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Abstract

This paper explores the ways in which resource
limitations influence the nature of perceptual and
cognitive processes. A framework is developed
that allows early visual processing to be analyzed
in terms of these limitations. In this approach,
there is no one “best” system for any visual pro-
cess. Rather, a spectrum of systems exists, dif-
fering in the particular trade-offs made between
performance and resource requirements.

Introduction

Consider a cat in its natural environment. If it is to
catch prey and escape from predators, the cat must not
only be able to process visual information, but must
also do so in real time. Its visual system is therefore
best explained not only in terms of limitations on the
information available to the eye, but also in terms of
limitations on other resources, such as time and space.

There is an increasing awareness - especially within
the more computational sub-disciplines of cognitive sci-
ence — that these more general resource limitations influ-
ence many kinds of perceptual and cognitive processes.
For example, Cherniak [1984] argues that classical log-
ics cannot form the basis for cognition because such
cognition is computationally intractable; this has led
to an examination of heuristics by which fast reason-
ing could take place [Levesque and Brachman, 1985,
Levesque, 1989). Similarly, Tsotsos [1987, 1990] has
argued that the processes of early vision must have
at most polynomial-time complexity if they are to be
carried out in real time. But although there is an
increasing appreciation of the role of resource lim-
itations (e.g. [Bylander et al, 1989, Kasif, 1986,
Rosenfeld, 1987]), no general framework for discussing
these issues has emerged to date.

'The work by R. Rensink was supported by NSERC
grant, via R.J. Woodham. Much of the work by G. Provan
was done at the University of British Columbia, under
NSERC grant A9281. The authors would like to thank Mar-
ion Rodrigues and Marc Romanycia for their comments on
earlier versions of this paper. Many thanks also to Bob
Woodham for his support of R. Rensink
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This paper discusses some of the issues that must be
addressed in developing such a framework. In partic-
ular, it focuses on the influence of resource limitations
on early visual processing. Marr [1982] has made a be-
ginning in this domain, showing how vision can be an-
alyzed in terms of constraints that allow good use to
be made of the information available in the image. We
will show how this framework can be expanded to han-
dle other kinds of resource limitations, yielding added
insight into the interconnections that exist among task,
algorithm and architecture. Since many of these issues
are general ones, the framework presented here will con-
tain elements that are also applicable to other areas of
perception and cognition.

Resource Limitations and Explanation

Many of the earlier analyses based on resource limi-
tations (e.g., [Norman and Bobrow, 1975]) focused on
limitations in the system architecture, for example, lim-
ited memory or channel capacity. These did not yield
the insights that had originally been hoped for; indeed,
it has been argued [Navon, 1984] that such limitations
are inherently incapable of leading to unequivocal in-
sights into the operation of perceptual and cognitive
processes.

But architectural limitations are not the only kind
that arise — more general limitations also exist, such
as limits on the available information, and on the time
and space allowed for a computation. These “processor-
indifferent” limits are potentially more powerful than
those based on architectural limitations, essentially de-
scribing the structure of the task itself.

Given that these general limitations must be taken
into account, how might they be used to analyze the
underlying mechanisms? One of the most successful
approaches to date has been the computational frame-
work put forward by David Marr [1982], in which visual
processing is analyzed in terms of constraints that al-
low good use to be made of the information available
in the image. In what follows, we will show that this
framework can be expanded to accommodate not only
limits on available information, but other kinds of re-
source limits as well, and that such a revised framework



can lead to a new understanding of several aspects of
early vision.

Marr’s Framework

According to Marr [1982], a complete analysis of a visual
process involves three distinct levels of explanation:?

1. Computational level. Analysis at this level is en-
tirely concerned with the specification of the task
itself. This consists of two parts: (i) describing the
constraints that exist between the input of a vi-
sual process and its output, and (ii) describing the
reasons why these constraints have been chosen.

2. Algorithmic level. This level views explanation in
terms of the representations and algorithms used
for the process. More precisely, an “algorithmic”
explanation is a constructive demonstration that
there exists a formal algorithm sufficient to perform
the required task.

3. Implementational level. This level is concerned
with the physical substrate on which the algorithms
are implemented. An “implementational” expla-
nation is a constructive demonstration that there
exists a physical system sufficient to carry out the
required computations.

One of the great strengths of Marr’s approach is its
recognition of a “computational” level of explanation,
in which emphasis is placed upon determining the what
and the why of the particular operations being carried
out. This has helped clarify our understanding of sev-
eral processes of low-level vision, including edge detec-
tion [Marr and Hildreth, 1980], stereopsis [Marr and
Poggio, 1979], and motion perception [Hildreth, 1984].
Consider, for example, the computational analysis of
stereopsis. Determining the what consists of finding the
constraints on the acceptable correspondences between
features in the left and right images, and constraints
on the form of the recovered surface. These constraints
must be sufficient to describe a unique mapping between
the image and the resulting map of disparity estimates.
Determining the why essentially consists of a demon-
stration that these constraints serve to allow a satis-
factory recovery of disparity estimates from the image
pairs.

Hence, the stereopsis problem can be seen as the spec-
ification of a mapping from a given set of image pairs
to a set of (reconstructed) surfaces. This mapping can
easily be described by its “extension”, viz., a list of the
pairings made between individual images and surfaces.
Such a description, however, does not really provide an
ezplanation for the process, any more than a list of plan-
etary positions over some given interval explains their
motions. Explanation must involve a description of the

%It is important to note that Marr considers explanations
at each level to be essentially independent of those at the
other two [Marr, 1982, Chapter 1]. For example, analysis at
the algorithmic level is not concerned with ultimate purpose
nor does it depend on any details of implementation.

“Invarlants”, or “deep structure” that underlie the par-
ticular mapping that is made. The constraints sought
for at the computational level provide exactly this kind
of explanation. To justify the choice of a particular set
of constraints (explaining why), requires showing that
the constraints lead to an acceptable set of associations
between image and scene in the world under considera-
tion.

But although Marr’s approach has helped explain sev-
eral parts of low-level vision, it has not helped in our
understanding of many others, e.g., color perception or
texture perception [Morgan, 1984]. For example, in tex-
ture perception, it is the resources available to the pro-
cessor (e.g. time and space) which are relatively scarce,
rather than the information in the image. Marr’s frame-
work cannot handle such matters, since the computa-
tional level of analysis (implicitly) assumes that percep-
tion relies on processors with unlimited computational
resources, °

Resource Limitations and Constraints

To see how these more general kinds of resource limi-
tations influence the operation of a visual process, it is
important to note that these limitations fall into three
main groups:

1. Projective limitations. The available information
in the image may be considered a basic resource
acquired by the sensors of the system; the limita-
tions on this resource stem from the way in which
the scene is projected to the image. The type and
amount of available information may strongly in-
fluence the kinds of computations that can be per-
formed; if so, the process can be characterized as
“data-limited” [Norman and Bobrow, 1975).

2. Computational limitations. A processor is also lim-
ited by many aspects of the way in which it oper-
ates, aspects which have no direct connection with
its physical composition. Although many of these
are specific to the particular computational archi-
tecture used (e.g., the particular set of elementary
operations available, bandwidths, etc), more gen-
eral ones also exist. It is this latter set of resources
— in particular the time and space required for a
computation — that will be considered here. Lim-
itations on these resources will be referred to here
as complezity limitations.

3. Physical limitations. A processor is also gov-
erned by limitations stemming from its physical
make-up. Again, many of these quantities re-
fer to the particular architecture of the proces-
sor. But limitations also arise from more gen-
eral consideration, such as the matter and en-
ergy required for a given task [Bennett, 1982,
White, 1988].

3Marr [1982) does consider efficiency to be important,
but only once the task itself has been laid out. As such, it
does not enter into the general analysis carried out at the
computational level.



In order to overcome these sets of limitations, a pro-
cessor must impose corresponding sets of constraints
on its operation. To completely understand a given
process, therefore, i1s to understand these sets of
constraints.* Thus, for example, in Marr’s framework,
projective limitations are the only kind the visual sys-
tem is considered to grapple with. To make up for
such lost information, a corresponding set of projec-
tive constraints® is needed on the mappings between
image and scene; essentially, these determine which of
the many possible scenes actually corresponds to a given
image.

But such “processor-indifferent” explanations need
not be restricted to invariants of the form of this map-
ping — there may also exist a set of constraints on the
algorithm and representation used to carry it out. More
generally, such “complexity” constraints describe the re-
sources used by a given process. This in turn limits the
kinds of mappings that can be made. To completely
explain the form of a mapping, then, both projective
and complexity constraints will usually be required.
Only when computational resources are unlimited (as
assumed in Marr’s approach) will projective constraints
alone be enough to explain a visual process.

Note that in Marr’s framework, no general constraints
are imposed on an algorithm, so that they often have
a large element of the ad hoc, being based on current
beliefs of psychology and physiology. But complexity
constraints can provide such general guidelines, thereby
substantially reducing the initial number of candidate
algorithms and thereby reducing the need for the ad hoc
element in any particular model.

A Revised Framework

A computational explanation of a visual process, then,
will include a description and justification of the pro-
jective, complexity, and physical constraints imposed
to handle the corresponding types of resource limita-
tion. ® Different levels of explanation still exist, but are
now based on the degree of generality of the constraints,
rather than on issues of abstract mapping, process, and
implementation:

‘In what follows, ‘limitations’ will be used when referring
to resource limits imposed on the system, limits over which
the process has no control (e.g. total amount of time, space,
energy, etc). These must be distinguished from ‘constraints’,
which are imposed by the system itself to make good use of
its available resources. When talking about a system, the
term ‘constraint’ will only be used in this latter sense.

5The term ‘projective constraint’ is meant to replace
‘computational constraint’ as used in Marr’s framework.
The alternate term is used to avoid confusion between con-
straints placed on the form of the “interpretation mapping”
between image and scene, and the constraints on the algo-
rithm used to compute it.

®In this paper, much of the focus will be on complexity
constraints, since projective constraints are relatively well
understood, and physical constraints add little (at least at
this stage of development) to what can be learned by dis-
cussing complexity constraints.
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1. Computational level. This includes not only the
projective constraints, but also those complex-
ity and physical constraints that are “processor-
indifferent”. Since the mapping from image to
scene is completely independent of the structure
of the processor, the constraints at this level must
be sufficient to uniquely determine its form.

2. Algorithmic level. This involves the more specific
complexity and physical constraints that are placed
on the “internal” structure of the system to give the
algorithm and representation a unique determina-
tion; since projective constraints have no further
bearing on this matter, they are necessarily absent
from this level.

3. Implementational level. Although not developed
here, it is apparent that this level concerns the re-
maining constraints on the particular system being

modelled.

Thus, the three levels of Marr’s framework are preserved
in large measure — analysis still occurs at each of the
computational, algorithmic, and implementational lev-
els. But the constraints required at the computational
and algorithmic levels of analysis have been tightened
up significantly, due to new sets of constraints. The
most important change, however, is that analysis is
based on the generality of the constraints. Since con-
straints on algorithms and implementation result from
both general and more specific constraints, this provides
an interesting linkage between mappings, algorithms,
and implementation.

Analyzing Vision Systems

The explanation of a visual process is essentially the
description and justification of the projective, complex-
ity, and physical constraints that govern its operation.
Since the use of projective constraints is already an inte-
gral part of “conventional” analyses, and physical con-
straints are not considered here, we will focus on the
way in which complexity constraints can be used to an-
alyze the operation of a vision system.

The theory of computational complexity (cf. [Garey
and Johnson, 1979]) can be used to formalize many
of the concepts pertaining to complexity constraints.
Specifically, it can define the time and space require-
ments of particular tasks, independent of the algorithm
or architecture. For the purposes of this paper, it is suf-
ficient to distinguish tasks which can be solved quickly
(e.g. the class P of tasks solvable within a time propor-
tional to some polynomial of the input size), from more
time-consuming tasks (e.g. the class of NP-complete
problems, which — in the worst case — require time that
increases exponentially with the size of the input).”

"It is entirely possible that the average resource use is
much more representative that the worst case situation, and
this may be used as one of the complexity measures. How-
ever, worst-case situations must still be dealt with.



Efficient use of resources

If the computational demands of a task exceed the re-
sources available, it is obvious that the task will need
to be reformulated. However, this reformulation may be
kept to a minimum by making efficient use of the time
and space that is available. As used here, the term “ef-
ficient" does not necessarily mean optimal; rather all
that is meant is that relatively little time or space is
wasted.

The efficient use of resources depends greatly upon
the choice of particular algorithms and representations
used in a process. However, there exist a few general
considerations that are relevant:

1. Parallelism. Perhaps the most obvious way of re-
ducing the time required for a task is to carry it out
in parallel. However, it must be noted that it is not
always possible for processes to take advantage of
parallelism — e.g., there can be no reduction in time
for Constraint Satisfaction Problems [Kasif, 1986],
since they are inherently sequential. Thus, if a task
is to take advantage of parallelism, it must be such
that most of its computations can be done locally.
But each of these local computations must operate
within the given time, and — taken as an ensemble
— they must also operate within the given space.

2. Resource trade-offs. The specification of a desired
level of performance does not uniquely determine
the exact resources necessary to attain it — trade-
offs between various computational resources can
still be made. One well-known example of this is
the trade-off between time and space: for instance,
look-up tables can be used instead of computing
values on demand. Thus, Goad [1983) presents an
object recognition scheme where the poses of ob-
jects are precomputed so that viewpoint determina-~
tion is speeded up. Alternatively, redundant coding
can often be used to decrease processing time (see,
e.g., [Arbib, 1987, pp 87-89]). Note that this use
of redundant representations contrasts with Marr’s
approach, in which the goal is to use nonredundant
(orthogonal) systems of representation as much as
possible.

3. A priori knowledge. One final consideration that
also enters into the efficient use of resources in vi-
sual processing 1s the possible use of “high-level” a
priori constraints based on the particular charac-
teristics of the objects in the scene. In many cases,
higher-level constraints could significantly reduce
the computational complexity of a process; if these
constraints could be selectively “loaded into” lower-
level processes, this could often achieve a consider-
able speedup of processing. The relation between
early vision and later levels of processing is a com-
plex one, and will not be discussed here, but it is
worth pointing out that if such “downloading” of
a priori knowledge does indeed occur, issues of re-
source use will prove to be critical for its analysis.

Performance trade-offs

Even though a process is as efficient as possible, it may
still be impossible to carry it out using the available
time and space. If so, the process cannot be used; it
must be replaced by one that does satisfy the resource
constraints. The efficiency of such “approximating”
processes is obtained by lowering the quality of the map-
ping between input and output. More generally, there is
usually a trade-off between the complexity of the map-
ping between image and scene, and the resources re-
quired to compute the mapping. Thus, depending on
available computational resources, the visual process
most suitable for a particular task can range from “tra-
ditional” processes that use unlimited computational re-
sources, to “quick and dirty” systems that require only
a small amount of time and space. Part of a compu-
tational explanation of a visual process is therefore to
specify what the particular choice of trade-off is, and
why it was made.

There appear to be some general aspects to the meth-
ods by which performance can be “gracefully” traded off
for reduced computational complexity, and it is likely
that these strategies will enter into many of the partic-
ular processes of early vision. A few of these strategies
(together will some possible applications) will now be
discussed in regards to the reduction of processing time.

1. Reducing quantity of input. In general, more infor-
mation requires more computation time [Levesque
and Brachman, 1985]. Thus, one way to reduce
time is to reduce the amount of data in the in-
put that has to be handled. For example, visual
search is an NP-complete problem, requiring time
that increases exponentially with the size of the
input [Tsotsos, 1987]. This time can be reduced
(see below) by taking advantage of the coherence
and uniformity of the world to represent the orig-
inal image by a smaller set of coarser-grained pat-
terns that could be comfortably handled with the
available resources. As the grain of these patterns
increases, the number of distinctions that can be
made in the input decreases; however, these dis-
tinctions may be quite suitable for many purposes.

2. Reducing quantity of ouiput. Given that compu-
tational complexity can be reduced by effectively
reducing the amount of information in the input,
a natural “dual” would be to reduce complexity
by reducing the amount of information in the out-
put. Such outputs would contain coarser-grained
descriptions of the more important aspects of the
scene. Note that this “coarse grain” need not al-
ways correspond to a diminished resolution in some
property such as spatial location or velocity of mo-
tion; instead, the “equivalence classes” of outputs®

8 An equivalence class is defined as the set of algorithms
and representations which carry out the same mapping
while using the same information content and computational
I€SOUIrces.



could be based on such things as topological prop-
erties. In a very general sense, then, these outputs
may be regarded as providing qualitative descrip-
tions of the scene. For example, in Marr's the-
ory it is assumed that the 3-dimensional structures
of objects in space are represented as point-by-
point mappings of local depth and/or orientation.
Such representations are computationally difficult
to compute, and it is possible that they are not
computed at all. Indeed, it appears that more qual-
itative descriptions — such as descriptions of affine
or ordinal structure — may provide all the informa-
tion that is required by subsequent processes [Todd
and Bressan, 1990).

3. Reducing quality of the mapping. Reducing the
information in the input and output of a mapping
is often sufficient to reduce complexity, but it isn’t
always necessary. For many processes, the avail-
ability of a spatiotopic array of processors is suffi-
cient to allow them to be carried out in constant
time. For example, a simple remapping of all in-
tensities in an image can be done immediately on a
parallel array, no matter how much information is
contained in the input and output. A process can
therefore trade off performance against complexity
by altering the nature of the mapping itself; essen-
tially, it is the quality of the mapping that is being
traded off. This is the strategy adopted in rapid
line interpretation (see below) — increased speed is
obtained by reducing the validity and global coher-
ence of the recovered scene.

Examples

To illustrate how resource constraints can help explain
various aspects of visual perception, we will briefly
sketch how this approach can be applied to two par-
ticular processes in early vision: visual search and the
preattentive recovery of three-dimensional orientation
from line drawings. If described in the “conventional”
way, 1.e., making optimal use of available information,
both problems are NP-complete. But the processes of
early vision are generally carried out within several hun-
dred milliseconds, making it unlikely that these prob-
lems can be formulated in this way. This suggests a shift
in the way these processes should be viewed: instead of
making optimal use of information, they appear instead
to emphasize “quick and dirty” performance.

Visual Search

One of the first treatments of complexity in early vi-
sion was that of Tsotsos [1987, 1990], who analyzed the
process of visual search. Here, the problem is to deter-
mine as rapidly as possible the presence or absence of a
known target pattern in an image. Tsotsos showed that
if optimal decisions are to be made, this problem is NP-
complete, requiring an exponential amount of time in
the worst case. This is at odds with evidence that many
kinds of targets can be reliably detected within several
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hundred milliseconds, while others require a time di-
rectly proportional to the number of items in the image
(e.g. [Treisman and Gormican, 1988)).

The first step in the analysis is to determine the ex-
tent to which time and space can be reduced while main-
taining optimal detection performance. Tsotsos shows
that hierarchical coding can help to minimize the re-
sources required, but that the problem still remains NP-
complete, since the target must be compared against all
possible aspects of all possible subsets of the image. If
visual search is to be carried out rapidly, this can only
be done for a select group of image subsets (or equiva-
lently, a select group of target patterns).

Even by defining preferred patches as convex patches
with uniform properties (arising from the convexity and
uniformity of objects in the physical world), the time re-
quired is still too high to be compatible with the com-
plexity constraint. Consequently, a more radical step is
taken: information is thrown away. This is done both
by reducing spatial resolution in the basis set of patterns
and by reducing the number of properties that can be
considered at any one time. Although the completeness
of the system is thereby sacrificed, these constraints do
allow an architecture to be specified that is compatible
with the time and space limitations generally found in
biological systems. Interestingly, this architecture has
many of the general characteristics of the human vi-
sual system, viz., a small set of physically separated
spatiotopic maps, columnar organization of processors,
and coarse coding of local properties [Tsotsos, 1987,
Tsotsos, 1990].

Rapid interpretation of line drawings

Another problem in which time limitations play an im-
portant part is the rapid interpretation of line drawings.
The goal of the line interpretation task is to recover
the three-dimensional structure of opaque polyhedral
objects from line drawings describing their projection
onto the two-dimensional image plane (see, e.g. [Sug-
ihara, 1986]). Interpretations generally take the form
of a labeled drawing in which each line element (or
region) is assigned a unique interpretation as a three-
dimensional structure (e.g., that the line has a partic-
ular three-dimensional orientation, or that it forms the
boundary of the object being viewed, etc.). This pro-
cess has been shown to be NP-complete [Kirousis and
Papadimitriou, 1985], ruling out the possibility that it
is carried out in early vision.

However, it has recently been shown [1990, 1991] that
the three-dimensional orientation of some objects can
be recovered at early stages of visual processing, within
several hundred milliseconds of display onset. Asin the
case of visual search, then, optimal use of information
is not to be expected for such a process; part of the ex-
planation must involve complexity as well as projective
constraints.

In the model proposed by Enns and Rensink, inter-
pretation is accomplished via two parallel stages, each
of which involves only a small number of steps. The



first stage is carried out in parallel on each trilinear
junction in the image. These junctions are places in the
image where three line segments join up. Any junction
may correspond to several three-dimensional structures
in the scene; here, however, only the most likely inter-
pretation is assigned. Once these initial interpretations
have been established, consistency is tested by compar-
ing the interpretations at each junction against those
of their immediate neighbors. This can be done within
some constant time simply by propagating the local es-
timates along the lines that connect the junctions.

If such a “quick and dirty” process is used in the early
stages of vision, this should allow some line drawings
to “pop out” of a display on the basis of the three»
dimensional orientation of the block they describe.?
Enns and Rensink [1991] show that this is exactly what
happens.

These findings suggest that other “quick and dirty”
processes may also be used in early vision. For ex-
ample, it is possible to rapidly determine the concav-
1ty/ convexity of surfaces, based on the patterns of shad-
ing in the image [Ramachandran, 1988). If these pro-
cesses are representative of the operations carried out
at early levels, this will force a new look at the nature
of early visual processing.
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