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NUMERICAL SIMULATION OF RICHARDS EQUATION: CURRENT APPROACHES
AND AN ALTERNATE PERSPECTIVE

T.N. Narasimhan

Earth Sciences Division
Lawrence Berkeley Laboratory

1 Cyclotron Road

Berkeley, California 94720 U.S.A.

ABSTRACT. The transient flow of water in saturated-unsaturated media is described by a non-
linear parabolic partial differential equation, familiarly known as Richards equation. Numerical
solution of Richards equation is often beset with difficulties related to stability, convergence,
and verification, parnticularly when water saturations are low and when material heterogencitics
exist. It is suggested that these difficultics arise largely due to the fact that conventional numer-
ical techniques based on finite differences and finite clements do not take into account the
nature of the local flow geometry in estimating fluxes. Nor do they recognize that the Darcy-
Buckingham equation, in the presence of gravity, heterogeneities or nonuniform flow geometry,
is an implicit statement relating Aux to the potential distribution between two surfaces of equal
potential. Moreover, for an elemental volume in a transient nonlinear system, capacitance has
to be defined in an operational sense, being specifically associated with a chosen location of
observation within the elemental volume. Finally, in order to compute fluxes accuratcly, the
time-averaging factor has to be made a function of space and of time. Theoretical discussions
are provided to demonstrate how these ideas may be synthesized to solve the problem of tran-
sient flow in a flow tube of non uniform cross sectional area.

1. INTRODUCTION

1.1. Motivation

The transient fiow of water in an isothermal porous medium under conditions of partial
saturation is often expressed in the form of a partial differential equation. Originally proposed
by L.A. Richards in 1931, this goveming equation is subject to the important assumption that
the air phase is at a constant pressure within the zone of partial saturation. Richards equation
is extremely non-linear in nature due to the strong dependences of material properties on the
dependent variable, water phase pressure. As a consequence, closed form solutions to Richards
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equation are extremely difficult to obtain, especially when one is interested in multidimensional
heterogeneous systems with complex geometrics. Thercfore, for applying Richards equation 1o
any realistic field problem, the preferred approach among rescarchers at the present time is the
use of numerical models. ’

Within the past thinty years a variety of numerical models have appeared in the litcrature
for solving Richards equation (e.g., Brutsaent, 1971; Cooley, 1971; Freeze, 1971; Narasimhan
and Witherspoon, 1978; Neuman, 1973; Rubin et al., 1964; and many others). Despite the avai-
lability of many such algorithms, practical difficulties do exist in the credible implementation
of these models. These difficulties relate not only to the task of mercly obtaining a solution
(stability; convergence) but also to the verification of the solutions that are so obtained.

The present work is motivated by a desire to identify the causes of these difficulties and
to explore rational ways of overcoming them.

1.2. Scope

The transient transport process in the vadose zone is one that involves multiple fluid
phases and heat. Yet, Richards equation idealizes the system purely in terms of single phase
waler transport. Some rescarchers (Morel-Seytoux, 1987) have attempted to minimize the effect
of this constraint by treating the vadose zone as a two-fluid system involving water and air or
as a multi-component system involving heat as well (Philip and de Vries, 1957, Sophocieous,
1679). In the present work we will not be concemed with these more general approaches and
we shall restrict ourselves to the single-phase isothermal idealization of Richards equation.

It has been recognized in the literature that the strong non-lincarity of Richards equation
could be eased by simply casting the equations using water content rather than pressure hcad
as the dependent variable. Because, in heterogeneous media water content is discontinuous at
material interfaces, this formulation has 10 be supplecmented by continuity criteria on capillary
pressure head when applied to heterogencous media. Thus, the ultimate solution of Richards’
equation has to take into account the variation of fluid pressure. Because most realistic ficld
problems in the earth sciences involve heterogeneous media, we will devote our attention in the
present work exclusively to the pressure-head based formulation.

A majority of the numerical models proposed for solving Richards equation involve the
discretization of the flow domain as well as time into finite subsets and integratling the equation
in terms of discrete sums. These methods fall into two general catcgories, the Integral Finite
Difference Methods IFDM ) and the Finite Element Methods (FEM). A relatively new
technique known as the Boundary Element Method (BEM) is used by some researchers to
solve the Richards equation. This method consists generally in discretizing the boundary sur-
face of each material within the system and numerically integrating the Green’s functions over
these segments. However, the Green’s Functions are primarily well-suited for linear problems
and are not well-defined for non-linear equations. In the present work we shall restrict our-
selves to the IFDM and the FEM.

The scope of this work is a modest one of recalling certain well-accepted numerical
modeling approaches and to look for rational ways of extending beyond these approaches.

We include the classical Finite Difference Methods (FDM) as subsets of the IFDM in the present work.
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This work does not include a detailed review of all the relevant literature on numerically
modeling Richards’ equation.

2. THE GOVERNING EQUATIONS

In developing Richards' equation using fluid pressure as the dependent vanable, two con-
ventions are usually followed in the literaturc. In one, suction head (or, in short, suction),
denoted by the symbol h is used. Suction, defincd as the differcnce between atmospheric
pressure head and water pressure head is always positive and is merely the capillary pressure
expressed in units of water head. In the other convention, one chooses 10 use a gauge pressure
head (or, simply pressure head), in which the gauge reads zero at atmospheric pressure.
Denoted by the symbol W, the pressure head is always negative in the unsaturated zonc.
Also, in order to take into account gravity, one may choose 1o express the vertical axis either
positive upwards, as is frequently done in the hydrogeology literature (elevation) or positive
downwards (depth). One could use any of these conventions as long as one is carcful to be
consistent. In the present work we shall use suction head h in conjunction with the vertical axis
z positive upwards.

Note that suction and pressurc head are simply related by h = — . The potential (or
potentiometric head), usually denoted by the symbol ¢, is given by, ¢ =z-h or
equivalently by, ¢ =z + V.

In its essence Richards equation expresses the evolution in time of some staic variables
such as pressure head and water saturation in an clemental volume within a variably saturated
porous medium. For practical purposes, it is convenient to represent this evolution over a small
interval of time At. Consider a small eclemental’ volume of index j as shown in Figure 1,
bounded by a closed surface I'. At the initial time t,, the mass of water contained in the cle-
ment and the average suction head over the clement are, respectively, M § and h}-°.

1T

Figure 1: An elemental volume j enclosed by the surface T".



State at t,:
M, () =M (1a)

Change of State t, t, + At

m b

=AMWJ= _MCIAI' lj (2)

where p,, is the mass density of water, T is flux density or darcy velocity, 'ﬂ’jm is the unit outer
normal to the m th surface segment of volume clement j that is interior to the fliow domain, h’jb
is the outer normal to the b th surface segment of volume element j that coincides with the
external surface of the flow domain, AT, and ATy, are surface segments that enclose volume
element j, GJ- volumetric rate of fluid generation (positive when fluid is injected or negative
when fluid is withdrawn) from elemental volume j, AM, ; is the change in mass of water over
J during the time interval At, M is the capacitance of ciement j (synonymous with fiuid mass
capacity [Narasimhan and Witherspoon, 1977]) and, Ahj is the change in average suction hcad
over j during At. Defined by the relation,

the capacitance is defined as the change in the mass of water stored in the elemental volume j
associated with a unit change in the average suction head h over the element, with the exiemal
stresses held constant.

The capacitance, M, j includes the effects of three independent processes; changes in pore
volume, saturation and water density. All these processes can be expressed in tcrms of of
water-phase pressure. Thus,

dsS;

J

M == ViPu |€SiYulu + Sivuxay; +

where V,;j denotes the volume of solids, ¢ is void ratio, S is water saturation, C,, is compressi-
bility of water, 7,, is unit weight of water, %’ is a parameter used to convent changes in fluid
pressure to changes in effective stress, and, a, is the coefficient of compressibility.
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We now use the Darcy-Buckingham equation to express flux density by the relation,
1= - KkmV(z-h) @)

In view (4), the conservation equation (3) becomes,

A{prK,k,(h)V(z - By, AT, + Tp Kk M)V - ), AT, + prj}
m b

= - M h, ()

Note that because of the way we have defined M, J in (3), the volume element is fixed in the
solid phase, and as such is deformable like the solid skeleton. In this context, Darcy velocity
is understood 1o be the velocity of the fluid relative 10 an observer fixed in the solid phase.

In (5) the summation over b includes all Dirichlet boundaries, including seepage faces
and evaporation/evapotranspiration boundarics. The source term Gj includes conventional
source-sink terms as well as Neumann boundaries. '

By letting the elemental volume j become infinitesimally small, one could readily derive
the parabolic partial differential equation form (5). Nevertheless, it is not essential for our pur-
poses 1o resort to the differential equation. Numerical models of interest to us can be directly
related to the discretized equation (5) without requiring the PDE as an intermediary.

State at t, + At

de(to + At) = MSJ + AMw,j (6a)

hj([o + At) = hjo + Ahj (6b)

The sequence, initial state, change of state, final state, forms the framework within which
Richards equation is constructed.

3. THE NUMERICAL APPROACH

We now examine how (5) gets translated into a set of discretized numerical equations in
the context of the IFDM or the FEM. These numerical schemes are founded on the notion that
the dependent variable h; as well as other intensive variables are known at discreie locations
within the flow domain of interest. These locations are frequently known as nodes or nodal
points. The intensive quantities are physically taken to be volume averages over the elemental
volume of interest. In the present work we shall assume very small deformations of the porous
medium and hence treat the elevations of the nodal points to be invariant in time. This notion
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of discrete locations immediately dictates the character of numerical models.

Consider the left hand side of (5). The gradient of potential included within the summa-
tions need now 10 be expressed in terms of the magnitudes of potential at discrete locations.
Accordingly, in the context of numerical modeling (5) translates to,

Al{EU,-m[(zm - 2) = (hy = h)] + FUpl(z, — 2) = (h, — hp] + prj}
m b

= = M A ™

where, U;n, and Uy, are conductances defined as the time rate of flux between adjoining
regions per unit difference in potential
Also, because of the dynamic nature of the system, hp, and h; continually change during

ét. 'I'hergfon':. on the left hand side of (7) one has to use time-averaged values of h. Thus, if
hy, and h; are time averages over At, then,

Aa{zujm[(zm = 2)) = (hyy = b)) + TUpl(z, = 2) = (hy - b)) + pr,}
m : b

= = M Ah; (®)

Looking at (8) it is clear that the goal is to solve for Ahj, using the known quantities
U and M, and the known forcing functions on the boundaries as well as the source terms. It
follows therefore that whatever difficulties that arise in numerical simulations must be related
10 a large degree to errors inherent in estimating the the conduclances, the capacitances and the
time-averaged values of h. Thercfore, the following three questions are critical to numerical
modeling,

1. How best to calculate the conductances U, and Uy, ? '
2. How best to define the time-averages h ?, and,
3. How best to calculate the capacitances M ?

In partially saturated systems, both the conductances and the capacitances continually
vary in time. '

Indeed, if we look at the final set of linear equations that arise in either in the IFDM or
the FEM, we find that they have essentially the same form as (8). Therefore equation 8, in
conjunction with the three questions raised above constitutes a basis to analyze the difficulties
encountered in the numerical simulation of Richards equation.



4. CURRENT APPROACHES

At the present time, the typical practice to set up numerical equations 1o solve Richards
equation is 1o start with the pantial differcntial equation and intcgrate it. Using different tech-
niques for discretization, the goal of the integration process is to assemble a set of linear alge-
braic equations that are ultimatcly solved by algebraic methods. Integration is carried out in
space as well as in time. We will now discuss how the integration procedures influence the
estimation of conductances, capacitances and the time averages in (8).

4.1. The Conductance

By definition conductance is the time rate of transfer of mass of water between two
adjoining elemental volumes per unit difference in potentiometric head. The magnitude of con-
ductance in the context of saturated unsaturated flow is a function of scveral factors including
relative hydraulic conductivity (a malterial property) and local flow geometry. In fact, conduc-
tance is merely the reciprocal of the resistance to flow. Thus, as shown by Narasimhan (1985),

Gjm = Ujml(zm — ) = (b, = b))

= [ = ) = (= b))
jm

- - (z + h:
- [(zm = hy) (71+ J)] ©)

K, ;. I k,(h(Y))A()’ )

where,

jm

1
R, = —
Ujm

is the resistance, K; is the saturated hydraulic conductivity and k, is the relative permcability
to water. In (9) we consider unidimensional flow in a flow tube of nonuniform cross sectional
area bounded by isopotential surfaces at X; and x;,. Flux is defined as positive if it is direcied
towards j. For simplicity, we assume in (9) that the flow tube in (9) is composed of a single
material under unsaturated conditions. Note that in (9) both k, and the spatially dependent A
occur within the integral sign. Now, since h is known only at the end points x; and x;,, but not
within the interval X; < X < X, (9) is in general an implicit statement when z,, is not equal to
z; (that is when gravity is present) or when A or K, is a function of space. This implicit nature
of the flux law has to be duly recognized in setting up the numerical equations. Nevertheless,
in current numerical practices the flux law is invariably treated as an explicit statement, using



ad hoc assumptions.

In the IFDM and in the conventional FDM, one typically has a situation shown in Figure
2. In this situation, flux explicitly written in the form, '

- Ajm
ayn—Kskam[(Zm-hm)-(Zj-hj)]m (10)

where E, gm 15 a spatial average of the relative hydraulic conductivity for the region between j
and m and, Ajm » dim and dpy,; are as shown in Figure 2. For simplicity we assume in (10) that
both j and m consist of the same material It is common practice in the literature to usc a
variety of predeiermined mean values for K, jm (€.8. harmmonic mcan, gcometric mcan,
upstream weighting ). All these a priori chosen mean values have errors inherent in them. For,
as we have already seen, these do not take into account either the local flow geometry nor do
they recognize the implicit nature of the flux law.

Figure 2: Two interacting volume elements, j and m, in the IFDM.

In the FEM, one usually has a situation such as that depicted in Figure 3. Here, the tri-
angular region is the finite element and k; and h are known at the locations of the comer
points of the finite element. The conductance Ujm is the sum of two components,



Ujm=U

ime, + Ujm,e, (1

Figure 3: Finite elements ¢ and ¢, defined by nodal points i, j, k, and m.

A basic task in the FEM is to calculate the components of Ujm from each of the two finite ele-
ments. This is commonly accomplished by using a weighted integration logic with the Galerkin
method (also known as Rayleigh-Ritz method or the Method of Weighted Residuals ). In using
the weighted volume integration logic, one simply uses a pre sclected functional form for the
variation of k, over the finite element and explicitly arrives at the component of Ujm for that
element. Here again, one neither gives consideration to the local flow geometry over the finite
element nor does one recognize the implicit nature of the flux law. Thus, for essentially the
same reasons both the IFDM and the FEM have errors inherent in their logic that they rely on
to calculate conductance.

4.2. The Time-Average

It is widely known that if At is large, then, in order to assure stability as well as accuracy
of solution, one has to use time-averaged values of h in evaluating the fluxes included within
the summations in (8). If we assume that we have the ability to evaluate Ujm and Ujb accu-
rately, it is easy to see that the mass of water transferred from m to j during At is given by,

L +AL
Mass transferred = [ Upnl(zm = 2 = (hy—hpldt (12)
b

For purposes of setting up the linear equations in the numerical model, we wish to replace (12)
by,
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1 +Al
[ Ujml(zm=2)) = (hp=hp))dt
o

= Upy(to + kijt){(z,;, -z) - (hp(ty + AgmAL) — hi(t, + kijt)}

= Opn[(om = 29 = B = ) a3

where ﬁjm ' Hm and HJ are time-averaged values evaluated at kijt where, 0 < ljm < 1.0. To
assure maximum accuracy in evaluating the fluxes, therefore, we must choose the time-
weighting factor kjm in such a way that (13) is satisficd as accurately as possibie. Because of
the dependence of conductance on k, as wcll as the local flow geometry, it is to be expected
that 7ij will in general be a function of space and time. In other words, for assuring maximum
accuracy in evaluating fluxes in the numerical model, ljm must be allowed to vary from ele-
mental interface 10 elemental interface and from one time step o the next. Nevertheless, it is
the general custom in numerical modeling practices (either the IFDM or the FEM) to usc a sin-
gle global value of A for the entire flow domain. The special cases of
A= 0.0, 0.5 and 1.0 are respectively known as forward differencing (explicit), central
differencing (Crank-Nicolson) and backward differencing (implicit) schemes. Very few workers
(e.g., Edwards, 1972) have provided for the flexibility to vary this global A in time. The com-
mon practice is 1o set A equal to 0.5 or 1.0. The latter value is ofien preferred 1o assure uncon-
ditional stability in strongly non-linear problems.

4.3. The Capacitance

Capacitance is an essential parameter in transient systems because without it the sysiem
would be a sieady state one. The classical notion of capacitance can be conveniently illustrated
with the help of the heat conduction analogy. The Hear Capaciry of a mass of material is
defined by,

C=—— _ 14)

where C is the heat capacity of the material, AH is the change in heat content and AT is the
change in temperature. Although this definition is simple, one has to recognize its constraints.
Note that C is uniquely defined only if AT is a constant over the mass of material. This will
indeed be the case if the mass of material is well stirred or if it occupies an infinitesimally
small volume. However, if the mass occupies a finite volume and it is not well-stirred, as is the
case when we deal with an elemental volume within a transient system, then the denominator
AT in (14) is not unique. In principle, therefore, C is poorly defined, unless one specifies the
particular location at which AT is measured. If so, C is in fact defined only in an operational
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sense and it is a function of the property of the material that occupies the clemental volume
and also the location of measurement. In the use of the IFDM for solving the Richards equa-
tion, the capacitance is purely treated as material propenty and is evaluated using (3). In the
FEM 100 the logic is similar, except that it is trcated as a sum of several capacitance com-
ponents generated from cach finite element of which the nodal point is part of. As suggested
by Narasimhan (1985), the location of average or thc location at which AT is measured,
depends, especially in the case of nonlincar problems, both on local flow gcometry and on the
nature of the constituent material. Because local flow geometry is scldom considered in
evaluating the capacitance term, [IFDM and FEM methods, as they are currently implemented,
have inherent errors.

4.4. Summary

The difficulties relating to stability, convergence, accuracy and verification of numerical
solutions of Richards equation using conventional IFDM and FEM approaches are attributable
to errors inherent in the evaluation of conductances and capacitances as well as in the time-
averaging of fluid potentials. It stands to reason that by developing improved logic to the accu-
rale estimation of these three quantities, one can greatly increasc the power and credibility of
numerical models that are used to solve Richards equation.

5. AN ALTERNATE APPROACH

As we have seen, the accurate determination of conductances and capacitances involve
spatial as well as temporal considerations. In the space domain, accuracy depends both on a
knowledge of local flow geometry and on the dependence of material properties on fluid poten-
tial. Now, if we restrict ourselves to systems involving laminar flow, they can always be visu-
alized as a collection of flow tubes. By definition, flow occurs only along flow tubes. In isotro-
pic materials, fiow lines lie aligned perpendicular to surfaces of equal potential. Therefore, any
multidimensional, laminar flow system can be analyzed as a composite of many one dimen-
sional problems. Accordingly, it is of interest for us 10 choose a single flow tube of nonuni-
form cross sectional area as a fundamental unit of interest and investigate how conductances,
capacitances and time-averages may be calculated in respect of a single such flow tube. It is
true that in a transient unsaturated system the geometric disposition of the flow tubes them-
selves will change within the time interval At. For purposes of our discussion here we will
assume an average disposition of the flow tube that is appropriate for the time interval. This
logic is similar to that frequently used in linearizing a nonlinear problem over small intervals
of time.

5.1. Richards Equation for a Single Flow Tube

In Figure 4 we depict a segment of a flow tube of non uniform cross sectional area. This
segment is discretized into three elemental volumes, 1, j and 2. The three elemental volumes
are separated by interfaces which are isopotential surfaces shown by bold lines. For purposes
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of reference, we use an appropriate flow line as a curvilinear x axis. The FInodal pointsFR of
the elemental volumes are located at X , X; , and Xj.

Figure 4;. The segment of a flow tubedivided into 3 volume elements 1, j and 2.

If we recognize that from an empirical point of view Darcy-Buckingham law pertains to
macroscopic flux between two surfaces of cqual potential, it follows that the nodal points can
be located anywhere along the isopotential surfaces passing through X; , X; , and X,.

In the context of Figure 4, we may write the equation of mass conservation for elemental
volume j as follows.

{ Ujlz-z) - (h- h)]+UJ2[(zQ z) - (h, h)]}

= - M(:‘]AhJ (15)

For simplicity we have neglected the source term in (15). We now proceed to analyze how the
U’s , the h’s and M, in (15) can be accurau:ly evaluated.

52. Evaluating Conductance

Consider the time-averaged conductance I_JJm. where m = 1,2. In view of (12),
Upp = U( , h), where, h =h(, + A, imAt). Suppose, based on a knowledge of the past
behavior of the system we have accurately estimated h and h Then, according to (9),

[(zm = H”‘)— @ - b))
o - (16)

K I k,[h(y)]A(y)
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where, h(x)) = Hj and h(X;,) = Em. Again, for simplicity, we consider that elements j and m
are composed of the same material so the K, is a constant. In principle, (16) can be iteratively
solved to obtain Qja. Then, in view of (12),

3 = U (zm - 2) - (' = h™)] an

and,

U = = ‘éw = (18)
| [(z = B = (z = B**)]

5.3. The Time Integration Factor, 3\.,,,,

Equation (12) is an integral expression for the mass of water transferred from element m
to element j during At. As indicated in (12), we wish to approximate this integral by using
time average values for conductance and fluid potential. Suppose, based on past behavior of the
sysiem we algebraically express the temporal variations of Uy, , hy and h; as convenient
algebraic expressions. Then,

L+ At
| Upm®lzm = 2) = (hy = hp)dt
L

= - U()jm)[hm jm) - h‘io'_jm)]At (19)

The left hand side of (19) can be explicitly evaluated using the convenient algebraic expres-
sions. Also, because the algebraic expressions are known, U, , hy, andh; on the right hand
side are all functions only of ij. Therefore, (18) could be solved to get an accurate value for

A

5.4. The Capacitance

As we have already discussed, the capacitance M, g is the ratio of change in mass of
water divided by the change in suction head. We now consider how capacitance may be
estimated accurately.

The variation of h over elemental volume j is depicted in Figure S at the initial time t,
and at the end of the time interval At. The suction heads at the left and right extremities of the
elemental volume are known from the initial condition to be h;° ** and h;g **'. In keeping
with (9), the profile of h over j is shown in the Figure by the curve labeled h(t,). Let
hj‘f_s‘ andhj"Rs' be the estimated values at t, + At. The profile of h comesponding to these



- 14 -

o]

g
H est
i iR
: o
E YR
- -
XjL X; R

Figure 5: Schematic representation of profile of Wover volume element j at t and at (to+ At).
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estimated values is shown in Figure S by the curve labeled h‘“(t0 + At). Thcn the mass of
water contained in j at t, and t, + At are, respectively,

i
M, + At = Vo, [e(x)S ™ (x)dx (20a)
Xp
 J
M, (to) = Vepy [ £2()S°(x)dx (20b)
xp
and,
AM,,; = MZU(t, + A = My (t,) (20c)

Note from the profiles given in Figure S that the change in suction head Ahf" is a function of
position within j. However, we have a priori chosen the nodal point location to be ij. There-
fore, by dividing the change in mass of water over At by the change in suction head at the
nodal point location, we obtain an operational capaciiance for j, which pentains to the particu-
lar choice of nodal point location. Thus,

est
W,_]

Ahjsl

M(X) = - @D

5.5. The Numerical Equation

In view of the foregoing we may now write the goveming discretized equation for ele-
mental volume j.

t {Uﬁﬂ[(zl - z) = (b, - by + U3'(z; - 2, ~ (hy = by }

5.6. Corrections for Estimates

Inherent to the approach of solving the linear equations is the need to use a priori
knowledge of conductances and capacitances. In nonlinear problems these values vary continu-
ously in time and we are constrained to using estimated values for these to implement the
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solution process. Therefore, in order 1o render the solution as accurately as possible, onc may
correct for the estimation errors by using predictor-corrector schemes or by using the Newton-
Raphson iteration method.

6. EXTENSION TO MULTIDIMENSIONS

. In the beginning of section 5 we noted that 8 multidimensional laminar flow system may
be idealized as a collection of flow tubes. In a transient, parnally saturated system, the flow
geometry must in gencral be expecied to vary with time. Thus, the disposition of the flow
geometry is a priori unknown. Yet, the theory developed above merely describes how the
problem may be accuraiely solved if the fiow geometry is known. How then is the theory per-
tinent 1o multidimensional systems ?

In order to answer this question, one must address a related question of basic importance.
In a heterogeneous system, resistances to flow depend on flow geometry. What cause dictates
the particular flow geometry preferred by the flowing water in response to the particular combi-
nation of forcing functions ? Addressing this question recently, Narasimhan (1988) postulated
that the flow geometry will adjust itself in such a fashion that the rate at which the moving
fluid dissipates energy over the system (as it moves down slope in the potential field ) is
minimized. If this postulate is valid, the overall problem cannot be credibly solved without
identifying the particular flow geometry that minimizes encrgy dissipation. The theory
presented above is useful in solving for fluxes and potential drops provided geometry is
known. These fluxes and potentials are indeed the components that are necded 10 quantify the
minimization process. Thus, it is reasonable to state that for a satisfactory solution of the mul-
tidimensional problem one has to start with an estimated flow geometry and calculate the
energy dissipation using using the ideas presented above 10 calculate fluxes and potential drops.
One has to progressively adjust the flow geometry until the the energy dissipation is globally
minimized.

The conventional wisdom that h is the primarily dependent variable in Richards equation
is correct only for systems with known flow geometry. In systems with unknown flow
geometry, h and flow geometry are both dependent variables. For very much these same rea-
sons, but in the context of two-phase flow theory, Morel-Scytoux (1987) suggests to write
equations in terms of total flux, water flux and water content in a curvilinear coordinate system
which is essentially set of stream lines for the total velocity field.

7. CONCLUDING REMARKS

The difficulties inherent in the numerical simulation of Richards equation stem from
neglecting the role of local fiow geometry in determining the conductances and capacitances, as
well as from a failure to recognize that in the general nonlinear case the flux law is an implicit
statement. These difficulties could be effectively countered by developing appropriate compu-
tational logic 10 imbed geometry into the estimation of fluxes and capacitances.

On the face of it it may appear as though the task of solving for flow geometry may
render the problem too difficult to solve. However, the integral nature of the ideas presented in
this work may actually render the solution of the problem much easier than one may suspect a

(h
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priori.
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