

(4θ + 3k − 4)2
< 0 (3.28)

∂p2∗G
∂θ

= − 3(k − 2)kT

(4θ + 3k − 4)2
< 0 (3.29)

3.4.1 Equilibrium Conditions

There are only certain conditions under which p2∗B and p2∗G are a Bertrand-Nash equilibrium.

It has been established that for the generic firm to have positive profit and enter the market

after patent expiration, p2G < p2B. The sufficient condition for equilibrium is only dependent

on k and θ which determine the size of the detailed market relative to the non-detailed

market. Hence, the presence of DTCA does not impact equilibrium prices or the subsequent

decisions of the brand-name or generic firms to remain at p2∗B and p2∗G .

The sufficient condition for p2∗B and p2∗G to be a Bertrand-Nash equilibrium is:

θ ≥ 1

2k

[
− k2 + 2 +

√
k4 − 5k3 + 9k2 − 8k + 4

]
(3.30)

All derivations of the brand-name firm’s choices of k, given θ, must to be evaluated against

the above condition because k is endogenous. The proof in Appendix A of Königbauer (2007)

presents a detailed derivation and analysis of the equilibrium condition.

3.5 Generic Entry Decision

For the generic firm to enter, the variable profit of the generic must be greater than the

firm’s fixed cost of entry, given the advertising levels of k and m and the related parameters

θ, h, α and F . That is,
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π2∗
G (θ, h, k,m, F ) = (1− δ)

[
π∗
G

]
− F ≥ 0

= (1− δ)
[(θ − 1)(k − 2)2T 2(θ + k − 1)((α− 1)hm+ h)

(4θ + 3k − 4)2

]
≥ F

(3.31)

If k = 0, then there is no perceived difference in effectiveness between the brand and

generic drugs, even if m > 0. Without detailing, there is intense price competition which

leads to the Bertrand paradox, and price is equal to marginal costs and π2
G = −F . Assuming

the generic firm faces positive startup costs, F > 0, detailing is a necessary condition for

market entry.

Assuming, k > 0, the values of k and m directly impact the generic firm’s variable

profit.

∂π2∗
G

∂k
= (1− δ)

h(θ − 1)(k − 2)T 2 (8θ2 + 3k2 + 12θ(k − 1)− 6k + 4) ((α− 1)m+ 1)

(4θ + 3k − 4)3
< 0

(3.32)

∂π2∗
G

∂m
= (1− δ)

(α− 1)h(θ − 1)(k − 2)2T 2(θ + k − 1)

(4θ + 3k − 4)2
> 0 (3.33)

There are two opposing forces in the generic firm’s entry decision. Profit decreases

as detailing, k, increases, but as DTCA spending, m, increases profit increases since the

amount, m, and effectiveness, α, of DTCA increase the size of the market for the whole class

of drugs (brand and generic).

The generic firm’s entry decision is illustrated in Figure 3.3. The graph is a plot of

the generic firm’s variable profit against brand-name detailing for different levels of DTCA.

The generic profit function is calculated by holding constant all parameters at the following

values: T = 1; θ = 2.0; δ = 0.4; h = 0.4 and α = 1.5. For θ = 2, the sufficient condition

for equilibrium is met at k = 0.54, and the generic would enter the market from k = 0.54
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Figure 3.3: Generic Entry Decision, θ = 2.0

Notes: This figure demonstrates the expected profit of the generic manufacturing firm for
different values of detailing, k. Each curve represents a different level of DTCA, m, used
to calculate the generic firm’s profit. For values below k = 0.54 the sufficient condition for
equilibrium price is not met and the generic firm would not enter the market. The profit is
calculated by holding constant all parameters at the following values: T = 1; θ = 2.0; δ = 0.4;
h = 0.4 and α = 1.5.

to k = 0.8 with m = 0; however, if m = 0.3 or m = 0.7 the generic would enter up to

k = 0.86 or k = 0.94 respectively. The entry points assume fixed entry costs of F = 0.015

as indicated by the dashed-black line. The addition of DTCA tempers the profit declines

experienced from detailing and extents the detailing threshold for which the generic would

choose to enter. Hence, DTCA promotes competition in Period 2 by increasing the range of

k values for which the generic firm would choose to enter the market.
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3.6 Advertising Decision of the Brand-Name Firm

The brand-name firm recursively chooses values of k and m to block, deter or accommodate

entry. The firm has two potential profit functions to consider. The first is without entry

where the brand-name maintains its position as a monopolist. The second assumes that the

generic firm enters the market after patent expiration.

In both profit maximization scenarios, the optimal levels of k∗ and m∗ are at the point

where marginal revenue from each type of advertising will equal marginal cost assuming

the condition for the Bertrand-Nash equilibrium are met. The values of k and m which

satisfy the following first-order conditions (FOCs) are solved for simultaneously. The levels

of advertising, k∗ and m∗, cannot be solved for explicitly and will be calculated in the model

simulation.

Assuming the generic firm does not enter:

max
k,m

π∗
B(θ, h, k,m) =

[hθT 2(−αm+m− 1)

4(θ − 1)k − 4θ

]
− kγ+1

γ + 1
− mρ+1

ρ+ 1

First order conditions:

h(θ − 1)θT 2((α− 1)m+ 1)

4(θ − θk + k)2
= kγ (3.34)

(1− α)hθT 2

4(θ − 1)k − 4θ
= mρ (3.35)

Assuming the generic firm enters:
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max
k,m

π∗
B(θ, h, k,m) = δ

[
hθT 2(−αm+m− 1)

4(θ − 1)k − 4θ
− kγ+1

γ + 1
− mρ+1

ρ+ 1

]
+ (1− δ)

[
(θ − 1)kT 2(2θ + k − 1)2((α− 1)hm+ h)

(4θ + 3k − 4)2

] (3.36)

First order conditions:

δ
[h(θ − 1)θT 2((α− 1)m+ 1)

4(θ − θk + k)2

]
+ (1− δ)

[(θ − 1)T 2(2θ + k − 1) (8θ2 + 3k2 + 6θ(k − 2)− 9k + 4) ((α− 1)hm∗ + h)

(4θ + 3k − 4)3

]
= kγ

(3.37)

δ
(1− α)hθT 2

4(θ − 1)k − 4θ
+ (1− δ)

[(α− 1)h(θ − 1)kT 2(2θ + k − 1)2

(4θ + 3k − 4)2

]
= mρ (3.38)

The above FOCs can be used to additionally assess how DTCA, m, impacts the optimal

values of k. By comparing the marginal revenue from detailing, k, with an without DTCA,

m, I am able to show the relationship between the two forms of advertising. The difference

between ∂π
∂k
|m>0 and ∂π

∂k
|m=0 is:

(α− 1)hm

[
∂π

∂k
|m=0

]
> 0 (3.39)

The marginal revenue from detailing with a positive amount of DTCA is higher than

without. This confirms in a vertical-differentiation model that detailing and DTCA act as

complements. Additionally, the brand-name price in Period 1 increases as detailing increases,
∂pMB
∂k

> 0, and since DTCA is complementary to k, DTCA indirectly increases monopoly price

by increasing k∗. Similarly, price in Period 2 decreases because ∂p2B
∂k

< 0.
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3.6.1 Brand-Name Firm’s Decision to Block, Deter or Accommo-

date Entry

Once the brand-name firm knows the optimal values of k and m for profit maximization with

and without entry, it can assess the generic firm’s expected profit to see if the generic firm

would enter at {k∗,m∗}. Starting with the generic firm’s profit function at the equilibrium

prices of p2∗B and p2∗G , the brand-name firm can determine all of the values of k and m for

which the generic firm has zero profit. Thus, by setting the above function equal to zero,

DTCA, m can be expressed as a function of detailing, k, m = f(k):

π2∗
G (θ, h, k,m, F ) =

(θ − 1)(k − 2)2T 2(θ + k − 1)((α− 1)hm+ h)

(4θ + 3k − 4)2
− F = 0 (3.40)

Solving the above function for m:

m =
1

1− α

[ F (4θ + 3k − 4)2

(δ − 1)h(θ − 1)(k − 2)2T 2(θ + k − 1)
+ 1

]
, 0 ≤ m ≤ 1, 0 ≤ k ≤ 1 (3.41)

Figure 3.4 plots for different values of h how DTCA, m, expands the range of generic

profitability across k. For example, considering the blue curve, h = 0.4, the generic firm

has positive profit above and to the left of the curve for 0.73 ≤ k ≤ 0.96.2 Hence, for each

combination of k and m along and to the right of the the blue curve, the brand name firm

can deter entry.

If the brand-name firm maximizes its profit function for the unconstrained solution for

p∗B, and k∗ and m∗ lie to the right of the zero-generic profit curve then entry is blocked and

the brand-name firm is unaffected. Entry is deterred automatically. However, if k∗ and m∗

are to the left of the curve, then the generic would enter. In practice, the brand-name firm
2Values of k below 0.73 do not satisfy the condition for a Bertrand-Nash Equilibrium.

91



Figure 3.4: Advertising Trade-off

Notes: This figure shows the values of DTCA, m, and detailing, k, for which the generic man-
ufacturer earns zero profit. The curves correspond to generic manufacturing profit calculations
for different values of h where h represents the proportion of the population that would visit a
doctor in absence of DTCA.

would find the monopoly values of k∗ and m∗ that would deter entry and compare it to the

values of k∗ and m∗ with entry to determine if the firm maximizes constrained profit by

deterring entry. Since k∗ and m∗ cannot be solved for algebraically, the above exercise will

be completed in simulation, see Section 7.

Additionally, Figure 3.4 shows how h shifts the trade-off curve. When h = 0.4 only 40%

of consumers would visit the doctor (without DTCA). For the generic firm, the non-detailed

market will need to be quite large to make it profitable to enter. However, if an additional

10% of consumers would visit the doctor based on symptoms, h = 0.5, both the detailed
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and non-detailed markets are enlarged and there is a greater opportunity for generic entry.

The red curve lies to the right of the blue. Similarly, as α increases the range of generic

profitability widens because DTCA stimulates a larger proportion of the population to visit

the doctor, not pictured.

Lastly, since k>0, is a necessary condition for entry, the brand-name firm could choose

the corner solution, k = 0 and block entry. This solution is not viable as given the conditions

for equilibrium. For low values of k, the brand-name firm would decrease its price and assume

the non-detailed market and increase profit. Hence, they would always choose k > 0.3

The path that the brand-name firm takes will depend on the exogenous parameters in

the profit function, θ, α, h and δ. That is, the effectiveness of advertising, the health status

of the population that the drug treats and the length of the patent protection period. The

specific values will be explored in the simulation.

3.7 Simulation

The logarithmic formulation of the cost functions makes solving for k∗ and m∗ algebraically

impossible. Table 3.1 presents simulations for numerous parameter assumptions. The results

demonstrate the hypotheses developed in the vertical differentiation model about the ways

that DTCA impacts pharmaceutical markets. Table 3.1 is organized such that the left most

columns indicate the parameter values. The top two rows (1) and (2) are the base parameter

values, with and without DTCA respectively. Each simulation below row (2) uses the same

base values but varies one parameter as indicated.

Columns (1) through (8) are simulations based on the brand-name firm maximizing

its profit function to select k∗ and m∗ assuming that the generic does not enter. Columns

(9) and (10) demonstrate the values for which the brand-name firm could block entry by

choosing k and m different from k∗ and m∗. Columns (12) through (19) show values based on
3See brand-name firm’s decision to deter in Königbauer (2007) Appendix A.

93



the brand-name firm maximizing its profit while accommodating generic entry. The condi-

tions for a Bertrand-Nash equilibrium are only satisfied if the detailed portion of the market

is sufficiently large. If the conditions for equilibrium are not met, the variable price and

profit values are not applicable (n/a). Give the exogenous parameters, the brand-name firm

chooses a strategy: to deter, block or accommodate entry. Assuming F = 0.015, the values

highlighted in yellow indicate the brand-name firm’s best strategy.

Optimal Advertising:

The optimal value of k∗ with and without entry in higher if m∗ > 0. This implies that

DTCA complements detailing by expanding the market and increasing the marginal revenue

of physician advertising. This is seen by comparing the values of k∗ in rows with entry to

rows without entry.

Price:

DTCA indirectly increases the Period 1 monopoly price. For example, the Period 1 monopoly

price in row (2) column (3) without DTCA is 3.5% lower than row (1) which increases to

0.797. This results from the increase in k∗ without entry where an additional 4.4% of

physicians are exposed to DTCA. This same pattern is seen for all parameter simulations

when comparing the monopoly prices in columns (3) and (15) for m = 0 and m > 0.

Additionally, as h increases, the monopoly price gains are exacerbated by the larger market

based on baseline health, h. This would make it more profitable to target conditions where

there is a naturally large market and all forms of advertising reach more potential patients.

As h increases from 0.4 to 0.8 the indirect monopoly price gains from DTCA are 3.5% and

5.4% assuming no entry (column (3)), and 1.9% and 3.0% (column (15)) respectively.

In Period 2, the price response to DTCA is the opposite. DTCA reduces Period 2

price if the generic firm enters the market. While m promotes increases in k, if the generic
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enters in Period 2, the downward pressure on price results from increased competition in the

detailed market. This is seen by comparing the Period 2 prices in row (1) to row (2) and

row (6) to row (4).

Generic Entry:

For certain parameters, DTCA promotes generic entry. Variable profit for the generic firm is

presented in columns (8) and (19). Comparing simulations where m = 0 to m > 0, variable

profit is consistently higher. This demonstrates that for more values of F , fixed cost, the

generic firm would choose to enter the market. For example, if F = 2.0 the generic firm

would not enter the market in row (2), column (8), without DTCA, but the firm would

enter with a positive amount of DTCA, row (1), column (8). The same is true comparing

rows (1) and (2) in column (19) if F = 0.035. This also shows that if the brand name firm

accommodates entry, then they reduce the size of the detailed market by decreasing k∗ and

m∗ which increases the generic firm’s profit and likelihood of entry.

Generic entry is also more likely for high values of h. See row (11). In column (19),

rows (1) and (8), the generic firms profit increases by 0.019 when h increases from 0.4 to 0.8.

If h is too low, there is not enough inherent demand in the market to sustain a Bertrand-

Nash equilibrium and the brand-name firm would decrease it’s price to capture demand in

the detailed and non-detailed market. The non-detailed market must be of an adequate size

to make it profitable for the generic to enter. Hence, for conditions that more widely impact

the population, generic entry is more likely if consumers can be informed about available

products on the market.

Brand Profit and Strategy:

Brand profit with and without entry is higher with DTCA due to the expanded market

size. In some cases, for large enough markets based on consumers health or the effectiveness
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of DTCA, the brand-name firm gains more profit with DTCA and entry. This is seen by

comparing row (2), column (6) with row (1) column (18). The monopoly profit without

DTCA is 0.142; however, DTCA with entry increases brand-name profit to 0.148.

DTCA consistently increases the probability that the generic firm will enter the market.

If generic entry is inevitable based on the value of F and the other market conditions, the

brand-name firm could choose to block entry by choosing values of k and m for which the

generic firm has zero profit. This is a preferred strategy if the brand-name firm is unable

to engage in DTCA (for example for black-box pharmaceutical drugs).4 However, if DTCA

is allowed in the market, the brand-name firm’s best strategy is to maximize profit by

accommodating entry.

The values highlighted in yellow show the highest-profit choice for the brand-name firm

assuming the fixed cost of the generic firm is F = 0.015.5 For certain markets with high

inherent demand, h = 0.8, the brand-name firm cannot block entry as the generic remains

profitable even if 100% of the physicians are detailed to. Considering row (2), for F = 0.015

the generic firm would enter even if the brand-name firm tries to deter entry by maximizing

it’s monopoly profit function to choose k∗ and m∗. In this case, their best choice is to block

entry by choosing k = 0.823. In this case they earn 0.133 in profit which is higher than if

the generic entered at k∗ and m∗ where profit is 0.112 in column (7). However, if DTCA is

allowed, the brand-name firm’s best strategy is to accommodate entry by choosing k∗ and

m∗ assuming the generic will enter. In this scenario, DTCA is a benefit to the brand by

increasing profit, even though it also prompts the brand to accommodate entry.
4Black-box pharmaceutical drugs are medications have have serious side effects. They cannot be marketed

with advertising that only states the drug’s name and excludes its use, termed reminder advertising.
5The values highlighted in column (18) are higher than those in column (7) to the ten thousandth place.
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Table 3.1: Brand and Generic Decision Simulation

Notes: This table reports the results of profit maximization simulations to determine the values of detailing, k, and DTCA, m, for which
the brand name firm has the highest profit given the parameters indicated. Each simulation is presented in a row, (1) to (13). The
columns present three different assumptions/strategies for the brand name firm: assume no entry, block entry and assume entry. The
price and profit according to each strategy are presented in the columns as indicated. The highlighted cells represent the brand-name
firm’s best strategy assuming the fixed cost of entry, F , for the generic firm is 0.015.
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DTCA Effectiveness and Cost:

As the effectiveness of DTCA, as measured by α, increases, m∗ also increases which prompts

subsequent increases in k∗. See rows (11) and (12). If DTCA for a particular drug is effective

at increasing symptom salience, it becomes more profitable to expose more consumers to

DTCA and physicians to detailing. This may be the case for conditions for which symptoms

are fairly common (insomnia) but for which consumers may not visit the doctor. It behoves

brand-name firms to more broadly expose the population to information that can more

effectively motivate physician visits. If a condition already prompts doctor visits or has

sufficiently salient symptoms and α is low, the investment in DTCA is not as profitable.

The base cost of DTCA is assumed to be less per exposure than detailing due to me-

dia advertising being less labor intensive than some forms of detailing which involve sales

calls to physicians. If the opposite is assumed and DTCA per percentage of the popula-

tion exposed is more expensive than detailing per percentage of the physicians advertised

to, then m∗ and k∗ are both lower than when DTCA is less expensive than detailing which

decreases brand profit. This is seen by comparing the k∗ and m∗ values in row (13) to row (1).

Welfare:

DTCA impacts consumer and producer welfare directly and indirectly by expanding the

market for the entire class of drugs. For producers, DTCA increases brand profit in Period 1

and generic profit in Period 2 through increased demand by prompting more patients to visit

the doctor. The brand-name firm in Period 2 may experience increased or decreased profit

depending on generic entry. If entry was inevitable based on exogenous market conditions,

then brand-profit will be higher than it would have been in absence of DTCA. On the other

hand, DTCA increases the threshold of detailing for which the generic firm would enter the

market. This promotes increased generic entry for certain conditions.

On the consumer side, while DTCA does not directly impact price, it is a complement
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to detailing and increases the brand-name firm’s incentive to advertise to doctors. This

increases the monopoly price in Period 1 and decreases consumer welfare. In Period 2,

advertising directly to consumers indirectly decreases Period 2 price by promoting generic

entry and increased competition in Period 2 through an increase in the size of the detailed

market.

3.8 Conclusion

The pharmaceutical market has seen increases in prescription expenditures and advertising to

both physicians and patients. The relaxation of DTCA regulations in 1997 motivated a desire

to understand how DTCA impacts the market-entry decision of generic-pharmaceutical man-

ufacturers after patent expiration. I expanded a vertical differentiation model of the phar-

maceutical market from Königbauer (2007) to include DTCA. The model demonstrates that

DTCA prompts the incumbent brand-name firm to increase detailing and raise monopoly

price. DTCA increases the threshold of detailing under which generic entry remains prof-

itable. Generic entry is also more likely for conditions that are more widespread. Also, as

the effectiveness of DTCA increases, it is more profitable for the brand-name firm to invest

in higher amounts of DTCA and detailing. DTCA decreases price after patent expiration

by promoting generic entry and increased competition.

The theoretical model of generic market entry under two forms of advertising has

broad policy implications for pharmaceutical markets. Additional empirical analysis can

shed further light on the hypothesis generated by the model in market settings for a variety

of drug classes. This will further the discussion around DTCA and the welfare impacts for

producers and consumers in pharmaceutical markets.
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Appendix A

Appendix to Chapter 1

A.1 Calculating the Framingham Risk Score

The Framingham Risk Score (FRS) is calculated from the 2008 formula published by the

Adult Treatment Panel III from the National Heart Lung and Blood Institute (D’Agostino

et al., 2008). The score is calculated separately for men and women. Each score has an

associated probability of experiencing a cardiovascular event in the next 10 years. The

calculation below excludes the score assignment for high-density lipoprotein (HDL) due to

lack of consistent data collection with the original Framingham cohort. Excluding this

measure introduces variability into the score of up to 3 points across the sample. However,

total cholesterol was collected at each exam in the sample time period and is included in the

FRS. The score assignment is as follows:
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The score is translated into a prediction of 10-year risk of being diagnosed with CVD using

the chart below:
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A.2 Risk Score Matching

An alternative to matching on the timing of a CVD diagnosis to identify the control group

for the main analysis presented in Section 1.4 is to match on Framingham risk score (FRS)

– the 10-year risk of experiencing a CVD event. See Appendix A.1 for detail on how the

FRS is calculated. Matching begins by determining the treatment group. This is defined

the same way as it is in the main analysis, Section 1.4: treated individuals are those that

will have a first diagnosis of CVD at one of six exams between exam 9 and 14. Additionally,

they must attend the exam prior to diagnosis, the diagnosis exam and the two exams after

diagnosis. The potential control group for each sub-sample of treated individuals are study

participants who have not experienced a diagnosis of CVD prior to the exam that the treated

individual is diagnosed and must attend each exam that the treated attends. At the exam

prior to diagnosis, the calculated FRS is used to match treated individuals (by sex) with

one, or more, control individuals. The FRS takes into account age, total cholesterol, smoking

status, systolic blood pressure and usage of hypertension medication, see Section A.1. The

control group is weighted by their relative representation within each match cell such that

the total weight for all control individuals for each treated individual sums to 1. The results

using this matching procedure are presented in Table 1.5.
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A.3 Appendix Tables

Table A1: Hypertension and Hyperlipidemia Medication Timeline

Notes: Timeline of FDA medication approvals for the introduction of each drug class listed.
(FDA, 2020)
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Table A2: Comparison of the Mean Ten-Year Risk of Cardiovascular Disease for Sample
Treatment and Control Individuals by Group

Notes: The above table presents the mean Framingham Risk Score (the probability of being
diagnosed with CVD in the next ten years) at the time treated individuals are diagnosed. This
indicates that there is not a statistical difference between the risk score of treated and control
individuals at the time CVD diagnosis occurs in each group. the exception is group 14 which
shows that treated individuals have a 1.7 percentage point higher probability of being diagnosed
with CVD in the next 10 years.
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Table A3: Association of Ten-Year Risk of Cardiovascular Disease with the Probability of
Being Diagnosed with Cardiovascular Disease

Notes: Estimation results demonstrating the association of ten-year risk of CVD with the
probability of being diagnosed at the time treated individuals are diagnosed. Controls include
age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for
diabetes and/or cancer diagnosis, and individual-fixed effects. The regressions are for the exam
periods prior to and including diagnosis. The results indicate that there is not a systematic
association between ten-year risk and being diagnosed as a treated individual as opposed to
a control individual who is diagnosed at three or four exams in the future. The only two
significant estimates are of opposite sign. Robust standard errors clustered at the individual
level are in parenthesis. * Significant at the 10% level, ** significant at the 5% level, ***
significant at the 1% level.
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Table A4: Comparison of Means: Framingham and National Health Interview Survey

Notes: The above table presents means for key characteristics for the Framingham sample used in this study compared to a nationally-
representative sample from the National Health Interview Survey (NHIS). Both samples include only individuals that have been diagnosed
with CVD. During the time frame of this study, NHIS only asked about CVD status in 1974 and 1976; hence, the NHIS values are from
those two years only. The characteristics reports are the available measures from NHIS for the applicable years. The NHIS values are
weighted to reflect a nationally-representative sample. Standard deviation is in parenthesis.
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A.4 Medication as a Complement or Substitute for Healthy Behavior

Table A5: Combination Treatment Choices After FDA Approval at Exam 12

Notes: This table presented the results from estimating equation 1.6 where the outcome is taking medication and engaging in healthy
or unhealthy behavior as indicated in each column. Treated individuals are those who had a diagnosis of CVD at exam 12, 13 or 14 as
compared to matched controls who will have a diagnosis of CVD two or three exams after the treated group; low-ten-year risk shows
the association of low risk for CVD in the next 10 years (<10%) with each treatment choice as compared to those with intermediate
risk, and high-ten-year risk shows the association of high risk of CVD in the next 10 years (20% or more) with each treatment choice
as compared to those with intermediate risk. The time frame is exam 12 through exam 16 after the FDA approval of beta blockers and
bile-acid sequestrants. Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for
diabetes and/or cancer diagnosis plus individual-fixed effects. Robust standard errors clustered at the individual level are presented in
parenthesis.

Figures A1, A2, A3 and A4 below provide a visual representation of the point estimates presented above.
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Figure A1: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice of Treatment in Relation to Current Smoking
Status

Panel A Panel B

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is taking medication and engaging in healthy
(green bar) or unhealthy (blue bar) behavior. There are three variables plotted: CVD diagnosis indicates the impact of a CVD diagnosis
for treated individuals (those who had a diagnosis of CVD at exam 12, 13 or 14) as compared to matched controls who will have a
diagnosis of CVD two or three exams after the treated group; low-ten-year risk shows the association of low risk for CVD in the next 10
years (<10%) with each treatment choice, and high-ten-year risk shows the association of high risk of CVD in the next 10 years (20% or
more) with each treatment choice. The time frame is exam 12 through exam 16 after the FDA approval of beta blockers and bile-acid
sequestrants. Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for diabetes
and/or cancer diagnosis plus individual-fixed effects. Error bars show 95% confidence intervals estimated with robust standard errors
clustered at the individual level.
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Figure A2: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice of Treatment in Relation to Following a
Low-Salt Diet

Panel A Panel B

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is taking medication and engaging in healthy
(green bar) or unhealthy (blue bar) behavior. There are three variables plotted: CVD diagnosis indicates the impact of a CVD diagnosis
for treated individuals (those who had a diagnosis of CVD at exam 12, 13 or 14) as compared to matched controls who will have a
diagnosis of CVD two or three exams after the treated group; low-ten-year risk shows the association of low risk for CVD in the next 10
years (<10%) with each treatment choice, and high-ten-year risk shows the association of high risk of CVD in the next 10 years (20% or
more) with each treatment choice. The time frame is exam 12 through exam 16 after the FDA approval of beta blockers and bile-acid
sequestrants. Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for diabetes
and/or cancer diagnosis plus individual-fixed effects. Error bars show 95% confidence intervals estimated with robust standard errors
clustered at the individual level.
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Figure A3: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice of Treatment in Relation to Following a
Low-Fat Diet

Panel A Panel B

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is taking medication and engaging in healthy
(green bar) or unhealthy (blue bar) behavior. There are three variables plotted: CVD diagnosis indicates the impact of a CVD diagnosis
for treated individuals (those who had a diagnosis of CVD at exam 12, 13 or 14) as compared to matched controls who will have a
diagnosis of CVD two or three exams after the treated group; low-ten-year risk shows the association of low risk for CVD in the next 10
years (<10%) with each treatment choice, and high-ten-year risk shows the association of high risk of CVD in the next 10 years (20% or
more) with each treatment choice. The time frame is exam 12 through exam 16 after the FDA approval of beta blockers and bile-acid
sequestrants. Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for diabetes
and/or cancer diagnosis plus individual-fixed effects. Error bars show 95% confidence intervals estimated with robust standard errors
clustered at the individual level.
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Figure A4: Impact of Cardiovascular Disease Diagnosis and Risk Score on Choice of Treatment in Relation to Distance to Mean
BMI by 5-Year Age Group

Panel A Panel B

Notes: This figure plots the coefficients from estimating equation 1.6 where the outcome is taking medication and engaging in healthy
(green bar) or unhealthy (blue bar) behavior. There are three variables plotted: CVD diagnosis indicates the impact of a CVD diagnosis
for treated individuals (those who had a diagnosis of CVD at exam 12, 13 or 14) as compared to matched controls who will have a
diagnosis of CVD two or three exams after the treated group; low-ten-year risk shows the association of low risk for CVD in the next 10
years (<10%) with each treatment choice, and high-ten-year risk shows the association of high risk of CVD in the next 10 years (20% or
more) with each treatment choice. The time frame is exam 12 through exam 16 after the FDA approval of beta blockers and bile-acid
sequestrants. Controls include age, age-squared, 5-year age group, marital status, over 64-years-old and under treatment for diabetes
and/or cancer diagnosis plus individual-fixed effects. Error bars show 95% confidence intervals estimated with robust standard errors
clustered at the individual level.
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Appendix B

Appendix to Chapter 2

B.1 Estimating Effects of Adoption on the Characteris-

tics of the Average and Marginal Patient

In Section 2.5.3 of the main text, we estimate the effect of robot adoption on the average

characteristics of patients as well as the characteristics of the marginal patients induced to

receive treatment. To develop this approach, we draw on Gruber et al. (1999) and construct

the Poisson regression analog to their two-stage least squares approach. Here, the “first

stage” repeats our main specification given by equation 2.1, which we use to estimate the

effect of adoption on patient volume in the text:

Nht = exp (αt + αh + β · interimht + γ · postht +XhtΩ) + ϵht. (B.1)

We also estimate a “reduced form” effect of robot adoption on the average characteristics of

patients in the hospital (or market):

Cht = exp (δt + δh + κ · interimht + λ · postht +XhtΦ) + υht, (B.2)
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where Cht is the average characteristic of patients treated at hospital h in year t.1 In the

Poisson model, γ can be interpreted as the log-point effect of adoption on patient volume

while λ represents the log point effect of adoption on the average patient characteristic.

These estimates can be combined to yield an elasticity of average patient characteristics

with respect to volume:

η =
λ

γ
. (B.3)

Assuming there are no defiers — people who only come to the hospital if there is no

robot, and do not come if there is one — this elasticity can also be interpreted as the log-point

difference in average characteristics between the marginal patients and incumbent patients.

We conduct inference on this object by estimating the “first stage” and “reduced form” as

a stacked regression, an approach that is analogous to seemingly unrelated regression and

is supported by the Stata command ppmlhdfe, and using the delta method. The market

estimates follow the same methodology with a change in notation from h indexing hospitals

to r indexing markets.

1This average is not defined for a hospital (or market) with no patients in the given year. Hence,
observations with no patients must drop out from this regression. To ensure both regressions are run with
the same sample, we omit any hospital-year or market-year with no patients from both.
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B.2 Appendix Figures

Figure B1: Trends in Prostate Cancer and Prostatectomy Hospitalizations, 1998 - 2015
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Notes: This figure shows the total number of Original Medicare hospitalizations for
prostate cancer and prostatectomy from 1998 - 2015.
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Figure B2: Effect on Prostate Cancer Volume by Patient Age and Chronic Conditions

Hospital-Level

Market-Level
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Notes: This figure plots estimates from equation 2.1 of the effect of adopting a robot
on the volume of prostate cancer patients in the specified age and chronic condition
(CC) bins. Hospital-level effects depicted with circles and market-level effects depicted
with triangles. Estimates of effects on the total volume of patients reported at the
top of the figure (“Baseline”, repeated from Table 2.2). Coefficients have a log-point
interpretation, e.g. a coefficient of 0.2 implies a 20 log point change. Error bars depict
95% confidence intervals based on robust standard errors clustered at the market level.
Regressions control for year and level (hospital or market) fixed effects.
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B.3 Appendix Tables

Table B1: Diagnosis and Procedure Codes Used to Identify Relevant Patients
ICD-9 ICD-10

Prostate Cancer
Diagnosis

CCS code 29
excluding V10.46

CCS code NEO039
excluding Z85.46

Prostatectomy
Procedure

CCS codes 113, 114 CCS code MRS003 or
0Vx0yZZ (x ∈ {5, B}, y ∈
{0, 3, 4, 7, 8}) or XV508A4

Cancer (excluding skin)
Diagnosis

CCS codes 11-21, 24-47 CCS codes NEO001-
NEO024, NEO029-NEO074

Robot-assisted Procedure 17.4x 8E0WxCx

Prostatectomy,
Non-Laparoscopic*
(Physician Billing)

Open: CPT codes 55801, 55810, 55812,55815, 55821,
55831, 55840, 55842, 55845
TURP: CPT codes 52601, 52612, 52614, 52620, 52630

Prostatectomy,
Laparoscopic
(Physician Billing)

CPT code 55866

* We include trans-urethral resection of the prostate (TURP) procedures when iden-
tifying prostatectomies in physician billing.
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Table B2: Robustness of Prostate Cancer Hospital-Level Results
Controls Sample Model Dynamics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Fixed Bed-Year Market-Year Market Ever All Log- asinh- Ever

Baseline Trends FE FE Adoption Adopters Hospitals Linear Linear Baseline Adopters
Interim 0.17 0.10 0.17 0.22 0.17 0.05 0.17 0.17 0.22 0.27 0.20

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

Post 0.59 0.36 0.57 0.72 0.59 0.37 0.62 0.49 0.62 0.53 0.44
(0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.04) (0.04)

Interim (Rest of Market) -0.08
(0.07)

Post (Rest of Market) -0.19
(0.09)

Post * 0.09 0.08
Relative Adopt Year (0.01) (0.01)

DV Average 11.5 11.5 11.5 11.5 11.5 19.0 9.5 1.8 2.3 11.5 19.0
Hospitals 2,255 2,255 2,255 2,236 2,255 1,090 2,929 2,261 2,261 2,255 1,090
Observations 40,590 40,590 40,590 40,225 40,590 19,620 52,722 40,698 40,698 40,590 19,620
Notes: This table assess the robustness of the hospital-level results on prostate cancer patient volume. Column (1) repeats the baseline estimate from Table 2.2.
Columns 2-5 add controls for hospital-specific linear trends, hospital bed size decile indicators interacted with years, market-year fixed effects, and rest-of-market
robot adoption, respectively. Column 6 limits the sample to hospitals that adopted a robot, dropping never-adopters. Column 7 expands the sample to all
hospitals that treated at least 1 patient annually during the analysis period, adding back hospitals that adopted a robot after 2012 or that failed to meet the
minimum patient thresholds described in the main text. Columns 8 and 9 use linear regression instead of Poisson regression with the outcomes defined as
ln (Nht + 1) and asinh (Nht), respectively. Columns 10 and 11 add an interaction between Post and the hospital’s relative adoption year (which starts at zero
in the first year the hospital’s Post indicator turns on) to the models previously estimated in columns 1 and 6, respectively. See text for more details. Robust
standard errors clustered at the market level in parentheses. All regressions control for year and hospital fixed effects.
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Table B3: Robustness of Prostatectomy Hospital-Level Results
Controls Sample Model Dynamics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Fixed Bed-Year Market-Year Market Ever All Log- asinh- Ever

Baseline Trends FE FE Adoption Adopters Hospitals Linear Linear Baseline Adopters
Interim 0.19 0.11 0.19 0.26 0.19 0.05 0.19 0.17 0.22 0.32 0.24

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.02) (0.03) (0.02) (0.03)

Post 0.69 0.43 0.66 0.85 0.69 0.43 0.72 0.54 0.67 0.64 0.53
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.03) (0.04) (0.04) (0.04)

Interim (Rest of Market) -0.09
(0.08)

Post (Rest of Market) -0.20
(0.10)

Post * 0.11 0.09
Relative Adopt Year (0.01) (0.01)

DV Average 9.5 9.5 9.5 9.5 9.5 15.8 8.5 1.6 2.0 9.5 15.8
Hospitals 2,212 2,212 2,212 2,190 2,212 1,090 2,669 2,261 2,261 2,212 1,090
Observations 39,816 39,816 39,816 39,369 39,816 19,620 48,042 40,698 40,698 39,816 19,620
Notes: This table assess the robustness of the hospital-level results on prostatectomy patient volume. Column (1) repeats the baseline estimate from Table 2.2.
Columns 2-5 add controls for hospital-specific linear trends, hospital bed size decile indicators interacted with years, market-year fixed effects, and rest-of-market
robot adoption, respectively. Column 6 limits the sample to hospitals that adopted a robot, dropping never-adopters. Column 7 expands the sample to all
hospitals that treated at least 1 patient annually during the analysis period, adding back hospitals that adopted a robot after 2012 or that failed to meet the
minimum patient thresholds described in the main text. Columns 8 and 9 use linear regression instead of Poisson regression with the outcomes defined as
ln (Nht + 1) and asinh (Nht), respectively. Columns 10 and 11 add an interaction between Post and the hospital’s relative adoption year (which starts at zero
in the first year the hospital’s Post indicator turns on) to the models previously estimated in columns 1 and 6, respectively. See text for more details. Robust
standard errors clustered at the market level in parentheses. All regressions control for year and hospital fixed effects.
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Table B4: Robustness of Prostate Cancer Market-Level Results
Controls Sample Model

(1) (2) (3) (4) (5)
Fixed Broad Hosp. Log- asinh-

Baseline Trends Sample Linear Linear
Interim -0.04 -0.00 -0.04 -0.03 -0.05

(0.06) (0.05) (0.06) (0.06) (0.06)

Post 0.28 0.20 0.31 0.43 0.46
(0.07) (0.07) (0.08) (0.07) (0.08)

DV Average 90.2 90.2 91.3 4.0 4.7
Markets 306 306 306 306 306
Observations 5,508 5,508 5,508 5,508 5,508
Notes: This table assess the robustness of the market-level results on
prostate cancer patient volume. Column (1) repeats the baseline estimate
from Table 2.2. Columns 2 adds controls for market-specific linear trends.
Column 3 expands the sample of hospitals used to measure market-level
adoption and patient volume to include hospitals that failed to meet the
minimum patient thresholds described in the main text. Columns 4 and
5 use linear regression instead of Poisson regression with the outcomes
defined as ln (Nrt + 1) and asinh (Nrt), respectively. See text for more de-
tails. Robust standard errors clustered at the market level in parentheses.
All regressions control for year and market fixed effects.
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Table B5: Robustness of Prostatectomy Market-Level Results
Controls Sample Model

(1) (2) (3) (4) (5)
Fixed Broad Hosp. Log- asinh-

Baseline Trends Sample Linear Linear
Interim -0.05 0.02 -0.04 -0.01 -0.03

(0.07) (0.04) (0.07) (0.06) (0.07)

Post 0.34 0.29 0.37 0.54 0.60
(0.08) (0.06) (0.08) (0.08) (0.09)

DV Average 73.1 73.1 73.8 3.8 4.4
Markets 306 306 306 306 306
Observations 5,508 5,508 5,508 5,508 5,508
Notes: This table assess the robustness of the market-level results on
prostatectomy patient volume. Column (1) repeats the baseline estimate
from Table 2.2. Columns 2 adds controls for market-specific linear trends.
Column 3 expands the sample of hospitals used to measure market-level
adoption and patient volume to include hospitals that failed to meet the
minimum patient thresholds described in the main text. Columns 4 and
5 use linear regression instead of Poisson regression with the outcomes
defined as ln (Nrt + 1) and asinh (Nrt), respectively. See text for more de-
tails. Robust standard errors clustered at the market level in parentheses.
All regressions control for year and market fixed effects.
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Table B6: Effect of Adoption on Characteristics of Prostate Cancer Patients
Hospital-Level Market-Level

(1) (2) (3) (4) (5) (6) (7)
Chronic Chronic Beds Volume Teaching

Characteristic: Age Conditions Age Conditions (Baseline) (Baseline) Hospital

A. First Stage: Outcome is Patient Volume
Post 0.503 0.453 0.281 0.215 0.281 0.281 0.281

(0.033) (0.037) (0.074) (0.074) (0.074) (0.074) (0.074)

B. Reduced Form: Outcome is Average Characteristic
Post -0.034 -0.128 -0.026 -0.071 0.019 0.016 0.054

(0.002) (0.013) (0.005) (0.029) (0.020) (0.022) (0.050)

C. Ratio of Reduced Form to First Stage: Elasticity of Average Characteristic with Respect to Volume
Elasticity -0.068 -0.283 -0.091 -0.332 0.068 0.058 0.192

(0.005) (0.031) (0.026) (0.169) (0.073) (0.080) (0.180)
Average Characteristic 74.74 3.01 73.32 2.74 407.63 26.73 0.46
Hospitals/Markets 2,249 2,244 306 306 306 306 306
Observations 68,770 60,190 11,000 9,778 11,000 10,984 8,954
Notes: This table reports results from estimating the impact of robotic adoption on the characteristics of prostate cancer
patients. Panel A reports the “first stage” results from estimating equation 2.1 and differs only from Table 2.2 because it
omits observations (hospital- or market-years) with no prostate cancer patients. Panel B reports the “reduced form” estimates
of the same specification with the outcome redefined as the average characteristic of prostate cancer patients. Coefficients in
Panels A and B have a log-point interpretation, e.g. a coefficient of 0.2 implies a 20 log point change in volume or the average
characteristic. Panel C reports the ratio of the reduced form estimate to the first stage estimate. These coefficients have an
elasticity interpretation, i.e. the elasticity of the average characteristic with respect to volume. In columns 5-7, the outcome is
the average characteristic of the patients’ hospitals. Columns 5 and 6 measure the hospital’s beds and prostate cancer patient
volume at baseline (1998) levels. See text for more details. Robust standard errors clustered at the market level in parentheses.
Regressions control for year and level (hospital or market) fixed effects.
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