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ABSTRACT: Super-resolution fluorescence imaging has offered
unprecedented insights and revolutionized our understanding of
biology. In particular, localized plasmonic structured illumination
microscopy (LPSIM) achieves video-rate super-resolution imaging
with ∼50 nm spatial resolution by leveraging subdiffraction-limited
nearfield patterns generated by plasmonic nanoantenna arrays.
However, the conventional trial-and-error design process for LPSIM
arrays is time-consuming and computationally intensive, limiting the
exploration of optimal designs. Here, we propose a hybrid inverse
design framework combining deep learning and genetic algorithms to
refine LPSIM arrays. A population of designs is evaluated using a
trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution.
Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction
accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of
inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging
applications.
KEYWORDS: Deep learning, Genetic algorithms, Photonics inverse design, Super-resolution microscopy, Plasmonics,
Structured illumination microscopy

Fluorescence imaging has revolutionized the visualization of
biological structures and dynamics by offering remarkable

image contrast and chemical specificity.1,2 The breakthroughs
in super-resolution microscopy techniques3−5 further advanced
our understanding of subcellular structures and processes at
the nanoscale by overcoming the Abbe diffraction limit. Over
the past two decades, numerous super-resolution microscopy
methods, including single-molecule localization microscopy,6,7

stimulated emission depletion microscopy,8,9 structured
illumination microscopy (SIM),10−12 and their derivatives
have been developed.
Localized plasmonic structured illumination microscopy

(LPSIM)13−16 is a super-resolution fluorescent imaging
technique assisted by plasmonic nanoantenna arrays. These
arrays, consisting of periodic plasmonic nanodiscs, generate
near-field illumination patterns that incorporate the high-
spatial-frequency details of the object into the detectable
bandwidth of a microscope. Typically, at least nine subframes
are collected to reconstruct each super-resolution frame by
using a blind-SIM algorithm.17,18 LPSIM has experimentally
achieved a 3-fold improvement in resolution beyond the
diffraction limit and video speed for dynamic samples.19

Additionally, employing nanodisc arrays with a smaller pitch
has further improved the resolution enhancement to five
times.20 However, this comes at the cost of partially missing
information between spatial frequency peaks, leading to

potential deformations and artifacts in the reconstructed
image.
The design of LPSIM arrays normally follows conventional

trial-and-error procedures, which begin with an intuition-based
initialization followed by iterative adjustments of geometric
parameters. This process often involves parameter sweeping
and necessitates a significant amount of time and computa-
tional resources. Moreover, for LPSIM, the simplicity and high
symmetry of the commonly used unit cell offer a limited
collection of tunable parameters, namely, the radius, height,
and pitch of nanodiscs, thereby limiting the potential for
finding the optimal design.21 Moreover, specific assumptions,
such as uniformity in averaged illumination17 and low
coherence among illuminations,22,23 are critical for reconstruc-
tion. However, systematically incorporating these constraints
into the design process can be challenging. Although the
accuracy of reconstructions primarily hinges on the illumina-
tion patterns generated by LPSIM substrates, a clear
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relationship between geometric parameters and imaging
capabilities has been elusive.
To address the drawbacks of the conventional photonics

design approach, researchers have turned to modern
optimization algorithms, like genetic algorithms,24−26 topology
optimization,27−29 and machine learning,30−35 to expedite the
inverse design process. On the one hand, optimization
methods can streamline the process by intelligently selecting
subsequent design candidates, although they often rely on full-
wave simulation for individual design characterization. On the
other hand, machine learning�a data-driven approach�can
entirely substitute full-wave simulation with a model trained on
existing design-response data sets. Consequently, integrating
these approaches into a hybrid model proves highly
beneficial.36−43 It not only bypasses the time-intensive
parameter sweeping and full-wave simulation but also enhances
the exploration of diversiform photonics structures, allowing
for greater flexibility in the design parameter choices.
In this study, we propose a computationally effective hybrid

inverse design framework to optimize the silver nanoantenna
array for LPSIM by combining deep learning and optimization
methods. A convolutional neural network (CNN)-based
predictor enables the rapid and accurate prediction of near-
field electric fields produced by the LPSIM array. Utilizing the
trained CNN, a genetic algorithm-based mutiobjective
optimization (MOO) refines designs through selection,
mutation, and reproduction. Simulated imaging results reveal
the superiority of the optimized LPSIM substrate design over
traditional designs in reconstructing fluorescent beads and
biological structures. The optimized design exhibits a higher

accuracy, robustness against noise, and increased tolerance for
fewer measurements. The proposed framework not only shows
the efficacy of inverse design techniques for tailoring LPSIM
substrates with specific functionalities but also extends the
possibilities for exploring new plasmonic nanostructures for
applications in imaging and beyond.
To generate tunable structured illumination patterns with

localized plasmonic fields, the nanoantenna array is illuminated
with a laser at varying incident angles. Figure 1a shows an
experimental illumination scheme. TM-polarized beams are
used to illuminate the nanoantenna array because of their
tunability when sweeping the illumination angles, which are
controlled by a pair of galvo mirrors. The fluorescent signal
from the sample is collected by an objective. For imaging
purposes, an operational wavelength of 488 nm is selected.
Silver is chosen as the nanoantenna material due to its strong
plasmonic response at this specific wavelength.
Figure 1b shows the schematic workflow of the CNN-

assisted genetic algorithm. The evolution starts with a
population of randomly generated unit cell designs represented
by geometric parameters. Each design is fed into a trained
CNN predictor, which provides rapid and accurate prediction
of the periodic near-field electric fields generated by the
LPSIM array. These predictions are used subsequently to
compute several evaluation metrics that we aim to optimize.
The designs with better metrics are stochastically selected,
recombined, and mutated to form the new generation. This
optimization process is repeated until the metrics converge or a
certain number of generations is reached.

Figure 1. Hybrid inverse design of nanoantenna arrays for LPSIM. (a) Illumination scheme of LPSIM. QWP, quarter wave plate; M, mirror; GM,
galvo mirror; PP, polarizer plate; L, lens. (b) Schematic workflow of the CNN-assisted genetic algorithm for inverse design.
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The initial preparation for training the CNN is the creation
of a meticulously crafted training data set following a well-
defined design framework. The unit cell of the LPSIM array
(Figure 2a), called the meta-atom, exhibits a dimension of 200
× 200 nm and incorporates silver nanostructures patterned on
a silica substrate. The silver structures featuring a thickness of
60 nm are embedded in an 80 nm poly(methyl methacrylate)
(PMMA) layer. This type of metallic nanoantenna array can be
mass-fabricated with nanoimprinting lithography as demon-
strated in our previous work.14 Each meta-atom consists of one

of the following three configurations: (i) a central nanostruc-
ture, (ii) four side nanostructures, or (iii) a central
nanostructure surrounded by four side nanostructures, each
chosen from a selection of four fundamental geometries:
rectangle, ellipse, cross, and c-ring, as depicted in Figure 2b.
The basic silver nanostructures are amenable to adjustments of
their specific shapes on the x−y plane. To ensure simplicity,
the meta-atom has mirror symmetry in both the x- and y-
directions. Moreover, the size of the antennas and distances
between antennas are constrained with a minimum of 30 nm to

Figure 2. Schematic representation of the CNN model and its prediction of the near-field electric fields generated by the LPSIM arrays. (a)
Illustration of the unit cell, featuring silver nanostructures on a silica substrate and covered by a PMMA layer, with the dimension of 200 × 200 nm.
(b) Illustration of the fundamental geometric shapes of the nanostructures, including rectangle, ellipse, cross, and c-ring. (c) Schematic of the CNN
architecture employed for predicting the field distributions at various incident angles based on the input geometry. (d) Eight independent near-field
distributions resulting from different incident angles. (e) Comparative analysis of field distributions. Field distributions for various unit cells show
good agreement between the predictions from the CNN model and the ground-truth data obtained from the FDTD simulation. The MSE levels
depend on geometric complexity but are always at the magnitude of 0.01 or smaller.
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ensure the meta-atoms contain features within practical
fabrication tolerance. Given the geometric configuration and
parameters, a binary image representing the meta-atom is
generated, with silver regions denoted by 1 and PMMA regions
denoted by 0. The pixel size of the image is 1 nm.
We use Lumerical FDTD to generate a sizable data set

comprising designs and their corresponding responses (i.e., the
field distributions at a plane 10 nm away from the surface of
the LPSIM array). We simulate the meta-atom under
illumination at 18 different incident angles. Due to inherent
symmetry considerations, only 8 near-field distributions are
independent (Supporting Information Section S1). A large
data set comprising 10,000 structures and field pairs is
generated, which we split into 9,000 and 1,000 for training
and testing, respectively.
A CNN shown in Figure 2c (Supporting Information

Section S2) is employed to facilitate rapid and precise field
distribution predictions at every incident angle (Figure 2d).
The trained CNN exhibits a remarkable ability to predict the
near-field characteristics of novel meta-atoms unseen in the
training data set. This is verified by achieving a mean-squared
error (MSE) of approximately 0.01 between the predictions
and the ground truth data obtained through FDTD simulations

for the test data set (Figure 2e). It is worth highlighting that
the MSE values are substantially influenced by the geometric
complexity of the structures. Simpler shapes such as rectangles
and ellipses exhibit lower errors, whereas more intricate
structures, such as c-rings, tend to yield higher but still
acceptable errors.
With the trained CNN model, we can readily predict the

illumination patterns for arbitrary meta-atoms generated within
our design framework in milliseconds. For photonic inverse
design, many published works aiming at achieving high-
dimensional target responses, such as the spectral re-
sponse,44−47 often incorporate a generator like generative
adversarial networks (GANs)48 and variational autoencoders
(VAEs)49 that directly output the design of a structure for a
given target response. In our case, instead of looking for
specific target illumination patterns, we focus on optimizing a
set of metrics serving as indicators of imaging performance in
the context of SIM. These metrics with much smaller
dimensions can be derived from analytical formulas given the
field distributions. This innovative approach eliminates the
need for a generator and reduces the dimensionality of the
design problem.

Figure 3. Workflow of multiobjective optimization and metric space representation. (a) Illustration of the workflow depicting the integration of a
CNN with the NSGA-II MOO algorithm for the optimization of unit cell designs. (b) Evolution of the best values for the objective function and
each metric per generation. The insets highlight the top design for each metric independently across the generations. (c) Correlation matrix of the
three metrics for all randomly generated designs before optimization and the designs on the Pareto front. As the optimization proceeds, the metrics
become more correlated, making it difficult to optimize them simultaneously. Therefore, they converge to the Pareto front. (d) Visualization of the
metric space in both 3D and 2D projections. All generated data, the top 250 designs based on the customized objective function, and the Pareto
front are marked in blue, yellow, and green, respectively. The purple and red stars represent the metrics from our previous LPSIM work (denoted as
HEX) and the optimized design (denoted as OPT1) in Figure 4 for comparison.
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For a certain meta-atom design, we evaluate the predicted
illumination patterns with three metrics: (i) the uniformity of
the total illumination, characterized by the standard deviation
σ of the normalized average of all illumination patterns; (ii) the
spatial cutoff frequency kc of the effective optical transfer
function (OTF), defined as the frequency where the
magnitude of OTF starts to fall below 1% of the DC
component; (iii) similarity μt among the illuminations,
represented by the t-averaged mutual coherence50 (Supporting
Information Section S3).
The ideal illumination patterns have low σ, large kc, and low

μt. Trade-offs need to be made when optimizing the three
metrics. Thus, the design of LPSIM nanoantennas is optimized
with well-established MOO algorithms. We utilize pymoo,51 an
open-source MOO package in Python, so that the optimization
can be seamlessly connected to the CNN model based on
PyTorch. Pymoo offers a range of optimization algorithms,
primarily based on genetic algorithms. We utilize the Non-
Dominated Sorting Genetic Algorithm (NSGA-II).52 Figure 3a
illustrates the workflow, where we initially generate a set of
random parameters to describe various meta-atoms and
convert them into binary images. The corresponding near-
field distributions predicted by CNN are then evaluated with
the three metrics. The program selects the top-N best designs
as parents for generating the next batch of design candidates,
which involves the reproduction and mutation of the designs.
After several iterations, a set of well-optimized final meta-
atoms is obtained.
We run the MOO for 100 generations, evaluating 500 meta-

atoms in each generation using the CNN. The insets of Figure
3b show the evolution of metrics versus the number of
generations. It should be noted that evaluating all 50,000
designs using full-wave simulation without CNN would be

extremely time-consuming if not impossible. After completing
the MOO, we obtain a Pareto front of the design problem that
consists of a set of optimized meta-atoms, and each excels in at
least one metric when compared to another design. Figure 3c
compares the correlation among the three metrics for all of the
designs before optimization and the designs on the Pareto
front. The increase in the correlations among the metrics
shows the effectiveness of optimization. To identify designs
that simultaneously balance the three metrics, we look for the
N-best designs which minimize a customized objective
function

L kc t1 2 3= + (1)

where λ1, λ2, λ3 are positive weighted parameters and can be
adjusted based on different requirements. Here, we selected
the maximum value of these parameters to normalize the
metrics, i.e., i= m1/max( )i , where mi stands for σ, kc, and μt.
We utilized the objective function to guide our selection
process for the top 250 designs. Figure 3d shows the metric
space in both 3D and 2D projections, with the top 250 data
points highlighted in orange and the Pareto front in green. The
purple star represents the metrics of a hexagonal design in our
previous work14 for comparison, and we observe that the
generated designs exhibit significantly improved metrics, which
proves the effectiveness of our hybrid model in optimizing the
meta-atoms for superior high-speed super-resolution perform-
ance.
We use randomly distributed fluorescent beads with a

diameter of 40 nm (Figure 4a) as the object to numerically
showcase the super-resolution imaging capability of the
optimized LPSIM substrate design. We evaluate the perform-
ance of the hexagonal design in our previous work14 (Figure

Figure 4. Comparison of imaging results for different unit cell designs with simulated beads as the object. (a) Ground truth image of randomly
distributed 40 nm fluorescent beads. Scale bar, 400 nm. (b−d) Unit cell of the hexagonal design, randomly picked design RAN10, and an optimal
design OPT1, respectively. Scale bar, 40 nm. (e) OTF of the diffraction-limited imaging system. (f−h) Effective OTFs of the designs shown in (b−
d), respectively. (i) Diffraction-limited image. Scale bar, 400 nm. (j−l) Blind-LPSIM reconstructions using 18 subimages for the designs shown in
(b-d), respectively. Scale bar, 400 nm. (m-p) Zoom-in areas in the green dashed boxes in (i−l), respectively. Scale bar, 100 nm. (q−t) Zoom-in
areas in the blue dashed boxes in (i−l), respectively. Scale bar, 100 nm.
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4b), ten randomly selected designs from the training set
(Figure 4c, Figure S1a, denoted as RAN1−RAN10), and one
of the optimal designs (Figure 4d, denoted as OPT1).
Additionally, several other designs from the Pareto front,
which feature diverse geometries, are shown in Figure S2. The
geometric parameters of these optimal designs are listed in
Table S1. The evaluation metrics are listed in Table S2. We
also examined the practical impact of fabrication deviations in
Figure S3. These deviations are found to have minimal effect
on the three metrics and, consequently, on the overall imaging
performance.
The illumination patterns of each LPSIM substrate at 488

nm are obtained by using Lumerical FDTD. Figure 4e shows
the OTF of the widefield imaging system, while Figure 4f-h
and Figure S1b are the effective OTFs of the designs shown in
Figure 4b-d and Figure S1a, respectively. The fluorescent
images of beads at 520 nm collected by a 1.15 NA water
immersion objective are simulated with Ii = (obj × illui)*PSF +
Ni, where obj is the object, illui are the illumination patterns, *
denotes the convolution operator, PSF is the point spread
function of the imaging system, and Ni is Poisson noise
considering a signal-to-noise ratio (SNR) of 20 dB. Figure 4i
shows the simulated diffraction-limited images of the beads.
Figure 4j-l and Figure S1c present the images reconstructed by
using the blind-SIM algorithm. When illuminated with
substrates consisting of randomly picked meta-atoms, most
of the reconstructed images suffer from low resolution or
contain a significant amount of artifacts. Specifically, most of
them fail to resolve the quadruplet or resolve the four beads as
two or three beads, shown in the zoomed-in reconstruction in
Figure 4o and Figure S1d, and resolve multiple isolated beads
as continuous lines in the scene with increased complexity
(Figure 4s and Figure S1e). Despite the illuminations
generated by the hexagonal design having a fairly high cutoff
frequency and low similarity, the nonuniformity results in some
beads appearing dimmer than others due to insufficient
ignition by the sampling patterns during the measurements.
This nonuniformity also leads to artifacts in the reconstructed
images (Figure 4n,r). In contrast, the meta-atom optimized
with the hybrid inverse design yields superior reconstruction

with a two-point resolution of 80 nm and minimal artifacts
(Figure 4l,p,t).
To demonstrate how LPSIM works for intricate biological

objects and underscore the advantages of the proposed hybrid
inverse design method, we simulate Blind-SIM reconstruction
with LPSIM illumination generated by the hexagonal unit cell
as well as the optimized meta-atom using microtubules (MTs)
and endoplasmic reticulum (ER) as the object, as depicted in
Figure 5a,b. The ground-truth (GT) images used here are from
the data set BioSR.53

We evaluate the performance of different designs by
analyzing image reconstructions produced with varying
numbers of subimages (Figure 5a-c). Across both objects we
observe that the reconstruction with measurements from the
optimized design exhibits a superior match with the ground
truth images in terms of the multiscale structural similarity
index measure (MS-SSIM).54 The numbers of Blind-SIM
iterations are selected for each reconstruction such that the
MS-SSIM reaches its maximum, typically between 40 to 80.
Although the reconstructions for the hexagonal design appear
to be sharper and have higher peak signal-to-noise ratio
(PSNR), they suffer from a conspicuous overemphasis on
nodes (Figure S4c). This tendency to represent objects as
interconnected dots leads to noticeable artifacts and
excessively high contrast, rendering the representations less
meaningful and authentic. In contrast, the reconstruction from
the optimized design provided a more nuanced and accurate
visual perception of the MT and ER. Figure 5c shows the MS-
SSIM against the number of subimages utilized in
reconstructions for both designs with 20 dB SNR measure-
ments. When the number of subimages is reduced, the quality
of both reconstructions degrades at a similar rate in terms of
MS-SSIM.
We further test the imaging performance of the two LPSIM

substrates across a range of SNRs from 25 down to 5 dB, as
illustrated in Figure S4. Overall, the reconstructions for the
hexagonal design consistently tend to overemphasize the nodes
for various SNRs. This exacerbates as the SNR decreases down
to 10 dB and below. It results in the reconstruction of
continuous structures fragmenting into discrete pieces or even

Figure 5. Demonstration of the improved LPSIM substrate design by using simulated imaging results for different types of biological objects: (a)
microtubules, (b) endoplasmic reticulum. GT: ground truth. WF: widefield (diffraction limited). HEX18, HEX9: Blind-SIM reconstructions using
18 and 9 subimages for the hexagonal design shown in Figure 4b. OPT18, OPT9: Blind-SIM reconstructions using 18 and 9 subimages for the
optimized design shown in Figure 4d. SNR is 20 dB for all measurements. Scale bar, 500 nm. Insets: corresponding Fourier transforms. (c)
Comparison of the MS-SSIM versus the number of subimages for the hexagonal design and the optimized design. The SNR during measurement is
20 dB. (d) Comparison of the MS-SSIM versus the SNR during measurement for the hexagonal design and the optimized design using 18
subimages.
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disappearing entirely. Conversely, the reconstruction from the
optimized design demonstrates a superior alignment with the
GT even at relatively low SNRs although dot-like noise
artifacts also begin to emerge at an SNR of 5 dB. Figure 5d
further illustrates the MS-SSIM versus the SNR for the
hexagonal design and the optimized design utilizing 18
subimages. With degrading SNRs both reconstructions
exhibited a similar degradation in quality in terms of MS-SSIM.
In conclusion, we present a hybrid inverse design framework,

which integrates a CNN and a genetic algorithm-based MOO,
to efficiently optimize silver nanoantenna arrays for LPSIM. It
is important to highlight that despite its seemingly simple
appearance with four elliptical shapes, the design of the OPT1
in Figure 4d is complex to be obtained through traditional
design methods, which usually involve a two-step approach:
initially identifying the optimal configuration of the four
ellipses compared to other possible configurations and then
fine-tuning the parameters of the chosen design. Our inverse
design method streamlines this process by merging both steps
and operates at a higher level of sophistication. Furthermore, it
has the capability to discover various optimal designs along the
Pareto front, catering to diverse user requirements.
The CNN model allows us to predict the illumination

patterns rapidly and accurately for meta-atoms generated
within the design framework. In our specific context, the meta-
atoms comprise silver nanostructures belonging to the four
designated antenna with fixed thickness. Only the planar
geometries are subject to tuning. This mitigates the need to
generate a complex and large data set, accelerates the
convergence of the training process, and yields more accurate
prediction. To augment the degree of freedom for potentially
more optimized designs, a generalized predictor for near fields
of free-form arbitrary nanostructures31,55 over a large region or
array-level inverse design strategies56,57 may be used at a cost
of increased computational demand. Exploring a broader range
of materials and structured illumination scheme15 would
further enhance the versatility of the hybrid model.
The proposed hybrid inverse design framework involves a

complex data flow from structure to field and finally to metrics,
making it more sophisticated and better suited for imaging
tasks than existing frameworks that typically follow a simpler
structure-to-response flow. Additionally, by predicting the field
first, we can easily define and incorporate additional metrics to
achieve a more holistic optimization, allowing the framework
to be flexibly tailored to diverse applications. By training neural
networks that model various forward processes and employing
appropriate evaluation metrics, the proposed framework can be
applied to diverse design scenarios, including but not limited to
photonics, mechanics, and electric devices.
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