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Effects of Non-Zero Dispersion at Crab 

Cavities on the Beam Dynamics* 

Yong Ho Chin 

Explorato'ry Studies Group 

Accelerator & Fusion Research Division 

Lawrence Berkeley Laboratory, Berkeley,· CA 94120 

Introduction 

ESG-107 
LBL-29581 

The idea of crab crossing, which has been proposed to allow a non-zero crossing angle 

without a loss of. luminosity, is based on avoiding the excitation of synchro-betatron. 
- ' . 

resonances in a storage ring collider.1 The validity of the crab crossing scheme relies 

on the cancellation of kick effects at a. crab cavity by those at another crab cavity 
. ·' . . 

located on the other side of the interaction point (IP). For the effects to be cancelled 

exactly, the energy change due to the beam-beam interaction must also be cancelled 

by these two cavities. We can show, however, that the effect of the energy change 

is not cancelled exactly if the dispersion, 'f'j, and its derivative with respect to s, "7', 

are non-zero at the crab cavities. Consequently, the crab crossing scheme may induce 

synchro-betatron resonances with, and even without, the beam-beam effect. We show· 

an example of stopbands due to synchro-betatron resonances when only crab kicks are 

taken into account. We also present a stability criterion that can be used to determine 

tolerable values-of "7 and '1] 1
, or the crossing angle, when beam-beam effects are included. 

Matrix Analysis 

The first step is to calculate the transformation matrix of a crab kick for non-zero 

dispersion at the crab cavity. Here we assume that the crossing is done in the horizontal 

plane. We define the longitudip.al coordinate, r, by the longitudinal position relative 

to the center of the bunch, and the horizontal displacement of a particle, x, measured 

*This work :was.supported by the Director, Office of Energy Research, Office of High Energy and 

Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. 

DE-AC03-76SF00098. 



from the beam axis. Their canonical conjugates are the horizontal angle, x', and the 

relative energy deviation, 8, respectively. We restrict ourselves to the case where the 

kick is linear in these coordinates. The transformation matrix for zero dispersion is 

already known: it is given by 

X 1 0 0 0 X 

0 1 a 0 x' 
0 0 1 0 T 

(1) 
x' 

T 

after a kick a 0 0 1 8 before a kick 

=K 

where 
tancp 

a=--
f3r 

(2) 

with f3r = jiiiii, cp is half the crab crossing angle, (3; and f3c are the beta functions 

at the IP and at the crab cavity, respectively. The non-zero ( 4,1 )element of the matrix 

K is essential to ensure symplecticity.2 The emergence of this term may be understood 

as follows: symplecticity means that the equations of motion can be derived from a 

Hamiltonian(say, 1i). 

Therefore, 

dx' 81{ 
-=-=ar 
ds ox 

1{ = axr + · · ·. 
Then, the equation of motion of energy is 

d8 81-l 
-=-=ax+···. 
ds or 

(3) 

(4) 

(5) 

When there is non-zero dispersion, the betatron motion and the synchrotron motion 

are coupled. The transformation matrix from the pure transverse (x, ~') and the pure 

longitudinal ( f, h) coordinates to the mixed coordinate ( x, x', r, 8) is 3 

X 1 0 0 TJ X 

x' 0 1 0 TJ' x' 
(6) -

T -TJ' TJ 1 0 f 

8 0 0 0 1 h 

=E 
The transformation matrix of a crab kick for non-zero dispersion, T t, is then given by 

(7) 

2 

c 



\ 
"'' 

The explicit form is 

1- a'f/ 0 0 -aTJ2 

T1= 
-2aTJ1 1 + a'f/ a -aTJ'fJ' 

(8) 
a'f/"7' -a'f/2 ·1-a'f/ 0 

a 0 0 1 + a'f/ 

The transformation matrix from the crab cavity(say, #1) to the IP, R~, is given by 

0 f3r 0 0 
1 0 0 0 

R1= - f3r 
(9) 

0 0 1 0 

0 0 0 1 

where the phase advance between crab cavity #1 and the IP is 1r /2. Here, we have 

assumed that the Twiss parameter a is zero at both the crab cavity and the IP for 

simplicity. (This assumption is satisfied in Ritson's design of a crab crossing scheme 

that will be described later.) Similarly, the transformation matrix from the IP to the 

second crab cavity on the other side of the IP, where Twiss parameters are mirror 

symmetrical to those at crab cavity #1 with respect to the IP, is given by 

0 f3r 0 0 
1 0 0 0 

R2= - f3r 

0 0 1 0 
(10) 

0 0 0 1 

The transformation matrix of a kick at crab cavity #2 is 

1- a'f/ 0 0 -a'f/2 

T2= 
2a'f/1 1 +aTJ a a'f/"7' 

(11) 
-aTJ'fJ' -a'f/2 1- a'f/ 0 

a 0 0 1 + a'f/ 

where we have assumed( as is usually the case) that the dispersion at crab cavity #2 is 

equal to that at crab cavity #1, while its derivative changes its sign. 

The transformation matrix from crab cavity #2 to crab cavity #1 through the rest 

of the ring is 

cos J.l21 f3c sin J.L21 0 0 
sintt21 cos J.l21 0 0 

A= 
-----p;-

0 0 cos </>21 -1f sin </>21 
(12) 

0 0 n . </> -sm 21 
Otp 

cos ¢>21 
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where 

(13) 

with the horizontal tune Qx, </>21 = 27rQs with the synchrotron tune Qs, ap is the 

momentum compaction factor, and n = 21rg• where C is the circumference. In the 

above formulation, we have neglected the synchrotron phase advance between crab 

cavities, which is smaller than that of the rest of the ring by a factor of rv Qs/(2Qx)· 
Now, we have all the transformation matrixes for the whole ring excluding the effect 

of the beam-beam interaction( denoted BBI). The effect of the BBI cannot be written as 

a simple transformation matrix since it includes higher-order nonlinear forces. However, 

it can be expressed by an inhomogeneous equation as 

X 1 0 0 0 X 0 

x' 0 1 0 0 x' -F cos2 c.p 
(14) - + 

T 0 0 1 0 T 0 

8 after BBI 0 0 0 1 8 before BBI F sin c.p cos c.p 

where F is the beam-beam kick of a particle integrated over the incoming bunch. 

Let us conceptually divide the ring into two parts: the first part goes from crab 

cavity #1 to #2 including their kicks, and the second part includes the rest of the ring. 

This is schematically shown in Fig. 1. The first part is expressed by 

Namely, 

X 

x' 

T 

#2 

X 

-1 + 2art- 2a2 rt 2 

6a2rtrt' 

2artrt' - 4a2rt2rt' 

2a2rt 

0 

-1- 2art- 2a2 rt 2 

2a2rt3 

0 

=C 

0 

-2a2rt 

1 - 2art + 2a2 rt 2 

0 

X 

x' 

-f3rF cos2 c.p +rtF cos c.p sin c.p-'- {J: F sin2 c.p 

+ 
T 

#1 

- 2rt' F sin c.p cos c.p + ~:' F sin 2 c.p 

rtrt' F cos c.p sin c.p 

.!L F sin2 c.p 
f3r 

=B 

4 

(15) 

-2a2rt3 

2artrt' + 4a2rt2rt' 

-2a2rt3rt' 

1 + 2art + 2a2rt2 

(16) 

f 

'i 

( 
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I.P. 

Crab cavity Crab cavity #1 
Part . 1 

Part 2 

Figure 1: Schematic configuration of the ring with crab cavities. 

It looks complicated, but reduces to a simple form if we insert 7] = r/ = 0 into the 

above equation: 
X -1 0 0 0 X 

x' 0 -1 0 0 x' 

T 0 0 1 0 T 

8 
#2 

0 0 0 1 8 
#1 

-f3rF cos2 r.p 

0 
(17) + 0 

0 

The effect of the crab kicks is cancelled, and the energy change due to the BBI disap­

pears. As a matter of fact, if both 7] and 7]
1 at crab cavity #2 are reversed in sign and 

equal in magnitude to those at crab cavity #1, we obtain the same result as above. This 

explains the physical origin of the remnant of crab kick effects. Namely, in order for the 

kick effects generated by the two cavities to cancel each other, it is essential that the 

physical coordinates of a particle, x and T, are transformed to -x and T (when the BBI 

is neglected) as the particle advances from crab cavity #1 to #2. The decoupled pure 

coordinates, x and 7, are transformed to -x and 7. Thus, the physical coordinates, x 

5 



and r, can transform as required only when '1] and '1]
1 both change sign at the two crab 

cavities (see Eq.(6) ). 

Synchro-betatron Resonances Induced by Crab Kicks 

The transformation (16) suggests that synchro-betatron resonances may be excited 

even without the beam-beam interaction(F = 0). The stability of motion can be exam­

ined by calculating eigenvalues of the total transformation matrix in the ring, Ax C. If 
the absolute value of an eigenvalue is greater than one, the particle motion is unstable. 

Figure 2 shows an example of the stopband with a crossing half-angle of 20 mrad as a 

function of '1] at the crab cavities and the fractional part of the horizontal tune, 8Qx. 

The parameters used are summarized in Table 1. They are partially taken from Ritson's 

design of an IP with crab crossing.4 Arbitrarily, 7] 1 has been set to zero. Actually, the 

stopband has only a weak dependence on 7]1
, since 7] 1 changes its sign at the two cavities 

and therefore its effect is nearly cancelled. 

Table 1. Parameters of the sample crab crossing design after Ritson. 

Circumference, C (m) 

Bunch length, 0"8 (em) 

Beta function at IP (3; (m) 

Beta function at the crab cavities, f3c (m) 

Emittance, Ex (nm-rad) 

Crab crossing half-angle, cp (mrad) 

Synchrotron tune, Q s 

Momentum compaction factor, ap 

We can see the stopbands at tunes 

8Qx ~ 0, 

8Qx ,...... 0.5, ,...... 

8Qx- Qs ,...... 0. ,...... 

2200 

1.0 

0.4 

19 

100 

20 

0.040 

0.00115 

(18) 

(19) 

(20) 

Since we assume that a crab kick is linear in x and r, only the linear resonance 

8Qx- Q8 ~ 0 appears. In reality, a crab kick may include nonlinear terms in x and 
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Figure 2: Stopband due to synchro-betatron resonances excited by crab kicks only. 
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r, so nonlinear resonances may also be excited. With these parameters, the unstable 

region spreads out over the entire tune range and has a weak tune dependence when 'f/ 

becomes larger than "' 17m. A similar stopband pattern is observed in the analysis of 

the mode-coupling beam instability due to a localized impedance,5•6 where the change 

of stopband pattern is explained by the cause of instability changing from a resonance 

to a mode-coupling instability. 

Beam-beam Effects and Tolerances 

Next, let us consider the effects of the beam-beam interaction. The changes in rand 

8 arising from the BBI (see Eq.(16)) are a source of synchro-betatron resonance. Let 

us compare these longitudinal coordinate changes with that due to a non-zero crossing 

angle without the crab scheme.7 The energy change due to the crossing angle 2c.p is 

118 = F sin c.p. (21) 

In the present case with the crab scheme, the energy change is much smaller than 

F sin c.p, since -#; sin c.p ~ 1. Therefore, the r change is likely to give the main contri­

bution to synchro-betatron resonances. Otherwise, the effects will be negligible. The 

r change, 'f/'f/ 1 F cos c.p sin c.p, is equivalent to an energy change of :~ F cos c.p sin c.p. Thus, 

the effective crossing angle that gives the same strength of synchro-betatron resonance 

as produced by the crossing angle c.p without a crab scheme, is 

' • TIT/ • 
sm 'fief J ~ o:C cos c.p sm c.p, (22) 

which may be approximated by 

(23) 

The maximum tolerable crossing angle that will excite weak enough synchro-betatron 

resonances is given by 

(24) 

where a; is the rms horizontal beam size at the IP and 0"8 is the rms bunch length. The 

condition (24) expresses the situation where two beams are still well overlapping, so 

that the crossing angle may not be well defined for particles whose orbits have angular 

divergence from the betatron oscillation. If we insert Eq. (23) into Eq. (24), we obtain 

a tolerance for the dispersion times its derivative at a crab cavity or alternatively, for 

8 
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the crossing angle when the dispersion and its slope are given: 

, < a; aC 
TJTJ- --

2as <p 

With the parameters in Table 1, this criterion becomes numerically 

TJTJ 1 
:::; 1.27 m. 

Conclusions 

(25) 

(26) 

The present analysis in terms of a matrix formulation can predict only linear synchro­

betatron resonances, as shown in Fig. 2, when the effects of crab kicks are considered 

without the beam-beam interaction. In reality, however, the intrinsic nonlinearity of 

the electromagnetic field in crab cavities will induce nonlinear resonances as well. This 

nonlinearity may be enhanced by various effects: not only by errors in the crab cavity 

performance, but also by 'dynamic effects such as a beam entering a crab cavity off 

axis. The latter may be another source of synchro-betatron resonances by itself, just 

as in the case of non-zero dispersion. So far, most tolerance studies for a crab crossing 

scheme have been done in terms of errors in crab cavity performance. Further work on 

the beam dynamics effects may also be needed. 
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