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Abstract

Long range dependent models in information theory

by

Barlas Oğuz

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkat Anantharam, Chair

Long range dependence refers to stochastic processes for which correlations persist at
much longer time scales as compared to traditional models. For such processes the central
limit theorem does not in general hold, and the smoothing effect of the law of large numbers
takes more time to settle in. Such phenomena have been observed in many different fields
including financial time series, DNA sequences, network traffic and variable bit-rate video.
The bursty nature and persistent correlation structure of long range dependent processes
make them tough to control and predict in practice, and tough to analyze in theory. In this
thesis we look at the origins of long range dependence through the use of Markov models.

We first introduce a model of long range dependence using countable state Markov chains.
A positive recurrent, aperiodic Markov chain is said to be long range dependent (LRD) when
the indicator function of a particular state is LRD. This happens if and only if the return time
distribution for that state has infinite variance. We investigate the question of whether other
instantaneous functions of the Markov chain also inherit this property. We provide conditions
under which the function has the same degree of long range dependence as the chain itself.
We illustrate our results through three examples in diverse fields: queuing networks, source
compression, and finance. We then prove information-theoretic pointwise lossless source cod-
ing theorems for a class of sources constructed from this model. We are able to show that the
code length process at the output of an encoder inherits the long range dependent nature of
the source irrespective of the coding algorithm chosen. We extend our results to lossy source
coding under suitable conditions, demonstrating quite generally the information-theoretic
relevance of long range dependence.

Professor Venkat Anantharam
Dissertation Committee Chair
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Education

2007 Bilkent University
B.S., Electrical Engineering

2011 University of California, Berkeley
M.S., Electrical Engineering and Computer Sciences

2012 University of California, Berkeley
Ph.D., Electrical Engineering and Computer Sciences

Bio: the campus life
For some, going to college and living on campus is a life changing expe-
rience to be remembered with fondness and yearning for the remainder
of time. I have been lucky enough to live on campus my entire life.
Having spent 20+ years in Bilkent University in Ankara, Turkey, grow-
ing up and going to school, I came to Berkeley to continue enjoying
the amenities that the campus has to offer: a forever young, vibrant,
intellectual community; never ending opportunities for entertainment
and personal development, and a convenient displacement from reality
that presents one with a sense of timeless good will. Campus life is in
some ways an abstraction of reality. Some regard this as an illusion. To
me, it is a model. And like most models, it is prettier than the reality
that it is aiming to describe. Hopefully, the rest of my life will follow
this model, if not literally, at least in spirit.

vi



vii



Chapter 1

Introduction

1.1 Long range dependence

When we refer to long range dependence, or a random process that exhibits long memory
we informally mean that the present behavior of the process is heavily dependent on the
preceding values even going back to the distant past of the process. To turn this intuition
into a mathematical definition, one needs to resolve two ambiguities. How do we quantify
‘dependent’, and how do we quantify ‘distant’?

Distortion measures abound; answering the first question is a matter of picking the one
that suits the application. Various mixing coefficients and information measures have been
used. In applications where partial sums of stationary processes are of central interest, or
when second order properties are most relevant, the simple covariance function is most com-
mon. This approach is also appropriate for our discussion, and so our choice of dependence
measure will be the covariance. It might be argued that a better name for this definition
would be long range correlations instead of long range dependence or long memory. This
convention is indeed used in some places, however we will stick with the more standard
terms.

Having picked a measure of dependence, it is now possible to discuss the long in long
memory. For instance one might reasonably argue that a moving average process with
window size 5 has longer memory than a moving average process with window size 2, or that
an AR(1) process has longer memory than either, since the correlation function is always
non-zero. In general one could say that a random process X has longer memory than random
process Y whenever the covariance function of X asymptotically dominates that of Y .

While such approaches are feasible, our concern is not to think of long range dependence
as an ordering, but as a classification of random processes. We want to divide the space of
stationary random processes into two disjoint classes: long range dependent and not long
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range dependent, and we will refer to the latter more conveniently as short range dependent
processes. The boundary line separating these two classes should represent a phase transition
where a qualitative change in behavior takes place. In a way, the entire class of short
range dependent processes should be akin to an i.i.d. process, having qualitatively similar
characteristics, where those processes that cross the long range dependent line should exhibit
behavior that is completely absent in the other class.

To pinpoint where such a phase transition happens, we turn to the central limit theorem.
Let Fn = σ(Xn, n ≤ m) and ||Y ||2 =

√
EY 2.

Theorem 1.1.1. (Central limit theorem, (18) thm. 7.6)

Let (Xn) be a stationary sequence with EX0 = µ and

∑
n≥1

||E[X0|F−n]||2 <∞.

Then

var(X0) + 2
∞∑
r=1

cov(X0, Xr) := σ2 <∞,

and ∑bntc
i=1 (Xi − µ)

σ
√
n

d→ Bt

where Bt is the standard Brownian motion.

What is interesting about this statement is that on the left hand side we have the central-
ized partial sums of a somewhat general stationary process with memory, but on the right
hand side, we have Brownian motion, which is an independent increments process. In other
words, the dependence in the original process has disappeared under the limit of scaling.
Looking at the process at the level of larger and larger blocks, we see that the dependence
between blocks becomes negligible because of the finite covariances condition, and the block-
aggregated process looks like an i.i.d. process with variance nσ2. We find it appropriate to
call such ephemeral dependence as short range.

Now let’s look at what happens when the finite correlations condition is violated:

lim sup
n→∞

var(X0) + 2
n∑
r=1

cov(X0, Xr) =∞.

Clearly, ∑bntc
i=1 Xi√
n

2



does not have a proper distributional limit with finite variance as n→∞ for any t > 0. To
see this, take e.g. t = 1 and note that

var

(∑n
i=1 Xi√
n

)
=

1

n

(
n var(X0) +

n∑
r=1

r cov(X0, Xr)

)
→∞.

As an example, take a Gaussian process (Xn) with cov(X0, Xr) = r−α for 0 < α < 1, and
with zero mean. (We can check that this is a valid covariance function by observing that it
has a positive Fourier transform.) Denoting Sn :=

∑n
i=1 Xi, we can write

cov(Sbnt1c, Sbnt2c) =

bnt1c∑
i=1

bnt2c∑
j=1

cov(Xi, Xj)

=

bnt1c∑
i=1

bnt2c∑
j=1

|i− j|−α

∼ n2−α(|t1|2−α + |t2|2−α − |t1 − t2|2−α),

from which we deduce that to get a meaningful limit the proper scaling is∑bntc
i=1 (Xi − µ)

(n)1−α
2

d→ fBt.

where fBt is a Gaussian process with covariance function equal to |t1|2−α+|t2|2−α−|t1−t2|2−α.
This process is called fractional Brownian motion with (Hurst) parameter 1− α

2
.

Fractional Brownian motion is a Gaussian process with stationary increments. The in-
crements process is called fractional Brownian noise, which is a Gaussian process with cor-
relation function

RfBn(r) =
1

2
(|r + 1|−α − 2|r|−α + |r + 1|−α) ∼ r−α as r →∞.

We see that the limiting increments process has a similar covariance function to the original
process. In particular, the dependence has not disappeared under scaling. This behavior is
in sharp contrast to the finite correlations case, and we deem it appropriate to refer to it as
long range dependence.

Definition 1.1.2. (29) A stationary real valued random process (Xn) is said to be long

range dependent whenever

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞.

See also (29) for variants on second order definitions of long range dependence. As
suggested earlier, we will use long range dependence and long memory interchangeably.

3



1.1.1 Regular variation, heavy tails

The most typical correlation function which satisfies 1.1.2 is a regularly varying function:

R(r) = r−αL(r),

where L(r) is a slowly varying function, i.e.

lim
n→∞

L(cn)

L(n)
→ 1 for any c > 0.

In this case 0 < α < 1 implies long memory. While the treatment in this thesis will be at
the level of generality of definition 1.1.2, it is helpful to think about the results in terms of
regularly varying functions. Some of the examples will make use of this definition.

We will refer to random variables with regularly varying distributions as heavy tailed.
This term is used in some places to refer to any distribution which decays slower than an
exponential. We adopt a narrower definition which further requires infinite variance.

Definition 1.1.3. A random variable is heavy tailed if the cumulative distribution can be

written as

FX(t) = 1− t−α+1L(t),

for some slowly varying function L, and E[X2] =∞.

Here again, 0 < α < 1 implies infinite variance.

Heavy tailed distributions and long range dependence go hand in hand. For instance, a
renewal process with heavy tailed inter-arrival times will be long range dependent (2.1.1).
A single server queue with i.i.d. heavy tailed service times will have a long range dependent
busy-idle process (section 2.4). Conversely, a long range dependent processes will cause
heavy-tailed waiting times at a queue.

1.1.2 Self similarity and the Hurst index

As we saw, the definition of long range dependence is motivated around scaling laws for
random processes in the form X(t) → 1

nH
X(nt). Distributions that are stationary points

of such scalings are referred to as self similar laws. The parameter H is the index of self
similarity.

Brownian motion is the unique process with stationary increments that is self similar
with parameter H = 1

2
. Fractional Brownian motion is the unique Gaussian process with

stationary increments that is self similar with parameter 0 < H < 1 ((54), 7.2). Due to their
natural appearance in central limit type theorems, fractional Brownian motions have been
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the single most popular continuous time model for long range dependence in the literature.
Other self similar processes with stationary increments are α-stable Lévy processes ((54),
7.5).

Self similarity can also be defined for deterministic functions, when they are referred to as
fractals, which are functions that are invariant under similar joint scaling of time and space.
For this reason, self similar processes are sometimes also referred to as fractal processes.

While it is possible to discuss long range dependence without reference to self similarity,
as a result of these connections and historical coupling of their development, the two fields
have come to be closely associated with each other.

The self similarity parameter can be alternatively defined in terms of the index of the
scaling law which governs the variance of the partial sums of (Xn). Let Sn =

∑n
i=1Xi. If Sn

is self similar, then we know Sn
nH

has a meaningful limit as n → ∞. In particular, we have
that

0 < lim
n→∞

var(Sn)

n2H
<∞.

For short range dependent processes, it can easily be verified that the variance of Sn scales
at most linearly with n, therefore this limit will exist if we set H = 1

2
. A higher H signifies

a faster scaling of var(Sn), caused by ‘longer’ correlations in (Xn). Thus the scaling index
H can be regarded as a measure of long memory. Properly, we define

Definition 1.1.4. (9) Let the Hurst index H (0 ≤ H ≤ 1) be defined as

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

While short range dependent processes all have Hurst index ≤ 1
2
, the converse is not true.

This is because the Hurst index only defines the polynomial order of the growth of var(Sn),
i.e. up to slowly varying terms. To avoid border cases, we will sometimes assume H > 1

2
.

A Hurst index lower than 1
2

is possible, for instance in cases where the sum of the absolute
correlations diverge, nevertheless the signed sum remains finite. Take for example a {−1, 1}
valued process where Xn+1 = −Xn, P (X0 = 1) = 1

2
. This process has Hurst index 0, since

var(Sn) is always bounded. Again, we will not concern ourselves with such processes in the
remainder of this thesis. For our purposes, these negatively correlated processes are short
range dependent.

While it may be somewhat restrictive to define Hurst index for only processes of finite
variance, this will be adequate for our applications of interest where this is often a natural
assumption (e.g. network traffic has a bounded bit-rate). For a more general discussion of
self-similarity, the reader is referred to (54).
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Figure 1.1. Accumulated rainfall, New York. (30)

1.2 History and applications

The history of long range dependence starts with the studies of the hydrologist Harold
Edwin Hurst (1880-1978). Hurst investigated historical rainfall data and occupancy of water
reservoirs on rivers in the hope of regulating water storage to avoid droughts and floods.
Figure 1.1, taken from his 1956 paper (30) shows the storage levels which resulted from New
York rainfall data. Hurst realized that this data series shows much more variability than
would be expected if annual rainfall was an independent series.

Denoting by R, the range of this data (the difference of the max and min storage level)
over N years, Hurst postulated that logR and logN are linearly related with slope K (fig.
1.2).

For a short range dependent series, one would expect R to scale as
√
N , suggesting

K = 1
2
. However, Hurst notes that the mean value of K is in fact 0.73. He also noted in

this paper that the variances of the accumulated rainfalls is growing faster than what could
be explained by a short range dependent model. The observation has dire implications for
storage planning, in that the minimum reservoir capacity needed to avoid drought and floods
for a given time horizon is many times larger than what would ordinarily be needed.

This was the first of many observations that showed long range dependence occurring
in natural time series. Subsequent work demonstrated that this phenomenon is not limited

6



Figure 1.2. First appearance of a Hurst index. (30)

to the field of hydrology, but in fact very common in financial series, network traffic and
variable bit-rate multimedia data streams.

1.2.1 Long memory in financial time series

The presence of persistent correlations in financial data first came to light in the work
of Granger (25) who noted that low frequency components were typically dominant in the
empirical power spectrum of economics data. This was interpreted as the data having a
‘trend’ in the mean. It was not until the work of Mandelbrot (40)(41)(42) however that
the concept of long range dependence was popularized as a modeling tool for financial time
series.

While it is reasonable to expect that the prices of commodities will show strong correla-
tions over time, it is somewhat surprising that the returns on speculative assets would have
long memory. In fact, the price of a publicly traded good is assumed to be arbitraged by the
market so that the past returns do not have any value in predicting the future returns. As
a result, the aggregate returns are well modeled by a martingale process, with next to zero
correlations. The series of price returns is therefore not long range dependent.

Arbitraging therefore erodes correlations in the data, making long range dependence,
which we defined solely in terms of correlations, disappear. Disappearing correlations how-
ever, does not mean disappearing dependence. In fact the dependence remains and shows up
as long range dependence in the series of absolute returns. Figure 1.3 plots the percent daily
returns of the stock market (S&P 500) over a decade (23). We see that the series looks like
noise, but with varying amplitude. This is a typical martingale sequence, with dependence
showing up in the second order statistics.

This kind of behavior can be directly modeled by a generalized autoregressive condi-
tional heteroskedasticity (GARCH, (8)) model, where (Xn) is a zero mean sequence which
is independent conditioned on the variance sequence. The variance (σ2

n) can be based on an

7



Figure 1.3. Percent returns of S&P 500. (23)

autoregressive moving average (ARMA(p,q)) model:

σ2
n = α0 +

q∑
i=1

αiεn−i +

p∑
j=1

βjσ
2
n−j,

resulting in a martingale sequence with persistent volatility.

Such parametric models are useful for inference, and have been employed in practice.
However, if we want to explain the observed behavior, rather than just model it, this ap-
proach falls short. For this, we can think of the price returns as resulting from an operation
(arbitraging by the market) performed on some underlying long range dependent process.
Then we can see how long range dependent volatility emerges from this operation, and infer
the characteristics of the resulting process from the behavior of the underlying process.

We take this approach using a simple example in section 2.6. Our construction is based
on long range dependent Markov chains, the theory for which is developed in chapter 2.

1.2.2 Long memory in network traffic

Note that the water reservoirs studied by Hurst are mathematically similar to a queue.
Rainfall corresponds to incoming packets to a queue, while draft corresponds to service rate.
A drought and flood correspond to empty or overflowing buffers respectively. While these
events may not have the same drastic consequences, they are still undesirable, since over-
flowing buffers mean lost packets and empty buffers mean lost service capacity. In practice,
network engineers aim to minimize the probability of these events happening by picking
appropriate buffer sizes, leading to many of the same issues that Hurst faced in looking for
the optimum reservoir size. Queuing networks form the basis for modeling communication
systems, and interestingly, communication flows in these networks turn out to have many
statistical similarities with water flow in rivers.

Interest in LRD processes in communication networks was sparked by several empiri-
cal observations that showed such distributions were characteristic of network traffic on the

8



Figure 1.4. Bytes per frame resulting from MPEG4 encoding of Star Wars IV:A New
Hope (21).

internet (36),(13),(49). Due to the fundamentally different qualities of LRD processes men-
tioned in the first section, these discoveries have important, and often negative consequences
for the modeling and analysis of communication networks. Among these are different asymp-
totics for queue sizes and packet drop probabilities (51; 38; 37; 28; 63; 20), and a need for
new optimal schedulers (2),(48),(53).

The mostly degrading effect of LRD traffic in networks has led to research efforts for
understanding the mechanisms by which such traffic is generated and whether preventive
measures are possible (48),(13). For instance, in a network of queues with heterogeneous
arrival traffic, one might be interested in scheduling long range dependent traffic differently
than short range dependent traffic. The choice of scheduling strategy effects how the different
flows get coupled, and to what extent the short range dependent traffic is affected by the
presence of long range dependence in the network.

We will again illustrate the use of long range dependent Markov models in the setting of
queuing networks. In section 2.4 we discuss a simple queuing network of two parallel queues,
one of them being driven by a process with long memory. We will show that under a fixed
rate shared server with longest queue first scheduling, long range dependence will spread so
that the busy-idle process of both queues will become long range dependent, (see also (43)).

9



1.2.3 Variable-bit-rate video

Variable-bit-rate traffic (mainly VBR video) is an important component of internet traf-
fic. In the hope of understanding such traffic better, there has been considerable work on
analyzing traces of VBR video ((5; 22; 52; 21) to cite a few). The common observation that
is the culmination of this work is that long range dependence is omnipresent in VBR traffic,
and persists across a wide variety of codecs. Coupled with the discussion in the preceding
section, this observation might shed some light on why network traffic exhibits long memory.

Consider the plot in figure 1.4. The plot shows the number of bytes per frame that was
needed to encode a 1 hour long segment of the movie Star Wars IV using MPEG4 compression
at two different distortion (quality) levels 1. The immediate observation to be made is that
the traces at different distortion levels have roughly the same shape. It should not come as
a surprise that both of these traces were estimated (using R/S statistics) to have identical
Hurst index of around 0.75 (21).

Allowing more distortion does not seem to reduce long range dependence. Is this fact
dependent on the choice of encoder, or a universal property of video traces? Are there
encoders that can reduce or eliminate long range dependence regardless of the choice of
distortion level? These are practical questions which may have implications for encoder
design and bandwidth management. They are also fundamental questions that ask whether
long range dependence is an intrinsic property of some information sources. We can attempt
to answer such questions within the framework of information theory.

1.3 Markov models and information theory

As we mentioned, in much of the prior work analyzing communication networks, the
distribution of network traffic at the source is given a priori. In the continuous time setting
the most popular model that is used is the fractional Brownian motion (fBm) (see (54),
chapter 7.2). In the discrete time case fractional ARIMA models have been widely adopted
(see e.g. (4), chapter 2.5). Although parametric models such as these have their advantages in
terms of model fitting and estimation, in many cases they can only provide an approximation
to the underlying system. Here we will work with models based on countable state, long
range dependent Markov chains, which is a much more flexible class of models. We might
want to model network traffic, which is usually created at the output of an algorithm, that
involves coding of an information source. The traffic could for example be a stream of
variable-bit-rate video, as discussed in the preceding section.

Motivated by examining what effects encoding algorithms might have on the long range
dependence of the compressed bit rate process, we will prove source coding theorems about
information sources that can be represented in terms of long range dependent Markov chains.
The fundamental theorem of source coding, due to Shannon (56), says that the average bit-
rate needed to represent an information source cannot be smaller than the entropy rate of

1Data smoothed over 500 frames. Trace taken from http://http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html
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that source. Furthermore, optimal source codes achieve on average the entropy rate. The
work of Kontoyiannis (33; 35) attempts to find similar fundamental bounds on the bit-rate
process, but on the level of second order statistics. In other words, what is the minimum
variability the bit-rate process can have, given that the average bit-rate is equal to the
entropy rate? Results are known mainly for i.i.d. sources and certain fast mixing sources.
We pick up this question for long range dependent processes, also providing partial answers
for lossy coding. We will show quite generally that independent of the choice of encoder
and distortion level, ‘optimal’ encoders preserve the Hurst index of the original information
source.

In one line, this thesis is about developing Markov chain models of long range dependence,
with applications in information theory. The models are described in the next chapter, along
with several applications to diverse fields. The information theory results are explained in
chapter 3.
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Chapter 2

Long range dependent Markov models

2.1 Introduction

A stationary random process (Xn) with E[X2
n] < ∞ is said to be long range dependent

(LRD) if

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞.

The degree of long range dependence is measured by the Hurst index H (1
2
≤ H ≤ 1).

H := inf

{
h : lim sup

n→∞

∑n
r=1 cov(X0, Xr)

n2h−1
<∞

}
.

Equivalently, we can write

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

Take (Mn), a positive-recurrent, aperiodic, discrete time, countable state Markov chain.
We will take the state space to be the natural numbers N, without loss of generality. The
chain is in stationarity with stationary distribution π. We will now define a notion of
long range dependence for such chains. Since the choice of N as the state space is a mere
convenience, to apply the regular definition of long range dependence directly to Mn would be
quite arbitrary. For a more usable definition, we first turn to a simpler long range dependent
process.
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2.1.1 Long range dependent renewal process

Take a discrete time, stationary renewal process (Xn) ∈ {0, 1}, characterized by the
inter-arrival time distribution T ∼ F(t). Here F(t) := P (T ≤ t). We define the moment
index κ of this distribution as

κ := sup{k : E[T k] <∞}.

The following theorem of Daley (15) relates the Hurst index of the renewal process to the
moment index of the inter-arrival time distribution, in the case when (Xn

1 ) is long range
dependent.

Theorem 2.1.1. A stationary renewal process with inter-arrival time distribution function

F(t) := P (T ≤ t) which has
∑∞

t=1 t(1− F(t)) =∞,
∑∞

t=1(1− F(t)) <∞ and moment index

κ, is long-range dependent and has Hurst index H = 1
2
(3− κ).

In particular, the renewal process is long range dependent if and only if the inter-arrival
time has infinite second moment.

Using the fact that an indicator function of a state of a Markov chain defines a renewal
process, we can attempt to define long range dependence for Markov chains through the long
range dependence of its indicator functions. Note that the Hurst index of a renewal process
has a one-to-one correspondence with the moment index of its inter-arrival distribution.
Recalling that, in an irreducible Markov chain, the moment index of the return time to a
state is identical for each state in the chain (10), we conclude that the Hurst index of the
indicator function 1(Mn = i) of state i of a Markov chain is a class property (9). Morover,
the indicator function 1(Mn = i) is LRD if and only if indicator functions of every state is
LRD (9). Thus we adopt the following natural, consistent definition:

Definition 2.1.2. A positive-recurrent, aperiodic, discrete time Markov chain Mn ∈ N is

said to be long range dependent iff the indicator function 1(Mn = i) is long range dependent

for every i. The common Hurst index H of all such indicator functions is said to be the

Hurst index of the chain.

2.1.2 Functions of a Markov chain

In (9) it is proved that a Markov chain is LRD if and only if the return time distribution
of any state has infinite variance. It is also argued that finite weighted sums of indicator
functions on this chain also inherit this property. It is natural to conjecture that this might
be true for all functions of the chain. However, this conjecture is easily disproved, most
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easily by considering a constant function (also see the two counter examples in (9)). It is
then of considerable interest to find which functions of an LRD Markov chain are also LRD.

Let %n = ρ(Mn) be an L2 function of Mn. In this chapter, we provide conditions under
which one can infer the long range dependence of (%n) from that of (Mn).

It is instructive to consider the case where %n = 1(Mn = i), an indicator function. We
can write

n∑
r=1

cov(%0, %r) = πi

n∑
r=1

(p
(r)
ii − πi) =: πiQ

(n)
ii .

Here p
(r)
ii is the r-step return probability to state i.

Note that p
(r)
ii → πi, since the chain is ergodic, and the difference (p

(r)
ii − πi) represents

how far the chain is from stationarity. In a finite state chain, these differences would decay
exponentially to zero, and we would have limn→∞Q

(n)
ii < ∞. In the long range dependent

case, we have Q
(n)
ii →∞ (9). In fact, when the return time distribution satisfies P (T > t) ∼

t−α, for 1 < α ≤ 2, we will have (see example 1 in (15))

n∑
r=1

cov(%0, %r) ∼ Q
(n)
ii ∼ n2−α.

Since var(
∑n

r=1 %r) =
∑n

r=1

∑n
s=1 cov(%r, %s)− nvar(%0), we can read off the Hurst index

in this case easily as being H = 1
2
(3 − α), recovering the earlier result, since α is equal to

the moment index of T in this case.

Now let us consider a slightly more complicated function, composed of a finite sum of
indicator functions:

%n =
K∑
i=1

ρ(i)1(Mn = i).

Then the above expression becomes,

n∑
r=1

cov(%0, %r) =
n∑
r=1

K∑
i=1

K∑
j=1

ρ(i)ρ(j)πi(p
(r)
ij − πj)

=
K∑
i=1

K∑
j=1

πiρ(i)ρ(j)Q
(n)
ij .

where we defined Qn
ij :=

∑n
r=1(p

(r)
ij − πj). Now dividing both sides by Q

(n)
11 ,∑n

r=1 cov(%0, %r)

Q
(n)
11

=
K∑
i=1

K∑
j=1

πiρ(i)ρ(j)
Q

(n)
ij

Q
(n)
11

. (2.1)
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It turns out that, since the quantities
∑n

r=1 p
(r)
ij asymptotically behave similarly for each i

and j (see (10) corollary 2 to theorem 9.4),
Q

(n)
ij

Q
(n)
11

has a finite, non-zero limit as n→∞ (9):

lim
n→∞

Q
(n)
ij /πj

Q
(n)
11 /π1

= 1. (2.2)

Taking a limit as n→∞ in 2.1, and comparing with the result for the indicator function,
we see that for the two cases, the quantity

∑n
r=1 cov(%0, %r) is asymptotically equivalent, up

to a constant. Thus, in the slightly more general case of compound indicator functions, the
conclusion remains that the Hurst index matches that of the underlying Markov chain. It
is tempting to attempt to generalize the above argument for arbitrary functions. However,
the difficulty is that the limit in 2.2 is unfortunately not uniform in i and j, and therefore
we cannot justify exchanging the double sum in i and j with the limit in n in 2.1, when the
double sum has infinitely many terms. In this chapter, we work around this limitation under
fairly general conditions on %.

The main result, given in section 2.3, provides a technical condition under which the rate
of growth of

∑n
r=1 cov(X0, Xr) is identical for Xn = %n and Xn = 1(Mn = i). We set up

the proof with a collection of lemmas presented in section 2.8. For convenience, most of the
notation is collected together in section 2.2.

There are many interesting scenarios where such a theorem might be useful. In the second
half of the chapter, we collect three such examples. Section 2.4 discusses a simple queuing
network of two parallel queues. One queue is driven by an LRD process, whereas the other
one is driven by a short range dependent process. We model the inputs and queue lengths
by countable state Markov chains, and show that under longest queue first scheduling both
queues are LRD.

An example from information theory is given in section 2.5, where we re-prove a recent
result in the source coding of LRD sequences (45). We show that the code length process of
any lossless encoder which is compressing an LRD renewal process must dominate an LRD
process with the same Hurst index as the source process. This example is a precursor to the
more general results that will be presented in chapter 3.

The last example is about long range dependence in financial series. We discuss how
the model can explain the LRD behavior observed in some instantaneous functions of the
absolute returns of some asset.

2.2 Notation and setup

(Mn) is a positive-recurrent, discrete time, countable state Markov chain with state space
N and stationary distribution πi, i ∈ N. Most of the notation we use is borrowed from (10).

ρ : N→ R is such that
∑

i∈N ρ(i)2πi <∞.
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%n := ρ(Mn).

µ :=
∑

i ρ(i)πi, is the mean of ρ.

p
(n)
ij := P (Mn = j|M0 = i), n ≥ 0, is the n-step transition probability from i to j.

kp
(n)
ij := P (Mn = j;Ml 6= k, 0 < l < n|M0 = i), n > 0, is the n-step transition probability

from i to j with taboo state k.

kp
∗
ij :=

∑∞
n=1 kp

(n)
ij .

Hp
(n)
ij := P (Mn = j;Ml 6∈ H, 0 < l < n|M0 = i), n > 0, is the n-step transition

probability from i to j with taboo set H.

Hp
∗
ij :=

∑∞
n=1 Hp

(n)
ij .

f
(n)
ij := jp

(n)
ij , n > 0.

Q
(n)
ij :=

∑n
r=1(p

(r)
ij − πj), n > 0.

R
(n)
ij :=

∑n
r=1 Q

(r)
ij , n > 0.

Tj := inft{t > 0 : Mt = j} is the first time to state j at stationarity.

mij := Ei[Tj] is the mean time to state j starting from i.

H := inf
{
h : lim supn→∞

var(
∑n
i=1 1(Mi=1))

n2h <∞
}

, the Hurst index of (Mn).

H% := inf
{
h : lim supn→∞

var(
∑n
i=1 %i)

n2h <∞
}

, the Hurst index of (%n).

To understand the results in the next section, it is useful to know the following properties:

Lemma 2.2.1. For an LRD Markov chain,

lim
n→∞

Q
(n)
ij =∞, (2.3)

lim
n→∞

R
(n)
ij

n
=∞, (2.4)

lim
n→∞

Q
(n)
ij /πj

Q
(n)
11 /π1

= 1. (2.5)

Proof. (2.5) is eq. 8 in (9). (2.3) follows from eqs. 8 and 5 of (9). (2.4) follows from (2.3).

We will assume henceforth that n is large enough s.t. Q
(n)
11 , R

(n)
11 > 1.
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2.3 Main results

Theorem 2.3.1. Let

(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i)− c)(ρ(j)− c)Hp(r)
ij = 0

for some constant c, and non-empty, finite set H, and

(condition 2)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0

Then,

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= (µ− c)2.

Moreover, if c 6= µ, then H% = H.

Some remarks about the conditions are in order.

1. They fail to hold if limi ρ(i) exists and is not c. This shows that limi ρ(i) is the unique
choice for c in this case.

2. They will hold whenever limi(ρ(i) − c) = 0. Specifically when (ρ(i) − c) = 0 for i
greater than some value.

Both of these can be seen as direct consequences of lemma 2.8.6, which is stated later
in section 2.8.

3. They are implied by the considerably stronger condition

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)− c||ρ(j)− c|1p(r)
ij → 0.

4. Choice of H is arbitrary, and we will often just pick H = {1}. This is due to lemma
2.8.9

Condition 2 is trivially satisfied for bounded functions. When %n are not bounded,
condition 2 ensures that they can be truncated without affecting the long range dependence
discussions.

In light of remark 2, c can be interpreted as a ‘limiting mean’, in a weak sense, of % as
the return time to the compact set H becomes large. The deviance of % from its average
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behavior in this limiting regime, given by (µ − c) determines the limiting constant in the
statement of the theorem. When (µ − c)2 = 0, the behavior of % is similar to its average
behavior even when Mn takes a long excursion before returning to H. Therefore the long
range dependence of M might not exhibit itself in %. % might have a lower Hurst index in
this case, or even be short range dependent. What happens exactly depends on the detailed
structure of M and ρ, and cannot be captured by our formulation which only investigates
the asymptotics at the scale of the Hurst index of M . In this regard, (µ−c)2 > 0 is necessary
for % to be LRD at the same scale as M , and examples can easily be constructed where %
that fail this condition fail to be LRD to the same degree. We give one such non-example
in section 2.7.

The following theorem extends the usefulness of the preceding theorem considerably. It
describes the case, when the state space of the Markov chain is divided into a finite number
of subsets, with communication between the sets happening almost only through a finite
set of states H. The canonical example for such a structure would be the Markov chain
representation of a semi-Markov process given by the pair (S, T ), where S is described by
a finite state Markov chain and T is the time since the last transition, having an arbitrary
distribution with E[T ] <∞. In this case, the state space would be divided into sets {S = k},
and transition between sets is only possible by visiting (S, 0).

Theorem 2.3.2. Let {Ak}, 1 ≤ k ≤ K, be a finite partition of the state space N. (condition

1) Let H be a non-empty finite set, and

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|Hp(r)
ij = 0, ∀k 6= l.

Also suppose π∞Ak := limn→∞

∑
i,j∈Ak

πi
∑n
r=1 1p

(r)
ij∑

i,j πi
∑n
r=1 1p

(r)
ij

exists ∀k. Let there exist constants ck, 1 ≤

k ≤ K, such that

(condition 2)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)Hp(r)
ij = 0 ∀k,

and

(condition 3)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi|ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0 ∀k.

Then,

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

=
K∑
k=1

π∞Ak(µ− ck)
2.
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Moreover, if π∞Ak(ck − µ) 6= 0 for some k, then H% = H.

Remark. If ck = cl for a pair of subsets Ak,Al, then condition 1 is not needed for this

particular pair.

Here condition 2 defines a ‘limiting mean’ ck for % in each set Ak, as condition 1 did
in theorem 2.3.1. Condition 3 is the analogue of condition 2 in theorem 2.3.1. Condition
1 ensures that transition events across different sets Ak without visiting H can be ignored.
π∞Ak can be regarded as the limiting probability of Ak as the return time back to H becomes
large.

As before π∞Ak(ck − µ) 6= 0 for at least one k is necessary for the long range dependence
of % to be at the same scale as M .

For a sanity check, consider the trivial example of an indicator function.

Example 2.3.3. (Indicator functions) Let ρ be the indicator function of a finite set. We

take A1 = N and c1 = 0. Condition 1 is vacuous as there is only 1 partition. Condition 2

holds since the inner sum is finite and Q
(n)
ij →∞. Condition 3 holds because ρ is a bounded

function. Thus we have that

lim
n→∞

var(
∑n

r=1 ρi)

R
(n)
11 /π1

= π(S)2

where S is the set on which ρ is non-zero.

Now we illustrate the use of these tools with some applications. The first one uses
theorem 2.3.1 directly, while the last two examples use theorem 2.3.2.

2.4 Example 1: Longest queue first with mixed heavy

and light tailed inputs

This example replicates the conclusion in (43) that long range dependence might spread
under LQF scheduling in a parallel queue setting, using a general technique based on the
theorems of the preceding section.

There is a single server of rate R ∈ N with 2 parallel queues (fig. 2.1). The queues
are fed by independent random processes, each modeled by a discrete time, countable state
Markov chain. As an example, we investigate the scenario where X1 is i.i.d. with heavy
tailed (var(X1) = ∞) arrival distribution on N. X2 ∈ N is either an i.i.d. process with

19



Figure 2.1. Parallel queues with fixed rate server.

light tailed (var(X2) < ∞) arrivals or X2 can be a finite state N-valued Markov chain in
stationarity. We assume E[X1(0)] + E[X2(0)] < R.

Let Q1(n), Q2(n) be the stationary queue lengths. We assume that the queue is work
conserving, and moreover the scheduling decision at time n (number of packets to be served
from each queue at time slot n) is a function of (Q1(n), Q2(n)), the queue sizes at time n.
Given such a scheduling strategy, it is easily verified that (X1(n), X2(n), Q1(n), Q2(n)) is a
countable state Markov chain.

Lemma 2.4.1. (X1(n), X2(n), Q1(n), Q2(n)) is positive recurrent.

Proof. E[X1(0)] + E[X2(0)] < R implies that the queue process (Q1(n), Q2(n)) is positive

recurrent. Pick M1 > 0 and define the set S1 = {Q1(n) + Q2(n) < M1}. The return times

to this set have finite mean (say ν). Also define S2 = {X1(n) +X2(n) < M2} (or in the case

X2 is a finite state chain, S2 = {X1(n) < M2}) where M2 is large enough such that S2 is

nonempty. S1 ∩ S2 is a nonempty compact set. We claim the return times to this set have

a finite mean. Since 1n(S2) is i.i.d, there is a positive probability (say at least p) of visiting

S2 each time there is a visit to S1 (independent of previous visits). It is easily seen that the

mean return time to S1 ∩ S2 is at most ν/p (Expectation of a sum of geometrically many

i.i.d variables).

We will look at long range dependence through the Hurst indices of the busy-idle processes
of the queues. Let (X1, Q

′
1) be the Markov chain if all the capacity were to be allocated to

queue 1. Denote by 1(Q′1(n) = 0), the busy-idle process of this queue. We know that the
busy periods of Q′1 have infinite variance (see e.g. (7) theorem 8.10.3). Therefore both the
Markov chain (X1, Q

′
1) and the function 1(Q′1(n) = 0) are LRD. (X2, Q

′
2), similarly defined,

is a short range dependent chain.
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Lemma 2.4.2. (X1(n), X2(n), Q1(n), Q2(n)) is LRD.

Proof. Consider the chain (X1(n), Q′1(n), X2(n), Q′2(n)). This chain is LRD because it

is a combination of two independent chains (X1, Q
′
1) and (X2, Q

′
2), one of which we

assume to be LRD. Let t1 be the return time to a nonempty compact set S1 =

{X1(n), Q1(n), X2(n), Q2(n) < M}. Similarly t2 is the return time to the set S2 =

{X1(n), Q′1(n), X2(n), Q′2(n) < M}. Since Q′1(n) ≤ Q1(n) and Q′2(n) ≤ Q2(n), t1 stochasti-

cally dominates t2, and therefore (X1(n), X2(n), Q1(n), Q2(n)) is also LRD.

The question we want to ask then is whether 1(Q2(n) = 0), the busy-idle process of the
second queue (fed by short range dependent traffic), is also long range dependent.

%n := 1(Q2(n) = 0) is an L2 function of the chain (X1(n), X2(n), Q1(n), Q2(n)). Take
c = 0 in theorem 2.3.1. H = {X1(n), X2(n), Q1(n), Q2(n) ≤ R}. Condition 2 holds trivially
for bounded functions. Thus we are left with having to check the condition

lim
n→∞

1

Q
(n)
11 /π1

∑
i,j:Q2,j=0,Q2,i=0

πi

n∑
r=1

Hp
(r)
ij = 0.

To see why this is true, note that
∑

i,j:Q2,j=0Q2,i=0 πi
∑∞

r=1 Hp
(r)
ij is bounded above by 1 plus the

stationary time spent in the states {Q2 = 0} before the chain visits H. Note that the length
of an idle period for Q2 has finite expectation. Also note, if an idle period begins at time n+1,
this implies due to the LQF policy that Q1(n) ≤ R, Q2(n) ≤ R, X1(n) ≤ R, and X2(n) ≤ R.
Thus between successive idle periods of Q2, the chain must visit H. The stationary expected
time spent in {Q2 = 0} without visiting H is therefore finite. Since Q

(n)
11 → ∞ (by (2.3)),

the above limit holds. Using theorem 2.3.1, we conclude that 1(Q2(n) = 0) has the same
Hurst index as the chain (X1(n), X2(n), Q1(n), Q2(n)).

The advantage of this approach is that in general the input processes need not be i.i.d.
Dependencies can easily be modeled, as long as the sources can be represented as countable
state Markov.

2.5 Example 2: Compressing a long range dependent

renewal process

This section provides an alternative proof for the result in (45).

Let (Xn) ∈ {0, 1} be a discrete, stationary, ergodic renewal process. Denote by τ1, τ2 the

times of the first two arrivals. Then we denote by T
d
= τ2− τ1, a random variable having the
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inter-arrival distribution. We assume E[T ] < ∞ and E[T 2] = ∞. As discussed in section
2.1.1, this is equivalent to stating that the renewal process is LRD . We begin by introducing
the function

%n(Xn
−∞) = − logP (Xn|Xn−1

−∞ ),

which is of central importance to coding theory. The behavior of (%n) restricts the minimum
code length of lossless compression algorithms by the following lemma, (3), which is also
proved in (33).

Lemma 2.5.1 (Barron’s Lemma). Given {c(n), n ≥ 1}, positive constants with
∑

n 2−c(n) <

∞, we have

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− c(n), eventually, a.s. . (2.6)

Here ln(Xn
1 ) is the code length for the first n symbols of the source for some lossless

coding algorithm that produces bit strings. (i.e. let ln(Xn
1 ) be the length of φ(Xn

1 ) where
φ(xn1 ) : {0, 1}n → {0, 1}∗ is a one to one mapping.) c(n) can be made logarithmic in n.

By the ergodic theorem, the limit of 1
n

∑n
i=1 %i as n → ∞ exists a.s. and equals η :=

E[− logP (X1|X0
−∞)], i.e. the entropy rate of (Xn). This implies the following well known

first order converse source coding theorem for such sources.

Theorem 2.5.2.

lim inf
n

1

n
ln(Xn

1 ) ≥ η, a.s. .

Lemma 2.5.1 is strong enough to permit second order refinements to theorem 2.5.2 once
we know more about the process (%n). For example, in (33), it is shown that for certain
short range dependent classes of sources (e.g. finite state Markov chains), and appropriate
coding schemes (e.g. Shannon codebooks, Huffman coding etc.), (ln − nη) satisfies a central
limit theorem.

Here, we will prove a second order converse source coding theorem, stating that the bit
length process (ln) will eventually dominate a long range dependent process the growth of
whose variance is identical to that of (Xn), so that, in particular, it has the same Hurst
index as (Xn). The proof relies on our general theorem 2.3.2. This result provides partial
theoretical justification to existing empirical work in the field of variable bit-rate (VBR)
video traffic ((5; 22; 52; 21) to cite a few). A conclusion resulting from this work is that long
range dependence is omnipresent in VBR video traffic, and persists across a wide variety
of codecs. Combined with these observations, the result backs the intuition that for many
information sources long range dependence persists under compression. We generalize this
result considerably in the next chapter.

Theorem 2.5.3. Let (Xn) be an aperiodic, long range dependent, stationary, ergodic renewal
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process. Then, there exists a long range dependent random process (γn) such that

Ln(Xn
1 ) ≥ γn, eventually, a.s.

for all uniquely decodable source codes. Moreover, (γn) has the same Hurst index as (Xn).

Proof. This immediately follows from Barron’s lemma once we show (%n) are LRD with the

same Hurst index as (Xn). This will follow from theorem 2.3.2 if we can set up (%n) as a

function of a Markov chain.

We construct the following Markov chain (Mn) from the renewal process (Xn) (fig. 2.2):

• Mn ∈ {0, 1, 2, 3, . . .}.

• {Mn = 0} = {Xn
n−1 = 11}.

• For k ∈ {1, 2, . . .}

– {Mn = 2k − 1} =

{Xn = 0 and k zeros since last arrival },

– {Mn = 2k} =

{Xn = 1 and k zeros since last arrival in Xn}.

Note that this Markov chain is equivalent to the characterization (Xn, tn) (where tn is the

time since the last transition), only states are numbered such that the state space is N.
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Figure 2.2. Construction of the Markov chain, with an example sequence showing the
correspondence with Xn

We establish some notation:

(Xn), stationary renewal process,

interval-arrival lengths having the law of T + 1;

fT (k) := P (T = k);

FT (k) := P (T ≤ k);

%n(Xn
−∞) := − logP (Xn|Xn−1

−∞ );

η := E[logP (X1|X0
−∞)].

One can easily check %n = ρ(Mn), with

• ρ(0) = − log fT (0),

• ρ(2k − 1) = − logP (T > k − 1|T ≥ k − 1),

• ρ(2k) = − logP (T = k|T ≥ k).
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We verify:

Lemma 2.5.4. %n is an L2 function of Mn.

Proof. Let πi be the stationary distribution of (Mn). Note that πi > 0 =⇒ ρ(i) <∞. We

want to prove ∑
ρ(i)2πi <∞.

Note that π2k+1 = π2k−1P (T > k|T ≥ k), and π2k = π2k−1P (T = k|T ≥ k) for k = 1, 2, . . ..

This gives

∑
ρ(i)2πi = π0ρ(0)2 + π1ρ(1)2

+
∞∑
k=1

π2k−1P (T = k|T ≥ k) log2 P (T = k|T ≥ k)

+
∞∑
k=1

π2k−1P (T > k|T ≥ k) log2 P (T > k|T ≥ k),

π0ρ(0)2 = (
∞∑
k=1

π2k)fT (0) log2 fT (0),

π1ρ(1)2 = (
∞∑
k=1

π2k)(1− fT (0)) log2(1− fT (0)).

Since the p log2 p terms are bounded above by 1,
∑
ρ(i)2πi ≤ 4.

Now, to apply theorem 2.3.2 we partition the state space into 3 sets as follows: A1 = {i >

0, i even}, A2 = {0}∪{i odd : ρ(i) ≤ − log(1− εi)}, and A3 = {i odd : ρ(i) > − log(1− εi)}.

Here we will will choose εi ↓ 0 later. Take c1 = c2 = c3 = 0 and H = {1} in that theorem.

By the remark to the theorem, we don’t need condition 1. We will check conditions 2 and 3

of theorem 2.3.2 for each of the sets.

When i, j ∈ A1 notice 1p
(r)
ij = 0, so both conditions hold automatically. For i, j ∈ A2,

condition 2 holds due to remark no. 2 because the limit of ρ(i) as i → ∞ is zero, and

condition 3 holds because ρ is bounded on this set. Thus we focus on i, j ∈ A3. Define
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ρ(i) =: − log(1− ε̃i). Let subsequence {ik} = A3. We have ε̃ik ≥ εik . πik ≤ π1

∏k
l=1(1− ε̃ik),

and
∑∞

1 1p
(r)
ikij

= πij/πik . We have

∑
i

ρ(i)πi
∑
j

ρ(j)
n∑
r=1

1p
(r)
ij

≤
∑
k

k∏
l=1

(1− ε̃il)(− log(1− ε̃ik))
∑
j>k

− log(1− ε̃ij)
j∏

l=k+1

(1− ε̃il)

=
∑
j

∑
k<j

(1− ε̃ik) log(1− ε̃ik)(1− ε̃ij) log(1− ε̃ij)
j∏

l=1,l 6=k,j

(1− ε̃il)

<
∑
j

j

j∏
l=3

(1− ε̃il).

We can easily choose εi ↓ 0 such that this is finite. Dividing by Q
(n)
11 , both conditions in

theorem 2.3.2 will be satisfied.

2.6 Example 3: Long range dependence in financial

time series

Let (Pn,−∞ < n < ∞) be the price of some financial asset, and Xn = logPn. It is an
established assumption that the log returns, rn = Xn−Xn−1 is well modeled by a martingale
difference process. Such a model accounts for the fact that the log returns exhibit little
correlation. Nevertheless, it is also a widely observed fact that some instantaneous functions
of the log returns, such as |rn|d, exhibit long memory. (see e.g. (11))

The popular approach to modeling this behavior has been to explicitly write the depen-
dence of the absolute log returns into the statistical description of the model. The result
is the various long-memory autoregressive conditional heteroskedasticity (ARCH) process
models of financial time series. ((24) for an example)

We want to show in this example that, given a martingale difference sequence (rn) that
can be represented as a function of a long range dependent Markov chain, the outcome that
|rn|d will exhibit long range dependence should not be considered surprising.

We want to illustrate this with a very simple example based on Mandelbrot’s model for
wheat prices ((40)). We should note that this simple model is for purposes of illustration
only, and does not account for all known properties of financial time series. For instance,
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it has been observed in many situations that (rn) has a finite variance, despite having a
polynomially decaying marginal distribution. The (rn) in this example has infinite variance.
Nevertheless, the proof scheme used here to establish the long range dependence of |rn|d
should be applicable much more generally.

Let (Wn) be a stationary random process which models the weather. (Wn) can take on
3 values: good, bad, and neutral {g, b, n}. The length of a good period, T , (number of
consecutive good days) has the same distribution as the length of a bad, or a neutral period.
Let P (T ≥ t) = t−α. T has finite mean but infinite variance (i.e. 1 < α ≤ 2). A good or bad
period is followed necessarily by a neutral period. A neutral period is followed by a good or
bad period with equal probabilities.

Let X̂n be the fundamental (log) price of the asset (which can be thought of as summa-
rizing exogenous variables that affect the real price). X̂n varies as follows: increases by 1 for
every good day, decreases by 1 for every bad day, and stays the same for every neutral day.
The market calculates the real (log) price by projecting the expected future fundamental
price: Xn = limt→∞E[X̂n+t|X̂n

−∞].

By construction, (rn) itself is a martingale difference sequence. We will now show that
%n = |rn|d is LRD with Hurst index 1

2
(3− α). (0 < d < α/2 for var(%0) to be finite.)

It can be verified that (also see the calculations in Mandelbrot’s original paper (40)) Xn

changes as follows: jumps by E[T ] on the first good day. Jumps by −E[T ] on the first bad
day. Increases by E[T |T ≥ t] − E[T |T ≥ t − 1] on the tth good day (t ≥ 2). Decreases by
E[T |T ≥ t] − E[T |T ≥ t − 1] on the tth bad day. The first neutral following t good days
decreases Xn by E[T |T ≥ t] − t. The first neutral following t bad days increases Xn by
E[T |T ≥ t]− t.

Let Jn = 1(there is a transition at time n). Let Tn := inft{t ≥ 0 : Wn−t−1 6= Wn−t−2} be
the number of days since the last transition (0 on the first day following).

Then Mn = (Wn, Jn, Tn) is a countable state, long range dependent Markov chain, with
Hurst index 1

2
(3− α). Moreover, %n = |rn|d is a function of Mn:

• ρ({g, b}, 0, t) = (E[T |T ≥ t+ 2]− E[T |T ≥ t+ 1])d

• ρ({n}, 0, ·) = 0

• ρ({g, b}, 1, ·) = (E[T ])d

• ρ({n}, 1, t) = (E[T |T ≥ t+ 1]− (t+ 1))d

Lemma 2.6.1.

E[T |T ≥ t+ 2]− E[T |T ≥ t+ 1]→ α

α− 1
, t→∞.

Proof.

P (T ≥ s|T ≥ t) =
s−α

t−α
, s ≥ t
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E[T |T ≥ t+ 1]− E[T |T ≥ t] =
∞∑

s=t+1

P (T ≥ s|T ≥ t+ 1)− P (T ≥ s|T ≥ t)

= ((t+ 1)α − tα)
∞∑

s=t+1

s−α → α

α− 1

since 1
α−1

(t + 2)−α+1 =
∫∞
t+2

s−αds <
∑∞

s=t+1 s
−α <

∫∞
t+1

s−αds = 1
α−1

(t + 1)−α+1 and

((t+ 1)α − tα) /tα−1 → α.

Lemma 2.6.2.

E[T |T ≥ t]− t ≤ t

α− 1
.

Proof.

E[T |T ≥ t]− t =
∞∑
s=t

s−α

t−α
≤
∫ ∞
t

s−αds =
t

α− 1
.

We will utilize theorem 2.3.2 with A1 = ({g, b}, 0, ·),A2 = ({n}, 0, ·),A3 = ({g, b}, 1, ·),
A4 = ({n}, 1, ·). c1 = c4 =

(
α
α−1

)d
, c2 = c3 = 0. H = (·, ·, 0). We have

var(%0) ≤ E%2
0 =

∑
i

πiρ(i)2

=
∑
i 6∈A4

πiρ(i)2 +
∑
i∈A4

πiρ(i)2 ≤ C +
∞∑
t=1

1

2
P (T = t)(

t

α− 1
)2d <∞

by lemma 2.6.2. As ρ(i) is bounded when i 6∈ A4, the contribution to the sum is a constant C.
We also used the fact that if i = ({n}, 1, t−1), then πi = P (W−t = n)P (T = t) = 1

2
P (T = t).

We need to first show that condition 1 holds:

lim
n→∞

1

Q
(n)
11

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|Hp(r)
ij → 0 ∀k 6= l.

By inspection, the following transitions require visiting H:

(k, l) or (l, k) = (1, 2), (1, 3), (2, 4), (3, 4). The sum is zero for these pairs. For (k, l) or
(l, k) = (1, 4), (2, 3), the condition is not needed due to the remark to theorem 2.3.2.

Condition 2 reads

lim
n→∞

1

Q
(n)
11

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)
n∑
r=1

Hp
(r)
ij = 0 ∀k.
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For k = 3, 4, Hp
(r)
ij = 0 because these states must go to H in one step. For k = 1, 2, we have

chosen ck such that (ρ(i)− ck)→ 0 by lemma 2.6.1. The condition holds by remark no. 2.

Condition 3 also holds for A1, A2, and A3 because ρ is bounded on these sets. On A4,
it holds because Hp

(r)
ij = 0 as argued earlier. We finally have the conclusion:

lim
n→∞

∑n
r=1 cov(|r0|d, |rn|d)

Q
(n)
11 /π1

=
K∑
k=1

π∞k (µ− ck)2 > 0.

2.7 A non-example

Consider an LRD Markov chain with p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1. Set ρ(1) = 1,

ρ(2) = −1 and ρ(i) = 0 for i > 2. We have for this chain π1 = π2 and µ = 0. Since ρ(i) = 0
for i > 2, the conditions of theorem 2.3.1 hold with c = 0 and H = {1}. However, since
µ = c, the conclusion about the equality of Hurst indices does not follow. In fact we can
show % to be short range dependent. From (10), section 3 we know

n∑
r=1

cov(%0, %r) =
∑
i,j

ρ(i)ρ(j)πiQ
(n)
ij .

The RHS is a finite sum, giving

n∑
r=1

cov(%0, %r) = π1(Q
(n)
11 +Q

(n)
22 )− π1(Q

(n)
12 +Q

(n)
21 ),

where we used π1 = π2. Since p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1, we also know p

(r+1)
12 = p

(r)
11 and

p
(r+1)
22 = p

(r)
21 . Expanding the Q(n) as sums, we get

n∑
r=1

cov(%0, %r) = π1

n∑
r=1

(p
(r+1)
12 − π1)− (p

(r)
12 − π1) + π1

n∑
r=1

(p
(r)
22 − π1)− (p

(r+1)
22 − π1)

= π1[(p
(n+1)
12 − π1) + (p

(1)
22 − π1)− (p

(1)
12 − π1)− (p

(n+1)
22 − π1)]

which remains bounded, demonstrating that (%n) is a short range dependent process.

2.8 Proof of theorems

For the proofs, we will rely on several lemmas, most of which are already known.

Lemma 2.8.1. (Chung (10), chapter 11, Corollary 1.) For p ≥ 0,

E1T
p
1 =∞ ⇐⇒ EiT

p
i =∞, ∀i ∈ N.
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Lemma 2.8.2. Let (an) be an arbitrary sequence and bn →∞. c is a finite real number. If

an
bn
→ c,

then ∑n
r=1 ar∑n
r=1 br

→ c.

Proof. This elementary result follows from the discrete analogue of l’Hôpital’s rule, referred

to as the Stolz-Cesàro theorem. See e.g. 3.1.7 in (44).

Lemma 2.8.3. (i)

cov(%0, %r) =
∑
i,j

πip
(r)
ij (ρ(i)− µ)(ρ(j)− µ).

(ii)
n∑
r=1

cov(%0, %r) =
∑
i,j

ρ(i)ρ(j)πiQ
(n)
ij .

(iii)

var(%0 + . . .+ %n)− (n+ 1)var(%0) = 2
∑
i,j

ρ(i)ρ(j)πiR
(n)
ij .

Proof. (i) is a simple expansion. (ii) is derived from (i), and (iii) can be found in (9), section

3.

Lemma 2.8.4. (Eq. (1) in Chung (10), theorem 9.1.)

p
(r)
ij = 1p

(r)
ij +

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j , r ≥ 1. (2.7)

Lemma 2.8.5. (Carpio & Daley (9), 2.12.)

Q
(n)
11 ∼ (π1)2

∞∑
u=1

min(u, n)
∞∑

s=u+1

f
(s)
11

= (π1)2

∞∑
u=1

min(u,n)∑
r=1

∞∑
s=u+1

f
(s)
11

= (π1)2

n∑
r=1

∞∑
u=r

∞∑
s=u+1

f
(s)
11 .
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Lemma 2.8.6.

lim
n→∞

1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij = 1.

Proof. ∑
i,j

πi

n∑
r=1

1p
(r)
ij =

n∑
r=1

∑
i,j

πi 1p
(r)
ij

=a

n∑
r=1

∑
i

πi

∞∑
u=r

f
(r)
i1

=b

n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u

f
(s)
11

=
1

m11

n∑
r=1

∞∑
u=r

fu11 +
n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

=
1

m11

n∑
r=1

P1(T1 ≥ r) +
n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

∼ 1

π2
1m11

Q
(n)
11 =

Q
(n)
11

π1

since
∑n

r=1 P1(T1 ≥ r) ≤ m11 and by lemma (2.8.5). Here (a) uses
∑

j 1p
(r)
ij =

∑∞
r f

(r)
i1 , which

are equivalent ways of expressing the probability of going from i to any other state without

going to 1 in r steps. This expression also appears chapter 9 of (10) (proof of thm. 6). (b)

uses the fact Pπ(T1 = r) = P1(T1≥r)
m11

, where T1 is the first return time to 1 at stationarity.

Lemma 2.8.7. Let M > 0 be a finite number,

lim
n→∞

1

Q
(n)
11 /π1

∑
{i<M}∪{j<M}

πi

n∑
r=1

1p
(r)
ij = 0.

Proof. Pick m s.t. 1p
(m)
1i > 0, then

1p
(m)
1i 1p

∗
ij ≤ 1p

∗
1j = πj/π1.

Thus, there exists a finite constant CM s.t. 1p
∗
ij < CMπj for all i < M . Conclude∑

i<M,j

πi

n∑
r=1

1p
(r)
ij ≤ CM

∑
i<M,j

πiπj ≤ CM .
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Similarly, there exists a finite constant DM s.t. 1p
∗
ij ≤ 1 + 1p

∗
jj ≤ DM for all j < M .

∑
j<M,i

πi

n∑
r=1

1p
(r)
ij ≤ DM

∑
j<M,i

πi ≤MDM .

Using (2.3) we conclude the proof.

Lemma 2.8.8. ((9), pg 1051.) ∣∣∣∣∣Q
(n)
1j /πj

Q
(n)
11 /π1

∣∣∣∣∣ ≤ 1.

Lemma 2.8.9.∣∣∣∣∣
n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1p(r)
ij −

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|Hp(r)
ij

∣∣∣∣∣ ≤ (|H|+ 1)CH
∑
i,j

πiπj|ρ(i)ρ(j)|,

where H is any non-empty set with a finite number of states and CH is a constant that

depends only on H.

Proof. Let H′ = H ∪ {k}, k 6∈ H. We will argue by induction. We write

n∑
r=1

Hp
(r)
ij − H′p

(r)
ij =

n∑
r=1

P (Mr = j;Ml 6∈ H, 1 ≤ l < r;Ml = k, for some 1 ≤ l < r|M0 = i)

=
n∑
r=1

r−1∑
m=1

H′p
(m)
ik Hp

(r−m)
kj

=
n−1∑
m=1

H′p
(m)
ik

n∑
r=m+1

Hp
(r−m)
kj

≤

(
∞∑
m=1

H′p
(m)
ik

)
︸ ︷︷ ︸

C1

(
∞∑
r=1

Hp
(r)
kj

)
︸ ︷︷ ︸

Hp
∗
kj

.

C1 is bounded above by 1 since

∞∑
m=1

H′p
(m)
ik ≤

∞∑
m=1

kp
(m)
ik = 1.

Let h ∈ H. m is s.t. hp
(m)
hk > 0.

hp
(m)
hk Hp

∗
kj ≤ hp

∗
hj = πj/πh.
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Thus Hp
∗
kj ≤ πj/(hp

(m)
hk πh) = CH′ .

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|Hp(r)
ij −

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|H′p(r)
ij ≤ CH′

∑
i,j

πiπj|ρ(i)ρ(j)|.

Therefore adding or subtracting a state from the set H (as long as the resulting set is

non-empty) only affects the sum in question by a bounded amount. As a result, replacing

H by {1} can change the sum by at most (1 + |H|)CH
∑

i,j πiπj|ρ(i)ρ(j)|. (Add state 1 if it

is not already in set H. Then subtract all other states until only state 1 is left.)

2.8.1 Proof of theorem 2.3.1

Proof. By (2.3) and lemma (2.8.9) the conditions are equivalent to

(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij = 0

for some constant c, and

(condition 2)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi|ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0.

Define

ρM(i) =

 ρ(i) , i ≤M

c , i > M
.

µM = E[%Mn ], ρM(i) = ρ(i)− ρM(i), and µM = E[%M
n

]. We adopt the shorthand notation:

φn =
(%0 + . . .+ %n)− (n+ 1)µ√

2R
(n)
11 /π1

,

φ
M

n =
(%̄M0 + . . .+ %̄Mn )− (n+ 1)µM√

2R
(n)
11 /π1

,

φM
n

= φn − φ
M

n .
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We will be referring to the reverse triangle inequality for random variables:∣∣∣∣√var(φn)−
√

var(φ
M

n )

∣∣∣∣ ≤√var(φM
n

). (2.8)

This follows directly from the triangle inequlity. Using lemma 2.8.4, write 2.8.3(i) as

n∑
r=1

cov(%0,%r) =
∑
i,j

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij + (2.9)

∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i)− µ)(ρ(j)− µ).

The second term can be rewritten

∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i)− µ)(ρ(j)− µ) =

∑
i,j

πi

n−1∑
m=1

1p
(m)
i1

n∑
r=m+1

p
(r−m)
1j (ρ(i)− µ)(ρ(j)− µ)

=
n−1∑
m=1

(
n∑

r=m+1

∑
i,j

1p
(m)
i1 πi(p

(r−m)
1j − πj)(ρ(i)− µ)(ρ(j)− µ)+

n∑
r=m+1

∑
i,j

1p
(m)
i1 πiπj(ρ(i)− µ)(ρ(j)− µ)︸ ︷︷ ︸

0


=

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 Q

(n−m)
1j (ρ(i)− µ)(ρ(j)− µ).

Dividing by Q
(n)
11 /π1 we get

=
n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i)− µ)(ρ(j)− µ).

By lemma 2.8.8 we have

∑
j

πj|
Q

(n−m)
1j /πj

Q
(n)
11 /π1

||(ρ(j)− µ)| <∞.
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We also know
∑

i πi
∑n−1

m=1 1p
(m)
i1 (ρ(i)− µ)→ 0. Therefore

lim
n→∞

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i)− µ)(ρ(j)− µ) = 0.

(Dominated convergence) The result has the interpretation that the sum of the covari-

ances between %0 and %n on the event that the chain visits state 1 at least once before time

n, is negligible compared to Q
(n)
11 .

We want to use these results to conclude var(φM
n

)→ 0. For this we write eq. 2.9 for ρM ,

c = 0. The first term in eq. 2.9 reads after a little manipulation

∑
i,j

πi[ρ
M(i)ρM(j)− µM(ρM(i) + ρM(j)) + (µM)2]

n∑
r=1

1p
(r)
ij . (2.10)

Now assume ρ is bounded. After dividing by Q
(n)
11 /π1, the second and third terms are

O(µM) as µM → 0 by lemma 2.8.6. Since µM → 0 with M , these terms go to 0 as M →∞

uniformly in n.

For the first term in (2.10), write condition 1 as follows for comparison:

lim
n→∞

1

Q
(n)
11 /π1

(
n∑
r=1

∑
i≤M,j≤M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i≤M,j>M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i>M,j≤M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

+
n∑
r=1

∑
i>M,j>M

πi(ρ(i)− c)(ρ(j)− c)1p
(r)
ij

)
= 0.

The first three sums have limit 0 because ρ is assumed to be bounded, and by lemma

2.8.7. The last sum is identical to the first term in (2.10). Therefore dividing eq. 2.9 by

Q
(n)
11 /π1 and applying lemma 2.8.2 while observing lemma 2.8.3 (ii) and (iii), we conclude

that limM→∞ limn→∞ var(φM
n

) = 0, and by eq. (2.8), also that limM→∞ limn→∞ var(φ
M

n ) =

limn→∞ var(φn).
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To calculate var(φ
M

n ), rewrite eq. 2.9 for ρM :∑
i,j

πi[(ρ
M(i)− c)(ρM(j)− c)− (µM − c)(ρM(i) + ρM(j)− 2c) + (µM − c)2]

n∑
r=1

1p
(r)
ij .

The first two sums will go to zero when dividing by Q
(n)
11 /π1, by the boundedness of ρ and

lemma 2.8.7 because of truncation. The last term will read:

(µM − c)2 1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij → (µM − c)2, n→∞

by lemma 2.8.6. By lemma 2.8.3 (ii) and (iii), and lemma 2.8.2 this concludes the proof

when (%n) is bounded.

When (%n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L), µ̃L = E[%̃Ln ],

ρ˜L(i) = ρ(i)− ρ̃L(i), and µ˜L = E[%˜Ln ]. Also define:

φ̃Ln =
(%̃L0 + . . .+ %̃Ln)− (n+ 1)µ̃L√

2R
(n)
11 /π1

,

φ˜Ln = φn − φ̃Ln .

We can express
∑n

r=1 cov(%˜L0 , %˜Lr ) as in eq. 2.9, and argue there that the second term has

limit 0 as n → ∞ when divided by Q
(n)
11 /π1. The first term also has limit 0 due to the

assumed condition 2. We appeal again to lemma 2.8.3 (ii) and (iii), and lemma 2.8.2 to

argue that limL→∞ limn→∞ var(φ˜Ln) = 0. By eq. (2.8), we also get limL→∞ limn→∞ var(φ̃Ln) =

limn→∞ var(φn). We conclude:

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= lim
L→∞

lim
n→∞

var(φ̃Ln) = lim
L→∞

(µ̃− c)2 = (µ− c)2.

The claim about the Hurst indices can be argued as follows. Consider the expres-

sion in lemma 2.8.3 (ii) for %n = 1(Mn = 1). Dividing by Q
(n)
11 /π1, we see that

the right hand side has limit π2
1 > 0. From the above argument it follows that

(
∑n

r=1 cov(1(M0 = 1), 1(Mr = 1))) / (
∑n

r=1 cov(%0, %r)) has a finite, non-zero limit if µ 6= c.

It is easily seen from the definition of H that ρ has the same Hurst index as the indicator

function 1(Mn = 1).
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2.8.2 Proof of theorem 2.3.2

Proof. By (2.3) and lemma (2.8.9) the conditions are equivalent to

(condition 1)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak,j∈Al

πi|ρ(i)− µ||ρ(j)− µ|1p(r)
ij = 0, ∀k 6= l,

(condition 2)

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i)− ck)(ρ(j)− ck)1p
(r)
ij = 0, ∀k,

(condition 3)

lim
L→∞

lim sup
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi|ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0, ∀k.

We truncate as follows:

ρM(i) =

 ρ(i) , i < M

ck , i ≥M, i ∈ Ak
.

ρM , µM , µM , φ
M

, and φM are defined as before.

The first sum in eq. 2.9 can be decomposed as:∑
i,j

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij =

K∑
k=1

∑
i,j∈Ak

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij

+
∑

k,l∈{1,...,K},k 6=l

∑
i∈Ak,j∈Al

πi(ρ(i)− µ)(ρ(j)− µ)
n∑
r=1

1p
(r)
ij . (2.11)

The first condition ensures that the cross terms on the right are insignificant. Therefore we

can work with each subset separately.

We will argue as in the proof of theorem 2.3.1 to show var(φM
n

) → 0. The analogue of

eq. 2.10 for each of the remaining sums reads∑
i,j∈Ak

πi[ρ
M(i)ρM(j)− µM(ρM(i) + ρM(j)) + (µM)2]

n∑
r=1

1p
(r)
ij .
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Assume ρ is bounded. After dividing by Q
(n)
11 /π1, the second and third terms are O(µM)

as µM → 0 by lemma 2.8.6. Since µM → 0 as M → ∞, these terms tend to 0 as M → ∞

uniformly in n.

For the first term, we argue exactly as in the proof of theorem 2.3.1 that condition 1,

together with lemma 2.8.7 implies that this term, when divided by Q
(n)
11 /π1 goes to 0 as

n → ∞. Applying lemma 2.8.2 while observing lemma 2.8.3 (ii) and (iii), we conclude

that limM→∞ limn→∞ var(φM
n

) = 0, and by eq. (2.8), also that limM→∞ limn→∞ var(φ
M

n ) =

limn→∞ var(φn).

To calculate var(φ
M

n ), rewrite eq. 2.9 for ρM . We again omit the cross sums:

∑
i,j∈Ak

πi[(ρ
M(i)− ck)(ρM(j)− ck)− (µM − ck)(ρM(i) + ρM(j)− 2ck) + (µM − ck)2]

n∑
r=1

1p
(r)
ij .

The first two sums will go to zero due to truncation, boundedness of ρ, and by lemma 2.8.7,

when dividing by Q
(n)
11 /π1. The last term will read:

(µM − ck)2 1

Q11/π1

∑
i,j∈Ak

πi

n∑
r=1

1p
(r)
ij → π∞Ak(µ

M − ck)2

by lemma 2.8.6 and the definition of π∞Ak . This concludes the proof when (%n) is bounded.

When (%n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L), µ̃L = E[%̃Ln ],

ρ˜L(i) = ρ(i)− ρ̃L(i), and µ˜L = E[%˜Ln ]. Also define:

φ̃Ln =
(%̃L0 + . . .+ %̃Ln)− (n+ 1)µ̃L√

2R
(n)
11 /π1

,

φ˜Ln = φn − φ̃Ln .

We also partition %˜Ln as
∑K

k=1 %˜Ln1(%˜Ln ∈ Ak). Define:

kφ˜Ln =
%˜L0 1(%˜L0 ∈ Ak) + . . .+ %˜Ln1(%˜Ln ∈ Ak)− (n+ 1)E(%˜L0 1(%˜L0 ∈ Ak))√

2R
(n)
11 /π1

.

We can express
∑n

r=1 cov(%˜L0 1(%˜L0 ∈ Ak), %˜Lr 1(%˜Lr ∈ Ak)) by writing eq. 2.9 for ρ˜L(i)1(ρ˜L(i) ∈

Ak), and argue there that the second term has limit 0 as n→∞ when divided by Q
(n)
11 /π1.
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The first term also has limit 0 due to the assumed condition 3. We appeal again to lemma

2.8.3 (ii) and (iii), and lemma 2.8.2 to argue that limL→∞ limn→∞ var(kφ˜Ln) = 0. Applying

eq. (2.8), we conclude that:

lim
L→∞

lim
n→∞

var(φ˜Ln) = lim
L→∞

lim
n→∞

var

(
K∑
k=1

kφ˜Ln
)

= 0.

One more application of eq. (2.8) gives limL→∞ limn→∞ var(φ̃Ln) = limn→∞ var(φn). We

conclude:

lim
n→∞

var(
∑n

r=1 %i)

R
(n)
11 /π1

= lim
M→∞

lim
n→∞

var(φ
M

n ) =a lim
M→∞

K∑
k=1

π∞Ak(µ
M − ck)2 =

K∑
k=1

π∞Ak(µ− ck)
2,

where (a) follows from the bounded version of the theorem proved above.

To prove the remark, consider Ak ∪ Al as one subset. We can safely ignore the cross

terms in eq. 2.11, without needing to use condition 1 for the pair Ak,Al. We do not use

condition 1 in the remaining part of the proof.

All that remains is to note:

(µM − ck)2 1

Q11/π1

∑
i,j∈Ak∪Al

πi

n∑
r=1

1p
(r)
ij → π∞Ak∪Al(µ

M − ck)2

where π∞Ak∪Al = π∞Ak + π∞Al .
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Chapter 3

Source coding

3.1 Introduction

We are interested in both lossless and lossy source coding. Let us first consider the
lossless case.

Let (Xn) be a discrete, ergodic source taking values in a finite set K. For each n,
we consider the problem of efficiently representing (Xn) using variable length block codes
ψ(xn1 ) : {0, 1}n → {0, 1}∗/{∅}, which map Xn

1 to a variable length binary string. Let ln(Xn
1 )

be the length of ψ(Xn
1 ) (i.e. the description length at block size n). We allow any mapping

that constitutes a valid code, i.e. any invertible mapping ψ. The source coding theorem in
Shannon’s original paper (57) states that the average coding rate 1

n
E[ln(Xn

1 )] of a memoryless
information source cannot be made smaller than its entropy. A stronger, pointwise version
of this theorem (32) can be stated as:

Theorem 3.1.1. For a memoryless source (Xn),

lim inf
1

n
ln(Xn

1 ) ≥ H(X1) a.s.

where the entropy is defined by H(X1) = E[− logP (X1)].

Despite its simplicity, this theorem can be made remarkably general by only replacing
the entropy H(X) with the entropy rate ν = lim 1

n
H(Xn

1 ) := lim 1
n
E[− logP (Xn

1 )]. Then
the result holds for any source for which the limit exists:

Theorem 3.1.2.

lim inf
1

n
ln(Xn

1 ) ≥ ν a.s.
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whenever ν = lim 1
n
H(Xn

1 ) is well defined.

The Shannon-McMillan-Breiman theorem ensures that this is true for all ergodic sources
(1):

Theorem 3.1.3.

lim− 1

n
logP (Xn

1 ) = E[− logP (Xn|Xn
−∞)] a.s.

for all ergodic information sources (Xn).

Therefore, the literature around theorem 3.1.1 is fairly complete. Unfortunately, the
same cannot be said about rates of convergence questions regarding theorem 3.1.1. The
behavior of the quantity ln(Xn

1 ) − nν has been discussed in the work of Kontoyiannis (33)
under the title ‘pointwise redundancy’ in source coding. This work is limited mostly to the
memoryless case, where it has been demonstrated that ln(Xn

1 ) − nν behaves like a random
walk, and a one sided central limit theorem can be stated for the code length sequence:

Theorem 3.1.4.

ln(Xn
1 )− nν√
n

≥ σ2gn,

where gn is a sequence of random variables with gn →d N(0, 1).

This theorem is a result of ‘Barron’s lemma’, which gives a lower bound on ln for any
encoding sequence:

Lemma 3.1.5 (Barron’s Lemma). For any sequence {c(n)} of positive constants with∑
2−c(n) <∞ we have

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− c(n), eventually, a.s. (3.1)

Here ln(Xn
1 ) is a code length sequence for the first n symbols of the source, the distribution

of which is conditioned on the infinite past, for some lossless coding algorithm. c(n) is a
deficit term that can be made logarithmic in n (e.g. c(n) = 2 log n).

The first term on the right hand side in 3.1.5 can be written as:

− logP (Xn
1 |X0

−∞) =
n∑
i=1

− logP (Xi|X i−1
−∞) :=

n∑
i=1

ρi

where we refer to the process (ρn) as the information density.

In the memoryless case, clearly (ρn) is an i.i.d. sequence, from which the result in theorem
3.1.4 follows immediately. When the process (Xn) has memory, the result is less immediate,
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as one needs to deduce properties of the function (ρn) from the process (Xn). It has been
shown that the redundancy process exhibits similar asymptotics in the case of a fast mixing
Markov chain (33). Here, we take up this question for a class of slower mixing processes,
where memory effects are much more prominent. This is the class of long range dependent
sources.

3.1.1 The lossy case

We now discuss lossy source coding. Needless to say, the lossy case has deeper technical
challenges, mostly due to the fact that the reconstruction distribution is different than the
source distribution and is now an optimization parameter. As a result, even though analogues
of lossless theorems exist, they are much less useful and difficult to evaluate.

Consider a mapping φn(Xn
1 ) : Kn → K̂n, where K̂ denotes an output alphabet. We

define a distortion function dn(xn1 ; yn1 ) = 1
n

∑n
1 d(xi; yi) with xi ∈ K and yi ∈ K̂. We consider

the problem of finding efficient mappings φn(Xn
1 ) with the property dn(Xn

1 ;φn(Xn
1 )) ≤ D.

Let ψn(φn(xn1 )) : {0, 1}n → {0, 1}∗/{∅} map φn(Xn
1 ) to a variable length binary string. Let

ln(Xn
1 ) be the length of ψn(φn(Xn

1 )) (i.e. the description length at block size n). We allow
any mapping that constitutes a valid code, i.e. any invertible mapping ψn.

Consider a random code construction where codewords are picked from an infinite i.i.d.
codebook drawn from a n-symbol codebook distribution Qn on K̂n. φn maps Xn

1 to the first
codeword in the codebook which is within distortion D of Xn

1 . The index of this match is
subsequently sent to the receiver and ψn is the Elias encoding of this index. It is shown in
(35) that for this code construction:

Lemma 3.1.6. For any sequence {c(n)} of positive constants with
∑

2−c(n) <∞ we have

ln(Xn
1 ) ≥ − logQn(B(Xn

1 , D))− c(n), eventually, a.s. (3.2)

Here Qn(B(Xn
1 , D)) is the probability of a distortion ball B(Xn

1 , D) := {yn1 ∈ K̂n :
dn(Xn

1 ; yn1 ) ≤ D} of radius D around Xn
1 under the n-letter codebook distribution Qn.

Picking the codebook distribution to optimize expected code length, we get Q∗n :=
arg maxQn E[− logQn(B(Xn

1 , D))], giving us a tighter bound for the above class of codes.
It can also be shown, however, that this class of random codes are optimal, and so the
optimized bound is valid not just for this class of codes, but in general (35):

Lemma 3.1.7. For any sequence {c(n)} of positive constants with
∑

2−c(n) <∞ we have

ln(Xn
1 ) ≥ − logQ∗n(B(Xn

1 , D))− c(n), eventually, a.s. (3.3)

for any code which operates under fixed distortion D.
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In the memoryless case, the output distribution with minimal E[ln] is a product distribu-
tion Q∗n = (Q∗)n, where Q∗ is the single letter optimal output distribution that minimizes the
information between the input and output subject to the distortion constraint. In this case,
− logQn(B(Xn

1 , D)) can again be approximated as a sum of i.i.d. variables, and analogues
of theorem 3.1.4 can be proved (35). Unfortunately, for sources with memory, very little
is known about the optimal output distribution. In fact, rate distortion functions can be
calculated exactly only in a few special cases (strongly connected finite state Markov chains
(27), Gaussian autoregressive processes (26) ) and even for those, only for a small range of
low distortion. For all other processes with memory, one needs to work with bounds, which
is useless for second order discussions.

Consequently we will only be able to extend our results to the lossy case in a limited
manner. In section 3.3, we prove an alternative lossy Barron’s lemma which is more usable
and intuitive than (3.1.7), but only tight when the rate distortion function equals the Shan-
non lower bound (47). This leads to a second order converse lossy coding theorem for this
class of information sources. We demonstrate a class of LRD processes for which the rate
distortion function matches the Shannon lower bound, and thus can be calculated exactly,
for a non-zero range of distortions. For this class of sources, we are able to conclude that the
bit length process at the output of any lossy coder operating at the rate distortion function
must exhibit LRD behavior.

3.1.2 Summary of results

Recall that a stationary random process (Xn) with E[X2
n] < ∞ is said to be long range

dependent (LRD) if

lim sup
n→∞

n∑
r=1

cov(X0, Xr) =∞. (3.4)

The degree of long range dependence is measured by the Hurst index H (1
2
≤ H ≤ 1).

H := inf

{
h : lim sup

n→∞

∑n
r=1 cov(X0, Xr)

n2h−1
<∞

}
.

Equivalently, we can write:

H := inf

{
h : lim sup

n→∞

var(
∑n

i=1Xi)

n2h
<∞

}
.

A process that is not LRD is said to be short range dependent (SRD). The justification
for this division is as follows. Although SRD processes may have memory, the effect of
this memory can be ignored in asymptotic discussions by taking long blocks of the original
source and treating these blocks as a meta process. If the process is SRD, for many practical
purposes, the block process can be well approximated by an i.i.d. process. As a result, SRD
processes behave similarly to an i.i.d. process in many asymptotic settings. Indeed, the
complement of the condition in (3.4) is necessary for a central limit theorem to hold.
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On the other hand, the effect of memory in an LRD process does not disappear even
asymptotically under any scaling. LRD processes do not satisfy the central limit theorem,
and the limit of their scaled sums is not in general Gaussian. In fact, as the definitions
suggest, the scaling required to obtain a meaningful limit is different than

√
n, and is related

to the Hurst index of the process. The limiting processes, when they exist, are described by
stable distributions and self similar processes. For a detailed description of these results and
other properties of LRD processes, the reader is referred to the references (54)(17).

Interest in LRD processes was sparked by several empirical observations that showed such
distributions were characteristic of network traffic on the internet (36)(13)(49). Due to the
fundamentally different qualities of LRD processes mentioned above, these discoveries have
important, and often negative consequences for the modeling and analysis of communication
networks. Among these are different asymptotics for queue sizes and packet drop probabili-
ties (51; 38; 37; 28; 63; 20), and a need for new optimal schedulers (2)(48)(53). The mostly
degrading effect of LRD traffic in networks has led to research efforts for understanding the
mechanisms by which such traffic is generated and whether preventive measures are possible
(48)(13).

In section 3.2, first we describe a general model of an LRD information source, which can
be written as an instantaneous function of an LRD Markov chain. Our source model includes
renewal processes and semi-Markov processes as special instances. We then seek to prove
second order converse lossless source coding theorems for these sources. This is done by first
interpreting the information density of the source as a function of a Markov chain that is
related to that which underlies the source, and then applying theorems stated in chapter 2 to
characterize the Hurst index of the information density process. An application of Barron’s
lemma leads to the main result in this section, which is that the code length process of an
LRD information source (one which can be described in our model) necessarily dominates
an LRD process with the same Hurst index as the original source, under any lossless coding
scheme. Moreover, this second order asymptotics is achievable to within O(log n).

As mentioned below, the application of Barron’s lemma in the lossy case requires the
characterization of the optimal output distribution. This problem is notoriously difficult for
sources with memory, even in the simplest case of a binary symmetric Markov chain (31).
Nevertheless, in section 3.3, we are able to find a class of LRD sources, for which we are able
do this for a constrained range of distortions. We prove second order pointwise lossy source
coding theorems for this class of sources. We also demonstrate achievability of this bound
within O(

√
n log n), which is sufficient to prove long range dependence at the output of an

optimal encoder.

3.2 Lossless coding

(Xn) ∈ K is a discrete, ergodic source. ψ(xn1 ) : {0, 1}n → {0, 1}∗/{∅} maps Xn
1 to a

variable length binary string in an invertible fashion. Let ln(Xn
1 ) be the length of ψ(Xn

1 ).
Source coding is primarily concerned with obtaining the ‘shortest possible’ ln(Xn

1 ). We know
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from 3.1.3 that the optimal description length in the mean sense is given by average entropy
density ν = E[ρn] = E[− logP (Xn|Xn

−∞)]. Here we are concerned with the asymptotic
pointwise redundancy ln(Xn

1 )− νn.

When (Xn) are i.i.d. or sufficiently short range dependent, this difference process is well
approximated by a random walk, exhibiting fluctuations of order O(

√
n) (33). When (Xn) is

an LRD process, one would expect that the difference process would be at least as variable
as the source process, exhibiting fluctuations at the scale of O(nH), where H is the Hurst
index of (Xn). The first such result for LRD renewal processes was given in (45). This result
states the following:

Theorem 3.2.1. Let (Xn) be a long range dependent ergodic renewal process. Assume

κ = sup{k : E[|T |k] <∞} > 1 (3.5)

Then, there exists a long range dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi, eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as (Xn).

The theorem is derived from the following result for the entropy density process ρ of an
LRD renewal process:

Lemma 3.2.2. Let (Xn) be a long range dependent ergodic renewal process and ρn =

− logP (Xn|Xn−1
−∞ ). Then

lim
n→∞

var(ρ0 + . . .+ ρn)

var(X0 + . . .+Xn)
= C

for some 0 < C <∞.

Asymptotically, the behavior of the aggregate entropy density is identical to the original
process, up to a constant factor. Applying Barron’s lemma, we get the theorem. In fact,
we also know that codes exist which can achieve within O(log n) of

∑n
i=1 ρi (33). Therefore,

from lemma 3.2.2, we can also deduce that the bound in theorem 3.2.1 is achievable, giving
us a complete second order source coding theorem for an LRD information source.

We will now replicate the same arguments to generalize these theorems further.

Definition 3.2.3. A process (Xn) is said to have countable memory if L(X∞n |Xn−1
−∞ ) =

L(X∞n |g(Xn−1
−∞ )) where L(X∞n |Xn−1

−∞ ) denotes the regular conditional distribution of X∞n given

Xn−1
−∞ , g is a deterministic function that maps to the integers and g(Xn

−∞) = f(Xn, g(Xn−1
−∞ ))

for some deterministic function f .
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Let (Xn) be a discrete, ergodic, finite state information source with countable memory.
Pick M̃n, a stationary, ergodic, countable state Markov chain with F(M̃n) ⊃ F(Xn, g(Xn

−∞)).

The pair (Xn, g(Xn
−∞)) itself is one such Markov chain. Define Mn = (M̃n−1, M̃n) to be an

extended Markov chain on the product space. Then it is easy to show

Lemma 3.2.4. ρn = − logP (Xn|Xn−1
−∞ ) is an instantaneous function of Mn. i.e. ρn =

h(Mn) where h is a deterministic function.

Proof. ρn = − logP (Xn|Xn−1
−∞ ) = − logP (Xn|g(Xn−1

−∞ )), which is clearly a function of Mn.

We are now ready to state our first theorem.

Theorem 3.2.5. Let (Xn) be a discrete, ergodic, finite state information source with count-

able memory with associated extended Markov chain Mn and information density ρn. If

ρn = ρ(Mn) satisfies the conditions of theorem 2.3.2 for a suitable numbering of the state

space, then there exists an LRD process (ξn) with mean ν such that the code length process

of any lossless code satisfies

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n) eventually a.s.

Moreover, (ξn) has the same Hurst index as (Xn).

Proof. From lemma 3.1.5 we know that

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)−O(log n), eventually, a.s.

Since − logP (Xn
1 |X0

−∞) =
∑n

i=1 ρi, it remains to show that (ρn) is LRD with the same

Hurst index as Mn. We get this by applying theorem 2.3.2, as we already assumed that the

conditions for this theorem are satisfied.

At this point, with the countable memory assumption and the rather cryptic conditions of
theorem 2.3.2, it is not clear whether this theorem is useful. Therefore, we now demonstrate
that fairly general classes of processes with wide applicability can be regarded as special
cases of this formulation.
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3.2.1 Semi-Markov processes

A semi-Markov process (Xn) is defined in terms of a transition probability matrix q(k, l)
and renewal process An. Xn is equal to Xn−1 when An = 0. Transitions in (Xn) occur when
there is an arrival in An according to the transition probability matrix.

Formally, let k, l ∈ K for some finite set K and An ∈ {0, 1}. Then (Xn) is a semi-Markov
process (SMP) if P (Xn = l|Xn−1 = k,An = 0) = δ(k = l), P (Xn = l|Xn−1 = k,An = 1) =
q(k, l). We assume q(k, k) = 0.

Define a Markov chain in terms of the pair (Xn, Tn), where Xn ∈ K and Tn denotes
the time since the last transition in An (i.e. {Tn = j} = {infi{i ≥ 0, An−i = 1} = j}).
We will say that a semi-Markov process is LRD whenever the associated Markov chain
(Xn, Tn) is LRD. Define Mn = (Xn, Xn−1, Tn−1) to be another Markov chain. We have that
ρn = − logP (Xn|Xn−1

−∞ ) = − logP (Xn|Xn−1, Tn−1) is a function of Mn. Assume a numbering
of the states (Xn, Xn−1, Tn−1) on N. We will be using the index i to refer to this numbering.
Given an LRD SMP, we will attempt to show that ρn is also LRD with the same Hurst
index.

To make this statement meaningful, we first show

Lemma 3.2.6. E[ρ2
n] <∞.

Proof. Denote Pm|kl = P (Xn = m|Xn−1 = k, Tn−1 = l) and Pkl = P (Xn−1 = k, Tn−1 = l).

E[ρ2
n] =

∑
k,l,m

PklPm|kl log2 Pm|kl ≤
∑
k,l,m

2Pkl = 2K

since P log2 P terms are bounded above by 2.

Lemma 3.2.7.

lim
n→∞

var(
∑n

r=1 ρr)

R
(n)
11 /π1

= C

where C is a finite, non-zero constant.

Proof. We will apply theorem 2.3.2 with the following partitions , A1 = {Tn = 0}, A2 =

{Tn > 0, ρ(i) ≤ − log εi}, and A3,m = {Tn > 0, ρ(i) > − log(εi), Xn = m},m ∈ K. Here we

will choose εi ↑ 1 later. Take c1 = c2 = 0, c3,m = 0,∀m and H = {Tn−1 = 0} in the theorem.

By the remark to the theorem, we don’t need condition 1. We will check conditions 2 and 3

of theorem 2.3.2 for each of the sets.
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When i, j ∈ A1 notice Hp
(r)
ij = 0, so both conditions hold automatically. For i, j ∈ A2,

condition 2 holds because the limit of ρ(i) as i → ∞ is zero, (see the remarks to theorem

3.1 in (46)) and condition 3 holds because ρ is bounded on this set. Thus we focus on

i, j ∈ A3,m. Define ρ(i) =: − log(ε̃i). Let subsequence {ik} = A3,m, ordered such that if

ik = (m,m, T1) and ij = (m,m, T2), T1 > T2 ⇐⇒ k > j. We have ε̃ik ≤ εik . πik ≤
∏k

l=1 ε̃ik ,

and
∑∞

1 1p
(r)
ikij

= πij/πik . We have

∑
i∈A3,m

ρ(i)πi
∑

j∈A3,m

ρ(j)
n∑
r=1

1p
(r)
ij

≤
∑
k

−(
k∏
l=1

ε̃il) log ε̃ik
∑
j>k

(− log ε̃ij)

j∏
l=k+1

ε̃il

≤
∑
j

∑
k<j

j∏
l=1

ε̃il(1− log ε̃il)

<
∑
j

j

j∏
l=1

ε̃il(1− log ε̃il).

We can easily choose εi ↑ 1 such that this is finite. Dividing by Q
(n)
11 , we will obtain a 0

limit (since Q
(n)
11 →∞, 2.3) satisfying both conditions in theorem 2.3.2.

Now we state our theorem for LRD SMPs.

Theorem 3.2.8. Let (Xn) be a long range dependent semi-Markov process. Then, there

exists a long range dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n), eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as (Xn).

Proof. The LRD process (ξn) in the theorem is essentially (ρn). This is seen directly from

lemma 3.1.5. The fact that (ρn) is LRD with the same Hurst index as (Xn) follows from

lemma 3.2.7.
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3.2.2 Generalized semi-Markov processes

The definition of the SMP can be generalized substantially by allowing the transition
matrix q(k, l) to depend on Tn. This construction is equivalent to a class of generalized
semi-Markov processes (GSMPs), for which the set of living events is disjoint for each state
(also see e.g. (55) for a description of a GSMP). In this construction, with each state k in
the finite set K is associated a set of events Ek each with its own timer which expires after a
time Te for every e ∈ Ek. Assume each timer has a distribution Te ∼ Fe, which is continuous,
so that no two timers expire at the same time. Let e be the event for which the first timer
expires. Then the process (Xn) will jump at time n = dTee according to a transition matrix
qe(k, l) which is allowed to depend on e. We again assume that qe(k, k) = 0. At this point
all timers are reset, and new timers are generated for each event in El corresponding to the
new state l.

We can reframe this construction as follows. Let (Xn) be a semi-Markov process, where
the transition probability matrix q(k, l, T ) depends on the time since the last transition.
Set T to have the (integer valued) distribution defined as follows: P (T = n) = P (n − 1 ≤
minTe < n). Also define q(k, l, n) =

∑
e∈Ek qe(k, l)P (argminTe = e|T = n).

Note again that the tuple (Xn, Tn) is a Markov chain. We say that the GSMP is long
range dependent, when this Markov chain is long range dependent. We prove the following
theorem for this construction.

Theorem 3.2.9. Let (Xn) be a long range dependent GSMP. Then, there exists a long range

dependent random process (ξn) such that

ln(Xn
1 ) ≥

n∑
i=1

ξi −O(log n), eventually, a.s.

for all uniquely decodable source codes. Moreover, (ξn) has the same Hurst index as (Xn).

Proof. Simply use the same partitioning of the state space as was done in the proof of lemma

3.2.7, and observe that the proof does not depend on the transition probabilities.

3.2.3 Achievability and Wyner-Ziv waiting times

It is well known that the above lower bounds are achievable by many classes of optimum
lossless codes. e.g. Huffman coding achieves ln(Xn

1 ) ≤ − logP (Xn
1 ) +O(1). It is interesting

to also consider the performance of algorithms based on the popular Lempel-Ziv compressor.

Lempel-Ziv type lossless compression schemes (62) have been immensely popular due
to their practicality and universality. The central idea in these schemes is to use the past
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realization of the random process as a codebook for compression. The input string is incre-
mentally partitioned into phrases, each phrase corresponding to the shortest substring that
has not so far occurred in the past phrases. The encoder then sends an index of the matched
phrase to describe the new phrase. Matched phrases are likely to get longer as more of the
string is partitioned in this way, since more phrases are continually added to the codebook.

In an idealized version of this scheme, we may imagine that a two sided stationary process
is being compressed, with the infinite past of the process already decoded and available at
the receiver (58; 59). To communicate the string Xn

1 to the receiver, the encoder looks for
the closest index i in the past where this string appears exactly, i.e.

min{i : Xn−i+1
−i = Xn

1 }.

This index is then sent to the receiver, using the Elias encoding for integers (19) using only
log i+ log log i+ 1 bits.

The index i is referred to as the ‘recurrence time’ of the string Xn
1 . The recurrence time

is related to the probability P (Xn
1 ) using the following result.

Theorem 3.2.10 ((34), theorem 1(i)). Let (Xn) be a finite-valued stationary ergodic process,

and cn an arbitrary sequence of non-negative constants such that
∑
n2−cn < ∞. For the

recurrence times Rn we have

logRnP (Xn
1 ) ≤ cn ev. as.

Pick e.g. cn = 3 log n and note that the code lengths satisfy ln(Xn
1 ) ≤ logRn(Xn

1 ) +
log logRn(Xn

1 ) + 1. We can easily modify this scheme to transmit (Xn
1 ) exactly using at

most n log |K| bits whenever logRn(Xn
1 ) > n log |K|. This ensures that the code length is

at most logRn(Xn
1 ) +O(log n). Combining this with the last theorem, we conclude that for

the idealized Lempel-Ziv scheme,

ln(Xn
1 ) = − logP (Xn

1 ) +O(log n).

3.3 Lossy coding

We consider the problem of representing Xn
1 within distortion Dn, i.e. 1

n

∑n
i=1 d(Xi;Yi) ≤

Dn. Define φn(Xn
1 ) = Y n

1 to be the code at block length n, and ln(Xn
1 ) be the corresponding

representation length defined by the invertible mapping ψ : K̂n → {0, 1}∗/{∅}. We can show
that

Lemma 3.3.1. Let cn satisfy
∑

2−cn <∞.

ln(Xn
1 ) ≥ − logP (φn(Xn

1 ))− cn ev. a.s.
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Proof.

P (ln < − logP (φn(Xn
1 ))− cn) = P (

2−ln

P (φn(Xn
1 ))

> 2cn)

≤ 2−cnE

[
2−ln

P (φn(Xn
1 ))

]
= 2−cn

∑
xn1

2−ln(xn1 )

≤ 2−cn .

Here the second equality follows simply by expanding the expectation, and the last inequality

is a result of Kraft’s inequality. The lemma follows through Borel-Cantelli lemma using the

assumption on cn.

Rewriting the first term on the RHS,

− logP (φn(Xn
1 )) = − log

P (Xn
1 , φn(Xn

1 ))

P (Xn
1 |Y n

1 )
(3.6)

= − logP (Xn
1 ) + logP (Xn

1 |Y n
1 ). (3.7)

This equation relates the aggregate entropy density process − logP (Xn
1 ) to two other quan-

tities. The first one, − logP (φn(Xn
1 )), is closely related to the bit-length process as we just

argued. The second one, − logP (Xn
1 |Y n

1 ), will turn out to be related to the distortion process
dn = d(Xn;Yn). Consider for instance a distortion function such that Xn is recoverable from
dn and Yn. Then, we would have − logP (Xn

1 |Y n
1 ) = − logP (dn1 |Y n

1 ), which we can interpret
as ‘the information lost in distortion’.

Now, assuming that the source has LRD entropy density (e.g. it belongs to the class
of sources described in section 3.2), this induces long range dependence in at least one of
these two objects. Qualitatively, a tradeoff is revealed between rate (as tied to the bit-
length process) and distortion in the context of long range dependence. In this work, we will
investigate a fixed distortion scenario, and show that the code length process must exhibit
LRD.

To make this more concrete, assume d(k; j) is a balanced distortion measure. Let (Xn)
be a discrete, stationary, ergodic source taking values in a finite set K. For each n consider
a mapping φn(Xn

1 ) : Kn → K̂n where the output alphabet K̂ is also finite. We consider
balanced distortion measures dn(xn1 ; yn1 ) = 1

n

∑n
1 d(xi; yi) with xi ∈ K, yi ∈ K̂.

Definition 3.3.2. d(x; y) is said to be a balanced distortion measure whenever the set of

possible values d(·; y) takes is identical for each y ∈ K̂.
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We are concerned with the problem of finding “minimum length” mappings φn(Xn
1 ) with

the property dn(Xn
1 ;φn(Xn

1 )) ≤ D for each n. Let ψn : K̂n → {0, 1}∗/{∅}, which maps
φn(Xn

1 ) to a variable length binary string. Let ln(Xn
1 ) be the length of ψn(φn(Xn

1 )) (i.e. the
description length at block size n). We allow any mapping that constitutes a valid code, i.e.
any invertible mapping ψn.

It is well known (32) that the average behavior of ln(Xn
1 ) is bounded by the rate distortion

function.

Definition 3.3.3. (Rate distortion function)

Rn(D) := min
P (Xn

1 ,Y
n
1 ):Ed(Xn

1 ;Y n1 )≤D

1

n
I(Xn

1 ;Y n
1 ),

R(D) := lim
n→∞

Rn(D).

Theorem 3.3.4. ((32), prop. 4)

lim inf
1

n
ln(Xn

1 ) ≥ R(D) a.s. .

Going beyond average behavior, one might be interested in the more fine grained problem
of how close the code lengths can get to the rate distortion function. This problem is referred
to as the redundancy problem of lossy source coding. The average redundancy of code lengths
E[ln(Xn

1 )]− nR(D) has been studied in the works of (61; 60). There, the minimum average
redundancy has been shown quite generally to be O(log n).

Here we are concerned with the pointwise redundancy ln(Xn
1 ) − nR(D). This problem

was considered in the work (35), where it was proved that:

Theorem 3.3.5. ((35), theorem 6(ii) ) For any sequence {cn} of positive constants with∑
2−cn <∞,

ln(Xn
1 ) ≥ − log Q̃n(B(Xn

1 , D))− cn eventually a.s. .

Here B(Xn
1 , D) is the distortion ball defined by

B(Xn
1 , D) := {yn1 ∈ K̂n : dn(Xn

1 ; yn1 ) ≤ D},

and Q̃n is the probability measure that minimizes E[− logQn(B(Xn
1 , D))] under all probability

measures Qn on K̂n.

Unfortunately, very little can be said about the measures Q̃n, except when (Xn) is i.i.d,
in which case − log Q̃n(B(Xn

1 , D)) = − logQ∗n(B(Xn
1 , D)) − O(log n) a.s. where Q∗n is a

product distribution. We aim to produce a more workable lower bound to ln(Xn
1 )− nR(D).

Our main result will be the following.
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Theorem 3.3.6. Let ν = E[− logP (X1|X0
−∞)] be the entropy rate of (Xn). Then

ln(Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)− n(ν −Rl(D))−O(log n) ev. a.s.

Here Rl(D) is the Shannon lower bound to the rate-distortion function, to be defined in
the next section. The advantage of this bound over that in theorem 3.3.5 is that the quantity
− logP (Xn

1 |X0
−∞) can be written as a running sum of a stationary random process as

− logP (Xn
1 |X0

−∞) =
n∑
i=1

− logP (Xi|X i−1
−∞). (3.8)

The random process ρn = − logP (Xn|Xn−1
−∞ ) is referred to as the entropy density process.

Consequently, the asymptotic (second order) behavior of ln(Xn
1 ) can generally be inferred

from limit theorems on
∑
ρi, as the stationary ergodic process (ρn) typically inherits the

mixing properties of the source (Xn). The caveat is that the RHS of 3.3.6 has mean nRl(D)−
O(log n), meaning that if the Shannon lower bound is not tight, the bound is of little interest.

To put this restriction in context, we point out that in the literature of rate-distortion
theory for sources with memory, complete results are rare even in first order discussions (i.e.
calculation of R(D)). In fact, rate distortion functions can be calculated exactly only in a
few special cases (finite state Markov chains with strictly positive transition matrices (27),
Gaussian autoregressive processes (26) ) and even for those, only for a small range of low
distortion. These examples have the property that the Shannon bound to the rate-distortion
function is tight. For all other processes with memory, one needs to work with bounds on
the rate-distortion function, which is useless for second order discussions.

In the next section we will define the Shannon lower bound to the rate distortion function
for balanced distortion measures, and discuss the conditions under which it is tight. In section
3.5, we present the proof of our main theorem 3.3.6. Then we discuss applications of this
theorem to fast mixing sources in section 3.6. A one sided central limit theorem for such
sources is given, as well as a discussion of minimum coding variance. In section 3.7, we
proceed to discuss long range dependent sources. We show through an example that there
exist information sources which exhibit long range dependent code lengths under any coding
scheme operating at the Shannon lower bound with fixed distortion.

3.4 Shannon lower bound

The Shannon lower bound (SLB) to the rate-distortion function is defined as follows, (see
e.g. (12), problem 10.6.):

Definition 3.4.1 (Shannon lower bound).

Rl(D) := ν − max
X:Ed(X;0)≤D

H(X).
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Lemma 3.4.2.

Rn(D) ≥ nRl(D)

Proof. Let Xn
1 ∼ Pxn1 .

min
Xn

1 ∼Pxn1
Edn(Xn

1 ;Y n1 )≤D

I(Xn
1 ;Y n

1 ) = H(Xn
1 )− max

Xn
1 ∼Pxn1 ,

Edn(Xn
1 ;Y n1 )≤D

H(Xn
1 |Y n

1 )

≥ nν − max
Edn(Xn

1 ;Y n1 )≤D
H(Xn

1 |Y n
1 )

(a)
= nν − max

Edn(Xn
1 ;yn1 )≤D

H(Xn
1 |Y n

1 = yn1 )

= nν − n max
X:Ed(X;y)≤D

H(X)

Where the min and max are over joint distributions P (Xn
1 , Y

n
1 ). (a) follows because the

distortion is balanced. The last equality follows because H(Xn
1 ) is maximized by a product

distribution on Xn
1 , and by the concavity of entropy.

3.4.1 Tightness of the SLB

Let x, y ∈ K where K is an additive group. If the distortion can be written as d(x; y) =
d(x−y) for some function d : K→ R, then d is referred to as a difference distortion measure.
For difference distortion measures, the case in which the SLB is tight is characterized by the
following theorem:

Theorem 3.4.3. (Theorem 4.3.1 in (6))

Rl(D) = R(D) iff the source r.v. X can be expressed as the sum of two statisti-

cally independent random variables one of which is distributed according to the probability

distribution that maximizes the expression in 3.4.1. i.e Xn = Yn + Zn where H(Zn) =

maxX:Ed(X,0)≤DH(X).

Proof. We will produce a summary of the proof in (6) as it will be useful later. We

find the rate distortion function by maximizing I(Xn
1 , Y

n
1 ) subject to Xn

1 ∼ Pn over all

joint distributions Qn(Y n
1 |Xn

1 ). For a given Qn(Y n
1 |Xn

1 ), we can also define Qn(Y n
1 ) =
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∑
xn1
Pn(xn1 )Qn(Y n

1 |xn1 ). For most of the proof, we regard the sequences Xn
1 and Y n

1 as

discrete random variables. To keep notation uncluttered, we will simply write X for Xn
1 and

Y for Y n
1 . We will use the time indices when they are necessary.

We are given the following optimization problem:

max
Q(y|x)

I(X;Y ) =
∑
x,y

P (x)Q(y|x) log
Q(y|x)

Q(y)
(3.9)

s.t. Q(y|x) ≥ 0 (3.10)∑
y

Q(y|x) = 1 ∀x (3.11)

∑
x,y

P (x)Q(y|x)d(x; y) ≤ D. (3.12)

This is a convex optimization problem. To solve it analytically, we ignore the first set of

constraints, and introduce Lagrange multipliers µx and s < 0 for the next two, giving the

Lagrangian,

J(Q) =
∑
x,y

P (x)Q(y|x) log
Q(y|x)

Q(y)
−
∑
x

µx
∑
y

Q(y|x)− s
∑
x,y

P (x)Q(y|x)d(x; y). (3.13)

At this point, we make the substitution log λx = µx
P (x)

. Now taking derivatives with respect

to the Q(y|x) and setting them equal to zero, we find that the optimal solution should satisfy

Q(y|x) = λxQ(y)esd(x;y) (3.14)

λx = (
∑
y

Q(y)esd(x;y))−1 (3.15)

Q(y|x) =
Q(y)esd(x;y)∑
yQ(y)esd(x;y)

. (3.16)

Assuming for the moment that the solution to the optimization problem gives a vector

Q(y|x) > 0, ∀x, y (we skip here the argument that this entails no loss of generality, see (6)

chapter 2, lemma 1), we can eliminate Q(y|x) and write the R(D) curve parametrically in
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terms of Q(y) > 0, λx, and s as

D =
∑
x,y

λxP (x)Q(y)esd(x;y)d(x; y), (3.17)

R = sD +
∑
x

P (x) log λx (3.18)

with ∑
x

λxP (x)esd(x;y) = 1. (3.19)

The multiplier s turns out to have a natural interpretation as the slope of the R(Ds) curve

which it parametrizes ((6), theorem 2.5.1). Note that the existence of a solution Q(y|x) >

0,∀x, y is necessary and sufficient for this formulation.

Now let d(x; y) = d(xn1 ; yn1 ) =
∑n

1 d(xi−yi) :=
∑n

1 d(zi) := d(z) be a difference distortion

measure. We will pick λx = 1
KP (x)

to give a bound on R(D):

R(D) ≥ sD −
∑
x

P (x) logP (x)− logK. (3.20)

We set K =
∑

x e
sd(x;y) =

∑
z e

sd(z) so that (3.19) is satisfied. Note that we are able to do

this because the sum is now independent of y. Maximizing the bound with respect to s, we

see that

D =
∑
z

d(z)
esd(z)∑
z′ e

sd(z′)
. (3.21)

Combining (3.20) and (3.21) we can rewrite the bound as

R(D) ≥ H(X) +
∑
z

esd(z)∑
z′ e

sd(z′)
log

esd(z)∑
z′ e

sd(z′)
(3.22)

= H(X)−H(Z) (3.23)

where Z = Zn
1 is the random variable having distribution g(z) = gn(zn1 ) = es

∑
d(zi)

K
. We note

that this is the maximum entropy distribution subject to Ed(Z) < D, giving the expression

for the Shannon lower bound.

To summarize, we observe that the SLB is tight if and only if there is a positive vector

Q(y), summing up to 1 and satisfying 3.14 with the given choice of λx, which can now be
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written as

Qn(yn1 |xn1 )Pn(xn1 ) = Qn(yn1 )
1

K

n∏
1

esd(xi−yi). (3.24)

We recognize this as the construction described in the statement of the theorem, namely

that Xn
1 can be constructed from Y n

1 ∼ Qn by passing it through an i.i.d. channel with

transition probability esd(xi−yi)

K
.

Although the theorem is stated for difference distortion measures, the proof generalizes
to balanced distortion measures without alteration (also see (27) for a partial discussion).
To state the general version, let Φy, y ∈ K̂, be the permutation function with d(x; y) =

d(Φy(x); 0), ∀x ∈ K, for a balanced distortion d. K and K̂ are now arbitrary finite sets.
Then we have:

Theorem 3.4.4. Rl(D) = R(D) iff the source r.v. X admits the following characterization.

Xn = ΦYn(Zn)

where Zn ∈ K are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X;0)≤DH(X).

Proof. Following the preceding proof where for difference distortion measures it is defined

d(z) := d(x− y) = d(x; y), for balanced distortions, we similarly define d(z) := d(Φ−1
y (x)) =

d(x; y). Equation 3.24 becomes:

Qn(yn1 |xn1 )Pn(xn1 ) = Qn(yn1 )
1

K

n∏
1

esd(Φ−1
yi

(xi)).

This is equivalent to requiring that there exist a random variable Y n
1 such that the above

construction is possible - Xn = ΦYn(Zn), with Zn i.i.d. distributed according to esd(z)∑
z e
sd(z) . But

this is the distribution which results from the maximization maxX:Ed(X;0)≤DH(X) (with D

parametrized by the value of s), proving the theorem.

Immediate examples of information sources which admit such a characterization are
explicit constructions where an underlying process is observed through a memoryless, time
invariant channel (e.g. hidden Markov models). There also exist more surprising examples
however, for instance some finite state Markov chains (27) and autoregressive processes (26).
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While the Shannon lower bound is known to be asymptotically tight for small distortions
quite generally (39), it is in general a difficult question as to when such a decomposition will
exist.

3.5 Pointwise lower bound

Once the mapping φn has been chosen, the following lemma (33) provides a pointwise
lower bound on the code length process.

Recall that by (3.3.1), for any sequence {c(n)} of positive constants with
∑

2−c(n) <∞
we have:

ln(Xn
1 ) ≥ − logP (φn(Xn

1 ))− c(n), eventually, a.s. . (3.25)

Rewriting the first term on the RHS,

− logP (φn(Xn
1 )) = − log

P (Xn
1 , φn(Xn

1 ))

P (Xn
1 |φn(Xn

1 ))
(3.26)

= − logP (Xn
1 ) + logP (Xn

1 |φn(Xn
1 )). (3.27)

Theorem 3.5.1. Let φn be a series of codes operating at fixed distortion level Dn ≤ D, ∀n

for some balanced distortion measure d. Then

ln(Xn
1 ) ≥ − logP (Xn

1 )− n(ν −Rl(D))−O(log n) ev. a.s.

Proof. Combining (3.25) and equation (3.27), we have

ln(Xn
1 ) ≥ − logP (Xn

1 ) + logP (Xn
1 |φn(Xn

1 ))−O(log n), ev. a.s. (3.28)

Define S(yn1 ) = {xn1 : dn(xn1 ; yn1 ) ≤ D}. For balanced distortion measures, |S|n := |S(yn1 )|

does not depend on yn1 . We will argue that:

Lemma 3.5.2.

log |S|n ≥ − logP (Xn
1 |φn(Xn

1 ))−O(log n) eventually, a.s. .
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Proof.

P (− logP (Xn
1 |φn(Xn

1 )) ≥ log |S|n + cn) (3.29)

= P (
1

|S|nP (Xn
1 |φn(Xn

1 ))
≥ 2cn) (3.30)

≤ 2−cnE

[
1

|S|nP (Xn
1 |φn(Xn

1 ))

]
. (3.31)

For any pair of random variables Xn
1 , Y

n
1 with Xn

1 ∈ S(Y n
1 ) we have

E

[
1

P (Xn
1 |Y n

1 )

]
=
∑
yn1

∑
xn1∈S(yn1 )

P (xn1 , y
n
1 )

P (xn1 |yn1 )

=
∑
yn1

P (yn1 )
∑

xn1∈S(yn1 )

P (xn1 |yn1 )

P (xn1 |yn1 )

≤
∑
yn1

P (yn1 )|S(yn1 )| = |S|n,

where the inequality is due to the fact that only those xn1 with P (xn1 |yn1 ) > 0 contribute to

the inner sum.

We conclude that:

P (− logP (Xn
1 |φn(Xn

1 )) ≥ log |S|n + cn) ≤ 2−cn .

Applying the Borel-Cantelli lemma with e.g. cn = 2 log n, we get the desired result.

Define R∗n(D) = ν + 1
n

log 1
|S|n . Lemma 3.5.2 combined with equation (3.28) gives:

ln(Xn
1 ) ≥ − logP (Xn

1 ) + n(R∗n(D)− ν)−O(log n), ev. a.s. (3.32)

Lastly, we prove:

Lemma 3.5.3.

n|R∗n(D)−Rl(D)| = O(log n).

Proof. Since d is balanced, notice that dn(xn1 ; yn1 ) only depends on the ‘type’ (the type of

a string is a vector of counts of the appearances of each symbol in the string) of Φyn1
(xn1 ).
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(Recall that Φ is the permutation with the property d(x; y) = d(Φy(x), 0).) By well known

arguments resulting from the combinatorics of types (see e.g. chapter 2 of (14)), we know

(n+ 1)−|K|2nH(X) ≤ |S|n ≤ (n+ 1)|K|2nH(X),

where X has the distribution that maximizes H(X) subject to Ed(X, 0) ≤ D. Taking

logarithms, we get

| log |S|n − max
Ed(X,0)≤D

nH(X)| = O(log n).

The result follows by the definitions of R∗n(D) and Rl(D).

Combining lemma 3.5.3 with eq. 3.32 we conclude the proof of the theorem.

3.5.1 Proof of theorem 3.3.6

Having proved theorem 3.5.1, it only remains to show that:

Lemma 3.5.4.

− logP (Xn
1 ) ≥ − logP (Xn

1 |X0
−∞)−O(log n), ev. a.s. .

Proof. We argue as in (1) that

E

[
P (Xn

1 )

P (Xn
1 |X0

−∞)

]
≤ 1, (3.33)

and thus

P (− logP (Xn
1 |X0

−∞) ≥ − logP (Xn
1 ) + cn) (3.34)

= P (
P (Xn

1 )

P (Xn
1 |X0

−∞)
) ≥ 2cn) (3.35)

≤ 2−cnE

[
P (Xn

1 )

P (Xn
1 |X0

−∞)

]
≤ 2−cn . (3.36)

Picking cn = 2 log n and invoking the Borel-Cantelli lemma completes the proof.
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3.6 Mixing sources

Define the function ρn = − logP (Xn|Xn−1
−∞ ). Theorem 3.3.6 can be re-written as

ln(Xn
1 ) ≥

n∑
i=1

(ρi − ν) + nRl(D)−O(log n) ev. a.s. .

This allows us to bound the limiting behavior of the code length sequence by applying well
known limit theorems to the stationary sequence ρn. For instance, when (Xn) are i.i.d.,
it follows that (ρn) is also an i.i.d. sequence. It can easily be shown that the variance of
ρn = − logP (Xn|Xn−1

−∞ ) is bounded:

Lemma 3.6.1. E[ρ2
1] <∞.

Proof.

E[ρ2
1] = lim

N→∞

∑
x1−N

P (x0
−N)P (x1|x0

−N) log2 P (x1|x0
−N)

≤ lim
N→∞

2
∑
x1−N

P (x0
−N) = 2K,

since P log2 P terms are bounded above by 2.

Therefore (ρn) satisfies a central limit theorem with limiting variance var[ρ0]. It follows
that for memoryless, finite state sources (Xn):

Corollary 3.6.2. There exists a sequence of random variables (zn) s.t.

ln(Xn
1 )− nRl(D)√

n
≥ zn

with zn
d→ N(0, var[ρ0]).

When (Xn) are not i.i.d, but sufficiently fast mixing, one would expect that the same
holds for the sequence (ρn). In general, suppose that the sequence

σ2 = var(ρ0) + 2
∞∑
i=1

cov(ρ0, ρi) (3.37)

converges. Sufficient conditions for this to hold have been studied in (33). The convergence
holds, for instance, when (Xn) is a finite state, finite order Markov source, or more generally
when (Xn) has the following mixing properties (50):

α(k) = O(k−336) and γ(k) = O(k−48)
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with

α(k) := sup{|P (B ∩ A)− P (B)P (A)|;
A ∈ F(X0

−∞), B ∈ F(X∞k )},

γ(k) := max
x∈K

E| logP (X1 = x|X0
−∞)− logP (X1 = x|X0

−k)|.

An easy corollary to theorem 3.3.6 for the above cases is the following one sided central
limit theorem.

Corollary 3.6.3. There exists a sequence of random variables (zn) s.t.

ln(Xn
1 )− nRl(D)√

n
≥ zn

with zn
d→ N(0, σ2).

We refer to lim inf 1
n
E[(ln(Xn

1 ) − nRl(D))2] as the coding variance. Then σ2 is a lower
bound on the minimum coding variance. In the memoryless case, this can easily be calculated
as var(− logP (X0)). In general, for sources that meet the Shannon lower bound, and for
which the sum in (3.37) is absolutely summable, we conclude that the minimum coding
variance is strictly positive unless ρn is equal to a deterministic constant. This confirms the
conjecture raised in (35) in a more general setting.

What is perhaps more interesting is that minimum coding variance for lossy coding
that meets the Shannon lower bound admits a lower bound that is independent of the
distortion level D and is equal to the minimum lossless coding variance. 1 This is surprising,
because it implies that the minimum coding variance can be discontinuous at distortion
level Dmax := infd{R(d) = 0}. Consider an information source for which the Shannon lower
bound holds with equality for the entire range of distortions 0 ≤ D ≤ Dmax. The i.i.d. Xn ∼
Bernoulli(p) process with Hamming distortion measure is one such source. It is easy to show
that:

Lemma 3.6.4. For D = Dmax + ε, there exists an achievable coding scheme with

ln(Xn
1 ) ≤ 1 eventually a.s. .

Proof. Without loss of generality, let p ≤ 1
2
. Note that Dmax = p. We code as follows. If∑n

i=1 Xi < n(p+ ε), we map to all zeros. This is within distortion Dmax + ε. Otherwise, we

1For the lossless case see (45),(46).
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transmit the exact string Xn
1 . We use a 1 bit flag to indicate which event happens. Since

we know

P (
n∑
i=1

Xi ≥ n(p+ ε)) ≤ e−O(n),

the error event stops happening eventually almost surely by Borel-Cantelli, thus proving the

lemma.

This shows that the minimum coding variance is 0 when D = Dmax + ε for any ε, while
it is strictly non-zero when D = Dmax.

3.7 Long range dependent sources

The results in the previous section imply that for sufficiently fast mixing information
sources, the optimal pointwise redundancy in the code length process is bounded below by
an order

√
n random process. In this section, we investigate the case when the memory in

the source decays much more slowly.

Assume that the entropy density (ρn) is LRD with Hurst index 1
2
≤ H ≤ 1. From theorem

3.3.6, we conclude that the process ln(Xn
1 )−Rl(D) is lower bounded by the partial sums of

a zero-mean LRD process with Hurst index H and therefore the pointwise redundancy in
code length is lower bounded by a process that is at least of order nH . The result is true
for any coding algorithm with fixed distortion that has average code length equal to the
Shannon lower bound. In other words, long range dependence is an information-theoretic
quantity that persists under any coding scheme. This result was first suggested in (45) in
the context of lossless coding of an LRD renewal process. The extension to the lossy case is
important, because in practice, long range dependence is observed in the context of coding
with distortion (e.g. at the output of a variable bit-rate video coder (5; 22; 52; 21)).

Therefore efforts to mitigate long range dependence using clever coding might be futile,
at least in the constant distortion case. To maintain a less bursty rate, one might try to
use codes with variable quality, in which case we conjecture that the distortion function will
likely end up being long range dependent.

This entire discussion hinges on the fact that there exists information sources for which
the entropy density (ρn) is LRD, and for which the Shannon lower bound is tight. Below we
construct an example process with these properties, demonstrating that the above discussion
is not vacuous.
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3.7.1 Example

The first example of a concrete information source which has (ρn) LRD was presented in
(45). There it is proved that if (Xn) is a stationary discrete time LRD renewal process with
Hurst index H, then ρn = − logP (Xn|Xn−1

−∞ ) is also LRD with identical Hurst index H.

Here we demonstrate an information source such that (ρn) is LRD with Hurst index H
for which the Shannon lower bound is tight for some strictly non-zero distortion D > 0.

Let X1(n) ∈ {0, 1} be an LRD renewal process with Hurst index H. Let X2(n) ∈ {0, 1}
be an i.i.d. Bernoulli(p) process. Let X1 be independent of X2. Define

Xn = (X1(n), X2(n)) ∈ {0, 1}2,

with d(x; y) = 1− δ(x = y) for x, y ∈ {0, 1}2.

Note that we are able to write

Xn = (X1(n), X2(n)) = (X1(n), 0)⊕ (0, X2(n))

for the appropriate addition operation defined on {0, 1}2. Since d is a difference distortion
measure, and the source can be decomposed into a group sum of i.i.d. components, by
theorem 3.4.3, we conclude that the Shannon lower bound holds for this source for a strictly
non-zero distortion level D.

By construction, we also have:

ρn = − logP (Xn|Xn−1
−∞ )

= − logP (X1(n)|(X1)n−1
−∞ )P (X2(n))

= − logP (X1(n)|(X1)n−1
−∞ )− logP (X2(n))

:= ρ1(n) + ρ2(n),

which is LRD with Hurst index H by virtue of (ρ1) having this property.

3.8 Achievability for LRD sources

For achievability we will use the well known random code construction. Let Qn be a
distribution on K̂n. An infinite random codebook C drawn i.i.d. from Qn is known both
to the transmitter and the receiver. Let Wn(xn1 ) be the index of the first yn1 ∈ C such that
d(xn1 ; yn1 ) ≤ D (Wn(xn1 ) = ∞ if no such match is found). The index Wn(xn1 ) is transmitted
using Elias coding of the integers whenever Wn(xn1 ) < ∞. Xn

1 is transmitted as it is using
ndlogKe bits otherwise. A 1 bit flag is used to indicate which has occurred. The performance
of this scheme is known to obey the following ((35), theorem 8):
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Theorem 3.8.1.

ln(Xn
1 ) ≤ − logQn(B(Xn

1 , D))

+ 2 log log
2n2

Qn(B(Xn
1 , D))

+O(log n) ev. a.s.

where B(Xn
1 , D) = {yn1 ∈ K̂n : d(xn1 ; yn1 ) ≤ D}.

We can tweak this by sending the exact representation of (Xn
1 ) whenever

− logQn(B(Xn
1 , D)) > ndlogKe, which ensures that

Theorem 3.8.2.

ln(Xn
1 ) ≤ − logQn(B(Xn

1 , D)) +O(log n) ev. a.s.

where B(Xn
1 , D) = {yn1 ∈ K̂n : d(xn1 ; yn1 ) ≤ D}.

We will prove that − logQn(B(Xn
1 , D)) is well approximated by − logP (Xn

1 ) − n(ν −
Rl(D)) given the right choice of output distribution Qn.

Theorem 3.8.3. Let (Xn) ∈ K be a stationary sequence for which Rl(D
′) = R(D′) for some

balanced distortion measure d, for a range of distortions D − ε < D′ ≤ D for some ε > 0.

Then there exists a sequence of codes φn(Xn
1 ) operating at fixed distortion level Dn ≤ D s.t.

ln(Xn
1 ) ≤ − logP (Xn

1 )− n(ν −Rl(D))−O(
√
n log n) ev. a.s.

We remark that the theorem is true for any source that meets the Shannon lower bound
at distortion level D, however, the error term O(

√
n log n) is too loose to be meaningful in

the fast mixing case, where the fluctuations of − logP (Xn
1 ) are of order O(

√
n).

Also the condition that the SLB holds for all average distortions in a small range D−ε ≤
Ed(x; y) ≤ D is usually implied by the slightly weaker condition Rl(D) = R(D). This claim
is discussed in the appendix.

Proof. By theorem 3.4.4 the source admits the decomposition

Xn = ΦYn(Zn)

where Zn are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X,0)≤DH(X) and Φy,

y ∈ K̂, is the permutation function with d(x; y) = d(Φy(x), 0), ∀x ∈ K, for a balanced

distortion d.
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In this construction, we pick Qn to be equal to the distribution of Y n
1 , corresponding to

an expected distortion of D− := D− logn√
n

. We assume n sufficiently large such that logn√
n
< ε,

and so that such a decomposition exists. The distribution maximizing H(X) subject to

Ed(X, 0) ≤ D− has the form

Zn ∼
esd(z,0)

K
(3.38)

with K =
∑

x∈K e
sd(x,0), where s < 0 is chosen such that E[d(Zn, 0)] = D−. This can be seen

by introducing the Lagrange multiplier s for the condition Ed(X, 0) ≤ D− and then solving

the unconstrained optimization. Let δn := D −D−. We note that

KnP (xn1 ) =
∑
ŷn1

esd(xn1 ;ŷn1 )Qn(ŷn1 ) (3.39)

and

P (yn1 |xn1 ) =
esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

. (3.40)

Qn(B(xn1 , D)) =
∑

B(xn1 ,D)

Qn(yn1 ) (3.41)

=
∑

B(xn1 ,D)

e−sd(xn1 ;yn1 )esd(xn1 ;yn1 )Qn(yn1 ) (3.42)

≥
∑

B(xn1 ,D)−B(xn1 ,D−2δn)

(3.43)

∑
ŷn1

esd(xn1 ;ŷn1 )Qn(ŷn1 ) (3.44)

e−sd(xn1 ;yn1 ) esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

(3.45)

≥ KnP (xn1 )e−nsD+2snδn (3.46)∑
B(xn1 ,D)−B(xn1 ,D−2δn)

esd(xn1 ;yn1 )Qn(yn1 )∑
ŷn1
esd(xn1 ;ŷn1 )Qn(ŷn1 )

(3.47)

= KnP (xn1 )e−nsD+2snδn
∑

B(xn1 ,D)−B(xn1 ,D−2δn)

P (yn1 |xn1 ). (3.48)
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We can re-write the last term as:

∑
yn1 ∈B(xn1 ,D)−B(xn1 ,D−2δ)

P (yn1 |xn1 ) = (3.49)

∑
zn1 :D−−δn≤ 1

n
d(zn1 ,0)≤D−+δn

P (Zn
1 = zn1 |xn1 ) (3.50)

:= P (Bδ|xn1 ) (3.51)

where Bδ := {zn1 : D− − δn ≤ 1
n
d(zn1 , 0) ≤ D− + δn}.

We show

Lemma 3.8.4.

P (Zn
1 ∈ Bδ|xn1 ) ≥ 1

2
ev. a.s.

Proof.

P (P (Zn
1 /∈ Bδ|xn1 ) ≥ 1

2
) = (3.52)

P (P (Zn
1 /∈ Bδ|xn1 )P (xn1 ) ≥ 1

2
P (xn1 )) (3.53)

=
∑

xn1 :P (xn1 )≤2P (Zn1 /∈Bδ,xn1 )

P (xn1 ) (3.54)

≤
∑
xn1

2P (Zn
1 /∈ Bδ, x

n
1 ) ≤ 2P (Zn

1 /∈ Bδ) (3.55)

Since d(Zn
1 , 0) is a sum of i.i.d. bounded variables with mean D−, we can bound P (Zn

1 /∈ Bδ)

by a moderate deviations argument. From (16) (1.2) we have for Sn, the sum of i.i.d.

variables,

lim sup
n

n

b2
n

logP (|Sn
bn
| > 1) ≤ −C.

Picking Sn = d(Zn
1 , 0)− nD, bn =

√
n log n gives

P (Zn
1 /∈ Bδ) ≤ e−C log2 n
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for some constant C > 0. Since the sequence on the RHS is summable, we deduce by

Borell-Cantelli lemma that

1− P (Zn
1 /∈ Bδ|xn1 ) = P (Zn

1 ∈ Bδ|xn1 ) ≥ 1

2
ev. a.s. . (3.56)

Combining 3.48 with this lemma and noting that logK − sD = ν −Rl(D) (3.20) gives

Qn(B(xn1 , D)) ≥ 1

2
KnP (xn1 )e−nsD+2nsδ ev. a.s. , (3.57)

− logQn(B(xn1 , D)) ≤ − logP (xn1 )− n(ν −Rl(D)) (3.58)

+O(
√
n log n) ev. a.s. . (3.59)

Appendix

Let Dc equal the supremum of distortion values such that the Shannon lower bound is
tight. i.e. Dc := sup{d : Rl(d) = R(d)}. Then, assuming balanced distortion measures,
according to 3.4.4, the source admits the decomposition

Xn = ΦYn(Zn) (3.60)

where Zn are i.i.d and independent from Yn with H(Zn) = maxX:Ed(X,0)≤Dc H(X). One
would expect that a similar decomposition exists for all 0 ≤ D ≤ Dc. Indeed, this is shown
to be true for finite state Markov sources under balanced distortion in (26),(27). Here we
will argue that this behavior is quite generally true.

Let xn be the vector in RKn consisting of the probabilities P (xn1 ) for each xn1 ∈ Kn.
Assume K̂ = K and similarly define yn ∈ Kn. Take a balanced distortion function d(·; ·)
with d(x;x) = 0 and d(x; y) > 0 whenever x 6= y. Define matrix Zn ∈ RKnxKn as having
entries {esd(xn1 ;yn1 )}. Now (3.60) can be written as

xn =
1

Kn
Znyn.

In other words, the Shannon lower bound is tight whenever the vector Z−1
n xn has non-negative

entries.
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Note that Zn = Z⊗n where Z ∈ RK consists of the entries {esd(x;y)}. Thus Z−1
n = (Z−1)⊗n.

Further note that for any distortion value 0 ≤ D̃ ≤ Dc, the transition matrix Z̃n will have
entries {es̃d(xn1 ;yn1 )} where s̃ ≤ s < 0. i.e. we can write Z̃n = Z◦rn where r ≥ 1 and ◦ denotes
element-wise exponentiation.

Theorem 3.8.5. Let Ds correspond to the value of distortion parametrized by s. If Rl(Ds) =

R(Ds) and (Z◦r)−1Z ≥ 0, then Rl(Dsr) = R(Dsr)

Proof. Let yn = Z−1
n xn ≥ 0 by the assumption Rl(Ds) = R(Ds). Then (Z◦rn )−1xn =

(Z◦rn )−1Znyn ≥ 0 since we assume (Z◦r)−1Z ≥ 0 and yn ≥ 0.

The condition (Z◦r)−1Z ≥ 0 holds for all r ≥ 1 quite generally. For example

Corollary 3.8.6. (Binary alphabet) Let |K| = 2. Then the Shannon lower bound is tight

for all 0 ≤ D ≤ Dc.

Proof. Let

Z =

 1 a

b 1

 .

Then

Z◦r−1 =
1

∆

 1 −ar

−br 1

 .

Since a, b < 1 and r ≥ 1, one can easily verify that Z◦r−1Z ≥ 0.

Corollary 3.8.7. (Probability of error distortion) Let d(x; y) = δ(x 6= y). Then the Shannon

lower bound is tight for all 0 ≤ D ≤ Dc.

Proof. We can write Z◦r as (1 − esr)I + esr11T. This is a Bose-Mesner Matrix, the inverse

of which can be calculated as

(Z◦r)−1 =
(1 + (|K| − 1)esrI− esr11T

1 + esr(|K| − 2)− e2sr(|K| − 1)
.
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We get

(1 + esr(|K| − 2)− e2sr(|K| − 1))(Z◦r)−1Z = (3.61)

(1− es)(1 + (|K| − 1)esr)I (3.62)

+ 11T(es(1 + (|K| − 1)esr) (3.63)

− es(r+1) − esr(1− es)) (3.64)

It can be verified that 1 + esr(|K| − 2)− e2sr(|K| − 1) ≥ 0 and es(1 + (|K| − 1)esr)− es(r+1)−

esr(1− es) ≥ 0 for all r ≥ 1.

In general we have

Corollary 3.8.8. Let Dc > δ > 0 exist. Then there exists ε > 0 such that Rl(D) = R(D)

for all 0 ≤ D ≤ ε.

Proof. Since d(x;x) = 0 and d(x; y) > 0 whenever x 6= y, limr→∞(Z◦r)−1 = I. Since Z > 0,

there exists sc > −∞ such that Z◦r−1Z ≥ 0 for all s ≥ sc. Since Ds is monotonically

decreasing in s, we have the result.
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Chapter 4

Concluding remarks

Long range dependence shows up surprisingly often in real world data. Here, we tried to
understand how long range dependence arises, in what way long range dependent processes
are transformed as they pass through natural and engineered systems, and whether it is
possible to suppress this property in systems when we don’t want it.

We adopted a versatile model for long range dependence based on countable state Markov
chains. We have provided conditions under which the growth rate of the variance of a function
of a Markov chain is identical to that of the chain itself. The theorem implies that many
instantaneous functions of such chains share the same Hurst index. Our results are widely
applicable, however there is considerable art in using them.

In finance, our results imply that while market forces mold prices into roughly a mar-
tingale process, long range dependence still persists in the higher order statistics of price
returns. In queuing networks, we saw that if long range dependent traffic enters a system,
then no choice of routing/scheduling algorithms will alleviate this problem. In fact, long
range dependence might spread to other nodes in the network through coupling at shared
service points if enough care is not taken.

We made similar observations for variable-length source codes that operate on informa-
tion sources which exhibit long memory. As expected, the fluctuations of the rate function of
a coder is lower bounded by the fluctuations of the information source. The results generalize
to lossy source coding, in the case where the codec is forced to operate at fixed distortion
under a balanced distortion measure. The results collectively suggest that long range depen-
dence is fundamental in an information-theoretic sense, persisting under all feasible coding
algorithms. Therefore efforts to mitigate long range dependence using clever coding might
be futile, at least in the constant distortion case. To maintain a less variable bit-rate, one
might try to use codes with variable quality, in which case we conjecture that the distortion
function will likely end up being long range dependent.

An overall conclusion from the results of this thesis is that long range dependence is
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difficult both to create and to destroy. It acts largely as an invariant under fairly general
classes of transformations. The source of long range dependence should probably be sought
in human actions (as in the case of finance), or complicated natural systems (such as weather
patterns) rather than the simpler systems which process and manipulate raw data created
by such sources.
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[45] B. Oğuz and V. Anantharam, “Compressing a long range dependent renewal process,”
in Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on.
IEEE, 2010, pp. 1443–1447.

[46] ——, “Hurst index of functions of long range dependent Markov chains,” Journal of
Applied Probability, vol. 49, no. 2, 2012.

[47] ——, “Pointwise lossy source coding theorem for sources with memory,” in Information
Theory Proceedings (ISIT), 2012 IEEE International Symposium on. IEEE, 2012.

[48] K. Park, G. Kim, and M. Crovella, “On the relationship between file sizes, transport
protocols, and self-similar network traffic,” in Network Protocols, 1996. Proceedings.,
1996 International Conference on. IEEE, 1996, pp. 171–180.

[49] K. Park and W. Willinger, “Self-similar network traffic: An overview,” Self-Similar
Network Traffic and Performance Evaluation, pp. 1–38, 2000.

[50] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly
dependent random variables. Amer. Mathematical Society, 1975.

[51] S. Resnick and G. Samorodnitsky, “Activity periods of an infinite server queue and
performance of certain heavy tailed fluid queues,” Queueing Systems, vol. 33, no. 1, pp.
43–71, 1999.

[52] O. Rose, “Statistical properties of MPEG video traffic and their impact on traffic mod-
eling in ATM systems,” Conference on Local Computer Networks: Proceedings, p. 397,
1995.

[53] Z. Sahinoglu and S. Tekinay, “On multimedia networks: self-similar traffic and network
performance,” Communications Magazine, IEEE, vol. 37, no. 1, pp. 48–52, 1999.

[54] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian processes: Stochastic models
with infinite variance. Chapman & Hall, 1994.

[55] R. Schassberger, “Insensitivity of steady-state distributions of generalized semi-markov
processes. part i,” The Annals of Probability, pp. 87–99, 1977.

[56] C. E. Shannon, “A mathematical theory of communication,” The Bell Systems Technical
Journal, vol. 27, pp. 379–423, 623–656, 1948.

76



[57] ——, “Coding theorems for a discrete source with a fidelity criterion,” IRE Nat. Conv.
Rec, vol. 4, no. 142-163, 1959.

[58] A. Wyner and J. Ziv, “Some asymptotic properties of the entropy of a stationary er-
godic data source with applications to data compression,” Information Theory, IEEE
Transactions on, vol. 35, no. 6, pp. 1250–1258, 1989.

[59] ——, “Fixed data base version of the lempel-ziv data compression algorithm,” Infor-
mation Theory, IEEE Transactions on, vol. 37, no. 3, pp. 878–880, 1991.

[60] E. Yang and Z. Zhang, “On the redundancy of lossy source coding with abstract al-
phabets,” Information Theory, IEEE Transactions on, vol. 45, no. 4, pp. 1092–1110,
1999.

[61] Z. Zhang, E. Yang, and V. Wei, “The redundancy of source coding with a fidelity
criterion. 1. known statistics,” Information Theory, IEEE Transactions on, vol. 43,
no. 1, pp. 71–91, 1997.

[62] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”
Information Theory, IEEE Transactions on, vol. 24, no. 5, pp. 530–536, 1978.

[63] B. Zwart, S. Borst, and M. Mandjes, “Exact queueing asymptotics for multiple heavy-
tailed on-off flows,” in INFOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1. IEEE,
2001, pp. 279–288.

77




