
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Ion solvation at air-water interfaces

Permalink
https://escholarship.org/uc/item/5b4285dp

Author
Shaffer, Patrick R.

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5b4285dp
https://escholarship.org
http://www.cdlib.org/


Ion solvation at air-water interfaces

by

Patrick Robert Shaffer

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Phillip Lewis Geissler, Chair
Professor Rich Saykally

Professor Clayton Radke

Fall 2013



Ion solvation at air-water interfaces

Copyright 2013
by

Patrick Robert Shaffer



1

Abstract

Ion solvation at air-water interfaces

by

Patrick Robert Shaffer

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip Lewis Geissler, Chair

In this thesis we conduct a thorough study of the forces that act on ions when they are near
air-water interfaces. These forces are important because they produce behavior which is very
ion specific. That is, certain ions have a strong propensity for air-water interfaces and other
ions avoid them completely. We will see that the dominant forces that allow ion adsorption
to surfaces are fairly general and exist in a very broad class of liquids, so that even ions in a
very simple model of a polar fluid exhibit a preference for the surface. In models of water,
however, there are also forces which are very ion specific. In particular, the degree to which
an ion is surface enhanced or surface repelled is very dependent on the sign of the charge.
We will conduct a thorough study of this charge asymmetry in a simulated model of water
and find that it is sensitive to various model details like ion size, the magnitude of the charge
and polarizability. We will also study the way that solvent polarizability renormalizes the
interactions between a pair of ions in solution, and a pair of ions at the interface and we
will find that a simple effective model is fairly good at capturing the effects of polarizability.
Finally, we will discuss attempts to improve dielectric continuum theory so that it is more
useful for studying problems that involve solutes at interfaces.
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radius of 3.3 Å and a charge of -0.4 e. The ion at the surface clearly has a nonzero
mean, and it also has a slightly less broad probability distribution than the ion
in bulk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.22 ∆F pol(q) showing how polarizability stabilizes ions at the interface, for three
different cavity sizes. There is very dramatic charge asymmetry for all three
cavity sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.23 〈Ez〉q,0 for all three cavity sizes, showing that the magnitude of induced electric
field for an ion at the surface is in general much larger for the anions then it is
for the cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.24 〈(δEz)2〉q,0 for all three cavity sizes in bulk, showing that fluctuations of the
electric field are in general larger in the interior of an anion than a cation, and
have a maximum at intermediate charge. . . . . . . . . . . . . . . . . . . . . . . 76

3.25 Details of ion adsorption to wall with a weak attraction for water molecules. In
figure a, we show the quantities ∆F att(q) and ∆F (q) measuring the difference
between charging free energies at the surface and in bulk. In figure b we take the
difference between these two quantities to emphasize that there are pronounced
peaks at intermediate charges. Positive values of this quantity mean that an ion
would prefer to adsorb to the attractive wall than a plain liquid vapor interface.
In figure c, we show ψ(q) and ψatt(q) which shows that the attractive wall does
not change the charge asymmetry in any dramatic way. . . . . . . . . . . . . . . 78

4.1 Average polarization energies which measure the interaction between the two
fixed charges on the ions and the induced dipoles of the solvent molecules for
two different pairs of ions. The different pairs of ions are distinguished by their
different Lennard-Jones diameters σ, indicated in the legend. The vertical lines
show the separation at which the two ions are in contact. The ions have charges
of ±0.75e. Also shown is the dielectric continuum approximation to this quantity
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Chapter 1

Introduction

1.1 Early examples of specific ion effects

There are many properties of aqueous electrolyte solutions that have a pronounced ion-
specificity. Furthermore, there are large collections of these properties for which the same,
or almost the same, ordering of ions dictates the strength of the ion-specific effect. Chemical
specificity is of course not surprising when it involves chemical transformations of some sort.
However many of these properties involve no chemistry at all. Prototypical examples are
surface tensions of solutions and protein solubility, however there is an entire zoo of effects
which we ordinarily would not group together were it not for the fact that they obey the
same ordering of ions. More exotic examples include bubble coalescence inhibition and phase
behavior of micro emulsions, which exhibit extraordinary sensitivity to even trace amounts
of salts ([39, 21, 19, 20]). This ordering is known as the Hofmeister series. Studies of
these effects date back to 1888 when Franz Hofmeister looked at the dependence of protein
solubility on which salts were in solution [33]. The ordering for anions is as follows:

SO2−
4 > HPO2−

4 > Cl− > NO−3 > Br− > ClO−3 > I− > SCN−, (1.1)

and the ordering for cations is given by:

NH+
4 > K+ > Na+ > LI+ > Mg2+ > Ca2+. (1.2)

One common ingredient underlying many of the Hofmeister effects is the presence of
an interface, such as an interface between liquid water and air, liquid water and a protein,
or liquid water and a hydrophobic colloid. About 10 years ago it became clear that there
is a major gap in our understanding of the way that salts interact with such interfaces.
Experiments on the uptake of halogen gases by aqueous aerosols suggested that there must
be some halide ions present at the interface [22], and Jungwirth and Tobias showed that
certain ions in simulated solutions exhibit a pronounced preference for the interface between
the liquid and the vapor phase [62]. This observation came as a surprise because it is starkly
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at odds with dielectric continuum theory, which provides us with perhaps the simplest way
of thinking about the forces that dictate interactions between ions and interfaces.

1.2 Dielectric continuum theory (DCT) as a simple

framework

In a dielectric medium with dielectric constant ε1, and a charge density ρ(r), the electro-
static potential must satisfy Poisson’s equation:

∇2φ(r) = −4πρ(r)

ε1
. (1.3)

For a delta function charge distribution where ρ(r) = qδ(r − r′) the well known solution to
this is just φ(r, r′) = q

ε1|r−r′| , which illustrates the simple fact that that a dielectric medium

has the effect of screening electrostatic forces by a factor of ε−1
1 . If there is a flat, infinite,

boundary between a medium of dielectric constant ε1 and a medium of dielectric constant
ε2, Gauss’s law demands that the the components of the electric field normal to the surface
satisfy:

lim
z→0−

ε1Ez(r) = lim
z→0+

ε2Ez(r), (1.4)

where Ez is the z component of the electric field. This boundary condition, together with
the condition that the curl of the electric field vanishes, is uniquely satisfied by an image
charge. To be explicit, the electrostatic potential due to a charge at position z is:

φ(r) =
q

ε1|r − z|
+

q′

ε1|r − z′|
, (1.5)

where z′, is point z reflected through the boundary. If we apply this description to the air
water interface we have ε1 = 80 and ε2 = 1, in which case the magnitude of the image charge
is q′ = q(80−1)

80+1
' q. The image charge then has the effect of repelling the charge from the

surface. The energy required to move the charge from infinitely far way to a distance z from
the surface is (see Fig. 1.1b):

W (z) =
ε1 − 1

ε1(ε1 + 1)

q2

2z
. (1.6)

This treatment clearly involves several approximations. One such approximation is that
it entirely neglects the finite size of the ion. We expect this to be a safe approximation if
the spatial range of interactions between the ion and solvent is large compared to the size of
the ion. This separation of length scales was unquestioned for many years, but these length
scales are in fact commensurate for realistic ion sizes in water. We will discuss in detail how
this assumption breaks down, and how that breakdown leads to qualitative failure of the
DCT description above.
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Figure 1.1: A schematic illustration of the boundary between two dielectric media. The field
due to the charge q is augmented by the image charge q′. If we assume that ε1 = 80 and
ε2 = 1, which mimics a water-vapor interface, then the charge q is repelled from the interface
as in (b), see Eq. 1.6

Another flaw in the above treatment is that it entirely neglects interactions between ions.
Including these interactions, even in a very approximate way, restores charge neutrality and
rectifies the spurious prediction of an infinite negative surface adsorption. This infinite
negative surface adsorption makes thermodynamically unrealistic predictions via the Gibbs
adsorption isotherm. To see how this problem arises, consider what would happen if we had
a solution of ions interacting with an interface according Eq. 1.6, with q+ = −q− = 1. The
density profiles of either species would be

ρ+(z) = ρ−(z) = exp[−β q2

ε12z
], (1.7)

where I have adopted the approximation ε−1
ε+1

= 1. The surface adsorption is an example of a
surface excess quantity. Surface excesses arise whenever we consider two bulk homogeneous
phases, α and β separated by an interface. For any extensive quantity X, it’s surface excess
is defined as:

Xs = X −Xα −Xβ. (1.8)

This equation requires us to define Xα and Xβ. The traditional approach is to imagine that
there is a mathematical dividing surface between phases α and β, and then to define Xα and
Xβ by assuming that the two phases maintain their bulk properties right up to this surface,
see [11]. We can make any choice we like, but one natural choice is where the surface excess
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of the number of particles is zero. This choice is known as the Gibbs dividing surface, and
in general we can only satisfy this constraint for a single component (typically the solvent),
while other components will have a nonvanishing surface excess of number of particles (or
surface adsorption). If we know the density profiles ρ+(z) or ρ−(z), we can compute the
surface adsorption as follows:

n+ =

∫ 0

−∞
dz[ρ+(z)− ρ+

l ] +

∫ ∞
0

dz[ρ+(z)− ρ+
v ]. (1.9)

Where we’ve chosen z = 0 as the Gibbs dividing surface, and ρl and ρv are the bulk liquid
and vapor densities. To satisfy charge neutrality the anion and cation surface adsorptions
must be the same. The Gibbs adsorption isotherm relates this quantity to the surface tension
in a simple way:

dγ

dµ
= −2n+

A
. (1.10)

This equation says that if a component has a positive surface excess then the surface tension
will drop when you increase it’s concentration and it the surface excess is negative the surface
tension will go up. The density profile predicted by Eq. 1.7, has a surface excess of −∞,
which has clearly non-physical consequences.

Onsager and Samaras studied this problem in 1934 and showed that this problem can
be resolved by including interactions between ions at a mean field level [44]. The standard
electrostatic mean field theory for studying electrolyte solutions is Poisson-Boltzmann theory.
In this theory we assume that the charge density satisfies

ρ(r) = exp[−βqφ(r)]ρo. (1.11)

Where for simplicity we don’t distinguish between the positive and negative component of the
charge density. The electrostatic potential, furthermore, must satisfy the Poisson equation
(Eq. 1.3). Combining these two equations gives us the Poisson-Boltzmann equation

∇2φ(r) = −4π exp[−βqφ(r)]ρo
ε1

(1.12)

Onsager and Samaras studied a linearized version of this in which we make the substitution
exp[−βqφ(r)] ' 1− βqφ(r). Solving this equation analytically with the boundary condition
1.4 requires even more approximations still, but the end result is agreeable in the sense that it
predicts finite (negative) surface adsorptions and hence positive surface tension increments.
The original density profiles obtained by Onsager and Samaras are shown in Fig. 1.2. The
limiting law they derived predicts that the surface tension increases proportionally to c ln(c)
in the low concentration regime where c is simply the electrolyte concentration, not the
activity.
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Figure 1.2: Original density profiles obtained by Onsager and Samaras in 1934. The positive
x axis here indicates distance below the air-water interface. See [44]

.

1.3 Experiments challenge the traditional view

Onsager and Samaras were quick to acknowledge that their treatment involves several
layers of approximations, and probably would not be valid above 0.2 M. However, within a
few years there was evidence that even at low concentrations, this theory made qualitatively
incorrect predictions. Jones and Ray published a famous set of surface tension measure-
ments in which they showed that at low concentrations certain salts actually decrease the
surface tension [48]. These data were controversial for a very long time, and even today it is
considered difficult to accurately measure surface tension increments at low concentrations.
However, were these results accurate, it would unambiguously imply that certain ions have
a positive surface adsorption at low concentration. The surface tensions as a function of
concentration for the 13 Jones-Ray salts are shown in Fig. 1.3.

Although a positive surface adsorption does imply that ions are present in enhanced
concentrations at interfaces, it is now well understood that a negative surface adsorption does
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Figure 1.3: Liquid vapor surface tensions as a function of salt concentration from [48]

.

not necessarily imply the absence of ions from interfaces. The ion density profiles can be such
that there is a subsurface depletion layer below a surface enhanced layer so that the overall
surface adsorption is negative, and such cases are indeed seen in simulations [30]. This is
not to imply that the simulated surface adsorptions are always consistent with experiments.
Bhatt et al. have shown that low concentrations of NaCl and NaBr in simulations have
negative surface adsorptions, whereas higher concentrations of each salt have positive surface
adsorptions. This implies that the surface tensions of these solutions have a maximum as a
function of concentration which, as the authors note, is not seen in experiments [6]. These
studies expose the fact that simulations are still not a completely reliable guide when it
comes to interpreting macroscopic measurements like the surface tension.

A more sophisticated set of experiments have become possible over the past 20 years that
allow one to investigate the structure of the interface more directly using second order spec-
troscopies. Shen and coworkers first pointed out the utility of a second order spectroscopy
as a surface sensitive probe [15]. In these experiments, you measure radiation from the po-
larization response to a pair of incident electric fields of different frequencies. This response
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is described by the equation

P 2 ∝ χ2E1E2. (1.13)

In a medium with inversion symmetry, inverting the electric field will invert the polarization
field. If we call the inverted polarization field P 2

i this means that P 2
i = −P 2 and

P 2
i = χ2(−E1)(−E2) = χ2E1E2 = P 2. (1.14)

Which means that

P 2 = −P 2, (1.15)

so the polarization field must vanish when there is inversion symmetry. For systems with
bulk inversion symmetry like liquid water, measuring the 2nd order response will therefore
isolate a signal from the interface.

One of the most popular second order techniques for probing the air-water interface is
sum frequency generation (SFG) spectroscopy. SFG studies measure the OH stretch of water
molecules in the interfacial region. SFG cannot measure the presence of ions directly, but
the SFG spectrum is very sensitive to the ions in solution. NaF, for example, does not affect
the SFG spectrum at all, whereas NaI produces noticeable changes in the SFG signal [36].
Interpreting these signals is a very difficult problem but the relevant changes are unlikely
to arise from the influence of the ion on it’s immediate neighbors. It is more likely the case
that the ion density polarizes the slightly subsurface layers [42].

Another class of experiments involves a technique called second harmonic generation
(SHG) spectroscopy. This technique can be used to directly study a certain set of anions
that have a charge-transfer-to-solvent transition in the UV. These anions include I- and
SCN- and these produce an SHG signal which is proportional to the surface concentration
[49, 45, 48]. SHG studies have been used to obtain an effective adsorption free energy by
measuring the SHG signal as a function of concentration and fitting to a Langmuir adsorption
isotherm [50, 46]. SHG experiments have presented the most convincing evidence that there
are in fact ions at surfaces, and that their concentrations at the surface exceed their bulk
concentrations.

1.4 Overview

The rest of this thesis is a thorough study of the forces that dictate the behavior of
ions at interfaces. In chapter 2 we study in detail the thermodynamics of ion adsorption
to interfaces. We find that there are certain thermodynamic trends associated with ion
adsorption that are very general and we investigate the mechanisms underlying these trends.
In chapter 3 we take a close look at what makes the forces that drive ions towards and
away from interfaces so specific. In particular, we address the question of how anions are
different from cations as far as their interactions with interfaces are concerned. In chapter 4
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we study how solvent polarizability renormalizes the interactions between ions, particularly
when those ions are near or at an interface. Chapter 5 is a discussion of ongoing work to
improve the utility of dielectric continuum theory for studying systems with interfaces.
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Chapter 2

General features of ion solvation at
interfaces

2.1 Models and methods

Solvent models

As we saw in the last chapter, we will require a more detailed model than dielectric
continuum theory to capture the interesting behavior of ions at interfaces. We will consider
in detail two distinct atomistic solvent models. The first of these is the SPC/E water model.
This model was developed in 1987 by Berendsen and coworkers [5]. It caricatures the charge
distribution of a water molecule with positive charges of .4238 on each hydrogen atom and
a negative charge of .8476 on each oxygen atom. It has a lennard-jones potential centered
on the oxygen atom with lj parameters of σ = 3.166Å and ε = 0.650kj/mol. This model is
widely used and is particularly popular in studies of ion solvation [38, 24, 41].

The second solvent model we use is known as the Stockmayer solvent. The Stockmayer
potential is merely a Lennard-Jones potential where each LJ particle center has a fixed
permanent dipole. This model allows us to study ion solvation in a slightly simpler context
than the SPC/E water model. Stockmayer parameters can be chosen so that it has a dielectric
constant comparable to liquid water, but it is always distinct from water in that it has perfect
charge inversion symmetry. This means that solvation of anions and cations is necessarily
identical, both in bulk and near interfaces. Stockmayer liquids are also distinct from water in
that they do not have hydrogen bonding. The interaction of ions with the hydrogen bonding
network has important consequences for both bulk and interfacial solvation (see chapter 3),
but these details are absent in Stockmayer which allows us to study features of ion adsorption
in a much simpler context.
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Sampling schemes

Studying the statistical mechanics of these models requires us to sample configurations
from a Boltzmann distribution. The approach we use is a straightforward Metropolis Monte
Carlo scheme. This objective of this scheme is to carry out a Markovian walk on the con-
figuration space r such that the stationary probability distribution P (r) = exp[−βU(r)] is
preserved. In order to preserve this probability distribution it must be the case that the
fluxes into and out of state r are the same. The simplest way to guarantee this is to enforce
a detailed balance criteria where the flux from state r to r′ is the same as the flux from state
r′ to r. These fluxes, which I will call k(r → r′), are a simple product of the probability that
the system is in the original state times the probability that the system makes a transition
to r′, given that it started in r. This transition probability is composed of two parts, the
probability of proposing the move w(r → r′), and the probability of accepting the move
α(r → r′). The detailed balance criteria is then:

P (r)w(r → r′)α(r → r′) = P (r′)w(r′ → r)α(r′ → r). (2.1)

If the proposal probabilities are symmetric in r and r′ so that w(r′ → r) = w(r → r′), the
above equation simplifies to:

α(r → r′)

α(r′ → r)
=
P (r′)

P (r)
(2.2)

This condition can be satisfied in many ways but one popular choice is:

α(r → r′) = min[1, exp[−β(U(r)− U(r′))]. (2.3)

For the simple molecular systems we study we only propose single particle moves that update
the configuration and position of a single, randomly chosen molecule at a time. For a detailed
discussion of monte carlo algorithms see [17, 1].

All the simulations described in this chapter consist of a single ion embedded in a liquid
slab at coexistence with its vapor. Electroneutrality is maintained by having a uniform
background charge density. To satisfy periodic boundary conditions, the slab must have
two liquid vapor interfaces, which by symmetry interact with the ion in identical ways. We
will calculate various quantities that are a function of the distance between the ion and
the liquid vapor interface. We do this by imposing constraints on the ion that require it
to be in a certain height window, where the height is referenced to the center of mass of
the slab. These constraints take the form of a hard wall where we reject any moves that
take the ion outside of some lower bound zmin or upper bound zmax. Certain calculations in
this chapter will involve making this window very narrow (' 0.05Å), and collecting data on
the ensemble where the ion is at a specific height. In the other set of calculations we will
allow the ion to diffuse in a set of larger overlapping height windows. We then combine the
data from these windows using the MBAR equations to compute the ion density profile as a
function of height. The MBAR equations are a statistically optimal way of estimating the
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free energy differences between ensembles with different bias potentials, and for constructing
the probability distribution for the unbiased ensemble. We will here present a brief discussion
of the MBAR procedure which is based on the excellent and very complete discussion in [61],
for the original derivation of these equations see [55]. Say we are interested in the statistics
of some variable z and we sample this variable in K ensembles with different bias potentials
Vk(z). The results of this sampling are a collection of discrete values of z. The nth value of
z obtained in the jth ensemble is zn,j. We adopt the following model for the full probability
distribution of z:

P (z) = Z−1

K∑
j=1

NK∑
n=1

pn,jδ(z − zn,j). (2.4)

This probability distribution depends on the weights, pn,j, and these weights are determined
from the following equation:

pn,j
Z

=
1∑K

l=1 Nl exp[β∆Fl − βVl(zn,j)]
. (2.5)

The free energy differences between the different ensembles ∆Fk are determined self consis-
tently from the K equations,

∆Fi = −kBT ln

 K∑
j=1

Nj∑
n=1

exp[−βVi(zn,j)∑K
l=1Nl exp[β∆Fl − βVl(zn,j)]

 . (2.6)

Once we solve these equations we can reconstruct the full probability distribution using
equation 2.4. For our specific case the coordinate z will be the height of the ion and the bias
potentials Vk(z) will be hard wall potentials, which are infinity outside of some limits and
zero everywhere else.

The simulations of SPC/E water all consisted of 252 solvent molecules in a box of 20Åx
20Åx40Å and were conducted at 300 K. Electrostatic energies were computed by the Ewald
method using a convergence parameter α = 0.0784Å and 10 wave vectors in the x and y
dimensions along with 20 wave vectors in the z direction.

Stockmayer simulations consisted of 240 solvent particles in a box with dimensions
6.7σx6.7σx13.4σ. The Lennard-Jones parameter σ defines the length scale and the LJ pa-
rameter ε defines the energy scale. In terms of these units the natural unit of a dipole is
µ∗ =

√
4πεoσ3ε. The Stockmayer system we simulate has a dipole of µ = 1.5µ∗ and all

simulations are conducted at a temperature of T = 0.7ε/kB.

2.2 Competing forces in ion hydration

For simple ions it is natural to think of ion solvation thermodynamics in terms of two
distinct steps. The first of these is cavity formation and the second of these is charging.
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We can arrive at this decomposition from the exact statistical mechanical expression for
solvation free energy as we will now show. Consider a system consisting of a single charged
solute at position z, interacting with N solvent molecules. It has a potential energy that
takes the form:

U(rN) = Uss(r
N) + U vdW

is (rN) + qφ(rN), (2.7)

where Uss describes the interaction between solvent molecules U vdW
is is the non electrostatic

component of the solute-solvent interaction, and φ is the electrostatic potential at z due to
solvent molecules at positions rN . We can write down the canonical partition function given
this potential energy:

Z(z) ∝
∫
drN exp[−βUss(rN)− βU vdW

is (rN)− βqφ(rN ; z)]. (2.8)

If we insert a delta function and manipulate further we obtain a formula that highlights the
role of the distribution of the potential inside a cavity,

Z(z) ∝
∫
dφ′
∫
drNδ(φ′ − φ(rN ; z)) exp[−βUss(rN)− βU vdW

is (rN ; z)− βqφ′] (2.9)

(2.10)Z(z) ∝
∫
dφ′ exp[−βqφ′)]

∫
drNδ(φ′ − φ(rN ; z)) exp[−βUss(rN)− βU vdW

is (rN ; z)]

Z(z) ∝
∫
dφ′ exp[−βqφ′(rN)]Po(φ

′; z)Zuc(z), (2.11)

where Po(φ
′) is the distribution of the electrostatic potential inside an uncharged solute and

Zuc is the partition function for the uncharged solute-solvent system. To make this more
physically transparent, consider the ratio Zuc/Zo, where Zo is the partition function of the
solvent:

Zuc(z)

Zo
=

∫
drN exp[−βUss(rN)− βU vdW

is (rN ; z)]∫
drN exp[−βUss(rN)]

= 〈exp[−βU vdW
is (rN ; z)]〉 (2.12)

This equation is known as the potential distribution theorem. We have not been specific
about the form of U vdW

is , but if it is a hard core repulsion then this last equation measures the
probability that there are no solvent molecules inside of a solute sized cavity at z (Pcav(N =
0; z)). Rewriting eq. 6 we find:

Z(z) ∝
∫
dφ′Po(φ

′; z) exp[−βqφ′(rN)]Pcav(N = 0; z)Zo (2.13)

F (z) = −kBT ln[Z(z)] (2.14)

F (z) = −kBT
[
ln[Pcav(N = 0; z)] + ln

∫
dφ′Po(φ

′; z) exp[−βqφ′] + lnZo

]
(2.15)
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The first two terms in eq. 2.15 are the two physically distinct parts of the excess chemical
potential. The first is the cavity formation free energy (Fcav), and the second is the free energy
associated with endowing the cavity with a charge (Fes). To be explicit these quantities are

Fcav = −kBT ln[Pcav(N = 0; z)] (2.16)

and

Fes = −kBT ln

∫
dφ′Po(φ

′; z) exp[−βqφ′] (2.17)

The details of the cavity formation free energy are fairly well understood because these
details underlie the hydrophobic effect. This behavior depends on the cavity size R in
important ways and successful theories of the hydrophobic effect describe this length scale
dependence very accurately [9, 37, 47]. For small cavity sizes, the probability that you will
find N molecules inside the cavity, Pcav(N) is Gaussian to a very good approximation (see
ref. [23] and fig 2.1), and all we need to know to determine Pcav(N = 0) is the variance and
the mean of this distribution. The mean is clearly given by

〈N〉 = ρlv (2.18)

where ρl is the bulk liquid phase density and v is the volume of the cavity. The variance is
determined from the radial distribution function as:

〈(δN)2〉 = ρlv +

∫
r∈v

∫
r′∈v

ρ2
l [g(r, r′)− 1]. (2.19)

In a straightforward manipulation of eq. 2.16 we can then show that

Fcav =
kBT

2
ln[2π〈(δN)2〉] +

kBT 〈N〉2
2〈(δN)2〉 . (2.20)

This equation provides a very accurate prediction of solvation free energies of ideal so-
lutes with excluding volume radii up to 4 Å [23]. The failure of this equation is a sign that
something collective is happening. Gaussian behavior of a fluctuating variable is a sign that
that variable is statistically the sum of many independent events. When cavity sizes are
large enough, it is much easier to evacuate the cavity by locally inducing a phase transition
and forming a liquid-vapor interface than it is to add up all those independent events. When
a liquid vapor interface forms the solvation free energy is substantially lower than predicted
by eq. 2.20. In liquid water at ambient conditions this crossover happens somewhere around
1 nm. Above this length scale Fcav scales with the surface area of the cavity, where the pro-
portionality constant is roughly the liquid-vapor surface tension. However, there is another
thermodynamic signature of this crossover, which is that for short length scales the Fcav
has a negative entropic component whereas for larger length scales this component is posi-
tive. That is, it is entropically costly to exclude small volumes, but entropically favorable to
exclude large volumes. These two features are illustrated in fig. 2.2 adopted from ref. [10].
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Figure 2.1: Pcav(N) in bulk for various different cavity sizes (indicated in nanometers by the
number next to the curve) taken from ref. [23], These are remarkably gaussian all the way
down to N = 0.

Regardless of the length scale, the cavity formation free energy is always a force that
would tend to drive solutes towards the vapor phase. We are mostly interested in ions that
have cavity sizes in the small hydrophobe regime, which means that cavity formation has
a negative entropic component, and this entropic cost ought to be alleviated when the ion
moves to the interface. Fig. 2.3 shows explicitly cavity formation free energy as the ion
moves across the surface, along with its energetic and entropic components. The energetic
component is clearly decreasing as the solute approaches the interface and the entropic
component is clearly increasing.

The second part of the solvation free energy is the charging free energy Fes. As we can
see from equation 3.1 this quantity can be expressed in terms of the distribution of the
potential inside the uncharged cavity. Empirically it is found that we can approximate this
distribution as a gaussian with reasonable accuracy [24, 38]. Fig. 2.4 shows this probability
distribution for a cavity with an excluded volume radius of 3.3 Å in bulk, along with the
gaussian approximation to this distribution.

If we adopt the Gaussian approximation the charging free energy follows from a simple
formula:

Fes(z, q) ' q〈φ〉(z)− 1

2
βq2〈(δφ)2〉(z) = Fgauss(z, q), (2.21)
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Figure 2.2: The hydrophobic crossover as illustrated in ref. [10]. At small length scales the
solvation free energy scales with volume and goes up as you raise the temperature, indicating
a negative entropy of solvation

.

where 〈φ〉 and 〈(δφ)2〉 are the mean and variance of the electrostatic potential in an uncharged
cavity. These quantities can of course be measured in a simulation, but they can also be
estimated from dielectric continuum theory (see chapter 5). Figure 2.5 shows the charging
free energy along with the gaussian approximation for the same 3.3 Å cavity studied in
fig. 2.3, while the ion is in bulk. I have not decomposed this into energetic and entropic
components but this decomposition has been studied and the entropy is quite small compared
to the energy [38].

The energy scales associated with this charging free energy are clearly not concomitant
with the energy scales associated with the cavity formation. Even at a relatively modest
charge of 0.5 the charging free energy is nearly 100 kj/mol, all of which must be lost if the
ion is removed from solution. It’s difficult to imagine these two forces competing with one
another in a way that ultimately stabilizes the ion at the interface.
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Figure 2.3: The change in the cavity formation free energy ∆Fcav as a solute with an ex-
cluding volume radius of 3.3 Å moves across the liquid vapor interface, together with its
energetic and entropic components. The x-axis is distance from the Gibbs dividing surface,
with negative values corresponding to liquid and positive values corresponding to vapor

.

This discussion of bulk solvation can be used to calibrate our expectations of what might
happen when a charged solute migrates to the interface. The dominant energetic effect is
likely to be associated with the charging free energy. The image charge picture described in
chapter 1 ought to describe how the charging free energy changes as the ion approaches and
crosses the surface, at least qualitatively. There may be a weak entropic effect associated
with orientational restrictions imposed by the ion, but the main entropic effect is likely to
be associated with the cavity formation term, which should be positive as the ion breaches
the interface. In this picture the most likely scenario seems to be an entropy maximum
but a much larger energy maximum when the ion is at the surface. While unlikely, its at
least conceivable that for certain ion parameters the entropy maximum exceeds the energy
maximum and there is a net driving force for moving the ion to the interface.

2.3 Generic features of surface adsorbing solutes

The above discussion highlights the fact that the energetic and entropic components of
driving forces on ions near interfaces might shed some light on the adsorption mechanism.
Studies of this nature on simple ions were surprisingly rare until very recently. In 2011,
Caleman et al. studied the solvation thermodynamics for various ion parameters in small
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droplets of liquid water [7]. They studied a variety of (mostly surface adsorbed) halide
anions, and (all surface repelled) alkali metal cations. For every surface adsorbed anion
they studied they found energetic and entropic minima for the ion at the surface. The
authors computed a small collection of structural and orientational order parameters, but
find nothing that is correlated to the relevant differences between the different ions, nor
anything that explains what is missing from the solvation picture described in the last
chapter. In a similar study a few years prior, Iuchi et al. studied the hydrated excess proton
in water using empirical valence bond model simulations and found that it has a weak
attraction to the interface, which is composed of an energetic and an entropic minimum
[28]. Most importantly, experiments on the thiocyanate anion using SHG spectroscopy have
confirmed that this ion adsorbs to the water vapor interface with both a negative entropy
and a negative energy [46].

One of the surprising features of the Caleman work is that the entropy and energy
minimum seem to be present for all of the surface adsorbing solutes they study which suggests
that the underlying physics is not too ion specific. This implies that we can learn important
things about this problem from studying a few ion parameters in great detail, rather than
trying to study all of the physically relevant ion parameters. This also prompts the question,
just how general is the behavior described?

The prototypical surface enhanced halide is the iodide anion. However, in non polar-
izable force fields, fully charged iodide is typically only weakly surface enhanced. Adding
polarizability to the model is well known to facilitate the adsorption of ions to the surface
[14, 35]. Polarizability is not, however, a necessary feature for ion adsorption and since we
wish to study ion adsorption in the simplest context we exclude polarizability. One approach
that has been used in simulations to study surface enhanced ions is making small changes
to the charge of the ion. An iodide anion with the charge reduced to .8 e has a density at
the surface which is nearly 100 times its density in bulk [41]. This small reduction of charge
does not change the fact that it is a strongly solvated ion, it just allows us to tip the balance
towards surface enhanced so that we can study the relevant driving forces more clearly. For
this reason we study an iodide model with the charge reduced to .8 or .75 e.

Figure 2.6 shows the density profiles for I−0.8 and I−0.75, along with the free energy
decomposition corresponding to these curves. The energetic and entropic minima observed by
Caleman et al. are clearly present even without polarizability. This model is slightly simpler
than the model studied by Caleman, but it still has all of the subtleties and complexities
associated with hydrogen bonding. To remove these details we’ve also studied the Stockmayer
solvent referred to above. As shown in fig. 2.7, the gross behavior is exactly the same as
in the water models, which suggests that the discussion in section 1 is missing something
fundamental about fluid interfaces, and not just solvent-specific details.



CHAPTER 2. GENERAL FEATURES OF ION SOLVATION AT INTERFACES 19

(a)

0

10

20

30

40

50

60

70

80

-10 -8 -6 -4 -2 0 2 4 6

ρ
(z

)
ρ
(b
u
lk
)

ion height Å
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I−0.75

(d)

-40

-30

-20

-10

0

10

20

30

40

-10 -8 -6 -4 -2 0 2 4 6

k
j/
m
ol

ion height Å
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Figure 2.6: Ion density profiles and corresponding free energies, average energies and en-
tropies for two versions of fractionally charged Iodide. The x-axis on this plot corresponds
to distance from the Gibbs dividing surface, with negative values corresponding to the liquid
phase and positive values corresponding to the vapor phase. Figure a shows how the I−0.8

density changes as the ion crosses the interface. The free energy change for this process,
along with its energetic and entropic components, are shown in figure b. Figures c and d
show the same quantities for I−0.75. The energy and entropy minima observed in these plots
are fairly generic features of surface adsorption.
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2.4 A very simple energetic decomposition

In this section we describe how to spatially parse the relevant contributions to the average
energy, and then describe an extremely simple approximation that recapitulates the relevant
trends. We are ultimately interested in how the average energy depends on ion position,
which means we can neglect contributions from the average kinetic energy, which depends
only on the number of degrees of freedom. The potential energy functions for the models we
study are pairwise decomposable, which means we can cleanly isolate contributions due to
the ion-solvent interactions and contributions due to solvent-solvent interactions. The total
potential energy is then the sum of these two terms. For an ion at position z, its interaction
with solvent molecule i depends on its position ri and orientation Ωi, and we denote this
by uis(ri, z,Ωi). Likewise, the interaction between two solvent molecules depends on the
positions and orientations of both molecules and we denote this by uss(ri,Ωi, rj,Ωj). The
interaction between the ion and all N solvent molecules is a straight forward sum

Uis(z) =
N∑
i=1

uis(ri, z,Ωi) =

∫
dr

N∑
i=1

δ(r − ri)uis(ri, z,Ωi). (2.22)

If we then take the average of this equation we find

〈Uis(z)〉 =
N∑
i=1

uis(ri, z,Ωi) =

∫
dr〈

N∑
i=1

δ(r − ri)uis(ri, z,Ωi)〉. (2.23)

The quantity in brackets is the average solvent density at position r times the average
interaction between a solvent molecule at r and an ion at position z (ūis(r, z)). We can then
rewrite this equation as:

〈Uis(z)〉 =

∫
drρs(r)ūis(r, z) (2.24)

A similar operation applies to the solvent-solvent interaction. We can write its average as

〈Uss(z)〉 =
1

2

N∑
i 6=j

uss(ri,Ωi, rj,Ωj) =
1

2

∫
dr

N∑
i=1

〈δ(r − ri)
∑
j 6=i

uss(ri,Ωi, rj,Ωj)〉. (2.25)

Denoting the average interaction between a solvent molecule at position r and every other
solvent molecule as ūss(r, z) we have the following compact formula:

〈Uss(z)〉 =
1

2

∫
drρs(r)ūss(r, z). (2.26)

Equations 2.24 and 2.26 provide connections between spatially resolved quantities and the
overall average energy as a function of ion position, and this spatial resolution can provide
us with structural insight into the observed energetic trends.
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x

h

Figure 2.8: An illustration of the reference system used to spatially resolved contributions to
the average energy and entropy. x is the perpendicular distance between a particular water
molecule and the ion, and h is the vertical distance between that water molecule and the
interface. In this illustration the ion position z is at the interface/

The systems studied here all have rotational symmetry about the axis connecting the ion
to the interface, which means that quantities like ūss(r, z) (for a given ion height) only depend
on the perpendicular distance from the ion and the vertical distance from the interface, we
denote this dependence by ūss(x, h, z) (see figure 2.8). Figure 2.9 shows the quantities
ūss(x, h, z) and ūis(x, h, z) as a function of these two coordinates, for an ion in bulk, and an
ion at the interface.

These energy maps highlight the fact that there are 3 important length scales in this
problem. The first of these is the size of the ion, in this case its approximately 4 Å, and
we know that for realistic ions this will vary by ' 1.5 Å in either direction. The second
of these is the length scale of interaction between the ion and neighboring water molecules.
This length scale appears to be about 3 Å. Again we expect this to vary slightly depending
on ion parameters like charge, size and polarizability. The third length scale is the depth
of the interfacial region. As a rough estimate this length scale is approximately 3 or 4 Å.
None of these length scales dwarfs any of the others for this specific case, which is a sign of
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Figure 2.9: The spatially resolved contributions to the average potential energy described
above. Plots A and B show ūss(x, h, z), the average solvent-solvent interaction strength,
where plots C and D show ūis(x, h, z), the average solvent-ion interaction strength for an
I−.8 anion in bulk (A and C) and at the Gibbs dividing surface (B and D). The x-axis is
the perpendicular distance from the ion, x, and the y-axis is the distance to the interface, h.
Whereas z simply denotes the distance between the fixed ion and the interface. The negative
x-axis on these plot is merely a visual aid, in truth, the x-axis is a strictly positive quantity.
It is defined as x =

√
(xr − xi)2 + (yr − yi)2 where xr and yr are the x and y coordinates of

position r and xi and yi are the same coordinates of the ion. The white regions in these plots
correspond to very low or no solvent density, either in the vapor phase or overlapping with
the ion. It is important to note, however, that the effective diameter of this ion is actually
the radius of the big white circles, and that these plots therefore make the ion appear twice
as big as it is.
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Figure 2.10: The spatially resolved contributions to the average potential energy, for an ion
in a Stockmayer solvent. These quantities are the analogues of the quantities show in figure
2.9 for an ion in water. The ion considered here has a reduced charge of 4.5 and a diameter
of 1.25 σ.

the fact that several forces are competing with one another. Consider what would happen
if one of these length scales were significantly larger than the other two. If, for example, the
length scale of interaction between ions and water molecules were 10 Å, we would expect
the dominant effect to be associated with how many water molecules the ion was interacting
with as it crossed the interface, and that number might be a relatively simple, monotonically
decreasing function of ion height. However, no such separation of length scales exists, which
prevents us from making that sort of simplification.

Analogues of uis and uss for an ion in the Stockmayer solvent are show in figure 2.10.
There are indeed some noticeable differences between the features in these figures and features
in fig. 2.9. For example, the interactions of solvent molecules with the ion look slightly less
localized. And the decrease in solvent-solvent interactions for a solvent molecule neighboring
the ion does not look quite as severe as it does for water. Furthermore, the solvent-ion
interactions become noticeably slightly stronger when the ion is at the interface. However,
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none of these features qualitatively change the picture described.
The ion described by figure 2.9 is a surface enhanced ion with an energy minimum at the

surface of 20 kj/mol, however by making small adjustments to the size and charge of the
ion we could easily make this energy minimum change sign. However, its hard to imagine
the features in figure 2.9 making any dramatic changes (we certainly don’t expect either ūss
or ūis to change sign), and this intuition is in fact correct. To get a better sense for how
the balance between surface enhanced and surface repelled is tipped, we will compare this
surface enhanced ion with a surface repelled one. The quantity we will compare arises from
a combination of 2.24 and 2.26. Combining these two equations we find

〈U(z)〉 =

∫
drρs(r, z)[ūis(r, z) +

1

2
ūss(r, z)] =

∫
drρs(r, z)E(r), (2.27)

where this last equation defines E . In terms of the variables x and h, this integral becomes

〈U(z)〉 =

∫ ∞
0

πxdx

∫ ∞
−∞

dhρs(x, h, z)E(x, h, z). (2.28)

The quantity ρs(x, h, z)E(x, h, z), while not quite as simple as either ūis or ūss, has a very
straightforward interpretation. It is the quantity that you integrate over to determine the
total average energy. Figures 2.11 and 2.12 show these quantities for both the surface
enhanced I−.8 and the surface repelled Cl−. For each ion we look at 3 different values of z
as the ion approaches the interface, and beside each energy-density map is shown the plot
of total average energy as a function of ion height, along with a green line indicating which
height you are looking at on the left, so you can see exactly what that map integrates to.
The I−.8 and Cl−, have very similar qualitative features from this perspective. Each ion has
deeps wells around it, indicating that water molecules immediately coordinating the ion are
in an energetically favorable state. The Cl− has slightly deeper minima around it both in
bulk and at the interface and it is slightly smaller but there are no qualitative differences.
The other pronounced feature of these maps is the interface. The energy density rises at the
interface, indicating that water molecules near the interface are in an energetically favorable
state. In either case, when the ion is placed at the interface it is occupying volume in a high
energy region which effectively lowers the overall energy, but it also loses some of the deep
purple well around it, which raises the energy. The I−.8 occupies a little more space in the
interfacial region and doesn’t lose as much when it sacrifices its solvation shell. The balance
of these two forces ultimately determines whether or not the energy is minimized by putting
it at the interface. This balance is tipped one way for the I−.8 and another way for the Cl−.

There is one surprisingly simple feature of the energy maps in 2.9. Certain features are
independent of whether the ion is at the surface or in bulk. Plots C and D, for example,
look nearly identical when referenced with respect to the ion, except for those regions with
extremely low solvent density. There are in fact subtle differences between these plots, which
are important when discussing aspects of charge asymmetry (see chapter 3), but for now we
will ignore those differences. Plots A and B likewise, seem to have surprisingly predictable
behavior when the ion moves to the interface. Furthermore, the dominant features in these
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Figure 2.11: Plots of ρs(x, h, z)E(x, h, z), for three different values of ion height z (-8, -4
and -1 Å) as the I−.8 ion approaches the interface. The plots on the right show how the
total energy changes as the ion moves, and the plots on the left must integrate to the value
indicated on the right, which gives a sense for how the competing forces balance one another.
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Figure 2.12: Same as above except for the Cl− ion. We see some of the same competing
forces as above, but in this case the balance is tipped in such a way that the chloride avoids
the surface
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maps have a relatively spatially local character. Motivated by these observations we will
define what is called the local approximation. In the simplest version of this approximation,
space is partitioned into three regions. The coordination region consists of all the water
molecules with a certain cutoff distance lcoord from the center of the ion. The surface region
consists of all water molecules within a certain distance of the Gibbs dividing surface lsurf .
Molecules in the overlap between these two regions are assigned to the coordination region
and all others are assigned to the bulk region. To arrive at the local approximation we
partition the eq. 2.27 according to these three regions as

〈U(z)〉 =

∫
coord

drρs(r, z)E(r) +

∫
surf

drρs(r, z)E(r) +

∫
bulk

drρs(r, z)E(r). (2.29)

If we multiply and divide by the average number of particles in each region we arrive at:

〈U(z)〉 = ncoord(z)

∫
coord

drρs(r, z)E(r)

ncoord(z)
+nsurf (z)

∫
surf

drρs(r, z)E(r)

nsurf (z)
+nbulk(z)

∫
bulk

drρs(r, z)E(r)

nbulk(z)
.

(2.30)
This has the structure of an average energy per molecule in a given region, times the number
of water molecules in that region. This average energy per molecule in region i is defined as:

Ēi(z) =

∫
i
drρs(r, z)E(r)

ni(z)
. (2.31)

Equation 2.30 now simplifies to:

〈U(z)〉 = ncoord(z)Ēcoord(z) + nsurf (z)Ēsurf (z) + nbulk(z)Ēbulk(z). (2.32)

This equation is an exact decomposition of the energy. The local approximation consists of
assuming that we can replace Ēi(z) with its value in bulk Ēi, which we will denote by just
suppressing the z dependence. This gives us:

Uloc(z) = ncoord(z)Ēcoord + nsurf (z)Ēsurf + nbulk(z)Ēbulk. (2.33)

We will be using this equation a lot so its worth discussing the approximate nature in
detail. This equation is really an approximation in two distinct but related senses. The first
of these is the assumption that we can define relatively short cutoff distances, either from
the ion, or from the interface, beyond which a water molecules interactions are nearly the
interactions of a water molecule in bulk. This approximation seems like a safe one based on
the energy maps, however the scheme for partitioning water molecules into different regions
introduces a different layer of approximation. Recall that if a water molecule is in the
overlap between the surface and the coordination regions, we assign it to the coordination
region. When the sphere defining the coordination region starts to penetrate the plane
defining the surface region, it overlaps with low energy regions more than high energy regions.
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This means that even if the ion itself did not effect any of the interactions outside of its
cutoff lcoord, the assumption that Ēsurf (z) = Ēsurf would still be invalid because these two
quantities would involve averages over different geometries. Furthermore, the assumption
that Ēcoord(z) = Ēcoord, will clearly breakdown when the coordination region is at the surface
and is composed of water molecules that are both coordinating the ion and at the surface.
The criteria for success of the local approximation clearly involves some subtleties (for more
on this see chapter 3, and for an extension of these ideas that consider more than 3 regions
see [59]). However it ought to capture some of the coarse features of adsorption energetics
discussed above, for example, the way the ion at the surface excludes volume in a high energy
region.

The local approximation emphasizes the fact that the most important structural changes
induced by an ion are in its first solvation shell. This locality is slightly at odds with the
long held notion that certain ions are structure makers and certain are structure breakers
which holds that ions in water have a long range effect that either strengthens (structure
makers) or weakens (structure breakers) the hydrogen bond network. There is mounting
experimental evidence that there is no such long range effect, even at high concentrations
and that this distinction may not be appropriate. One such study concerns the orientational
dynamics of water molecules in solution with several different ions at concentrations up to
6M. Water molecules that are hydrogen bonded to an anion have a different O-H stretching
frequency than water molecules that are hydrogen bonded to another water molecule. Pump-
probe spectroscopy can then be used to study the orientational decorrelation of these distinct
populations separately. The water molecules hydrogen bonded to the anion do have a slower
orientational correlation time, but they have no effect on the orientational dynamics of the
bulk water, even at higher concentrations [43, 65, 56].

For the case of the I−0.8 we can choose parameters for which the local approximation is
remarkably successful (see fig. 2.13). The cutoff for the coordination region used was 4.2 Å
away from the ion, and the cutoff for the surface region was 3.8 Å below the Gibss dividing
surface.

2.5 Possible origins of entropic costs

The last section introduces a new perspective on how solvation energies change as a solute
crosses an interface. Such a straightforward decomposition is not possible for the solvation
entropies and we are therefore faced with a slightly more challenging problem. We have
attempted to quantify two different contributions to the solvation entropy to see how they
vary with ion position. The first of these is a measure of orientational entropy. Ion solvation
entropies in bulk are known to have some subtleties [38] which are usually associated with
the orientational freedom of surrounding water molecules. How these effects play out near
an interface is not very well studied. We find that a rough measure of orientational entropy
predicts a very weak entropic effect which has the wrong sign for moving the ion to the
interface. The second effect we study involves the entropy associated with fluctuations of
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Figure 2.13: The local approximation to the average energy described in the text along
with the true average energy. The local approximation agrees very well, predicting both the
position and depth of the minimum with near quantitative accuracy.

the interface and this effect is shown to be a very large one, which furthermore predicts the
correct sign for the entropy change as the in moves to the surface.

The orientational entropy described above is computed as follows. For a solvent molecule
at position r we compute the probability distribution p(cos(θ), r) where θ is the angle that
the molecule’s dipole forms with the z-axis. We then compute the Gibbs entropy associated
with this probability distribution as:

s(r) = −kB

∫
dcos(θ)p(cos(θ), r) ln p(cos(θ), r). (2.34)

This is roughly an entropy per particle. To estimate the total entropy we multiply by density
and integrate over space:

Slocal =

∫
drs(r)ρs(r). (2.35)

Figure 2.14 shows s(r) for the I−.8 ion in bulk and at the interface. In either case we find
that water molecules in the neighborhood of the ion are subject to orientational restrictions,
as are water molecules at the interface. The natural expectation is that bringing to the ion
to the interface releases some of these constraints and therefore the entropy goes up. By
integrating over these maps that is indeed what we find, but the magnitude is a surprisingly
small 0.8 kB.
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Figure 2.14: The spatially resolved orientational entropy per particle described in the text
for two positions of the I−.8 ion. The associated total entropy is higher when the ion is at
the interface (b).

One feature of this analysis is that it supposes that all the water molecules are statistically
independent and it will therefore not register any collective fluctuations. The failure of this
analysis then suggests that perhaps the substantial entropy changes we see come from the
ions influence on some collective modes. Liquid-vapor interfaces are known to have a set of
very soft collective modes known as capillary waves. Inspired by this theory we will attempt
to estimate the entropy contained in fluctuations of the liquid vapor interface.

Conventional definitions of an interface, such as the Gibbs dividing surface are statistical
definitions in the sense that they require us to average over many configurations. In this work
we need a definition that can assign an interface to a single configuration so that we can keep
track of how it fluctuates. Such a definition was developed by Willard and Chandler [63]. In
this prescription we use a coarse-grained density field that places a gaussian mass density on
each oxygen atom. For each lateral position, we then determine the height of the interface as
the place where this coarse-grained density drops below half of its bulk value. This scheme
produces surface topographies that visually match our sense of where the interface should
be (see figure 2.15).

The scheme described produces a height h(x) at each point on a discrete two dimensional
grid x, where we may make the grid as coarse or as fine as we like. We then adopt the
perspective that the heights at each grid point are a set of coupled harmonic oscillators.
That is, we assume the potential energy has the form:

U([δh(x)]) =
kBT

2

∑
xi,xj

δh(xi)χ
−1(xi, xj)δh(xj). (2.36)
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Figure 2.15: The intrinsic interface defined in the text for a single configuration that contains
an ion at the surface.
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The partition function for this model is then given by

Z =

∫
Πidδh(xi) exp[−1

2

∑
xi,xj

δh(xi)χ
−1(xi, xj)δh(xj)] (2.37)

This can be evaluated as a straight forward gaussian integral by diagonalizing χ−1, and the
result is

Z ' det(χ−1)−
1
2 . (2.38)

You can also show that the inverse of χ−1 is the correlation matrix:

χ(xi, xj) = 〈δh(xi)δh(xj)〉. (2.39)

The determinant of a matrix and its inverse are related by

det(χ−1) = det(χ)−1. (2.40)

Computing the free energy is then a simple matter of combining equations 2.40 and 2.38:

F = −kBT

2
ln[det(χ)] (2.41)

Applying the identity S = −∂F
∂T

we arrive at a simple formula for the entropy:

S =
kB

2
ln[det(χ)]. (2.42)

This equation provides us with a way to estimate the entropy contained in fluctuations
of the interface by simply measuring correlated fluctuations. We will henceforth refer to
this procedure as the harmonic analysis. As we will see, the reliability of this analysis is
a somewhat delicate issue. The assumption that fluctuations of the interface are gaussian
is likely to break down when you approach molecular length scales, and furthermore, its
not clear how well the Willard interface procedure is even capturing these fluctuations when
there is a solute at the surface.

It is nonetheless the case that this procedure can capture certain features of the entropy
profile as the ion moves across the interface. Figure 2.16 shows the the true entropy profile
along with the entropy calculated from 2.42. Computing this equation requires us to choose
a coarse graining length for the solvent density field, which in this case is σ = 3.1Å, and a
grid resolution, which determines how closely spaced points on the 2-d lateral grid are. Later
on we will discuss changing the grid resolution, but for now we choose it to be ∆ = 2.5Å.
The harmonic analysis does in fact predict an entropy minimum for the ion at the interface,
and it does predict that the entropy starts to rise again as the ion crosses into the vapor
phase. The exact location of the minimum is off by about 2 Å, and its magnitude is only
about half of the true entropy minimum. Furthermore, there is a larger spurious entropy
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Figure 2.16: The true entropy profile for I−0.8, along with the entropy computed from fluc-
tuations of the liquid vapor interface.

maximum a few Angstroms below the interface. As we will see this ion is a particularly
challenging case for this harmonic analysis and we can find cases where it does better.

The fact that the entropy has a minimum at the surface is a sign that either fluctuations
are attenuated or that they are more highly correlated. We can get a sense for how much
these fluctuations are attenuated in the vicinity of the ion by looking at 〈δh(x)2〉 where x
is the perpendicular distance between a point on the surface and the location of the ion.
Figure 2.17 shows these quantities for a water-vapor surface with an I−.8 ion 7 Angstroms,
and one for a surface with an I−.8 ion right at the Gibbs dividing surface.

Figure 2.18 compares the true entropy and the entropy computed from the harmonic
analysis for the surface repelled Cl− ion. In this case the true entropy has no minimum at
the interface, and the harmonic analysis appears to predict a very shallow minimum. There
is, however no spurious maximum below the interface and it very accurately predicts the
entropy rise after the ion crosses the interface.

2.6 A detailed discussion of the harmonic analysis

In the last section we demonstrated that we can plausibly draw a connection between
solvation entropies for an ion at the surface and its impact on capillary wave fluctuations.
The analysis we used to draw this conclusion is plagued by a few problems in the sense that
it predicts a large entropy maximum before the ion crosses the surface, and it also requires
us to choose a grid spacing ∆ which is somewhat arbitrary. In this section we will attempt to
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make the connection between surface fluctuations and entropies more concrete by assessing
the strengths and flaws of this algorithm in more detail.

Figure 2.20 compares the estimated entropy changes for several different choices of the
grid spacing for the I−.8 ion. While the qualitative features of these curves stay the same,
the quantitative features clearly depend strongly on the grid spacing. In particular, both
the entropy maximum and the entropy minimum become more severe as the grid spacing is
lowered. Some dependence on this grid spacing is to be expected. It is clear that a widely
space grid will not resolve the most important fluctuations, which, as we see from figure 2.17
will occur on length scales less than about 7 Å. Also a very finely spaced grid will pick up
features that are necessarily artifacts. If the grid spacing is 0.5 Å, features at the shortest
length scale are surely not something that we would describe as a collective fluctuation of
the liquid-vapor interface. The natural intermediate choice seems like something about the
size of a water molecule or on the order of 3 Å. Figure ?? shows that even if we restrict our
attention to length scales of this order we find serious quantitative differences.

One possible source of error is that the fluctuations of the surface deviate from Gaussian
behavior at the length scales of interest and that we need to account for this in some way.
When the underlying model is not strictly harmonic there is no simple analogue to equation
2.42 that will allow us to estimate the entropy. We will use an approach here that is inspired
by the harmonic approach and should give us some sense of the importance of non gaussian
fluctuations. In a harmonic system the eigenvectors of χ(xi, xj), are the normal modes of
χ(xi, xj). The normal modes are sets of fluctuations that are completely uncoupled from one
another. In a system that is not harmonic, we can still of course compute the eigenvectors of
χ(xi, xj), but there is no general sense in which these are independent modes. The approach
we use here is to assume that the eigenvectors of χ are still roughly independent and then to
compute the statistics of the fluctuations of these modes. If we denote the α eigenvector of
χ by ξα(xi), then for a given configuration of δh(xi), the projection on to the normal mode
is

ηα =
∑
i

δh(xi)ξ
α(xi). (2.43)

We then compute the probability distribution of this component, Pα(ηα) by sampling over
many configurations. We can then determine an effective Gibbs entropy associated with each
mode as

Sα = −kB

∫
dηPα(η) lnPα(η). (2.44)

And finally obtain a total entropy by summing over all the modes:

S =
∑
α

Sα. (2.45)

If the probability distributions are all exactly gaussian then these two equations reduce to
equation 2.42. Figure 2.19 shows the entropy profile calculated from equation 2.45, which we
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call the extended harmonic analysis, along with the true entropy profile and the one computed
from equation 2.42 for reference. The extended harmonic analysis hardly improves upon
the standard harmonic analysis at all, suggesting that the fluctuations are approximately
gaussian. Figure 2.19 also shows the probability distributions P o(η0) for the eigenvector
with the largest eigenvalue for several ion heights, and these are approximately gaussian.

These results do not rule out the possibility that there are important non gaussian fluc-
tuations, it just suggests that they are probably hard to account for and capture with the
simple intrinsic interface picture. There is, however another source of error which is slightly
easier to systematically study and that is the finite size of the ion. Constructing the Willard
interface in the simplest way involves placing a gaussian mass density on each oxygen atom.
Ions that exceed the length scale of this Gaussian introduce significant inhomogeneities into
this coarse-grained density field which means that the density may drop below the cutoff
value of 0.5ρbulk inside of the ion. This will create problems for the algorithm that assigns the
interface when the interface is neither unambiguously above or below the ion. To illustrate
this point figure 2.21 shows maps of average solvent density as a function of perpendicular
distance from an I−.8 ion and vertical distance from the interface as the ion approaches and
crosses the Gibbs dividing surface. Overlain on these maps are two quantities that are com-
puted from the Willard interface. The red lines are the average height of the interface and
the green lines show 〈(δh(x))2〉. Notice how the ion crosses a threshold where the average
position of the Willard interface starts to penetrate its interior. When this threshold is
crossed the fluctuations of the interface start to rise. This rise is mostly an artifact of the
fact that there is a void of solvent density right below the interface, and it is also responsible
for the large entropy maximum seen in figure 2.16.

This is a problem which is difficult to correct for the I−.8 ion. You can adopt schemes for
constructing the coarse grained density field that include solvent density in some way but
these schemes all introduce their own artifacts and don’t fix the problems. However, we can
still address the basic question of whether or not there is a connection between solvation
entropies and restricted interface fluctuations by just using a smaller ion. We will use an
ion with the same Lennard-Jones parameters as a water molecule, this way it will occupy
nearly the same space as a water molecule and interfere with the coarse grained density field
in a minimal way. Ions of this size only adsorb to the surface if they have a charge less than
about 0.6 e and we will therefore study and ion with a charge of -0.5 e. Figure 2.22 shows
the entropy profiles computed for this ion from the harmonic analysis with three different
values of the grid spacing. This ion is generally much less sensitive to the grid spacing than
the larger one, and although there still is an entropy peak a few Å below the interface it is
much smaller and it is not the dominant feature.

2.7 Fluctuations near other surfaces

The connection that we attempted to establish in the last section between solvation
thermodynamics and fluctuations in the geometry of the air-water interface is somewhat



CHAPTER 2. GENERAL FEATURES OF ION SOLVATION AT INTERFACES 38

(a)

-20

-15

-10

-5

0

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6

k
j/
m
ol

ion height Å
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Figure 2.19: In figure a, entropy profiles for moving the I−.8 ion across the water-vapor
interface along with the harmonic analysis and extended harmonic analysis approximations
to this. Each variant of the harmonic analysis is very similar, indicating that fluctuations
are approximately gaussian. Figure b shows the probability distribution of the projection on
to the eigenvector with the largest eigenvalue, for three different ion heights. By eye these
probability distributions are approximately gaussian.
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Figure 2.20: The entropy profiles calculated from the harmonic analysis for three different
values of the grid spacing.
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Figure 2.21: These figures show average solvent density as a function of perpendicular dis-
tance from an I−.8 ion and vertical distance from the GDS for various positions of the ion.
The solvent density map here is just the density of oxygen atoms, it is not the coarse-grained
solvent density field used to find the Willard interface. The red lines are the average height of
the interface and the green lines show the mean squared fluctuations of the surface 〈(δh(x))2〉.
Note how, when the ion is at z = −5 (figure c) the average interface starts to penetrate the
interior of the ion, and this corresponds to an increase in fluctuations.
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Figure 2.22: The entropy profiles calculated from the harmonic analysis for three different
values of the grid spacing for a water molecule sized ion with a charge of -0.5 e, along with
the true entropy profile for this ion. The harmonic analysis is still not be perfect, but for this
ion it is generally much less sensitive to the grid spacing. The lines are labeled according to
the grid spacing used (in Å).

imperfect. In this section we present a different and perhaps slightly more compelling set of
evidence for this connection. The question we ask in this section is, if the entropy minimum
associated with placing the ion at the interface is associated with quenching capillary waves,
can we remove this effect by quenching capillary waves altogether. There is no completely
straightforward way to quench capillary waves but we’ve attempted to do this with two
different approaches. The first of these is replacing the air-water interface with a wall that
has some attraction for water molecules, and the second of these is confining the slab of
water between two hard walls such that the overall density matches the bulk density.

One naturally expects that the interface between water and a slightly attractive wall
should be fluctuating less than the interface between water and vapor. Problems like this
are fairly well studied in the context of hydrophobic solvation and one of the surprising
things is that certain measures of fluctuations, like Pv(N) do not change too much when we
add a weak attraction. If, however, the slightly attractive wall has even a weak effect on the
fluctuations of the interface we might expect this to show up in the entropy profile for an
ion like the I−.8 studied above. We have studied the adsorption thermodynamics of the I−.8

near a flat wall, which interacts with water molecules in the following way:
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U(zO) = 4εw

[(
σw

zO − zw

)12

−
(

σw
z0 − zw

)6
]
, (2.46)

where zw is the position of the wall, εw is the strength of the attraction, σw dictates the
length scale of the attraction and zO is the position of the oxygen atom. We’ve chosen values
of 3.5Å for the parameter σ and 1.95 kj/mol for the parameter εw which means that the
length scale of the interaction is on the order of one water molecule and the strength of
the interaction is just shy of a kBT . This interaction is strong enough that the interfacial
profile is narrower (indicating that fluctuations are suppressed) but not so strong as to
induce significant layering in the density profile of water. Figure 2.23 shows how the solvent
density depends on the perpendicular distance from the ion and the vertical distance from
the attractive wall for a variety of ion heights. Figure 2.24 shows the same thing except
for an air-water interface. The interface is noticeably narrower close to the attractive wall,
and its average geometry does not change as much in response to the ion, but there is not
significant layering of the solvent density.

Figure 2.25 shows the entropy and free energy profiles for transferring an I−.8 ion to the
attractive wall described above, as well as the same profiles for transferring the ion to the
free air-water interface for reference. The entropy minimum is indeed shallower near the
sticky wall, even with this very weak attraction. The free energy minima are nearly equal,
but they have very different temperature derivatives as indicated by the entropy and will
therefore be different at higher temperatures.

Figure 2.26 shows the equivalent free energy and entropy profiles for a slab confined
between two hard walls. In this case we see quite a dramatic reduction in the entropy
minimum and a corresponding increase in the free energy minimum.
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Figure 2.23: Solvent density as measured by oxygen atom density, as a function of perpen-
dicular distance from the ion and vertical distance from the interface, for various different
heights of the I−.8 ion. In this case the interface is the slightly attractive wall described in
the text.
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Figure 2.24: Solvent density as measured by oxygen atom density, as a function of perpen-
dicular distance from the ion and vertical distance from the interface, for various different
heights of the I−.8 ion. In this case the interface simply the air-water interface.
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Figure 2.25: Free energy and entropy profiles for adsorption of the I−.8 ion to the attractive
wall described in the text, along with the same quantities for an air-water interface for com-
parison. The entropy minimum is significantly reduced, even for this very weak attraction.
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Figure 2.26: Free energy and entropy profiles for adsorption of the I−.8 ion to a hard wall,
along with the same quantities for an air-water interface for comparison. The entropy mini-
mum is significantly reduced and the free energy minimum is noticeably deeper.
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Chapter 3

Charge Asymmetry

3.1 Preliminaries

In the last chapter we described some of the general features of charged solute adsorption
to liquid vapor interfaces. The fact that surface adsorption has both negative energies and
entropies for a variety of ions in both water and the stockmayer fluid is surprising, but
we argued that the physical origins of these trends are both relatively simple and fairly
ubiquitous in liquids. They are in fact so general that even a simple lattice gas model for
solute adsorption can capture them [60]. However, the remarkable feature of the way that
ions interact with air-water interfaces is not really its generality but its specificity. Small
changes to the physical parameters of an ion can modulate significant increases or decreases
of ion density near the surface. Perhaps the most dramatic example of this sensitivity is
the cation-anion asymmetry. It is generally accepted that anions have a stronger surface
preference than cations, and changing the charge of an ion from positive to negative can
indeed increase surface density by a factor of up to 1000. Figure 3.1 illustrates this effect for
an ion with a hard core radius of 3.3 Å and q± 0.6e. However this effect is highly dependent
on both the magnitude of the charge and the size of the ion. For certain parameters this
effect even goes in the other direction in that the anion has a weaker surface affinity than
the cation. There is no naive or simple way to predict the effect of inverting the sign of the
charge as suggested in many papers [4, 3].

3.2 Some technical details

In this chapter we will be studying ion solvation thermodynamics across a much broader
range of parameters than in the previous chapter. Rather than studying a few parameters
in detail we will be studying ions with hard core radii ranging from 2.4 Å to 3.85 Å, and
charges ranging from -1.6 to 1.6 e. We study ions with a hard core repulsion rather than
a Lennard-Jones potential in order to isolate cavity formation and charging free energies in
the simplest way possible. For ions with a Lennard-Jones potential it is often the case that
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.

an anion and a cation with the same LJ parameters have a different effective radius, and it is
therefore harder to compare a cation and an anion in an unambiguous way. In this chapter
we will focus almost exclusively on the charging free energy because we are mainly interested
in the cation-anion asymmetry. As we saw in the last chapter, we can compute the charging
free energy for any charge given the probability distribution of the electrostatic potential in
an uncharged cavity using the identity

Fes(q) = −kBT ln

∫
dφ′Po(φ

′; z) exp[−βqφ′]. (3.1)

This equation is exact but if we want to use it over a very broad charge range then we need
to know the probability distribution Po(φ

′; z) very accurately. This requires us to accurately
sample values of the electrostatic potential that have a probability of nearly 10−200 in the
unbiased ensemble. See figure 2.4 for an illustration. We use the MBAR method described
in the previous chapter to sample these probability distributions (see equations 2.5 and 2.6).
The form of the bias potentials is simply a linear coupling to the electrostatic potential where

Vl(φ(z)) = qlφ(z), (3.2)

and φ(z) is the value of the electrostatic potential at the center of the cavity. This means
that simulations conducted in the biased ensembles are simply simulations where the cavity
carries a charge. We conduct many such simulations and use MBAR to reconstruct the



CHAPTER 3. CHARGE ASYMMETRY 47

unbiased probability distribution. For the different biased ensembles we used values of q
between 1.6 and -1.6 e, separated by 0.2 e except for the smallest ion studied, where it was
necessary to use a q spacing of 0.1 e to obtain thorough sampling. In all of the work described
in this chapter we only studied a small collection of ion heights z, typically just one position
in bulk and a few positions near the Gibbs dividing surface.

3.3 Surface potentials and linear response

Discussions about the nature of the force that stabilizes anions at air-water interfaces
usually focus on a quantity called the surface potential. This quantity is defined by the
equation

φsp = 4π

∫ l

v

zρ(z)dz, (3.3)

where ρ(z) is simply the average charge density, v is a point in the vapor and l is a point in
the liquid. This equation computes the difference between the average electrostatic potential
in the bulk liquid and the average electrostatic potential in the vapor phase. This quantity
is difficult to measure experimentally but it has been studied thoroughly in simulations [31,
4, 13]. For most atomistic models of water φsp has a value of about -0.5 V. This amounts to
an energy drop of roughly 50 kj/mol for bringing a negative charge from the bulk liquid to
the vapor. Likewise, it is an energy penalty of the same magnitude to bring a positive charge
into the vapor phase. Figure 3.2 shows the charge density of neat liquid SPC/E water along
with the mean electrostatic potential associated with this charge density.

The large value of the surface potential seems like a compelling argument that there is
a large charge asymmetric force acting on ions as they cross the liquid-vapor interface. It
is perhaps natural to associate this surface potential with an orientational bias on water
molecules at the surface under the assumption that water molecules with no orientational
bias would interact with positive charges and negative charges in the same way. This sort of
reasoning has a key flaw that was exposed by Wilson, Pohorille and Pratt [64]. They pointed
out, following Jackson [29], that there are contributions to the surface potential even when
there is no orientational bias. Their reasoning starts from the observation that you can write
a multipole like expansion of the charge density

ρ(z) = − d

dz

[
Pz(z)− d

dz
Qzz(z) + ...

]
. (3.4)

In this expression Pz(z) is the average molecular dipole density, it is computed from the
equation

Pz(r) = 〈
N∑
n=1

δ(r − rn)

[∫
dr′ρn(r′)z′

]
〉, (3.5)
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average electrostatic potential in SPC/E water

Figure 3.2: In (a), the charge density near a neat liquid vapor surface. This charge density
arises purely from the internal charge distributions of solvent molecules because there are
no solutes present. The potential at a point z is obtained by integrating over this charge
density according to equation 3.3, this is shown in b.
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where N is the number of solvent molecules, rn is the center of solvent molecule n and ρn(r′)
is the charge distribution of molecule n (which in general depends on the orientation of the
molecule). The term in brackets is the dipole of the molecule, and it averages to zero if the
system is isotropic. Qzz(z) is called the density of molecular quadrupoles but its definition
is actually slightly different from the standard quadrupole. It is

Qzz(r) = 〈
N∑
n=1

δ(r − rn)

[∫
dr′ρn(r′)z′2

]
〉. (3.6)

To compute the zz component of the standard quadrupole tensor you would integrate over
the charge density times z2− 1

3
r2 and not just z2. The standard quadrupole would be zero for

a spherically symmetric charge distribution, but this is not necessarily true of the quantity
defined in equation 3.6. Consider a charge distribution which consists of a delta function
positive charge q at the origin surrounded by a sphere of radius a of uniformly distributed
negative charge with charge density − 3q

4πa3
. The term in brackets in equation 3.6 would be[∫

dr′ρn(r′)z′2
]

=

∫
sphere

dr′qδ(r′)z′2 −
∫
sphere

dr′
3q

4πa3
z′2 =

−qa2

25
, (3.7)

which implies that Qzz in the liquid has the nonzero value of ρl
−qa2

25
, where ρl is the bulk

liquid phase density. If we substitute equation 3.4 into equation 3.3, and integrate by parts,
we can rewrite φsp as

φsp = 4π

∫ l

v

Pz(z)dz − 4π [Qzz(l)−Qzz(v)] . (3.8)

The first term in this equation depends on the orientations of molecules at the surface, the
second term in this equation does not. It depends only on the quadrupole density in the
isotropic liquid and the vapor phases. This result is very counterintuitive. It implies that
even molecules with spherical symmetry can have a nontrivial charge distribution at the
surface, and it also implies that charges will feel a potential drop or increase in crossing
this surface. Figure 3.3 illustrates how even a very simple charge distribution can lead
to charge layering at the surface. Models like these were studied extensively by Harder
and Roux and they do indeed have large surface potentials [18]. This leads immediately
to an apparent contradiction. Finite size ions, which are excluded from the interior of the
molecules, will not interact electrostatically with any of the molecules in any way, and they
cannot experience an electrostatic potential change in crossing the surface. The finite size
of the ion breaks translational symmetry in the direction perpendicular direction to the
interface, which means that equations 3.3, 3.4 and 3.8 are no longer strictly valid, but it
still seems like the charge at the center of the cavity should have a long range interaction
with the charge distribution at the interface. The resolution of this contradiction is that the
molecules neighboring the cavity will give rise to charge layering around the cavity itself,
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Figure 3.3: An illustration of the counterintuitive way in which spherically symmetric charge
distributions can give rise to charge layering at the surface. The red circles represent the
positive part of a molecular charge distribution and the blue circles represent the negative
parts of that charge distribution. The transparent red layer at the top is a region in which
there is excess positive charge and the transparent blue layer is a region in which there is
excess negative charge.

and the interaction of the charge at the center of the cavity with these two separate charge
distributions will effectively cancel. Point charges, however, penetrate the molecular interiors
and therefore will have electrostatic interactions with the spherically symmetric molecules.
Because they don’t break translational symmetry, equation 3.3 is exact and it describes the
electrostatics entirely in terms of the charge distribution at the surface, even though the
interaction between the point charge and individual molecules is entirely local.

This discussion highlights the fact that the surface potential contains significant contri-
butions from the interior charge distribution of the solvent molecule, and this contribution
is irrelevant when considering finite size solutes. It is perhaps not so surprising then, that
quantum models (which have a much more detailed internal charge distribution), have very
different surface potentials. Recently reported values are on the order of 3V, which has the
opposite sign of the -0.5V seen in classical simulations [31]. The ambiguities in interpreting
the surface potential can be sidestepped by looking at the mean electrostatic potential in-
side a cavity. This quantity has direct relevance to ion solvation thermodynamics. To see
this, recall that we can determine the charging free energy from equation 3.1 if we know the
distribution of the potential inside a cavity Po(φ; z). And if we assume a gaussian form for
this distribution with mean 〈φ〉(z) and variance 〈(δφ)2〉(z) then the charging free energy is
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Fes(z, q) ' q〈φ〉(z)− 1

2
βq2〈(δφ)2〉(z) = Fgauss(z, q). (3.9)

If we compare a positive and a negative charge of the same magnitude then the second
order terms cancel and we are left with

Fes(z, q)− Fes(z,−q) ' 2q〈φ〉(z). (3.10)

The assumption that Po(φ) is gaussian is one of the assumptions underlying dielectric
continuum theory (for a thorough discussion of the connection between gaussian fluctuations
and DCT see chapter 5), so in a dielectric continuum the above equation would be exact.
The quantity Fes(z, q) − Fes(z,−q) is something we’ll be using a lot so we’ll give it a nice
compact definition:

F∆q(z, q) := Fes(z, q)− Fes(z,−q). (3.11)

In light of the discussion of surface potentials above, a natural question is what structural
features of the solvent are responsible for the value of 〈φ〉(z). If it’s mainly determined by
something long range, like an orientational bias of water molecules at the interface, then you
might expect charge asymmetric behavior to be relatively uniform for a broad class of ion
parameters because this orientational bias will be fairly independent of things like ion size,
charge and polarizability. On the other hand, if the value of 〈φ〉(z) has more to do with the
local arrangement of water molecules around the cavity, then it may be very sensitive to the
physical parameters of the ion. To address this issue we can spatially resolve contributions
to 〈φ〉(z) by measuring the average interaction between a water molecule and a positive test
charge at the center of an uncharged cavity. The coordinate system used is almost identical
to the coordinate system shown in figure 2.8, except in this case the variable h is the vertical
distance between the water molecule and the ion, not the interface. We will refer to the
average interaction between a water molecule and the positive test charge at height z as
v̄is(x, h, z). The average electrostatic potential at the center of the cavity can be obtained
as an integral over this quantity from the equation

〈φ(z)〉 =

∫ L

0

πxdx

∫ L

−L
dhρs(x, h, z)v̄is(x, h, z). (3.12)

In figure 3.4 we look at ρs(x, h, z)v̄is(x, h, z)πx for a cavity in bulk and a cavity at the
interface. For the cavity in bulk, we see large negative contributions to the potential from
the solvation shell of the cavity, and positive contributions from the interfacial regions.
This implies that the orientations of molecules at the interface are such that they interact
favorably with an anion, which is the opposite of what you would naively expect based on
the charge distribution in figure 3.2. The total potential in the center of the cavity in bulk
is about 8 kj/(e ·mol), implying that the long range contributions are dominant. The fact
that there is a mix of long range and short range features makes it difficult to predict how
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Figure 3.4: ρs(x, h, z)v̄is(x, h, z)πx showing spatial contributions to 〈φ〉(z) for a cavity in
bulk (a) and a cavity at the interface (b). Although there are competing long range and
short range features, the dominant change when the cavity moves to the interface comes
from the short range features.

〈φ〉 will change when the cavity is at the surface. As the ion crosses into the vapor phase
the negative contributions from the coordination region should be much smaller, and figure
b confirms this, implying that 〈φ〉 should go up. The value of 〈φ〉 at the surface integrates to
about 18 kj/(e ·mol), and this indicates that the dominant change is from the short range
features.

Figure 3.5 shows how the mean potential at the center of a cavity depends on height
for a large height range and two different cavity sizes. There is some dependence on cavity
size but in either case it is clear that the value of this potential is higher at the surface. To
the extent that the linear response approximation is correct this implies a driving force that
attracts anions to the interface and repels cations. As discussed above, one of the problems
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σ = 3.3Å
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Figure 3.5: Average electrostatic potential inside a cavity as the cavity approaches the air-
water interface. Results are shown for two cavity sizes, each of which has similar behavior.
The average potential is normalized to zero in bulk.

with interpreting the surface potential is that it is very model dependent due to the internal
charge distribution. Recent work has suggested that the mean potential in a center of a
cavity is much less model dependent and even behaves similarly for quantum and classical
models [4].

Whether or not you trust the gaussian approximation in equation 3.9 depends on what
your criteria are because this equation makes several testable predictions. The simplest of
these predictions is simply the charging free energy itself. Figure ??a shows the charging free
energy along with the gaussian approximation for an ion in bulk and an ion at the interface.
In neither case can we expect quantitative accuracy from this approximation outside of a
small range. Our previous results suggest differences of a few kj/mol are important and the
errors clearly exceed this both in bulk and at the interface. However, it’s possible that some
of these errors cancel when we compare the bulk to the interface. The difference between the
charging free energy at the surface and the charging free energy in bulk is shown in figure
3.6b. We will refer to this quantity as ∆F (q):

∆F (q) = Fes(zi, q)− Fes(zb, q) ' q (〈φ〉(zi)− 〈φ〉(zb))−
1

2
βq2

(
〈(δφ)2〉(zi)− 〈(δφ)2〉(zb)

)
,

(3.13)
where zi is a position at or near the interface and zb is a position in bulk. This quantity
does depend on precisely which value of zi you choose but we will suppress this dependence
for simplicity.

Quantitatively the gaussian approximation does slightly better for ∆F for charges be-
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Figure 3.6: In figure a, the charging free energy for an ion with a hard core radius of 3.3 Å
at the surface (z=0) and in bulk (z=-8), along with the gaussian approximations to these
quantities. In figure b, the difference between the surface charging free energy and bulk
charging free energy shown in figure a.

tween ±0.5e, but outside of this region there are serious qualitative errors. The curvature
of ∆F actually changes sign for higher charges and it becomes much easier to solvate ions
at the interface than predicted by the simple harmonic model. This is an example of a
nonlinearity, we will discuss this more later and argue that it’s related to the ability of the
interface to deform around the ion.

As a final test of the gaussian approximation we can ask how well it predicts charge
asymmetry according to equation 3.10. In figure ?? we test how well equation 3.10 predicts
F∆q at the surface and in bulk for the same 3.3 Å ion. In neither case is equation 3.10
quantitatively accurate outside of a very small charge range. If we subtract the bulk value
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from the surface value, however, we find that the Gaussian approximation is not too far off
over a reasonable charge range. We we will refer to this quantity as ∆F∆q(q). To be explicit
it is given by:

∆F∆q(q) = F∆q(zi, q)− F∆q(zb, q) ' 2q (〈φ〉(zi)− 〈φ〉(zb)) . (3.14)

This quantity is extremely important because it dictates the relative densities of anions and
cations at the surface according to the equation

ρanion(zi)

ρcation(zi)
= exp[β∆F∆q(q)]. (3.15)

Figure 3.8, shows explicitly the density ratios expected from both the true ∆F∆q and the
gaussian approximation. There is a sweet spot around 0.6 e where the anion density at the
surface is about 30 times the cation density. For higher charges this value starts to decay
and finally crosses 1 indicating that the cation density actually exceeds the anion density at
the surface. There are some naive reasons to expect a decay like this. For real electrolyte so-
lutions there are strong interactions between the ions and locally breaking charge neutrality
has a very high energetic cost. However, the calculations described here completely neglect
such interactions and these features are entirely due to nonlinearities in the individual ion
solvation thermodynamics.

It is important to point out that for the ion size described in this section only charges
between about -0.85 and +0.7 e are actually surface enhanced. One could argue that if we
restrict our attention to this region then the behavior in 3.7b is not too poorly described
by the linear response approximation, and that the behavior of ions at an interface that
they would ordinarily avoid is irrelevant. Looking at the expanded parameter space exposes
the fact that there are several effects competing with one another and we therefore cannot
make quantitatively accurate predictions by only accounting for one effect. There are clearly
forces that in some regimes prefer anions at interfaces, while there are other forces that prefer
cations at interfaces, the fact that neither of these is dominant for physical ion parameters
exposes a serious gap in our understanding.

3.4 An expanded set of ion parameters

The results of the last section raise obvious questions about how the charge asymmetric
behavior depends on various parameters like ion size and temperature. If we had found
that the gaussian approximation was fairly good at describing charge asymmetry then we
might reasonably conclude that not much would change when we study different ion sizes or
different ion heights. We would just need to know the average and variance of the electrostatic
potential inside of the cavity. The fact that there are dramatic nonlinearities implies that
some of the features in figures 3.6 and 3.7 may be sensitive to perturbations. In this section
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Figure 3.7: In figure a is shown F∆q(q) for an ion in bulk and an ion at the interface along
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interface.
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Figure 3.8: Ratio of anion density at the surface to cation density at the surface along with
the gaussian approximation for this quantity. This is calculated from solvation free energies
of individual ions, and therefore does not include interactions between ions at finite ionic
strength.

we explore this behavior over a broader range of parameters to see what sort of patterns
emerge.

In this section we look at a slightly different quantity than those presented above. Equa-
tion 3.14 both defines ∆F∆q and provides the gaussian approximation. This approximation
suggests the definition

∆F∆q(q) = 2qψ(q, σ), (3.16)

where σ is the size of the ion. ψ(q, σ) serves as an analogue for the quantity (〈φ〉(zi)− 〈φ〉(zb)),
and it obeys the important limit

ψ(0, σ) = (〈φ〉(zi)− 〈φ〉(zb)) (3.17)

It therefore gives us a convenient and compact measure of the nonlinearity.
Figure 3.9 shows this quantity as a function of q for three different cavity sizes and two

different temperatures. The three cavity sizes are 2.4 Å, 3.3 Å and 3.85 Å. These were
mainly chosen to cover the entire range of interesting parameters rather than to match any
specific physical ions but the smallest is about the size of a sodium ion, the middle one
is about the size of a bromide anion and the largest one is slightly larger than an iodide
anion [14]. The ion heights were the same for all three ions and were chosen to be zi = 0.5Å
and zb = −9.5Å. The low temperature simulations were conducted at 250K which is below
the freezing point of real water but is substantially higher than the freezing point of SPC/E
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Figure 3.9: The quantity ψ(q, σ) described in the text for ions with hard core radii of 2.4,
3.3 and 3.85 Å, and at two different temperatures of 300K and 250K.

water. We deliberately chose this very low temperature to make the temperature dependence
very clear across the whole charge range and size range.

There are several interesting features of figure 3.9. Perhaps the simplest evident trend is
that the value of ψ tends to increase with ion size. ψ also tends to increase as you lower the
temperature. This is a rule for the largest cavity but has clear exceptions for the smaller two
cavities at very low and high charges. Perhaps the most surprising feature in these results
is the way that ψ is at first an increasing function of charge for the smaller two ions. This
is an indication that the linear response approximation actually underpredicts the degree to
which the anion is favored at the surface. This was slightly evident in figures 3.8 and 3.7
but we see it much more dramatically here.

3.5 Energetic and entropic features

We can use the temperature dependence in the curves above to estimate the energetic
and entropic components of ∆F∆q from the equation

∆S∆q = −∆F∆q(T2)−∆F∆q(T1)

T2 − T1

, (3.18)

and

∆E∆q = ∆F∆q + T∆S∆q. (3.19)
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These equations assume that ∆E∆q and ∆S∆q are roughly independent of temperature over
the relevant temperature range. It is not reasonable to expect this assumption to hold over
the range 250K to 300K, so we’ve also directly computed ∆E∆q at a few different values of
q as a check for the 3.3 Å ion. The results of this analysis are shown in figure 3.10 for all
three cavity sizes discussed above. The energies computed from the direct averaging (shown
as the purple dots in figure 3.10b) and the temperature derivative to do not agree exactly
as expected but they show the same basic trends.

All three cavity sizes exhibit similar trends. The peak in ∆F∆q is associated with a
much larger maximum in ∆E∆q and a minimum in −∆S∆q indicating that the force which
prefers anions at the interface has a very favorable energetic component and an unfavorable
entropic component. This entropic component may be related to capillary waves, however,
a capillary wave analysis like the one described in the last chapter yields similar results for
both the anion and the cation. Later in this chapter we will present evidence that the anion
and the cation have a similar effect on capillary waves. Perhaps more relevant is the fact
that the anion and the cation have very different bulk solvation entropies. This effect is not
very well understood but it is related to the constraints imposed on the hydrogen bonding
network by the ion. These constraints are largest in the first and second solvation shells of
the ion and this effect is therefore likely to be highly localized in space. As the ion crosses
the interface the number of water molecules in its solvation shell starts to decrease, and the
charge asymmetric effect on the hydrogen bonding network starts to decrease as well. If
the magnitude of this decrease is c, we might schematically estimate the entropy change for
bringing the ion to the surface as

∆S(q) = S(q, zi)− S(q, zb) = −cSbulk(q) + Ssymm(q). (3.20)

The symmetric part is associated with capillary waves and cavity formation and other effects
which might be relatively charge symmetric and it therefore cancels when we compute ∆S∆q:

∆S∆q(q) ' −c (Sbulk(q)− Sbulk(−q)) . (3.21)

Figure 3.11 compares the right and left hand sides of equation 3.21 for the 3.3 Å and the 3.85
Å ion where we have arbitrarily set c = 1. For each cavity size, these two quantities have
similar features. The correspondence is slightly better for the larger cavity but in either case
it seems reasonable to conclude that the asymmetries in solvation entropies at the surface
are connected to the asymmetries of the solvation entropies in bulk. The asymmetry in the
bulk solvation entropies is itself an interesting question and one that I don’t believe has been
fully addressed. The peak in the red and the blue curves in figure 3.11 indicates that the
bulk solvation entropy of the anion exceeds that of the cation by as much as 20 kj/mol. This
is a substantial difference and it accounts for a large fraction of the difference between the
total solvation free energies of the two ions.

We will now attempt to describe some of the energetic features in figure 3.10. In the
last chapter we described a method for spatially decomposing contributions to the solvation
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Figure 3.10: ∆F∆q decomposed into its energetic and entropic components using its tem-
perature dependence. Results are shown for all three cavity sizes studied in figure 3.9. Plot
a shows the σ = 2.4Å cavity, figure b shows the σ = 2.3Å cavity and figure c shows the
σ = 3.85Å cavity. The purple crosses in figure b show the ∆E∆q computed directly from
averaging at 300K.
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Figure 3.11: A comparison between ∆S∆q(q) and (Sbulk(q)− Sbulk(−q)) for two different
cavity sizes.

energy by measuring averages of pairwise interactions. We also described the local approxi-
mation, in which we computed the average interaction strengths of water molecules in three
different regions: coordinating the ion, in bulk, and at the interface. We then showed that
you can accurately reproduce the solvation energy curves simply by keeping track of how the
number of water molecules in these three regions change. It seems logical to try to extend
this analysis to the broader charge range and see if it provides any insight. The problem is
that the local approximation is actually only successful in special cases. Figure 3.12 shows
the local approximation applied to the hard core ion of 3.3 Å and charges of ±0.6. This
approximation describes the anion fairly well but does very poorly with the cation.

It is clear that a straightforward application of the local approximation will not be very
useful for this problem. The approach we will adopt here is related to the local approximation
in the sense that we consider contributions to the energy from molecules in the first or
second solvation shell of the ion. Recall that in chapter 2 we derived the following exact
decomposition of the average energy, E:

E(z, q) = ncoord(z, q)Ēcoord(z, q) + nsurf (z, q)Ēsurf (z, q) + nbulk(z, q)Ēbulk(z, q). (3.22)

The local approximation then just assumes that the Ēi are independent of z. In this chapter
we will allow for the fact that Ēcoord has some dependence on ion height, but we will assume
that the final two terms in the above sum do not depend on the sign of the charge of the
ion. Therefore, if we want to compute the difference between the anion and the cation these
two terms will cancel and we can focus exclusively on the coordination region. We have
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Figure 3.12: The local approximation applied to the hard core ions with σ = 3.3Å and
charges of ±0.6e, along with the true average energy change. The local approximation is
much more successful for the anion then it is for the cation.

E∆q(q, z) = E(z, q)− E(z,−q) ' ncoord(z, q)Ēcoord(z, q)− ncoord(z,−q)Ēcoord(z,−q). (3.23)

For convenience we will define this approximation as Ecoord
∆q :

Ecoord
∆q (q, z) = ncoord(z, q)Ēcoord(z, q)− ncoord(z,−q)Ēcoord(z,−q). (3.24)

Ultimately we are interested in the quantity ∆E∆q which we will approximate as

∆Ecoord
∆q (q) = Ecoord

∆q (q, zi)− Ecoord
∆q (q, zb). (3.25)

Neglecting the surface and the bulk regions will clearly produce serious errors if we consider
either ion individually, but these errors largely cancel when we consider the charge asym-
metry. Figure 3.13 shows a set of energy density maps for an anion and a cation in bulk
and at the interface. The cutoff defining the coordination region is indicated by the circle.
By visual inspection, the changes that occur outside of the coordination region are nearly
identical for the anion and the cation. We can also test equation 3.23 directly. Figure 3.14
shows ∆Ecoord

∆q (q) and the true ∆E∆q(q) as estimated from the temperature derivatives for
the three different cavity sizes considered above. These figures show that there is excellent
qualitative and even reasonable quantitative agreement. Each cavity size has a different
cutoff used to define the coordination region. For the 2.4 Å cavity this cutoff is 4.1 Å, for
the 3.3 Å cavity it is 5.3 Å and for the 3.85 Å cavity it is 5.85 Å.
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Figure 3.13: Energy density maps for a representative anion (plots a and b) and cation (plots
c and d) both in bulk and at the interface. The ions shown here have a hard core radius of
3.3 Å and charges of ±0.6. The blue circles represent the cutoff of the coordination region.
The changes that occur outside of this region when you bring the ion to the surface are very
similar for the anion and the cation.

The fact that we find similar qualitative features in figure 3.14 is perhaps not so surprising.
In the last section we argued that the best measure of the charge asymmetry is not simply
∆F∆q, but instead this quantity scaled by 2q, which we called ψ. And indeed, we see
more dramatic qualitative differences between the different cavity sizes when we look at this
quantity (see figure 3.9). We will therefore look at the energetic analogue of this quantity,
which we call Θ and define by

Θ(q) =
∆E∆q(q)

2q
, (3.26)

and

Θcoord(q) =
∆Ecoord

∆q (q)

2q
. (3.27)
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Figure 3.14: ∆Ecoord
∆q (q) and ∆E∆q(q) for the three different cavity sizes studied above (2.4,

3.3, 3.85 Å in plots a, b and c respectively). In each case the trends in ∆E∆q(q) are well
captured by just considering the coordination region. The quantitative errors are largely due
to the fact that the average energies are computed from an imprecise temperature derivative
(see figure 3.10.
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Figure 3.15 shows these two quantities for all three cavity sizes studied throughout this
section. Θ shows the same qualitative behavior as Ψ, where the smaller two cavity sizes have
a steep increase for low values of q, indicating a large energetic preference for solvating the
anion at the surface which exceeds the naive linear response prediction followed by a decline
towards zero, when the cation starts to be favored at the surface. The local approximation
to this quantity is imperfect, particularly at low charges, but it succeeds in capturing the
qualitative differences between the different cavity sizes.

We can learn something about these trends by breaking down ∆Ecoord
∆q (q) into components

which have relatively simple interpretations. Consider the quantity ∆Ecoord(q), which is
defined by the equation

∆Ecoord(q) = ncoord(zi, q)Ēcoord(zi, q)− ncoord(zb, q)Ēcoord(zb, q), (3.28)

and measures the energy change in the coordination region when an ion moves from a position
zb in bulk to a position zi at the interface. If we make the substitution

ncoord(zi, q) = ncoord(zb, q) + ∆ncoord(q) (3.29)

and
Ēcoord(zi, q) = Ēcoord(zb, q) + ∆Ēcoord(q), (3.30)

then equation 3.28 becomes

∆Ecoord(q) = ∆ncoord(q)Ēcoord(zb, q) + ncoord(zi, q)∆Ēcoord(q). (3.31)

The first term here is the one that appears in the original local approximation and it says
that the energetic penalty associated with losing molecules from the solvation shell of the
ion is proportional to the average interaction strength of a molecule coordinating the ion
in bulk. From the perspective of this term alone, the more strongly solvated an ion is in
bulk, the more difficult it is to place it at an interface. The second term is slightly more
complicated but its a rough measure of how much more strongly or weakly a water molecule
in the coordination region is interacting with the other molecules when that ion is at the
interface as opposed to bulk. If we recall the definition of Ēcoord from equation 2.31 we see
why this term is not so straightforward to interpret. It’s an average of an interaction strength
weighted by the density, which is very inhomogeneous when the ion is at the surface. This
difficulty is likely to be the same or very similar for both the cation and the anion, and so
by taking the difference between the two we may have a quantity with a straightforward
interpretation. We will rewrite ∆Ecoord

∆q (q) in terms of these two components as

∆Ecoord
∆q (q) = ∆Ecoord1

∆q (q) + ∆Ecoord2
∆q (q) (3.32)

where
∆Ecoord1

∆q (q) =
(
∆ncoord(q)Ēcoord(zb, q)−∆ncoord(−q)Ēcoord(zb,−q)

)
(3.33)

and
∆Ecoord2

∆q (q) =
(
ncoord(zi, q)∆Ēcoord(q)− ncoord(zi,−q)∆Ēcoord(−q)

)
. (3.34)
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Figure 3.15: The quantities Θ and Θcoord defined in the text for all three cavity sizes studied
above. These quantities provide an estimate of the energetic preference per unit charge to
solvate the anion at the surface over the cation.
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If we assume that ncoord is charge symmetric then we have the approximation

∆Ecoord1
∆q (q) ' ∆ncoord(q)

[
Ēcoord(zb, q)− Ēcoord(zb,−q)

]
(3.35)

and

∆Ecoord2
∆q (q) ' ncoord(zi, q)

[
∆Ēcoord(q)−∆Ēcoord(−q)

]
. (3.36)

Recall that when these quantities are positive that means the anion is favored at the surface.
Since ∆ncoord(q) is negative, the sign of equation 3.35 is determined by the quantity in
brackets. If Ēcoord(zb, q) exceeds Ēcoord(zb,−q), then the cation is favored at the surface,
which agrees with our intuition that if the water molecules are in an energetically more
favorable state around an ion then it is more difficult to partially remove that ion from
solution. Since ncoord is strictly positive, the sign of equation 3.36 is also determined by the
quantity in brackets. When this quantity is positive it implies that the anion is favored at
the surface because of the way that the interactions of water molecules in the solvation shell
change when they are at the surface as opposed to in bulk. This quantity makes explicit
reference to properties of the surface, but it still only measures relatively local properties.
If there is some relatively long range effect associated with orientations of molecules at the
surface, it may show up weakly here but this term will not capture all of that effect. To
facilitate easy comparison with figure 3.15, we will look at the quantities Θcoord1(q) and
Θcoord2(q) defined by

Θcoord1(q) =
∆Ecoord1

∆q (q)

2q
(3.37)

and

Θcoord2(q) =
∆Ecoord2

∆q (q)

2q
(3.38)

Figure 3.16 shows these two components of Θcoord(q), which behaves in qualitatively the
same way for all three cavity sizes. It starts large and positive and then is monotonically
decreasing over the entire charge range, eventually becoming negative. The fact that this is
large and positive for low values of q is just an indicator that the water molecules around
an uncharged cavity in bulk water prefer a cation to an anion, it has nothing to do with the
charge distribution of the interface. As the cavity becomes more charged the water molecules
rearrange in such a way that water molecules around an anion are in a more favorable state.

The second set of curves show more dramatic differences between the three cavity sizes.
For the smallest cavity size Θcoord2(q) starts out small and negative and grows to be very large
and positive before decaying again. This maximum is a sign that the way water molecules
rearrange in the solvation shell of the anion when you bring it to the surface is more favorable
than the way that water molecules rearrange in the solvation shell of the cation when you
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bring it to the surface. The 3.3 Å cavity shows similar but less pronounced behavior and for
the largest ion this effect is very weak.

A large value of Θcoord2(q) can be loosely interpreted as meaning that the ion forms
stronger bonds with water molecules when it’s at the interface than when it’s in bulk, and
that this effect is stronger for the anion than it is for the cation. To illustrate this effect
we have measured ūis(x, h, z) for a variety of ion parameters. This quantity was defined in
chapter 2 and it measures the average interaction between an ion and a water molecule as
a function of the spatial coordinates x (the perpendicular distance from the ion), and h the
vertical distance from the surface. In figure 2.9 we showed plots of this for an anion in bulk
and an anion at the surface. If we shift both of these maps into the reference frame of the ion
then we can compare the two and get a sense for how much stronger (or weaker) ion-water
interactions are when the ion is at the surface. We define this quantity as

∆ūis(x, h) = ūis(x, h, zi)− ūis(x, h, zb). (3.39)

Figure 3.17 shows these sets of maps for the 2.4 Å ion with charges of ±0.3. The anion is
shown in figure a and the cation is shown in figure b. There are deep minima around the anion
meaning that the ion-solvent bonds are much stronger when the anion is at the interface.
The cation has similar minima around it but they are much shallower. This discrepancy
between the anion and the cation agrees with the fact that ∆Ecoord2

∆q has a maximum at this

value of q. Figure 3.18 shows the same thing for the 3.3 Å ion with charges of ±1.2. This
is a case where ∆Ecoord2

∆q is smaller, and we find that the asymmetry between the anion and
the cation is less pronounced here.

The behavior depicted in figure 3.17 implies that the solvation shell of the anion is slightly
more susceptible than the solvation shell of the cation when Θcoord2 is large. Somehow the
water molecules around the ion can rearrange in slightly more dramatic ways to form much
stronger bonds with the ion when it is at the surface. This greater susceptibility of the
anion solvation shell is correlated with certain signatures of fluctuations of the solvation
shell when the ion is in bulk. The simplest measure of fluctuations is simply the variance of
the electrostatic potential, 〈(δφ)2〉(q), in the center of a cavity in bulk. The linear response
analysis in equation 3.9 assumes that these fluctuations don’t depend on charge but there is
in fact strong dependence on q. In figure 3.19 we show this quantity for all three cavity sizes
and over the entire charge range studied above. A common feature to all three cavity sizes is
the increase in fluctuations when the cavity acquires a negative charge (similar features have
been seen in many studies of ion solvation thermodynamics in bulk, see [26, 25, 16, 51]).
This feature is most dramatic for the smallest cavity, for the which the value of 〈(δφ)2〉(q)
at its maximum is nearly double its value in bulk. We have superimposed Θcoord2(−q) on
these figures to show that the maxima in Θcoord2(−q) roughy correspond to the maxima in
〈(δφ)2〉(q). We don’t mean to imply a direct connection between these two quantities, but
it seems reasonable to suppose that the effective response of the solvation shell which is
measured by Θcoord2(q) is connected to fluctuations in the solvation shell.
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Figure 3.16: The quantities Θcoord1 , and Θcoord2 discussed in the text.
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Figure 3.17: ∆ūis(x, h) for an anion (a) and a cation (b) with hard core radii of 2.4Å and
charges of ± 0.3. This quantity is a measure of how much stronger ion-solvent bonds are
when the ion is at the surface. In this case this effect is much stronger for the anion, and
this corresponds to a large value of ∆Ecoord2

∆q .
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Figure 3.18: ∆ūis(x, h) for an anion (a) and a cation (b) with hard core radii of 3.3Å and
charges of ± 1.0. The asymmetry between the anion and the cation is less pronounced here
than it is for the smaller ion above.
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Figure 3.19: The variance of the electrostatic potential for three different cavity sizes in bulk.
We have superimposed Θcoord2(−q) to make the qualitative point that the maxima in this
quantity loosely correspond to maxima in the fluctuations of the electrostatic potential.
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Figure 3.20: An illustration of a polarizable cation in bulk (a) and at the surface(b). In bulk
there is on average no electric field at the center of the ion. At the surface, the partially
coordinated ion has a net electric field at the center due to the orientational bias in the
surrounding water molecules. The corresponding induced dipole at the center of the ion
interacts favorably with the electric field.

3.6 Charge asymmetry in polarizability

In this section we ask whether there are any charge asymmetric effects associated with
the polarizability of the ion. Polarizability, both of the ion and of the water model itself, is
well studied as a force that can stabilize ions at interfaces [62, 2]. The general reasons why
a polarizable ion might be more stable at an interface are illustrated in figure 3.20. At the
center of an ion in bulk, the average electric field is necessarily 0 because of the symmetry.
An ion at the surface is only partially coordinated, and the neighboring water molecules have
orientational bias, so there can be a non zero electric field in the z-direction and the induced
dipole on the ion interacts favorably with this field. In the context of dielectric continuum
theory, the induced dipole interacts favorable with the image charge of the ion. A full DCT
treatment would include the fact that the induced dipole interacts unfavorably with its own
image and this is a counterbalancing effect, but the net effect of polarizability is favorable
for an ion at the surface. For a full discussion see [41].

Based on the work in this chapter there are many reasons to suspect that there might be
a charge asymmetric effect associated with polarizability of the ion. The picture described in
3.20 considers only the orientational bias on water molecules coordinating the ion. However,
the intrinsic orientational bias on water molecules at the surface may also produce an electric
field in the center of the cavity. Furthermore, the interaction of an induced dipole with the
solvent depends on the fluctuations of the electric field at the center of a cavity (not just
the mean), and there may be large charge asymmetries in these electric field fluctuations as
there were in electrostatic potential fluctuations.
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We will address some of these question by measuring the probability distribution of the
electric field in the center of a charged cavity with charge q, Pq( ~E; z). Knowledge of this
probability distribution allows us to determine the free energy change associated with giving
a non polarizable ion a finite polarizability. We will demonstrate this for the specific case of
a harmonic model for polarizability, but the arguments can be generalized to other models.
The polarizability α determines the cost associated with forming a transient dipole, ~d at the
center of the ion, which then interacts with the electric field of the solvent at the center of
the ion, ~E(rN) . The potential energy associated with such a model is

Upol(~d, r
N) =

| ~d |2
2α
− ~d · ~E(rN) (3.40)

The remaining component of the potential energy is associated with Van der Waals and fixed
charge interactions, and we denote this by UV dW+fc. Given these potential energies we can
write the partition function as

Z(z, q, α) ∝
∫

drN
∫

d~d exp[−βUV dW+fc(r
N)− βUpol(~d, rN)]. (3.41)

Because Upol(~d, r
N) is quadratic we can perform the integral over ~d analytically, which is

equivalent to minimizing Upol(~d, r
N) with respect to ~d. This gives us

Z(z, q, α) ∝
∫

drN exp[−βUV dW+fc(r
N) +

βα

2
| ~E(rN) |2]. (3.42)

In a familiar operation we can multiply by δ( ~E ′ − ~E(rN)) and integrate over ~E ′ to obtain

Z(z, q, α) ∝
∫

d ~E ′ exp[
βα

2
| ~E ′ |2]

∫
drNδ( ~E ′ − ~E(rN)) exp[−βUV dW+fc(r

N)], (3.43)

Which is equivalent to ∫
d ~E ′Pq( ~E

′; z) exp[
βα

2
| ~E ′ |2]ZV dW+fc(z, q). (3.44)

This allows us to define a polarization free energy as

F pol(z, q, α) = −kBT ln

∫
d ~E ′Pq( ~E

′; z) exp[−βα
2
| ~E ′ |2]. (3.45)

Because we are interested in the forces that stabilize ions at surface, a naturally relevant
quantity is

∆F pol(q, α) = F pol(0, q, α)− F pol(−10, q, α), (3.46)

which dictates how much nonzero α stabilizes an ion at the surface. If the z component of
the electric field acquires a nonzero mean for an ion at the surface, ∆F pol(q) will likely be
negative. For small values of the polarizability this decrease is given by
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Figure 3.21: Probability distributions of the z component of the electric field at the center
of an ion in bulk and at the interface. The ion considered here has a hard core radius of 3.3
Å and a charge of -0.4 e. The ion at the surface clearly has a nonzero mean, and it also has
a slightly less broad probability distribution than the ion in bulk.

∆F pol(q, α) ' −α〈Ez〉2q,0, (3.47)

where 〈Ez〉q,0 is the mean electric field in the z direction for an ion of charge q and height 0.
It has been shown that this linear relationship breaks down for modest values of α and that
the simple linear scaling actually underestimates the decrease in F pol [41].

The probability distributions Pq( ~E
′; z) computed in this work were computed from straight

forward sampling and thus we do not have very accurate estimates of the decay in the wings.
We can however accurately estimate shifts in the mean and variance when the ion moves
from bulk to the surface. Figure 3.21 shows the probability distributions of the z component
of the electric field for an ion with a charge of -0.4 e both in bulk and at the interface. The
mean is substantially nonzero at the surface and the distribution is also noticeably narrower.
Given that we have imperfect approximations to the full probability distributions we will
focus attention on small values of α. In figure 3.22 we show the measured values ∆F pol(q, α)
for a range of cavity sizes. We have used a value of α = 0.1Å3, which is very small compared
to typical polarizabilities used to model real ions, but the general trends in figure 3.22 are
independent of the exact value of α. When ∆F pol(q, α) is negative this implies that a finite
polarizability stabilizes an ion at the interface. In figure 3.22 ∆F pol is negative for nearly all
values of q and all three ion sizes, but there is dramatic charge asymmetry. In general the
anions are far more stabilized at the interface by polarizability than the equivalent cation is.



CHAPTER 3. CHARGE ASYMMETRY 75

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1.5 -1 -0.5 0 0.5 1 1.5

(k
j/
m
ol
)

q(e)

∆F pol(q), σ = 2.4Å
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Figure 3.22: ∆F pol(q) showing how polarizability stabilizes ions at the interface, for three
different cavity sizes. There is very dramatic charge asymmetry for all three cavity sizes.

The smaller two ions also have clear minima in q for which polarizability has an optimum
stabilizing effect.

This is a low polarizability regime, in which the approximation in equation 3.47 is fairly
good and the behavior is dominated by the nonzero values of α〈Ez〉q,0. In figure 3.23 we
show α〈Ez〉q,0 for the three different ion sizes studied above. The anions and the cations
induce electric fields which have the opposite sign (which is not surprising), but very different
magnitudes indicating that it is much easier to induce a nonzero electric field at the center
of an anion than a cation. Furthermore the smaller two cations show the same sweet spot
seen in ∆F pol(q), where there is a particular value of q for which it is easiest to induce a
nonzero 〈Ez〉q,0. This behavior is mirrored by the variance 〈(δEz)2〉q,0 which shows maxima
for moderate negative charges before decaying again (see figure 3.24). This behavior bears
some qualitative similarities to the behavior seen figure 3.19, where we saw maxima in the
fluctuations of the electrostatic potential for intermediate negative charges.

3.7 Charge asymmetry near other surfaces

To end this chapter we briefly address the question of what happens when the ion is
adsorbing not to an air-water interface but to a surface that has some weak attraction for
water molecules. The surface we study here is the same as the attractive surface described in
chapter 2 (see equation 2.46), except we are using a slightly stronger attraction. The surface
interacts with the water molecules only. In chapter 2 we saw that there were substantial
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changes in the entropy of adsorption for a fractionally charged iodide to such a surface. In
this chapter we will investigate a broader charge range and look for any dramatic charge
asymmetry or ion specificity in general. Based on the discussion in chapter 2 we expect
there to be some effect associated with the absence of capillary waves near the attractive
surface but it is not at all clear how such an effect might depend on charge.

To address these questions we compute ∆F att(q), which is exactly the same quantity
defined in equation 3.13 except the surface is the attractive wall. The ion studied here has
a hard core radius of 3.3 Å In figure 3.25a we show this quantity along with the same thing
for a liquid vapor interface for reference. Taking the difference between these two quantities,
as we do in figure b, exposes the fact that there are pronounced peaks at intermediate
values of the charge. These peaks mean that at those values of the charge the ion much
prefers adsorbing to the attractive wall than the liquid-vapor interface. These peaks could
have more than one interpretation, but it’s likely they are charges at which the ion has the
maximum effect on capillary waves as described in the previous chapter. For very small
charges, the interface prefers to bend around the ion, effectively expelling the ion from
solution. The interface in this case very much resembles a liquid vapor interface, and has
the associated large fluctuations. For very high charges, the interface prefers to bend in
the other direction, effectively keeping the ion totally solvated. In this case the interface
again has large fluctuations. It’s only for intermediate values of the charge for which the
fluctuations are maximally suppressed and there is a large entropic penalty for putting the ion
at the surface. It is this suppression of fluctuations which is effectively removed by replacing
the air water interface with an attractive wall, and therefore the intermediate charges have
the largest free energy differences when the attractive wall is present. These maxima at
intermediate charges are reminiscent of behavior seen in a schematic lattice gas model for
solute adsorption. In the lattice gas model the solute interacts with occupied solvent cells
with an attractive energy ε which is analogous to charge. In these models it was seen that
surface adsorbing solutes have entropic minima when the solute at the surface, but the depth
of this minimum is greatest for a intermediate values of ε [60].
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Figure 3.25: Details of ion adsorption to wall with a weak attraction for water molecules.
In figure a, we show the quantities ∆F att(q) and ∆F (q) measuring the difference between
charging free energies at the surface and in bulk. In figure b we take the difference between
these two quantities to emphasize that there are pronounced peaks at intermediate charges.
Positive values of this quantity mean that an ion would prefer to adsorb to the attractive
wall than a plain liquid vapor interface. In figure c, we show ψ(q) and ψatt(q) which shows
that the attractive wall does not change the charge asymmetry in any dramatic way.
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Chapter 4

The impact of solvent polarizability
on inter-ion interactions

4.1 Preliminaries

Molecular dynamics and Monte Carlo simulations of water and other liquid solvents are
typically conducted using nonpolarizable force fields. In these models the interactions be-
tween two molecules consist of interactions between a small number of fixed charge sites and
fixed Van der Waals sites. The SPC/E water model and the Stockmayer solvent studied
in previous chapters are examples of such models. These models must capture the effects
of electronic polarizability of molecules implicitly. Polarizable force fields, by contrast, en-
deavor to capture the fluctuating molecular charge distribution explicitly [52]. This comes
at a significant computational cost, and for this reason, it is worth investigating in detail
how well non polarizable models can capture the effects of polarizability implicitly. Leontyev
and Struchebrukhov have argued that one can implicitly capture the effects of polarizability
by scaling the charge of ions by a factor of 1/

√
εel where εel is the high frequency dielectric

constant of the solution [34]. The argument put forth is based on an assumption of spatial
homogeneity of the electronic degrees of freedom, and it is not clear how these arguments
break down in the presence of significant inhomogeneities, for example, an interface or a
protein. In this chapter we quantitatively evaluate this approximation using a model of
polarizable water.

4.2 Molecular Dynamics Electronic Continuum Model

In several recent papers Leontyev and Stuchebrukhov have introduced the molecular
dynamics electronic continuum model (MDEC), where dielectric continuum theory is used
to treat electronic polarizability, and standard nonpolarizable force fields are used to capture
nuclear motion [34]. The nuclear motion is the slower time scale motion, and it is usually
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associated with the low frequency dielectric constant ε. This models bears a connection
to the way the most sophisticated polarizable models currently treat polarizability, and we
briefly review this connection here. For a system of point charges with harmonically bound
inducible dipoles the energy is given by

U =
1

2

N∑
i 6=j

qiqj
rij

+
1

2

N∑
i,j=1

~diK(ri, rj)~dj −
N∑
i

~Eo(ri)~di. (4.1)

~Eo(ri) is the value of the electric field at ri due to all the fixed charges. To keep the discussion
and the notation simple, we are ignoring distinctions between separate molecules, but to be
precise we should include only contributions to the electric field from the fixed charges on
other molecules. K(ri, rj) is the coupling matrix for dipole interactions. its diagonal elements
are given by 1/α, where α is a molecular or atomic polarizability and its off diagonal elements
are given by:

K(ri, rj) = ∇i∇j
1

|ri − rj|
. (4.2)

In principle a molecular dynamics simulation in which the electrostatics were represented
by equation 1 could proceed by updating both the ~di and the ri simultaneously. However the
motion of the induced dipoles is intended to capture electronic motion, which has a much
faster time scale than the nuclear motion represented by the ri. This means that for a given
value of the nuclear positions you expect the dipoles to sample all of their positions with a
Boltzmann weight, which for a harmonic restoring force is exactly captured by finding the
minimum of equation 1 with respect to ~di. This means we must find the values of ~di that
satisfy the following equations:

~di
α

+
N∑
i 6=j

K(ri, rj)~dj − ~Eo(ri) = 0. (4.3)

Minimizing this set of N-coupled equations after each MD time step to determine the polar-
ization is what makes simulations of polarizable models costly. In the context of dielectric
continuum theory, there is a simple relationship between the polarization density and the
external field. The MDEC model consists of assuming that the fixed charges constitute an
external field and the inducible dipoles form a uniform dielectric continuum with dielectric
constant εel. In this case the polarization density is:

~P (r) =
1

4π

εel − 1

εel
~Eo(r) (4.4)

Given a typically molecular volume v, we can relate the polarization density to the induced
dipole:

~d(r) = ~P (r)v. (4.5)
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Using this equation implies that the electrostatic energy can be rewritten as, see [34] for
details:

U =
1

2

N∑
i 6=j

qiqj
εelrij

−
N∑
i=1

(1− 1

εel
)
q2
i

2Ri

(4.6)

The second term in this equation is the familiar born solvation energy, and the first term
is standard screened electrostatics. This equation says that the effect of the polarizability
is two fold. First, each fixed charge has an effective born solvation self energy with the in-
ducible dipoles. Second, the interactions between fixed charges are screened by a factor εel.
As Leontyev and Struchebrukhov point out, this type of reasoning already underlies param-
eter choices in existing empirical potentials of water such as TIP3P and SPC/E, which have
an effective molecular dipole of 2.3D. Gas phase estimates of the water molecule dipole are
about 3.0D, and if we scale this by 1√

εel
, we get a value very close to 2.3D. The original paper

on SPC/E water even explicitly acknowledges that the parameter modifications are intended
to correct for polarization [5]. Simulations of these models with ions, however, always use
the full value of the charge, and may therefore overestimate the interactions involving these
ions. The simplest approach is to simply scale the magnitudes of these charges according
to equation 4.6. It is by no means clear how good an approximation this is in the presence
of large inhomogeneities. The MDEC assumes that all the fixed charges are embedded in a
uniform dielectric continuum composed of the electronic degrees of freedom. But the interior
of an ion is likely to have a significantly different εel then the solvent. Furthermore, there
is significant interest in how ions behave at interfaces between air and water, and in these
cases, the assumption of a uniform dielectric is obviously false.

4.3 Scrutinizing the MDEC model in bulk

We will first examine the MDEC model for the interaction between two ions in bulk.
From the perspective of equation 4.6 the interaction between two ions is

Ū(r) =
qiqj
εelr

. (4.7)

This is the sum of the bare coulomb interaction (
qiqj
r

) and the interaction of the ions with
the polarization field Ūpol which is given by

Ūpol(r) = −εel − 1

εel

qiqj
r
. (4.8)

In the sort of polarizable atomistic system that the MDEC is intended to mimic, the actual
interaction between the ions and the polarization field (Upol) depends on all the values of
~dk, which in turn depend on the fixed charge configuration according to equation 4.3. Upol

takes the form
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Upol =
∑
k

qi~dk · r̂ik
r2
ik

+
∑
k

qj ~dk · r̂jk
r2
jk

(4.9)

where r̂ik is the unit normal vector connecting i and k. This quantity is nonzero even when
the ions are widely separated because it includes the interaction between the individual ions
and the polarization field (which Ūpol(r) does not). We are only interested in how this
quantity scales with r, the distance between the two ions, so we will look at

∆Upol = Upol(r)− Upol(∞). (4.10)

To the extent that the uniform dielectric approximation is accurate, an average of ∆Upol(r)
should agree reasonably well with Ūpol(r). We will compute this average by sampling many
configurations from a non polarizable model of water with the ions constrained to be a
certain distance r from one another. For each nuclear configuration we will solve for the
~dk using equation 4.3. This equation can be solved using conjugate gradient minimization
[53, 54]. We will adopt a simple model for water polarizability in which there is just one
induced dipole per water molecule, located on the oxygen atom, for which the polarizability
α is 1.5 Å3. This is nearly identical to the polarizability used in the Dang-Chang polarizable
water model [12], but we have looked at a wider range of polarizabilities and found that it
does not change the qualitative picture described here. In figure 4.1 we show 〈∆Upol〉(r)
for two pairs of oppositely charged ions in bulk water. Each pair of ions carries charges of
±0.75e but one pair has a Lennard-Jones diameter of 2.5 Å and the other has a Lennard-
Jones diameter of 4.7 Å. We have measured this polarization energy all the way down to an
inter-ion separation of zero (in which case the ions are obviously overlapping). We’ve also
plotted the dielectric continuum approximation from equation 4.8. The value of εel of 2.5
was determined by fitting to the 〈∆Upol〉(r) curves for large values of r. For both cavity
sizes the dielectric continuum approximation is qualitatively very good all the way up to the
point where the cavities start to overlap. However, for the larger of two ions there is clear
quantitative disagreement when the two separation between the two ions slightly exceed the
overlap separation.

4.4 Scrutinizing the MDEC model at the surface

The results of the last section indicate that the simple dielectric continuum theory is
a fairly good way of capturing the interactions between ions in bulk as long as those ions
are not overlapping. In this section we ask how this breaks down when those ions are at
the interface. We have performed a set of calculations which are exactly analogous to those
described in the last section, except the ions are constrained to be a particular distance above
the Gibbs dividing surface. This constraint applies to each ion individually, so they move
in a plane parallel to the Gibbs Dividing surface. The results of this analysis are shown in
figure 4.2 for the larger pair of ions at 0, 4 and 8 Å above the Gibbs dividing surface. The
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Figure 4.1: Average polarization energies which measure the interaction between the two
fixed charges on the ions and the induced dipoles of the solvent molecules for two different
pairs of ions. The different pairs of ions are distinguished by their different Lennard-Jones
diameters σ, indicated in the legend. The vertical lines show the separation at which the two
ions are in contact. The ions have charges of ±0.75e. Also shown is the dielectric continuum
approximation to this quantity (Ūpol(r)).

dielectric continuum approximation and the value of 〈∆Upol〉(r) for a pair of ions in bulk are
shown again for reference. The DCT approximation has the same quantitative flaws seen in
the previous plot, but it is qualitatively a surprisingly good description, even for the pair of
ions 8 Å above the surface. The success of this approximation is connected to the fact that
the interface deforms itself substantially in order to keep the ions partially solvated. Only
when the ions are 8 Å above the Gibbs dividing surface, and separated by less than about 3
Å does the 〈∆Upol〉(r) become qualitatively very flat, indicating that the ions are no longer
partially solvated by a distorted interface.
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Figure 4.2: Average polarization energies for two ions separated by the distance on the x-
axis. This measures the same quantity as the figure above, except in this case the ions were
constrained to be a certain distance above the Gibbs dividing surface. We show the result
for the two ions in bulk, as well as the dielectric continuum approximation for reference
(Ūpol(r)).
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Chapter 5

Dielectric continuum theory for
interfaces

5.1 Preliminaries

In chapter 2 we discussed how it is natural to think of solvation thermodynamics in terms
of two distinct components. The cavity formation free energy is, regardless of length scale a
force that draws ions to air-water interfaces and the charging free energy tends to repel ions
from those interfaces. Because of the approximately gaussian nature of the fluctuations of the
electrostatic potential, dielectric continuum theory is considered a good reference theory for
computing the charging free energy. The most naive implementation of dielectric continuum
theory treats the ion as a point charge, and predicts divergent forces acting on the ion as it
approaches the surface. This divergence is clearly not physical and it is a sign that we need
to treat the finite size of the ion explicitly in order to get sensible predictions from dielectric
continuum theory. Another element missing from the point charge description presented in
chapter 1 is the flexibility of the interface. As illustrated in chapters 2 and 3, this flexibility
has important consequences and should not be left out of a predictive theory.

In this chapter we will describe ways to include some of these missing ingredients in
dielectric continuum theory. The theory presented here is based on the reformulation of
macroscopic dielectric continuum theory in terms of microscopic gaussian fluctuations due
to Song and Chandler [58, 57]. The advantage of formulating DCT this way is that inho-
mogeneities like the solute can be treated as constraints on a gaussian field, which is both
physically intuitive and allows us to use mathematical tools from constrained gaussian field
theory [8]. In this chapter we first describe flawed attempts to handle the finite size of the ion
in DCT, then we review the gaussian field theory formulation of DCT, and then we extend
this formulation of DCT to a system with an extended interface.
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5.2 Flawed attempts to treat the finite size of the ion

in DCT

The simplest improvement to the point charge DCT described above and in chapter 1 is
to account for the finite size of the ion by setting the dielectric constant in the interior of the
ion to 1. Figure 5.1 is an illustration of the resulting geometry. The charge is now embedded
in a cavity of radius L with a dielectric constant ε2 = 1, at a distance z from the boundary
where the dielectric constant changes from ε1 = 80 to ε2. The solution to Poisson’s equation
must now satisfy boundary conditions on the plane interface and the surface of the sphere.
As we will see, these boundary conditions cannot be satisfied in any simple way. Even for
this simplest realistic geometry we will require numerical techniques. There are published
analytical solutions to this problem from Kharkats and Ulstrup which purport to solve this
problem but in fact violate the boundary conditions of DCT [32]. This solution is frequently
cited despite its flaws [40, 27]. The Kharkats and Ulstrup treatment starts from the following
expression for the electrostatic energy in terms of the displacement vector:

W =
1

2

∫
D(r)E(r)dV, (5.1)

where the integration is over the volume not occupied by the ion and D(r) = εE(r) =
−ε∇φ(r). This expression is exact and the volume integrals can be transformed in to surface
integrals by integration by parts, but it requires that you know φ(r) which is the solution to
Poisson’s equation. Kharkats and Ulstrup assert that φ(r) takes the form in equation 1.5,
which is the solution for two uniform dielectrics separated by a boundary, with no spherical
cavity:

φ(r) =
q

ε1|r − z|
+
ε1 − 1

ε1 + 1

q

ε1|r − z′|
(5.2)

For this solution to be correct it must not only satisfy the boundary conditions on the
planar surface, it must also satisfy those boundary conditions on the surface of the spherical
cavity. These boundary conditions are:

ε1
∂φ(r)

∂n
|sphere=

∂φi(r)

∂n
|sphere (5.3)

and

∂φ(r)

∂ρ
|sphere=

∂φi(r)

∂ρ
|sphere. (5.4)

Where φi(r) is the potential in the interior of the cavity and ∂
∂n

is a surface normal deriva-
tive and ∂

∂ρ
is a surface tangential derivative. Demonstrating that 5.2 cannot satisfy these

equations requires us to choose a form for the potential inside a cavity. The natural choice
is
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Figure 5.1: A schematic illustration of the boundary between two dielectric media when there
is a volume excluding ion present. Figure a illustrates the case when the spherical cavity
does not penetrate the boundary, and Figure b illustrates the spherical cavity overlapping
with the boundary. In neither case is the potential described by a simple image charge.

φi(r) =
q

|r − z| +
Aq

|r − z′| . (5.5)

Plugging this into equation 5.3 would give you A = ε1−1
ε1+1

and equation 5.4 would give you

A = ε1−1
ε1(ε1+1)

, which are obviously not consistent with one another. All otther choices for φi
also fail to satisfy these boundary conditions.

5.3 Microscopic model of a dielectric

In this section we describe a microscopic formulation of dielectric continuum theory in
terms of a fluctuating polarization field that will allow us to recast problems like the one
above. This theory was developed by Song, Chandler and Marcus as both a lattice field
theory [58] and a continuum field theory [57] and the discussion in this section is based on
those two papers. We present a thorough review here because it will aid the subsequent
development.
For a very broad class of materials called linear dielectrics, we describe the electrostatic
response of the system in the same very simple way:

P (r) = χeE(r). (5.6)
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where P (r) is the polarization and E(r) is the electric field, which, in any real material in-
cludes contributions from both applied external fields and internal fields. χe is a material
property called the susceptibility that for our purposes is a scalar but could be a tensor if
the material does not respond isotropically. The fact that such a simple equation can be
used to describe solids, liquids and gases seems surprising because the microscopic physics
underlying charge redistribution seems at first glance to vary widely between different ma-
terials. The theory we describe provides some perspective on the origins of this simplicity.
In the gaussian field theory we describe the microscopic charge distribution by a spatially
varying, fluctuating polarization field ~m(r). The polarization field that we are imagining is
a coarse grained polarization, it is not the instantaneous dipole of an individual molecule in
a liquid for example. It is the average polarization of a region of space that constitutes a few
molecular diameters. The fluctuations that determine this polarization could be very differ-
ent for different materials. In liquid water, for example, the dominant effect comes from the
fluctuating molecular orientations whereas in a solid metal the dominant effect may involve
fluctuating electron clouds. Furthermore, the charge distribution in this region is likely to
have higher order multipoles. In this theory we ignore these details and assume that there
is strictly a quadratic penalty for establishing a polarization and that the polarization at
separate points in space interact with one another as point dipoles. The Hamiltonian is then:

H = n

∫
dr
|~m(r)|2

2α
+
n2

2

∫ ∫
drdr′ ~m(r)· ∇∇′ 1

|r − r′| · ~m(r′)− SI. (5.7)

where n is a density and α is the local polarizability that describes the cost of forming a
dipole. The second term captures the interactions between spatially separated dipoles. This
double integral includes a self interaction SI, which is the interaction of a dipole with itself.
The parameter α is intended to completely describe the self interaction however, so we must
subtract this term off as described below.

Let’s consider a small volume v in which ~m(r) does not vary. In that case, the self
interaction is given by:

SI =
n2

2

∫
v

∫
v

drdr′ ~m· ∇∇′ 1

|r − r′| · ~m (5.8)

We will evaluate this in Fourier space using the identity:

1

|r − r′| =

∫
d~k

2π3
e−i

~k·(r−r′) 4π

k2
. (5.9)

This gives us:

∇∇′ 1

|r − r′| = 4π

∫
d~k

2π3
e−i

~k·(r−r′)k̂k̂. (5.10)

So that:

SI = 4π
n2

2
~m·
∫
v

∫
v

drdr′
∫

d~k

2π3
e−i

~k·(r−r′)k̂k̂· ~m. (5.11)
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Now we’ll take ~m to be along the z axis, which implies:

SI = 4π
n2

2
m2

∫
d~k

2π3

k2
z

k2

∫
v

dre(−i~k·r)
∫
v

dr′e(−i~k·r′) (5.12)

The two real space integrals depend only on |~k| and not on the orientation, so we can replace
k2z
k2

by 1
3
.

SI = 4π
n2

2

m2

3

∫
v

dr

∫
v

dr′δ(r − r′) = 4π
n2

2

m2

3
v (5.13)

integrating this over the entire volume gives:

SI =
n2

2

∫
dr

4π

3
| ~m(r)|2. (5.14)

This means that the full Hamiltonian is given by

H =
n

2

∫
dr|~m(r)|2(α−1 − 4πn

3
) +

n2

2

∫ ∫
drdr′ ~m(r)· ∇∇′ 1

|r − r′| · ~m(r′), (5.15)

which can be written explicitly as a set of coupled harmonic oscillators:

βH =
1

2

∫
dr

∫
dr′ ~m(r)·χ−1(r, r′)· ~m(r′), (5.16)

where

χ−1(r, r′) = βn(α−1 − 4πn

3
)Iδ(r − r′) + βn2∇∇′ 1

|r − r′| . (5.17)

We will refer to this object as a matrix with indices r and r′. In truth this connection is
imperfect because these indices are continuous and not discrete. Certain properties of this
matrix, like its determinant, are not defined unless you choose a finite basis (like a grid in
real space or a set of Fourier modes with a high frequency cutoff). As we will see below
we can define a functional inverse of this object which is analogous to the matrix inverse.
Furthermore, each element of this matrix is itself a 3x3 matrix. That is, for any given value
of r and r′ the χ−1(r, r′) in a cartesian basis is:

 βn(α−1 − 4πn
3

) + βn2 ∂2

∂x2
1

|r−r′| βn2 ∂2

∂x∂y
1

|r−r′| βn2 ∂2

∂x∂z
1

|r−r′|
βn2 ∂2

∂y∂x
1

|r−r′| βn(α−1 − 4πn
3

) + βn2 ∂2

∂y2
1

|r−r′| βn2 ∂2

∂y∂z
1

|r−r′|
βn2 ∂2

∂z∂x
1

|r−r′| βn2 ∂2

∂z∂y
1

|r−r′| βn(α−1 − 4πn
3

) + βn2 ∂2

∂z2
1

|r−r′|





CHAPTER 5. DIELECTRIC CONTINUUM THEORY FOR INTERFACES 90

5.4 Connecting microscopic and macroscopic pictures

Computing the statistical properties of such a system, like the polarization induced by an
applied electric field Eo(r) is now a matter of computing multidimensional gaussian integrals.
The partition function for this system coupled to such an external field is

Z =

∫
D[~m(x)] exp[−1

2

∫
dr

∫
dr′ ~m(r)·χ−1(r, r′)· ~m(r′)− βn

∫
dr~m(r)Eo(r)]. (5.18)

There are a number of formally exact results for computing integrals like this and its deriva-
tives. One such result relates the correlation function for ~m(r) to the matrix inverse of
χ−1:

〈~m(r)~m(r′)〉 = χ(r, r′), (5.19)

where the matrix χ must satisfy
∫
dr′χ(r, r′)χ−1(r′, r′′) = δ(r − r′′). We also describe the

response to an external field in terms of this matrix as

〈~m(r)n〉 = n2

∫
dr′βEo(r)·χ(r, r′), (5.20)

and for this reason χ(r, r′) is called the response function. These results are only formally
exact because we may not necessarily know what matrix will invert χ−1(r, r′), we can however
use these results to make a connection to the more familiar macroscopic DCT without
knowing χ(r, r′).

If we identify P (r) with 〈~m(r)〉n then equation 5.6 and equation 5.20 are two different
ways of computing the same thing, one from the macroscopic perspective and one from the
microscopic perspective. To make the connection concrete however, we need to distinguish
between the applied external field Eo and the field due to internal sources (Ei) in equation
5.6:

〈~m(r)〉n = χeE(r) = χe(Eo(r) + Ei(r)). (5.21)

We interpret Ei(r) as the field generated by the average polarization. The electric field at r

due to a dipole ~d at r′ is ∇∇′ 1
|r−r′| · ~d(r′) which means that the total internal electric field is

Ei(r) = −n
∫
dr′(∇∇′ 1

|r − r′|)· 〈~m(r′)〉. (5.22)

This integral is easier to evaluate than it looks. We can rearrange 5.17 so that we have
∇∇′ 1

|r−r′| in terms of χ−1(r, r′) and we can insert equation 5.20 to obtain

Ei(r) = −n
∫
dr′

1

βn2
[χ−1(r, r′)−βn(α−1− 4πn

3
)Iδ(r− r′)]·n

∫
dr′′βEo(′′)·χ(r′, r′′). (5.23)
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This equation reduces to

Ei(r) =
−1

βn
[

∫
dr′′βnEo(r′′)δ(r − r′′)− βn

∫
dr′(α−1 − 4πn

3
)Iδ(r − r′)〈~m(r′)〉]. (5.24)

By integrating over the delta functions we find that Ei is a simple function of Eo and the
polarization.

Ei(r) = −Eo(r) + (α−1 − 4πn

3
)〈~m(r)〉 (5.25)

By comparing this to the macroscopic equation we find

χe =
n

(α−1 − 4πn
3

)
=
ε− 1

4π
, (5.26)

which leads to the Clausius-Mossotti equation relating the dielectric constant ε to the local
susceptibility α:

4πnα

3
=
ε− 1

ε+ 1
(5.27)

5.5 Normal modes of a dielectric

The analysis in the last section provides us with an extremely useful result, but further
applications will require us to actually have a form for the response function χ(r, r′) which
means we need to invert χ−1(r, r′). Using equation 5.27 we see that χ−1 can be rewritten as:

χ−1(r, r′) =
4πβn2

ε− 1
Iδ(r − r′) + βn2∇∇′ 1

|r − r′| (5.28)

Finding the inverse of a matrix like this is easiest if you can find the basis in which it
is diagonal, which is equivalent to finding its normal modes. This matrix is translationally
invariant which means that its normal modes must be Fourier modes. Equation 5.10 tells
us how to expand the second term in a Fourier basis. Expanding the first term in a Fourier
basis requires the Fourier representation of the delta function, which is

δ(r − r′) =

∫
d~k

(2π)3
e−i

~k·(r−r′). (5.29)

The Fourier expansion of χ−1(r, r′) is therefore given by

χ−1(r, r′) =

∫
d~k

(2π)3
e−i

~k·(r−r′)[
4πβn2

ε− 1
I + 4πβn2k̂k̂]. (5.30)

The quantity in brackets is the χ̂−1(k), which as we can see has no off diagonal elements (there
is no coupling between k and k′ where k 6= k′). However, the 3x3 matrix that composes each
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diagonal element is not itself diagonal. There is a convenient basis set for inverting matrices
that involve I and the outer product of two unit vectors. This basis set is composed of the
two elements

J+ = k̂k̂, (5.31)

and
J− = I − k̂k̂. (5.32)

These tensors have the following easily checked properties:

J+· J+ = J+ (5.33)

J−· J− = J− (5.34)

J+· J− = 0. (5.35)

These relationships imply the following identity for matrices that are a linear combination
of these two tensors:

(aJ+ + bJ−)· (a−1J+ + b−1J−) = I. (5.36)

We can rewrite χ̂−1(k) in this form as

χ̂−1(k) = 4πβn2[
1

ε− 1
(I − k̂k̂) +

ε

ε− 1
k̂k̂], (5.37)

and we see right away from equation 5.36 that

χ̂(k) = (4πβn2)−1[(ε− 1)(I − k̂k̂) +
ε− 1

ε
k̂k̂]. (5.38)

Performing the inverse Fourier transform of this we find that the response function for a
uniform dielectric is

χ(r, r′) =
ε− 1

4πβn2
[Iδ(r − r′)− ε− 1

4πε
∇∇′ 1

|r − r′| ]. (5.39)

In what follows we will refer to this response function as χo.

5.6 Response function for a semi-infinite dielectric

The response function above accurately describes both the response to an external field
and the correlation function for a perfectly uniform system. If we wish to consider systems
that have a nonuniform dielectric constant then it describes neither. Imagine a system which
has dielectric constant ε1 in some region of space and dielectric constant ε2 in other regions.
It might seem reasonable to formulate the problem as a set of coupled harmonic oscillators
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using an analogue of equation 5.16, in which α takes different values in different regions
according to the Clausius-Mossotti equation (eq. 5.27). However, if ε2 = 1, then α = 0
according to equation 5.27, which means there is an infinite penalty for locally forming a
dipole in the ε2 region. Chandler and Song ([58]) adopt the perspective that it is more
natural to think of this sort of inhomogeneity as a constraint on a Gaussian field then as
a region with a different local polarizability α. This perspective is less general because it
only holds when the ε2 = 1, but this covers an important class of problems. If we denote
the volume in which we impose the constraint V2, the partition function of the constrained
system is given by

Z =

∫
D[~m(r)]

∏
r∈V2

δ(~m(r)) exp[−1

2

∫
dr

∫
dr′ ~m(r)·χ−1(r, r′)· ~m(r′)− βn

∫
dr~m(r)Eo(r)].

(5.40)
In a formal sense this is simply a multidimensional gaussian integral, no more complicated
than equation 5.18 except that the integral is over a smaller set of modes. The response
function is still given by the inverse of χ−1(r, r′) except now r and r′ have a restricted domain.
The inverse condition is ∫

V1

dr′χ(r, r′)χ−1(r′, r′′) = δ(r, r′′) (5.41)

In general, the function χ(r, r′) that satisfies this equation depends on the geometry of
V1 (the unconstrained volume), meaning the nature of the correlations changes when you
impose a constraint. In practice, solving equation 5.41 may be a very challenging numerical
problem. In the previous section, we were able to invert χ−1(r, r′) by working in the Fourier
basis, which is the normal mode basis of any translationally invariant system, however a
constrained system does not have translational invariance and we don’t necessarily know the
normal modes. We will discuss a different method for calculating the response function when
the region V1 is the entire half of space below a plane at z = 0, which is the semi-infinite
dielectric scenario of interest to us. We will adopt the following ansatz for the response
function

χ(r, r′) =
ε− 1

4πβn2ε

(
εδ(r − r′)I − ε− 1

4π
∇∇′

(
1

|r − r′| + g(r, r′)

))
. (5.42)

If we substitute this ansatz into equation 5.41, along with the definition of χ−1(r, r′) we
obtain

−ε− 1

4πε
∇∇′

(
1

|r − r′| + g(r, r′)

)
+∇′

[
βn2

∫
V1

dr′′χ(r, r′′)∇′′ 1

|r′′ − r′|

]
= 0. (5.43)
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We can evaluate the quantity in brackets using linear response theory. If we recognize
that

∇′′ 1

|r′′ − r′| = −Eo(r′′, r′) (5.44)

where Eo(r′′, r′) is the external electric field at r′′ due to a unit point charge at r′, then we see
from equation 5.20 that the quantity in brackets is the polarization at r due to a point charge
at r′. From macroscopic electrostatics (equation 5.6), we know that this polarization is equal
to the susceptibility times the total electric field. If we make the substitution P (r) = ~m(r)n
and χe = ε−1

4π
then equation 5.6 becomes

~m(r)n =
ε− 1

4π
E(r). (5.45)

Which says that we can solve for the average polarization if we know the total electric field
(from both internal and external sources) due to a point charge. For the case considered
here, in which V1 is the half space below a plane, this electric field has the image charge form
described in chapter 1

E(r) = −1

ε

(
1

|r − r′| +
ε− 1

ε+ 1

1

|r − r′z|

)
, (5.46)

where r′z is the vector r′ with the z-coordinate reflected through the boundary between
the dielectric and the vaccum. This means that the term in brackets is

βn2

∫
V1

dr′′χ(r, r′′)∇′′ 1

|r′′ − r′| =
ε− 1

4π
∇1

ε

(
1

|r − r′| +
ε− 1

ε+ 1

1

|r − r′z|

)
, (5.47)

and equation 5.43 can now be rewritten as

−ε− 1

4πε
∇∇′

(
1

|r − r′| + g(r, r′)

)
+
ε− 1

4π
∇′∇1

ε

(
1

|r − r′| +
ε− 1

ε+ 1

1

|r − r′z|

)
= 0. (5.48)

From this expression we can easily read off that g(r, r′) = ε−1
ε+1

1
|r−r′z | . The full response

function is then given by:

χ(r, r′) =
ε− 1

4πβn2ε

(
εδ(r − r′)I − ε− 1

4π
∇∇′

(
1

|r − r′| +
ε− 1

ε+ 1

1

|r − r′z|

))
(5.49)

The analysis described here is very general, and it allows you to find an exact analytical
form for the response function in any geometry for which you know the total electric field
E(r) due to a point charge.
The geometry we are most interested in is the one depicted in figure 5.1 in which the space
of the plane and the interior of a sphere are constrained. In this case we can not solve for
the electric field exactly and the method described here will not work. It may seem that the
simplest approach is to find a numerical solution to 5.41, but this is very difficult due to the
fact that the space V1, and therefore the size of the matrix you need to invert, is infinite.
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Chandler show that there is a much easier way to solve such problems when you only want
to constrain a small region of space. Given a response function χ(r, r′), you can compute
the modified response function due to imposing a constraint in some small region as

χm(r, r′) = χ(r, r′)−
∫
in

∫
in

dr′′dr′′′χ(r, r′′) · χ−1
in (r′′, r′′′) · χ(r′′′, r′), (5.50)

where χ−1
in (r, r′′) satisfies(for r and r′ in):∫

in

dr′′χ−1
in (r, r′′)·χ(r′′, r′) = δ(r − r′)I. (5.51)

The in region here is the interior of the region occupied by the solute. This is a numerical
problem that only requires us to invert a finite (and probably very small) matrix.

5.7 Solvation free energy of point charges in a cavity

Among the interesting things we can compute when we know the response function for
a given geometry is the solvation free energy of point charges in a cavity. The general
expression for such a free energy is

E = −βn
2

2

∫
V1

∫
V1

drdr′∇ 1

|r − ro|
χm(r, r′)∇′ 1

|r′ − ro|
. (5.52)

where χm is the modified response function given by equation 5.50 and V1 is the unconstrained
region. If we insert the definition of χm we see that the energy breaks up naturally into two
terms. The first is

Eo = −βn
2

2

∫
V1

∫
V1

drdr′∇ 1

|r − ro|
χ(r, r′)∇′ 1

|r′ − ro|
, (5.53)

and the second is

Ec = −βn
2

2

∫
V1

∫
V1

drdr′∇ 1

|r − ro|

∫
in

∫
in

dr′′dr′′′χ(r, r′′) · χ−1
in (r′′, r′′′) · χ(r′′′, r′)∇′ 1

|r′ − ro|
,

(5.54)
so that

E = Eo − Ec (5.55)

To evaluate Eo we rearrange equation 5.43 to find

βn2

∫
V1

dr′χ(r, r′)∇′ 1

|r′ − ro|
=
ε− 1

4πε
∇
[

1

|r − ro|
+ g(r, ro)

]
=
ε− 1

4πε
∇G(r, ro), (5.56)

where the last line defines the function G(r, ro). Plugging this into the equation for Eo
we find

Eo = −ε− 1

8πε

∫
V1

dr∇ 1

|r − ro|
∇G(r, ro). (5.57)
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We could try to evaluate this integral analytically using integration by parts, but this is
not actually necessary. To see this, we maniuplate equation 5.56 further by inserting the
definition χ from equation 5.49. This gives us

ε− 1

4π
∇ 1

|r − ro|
− (ε− 1)2

(4π)2ε

∫
dr′∇∇′G(r, r′)∇′ 1

|r′ − ro|
=
ε− 1

4πε
∇G(r, ro). (5.58)

If cross out the ∇ the integral in this equation resembles the integral in equation 5.57. This
gives us

(ε− 1)2

4πε

∫
dr′∇′G(r, r′)∇′ 1

|r′ − ro|
= −ε− 1

ε
G(r, ro) + (ε− 1)

1

|r − ro|
. (5.59)

And by comparing to equation 5.57 we find

Eo = −ε− 1

2ε

1

|ro − ro|
+

1

2ε
g(ro, ro). (5.60)

Now we turn to evaluating Ec, we will find that a similar set of tricks allow us to bypass
doing any difficult integrals. If we use equation 5.56 we find that we can immediately perform
the integrals over r and r′ in equation 5.54 and we find

Ec = − 1

2βn2
(
ε− 1

4πε
)2

∫ ∫
in

dr′′dr′′′∇′′G(r′′, ro) · χ−1
in (r′′, r′′′) · ∇′′′G(r′′′, ro). (5.61)

To proceed further we need to define χ−1
in . We adopt an ansatz which has the following

general form:

χ−1
in (r′′, r′′′) =

βn24π

ε− 1
δ(r′′ − r′′′)I + βn2∇′′∇′′′G(r′′, r′′′) +

βn24πε

ε− 1
∇′′∇′′′f(r′′, r′′′), (5.62)

and it satisfies the equation∫
in

dr′′′χ−1
in (r′′, r′′′)χ(r′′′, ro) = δ(r′′, ro)I. (5.63)

If we insert χ(r′′′, ro) (from equation 5.49) into this equation we get:

ε− 1

4πβn2
χ−1
in (r′′, ro)−

(
ε− 1

4π

)2
1

εβn2

∫
dr′′′χ−1

in (r′′, r′′′)∇′′′∇G(r′′′, ro) = δ(r′′, ro)I (5.64)

If we insert the definition of χ−1
in we find the delta functions on either side of this equation

cancel and we are left with
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(
ε− 1

4π

)2
1

εβn2

∫
dr′′′χ−1

in (r′′, r′′′)∇′′′∇G(r′′′, ro) =
ε− 1

4π
∇′′∇

[
G(r′′, ro) +

4πε

ε− 1
f(r′′, ro)

]
.

(5.65)
Rearranging slightly and crossing out the ∇ we find

∫
dr′′′χ−1

in (r′′, r′′′)∇′′′G(r′′′, ro) =
4πεβn2

ε− 1
∇′′
[
G(r′′, ro) +

4πε

ε− 1
f(r′′, ro)

]
. (5.66)

The left hand side of this equation appears in the expression for Ec, equation 5.61, so we
can immediately perform the integral over r′′′ and we are left with

Ec = −1

2
(
ε− 1

4πε
)

∫
in

dr′′∇′′G(r′′, ro)∇′′
[
G(r′′, ro) +

4πε

ε− 1
f(r′′, ro)

]
. (5.67)

To evaluate this integral we must write out equation 5.66 in more detail by inserting the
definition of χ−1

in . This leaves us with

4π

ε− 1
∇′′G(r′′, ro) +

∫
dr′′′∇′′∇′′′

[
G(r′′, r′′′) +

4π

ε− 1
f(r′′, r′′′)

]
∇′′′G(r′′′, ro)

=
4πε

ε− 1
∇′′
[
G(r′′, ro) +

4πε

ε− 1
f(r′′, ro)

]
.

If we cross out ∇′′ and rearrange slightly we find

∫
dr′′′∇′′′

[
G(r′′, r′′′) +

4π

ε− 1
f(r′′, r′′′)

]
∇′′′G(r′′′, ro) = 4πG(r′′, ro) + (

4πε

ε− 1
)2f(r′′, ro).

(5.68)
The integral on the left side very nearly resembles the integral that appears in 5.61. We need
only set r′′ equal to ro, and then change the integration index from r′′′ to r′′ and we find∫

dr′′∇′′G(r′′, ro)∇′′
[
G(r′′, ro) +

4π

ε− 1
f(r′′, ro)

]
= 4πG(ro, ro) + (

4πε

ε− 1
)2f(ro, ro). (5.69)

This equation allows to evaluate Ec immediately as

Ec = −1

2

(
ε− 1

ε
G(ro, ro) +

4πε

ε− 1
f(ro, ro)

)
. (5.70)

Finally we compile the total solvation energy as

E = Eo − Ec =
2πε

ε− 1
f(ro, ro) +

1

2
g(ro, ro). (5.71)
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5.8 Integral equations for f (r, r′)

Equation 5.71 is a compact expression for the solvation free energy of a point charge
inside a cavity in terms of the function f(r, r′). Equation 5.68 is the integral equation that
determines this function. We will rearrange this equation slightly and change variable names
so that the subsequent discussion parallels the discussion in the Song and Chandler paper
[57]:

(5.72)
εf(r, r′) +

(ε− 1)2

4πε
G(r, r′)−

(
ε− 1

4π

)2
1

ε

∫
in

dr′′∇′′G(r, r′′)∇′′G(r′′, r′)

− ε− 1

4π

∫
in

dr′′∇′′f(r, r′′)∇′′G(r′′, r′) = 0.

In this section we will describe a method for solving this equation when the in region is
a sphere, and that sphere is not penetrating the boundary (case a in figure 5.1). Solving
this equation will proceed in two steps. First we will solve for f(r, R), where R is on the
boundary of the sphere. Once we know its value on the boundary we can then solve for its
value in the interior (details will follow shortly).

To begin with we choose r to be at the center of the cavity and r′ to be on the bound-
ary and we will apply integration by parts to each of the integrals above. As an example, if
we integrate the second integral by parts we obtain∫
in

dr′′∇′′f(r, r′′)∇′′G(r′′, r′) =

∫
surf

daR′′f(r, R′′)∇nG(R′′, R′)−
∫
in

dr′′f(r, r′′)∇2G(r′′, R′),

(5.73)
where we have adopted the notation that a capital R indicates a point on the surface. Recall
that the definition of G(r′′, r′) is

G(r′′, r′) =
1

|r − r′| +
ε− 1

ε+ 1

1

|r − r′z|
. (5.74)

This means that

∇2G(r′′, R′) = −4π

(
δ(r′′, R′) +

ε− 1

ε+ 1
δ(r′′, R′z)

)
(5.75)

which is a delta function centered on the boundary. The second integral in equation 5.73
only picks up half of this delta function. This means that the integral equation 5.72 can be
rewritten as

(5.76)

ε+ 1

2
f(r, R′)− (

ε− 1

4π
)2 1

ε

∫
surf

daR′′∇nG(r, R′′)G(R′′, R′)

− ε− 1

4π

∫
surf

daR′′f(r, R′′)∇nG(R′′, R′) = 0.
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This integral equation determines f(r, R), where R is on the boundary. We will have a
separate equation below to determine f(r, r′) where both r and r′ are in the interior. We
will solve this using a spherical harmonics expansion and the identity

1

|r − r′| = 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Y ∗lm(θ′, φ′)Ylm(θ, φ) (5.77)

The spherical harmonics expansion is natural because the surface integrals in equation 5.76
are over the surface of a sphere, and the spherical harmonics form an orthonormal basis on
this surface. To be explicit, the integrals in equation 5.76 are∫

surf

daR′′ = L2

∫ 2π

0

dφ′′
∫ π

0

dθ′′ (5.78)

where L is the radius of the sphere and θ and φ are the usual polar and azimuthal angles,
respectively. The spherical harmonics obey the property:∫ 2π

0

dφ′′
∫ π

0

dθ′′Y ∗lm(θ′′, φ′′)Yl′m′(θ
′′, φ′′) = δl,l′δm,m′ (5.79)

Because we have chosen r to be at the center of the sphere, f(r, R′) depends only on the
polar angle θ′ and we need only keep terms in its spherical harmonics expansion for which
m = 0. For this reason we will drop the m subscript and just write

f(r, R′) = flYl(θ
′). (5.80)

Equation 5.76 requires a spherical harmonics expansion for the function G(R′′, R′) which
does not have azimuthal symmetry and therefore its expansion would necessarily have terms
for which m 6= 0. However, G(r, R′′) does have the azimuthal symmetry and the consequent
vanishing m 6= 0 spherical harmonic components. This means that when you evaluate the
first (or the second) integral in equation 5.76 only the m = 0 terms matter because of the
orthonormality condition. We will therefore only keep track of m = 0 terms in an expansion
of G(R′′, R′), which will look like

G(R′′, R′) = GlYl(θ)Yl(θ
′) (5.81)

Now we will construct explicit forms for the spherical harmonics expansions of the various
terms in equation 5.76. First of all, the first term and the second term in5.74 should be
handled separately because the first is a standard Coulomb potential and its expansion is
given by equation 5.77. The spherical harmonics components of the second terms have to
evaluated analytically or numerically term by term. For later reference we will write out the
functional forms of these second terms:

1

|r −R′z|
=

1

(4d2 + L2 − 4dL cos(θ′))1/2
=
ε+ 1

ε− 1
g(r, R′) (5.82)
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and

1

|R′′ −R′z|
=

1

(2L2(1− sin(θ′′) sin(θ′) cos(φ′′))− 4Ld(cos(θ′′) + cos(θ′)) + 4d2 + 2L2 cos(θ′′) cos(θ′))1/2

=
ε+ 1

ε− 1
g(R′′, R′) (5.83)

The spherical harmonics expansions of the first G term in equation 5.76 is

∇nG(r, R′′) =
∑
l

−δl,0
√

4π

L2
Yl(θ

′′) +
∑
l

AlYl(θ
′′), (5.84)

where

Al =

∫ 2π

0

dφ′
∫ π

0

dθ′∇′g(r, R′)Yl(θ
′). (5.85)

And for the second G term we have

G(R′′, R′) =
∑
l

4π

2l + 1

1

L
Yl(θ

′′)Yl(θ
′) +

∑
l

BlYl(θ
′′)Yl(θ

′) (5.86)

where

Bl =

∫ 2π

0

dφ′
∫ π

0

dθ′
∫ 2π

0

dφ′′
∫ π

0

dθ′′g(R′′, R′)Yl(θ
′)Yl(θ

′′). (5.87)

And finally

∇nG(R′′, R′) =
∑
l

−4π

2(2l + 1)

1

L2
Yl(θ

′′)Yl(θ
′) +

∑
l

ClYl(θ
′′)Yl(θ

′) (5.88)

where

Cl =

∫ 2π

0

dφ′
∫ π

0

dθ′
∫ 2π

0

dφ′′
∫ π

0

dθ′′∇ng(R′′, R′)Yl(θ
′)Yl(θ

′′). (5.89)

If we plug all of these along with equation 5.80 into equation 5.76, and then integrate
over the angles we find:

fl

(
ε+ 1

2
− ε− 1

4π

(
− 4π

2(2l + 1)
+ L2Cl

))
=

(
ε− 1

4π
)2 1

ε

(
−δl,0

√
4π + L2Al

)( 4π

2l + 1

1

L
+Bl

)
(5.90)
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We now turn our attention to solving for f(r, r′) when both r and r′ are in the interior.
If we take both r and r′ to be at the center of the sphere, and then we integrate equation
5.72 by parts we obtain a different integral equation

f(r, r)− (
ε− 1

4π
)2 1

ε

∫
surf

daR′′∇nG(r, R′′)G(R′′, r)− ε− 1

4π

∫
surf

daR′′f(r, R′′)∇nG(R′′, r) = 0,

(5.91)
which takes the surface solution f(r, R′′) as input. To solve this equation we will again use a
spherical harmonics expansion. For the terms ∇nG(r, R′′) and ∇nG(R′′, r) we already have
the spherical harmonics expansion (equation 5.84). The remaining required expansion is

G(R′′, r′) =
∑
l

δl,0

√
4π

L
Yl(θ

′′) +
∑
l

DlYl(θ
′′) (5.92)

where

Dl =

∫ 2π

0

dφ′
∫ π

0

dθ′g(R′′, r)Yl(θ
′). (5.93)

Performing the spherical harmonics expansion on equation 5.91 we find

f(r, r′) =
∑
l

(
ε− 1

4π
)2 1

ε

(
−δl,0

√
4π + L2Al

)(√
4π
δl,0
L

+Dl

)
∑
l

ε− 1

4π
fl

(
−δl,0

√
4π

L
+ Al

)
(5.94)

We can evaluate analytically evaluate this equation and equation 5.90 to lowest order in the
expansion. If we assume that the cavity is very far from the interface so that d >> L then
we find that

Bo =
1

2d

∫ 2π

0

dφ′
∫ π

0

dθ′
∫ 2π

0

dφ′′
∫ π

0

dθ′′Y0(θ′)Y0(θ′′) =
4π

2d
(5.95)

If we neglect all higher order terms along with all the Al and Cl (which are higher order in
d
L

) we find

fo =
(ε− 1)2

ε2
1√
4π

(
1

L
+
ε− 1

ε+ 1

1

2d

)
(5.96)

Do can be evaluated in a similarly straightforward way in the limit that d >> L:

Do =
1

2d

∫ 2π

0

dφ′
∫ π

0

dθ′Y0(θ′) =

√
4π

2d
(5.97)

Now we take the first term in the sum in equation 5.96 (neglecting Ao) and we find
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f(r, r) ' −(ε− 1)2

4πε2

(
1

L
+
ε− 1

ε+ 1

1

2d

)
(5.98)

This is the function that appears in the expression for the solvation free energy 5.71, and if
we substitute this expression into that equation we finally have

E(L, d) ' ε− 1

2ε

1

L
+

ε− 1

ε(ε+ 1)

1

4d
(5.99)

The first term here is the born solvation energy for a unit point charge at the center of a
cavity with radius L, and the second term is the interaction between that charge and its
image charge. This result is often claimed to be an exact result for the cavity below the
interface [3] but we see here that it is only in fact a lowest order result. Extending this to
higher order (and to the case where the cavity is penetrating the boundary) requires some
numerical work which is not yet complete.
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