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ABSTRACT

Measuring the thermal performance of walls ip-situ poses two separate problems: 1) how to nmeas-
ure time-varying surface temperatures and heat fluxes on both sides of the test wall and 2) how
to reduce this data set into a minimal number of parameters that effectively characterize the
wvall. In this paper we present s aethodology for interpreting field measurements of wall per-
formance and describe an instrument developed for carrying out such measurements. The method is
a simplified dynanic model that uses a small nuaber of simplified thermal parameters (STP) — a
steady~state conductance, a time constant and a few surface storage terms —~ to describe the
termal performance of a wall. We demonstrate the ability of this model to simulate actual wall
performance by comparing model predictions with results generated from conventional response-
factor methods. The {instrument developed for field messureaments is the Envelope Thermal Test
Unit (ETTU), which consists of two four-foot by six-foot blankets placed on either side of the
test wall that are used to both measure and control the surface heat fluxes and surface tempera-
tures of the wall. During a typical test, which lasts about 12 hours, one blanket imposes a
specified flux through one surface of the test wall while the resulting heat flux on the other

surface and the surface temperatures on both sides are measured. The model presented here can
~ be used for both laboratory and field measurements aund may be applied to any component of the
building envelope.

Keywords: thermal performance, dynamic performance, field measurement, modeling.
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INTRODUCTIOR

The thermal performance of building walls, in situ, is largely unknown. Until now, most wall
performance measuremeats have been done in laboratories, typically by using large hot-boxes.
In=situ performance is considerably more difficult to measure, for the experimenter usually has
little control over temperature, solar radiation, or wind conditions. The task of accurately
seasuring surface temperstures and hesat fluxes ever significant lengths of time is mot easy.
Furthermore, ouce measurements have been obtained amalysis of the data is not a trivial matter.
As illustrated by a review of measurement techniques and wall performsnce models compiled by
Cnrtoll.l most existing models contain too msny parameters to be suitable for direct amalysis.

A simplified model of dynamic thermal performance that allows the characteristics of a wall
to be quantified on the basis of measured surface temperatures and heat fluxes has been
developed. The model uses a set of simplified thermal parameters (STPs) to characterize the
thermal performance of walls from af arbitrary temperature history. In addition, the STPs can
be used to arrive at a physical interpretation of the behavior of a wall. This model is appli-
cable to any set of data. In this report, however, its applicaton to the analysis of data col-
lected by the Envelope Thermal Test Unit (ETTU), is demonstrated. Accordingly, laboratory meas-
urements using ETIU are included as part of the validation procedure.

BASIC HEAT-TRANSFER MODEL

Any model that purports to describe the transport of heat through walls must begin with the
basic principles of heat conduction through solids. Accordingly, the derivation of a wall model
will be begun vwith the fundamental equations of thermal conductiom; the results will be speciai-
ized until the model has been endowed with sufficient richness to describe actual walls.



Heat conduction across any homogeneous slab of building material can be regarded as onme-
dimensional if corner effects and thermal bridges caused by studs, cavities, and other inhomo-
geneities are neglected. This common assumption, although not always relisble, will be adopted
for this purpose. '

The one~dimensional heat conduction equation,

AMx,t) | o bzr(x,:) "

where: T(x,t) is the temperature distributionm in the alab (°C)

d is the thermal diffusivity (m 2/s)
x is the position in the wall (m) and
t ia the time (s)

goveras heat transfer at any point of the wall at any time.

Many numerical methods exist for solving this equation for actual, multilayered walls; these
include a variety of response-factor methods2s3 and methods based on frequency transforms, some-
times referred to as admittance methods.’~% Most numerical wethods were developed for calculat-
ing heat flows and/or temperstures at one or both surfaces of walls whose compositions are
known. The field measurement of the thermal performince of a wall poses the opposite problem:
temperatures and heat fluxes are measured, but thermal properties are unknown.

In principle, one could simply take any existing nimerical model and fit its parameters to
the messured data. The values of the parameters yielding the best fit would then be the experi-
mentally determined thermal properties of the wall. Unfortunately, this approach usually fails
because of the aexcessive number of parameters (or degrees of freedom) in most numerical
methods.” In addition, parsmeter vslues determined by experiment fit the data but are, of them—
selves, unphysical (e.g., have the wrong sign, etc.). Notable exceptions are lumped~parameter
models with undetermined values for the resistors and capacitors of which they are composed.
Generally speaking, the order of these models is determined by the number of capacitors. For a
limited range of boundary conditions, first order models are often sufficient to model heat
fiows in walls and entire buildings to satisfactory accuxacy.a

The model presented here is particularly suitable for the analysis of measured heat flux and
temperature data. Like lumped-psrameter models, it uses digital filters (see definitions
below), but it is not restricted to the class of filters that represent actual resistance~
capacitor networks. The following paragraphs summarize the results derived in the appendix for
both homogeneous and inhomogeneous (i.e., the general case ) walls.

Homogeneous Huils

As shown in the appendix, Eq 1 can be solved for a homogeneous wall (i.s., single layer), whose
thermal properties are independent of temperature, in the following integral form:

o,
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vhere: J1 , Jz

are heat fluxes (W/m2) at surfaces 1 and 2* of the homogeneous wall
1!, 12 are temperatures (K) at wall surfaces | and 2

r!, P2 are the normalized temperature filters (K).

/] is the conductance of the slab(W/mZ-K)

n, is & summation limit large enough to contain all the frequencies of interest

The "homogeneous™ hest fluxes are defined as:

Il(e) = 3¢0,8) = = 1in U L Pr(x,2) (3.1)
x=»0

J2(e) = = J(L,2) = 1im U L VI(x,t) (3.2)
x=>L

vhere: L is the thickness of the slab (m).

The tpentufe filters are defined as:
(1,2) 2 @ =5’ a,2) (1,2)
.t (e) -"?{ e Crthe? (o= 1 (et ) e’ B CY)

vhere: ** is the time constant of the material (s) (see appendix).

The terms Fﬁl'z) are called filters, because they filter the past history of the tempera-

tures in such a manner as to eliminate "fast”" frequency components and leave "slow" frequency
components unchanged. (Filters having this property are called "low-pass filters.") The separa-
tion between "fast" and "slow" is determined for each filter by the frequency component with
time constant 'r/nz. Note that the first term in Eq 3 above ia the steady-state heat flux,
(UMAT). The second term represents a correction to the steady-state heat flux caused by thermal
storage (it disappears for massless walls as the time constant approaches zero).

Inhomogeneous Walls

Because real wvalls can rarely be treated as homogensous, more complex models are necessary to
describe them. The classical approach is to break up the wall into homogeneous layers and to
apply the homogensous solution to esch layer, being careful to match boundary conditions at each
interface. Unfortunately, this cannot be done in closed form for arbitrary layers (or for
multi~dimensional walls, materials .with time-dependent properties, and nonlinear components).
Therefore, an empirical generalization of the homogeneous solution’s proposed; specifically, the
coefficients in front of each filter are sllowed to be free parameters (as opposed to being

* The surface heat fluxes have been defined as positive when they flow
into the wall.



fized as in the howmogeneous case). This is equivalent to adding to the homogeneous solution
terms that are proportional to the filters:

o
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ey « sle) « 0 3 o Fleo) (5.1
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ey =« 320) + 20 3 b Fi(E) (5.2)
n=1
where: a4, b, ~ are dimensionless surface storage parsmeters,

is the "order"™ of the model
T2
Jtis are the gensralized fluxes.

The parameters &, and b, have been called surface storage parameters, because they describe
the effective amount of thermsl storage that takes place on esach surface of the wall relative to
a homogenous wall. Since the solutions J are the homogensous solutions, the general solution
must have all of the surface storage factors equal to sefo; that is, for a homogeneous wall,

‘h - bl L] (6)
and the gensral solution becomes the solution for s homogensous wall.

Ic an actual test wall, the further the test vall is from being homogeneous, more the the

values for a,, b, will differ from zero. An example is s two~layer wall composed of light, very

. resistive material snd amother massive, but very conductive, material. As will be seen in a

later section, these semi-empirical constsuts cam be transformed into the wore familiar response
factors by applying a set of algebraic relations.

This completes our set of Simplified Thermal Parameters. There are two basic parameters (U
sod T ) and two sdditionsl ones for every additional order (i.e., a,, b,), making a total of
2+42n, STPs. '

Discrete Time Intervals

The equations so far derived are strictly valid only for temperatures and heat fluxes that are
continuous functions of time. In any practical applicationm, however, data will be obtained at
discrete time intervals. Let us now trassform these equations into discrete time-step equa-

tions:

Jl-:‘ozu?. r! (7.1)

L amy B OE - .
n

Zesew ng-l b, 72, (7.2)

vhere: .Jl(‘l'z) sre the measured discrete hest fluxes at t=kW\: (y/m2)
_{‘(‘1'2) are the homogensous discrete fluxes (W/m?)

_P‘(‘:’z) are the discrete filters(Kk) end
Ar is the time increment between mesasurements (s)

b=



The discrete homogeneous fluxes are as follows:

n
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In order to evaluate these digital filters, one must make some assumption sbout the behavior
of the temperature during the time intervals separating measurements. A most reasonable sssump-~
tion is that the temperature is linear between measured points; then, the filters become,

-3,) o
(1,2) . - 2
rnk ) .__zn s ( r(lgz) r“ ) )Pnj | ) (9)

%a j=0 k=3 k=~j-1

wvhere: 2

e B
-} J
b - [%"]

Digital filters of this type are conventionally called infinite impulse response filters and can
be represented by a recursive relation that allows the current filter value to be calculated
from the current temperature and the previous value of the filter:

(-3
(1,2) (1,2) n (1,2) _ »(1,2)
. pn ) J + 3 ('rk T )

a(k=1) k=1 (10)

Relation to Response Factors

Many building simulation models calculate the dynamic performance of walls with so-called
response factors. Response factors are a series of weighting factors that multiply past tem—
peratures to obtain present heat fluxes:

. - Y.72 . (11.1)

- YT . (11.2)

wvhere: xj,

Y;, 2; are response factor series (W/mZ-K),

Remember that both heat fluxes are positive vhen heat flows into the vall.‘ In practice, the
summstion stops long before j*m. Typically, 20 to 30 terms are sufficient, and several elegant
mathematical shortcuts are available to further reduce the required number of terms.? Response



factors for large values of j have constant common ratios:

X. Y. Z.
ok L2 R .2 W L2 Y  for §>>1 (12)
xj Yj zj c

where: R, is the common ratio (0 <R, < 1)

To find expressions for the response factors as functions of the coefficients of the model,
one may start by rewriting the digital filters:

\ |
- -3) o .
20,0 1P (b)) o p 3 2L, amn

k k : k=j

By inserting these ex [tesnom into Eqs 7, inverting the order of summatiom over j and n, and
collecting terms in r , one find the desired relations separately for j=0 smd for j>0

2
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vhere: 55, Z.j- Ej are the response factors for the "homogeneous" wall and
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Note that the common ratio is related to the time constant:

2 ‘%-" ' (14)

By using Eqs 14 with measured STPs, one can calculate response factors determined by meas-
urement, as opposed to response factors determined by prediction, and use them in conventional
building simulation models. Even though a given set of STPs is sufficient to calculate a con-
sistent set of respoanse factors, a given set of response factors may not be converted easily



into STPs, except for the U~value and the time counstant:

© @® 0
U= 35X = 3Y. = 52, (15)
j=0 3  j=0 3 jeo !
*"."T;A(:—c'y (16.1)

SAMPLE APPLICATION

To summarize and demonstrate the model presented sbove, it will be applied to a wall whose ther-
mal properties are known exactly. From these properties the flux for some suitable temperature
history will be calculated. (This is an illustration ounly; if the composition of the wall to be
tested was known, its response factors could be computed using conventional methods.) The
hypothetical wall consists of (from outside to inside) an outdoor air film, 4 in. (102 mm) face
brick, 3/4 in. (19 wm) air space, 2 in. (51 wm) insulation [R~4 per inch, 5.7 1b/ft3 densityl,
3/8 in. (10 mm) gypsum board, 1/2 in. (13 mm) plaster, and an inside air film.

A temperature history has been generated, consisting of a vhite-noise spectrum added to some
low frequencies, as shown in the top half of Fig. 1. Using the response-factor method, the heat
fluxes at both sides of the wall have been calculated as a function of time. This "synthetic”
data set for a wall is guaranteed to behave exactly as heat-conduction theory predicts (as
opposed to an actual wall, in which air leakage, convection in cavities, temperature dependence,
and lateral heat flow may significantly alter performance). Applying the model to this syn-
thetic data set, one obtains the parsmeters shown below: ‘

u(w/m?-Kx]
0.61

ﬂht] .1 bl lz bz
4.11 8.44 -0.48 -2.3 1.45

The U~value can be compared to the calculated value of U=.60 and the time constant to 1%4.22 as
calculated from the common ratio of the wall’s response factors.

Since this is a hypothetical wall, one cam compare the response factors used in gemerating
the data to the response factors derived from the model. The table below gives a representative
sampling of the response factors; the left-~hand set is calculated using conventional methods
based on layer~by-layer thermal properties; the right-~hand set is derived from the STPs
extracted from heat fluxes and temperatures of the hypothetical wall.

TABLE 1
Sample Response Factors for Hypothetical Wall

Delay Calculated[W/n2-K] Predicted (W/m2=K]

(hrs.) X Y Z X Y 2
1 -.122 .0007 -.096 -.102 -.0001 -.082
2 -.081 .0032 -.043 -.077 .0022 -.027
3 -,063 .0042 -.020 -.064 .0041 -.012
5 -.039 .0036 -.004 -.041 .0039 -.003
10 -.011 .0012 -.000 -,012 .0013 -.001

Delay=0 is the current point.



-

At first sight, the degree of correspondence between the two sets appears modest; however,
when comparing sets of response factors, besr in mind that two term-by-term expansions of sets
of response factors can look quite different yet produce very similar fluxes for a given tem-
perature history — becsuse of the redundancy inherent in the large nwmber of terms involved.

The wide ramge of Aeffet_:tivciy similar response factors can be understood by comsidering the
number of free parameters inherent in a respouse~factor aspproach. It is oot uncomamon to keep
100 sets of response factors for a wall, giving a total of 300 free parameters; by comparisonm,
the STP approach always uses fewer than 10 free parmmeters. Thus, there is quite a bit of
interdependency in the response—factor spproach; that is, for any arbitrary degree of accuracy,
there are many sllowsble combinations of response factors that will describe the same wall.

Possibly the most important fact resulting from this illustration is the kind of tracking
displeyed in Pig. 1. During nine hours in the early part of the test, temperature differences
and heat fluxes were relatively large and slowly varying. At the outset and doring the second

"half of the test, . :

the opposite is true: fluctuastions of temperstures and heat fluxes dominate, while their aver-

- ages are comparatively small. In other words, the perameters of this model cam be used to

predict the thermal performsnce of walls over a wide frequency band. This characteristic is
important if the same modeil is to be used to calculate the effecta of outdoor temperature, solar
radiation, and indoor furnsce pulses.

Obtainigg Model Parameters from Heat Flux end Temperature Data

So far, a wodel vhose parsmsters (betwsen four and eight, depending om the wall) are determined
from measured: histories of surface tamperatures and heat fluxes has been presented. In princi-
ple, the parsmeters are obtained by fitting model Eq 7 to the sctual data. For example, an ini-
tial guess of the wall parameters could be used to compute heat fluxes from the measured tem—
perature data. The error of this guess could be quantified by RMS deviation between computed
and measured hest fluxes. The best—-fitting valuss of the wall parsseters would then be found by
progreassively varying the initial gussses until the smallest RMS deviation of heat flux was
found. .

Unfortunately, this procedure can only yield physically mesningful values if the measured
time series points are sutually independent (i.e., if a measurement of heat flux and temperature
at one time is independent of the same measurement at previous times). Since this independence
does not exist in this application, the model parameters must be fitted in the frequency domain
rather tham in the time domain. Prequency components of time histories of heat flux end tem-
perature are linearly independent and very quickly calculsted using Fast Pourier Tramsform
methods. Since these fitting methods are somewhat peripheral to the wmodel itself, their
description has been relegated to the appendix.

MODEL INTERPRETATION

The ability of a model to reproduce measured data is only ome facet of its usefulness — the
other is the ability to effect a physical interpretation of its parameters. The most important
parameter of any wall is its stesdy-state U value, and, not surpridingly, the most important STP
for common use is U. The next most important parsmeter of a wall is the time constant. The
time constant, +, is a measure of how long it takes for a heat pulse on one side of the wall to
be felt on the other side of the wall; it is related to the U~value and the thermal mass of the
entire wall.
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The time constant of a wall serves as s yardstick when oue speaks of quickly or slowly vary-
ing temperatures: quickly varying temperatures complete one cycle in less than ome-fifth of a
time constant, while slowvly varyiang temperatures take several time constants to complete one
cycle. For slowly varying temperstures the thermal properties of the wall can be adequately
approximated by a steady—-state amnalysis. .

The remaining STPs are the surface storage factors; these factors can be used to qualita-
tively estimate the variation of the wall surface from perfect homogeneity. That is, if the
storage factor for one side of & wall is much larger than zero, that surface has more mass than
does the wall as a whole; couversely, a negative storage factor means that there is more resis-
tance (less mass) on that surface.

This effect is apparent in the hypothetical wall used to illustrate the model. On the out-
side face of that wall (side 1 in Fig. 1) is a four in. (102 mm) layer of face brick; since this
layer comprises the bulk of the thermal mass, we expect the first surface storage factors to be
positive on side one and negative on side 2. This is, in fact, the case: 2;=8.44 and by=-.48,

ENVELOPE THERMAL TEST UNIT

To measure time histories of temperasture and heat flux of actual building walls, a portable
spparatus has been developed, the envelope thermal test unit (ETTU). The design of this device
has been described in an earlier article.l® ETTU differs from a standard guarded hot~box in two
respects: (1) it is portable and thus can be used for on-site testing of actual building walls;
(2) it measures the wall temperature response to known heat flows, as opposed to measuring heat
flows in response to given temperatures. The physical arrangement of ETTU is shown schemati~-
cally in Fig. 2. Two identical "blankets™ are placed in close thermal contact with the wall to
be tested. Each blanket consists of a pair of 1.2 m by 1.8 m (4 ft.X 6 ft.) electric heaters
separated by a lov thermal mass insulating layer. The heater in contact with the wall is called
the "primary,” the qther is the "secondary.” Embedded in each heater layer is an array of tem—
perature sensors. The blankets cover the wall section under test and are slightly flexible, so
that they can be made to conform to mimor irregularities in the wall surfaces. Although we
recognize the problem of very uneven ocuter surfaces (e.g., shingles), the curreant version of
ETTU does not attempt to address them; future versions of ETTU will consider these problems.

ETTU can be operated in two wmodes: in the first mode, the heat flux through one surface of
the test wall can be specified accurately and a steady—state temperature difference can. be
created across the test wall. In this mode, the two blankets of ETTU play active and passive
roles in the "active” blanket, heat flux is provided to the primary heater according to a user—
selected, time-dependent function that covers the required frequency spectrum. At the same
time, the secondary heater is used as a guard, with a control strategy that minimizes the tem—
perature difference (and thus the heat loss) across the active blanket. The electrical power -
dissipated by each heater is controlled by adjusting the current flowing through the heater.

The passive blanket on the opposite side of the wall is used as a large-area heat-flux sen-
sor: its heaters are not energized, but the difference between primary and secondary temperas—
tures, in conjunction with the blanket thermal properties, is used to measure the heat flow of
the wall on the passive side.

In the second mode of operation, the secoundary heaters are unused and both primary heaters
are independently driven. In this symmetric mode, there is little or no steady-state tempera-
ture difference between the two wall surfaces and, therefore, little information about the
steady~state conductance; but, unlike the previous mode, a great deal of information is avail-
able about the transient thermal properties.

. -9-



A microprocessor-based data acquisition system is used to drive ETTU. It drives the surface
heaters, records all primary and secondary temperatures, and performs the necessary on-line
heat=flux cupuzation-.u To eliminate the effects of lateral heat transfer, analysis is res-
tricted to the central region of the blanket; in effect, the outer region of the blanket is used
as & guard. Fig. 3 shows the temperature sensor array on each layer, with the central region
delineated. )

MODEL VALIDATION

In order to validate the wall model presented earlier, one should be asble to (1) adequately
predict the fluxes from measured temperatures and (2) derive physically correct thermal wall
parameters. Furthermore, the measured temperatures and fluxes must have enough different fre-
quencies to insure that the process of fitting the data and finding the thermal parameters will
' be valid for any temperature history. Por this reason, the best driving strategies should con-
tain all frequency components typically encountered (i.e., a "white-noise" spectrum).

To test ETTU and to validate the model, & section of a wall was built in the authors”’
laboratory. The wall (from side one towards side two) was made of (3/4 in. (19 mm)) plywood, (2
in. (51 wm)) high~density rigid board insulation, and (1/2 ia. (13 =m)) gypsum board. The driv-
ing heat fluxes used by ETTU for this wall consisted of three sections of twelve hours duration
each. The first and third sections were symmetric white noise, and the middle section was white
noise with & DC offset. As can be seen from the charging behavior of the measured temperatures
and fluxes (Fig. 4), the first several hours of data are dominated by the imitial conditions;
because this wara~up ‘efa_‘.ect is undesirable in this frequency-based fitting procedure, the first
ten hours of data in the analysis, were eliminated reducing the data to 26 hours. A third-order
model (eight wall parameters) was used to process the data. The resulting STPs are shown below:

“[w/lz‘x] +{hr) ay bl | ag ﬁz a3 b3
0.64 1.69 2.06 0.26 -2.99 -7.49 7.58 -22.67

The U~value shown is to be compared with the U-value of 0.60 calculated from thermal properties:
data listed in the ASHRAE Handbook==1977 of fundamentals volume. The comparison between the
measured and predicted heat fluxes is shown in Figs. 5 and-6. Notice, again, the comparatively
good tracking ability both for the relatively steady period in the left half and for the highly
variable periods at the beginning and end.

One-sided Model

The model development and validation has concentrated on so-called "two~sided” walls-that is,
walls for which the heat flux is measured on both sides. In many experiments and for many
applications, heat flux data is asither recorded nor required for both sides of the wall. (Nor-
mally, the "outside” flux is the one missing.)

If the measurement is single-sided, only the storage factors for the measured side can be
determined. The two most important parsmeters (U_ and ), however, will still be determined by
the same procedure — albeit with less accuracy than for & two—-sided wall. Accordingly, there

will be n +2 STPs in a one-sided analysis.

-10-



As an example, . consider the data set shown in fig. 7. The measurements were made by a
cement associastion’s in Skokie, IL., using their dynamic hot=box.12 The walls consisted of 13 ma
exterior stucco, hollow-core concrete block, 19 mm furring strips, and 13 mm foil-backed gypsum
board. The Simplified Thermal Parameters for this block wall are:

UW/m?-x) +{hr] 2 ay
1.50 2.72 ' 6.54 =25.09

The U~value determined by the model is to be compared with the U-value of 1.2 W/m2-g reported by
the laborastory.

As shown in Fig. 7, the correspondence between predicted and measured heat fluxes is quite
good using a second-order fit (n =2). The discrepancy between the U~value calculated from the
data using the model and the other may be due to the fact that the measured fluxes used in the
model calculation came from a fluxmeter attached directly to the surface of the test wall; the
lab data use an 6verall hot—-box heat balance to calculate heat flow through the wall,

SUMMARY

This analytic technique; in conjunction with ETIU, can be used to evaluate the dynamic thermal
characteristics of walls in-situ. Clearly, the applicability of the model is not restricted to
field weasurements, nor is the data acquisition system restricted to ETTU. Data measured using
heat-flowmeter arrays or hot-boxes (both portable and laboratory-based) can be readily analyzed
to derive the STPs of a wall, or even of a roof or a floor section.

In the future, ETTU will be used on a representative sample of walls to compile a catalog of
STPs that can be compared to their theoretically calculated counterparts. In addition, field
measurements vill be continued in order to shed some light on the effect of different kinds of
insulation retrofits and the age of the wall on its thermal performance, since either may cause
measured and theoretical performamce to differ markedly.- Such measurements should shed some
light on the effectiveness of differemt kinds of insulation retrofits and on the effect of age
on wvalls.
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APPERDIX

Theoretical Derivations

BOMOGENEOUS WALLS

In deriving the equations used for analyzing the thermal performance of walls, the diffusion
equation will be presented that describes the thermal transport of energy through msterial — in
this case a homogeneous slab (i.e., a wall slab made up of a single layer of a particular
material): '

f2ae) o g 42Tz, ) (A1)

dxz ’

vhere: T is the temperature as a function of time and position [°C]
x,t are the spatial and temporal coordinates, respectively
d is the thermal diffusivity [(mZ/s]

In general, diffusivity can be a function of temperature, position, and time; for this
' application it is assumed to be constant. Furthermore, only a rectangular slab with one~
dimensional heat flow will be considered. Carslaw and Jaeger 13 show the solution of this boun=-
dary value problem in terms of the temperature:

T(z,e)=1_(x) a2
t 2 t° 2 '
[ - t
s e ¥ .iu(Ei'i).ra"Fn [r‘(:')-(-l)“‘r’(z') ] &
a=1 o
vhere: L is the thickness of the slab [m] )
'1'1, T2are the temperatures at the two surfaces [K]
+  is the fundsmental time conatant [s]

ro(;) is calculated from initial conditious below [K]

*-—L (A3.1)

e’ 2
- L .
T =2 ?l e T ain(a® Fr0x°,0) sin@]) ax’ (A3.2)
n= o .

The initial condition of the temperature can be removed by including the past history of the
surface temperatures (i.e., extend the integral to minus infinity). This allows a minor sim-
plification of the expression above:
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T(x,t) =
t’. 2

?0

(a4)

Vg

i (e=t*)=(-1)" 12 (e-t*) ] e

2n .. ofxy B -
-"—r sm(T) J‘ e
ns=] )
This expression sllows the temperature to be calculated at any position and at any time from
the past history of the surface temperatures. The goal, however, is to calculate the heat flux,
which is related to the gradient of the temperature, at the two surfaces:

Jx,t) = - o1 SHEL) ‘ (A5)

vhere: J is the heat flux [watts/m?)
U is the conductance [watts/m2-K]}

Because the evaluation of the gradient contains an infinite sum, one cannot take the derivative
before summing. Thus, one cannot, in complete generality, simplify the problem any further; ome
can, however, introduce a reasonable, simplifying assumption that will allow the derivation to
be continued.

The infinite sum indicated in the above equations is a sum over time constants, (¥/a) that
begin at the fundamental time constant + (i.e., n=!), and approach zero as the summation index
(n) gets larger. To be perfectly general all of these time constants must be included in the
analysis, but — a8 in any real experiment = there will be some minimum time constant below
which all time constants are no longer important;* this minimus time constamt implies a finite

maxiwum limit to the susmation, n,:

(-
n

o't

(a6)

vhere: n, is the mgximum limit of the susmation
t, is the minimum time constant [s]

While it is true that for sufficiently large n, each integral becomes negligible, those terms
cannot be ignored given that there are an infinite number of them. However, because the tem—
perature will not have changed appreciably until the exponential has become negligible, one can
treat the temperature as being constant for those terms:

.2 £ .2
@ - @ =
Fe T 1Dz Fe T (e aer (A7.1)
o o
- —:2' T(x,t) for u >> o (A7.2)

The infinite sum can be broken up into two parts at a,; leaving the first n, terms unchanged and

* The presence of a maximum frequency component (as is always the case:
for discrete data) implies & minimum time constant in the analysis.
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substituting the relation above for all other terms:

n, © - e’ 2 _ ;
Tx,t) = 5 Fk einEE) [ e L [r’(e-:') BRETLE I W (a8)
0l | : °

@ 2 _._ (ofix 1 a .1.2
0*1 fm L [ ]

The second sum can be simplified by using the following two trigonometric series:

® . .
g soé 7.2 (49.1)
n=1
.} - . .

$ (-preinmd. .2 (49.2)

n=l ‘

Therefore,
T e er-z- P a0 o
n-noﬂ a=1

[ -] . :
3 (-1)"‘2;.5.:(2{3) e-X. P (a2

3 sin(EFX%) 0.2

These two identities can be used to eliminate all summation terms above the cutpff:'

o
x,e) = The) - £ (xle) - THe) )+ E sin®E) = (a11)
Sre ¥t - D)) ae - (1) - (D E(eme))
o .

S8ince this form of the equation does not contain any infinite sums, one can differentiate
this expression and evaluste the derivatives at the two limits without having to explicitly
evaluate the suns.

e) = 3€0,8) =~ 15w © L Vrix,t) (A12.1)
x>0

I2(t)-= - J(L,2) = 1im-8 L VI(x,z) ' (A12.2)
=L

vhere: J1, J2 are the fluxes into surfaces ! and 2
‘!1, 12 are the temperatures on surfaces 1 and 2

Note that in the definition of these two terms the surface fluxes have been defined as positive
if they flow into the wall. Thus, the two surface fluxes may be expressed in terms of the his-
tory of the surface temperatures and the thermal parameters:
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n
[+
)y =v(rle) ~12e) ) + 20 3 ri(:) - (-1)® r:(:)

u=l (A13.1)
a
o
o) =u (i) - thHe) ) + 20 3 FAe) - (-1)® Pl(e) (a13.2)
n=l

where: rl, F2 are the normalized temperature filters [K]
(1,2) 20 =% g (1,2)
r 2 () -";{ e CtH2) ()= 212ty ) @’ (A14)

The Fs are called filters because they are equivalent to low-pass filter functions of time con-
stant +/n? for the past history of the temperature. HNote that the first term in each of the two
equations sbove is the stesdy-state heat flux, (UAT). The second term represents. corrections
to the steady-state heat flux arising from thermal storage — for massless walls, it disappears.

Since no upper limits were put on the value of a, in the preceding discussion, ome can allow
u, to become arbitrarily large so as to increase the precision of this approximation; in the
limit of n, = ©, the expressions become analytically exact. However, for most walls n <5 is

usually sufficient for approximating thermal performance under actual conditions.

FREQUENCY REPRESENTATION

All of the formulae derived above describe the thermal flux in terms of the change over time
of the surface temperatures. For some purposes (such as predicting fluxes from temperature his-
tories) this is the ideal representation, but for other purposes (such as calculating thermal
parmmeters from a set of fluxes and temperatures), an analysis in the frequency domain is better
suited, which can be done by Pourier-transforming Eq 13 relating temperature to flux:

n
o _
Hw =v (i) -Pw) )+ 20 3 ) - 1 2w (a15.1)
n=] ,
no .
Pw) =0 (PPw) -tHw) )+ 20 3 P2w) - (-D)® £l(w) (A15.2)
a=l ]
where: w is the angular frequency [rad/s]

J(w) is the amplitude of the flux at thsat frequency
P(w) is the amplitude of the filter at that frequency
T(w) is the amplitude of the.temperature at that frequency

The frequency components are related to their temporal counterparts .as follows:

o
3Dy o Foeives (1,200 g, (A16.1)
“a
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(1,2)0.y o B aivtg(1,2)
L3 (w) ;{; e F (t) dt

(A16.2)

1) o P oeiverLi)(e) g

(A16.3)

where: i = ‘Fl'

The equation for the filters can be simplified by using the defining relation for the filters:

. .t’ 2
. 20 - o @ .
{12y .[, -Zre T im a:'] J eVt D) g (a17)
o “®

The second term can be recognized as the Fourier transform of the temperature and the first term
can be reduced by simple integrationm.

F:l'z)(vr) '[-2;1-‘-'-!—-] ‘r(l‘z)(v) (A18)
a° = ivt

Thus, in the frequency domain, these filters are simply proportional to the temperatures,
greatly facilitating the determination of +.

In ,lny‘frequency analysis of a system there a set of transfer functions relate each of the
inputsa (T! and T2) to each of the outputs (3! and J2) and completely specify the system:

) = g1l - B2 Tw)

(A19.1)
2(w) = B2(wTA(w) - BT (W) (a19.2)
where: Hl is the transfer function for side 1
82 is the transfer function for side 2
H° is the transfer function across the wall
These transfer functions can be found from the Pbutier inversion:
™
Bw) =0 + 20 3 (=-1)? ..i'__l.‘.’.r_. : (A20.1)
a=] a° - iwt
1 S - iwt
B(w) m0+20 3 + (A20.2)
=] n° - iwvt
a, A
B(w) =U + 20 3 —z-'-i (A20.3)
o=] n° - iwvt

letting io-bm and performing the infinite swm in closed form:



‘ © -p T
sinh (=Tt ) (A21.1)

2 1 =
g apg’ =y (A21.2)
:-m(\l -iwt )

INHOMOGENEOUS WALLS

Thus far, the calculations have been for one-dimensional homogeneous walls; however, because few
real walls can be described as homogenous, the model must be corrected accordingly. This has
been done by applying correction terms to the lowest order filters of the homogeneous model.
There is uwo a priori reason for this generalization to be exact, and yet it works sufficiently
wall to use it as an approximate description of resl walls:

o™
) =3le) » 20 5 & Ple) (A22.1)
- a=1 o o
n- .
() = 2(t) + 20 5 b FAE) (A22.2)
- a=l nn i

vhere: J!, J2 ere predicted inhomogensous fluxes (W/m?) at surfaces 1 and 2
31, 32 are howogenous (uncorrected) fluxes (W/u?) at surfaces 1 and 2
n, is the aumber of correction factors

The homogeneous fluxes, gl, iz, are defined by Eq. Al5. Note that henceforth the notation X
_indicates that & quantity is from the homogeneous solution, rather than the general solutionm.

In terss of the transfer functions,

(w) = B%w) (A23.1)
1 1 " ivt
B (w) =8'(w) +20 3 a .1 (A23.2)
o=l "2’ - jwt
B3(w) = B3(w) + 20 ? by ivt (A23.3)
- p=l "af - ivt

vhere: H(w) are the homogenous transfer functions
H(w) are the corrected transfer functions

'Again, the homogeneous tramsfer functions, g_o, gl, g_z, are defined by Eq. A2l.
terms can be interpreted as surface storage factors that indicate the relative amount of storage

that occurs on the surfaces of the wall compared to the inmterior.

The correction
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The number of inhomogeneous terms can be estimated from the time constant snd some knowledge
of the highest frequency of interest (i.e., the highest frequency one is interested in duplicat-
ing accurately or, equivalently, the highest frequency expected in the data):

o - Voex T \ (A26)

vhere: Yoax is the maximm frequency of interest

COMBINING LAYERS

Transfer functions of a many-layered wall can be calculated from the transfer functions of its
" individual layera by conceptually using the flux out of one layer as the flux into the next
layer. Mathematically, this chaining process is a matrix multiplication of the appropriate com-
binations of the transfer functions. The general relations for calculating the combined
transfer function from two individual transfer functions is given below.
!' n"
oo
B & : (A25.1)
o H 2 + H 1
n’

g%, - H
8-1 =B ~H, n”o (A25.2)

. a" .
. o

where: H are the combined transfer functions
B’ are the first layer transfer functions
H’’ are the second layer transfer functions

Note that H’l and B°°, represent the exposed surfaces, while n'z and H®; represeat the surfaces
internal to the combined wall. : ' .

This combinatorial rule can be used in two ways. It can be used to calculate the exact
transfer function when the true thermal properties of all the component layers are known, and it
can be used to calculate the approximate thermal properties when two composite walls are being
combined.
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