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ABSTRACT OF THE DISSERTATION 

Integrating molecular phenotypes and gene expression to characterize DNA variants for 

cardiometabolic traits 

by 

Alejandra Rodriguez 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2018 

Professor Päivi Elisabeth Pajukanta, Chair 

In-depth understanding of cardiovascular disease etiology requires characterization of its 

genetic, environmental, and molecular architecture. Genetic architecture can be defined as the 

characteristics of genetic variation responsible for broad-sense phenotypic heritability. Massively 

parallel sequencing has generated thousands of genomic datasets in diverse human tissues. 

Integration of such datasets using data mining methods has been used to extract biological meaning 

and has significantly advanced our understanding of the genome-wide nucleotide sequence, its 

regulatory elements, and overall chromatin architecture. This dissertation presents integration of 

“omics” data sets to understand the genetic architecture and molecular mechanisms of 

cardiovascular lipid disorders (further reviewed in Chapter 1).  

In 2013, Daphna Weissglas-Volkov and coworkers1 published an association between the 

chromosome 18q11.2 genomic region and hypertriglyceridemia in a genome-wide association 
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study (GWAS) of Mexican hypertriglyceridemia cases and controls. In chapter 2, we present the 

fine-mapping and functional characterization of the molecular mechanisms underlying this 

triglyceride (TG) association signal on chromosome 18q11.22. Specifically, we found nine 

additional variants in linkage disequilibrium (LD) with the lead single nucleotide polymorphism 

(SNP). Using luciferase transcriptional reporter assays, electrophoretic mobility shift assays, and 

HNF4 ChIP-qPCR (chromatin immunoprecipitation coupled with quantitative polymerase chain 

reaction), we found that the minor G allele of rs17259126 disrupts an HNF4A binding site. 

Furthermore, using cis expression quantitative trait locus (eQTL) analysis, we found that the G 

allele of rs17259126 is associated with decreased expression of the regional transmembrane 

protein 241 (TMEM241) gene2. Our results suggest that reduced transcript levels of TMEM241 

likely contribute to the increased serum TG levels in Mexicans. 

GWAS variants typically have small effect sizes, and about 40% of them are located in 

intergenic regions and 40% in intronic regions. Since a large number of GWAS variants reside in 

non-coding regions, these SNPs are thought to affect gene regulation via disruption of functional 

elements, such as transcription factor binding sites (TFBS). Mapping genome-wide TFBS using 

chromatin immunoprecipitation followed by sequencing (ChIP-Seq) can identify such binding 

sites for specific transcription factors (TFs). It can also help identify unknown TF targets, complex 

interaction networks, and hub genes that can ultimately lead to the discovery of pharmaceutical 

targets. In Chapter 3, we present our results of the investigation of genome-wide targets of the 

RAR Related Orphan Receptor A (RORA), a high-density lipoprotein cholesterol (HDL-C) 

GWAS gene in Mexicans3 and a known regulator of the apolipoproteins, APOA5, APOA1, and 

APOC3.  
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Despite the several hundred lipid loci identified by GWAS, it has become increasingly 

clear that variation at these known loci explains only a small fraction of the trait heritability. In 

addition to rare variants, contributions to variation in lipid traits that can be attributed to complex 

genetic models, such as gene-environment and epistatic interactions, have been hypothesized to 

be additional sources of this “missing heritability.” In chapter 4, we present our findings of the 

investigation of genes that exhibit context-dependent expression variance and their underlying 

variance expression quantitative trait loci (ve-QTLs). Our cohort consisted of Mexicans exhibiting 

extreme TG values with subcutaneous adipose tissue expression microarrays available for study. 

We found that individuals with low serum TGs displayed a greater ATP citrate lyase (ACLY) 

expression variance than the individuals with high TGs. We replicated this observation in the 

Finnish METabolic Syndrome In Men4 (METSIM) adipose RNA-Sequence cohort (p-

value=1.8x10-3). ACLY encodes the primary enzyme responsible for the synthesis of cytosolic 

acetyl-CoA in many tissues, which is vital for the biosynthesis of fatty acids, a precursor of TGs. 

One hypothesis is that reduced ACLY expression variance under increased TG context leads to an 

increased degree of constraint in lipid biosynthesis pathways, followed by decreased robustness in 

its response to environmental stimuli and buffering ability against cryptic genetic variation. We 

used a correlation least squared (CLS) test and found that the reference allele of variant rs34272903 

(T/C) is associated with an increased ACLY expression variance (FWER p-value=1.0x10-4). Our 

results suggest that the reference T allele of rs34272903 interacts with an unknown factor under 

the low TG context, increasing ACLY expression variance. This interaction may contribute to 

efficient responses in the lipid pathway activation to endo-exogenous stimuli via unknown 

mechanisms. 
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CHAPTER 1 

INTRODUCTION 
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Short review of adipose tissue biology 

 

In mammals, excess energy is stored as fat in adipose tissue. In humans, adipose tissue 

mainly consists of white adipose tissue (WAT) and the amount of brown adipose tissue (BAT) is 

small. Here we will focus on the metabolic functions of WAT, which primarily stores excess 

energy in the form of TGs to be used during periods of food deprivation5. WAT is distributed as 

the subcutaneous adipose tissue, located beneath the skin, and as intra-abdominal adipose depot, 

which in humans surrounds the gastrointestinal organs. Intra-abdominal fat accumulation is 

strongly associated with the development of obesity and related diseases, including type 2 diabetes, 

while the accumulation of subcutaneous fat exhibits weaker correlations5. White adipocytes 

acquire the expression of specific enzymes for TG synthesis (fatty acid synthase (FAS)) and 

lipolysis (hormone sensitive lipase (LIPE)) during their differentiation, which enable both the 

accumulation and mobilization of fat5. Given that they have a central role in the molecular 

mechanisms regulating lipid biosynthesis and metabolism, these enzymes have been targeted for 

drug development6. Most lipids stored in WAT come from circulating fatty acids and triglycerides 

from the liver and small intestine. The liver produces most of the lipids in de novo lipogenesis and 

TG synthesis. These lipids are insoluble, and thus they are efficiently packed into very low-density 

lipoproteins (VLDL) particles, secreted into the circulation, and delivered for storage in WAT as 

energy supply to be used in other peripheral tissues5. Fat from the small intestine is incorporated 

into large chylomicron particles. These also enter the circulation and are delivered to WAT for 

storage. Fatty acid uptake by adipocytes is believed to occur both by passive diffusion and active 

transport mediated by membrane enzymes including fatty acid transport protein (FATP), fatty acid 

binding protein plasma membrane (FABPpm), caveolin, and fatty acid translocase (CD36/FAT)5 

The mechanisms regulating intracellular levels of lipids are essential for maintaining homeostasis. 



 
 

3 

Lipid overflow is toxic to cells, and excessive fat intake in modern human populations has been 

hypothesized to induce decanalization7 (i.e. the loss of a stable equilibrium in the underlying 

molecular pathways), ultimately leading to cardiometabolic disease8. In chapter 4, we target genes 

in the lipid metabolism pathways for an expression variance quantitative trait locus (QTL) 

analysis, which may signal decanalization of the molecular mechanisms in lipid metabolism7–10. 

Genetic architecture of hypertriglyceridemia and hypercholesterolemia  

 

Elevated serum TG concentrations contribute to an increased risk of cardiovascular 

disease25. Hypertriglyceridemia is clinically defined as an elevated concentration of serum TGs 

(>150 mg/dL) and hypercholesterolemia as an elevated concentration of serum total cholesterol 

(TC) (>200 mg/dL), respectively25. Serum cholesterol and TG concentrations are heritable (56-

77%), and based on current research, they are influenced by genetic variants with a broad 

spectrum of effect sizes and allele frequencies11.  

Genetic architecture: pharmaceutical application 

 

The ability to predict a trait from the genetic sequence means that one can predict the risk of 

heart attack, stroke, early detection through improved screening, and drug response, which can 

ultimately help tailor personalized treatments. An individual’s genetic susceptibility to disease is 

the sum of the effects of genetic risk variants and their interactions. Genetic architecture contains 

the genetic factors that together contribute to the broad-sense phenotypic heritability12. It defines 

the number and type of genes and alleles affecting the trait. To date, most of the genetic variants 

that contribute to disease susceptibility have been uncovered using GWAS. However, the total 

contribution of GWAS variants to phenotypic variation of complex traits only accounts for a small 

fraction of their total estimated heritability. The gap between the estimated heritability and the 

total genetic contribution from all GWAS variants is known as the “missing heritability.” Epistatic 
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interactions may explain in part this missing heritability, which are well documented in model 

organisms13–15. Although studies in humans have reported epistatic interactions9,10, they remain 

underinvestigated in quantitative genetics. Epistatic interactions could occur between multiple 

genetic factors and therefore, be population-specific, representing a challenge for their replication. 

In the near future, the anticipated lower cost of sequencing will lead to larger study samples and 

an increase in the number of the identified variants.  In-depth characterization of the genetic 

architecture of lipid disorders will also help identify therapeutic targets. For example, to better 

target expensive and time consuming clinical trials, scientists can now use low and common 

frequency variants to predict drug responses using a drug-response curve16–18 For serum TG levels, 

common variants with small effect sizes and rare variants with larger effects have been found in 

and near apolipoprotein C3 (APOC3), the gene encoding apolipoprotein CIII. This has allowed 

scientists to predict how pharmaceuticals targeting APOC3 will affect TGs19. A major promise of 

the characterization of the genetic architecture of lipid disorders is to improve the current low 

efficacy of drug targets, which are failing the expensive and time consuming clinical trials. 

Waddington’s original definition of epigenetics and decanalization 

 

Recent conceptual and empirical developments8,10,20 have expanded the definition of 

genetic architecture to include not only gene and allele number and the distribution of allelic and 

mutational effects, but also patterns of pleiotropy21 and epistasis10,20. In 1942, C.H. Waddington 

coined the term “canalization7” which refers to the buffering of the genotype against variations in 

the environment and genetic composition. That is to say, organismal trails and physiological 

pathways, such as glucose and lipid metabolism, have reached a stable equilibrium and are robust 

against minor variations in environmental conditions. According to Waddington, the wild type of 

a trait is always less variable following a determined path; whereas the mutant phenotype is much 
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more variable. In 2009, Greg Gibson extended Waddington’s observations, suggesting that 

decanalization events could explain the rising incidence of complex genetic diseases8. 

Decanalization of physiological processes, such as lipid metabolism, may be mediated by gene-

environment interactions. Specifically, environmental metabolites can act as signaling molecules 

to chromatin, inducing chromatin remodeling and gene expression changes. Gibson proposed that 

under millions of years of stabilizing selection, biological systems evolved to a stable equilibrium 

and that under significant environmental pressures (dietary shifts, tobacco smoking, air pollution, 

altered pathogen exposure, and psychological stress), this equilibrium has been perturbed, which 

helps uncover cryptic genetic variation. According to Gibson, this hypothesis explains the increase 

in major common disease susceptibility in modern societies8. Decanalization will result in the loss 

of highly evolved reduced genetic variation, an increased “sensitivity” to environmental and 

genetic changes (which is mediated by complex gene-gene, gene-environment interactions), and 

increased variance for a particular phenotype.  

Since Waddington’s original theory of decanalization was published, others contributed to 

this theoretical framework8–10,22. Several studies have reported epistatic interactions in the human 

genome9,10. In model organisms, epistasis is common. In fact, it has been reported that epistasis 

dominates the genetic architecture of Drosophila23. Epistatic interactions can be investigated 

through gene expression variance-genotype association analysis (ve-QTLs) even though currently 

there is a lack of replicated epistatic observations in humans. Epistatic interactions may in part 

underlie the so-called “missing heritability” and together with undiscovered low-frequency 

variants and the known common GWAS variants may advance our understanding of the human 

genome-phenome map necessary for precision medicine, early detection, accurate prognosis, 

increased pharmaceutical efficacy, and other similar advances in molecular medicine. 
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DEFINITIONS 

 

Canalization The evolution of reduced genetic variability. Evolution of reduced 

gene effects through epistatic interactions with an evolving genetic 

background. 

 

Epistasis The phenomenon whereby one polymorphism’s effect on a trait 

depends on other polymorphisms present in the genome. 

 

Genetic architecture The characteristics of genetic variation responsible for heritable 

phenotypic variability. 

 

Complex traits Traits that do not follow Mendelian inheritance patterns and are 

derived from any combination of multiple genetic factors, 

environmental factors, and their interactions. 

 

GWAS Studies that test the association of all measured genetic variation 

across the genome with a trait or disease. 

 

Heritable A characteristic or trait that has a portion of variability that is 

accounted for by genetic factors. 

 

Pleiotropy The phenomenon of one genetic locus influencing several traits. 
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CHAPTER 2 

MOLECULAR CHARACTERIZATION OF THE LIPID GENOME-WIDE 

ASSOCIATION STUDY SIGNAL ON CHROMOSOME 18Q11.2 IMPLICATES HNF4A-

MEDIATED REGULATION OF THE TMEM241 GENE 
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CHAPTER 3 

GENOME-WIDE PROFILING OF CONTEXT-SPECIFIC RORA BINDING SITES 

PROVIDES A CATALOG OF TRANSCRIPTIONAL TARGETS ASSOCIATED WITH 

LIPID METABOLISM IN THE HUMAN LIVER 

  



 
 

31 

Genome-wide profiling of context-specific RORA binding sites provides a catalog of 

transcriptional targets associated with lipid metabolism in the human liver 

Alejandra Rodríguez1 and Päivi Pajukanta1,2,3 

 

 

1Department of Human Genetics, David Geffen School of Medicine at University of California, 

Los Angeles. 2Molecular Biology Institute, and 3Bioinformatics Interdepartmental Program, 

University of California, Los Angeles 

Correspondence: Paivi Pajukanta, Dept. of Human Genetics, David Geffen School of Medicine 

at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095. 

Email:PPajukanta@mednet.ucla.edu; Phone (310) 267-2011; Fax (310) 794-5446 

 

 

  



 
 

32 

ABSTRACT 

Although genome-wide association studies (GWAS) have uncovered a myriad of lipid loci, 

the molecular mechanisms underlying these associations remain largely uncharacterized. Here we 

profile genome-wide targets of RAR Related Orphan Receptor A (RORA), a high-density 

lipoprotein cholesterol (HDL-C) gene identified in our previous Mexican lipid GWAS1. Previous 

studies in mice have shown that when compared to wild type mice, RORA staggerer mutant mice 

display lower total cholesterol, TGs and hypoalphalipoproteinemia, a condition in which 

concentrations of HDL-C and its major apolipoprotein component, ApoAI, are reduced. These 

findings in mice suggest that RORA has a key role in HDL-C metabolism and emphasize the need 

to profile transcriptional targets of RORA in the human liver. We hypothesized that RORA may 

display context-specific transcriptional regulation of key lipid genes. To test our hypothesis, we 

used ChIP-Seq to profile genome-wide context-specific transcriptional targets of RORA in the 

human liver cancer cell line, HepG2. We treated human HepG2 cells with 200 uM palmitic acid 

(PA) or BSA (baseline) for 24 hrs. We crossed-linked cells using 1% formaldehyde, fragmented 

nuclear extracts to 100-300bp, and immunoprecipitated using anti-RORA antibody. We used the 

Illumina HiSeq 2000 platform and obtained 50-80M reads (75bp single-end reads) per biological 

replicate (2 BSA and 3 PA) and input controls. Our preliminary results using first ChIP-qPCR 

show that there is a higher enrichment of RORA in the cytochrome P450 promoter region in the 

palmitic acid treated HepG2 cells compared to base line treatment. We also saw a small enrichment 

of RORA bound to APOA3 in palmitic acid treated compared to base line treatment Figure 3-2. 

Our ChIP-Seq peak annotations using HOMER9 revealed 62 genes with cardiometabolic functions 

are located near our peaks. We also found 66 metabolic genes. Gene ontology Analysis9 also 

revealed genes with functions in chemical dependency, neurological, and psychiatric pathways. 
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Our results are consistent with RORA’s known function as a regulatory TF in neurological 

pathways. 

INTRODUCTION 

Systematic integration of genomics data sets can reveal functional mechanisms underlying GWAS 

variants and identify new genes with roles in lipid metabolism and networks and key targets for 

pharmaceutical development. One important target currently investigated for its pharmaceutical 

potential in multiple sclerosis2 is the Retinoic acid receptor-related Orphan Receptor A (RORA). 

RORA is widely expressed nuclear receptor that binds the ROR response element (RORE) 

sequence within the promoter regions of target genes and modulates their expression across several 

tissues. In the vascular system, RORA is involved in differentiation of adipocytes3, control of the 

vascular tone of small arteries, ischemia-induced angiogenesis, lipid metabolism, and 

inflammation4. Recently is was associated with cellular stress response5 and found to control 

hepatic lipid homeostasis6. Studies in mice have showed that RORA binds to a RORE in the 

promoter of APOA1 that encodes a protein component of HDL, and to APOC3 that encodes a 

protein component of both triglyceride-rich lipoproteins and HDL. RORA is also known to 

regulate genes in the lipid metabolism pathways such as APOA1, APOA5, APOC3 and PPARG4,6. 

These findings suggest that RORA has a key role in TG and lipoprotein metabolism. We propose 

to conduct ChIP-Seq to identify targets of RORA in the liver, a key metabolic tissue.  

RESULTS 

Our ChIP-qPCR results show that there is a higher enrichment of RORA in the cytochrome 

P450 promoter region in the palmitic acid treated HepG2 cells when compared to the baseline 

treatment. We also saw a small enrichment of RORA bound to APOA3 in palmitic acid treated 

cells when compared to the baseline treatment (Figure 3-2). These results prompted us to find 
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genome-wide sites bound by the TF RORA using ChIP-Seq. For our ChIP-Seq peaks, first we 

annotated the regional landscape around the peaks by performing functional analysis using 

HOMER9. We annotated genes located next to our peaks and then performed Gene Ontology 

Analysis to annotate their function. Our results revealed that a total of 62 cardiovascular (Table 3-

3) and 66 metabolic genes (Table 3-4) were located near our ChIP-Seq peaks. Our Gene Ontology 

Analysis revealed that these genes function in chemical dependency, neurological, and psychiatric 

pathways (Table 3-2). This result is consistent with RORA’s known function as a regulatory TF 

in neurological pathways. Disease annotations were also consistent with RORA’s roles in the 

central nervous system and in metabolic pathways (Tables 3-2 and Table 3-5). Our results 

represent an initial step in mapping genome-wide targets of RORA in a human liver cancer cell 

line.  

DISCUSSION 

The lack of replication between biological replicates for our observed peaks makes our 

results inconclusive. Several improvements could advance our results. We sequenced our RORA-

chromatin IPs using the Illumina HiSeq 2000 platform to identify genome-wide RORA binding 

sites. With this approach, we were hoping to identify previously unknown RORA binding sites 

outside promoter regions. However, as all currently available anti-RORA antibodies have low 

affinities and poor chromatin yield, future experiments could employ a targeted approach using 

the Affymetrix Human Promoter 1.0R array, which contains over 4.6×106 probes tiled over 25,500 

promoter regions of annotated genes. This approach would enrich for promoter regions that are 

more likely to be bound by RORA7. To the best of our knowledge, only one anti-RORA antibody 

exists with primary characterizations. If secondary characterization of this antibody becomes 

available, that will improve the chromatin yields. Despite the limitations of our current study, our 
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results seem consistent with the known biological role of RORA. These results should be 

considered preliminary due to the lack of replication and the low enrichment of our peaks. 

EXPERIMENTAL PROCEDURES 

Cell culture 

HepG2 cells were grown in ATCC-formulated Eagle’s Minimum Essential Medium, 

supplemented with 10% FBS and 1% penicillin/streptomycin, incubated at 37 °C in a humidified 

5% CO2 incubator, and split 1:2 every 2 or 3 days when the cells reached ~80% confluence.  

ChIP assays  

After cells reached ~80% confluence, the medium was aspirated, and the cells were fixed 

with 37% formaldehyde for exactly 10 minutes. Glycine was added to a final concentration of 

0.125 M to stop the cross-linking, and the cells were rinsed with cold PBS, supplemented with a 

protease inhibitor cocktail. The cells were scraped and then transferred to a pre-chilled centrifuge 

tube. Crosslinked cells were pelleted, and nuclear extraction was performed, as previously 

described with some modifications8. Nuclear pellets were re-suspended in SDS Lysis Buffer and 

fragmented using the BioRuptor sonicator to achieve an average chromatin length of 100-500 bp. 

Fragmented chromatin was divided into several aliquots and immunoprecipitated one μg of goat 

anti-RORA1 or control IgG antibody at 4C overnight. On the following day, chromatin was 

reverse-crosslinked by adding 5 M NaCl to the final concentration of 0.2 M and incubated at 65°C 

overnight and purified using the Chromatin IP DNA Purification Kit and then submitted for 

sequencing at the UCLA sequencing core. 

Identification of ChIP-seq peaks and tag density profiles  

ChIP-Seq analysis was done using HOMER9 using first the option makeTagDirectory to 

create a “tag directory” from our high-throughput sequencing alignment files. We also performed 
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the 4 basic quality control tests produced by the default options. ChIP-Seq enriched regions were 

identified using HOMER, as has been previously published9. Briefly, all ChIP-Seq experiments 

used the input sequencing as a control, and peaks were called using the findPeaks option in “factor” 

mode to select a fixed peak size based on estimates from the autocorrelation analysis. This 

maximizes sensitivity for identifying locations where RORA makes a single contact with the DNA. 

To increase the overall quality of peaks, we used 3 separate filtering steps employing the input 

sequencing as a control, filtering based on local signal, and filtering based on clonal signal. 

Annotation of genomic regions  

To annotate the regional landscape around the peaks, we used the perl script from HOMER9 

annotatePeaks.pl. We performed two main types of annotations. First, we associated peaks with 

the nearby genes. Second, we performed the Gene Ontology Analysis. Third, we performed 

genomic feature association analysis. 

Basic annotation  

We mined the data using all options in the annotatePeaks.pl script from HOMER9. In 

summary, the output generated using the basic gene annotation options included the following: 

Nearest TSS, Nearest TSS: Entrez Gene ID, Nearest TSS: Unigene ID, Nearest TSS: RefSeq ID, 

and Nearest TSS: Ensembl ID.  

Peak annotation enrichment: Gene ontology analysis of associated genes 

ChIP-Seq peaks can preferentially be found near genes with specific biological functions. 

We used the annotatePeaks.pl from HOMER9, using the gene ontology classifications, to perform 

an annotation enrichment analysis. In this analysis, HOMER uses the list of genes associated with 

our regions and searches for enriched functional categories. 
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FIGURE LEGENDS 

 

Table 3-1 RORA ChIP-qPCR primers for known targets of RORA and control repressed 

chromatin sites 

 

Table 3-2 Functional enrichment analysis for RORA ChIP-Seq peaks  

 

Table 3-3 Functional enrichment analysis for RORA ChIP-Seq peaks: Cardiovascular 

genes 

 

Table 3-4 Functional enrichment analysis for RORA ChIP-Seq peaks: Metabolic genes 

 

Table 3-5 Functional enrichment analysis for RORA ChIP-Seq peaks: Disease categories 

 

Figure 3-1 HepG2 chromatin fragments used in the RORA ChIP-Seq assays 

 

Nuclear pellets were fragmented using the BioRuptor sonicator to an average chromatin length 

of 100-500 bp. 

 

Figure 3-2 RORA ChIP-qPCR assays show enrichment of known RORA target sites 

relative to control sites 

 

ChIP-qPCR results for RORA in HepG2 cells shows a higher enrichment of the RORA TF in the 

Cytochrome P450 promoter region with palmitic acid treatment when compared to the baseline 

treatment. We also saw a small enrichment of RORA bound to APOA3 with the palmitic acid 

treatment when compared to baseline treatment. 
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Figure 3-1 HepG2 cell chromatin fragments used in the RORA ChIP-Seq assays 
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Table 3-1 RORA ChIP-qPCR primers for known targets of RORA and control 

repressed chromatin sites 

Target Sequence 

APOA1-PROMOTER FWD Set 1 TGG AGG CGG ACA ATA TCT TTA C 

APOA1-PROMOTER FWD Set 4 TTA CCA GTT TGG GAG GCT TG 

APOA1-PROMOTER FWD Set 5 CTT TGC CCA GAG GTC TTC TC 

APOA1 FWD Set 1 TGG AGG CGG ACA ATA TCT TTA C 

APOA1 FWD Set 4 TTA CCA GTT TGG GAG GCT TG 

APOA1 FWD Set 5 CTT TGC CCA GAG GTC TTC TC 

APOA5 FWD Set 1 GCC TCT TGC CAT CTC ATC TT 

APOA5 FWD Set 2 CAG GTC AGT GGG AAG GTT AAA G 

APOA5 FWD Set 4 GAG GGA TGT GGT TGG TCT TT 

APOA3-PROMOTER FWD Set 1 GGA TTG AAA CCC AGA GAT GGA 

APOA3-PROMOTER FWD Set 4 AAG CCA CCC ACT TGT TCT C 

APOA3-PROMOTER FWD Set 5 GGC CTA TGT CCA AGC CAT TT 

CYP FWD Set 1 CTA AGA AGT GAG GAA CCC AAG G 

CYP FWD Set 2 CCT GTC TCA CTC TCT TCC TGT A 

CYP FWD Set 3 TAC CAC GCT GTT CTG CAA TC 

CYP FWD Set 4 CAT CTT GAG GGA CAA GCA GAG 

SULT2A1 FWD Set 1 GAG GTA TAA TGT GAC CCA TAC 

TCAA 

SULT2A1 FWD Set 2 CGA ATA ACA AAC ACG AGG ACA AA 

SULT2A1 FWD Set 3 GAA GAT GTT GAG CAA TCA TGA 

ACT 

SULT2A1 FWD Set 4 ATA ATC CTG CAA TCG TGC ATT T 
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Figure 3-2 RORA ChIP-qPCR assays show an enrichment of known RORA target 

sites when compared to the control sites 
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Table 3-2 Functional enrichment analysis for RORA ChIP-Seq peaks. 

 

Term p-value Adjusted p-value  
Number 

of genes 

Cardiovascular 5.5x10-7 9.9x10-6 62 

Metabolic 4.3x10-5 3.9x10-4 66 

Chemical dependency 2.0x10-3 1.2x10-2 46 

Hematological 1.5x10-2 6.7x10-2 22 

Neurological 1.9x10-2 6.8x10-2 35 

Psychiatric 3.7x10-2 1.1x10-1 25 
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 Table 3-1 Functional enrichment analysis for RORA ChIP-Seq peaks: 

Cardiovascular genes. 

ID Name 

NM_004274 A-kinase anchoring protein 6(AKAP6) 

NM_152522 ADP ribosylation factor like GTPase 6 interacting protein 

6(ARL6IP6) 

NM_175060 C-type lectin domain family 14 member A(CLEC14A) 

NM_001805 CCAAT/enhancer binding protein epsilon(CEBPE) 

NM_001250 CD40 molecule(CD40) 

NM_017774 CDK5 regulatory subunit associated protein 1 like 

1(CDKAL1) 

NM_020943 CWC22 spliceosome associated protein 

homolog(CWC22) 

NM_203301 F-box protein 33(FBXO33) 

NM_001002911 G protein-coupled receptor 139(GPR139) 

NM_148963 G protein-coupled receptor class C group 6 member 

A(GPRC6A) 

NM_017769 G2/M-phase specific E3 ubiquitin protein ligase(G2E3) 

NM_018557 LDL receptor related protein 1B(LRP1B) 

NM_080676 MACRO domain containing 2(MACROD2) 

NM_002515 NOVA alternative splicing regulator 1(NOVA1) 

NM_153355 Na+/K+ transporting ATPase interacting 2(NKAIN2) 

NM_032784 R-spondin 3(RSPO3) 

NM_018723 RNA binding protein, fox-1 homolog 1(RBFOX1) 

NM_018460 Rho GTPase activating protein 15(ARHGAP15) 

NM_005168 Rho family GTPase 3(RND3) 

NM_030623 SPHK1 interactor, AKAP domain containing(SPHKAP) 

NM_015910 WD repeat containing planar cell polarity 

effector(WDPCP) 

NM_003917 adaptor related protein complex 1 gamma 2 

subunit(AP1G2) 

NM_001195 beaded filament structural protein 1(BFSP1) 

NM_001200 bone morphogenetic protein 2(BMP2) 

NM_005795 calcitonin receptor like receptor(CALCRL) 

NM_201548 ceramide kinase like(CERKL) 

NM_004824 chromodomain Y-like(CDYL) 

NM_032221 chromodomain helicase DNA binding protein 6(CHD6) 

NM_015585 cilia and flagella associated protein 61(CFAP61) 

NM_018431 docking protein 5(DOK5) 

NM_022073 egl-9 family hypoxia inducible factor 3(EGLN3) 

NM_005235 erb-b2 receptor tyrosine kinase 4(ERBB4) 
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NM_000145 follicle stimulating hormone receptor(FSHR) 

NM_004131 granzyme B(GZMB) 

NR_004855 hepatocellular carcinoma up-regulated long non-coding 

RNA(HULC) 

NM_138574 hepatoma derived growth factor-like 1(HDGFL1) 

NM_003855 interleukin 18 receptor 1(IL18R1) 

NM_024336 iroquois homeobox 3(IRX3) 

NM_018214 leucine rich repeat containing 1(LRRC1) 

NM_015702 methylmalonic aciduria and homocystinuria, cblD 

type(MMADHC) 

NM_004801 neurexin 1(NRXN1) 

NM_002511 neuromedin B receptor(NMBR) 

NM_002500 neuronal differentiation 1(NEUROD1) 

NM_138285 nucleoporin 35(NUP35) 

NM_000933 phospholipase C beta 4(PLCB4) 

NM_002742 protein kinase D1(PRKD1) 

NM_001080545 protein phosphatase 1 regulatory inhibitor subunit 

1C(PPP1R1C) 

NM_002844 protein tyrosine phosphatase, receptor type K(PTPRK) 

NM_001145204 shisa family member 9(SHISA9) 

NM_014178 syntaxin binding protein 6(STXBP6) 

NM_173485 teashirt zinc finger homeobox 2(TSHZ2) 

NM_052913 transmembrane protein 200A(TMEM200A) 

NM_006296 vaccinia related kinase 2(VRK2) 
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Table 3-2 Functional enrichment analysis for RORA ChIP-Seq peaks: 

Metabolic genes. 

ID  Name 

NM_004274 A-kinase anchoring protein 6(AKAP6) 

NM_175060 C-type lectin domain family 14 member A(CLEC14A) 

NM_001250 CD40 molecule(CD40) 

NM_017774 CDK5 regulatory subunit associated protein 1 like 

1(CDKAL1) 

NM_020943 CWC22 spliceosome associated protein 

homolog(CWC22) 

NM_203301 F-box protein 33(FBXO33) 

NM_001002911 G protein-coupled receptor 139(GPR139) 

NM_018557 LDL receptor related protein 1B(LRP1B) 

NM_080676 MACRO domain containing 2(MACROD2) 

NM_014048 MKL1/myocardin like 2(MKL2) 

NM_002515 NOVA alternative splicing regulator 1(NOVA1) 

NM_153355 Na+/K+ transporting ATPase interacting 2(NKAIN2) 

NM_016436 PHD finger protein 20(PHF20) 

NM_032784 R-spondin 3(RSPO3) 

NM_018723 RNA binding protein, fox-1 homolog 1(RBFOX1) 

NM_018460 Rho GTPase activating protein 15(ARHGAP15) 

NM_005168 Rho family GTPase 3(RND3) 

NM_030623 SPHK1 interactor, AKAP domain containing(SPHKAP) 

NM_001200 bone morphogenetic protein 2(BMP2) 

NM_005795 calcitonin receptor like receptor(CALCRL) 

NM_080617 cerebellin 4 precursor(CBLN4) 

NM_004824 chromodomain Y-like(CDYL) 

NM_001898 cystatin SN(CST1) 

NM_018431 docking protein 5(DOK5) 

NM_022073 egl-9 family hypoxia inducible factor 3(EGLN3) 

NM_005235 erb-b2 receptor tyrosine kinase 4(ERBB4) 

NM_000145 follicle stimulating hormone receptor(FSHR) 

NM_004752 glial cells missing homolog 2(GCM2) 

NR_004855 hepatocellular carcinoma up-regulated long non-coding 

RNA(HULC) 

NM_138574 hepatoma derived growth factor-like 1(HDGFL1) 

NM_017545 hydroxyacid oxidase 1(HAO1) 

NM_003855 interleukin 18 receptor 1(IL18R1) 

NM_024336 iroquois homeobox 3(IRX3) 

NM_024704 kinesin family member 16B(KIF16B) 

NM_152447 leucine rich repeat and fibronectin type III domain 

containing 5(LRFN5) 
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NM_178839 leucine rich repeat transmembrane neuronal 1(LRRTM1) 

NM_019888 melanocortin 3 receptor(MC3R) 

NM_199290 nascent polypeptide associated complex alpha subunit 

2(NACA2) 

NM_004801 neurexin 1(NRXN1) 

NM_002500 neuronal differentiation 1(NEUROD1) 

NM_005048 parathyroid hormone 2 receptor(PTH2R) 

NM_207499 patched domain containing 4(PTCHD4) 

NM_021213 phosphatidylcholine transfer protein(PCTP) 

NM_000933 phospholipase C beta 4(PLCB4) 

NM_144773 prokineticin receptor 2(PROKR2) 

NM_002742 protein kinase D1(PRKD1) 

NM_002844 protein tyrosine phosphatase, receptor type K(PTPRK) 

NM_001145204 shisa family member 9(SHISA9) 

NM_001049 somatostatin receptor 1(SSTR1) 

NM_001052 somatostatin receptor 4(SSTR4) 

NM_014178 syntaxin binding protein 6(STXBP6) 

NM_173485 teashirt zinc finger homeobox 2(TSHZ2) 

NM_021156 thioredoxin related transmembrane protein 4(TMX4) 

NM_018286 transmembrane protein 100(TMEM100) 

NM_052913 transmembrane protein 200A(TMEM200A) 

NM_006296 vaccinia related kinase 2(VRK2) 
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Table 3-3 Functional enrichment analysis for RORA ChIP-Seq 

peaks: Disease categories. 

Disease 
Number 

of genes 
p-value 

Adjusted p-

value 

Mental abnormalities,  2 6.40x-5 1.60x-2 

Neuroblastoma 8 7.40x-5 4.50x-4 

Waist-Hip Ratio 8 1.00x-4 5.90x-4 

Urinalysis 4 1.30x-4 2.20x-3 

 lymphoblastic leukemia 2 1.90x-4 2.40x-2 

Apolipoproteins B 4 2.90x-4 3.90x-3 

Stroke 13 3.80x-4 1.20x-3 

Platelet Count 6 4.00x-4 2.70x-3 

Hematocrit 5 2.10x-3 1.20x-2 

Obesity 7 4.00x-3 1.50x-2 

Body Mass Index 10 5.00x-3 1.40x-2 

Erythrocytes 4 5.90x-3 3.50x-2 

Cholesterol, HDL 9 8.00x-3 2.20x-2 

Albuminuria 3 8.30x-3 6.40x-2 

Bone Density 6 9.10x-3 3.20x-2 

Tobacco Use Disorder 35 1.10x-2 1.60x-2 

Heart Failure 8 1.20x-2 3.40x-2 

Basophils 3 1.30x-2 8.50x-2 

Breast |prostate cancer 3 1.30x-2 8.70x-2 

Diabetes Mellitus, Type 2 5 1.40x-2 5.30x-2 

Body Height 10 1.60x-2 3.80x-2 

Monocytes 3 1.70x-2 9.90x-2 

Hemoglobins 6 1.80x-2 5.60x-2 

Erythrocyte Count 5 1.90x-2 6.70x-2 

Blood Pressure 8 3.20x-2 7.50x-2 
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ABSTRACT 

Genome-wide association studies (GWAS) have discovered hundreds of lipid loci, yet it 

has become increasingly clear that variation at the known loci explains only a small fraction of the 

heritability. Contributions to variation in lipid traits that can be attributed to complex genetic 

models, such as gene-environment and epistatic interactions, may help uncover additional sources 

of this “missing heritability.” The presence of an interaction is expected to increase the variance 

of a trait in subjects having the interacting genetic variant. To this end, we performed a two-step 

approach to identify genes with increased expression variance and their underlying variance 

expression (ve)-QTLs. We investigated Mexican1 individuals exhibiting extreme serum TGs from 

an adipose expression microarray cohort (n=64). We found that individuals with low TGs 

displayed a greater ATP citrate lyase (ACLY) expression variance than the individuals with high 

TGs (p-value=2.0x10-2), and this result was replicated in the Finnish METabolic Syndrome In 

Men2 (METSIM) adipose RNA-Seq cohort (n=335) (p-value=1.8x10-03).  

ACLY encodes the primary enzyme responsible for the synthesis of nuclear and cytosolic 

acetyl-CoA, which is important for the biosynthesis of fatty acids, a precursor of TGs. One 

hypothesis is that a reduced ACLY expression variance under increased TG-context corresponds 

to an increased degree of constraint in lipid biosynthesis pathways and decreased robustness in its 

response to environmental stimuli and buffering ability against cryptic genetic variation. We used 

a correlation least squared (CLS) test to uncover SNPs associated with ACLY expression variance 

and found that the reference allele of variant rs34272903 (T/C) is associated with increased ACLY 

expression variance (FWER p-value=1.0x10-4). Our results suggest that the reference T allele of 

rs34272903 interacts with an unknown factor under the low TG-context, increasing the variance 
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of ACLY expression. Accordingly, this interaction may contribute to efficient responses in lipid 

pathway activation to endo-exogenous stimuli via unknown mechanisms. 

INTRODUCTION 

Lipid GWASs have identified hundreds of new loci associated with lipid traits, yet it has 

become increasingly clear that variation at the known loci explains only a small part of the trait 

heritability. GWASs focus on associations between a single tag locus and a trait and do not capture 

gene-gene, or gene-environment interactions. Contributions to variation in lipid-related traits that 

can be attributed to complex genetic models, such as gene-environment and epistatic interactions, 

may help uncover additional sources of this “missing heritability.” It is known that about 85% of 

the common genetic variation is associated with the expression of protein coding genes3. Fine-

mapping eQTL studies typically search for differences in the mean of gene expression between 

the two alleles of a GWAS hit, whereas differences invariance of expression is often regarded as 

noise. Recent studies have reported that variance in gene expression is also genetically determined 

and should be regarded as a quantitative trait that can be investigated using ve-QTL mapping4,5. 

Two mechanisms have been put forward to explain the formation of ve-QTLs. First, ve-QTLs 

could underlie epistatic interactions and secondly, ve-QTL may be created via decanalization of 

biochemical pathways6–8. Environmentally derived metabolites can act as signaling molecules to 

chromatin, which may lead to chromatin remodeling and regulation of entire biochemical 

pathways9. This “openness” or interplay between biological systems and their environment can 

also lead to toxicity and disease6,7,10 (further reviewed in Chapter 5). Using variance association 

mapping, we and others identified genetic loci associated with gene expression variance4,8,11,12. 

The ve-QTLs may be part of the genetic architecture of dyslipidemias. Detailed characterization 

of genes and variants underlying cardiometabolic disease will lead to previously undiscovered 
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insights of disease etiology as well as to improved screening, diagnosis, prognosis, and drug 

development for these common disorders.  

RESULTS 

Subcutaneous adipose tissue is a metabolically active tissue. During the terminal stage of 

adipocyte differentiation, the transcriptions factors C/EBPα and PPARγ turn on the expression of 

adipogenic enzymes, which together form networks with highly specialized functions, such as lipid 

storage and synthesis. We hypothesized that a high TG context might interact with one or more 

genetic variants leading to an increased variance in gene expression of lipogenic and lipolytic 

enzymes. Despite its relevance as a vital metabolic tissue, there is a remarkable lack of large 

enough data sets of human adipose tissue. Here, we obtained microarray expression data of 17 

genes in the lipid metabolism pathway for 64 Mexican subcutaneous adipose samples1. We 

corrected the expression values for age, gender, and ancestry using PC1 and PC2 from a genetic 

principal component analysis (PCA). To remove unknown confounders, we also removed the first 

three principal components of the expression values. To search for genes exhibiting context-

dependent expression variance, we divided the samples by TG group (high versus low), and as a 

measure of variance, we computed the observed standard deviation for each gene. To derive the 

null distribution, we combined low and high TG samples and permuted their group categories and 

randomly assigned their TG groups and again computed a permuted standard deviation for each 

gene. Of the 17 genes, we found a total of 13 probes exhibiting significant context-dependent 

expression variance p-value ≤0.05, and after removing redundant probes, we had nine significant 

genes (Table 4-1, Figure 4-1). Of these, only ACSBG1 passed the Bonferroni correction for 

multiple testing. ACSBG1, very long-chain acyl-CoA synthetase, is capable of activating very 

long-chain fatty acids. To replicate our nominally significant genes, we obtained RNA-Seq data 
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from subcutaneous adipose tissue for 64 samples with similar TG characteristics from the 

METSIM cohort. Three (ACACA, p-value=2.3x10-2; ACLY, p-value =1.8x10-3; and ACSBG1, p-

value <0.0001) of the 9 genes passed the significance threshold for multiple testing correction 

(Table 4-2, Figure 4-2).  

Variance expression quantitative trait loci (ve-QTLs) or genetic variants associated with 

expression variance differences between two alleles have been observed in genetic studies4,11,12 

and may underlie our observed context-dependent expression variance for the ACACA, ACLY, 

and ACSBG1 genes. To investigate this possibility, we obtained the genotypes and RNA-Seq 

expression data from 335 subcutaneous adipose samples from the Finnish METSIM cohort2. We 

took variants with MAF>5% located within +/- 1M window from the transcription start site (TSS) 

of each of the three genes and performed SNP-gene expression variance associations using ve-

QTL mapper4. We found that variant rs34272903 is a ve-QTL for the ATP citrate lyase (ACLY) 

gene in the METSIM cohort. ACLY is the primary enzyme responsible for the synthesis of 

cytosolic and nuclear acetyl-CoA. We also found rs6607284 (p-value=3.8x10-3) to be associated 

with variance in expression of ACACA and rs6495382 (p-value=8.0x10-4) for ACSBG1; however, 

these associations did not pass multiple testing correction. 

DISCUSSION 

In-depth understanding the disease etiology of lipid disorders requires characterization of 

their genetic architecture. Most current methods in quantitative genetics focus on the effect of a 

genetic variant on the gene expression mean (eQTLs); however, variants have also been shown to 

affect the gene expression variance4,5,11,12 (ve-QTLs). Genetic variants that control the gene 

expression variance may underlie non-additive epistatic and gene environment interactions. The 

complexity of these genetic interactions also means that they may be population-dependent, and 
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therefore difficult to replicate; hence, there is a lack of replicated human ve-QTL studies in the 

literature. Here we used ve-QTL-mapper4 to perform SNP-gene expression variance analyses. To 

alleviate multiple testing and focus on genes with a function in lipid metabolism, we selected genes 

that exhibited context-dependent gene expression variance. We hypothesized that ve-QTLs are 

formed as a result of a decanalization event in individuals with high TG-levels and that this 

decanalization is mediated via interactions between environment (TG-context) and multiple 

genetic factors. For our discovery cohort, we used Mexican microarray data.  RNA-Seq expression 

data from the METSIM cohort were used for replication. We found 3 genes with significant 

context-dependent expression variance in both populations. Next, we looked for variants within 

+/- 1M of the gene TSS and performed ve-QTL mapping. We found that rs34272903 (T/C) is 

associated with increased ACLY expression variance. ACLY is the primary enzyme responsible 

for the synthesis of cytosolic and nuclear acetyl-CoA in many tissues. Acetyl-CoA, is a precursor 

of malonyl CoA a substrate for FASN in the synthesis of fatty acids, while nuclear acetyl-CoA 

regulates histone acetylation levels. A limitation of this study is that we only tested for the SNP-

SNP interaction and did not take the TG context into account. Replication of our ve-QTL variant 

in the GTEx subcutaneous adipose RNA-Seq did not pass the significance threshold. However, 

the GTEx dataset is small and comes from several different populations. Furthermore, the 

biochemical properties of post-mortem tissue constitute a significant source of heterogeneity. 

These factors may contribute to the lack of replication.  

We focused on genes known to function in the lipid metabolism pathway. Future studies 

could also include pathways in the insulin pathway, the adrenergic pathway, and the atrial 

natriuretic hormone pathway, all of which control lipid storage and secretion in adipose tissue13. 

Particular emphasis could be placed on two enzymes, lipoprotein lipase (LPL) and hormone-
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sensitive lipase (HSL), both of which are part of the adrenergic pathway, and they are thus 

important regulators of lipid storage and mobilization.  

EXPERIMENTAL PROCEDURES 

Mexican gene expression microarrays 

Sample collection and processing have been described in detail previously1. Briefly, 70 

Mexican familial combined hyperlipidemia (FCHL) case/control fat biopsies were collected from 

umbilical subcutaneous adipose tissue under local anesthesia. Detailed procedures for RNA 

extraction and microarray hybridization have been described previously1. The microarray data can 

be accessed in MIAME compliant format from the NCBI Gene Expression Omnibus (GEO) 

database (GSE17170). Each participant provided a written informed consent. The study design 

was approved by the ethics committees of the INCMNSZ and UCLA.  

Mexican microarray data: Pre-processing and quality control  

CEL files were imported into R version 3.3.3 as an AffyBatch using the ReadAffy function 

from the Bioconductor Affy package14. The affyBatch was then converted into an ExpressionSet 

class using the gcrma package. The gcrma function adjusts for background intensities, including 

optical noise and non-specific binding. In addition, background adjusted probe intensities were 

converted to expression measures using the same normalization and summarization methods as 

rma (Robust Multiarray Average). 

Adjusting for batch effects  

The study sample consisted of Mexican individuals with extreme TG values and 

subcutaneous adipose tissue expression microarrays available for study (n=64). Samples were 

divided into extremely low (n=32) and high (n=32) TG groups and linear mixed model was applied 
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with gene expression as dependent variable and using age, sex, and batch as covariates. Principal 

component analyses (PCA) were performed using the R function prcomp. 

Testing for significance in the Mexican discovery cohort 

The residuals from the linear model were used to compute the standard deviation for each 

gene of the 17 lipid pathway genes. A total of 13 genes with a p-value ≤0.05 in the Mexican 

discovery cohort were used in the replication METSIM cohort. The residuals from the linear model 

were used to compute the group standard deviation for each of the nine genes. For each gene, we 

defined our test statistic as the absolute value of the difference between the standard deviation in 

the low TG and that of the high TG group: gene standard deviation difference=|(sdlow-sdhigh)|. For 

our test statistic, the null distribution was computed by permuting the TG status labels and the p-

value was computed by dividing the number of times the shuffled test statistic exceeded the 

observed test statistic divided by the number of permutations. Genes with a p-value ≤ 0.05 were 

considered as promising and subsequently used in the replication data set.  

METSIM replication cohort 

Subcutaneous adipose biopsies and RNA extraction 

Subcutaneous adipose tissue samples were taken by needle biopsy under local anesthesia 

(lidocaine 10 mg/mL without adrenaline)15. Total RNA was isolated using Qiagen miRNeasy kit 

(Qiagen, Hilden, Germany) according to manufacturer’s instructions. Polyadenylated mRNA was 

prepared for sequencing using the Illumina TruSeq RNA Sample Preparation Kit v215. The 

qualities of the total RNA were evaluated using the Agilent 2100 Bioanalyzer with the RNA 6000 

Nano kit (Agilent Technologies). Only RNA with RIN value greater than 6.8 and 28S/18S rRNA 

ratios greater than 1.5 was used for downstream RNA sequencing. 
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RNA sequencing and read mapping 

RNA was sequenced on the Illumina HiSeq 2000 platform (Ilumina, San Diego, CA, 

USA)15, generating 50-base-pair, paired-end reads at an average depth of 43 million reads, 

according to manufacturer’s protocol. Paired-end reads were aligned using STAR version 2.4.1d16 

using annotations-based mapping method with Gencode v19 transcriptome definition17. Samtools 

version 0.1.18 was used to process the SAM and BAM alignment files18. To identify any mix-ups 

between the DNA and RNA samples, we used the VerifyBamID program19. 

Gene expression estimation  

To estimate gene expression, we aligned reads to the human genome and counted reads for 

each gene. Specifically, we first used FastQC20 to check the quality of these generated reads. Then, 

we aligned reads using the 2-pass version of STAR 2.4.1d16 with the GENCODE v19 

annotations17. To generate read counts for each gene, we first generated annotations that merge 

exons from all transcript isoforms of a gene. We only counted reads for genes annotated as 

“lincRNA” or “protein-coding”. Since the reads were non-stranded, we removed genomic intervals 

that contain 2 overlapping genes on opposite strands to remove the ambiguity from which strand 

the read came from. We used custom software to count reads that fully overlapped with these exon 

regions without aligning to introns. To adjust for library size and gene lengths, we generated 

fragments per kb mapped per million mapped reads (FPKM) estimates. We removed lowly 

expressed genes by selecting genes that had FPKM > 0 in at least 90% of individuals. FPKM 

values for filtered genes were log transformed. To identify technical variation and estimate quality 

control metrics, we applied Picard Tools21 to the alignments and principal components analysis 

(PCA) to the gene expression data. We regressed out the following technical covariates: percent 

coding bases, percent UTR bases, percent intronic bases, percent intergenic bases, percent mRNA 
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bases, median 3’ bias, median 5’ to 3’ bias, and median CV coverage, RIN, total mapped reads, 

percent of reads uniquely mapped, percent reads from mitochondria, batch, and average allelic 

expression imbalance. 

Adjusting for batch effects  

Data modeling was done following the same design used in the discovery Mexican cohort. 

For extreme low (n=34) and high (n=34) TG groups, a linear mixed model was applied with gene 

expression as a dependent variable and using a total of 17 technical factors as covariates. Principal 

component analyses (PCA) were performed using the R function prcomp. 

Testing for significance in the METSIM replication cohort 

A total of 13 genes with a nominal p-value ≤0.05 in the Mexican discovery cohort were 

tested in the METSIM2 replication cohort. The residuals from the linear model were used to 

compute the group standard deviation for each of the nine genes. For each gene, we defined our 

test statistic as the absolute value of the difference between the standard deviation in the low TG 

and that of the high TG group: gene standard deviation difference =|(sdlow-sdhigh)|. For our test 

statistic, the null distribution was computed by permuting the TG status labels and the p-value was 

computed by dividing the number of times the shuffled test statistic exceeded the observed test 

statistic divided by the number of permutations. All p-values were adjusted for multiple testing 

using Bonferroni correction. 
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FIGURE LEGENDS 

 

Table 4-1 Variance of gene expression in the Mexican discovery cohort 

 

Table 4-2 Variance of gene expression in the METSIM replication cohort 

 

Figure 4-1 Genes in the lipid metabolism pathway that display context-dependent expression 

variance in the Mexican cohort  

A total of 13 probes representing 9 genes displayed a significant context-dependent expression 

variance. Six genes had a higher expression variance in the low TG group (orange, n=32), while 

the remaining three genes, ACSBG1, PRKAA2, and PRKAR1A displayed a higher expression 

variance in the high TG (blue, n=32) group. The p-values were obtained from the two-sided test 

with 1,000 permutations. Genes with a p-value ≤ 0.05 were subsequently tested in the replication 

data set. 

 

Figure 4-2 Genes in the lipid metabolism pathway that display context-dependent expression 

variance in the METSIM cohort  

We replicated the observed context-dependent expression variance of 3 of the 9 genes (ACACA, 

ACLY, and ACSBG1) originally found in the discovery cohort. The expression variance for 

ACACA and ACLY was higher in the low TG group (n=34, orange), while ACSBG1 displayed a 

higher expression variance in the high TG group (n=34, blue), consistent with our observations in 

the Mexican discovery cohort.  

 

Figure 4-3 Variant rs34272903 is a ve-QTL for the ACLY gene in the METSIM cohort 

The first two columns indicate the gene ID and SNP ID. Then we report the Spearman correlation 

between the distance measure and genotype (Cor), p-value, permuted p-value (not controlled for 

multiple testing), and permuted p-value controlled for multiple testing across the SNPs (FWER). 
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Table 4-1 Variance of gene expression in the Mexican discovery cohort 

Probe Gene p-value Adjusted p-value 

206465_at ACSBG1 <0.001 <0.001 

225278_at PRKAB2 6.0x10-3 0.40 

212186_at ACACA 7.0x10-3 0.40 

200604_s_at PRKAR1A 1.9x10-3 1.0 

210337_s_at ACLY 2.0x10-2 1.0 

212609_s_at AKT3 2.5x10-2 1.0 

201128_s_at ACLY 2.7x10-2 1.0 

212607_at AKT3 2.7x10-2 1.0 

201127_s_at ACLY 3.3x10-2 1.0 

207163_s_at AKT1 3.8x10-2 1.0 

227892_at PRKAA2 3.8x10-2 1.0 

226156_at AKT2 5.0x10-2 1.0 

225471_s_at AKT2 5.5x10-2 1.0 

Table 4-1 Summary of the results for the gene expression variance in the Mexican 

discovery cohort. In the discovery data set of Mexicans (n=64), 13 probes 

representing 9 genes reached a nominal significance and of these ACSBG1 

passed the multiple testing correction (p-value <0.001). Column “Adjusted p-

value” shows the Bonferroni corrected p-value for the two-sided test after 

1,000 permutations. Genes with a p-value ≤ 0.05 were considered as 

promising candidates and they were subsequently tested in the replication 

data set. 
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Table 4-2 Variance of gene expression in the METSIM replication cohort 

Gene p-value Adjusted p-value 

ACACA 2.5x10-3 2.0x10-2 

ACLY 2.0x10-4 2.0x10-3 

ACSBG1 <0.0001 <0.0001 

AKT1 1.0 1.0 

AKT2 0.20 1.0 

AKT3 1.5x10-2 0.10 

PRKAA2 7.8x10-3 7.0x10-2 

PRKAB2 0.20 1.0 

PRKAR1A 0.30 1.0 

Table 4-2 Summary of the results for the gene expression variance in the METSIM 

Replication Cohort. Three of the nine nominally significant genes from the 

discovery cohort were replicated in the METSIM cohort (n=68). Column 

“Adjusted p-value” shows the Bonferroni corrected p-value for the two-sided 

test after 10,000 permutations.  
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Figure 4-1 Genes in the lipid metabolism pathway that display context-dependent 

expression variance in the Mexican cohort  
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Figure 4-2 Genes in the lipid metabolism pathway that display context-dependent 

expression variance in the METSIM cohort   
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Figure 4-3 Variant rs34272903 is a ve-QTL for the ACLY gene in the METSIM cohort 

 

 
 

Gene RsID Cor p-value 
p-value 

(Permuted) 
FWER 

ACLY rs34272903 -0.25 4.2x10-6 1.0x10-4 1.0x10-4 

The first two columns indicate the gene ID and SNP ID. Then we report the 

Spearman correlation between the distance measure and genotype (Cor), p-value, 

permuted p-value (not controlled for multiple testing), and permuted p-

value controlled for multiple testing across the SNPs (FWER). 
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CHAPTER 5 

CONCLUSIONS 
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Given the importance of understanding the genetic architecture of complex diseases, we 

aimed to dissect lipid GWAS loci and uncover additional sources of phenotypic heterogeneity 

underlying dyslipidemias. Taken together these studies explore several molecular mechanisms of 

gene regulation, including the effects of common variants on gene expression, transcription factor 

regulation, and metabolic signaling to chromatin. This latter represents a type of gene-environment 

interaction, first described as “decanalization” by Waddington1 in 1942. 

Since the early 2000s, GWAS has become the method of choice for the genetic analysis of 

complex traits. A majority of GWA variants are located in non-coding regions and likely located 

in regulatory elements such as transcription factor binding sites (TFBS), splice sites, and/or 

enhancer sites. Hence, fine-mapping studies, elucidating the associations between GWAS variants 

and regional genes using molecular phenotypes and cis-eQTL data are urgently needed. Chapter 

2, “Molecular Characterization of the Lipid Genome-Wide Association Study Signal on 

Chromosome 18q11.2 Implicates HNF4A-Mediated Regulation of the TMEM241 Gene”, 

describes our findings at the chromosome 18q11.2 GWAS TG locus2. First, we found nine variants 

in linkage disequilibrium (r2>0.7) with the lead GWAS SNP, rs99496173. We annotated all 

variants with biochemical evidence of molecular function using DNase I hypersensitive sites and 

transcription factor and chromatin states. We found rs17259126 as the top candidate variant for 

functional in vitro validation. Our luciferase assays provided evidence that the G allele exhibits a 

significantly lower effect on transcription (P<0.05) than the wild type allele, suggesting that the 

variant has regulatory potential. Gene expression regulations can occur through several 

mechanisms. Using electrophoretic mobility shift and ChIP-qPCR (chromatin 

immunoprecipitation coupled with quantitative polymerase chain reaction), we found that the 

minor G allele of rs17259126 disrupts a hepatocyte nuclear factor 4 α-binding site. Overall our in 
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vitro validation confirms that rs17259129 is a regulatory variant. However, these assays do not 

provide insights into the underlying gene. We performed variant-expression association analysis 

using cis expression quantitative trait locus (cis-eQTL) analysis and found that rs17259126 

regulates the expression of the regional transmembrane protein 241 (TMEM241) gene in 

subcutaneous adipose RNAs from the Metabolic Syndrome In Men4 (METSIM) cohort (p-

value=6.1x10−7-5.8x10−4). We also replicated this result using the adipose microarray expression 

data from the British Multiple Tissue Human Expression Resource5 (MuTHER; n=856) cohort. 

A majority of susceptibility variants reside in non-coding regions and are likely to affect 

gene regulation via disruption of functional elements, such as TFBS. In chapter 3, “Genome-wide 

profiling of context-specific RORA binding sites provides a catalog of transcriptional targets 

associated with lipid metabolism in the human liver”, we present preliminary results for the 

mapping of genome-wide RORA TFBS using chromatin immunoprecipitation followed by 

sequencing (ChIP-Seq). These results represent an initial attempt to map genome-wide targets of 

RORA in human liver cancer cell line, HepG2. RORA is an HDL-C GWAS gene in Mexicans6 

and a known regulator of the apolipoprotein genes, APOA5, APOA1, and APOC3.  

Despite the successfully discovered lipid GWAS loci, it is clear that variation at these 

known GWAS loci explains only a small proportion of the trait heritability. Non-additive 

contributions to phenotypic variation in lipid traits are currently under-investigated in quantitative 

genetics. One example is the gene-environment interaction that may occur with toxic metabolic 

signaling to chromatin7. This process has the potential to uncover cryptic genetic variation. These 

kinds of gene-environment interactions can underlie the “missing heritability.” In chapter 4, 

“ACLY may mediate decanalization of lipid metabolism pathways via histone acetylation”, we 

investigate a specific type of the gene-environment interaction called “decanalization” and its 
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contribution to phenotypic variance in TG metabolism. We found that individuals with low TGs 

displayed a greater ATP citrate lyase (ACLY) expression variance than the individuals with high 

TGs (p-value= 2.0x10-2). This result was replicated in the METSIM4 adipose RNA-Seq cohort 

(n=335) (p-value=1.8x10-3). ACLY encodes the primary enzyme responsible for the synthesis of 

nuclear and cytosolic acetyl-CoA, which is important for the biosynthesis of fatty acids, a 

precursor of TGs. Using a correlation least squared (CLS) test8 to uncover SNPs associated with 

ACLY expression variance, we found that the reference allele of variant rs34272903 (T/C) is 

associated with increased ACLY expression variance (FWER p-value=1.0x10-4). However, we 

were not able to replicate this result in subcutaneous adipose tissue RNA-Seq data of the GTEx 

cohort9, likely due to the genetic heterogeneity and confounding caused by the postmortem nature 

of this cohort.  

CONCLUDING THOUGHTS 

The discovery of DNA as the hereditary material was published by Avery10 in 1944, four 

years after Waddington published11 his theory of the “epigenetic landscape” and two years before 

he introduced the term “epigenetics” in 19421. Ahead of his time, Waddington’s theory of 

decanalization was a mechanistic hypothesis of a gene-environment (GXE) interaction.  

Epigenetic mechanisms of decanalized phenotypes 

  

Molecular epigenetics is believed to mediate the interplay between biological systems and their 

environment7,12,13. Environmentally derived metabolites can act as signaling molecules to 

chromatin, which may lead to chromatin remodeling and gene expression changes7. Under normal 

structural canalization, molecular epigenetics provides an organism the ability to make “quick” 

adaptations to the changing environments. Environmental toxicity may, however, induce initial 

epigenetic changes, which can also change the system’s engagement with the environment12. This 
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new relationship may induce further epigenetic changes, which can lead to endogenous changes at 

multiple levels12–14. Systems biology approaches to understand complex disease should better 

account for these types of complex relationships that likely exist between organisms and their 

environment.  

The connection between metabolism and epigenetically controlled gene expression 

Our finding that ACLY exhibits context-specific expression variance may be an example 

of a metabolic signaling to chromatin7,15,16. ACLY mediates the conversion of citrate into nuclear 

acetyl-CoA, a necessary substrate for histone acetyltransferases. Changes in acetyl-CoA 

production are known to affect histone acetylation and gene expression7. ACLY, in this case, may 

act as a direct regulator of gene expression with or without the intervention of a local genomic 

variant. By modulating the levels of histone acetylation, ACLY may modulate the expression of 

entire networks of lipogenic enzymes (including its own expression), leading to a 

canalized/decanalized network and phenotypic variability (Figure 5-1). The regulatory action of 

ACLY on the chromatin state can help elucidate cryptic genetic variation, which may act 

synergistically on the phenotype. Our results show that both in the Mexican17 and the METSIM4 

cohorts, individuals who have low serum TG levels exhibit higher variance in ACLY expression 

when compared to the individuals with high TG levels. This increased variability in ACLY 

expression may contribute to a spectrum of responses necessary for buffering environmental 

stressors12–14, a robust equilibrium18. Similar conclusions have been reported for human 

neurological diseases19,20. Since the early 2000s, GWAS has become the method of choice for the 

analysis complex traits, but the effect of toxic metabolic signaling to chromatin and the effect it 

may have in uncovering cryptic genetic variation are under-investigated and may in part underlie 

the “missing heritability.” Future studies can aim to identify specific signatures of acetylation in 
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patients with low and high serum TG levels. Characterization of ACLY acetylation signatures may 

thus help identify regulatory pathways and genes involved in TG metabolism.  

 

 

 

Figure 5-1 ACLY mediates the conversion of citrate into nuclear acetyl-CoA, a cofactor 

for chromatin remodeling enzymes. 
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FIGURE LEGENDS 

Figure 5-1 ACLY mediates the conversion of citrate into nuclear acetyl-CoA, a cofactor for 

chromatin remodeling enzymes. 
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