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THE PHYSICS OF FLUIDS VOLUME 8 , NUMBER 6 JUNE 1965 

Triplet Correlation for a Plasma 

THOMAS O'NE1L AND Nomu.N RosTOKER 
Department of Physus, University of California at San Diego, La Jolla, California 

(Received 18 January 1965) 

The three-body and two-body electron-correlation functions are calculated for a plasm& iu thermal 
equilibrium. The method involves convergent kinetic equations developed from the hierarchy by an 
expansion in • = l/4rnLD• which is carried to second order. The free energy determined by this 
method agrees with the previous result of Abe. 

I. INTRODUCTION 

MANY authors have treated the statistical me
chanics of a plasma by using the Bogoliubov

Born-Green-IGrkwood-Yvon chain of equations.1 
•
2 

These authors terminated this chain by expanding 
the s-body functions in terms of E = l/471'1'1,£3

D and 
by neglecting terms of higher order than E. One would 
expect the next term in the expansion to be of order 
l or E

2 In E. A recent field theoretic calculation of 
the mean free path by Misawa3 indicates that the 
second-order term may be even larger than the first
order term. This rather surprising result motivated 
us to begin an investigation of the next term in 
plasma expansions. 

In this paper, we consider only the thermal equilib
rium plasma. The calculation of the mean free path 
considered by Misawa will be discussed in a sub
sequent paper. We calculate the second-order pair 
correlation function and the second-order triple cor
relation function. We then use the pair correlation 
function to calculate the free energy of the plasma. 
The purpose of the calculation is to investigate the 
nature of the next order in the plasma expansion 
and, for as simple a case as possible, to see if there 
are any divergence difficulties. 

Il. BASIC EQUATIONS 

Consider a plasma of N electrons and N infinite 
ma"5s randomly distributed ions. Let the plasma be 
contained in a volume V, and let the position and 
velocity coordinates of the ith electron be given by 
X, = (x,, v;). For an ensemble of such plasmas, the 
density in phase space D(X1, X 2, •• • XN, t) satisfies 
the Liouville equation, 

'N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 
(1960). 

2 E. A. Frieman and D. L. Book, Phys. Fluids 6, 1700 
(1963). 

3 S. Misawa, Phys. Rev. Letters 13, 337 (1964). 

{
a N a -+ }:v.--at ; - 1 ax, 

e N [ v. J a} - - L E(x;) + ~xB(x,) ·- D = 0. 
m · - · () av, 

(1) 

We consider only Coulomb forces of interaction 
between the electrons and assume all external fields 
are zero; hence, 

N a e 
E(x;) = }: --

; - t.;r • ox; )x, - X;I 
The s-body function is defined as 

f ,(X1, .. · X., t) 

B(x,) = 0. 

= v· J D(X1, ... xN, t) dX,+1 . .. dXN. 

By taking moments of the Liouville equation, we gen
erate the Bogoliubov-Born-Green-Kirkwood-Yvon 
chain of equations, 

{a • a e
2 

• a I a } -+ LV;·--- L:'- ·-f. at i• I OX; m i ,i•l ax, ]x, - X;I OV; 

- ne2 t J dX,+1 ~ 1 . af ••• = 0. (2) 
m i"l ax, Ix. - X, +11 av, 

We can rewrite this chain of equations by express
ing f, in terms of the Mayer cluster expansion, . 
f. = II f(X;, t) + I: [11'f(X,, t)]P(X;, Xk, t) 

i• l p 

+ L: [11'f(X,, t)]P(X;, Xk, t)P(X1, X,., t) 
P,P 

+ L [1rf(X ,, t)]T(X;, Xk, Xi. t) + · · · , (3) 
' 

where the second term is summed over pairs, the 
third over pairs of pairs and the fourth over triplets. 
P(X,, X;, t) is called the pair correlation function 
and T(X., X;, Xk, t) is called the triple correlation 
functfon. 'l'he quad'ruple- and liiglier-order correla- · 
tion functions have not been explicitly shown, be
cause they make negligibly small contributions in 
all our calculat ions and are dropped at the outset. 

1109 
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Using this expansion, the equation for the one-body function becomes 

{a a e a} ne
2 J a 1 aP !It+ V1 ·-;- - - EM(x,)· ,._ f(X1, t) = - -;- 1 I'!>... (X,, X2) dX2, 

u vX1 m. UV 1 ?n uX1 1X1 - X 2 U Yt 

where 

Dropping the quadruple correlation function, the equation for the three-body function becomes 

{
a a a a e a e a 
!It + V1 • "x + V2·-;- +Va ·-;- - - E.v(x1)- ,._ - - EM(x2)· ,._ 
fJ ~u 1 uX2 uX3 m uv1 ?'It UV2 

e a } , ne
2 at J a 1 - - E ..,(xa) ·-;- 1 (1, 2, 3) - - "- . a- I I T(2, 3, 4) dX, 

1n uVa m UYt X 1 X1 - :X:4 

ne
2 af J a l ne

2 jJ_ J a 1 - - ,...., · -;- 1 1T(3,4, 1) dX, - - a · ,._ 1 1T(4, 1, 2) dX4 m uv2 uX2 X2 - X4 m V3 UA3 X3 - X, 

_ ne
2 J _£_ 1 . aP(l, 2) P(a, 4) dX, _ ne2 f _j_ 1 . 8P(l, 2) P(a, 4) dX, 

m OX1 lxl - x.1 OV1 m OX2 lxa - :it.I av, 

_ ne2 J _£_ 1 . aP(2, 3) P(l, 4) dX, _ ne
2 f _j_ 1 . 8P(2, 3) P(l, 4) dX, 

m 8x8 lx3 - x,I Ova m ax2 lx2 - x,I dv2 

- ne2 J .1.. 1 . aP(l, 3) P(2, 4) dX, - ne2 J _j_ 1 . aP(l, 3) P(2, 4) dX, 
m 8x1 lx1 - x,j ilv1 m axs lx3 - x, I 8va 

= e
2 

{_j_ 1 . (.1.. - _j_)rc1 2 3) + _j_ 1 . (_j_ - .1..)rc1 2 3) 
m axl lxl - X2 I av, dv2 ' ' ax, lx1 - X3I av, 0V3 ' ' 

+ -i.. 1 · (_j_ - -i..)rc1 2 3) + PC2 3) .El.._g__ [ 1 + 1 J 
ax2 lx2 - xal av2 ava ' ' ' avl axl lx1 - X2I lx1 - Xal 

+ P(3 1) .El..-2- [ l + --1 
-] + P(I 2) ~.-2- [ 1 + l J 

' dv2 iJxi lx2 - xal lx2 - Xii ' ova oxa lxa - xi i lxa - X2I 

+ /(l)[_j_ 1 . ..2- + _j_ 1 .--2...JP(2 3) 
ax, lx2 - xii Cv2 OX3 lxa - X1 I CV3 ' 

+ /(2)[--2... 1 ·_g__ + _j_ 1 . ...i.JP(3 1) 
Oxs !xa - X2I 8xa 8x1 (x, - x, ( 8v1 ' 

(4) 

(5) 

(6) 
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ill. THERMAL EQUilJBRIUM CORRELATION 
FUNCTIONS 

The Gibbs distribution dictates the following forms 
for the thermal equilibrium correlation functions: 

P(X1, X2) = f(v1)f(v2)¢(r12), 

T(X,, X2, X3) = f(v1)f(v2)f(v3)t/;(r12, ru, r2s), 

where 

f(v) = (z7r~Ty exp(-;;:;), r12 = lx1 - X2I· 

Substituting these functions into Eqs. (5) and (6) 
and using the fact that cf> and >/t must be invariant 
with respect to interchange of particle indices, we 
obtain the following two equations: 

.2!P_ __ 1_ f (Xi - X3) •X1 2 

Or12 47rL~ jx, - Xal3 

(8) . 

where 

To solve these equations, we use the standard 
procedure of expanding in terms of the parameter 
E = l/47rnL~ = b/Ln. We will first find expansions 
for¢ and t/I that satisfy Eqs. (7) and (8) in the region 
where particle separations are greater than r0 = 1/nt 
and that satisfy boundary conditions which demand 
cf>(r 12) to approach zero when r 12 approaches infinity 
and t/;(r121 1·1 31 r28) to approach zero when any one of 
the particles approaches infinity. Then we will find 
expansions for ¢ and t/; that satisfy Eqs. (7) and (8) 
in the region where particle separations are less than 
ro and that match the long range solutions when 
particle separations are equal to r 0 • To find the long 
range solutions, we scale Eqs. (7) and (8) to rf 2Lo = 
r12, r~3Lo = r13, and r;8Lo = r23 ; and we neglect 
terms of higher order than E

2
• Writing the resulting 

equations in terms of the unscaled coordinates, gives 

a<1>:1) 1 a J <1>l
1' (r2a) b - - +--2- dX3=2 

ar12 47rLo ar12 r1a r12 ' 
(9) 

(Hl) 

(11) 

where the subscript I indicates our specialization to 
the long range region. We note that the above equa
tions contain integrals of cf> 1 and -J; 1 over all space and 
that <f> 1 and 1/11 are valid only in the long range region . 
However, the error so incurred is less than E

2 and, 
thus, is tolerable. 

The solution of Eq. (9) is the well-known screened 
potential 

<•>( ) b ( T12) cf>x r12 = -- exp -L- . 
T12 D 

Using 

one can easily verify that the solution of Eq. (11) is 

·'· (1)( ) (1)( ) + (I)( \..1.<ll( ) Y'I = cf>c 7'12 </>1 T13 cf>x T12J<p1 T23 

+ (1)( \..1.0>( )+ Jd (I)( \.J.(I)( \.J.(1)( ) 
</>1 r1sJ'P1 T2a n x, cf>x ruJ'Pr r24J'PI rs, • 

In Appendix A, we Fourier analyze Eq. (10), and 
we show that 

(2)( ) -1 1 (kLo)~ 1 [2i + kLo] 
cf>r k = nL~ 8rrn [l + (kL0 )

2 f1. 2i In 2i - kLo · 

We also show that the inverse transformation is 

q,;2>(r) = ~ !!.;- {7 e-2r/Lo 

_ ~e-r/Lo Ei (~:) + ie'ILD Ei ( ~!r) + !e-2r1Lo 

+ 4~0 e-r!Ln Ei (~:) + 4~0 e'11
•

0 Ei ( ~!r) 

+ e-•IL{i {
0 

ln (3) - ! - l ln (3) ]}· 
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For the purpose of matching the short range solu
tions, we note here that in the region around 1· = To 

the dominant term of <1>1 2> is 

4>~2> (T) = €2e-2rn{t~ + O(ln €) l 
To find the short range solutions, we scale Eqs. 

(7) and (8) to ri2b = T121 Tiab = Tu, and T~3b = T2a· 

We may neglect terms of order l ln E, since our free 
energy calculation will permit a larger error in the 
short range correlation function than in the long 
range correlation function and since the remaining 
lower order terms will be sufficient to match the 
dominant terms of the long range solutions obtained 
above. Writing the resulting equations in terms of 
unscaled coordinates, gives 

(13) 

If we replace b/T~2 by - a[(b/r,z) exp ( -r,2/Lv)]/ 
ar12 in Eq. (13), then this equation becomes 

d1/i11 0 [ b -r,./Lo] [ ( ) + ( ) + ./, j -;--- = --;-- -e <Pu Tis 4>11 r23 't'lf . 
uT12 uT12 r12 

The general solution of this equation is 

,/, A' [ b -r,.ILD b e-r,,!LD 
't'H = exp --e --

. T1z T13 

b -r,.!Lo] + 2 [ b -r., /Lo] - - e - exp - -e 
T23 - 1"12 

By setting A' equal to 1, we can make i/ln match 
if, to all orders less than E2 ln Eat T12 = T1 3 = T2a = To. 

We can use i/!n to obtain an approximate expres
sion for i/; that is valid in the region where one particle 
is far from two other particles which are close to
gether (i.e., r 12 ~ b, r 13 ~ L 0 and T 23 ~Lo) . Making 
the appropriate expansions, if11 becomes 

where the subscript II indicates our specialization 

to ~~~n~hort range region. lfiri = [ _ 1 + exp (-,.~2 e-, .. 11,0) J 

Eq. (12) becomes 

iJ<f>n + _i_ (1-)<l>n = _ _i_ (-1 e- r.,/Lo). 
aT12 Or12 1"12 01"12 T12 

(14) 

Since 

we can rewrite Eq. (14) as 

CJ<f>n + _i_ (-1 e-•.,/Lo)</>ll = -~ (.!!... e-•u!Ln). 
ar,2 ar12 r,2 ar12 ru 

The general solution of this equation is 

"' l + A [ b - r.,/Lo] 'f'll = - exp -- e · 
T 12 

By setting A equal to 1, we can make 4>11 match 
c/>1 = <1>i

1 
> + <1>l

2
> to all orders less than E

2 In E at 
r12 = ?"o· In fact, 

.I.. l + [ .b -r.,/Lo] 'l'II = - exp - -e 
r12 

is accurate to all orders less than l In E over the 
whole range of r12· 

[ 
b -r .,/Lo b -r,,/J,o] · --e - -e , 

T13 T23 

where the subscript III indicates our specialization 
to this mixed range region. 

IV. FREE ENERGY 

The internal energy of the plasma is given by 

N2 21 .. 
E = !NkT + 2; 

0 
47rr<P(r) dr. 

We can divide the integral into the following two 
parts: 

1., 47rr<P(r) dr = 1·· 4?TT</>n(r) dr + J .. 47rr<f>1(r) dr 
0 0 ,.. 

Note that we may neglect terms of order l ln E in <f>u 
but that we must know cf>r to order l. In Appendix 
B, we evaluate these integrals and show that 

E = !NkT - ~NkT{E + t
2h - j + t ln (3E)]}. 

Using a/ aT(F/ T) = -E/T2
1 gives 

F = -NkT ln [~ (;:~YJ 
- hNk1'{2E + /('Y - H + ! In (3e)Jl. 
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The first term is just the free energy of an ideal gas 
and the second term is the contribution to the free 
energy from the coulomb interaction of the electrons. 

This result was obtained earlier by Abe,• who used 
the thermal equilibrium Mayer cluster expansion. 
Shure5 has also derived this result up to order l In E 

by the methods discussed in this paper. 

V. CONCLUSION 

We have calculated the long range pair correlation 
and the long range triple correlation to order l. Also, 
we have calculated the short range pair correlation, 
short range triple correlation and mixed range triple 
correlation to all orders less than l ln E. These re
sults are tabulated below. 

</>r = b -r/Lo + E2 
Lo {Lo -2r/Lo i -r/LO E. (-r) + ~ r/Lo E. (-3r) + 1 - 2r/Lo -- e - - - e - e 1 - -"e 1 -- .,-e 

r 2 1· r Lo • L 0 
2 

+ 4~0 e- r/Lo Ei (~:) + ~o e•/Lo Ei ( ~!r) + e-rtL{~ {
0 

In (3) - ~ - i In (3) ]} 1 

</>11 = -1 +exp [ ~b e-rtLo], 

tjJll = exp [-J?.. e-r,,/C,o _ _!!._ e-r,,/1.o _ _!!._ e-r,./Lo] + 2 
r12 r1a r2a 

- exp [-J?..e-r,,1Lo]- exp [--!?-e-r.,/Lo]- exp [-.£.e-'"/Lo]' 
r12 113 T23 

·'·rll - [ 1 + ( b -r,,/Lo)J[ b -r.,/Lo b -r .. /Lo] 'I' - - exp -- e -- e - - e · 
~2 ~a ~ 

The next order in the plasma expansion is evi
dently straight-forward and gives only a small cor
rection to the first order. The result of Misawa and 
the earlier discussion of Sandri6 indicate that one 
might expect a very large correction or a divergence. 
It has been established that this is not the case in 
any thermal equilibrium calculation. 
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APPENDIX A 

If we put ct>:ll and t/11 into Eq. (10) and Fourier 
analyze, we obtain 

<2) -1 (kLu)~ [ '° k'3 dk' 
<f>r (k) = ~ [l + (kLn)2]2(27r)2 k 10 [l + (k' Lo)2

) 

JI dµ µ 

• - 1 [I + L~(k2 + k' 2 + 2klc'µ)]° 

• R. Abe, Progr. Theoret. Phys. (Kyoto) 21, 475 (1959) 
'F. Shure, Phys. Rev. Letters 12, 353 (1964). 
• G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963). 

Carrying out theµ integration and replacing k'L0 by 
x', gives 

<2l(k) -1 (kLo)2 1 ["' dx' x'
2 

cJ>i = n2L~ (1 + (kL0 )2]2 (27r)2 10 (1 + x'2
] 

·{l _ fl + (kLo)
2 

+ x'
2
J l [l + (kL0 + x')

2
]}· 

4kLoX' n l + (kL0 - x')2 

Using the even symmetry of the integrand and divid
ing the logarithm into two parts, gives 

<2> ) _ -1 (kLo)2 R j +., d.T' x'2 

cf>, (k - n 2Li [I + (kL0 )
2]2(21r)2 e _.., 1 + x'2 

. {.!. _ [l + (kL0 )
2 + x'2

] In [x' + kLo + i]} 
2 4kLoX' x' - kL0 + i ' 

where Re indicates that we must take the real part 
of the integral. Since the branch cut is in the lower 
half x'-plane, we may evaluate the integral by using 
a contour that runs along the real axis and then closes 
in the upper half plane with an infinite semicircle. 
Picking up the pole at x' = i and the contribution 
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from lx'I = oo, gives 

<2>(k) _ -1 _l_ (kLo)3 l. [2i + kLo] . 
<Pi_ - nL; 8?r1i (1 + (k/.10 )

2
]
2 2i ln 2i - kLo 

The inverse transform can easily be put into the 
form 

q, ~21(r) = - i Lo_!_ 1•· dx sin (xr/Lo) x' 
T 471' -• [l + X

2] i 

·ln [2~ + zJ. 
2i - x 

In the upper half x-plane, there is a double pole 
at x = i and a branch cut running from x = 2i to 
x = i oo. To evaluate the integral, we replace sin 
(xr/Lo) by Im [ exp (ixr/L0 )J and use a contour 
that runs down the real axis and then closes in the 
upper half plane with an infinite semicircle which is 
indented to pass down around the branch cut. The 
result is 

"'

(2)() , 2 Lo {Lo -2•/Lo ~ -r/Lo E" (-r) r = •E - -e - ""e 1 -
t 

2 r r • Lo 

+ }e'!Lo Ei ( ~!r) + ie-2•/Lo 

+ _!_e-•ILo Ei (-r) +-r-e•!LoEi (-3r) 
4Lo Lo 4Lo Lo 

+ e-•IL{i {
0 

In (3) - ! - i In (3) ] }· 

APPENDIX B 

In Sec. IV, we pointed out that the internal energy 
of the plasma is 

N2e21·· 
E = JNkT + 2V 

0 
47l'rq,11(r) dr 

N2e2 1· + 2V •• 4l'nf>1(r) dr. 

The first integral is equal to 

{

0 

41rr[-1 +exp (~b e-•!Lo)] dr 
= -21rT~ + 4'7f'eb/Lo r• re-b/•(1 - 2t~) dr 

~ :b [ !(-k)2/3E0/3 _ (-k)l/3E4/3 

+ }E2 - 1.'YE2 - ~E2 ln (rbt) - 471' E2] • 
2 (471') 6 

The second integral may be written in the following 
form: 

1.. 21· 41rrq,r(r) dr = - t/> 1(k) cos (l-ro) dk. 
r• 1r 0 

Using the even symmetry of q,(k) and replacing kLo 
by x, we find 

1.. -1 1•• ( xro) 1 1 
•• 4mp1(r) dr = 'lrLo _,. dx cos \Lo n (I + x2) 

·{I+ _l _ _L__! In [2i + x]}· 
8rtiLJ 1 + x2 2i 2i - x 

In the upper half x-plane the first term of the inte
grand has a pole at x = i, and the second term has a 
double pole at x = i and a branch cut running from 
x = 2i to x = i oo . To evaluate the integral, we 
replace cos (xr0/Lo) by Re (eb••Lo) and use a con
tour that runs down the real axis and then closes in 
the upper half plane with an infinite semicircle which 
is indented to pass down around the branch cut. The 
result is 

= .!.. { -E + (471')1/3//I _ !(-k)2/3ES/3 + hi J 
bn 

- !/{'Y + * + In (3) + ln [(-k)lt1]J. 
Thus, we find 

E = }NkT - !NkT{t + t 2{'Y - f + t ln (3E)]}. 




