
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Improved Physical Design and Signoff Methodologies for Better Integrated Circuit Design
Quality

Permalink
https://escholarship.org/uc/item/59z0584c

Author
Li, Jiajia

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59z0584c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Improved Physical Design and Signoff Methodologies for Better Integrated
Circuit Design Quality

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Jiajia Li

Committee in charge:

Professor Andrew B. Kahng, Chair
Professor Chung-Kuan Cheng
Professor Rajesh Gupta
Professor Patrick Mercier
Professor Tajana Rosing
Professor Steven Swanson

2017

Copyright

Jiajia Li, 2017

All rights reserved.

The dissertation of Jiajia Li is approved, and it is acceptable

in quality and form for publication on microfilm and elec-

tronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

I dedicate this thesis to my loving parents. Without their encouragement and support

this thesis would not have been finished.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xv

Acknowledgments . xvii

Vita . xix

Abstract of the Dissertation . xxii

Chapter 1 Introduction . 1
1.1 Slowdown of Density Scaling and Need for Design-Based

Equivalent Scaling . 1
1.2 Challenges in Physical Design and Signoff 3

1.2.1 Complex Operating Conditions and Corner Explosion . . . 3
1.2.2 Demand for Low-Power Designs 5
1.2.3 Growing Design Margins 6

1.3 This Thesis . 6

Chapter 2 Multi-Mode Multi-Corner Optimization 10
2.1 Optimization of Overdrive Signoff in High-Performance and

Low-Power ICs . 11
2.1.1 Dominance of Modes . 13
2.1.2 Problem Formulation . 15
2.1.3 Efficient Exploration of Design Space 16
2.1.4 Methodology . 19
2.1.5 Experimental Results . 22
2.1.6 Conclusion . 24

2.2 A Global-Local Optimization Framework for Simultaneous
Multi-Mode Multi-Corner Clock Skew Variation Reduction 27
2.2.1 Related Work . 28
2.2.2 Problem Formulation . 29
2.2.3 Optimization Framework 30
2.2.4 Experimental Results . 39
2.2.5 Conclusion . 44

2.3 Comprehensive Optimization of Scan Chain Timing During
Late-Stage IC Implementation . 45
2.3.1 Related Work . 48
2.3.2 Methodology . 49

v

2.3.3 Experimental Results . 58
2.3.4 Conclusion . 60

2.4 Acknowledgments . 61

Chapter 3 Low-Power Optimization . 62
3.1 Floorplan and Placement Methodology for Improved Energy

Reduction in Stacked Power-Domain Design 63
3.1.1 Related Work . 66
3.1.2 Methodology . 68
3.1.3 Experimental Results . 77
3.1.4 Conclusion . 84

3.2 Improved Flop Tray-Based Design Implementation for Power
Reduction . 85
3.2.1 Related Work . 88
3.2.2 Methodology . 90
3.2.3 Experimental Results . 101
3.2.4 Conclusion . 105

3.3 An Improved Methodology for Resilient Design Implementation . . 107
3.3.1 Related Work . 110
3.3.2 Methodology . 112
3.3.3 Experimental Results . 127
3.3.4 Conclusion . 135

3.4 Acknowledgments . 137

Chapter 4 Mixed-Fabric Optimization . 138
4.1 Design Implementation with Non-Integer Multiple-Height Cells for

Improved Design Quality in Advanced Nodes 139
4.1.1 Related Work . 141
4.1.2 Problem Formulation . 142
4.1.3 Methodology . 143
4.1.4 Experimental Results . 157
4.1.5 Conclusion . 162

4.2 NOLO : A No-Loop, Predictive Useful Skew Methodology for
Improved Timing in IC Implementation 164
4.2.1 Methodology . 168
4.2.2 Experimental Results . 173
4.2.3 Conclusion . 177

4.3 Reliability-Constrained Die Stacking Order in 3DICs Under
Manufacturing Variability . 179
4.3.1 Modeling . 182
4.3.2 Problem formulation . 188
4.3.3 Methodology . 189
4.3.4 Experimental Results . 192
4.3.5 Conclusion . 200

4.4 Improved Performance of 3DIC Implementations Through
Inherent Awareness of Mix-and-Match Die Stacking 201

vi

4.4.1 Related Work . 203
4.4.2 Problem Formulation . 205
4.4.3 ILP-Based Partitioning Methodology 205
4.4.4 Heuristic Partitioning Methodology 208
4.4.5 Experimental Results . 213
4.4.6 Conclusion . 218

4.5 Acknowledgments . 219

Chapter 5 Conclusion and Future Directions . 220

Bibliography . 224

vii

LIST OF FIGURES

Figure 1.1: Gap between “available” density scaling (gray arrow) and “realizable” den-
sity scaling in MPU products (red squares), adapted from [100]. 2

Figure 1.2: Three hypothesized steps to reduce the design time of complex mixed-signal
SoCs in sub-20nm technologies from 130 weeks to 30 weeks [219]. 3

Figure 1.3: Example of multi-mode operation. OD = overdrive mode. NOM = nominal
mode. 4

Figure 1.4: Growing design margins degrade the benefits of technology scaling. 6
Figure 1.5: Scope and organization of this thesis. 7

Figure 2.1: Pavg of circuits signed off at the same nominal mode (500MHz, 0.9V) but
40 different overdrive modes. Design: AES [230]. Technology: foundry
65nm. Corner: FF/125◦C. r = 10%. 12

Figure 2.2: Illustration of the design cone of mode A (the shaded region). 13
Figure 2.3: Four modes exhibit equivalent dominance. The desired design space is the

line D-A-B-C. 15
Figure 2.4: Our adaptive search flow (top) and power model (dotted box). 17
Figure 2.5: (a) Projection of mode B to mode B’ for circuit property modeling. (b)

λ(Vnom) calculation, where λ(Vnom) = ∆V 1/∆V 2. VHV T and VLV T are
defined by the intersections of fOD and the design cone. 20

Figure 2.6: Overview of our optimization framework. 31
Figure 2.7: Delay ratios between (c1, c0) and (c2, c0), respectively. c0 = (SS, 0.9V ,

-25◦C, Cmax), c1 = (SS, 0.75V , -25◦C, Cmax) and c2 = (FF, 1.1V , 125◦C,
Cmin). 34

Figure 2.8: LUTdetail is characterized with various input slews and fanout loads capac-
itance; LUTuniform contains average stage delay with particular gate size
and routed wirelengths between consecutive inverters. 35

Figure 2.9: Local optimization moves used in our flow. (a) Initial subtree; (b) sizing
and/or displacement; (c) displacement and sizing of child node; and (d) tree
surgery, i.e., driver reassignment. 37

Figure 2.10: Examples of (a) predicted vs. actual latencies, and (b) percentage error
histograms from our model for c3 corner in Table 2.10. 38

Figure 2.11: Accuracy comparison between our learning-based model and analytical mod-
els. An attempt is an ECO. There are 114 buffers, and each buffer has 45
candidate moves. In one attempt, the learning-based model (resp. analytical
models) can identify best moves for 40% (resp. up to 20%) of the buffers. . 38

Figure 2.12: Floorplans of (a) CLS1v1, and (b) CLS2v1. In yellow are routed clock nets. 40
Figure 2.13: Sum of skew variations reduces during the local iterative optimization. In

blue are type-I moves, in red are type-II moves, and in green are type-III
moves. 43

Figure 2.14: Distribution of skew ratios between (c1, c0) and (c3, c0) of (i) original clock
tree, and (ii) optimized clock tree for CLS1v1. 43

Figure 2.15: Illustration of skew-aware scan ordering that removes hold violation. L is
clock latency. 46

viii

Figure 2.16: Hold-critical scan timing paths vary between (a) post-placement stage and
(b) post-routing stage. In red are the top 10% of the hold-critical paths. In
blue are the non-critical paths. Design: LEON3MP. Technology: 28LP. . . 46

Figure 2.17: Dynamic voltage drop (DVD) varies between (a) post-placement stage and
(b) post-routing stage. Design: LEON3MP. Technology: 28LP. 47

Figure 2.18: Causes of hold violations on scan timing paths. (a) Skew distribution of scan
timing paths with hold buffers inserted. (b) Distances between consecutive
scan cells versus hold timing slacks. Design: LEON3MP. Technology: 28LP. 51

Figure 2.19: Optimization flow for gating insertion to optimize DVD-aware timing slacks. 53
Figure 2.20: Illustration of gating insertion with an OR gate. 54
Figure 2.21: (a) Layout of scan enable (SE) nets. Different colors indicate different levels

from the SE port. (b) Illustration of spiral search for SE nets in neighbor grids. 56
Figure 2.22: Performance of different sensitivity functions. Left figure shows an example

of sensitivity function SF = f/#fanins, where each cell within DVD
hotspots has one unit of power. 57

Figure 3.1: Comparison between (a) stacked power-domain design, versus (b) conven-
tional design. VR indicates voltage regulator. The orange arrows indicate
current from voltage regulators. The red arrow indicates stacked current. . 63

Figure 3.2: Overall optimization flow. 68
Figure 3.3: Example of optimization: (a) layout-aware partitioning, (b) region definition

of power domains, and (c) level shifter insertion in the updated floorplan.
Design: AES (∼11K instances). Technology: 28LP. 69

Figure 3.4: Flow-based partitioning. a and b are source and sink, respectively. All
vertices have the same weight. Red dotted lines indicate cuts. (a) Initial flow
network. (b) First max-flow min-cut computation. (c) Clustering operation.
(d) Second max-flow min-cut computation. 70

Figure 3.5: (a) Choosing a / b, or c / d, or d / c as source / sink cannot lead to a balanced
solution. (b) Adding a supersource (s) and a supersink (t) resolves the issue.
Edges in black have unit capacities. Edges in red have infinite capacities. . 71

Figure 3.6: HEM clustering solution. Different clusters are indicated by different col-
ors. #Clusters = 200. Levels of clustering = 18. Clustering ratio at each
level = 0.76. Design: AES. Technology: 28LP. 72

Figure 3.7: FM-based grid movement. (a) Initial placement solution. (b) In yellow are
outliers of the top domain. In green are neighboring grids of the top domain.
(c) Post-movement placement, where each domain has a continuous region.
Design: AES. Technology: 28LP. 73

Figure 3.8: Boundary optimization. (a) Original boundary. (b) Optimized boundary
with smaller length. An example of segment optimization is shown. Opti-
mized segments have smaller total length while maintaining the same area
in each power domain. Design: AES. Technology: 28LP. 75

Figure 3.9: Example of level shifter insertion. (a) Level shifter (in blue) placement
after first matching. (b) Placement blockage (in red) insertion. (c) Level
shifter placement after second matching. (d) Clumping of level shifters. (e)
Placement legalization applied to nearby standard cells. 77

Figure 3.10: Power efficiency of switched-capacitor voltage regulator used in [19]. . . . 78

ix

Figure 3.11: Impact of level shifter delay, area and power on design QoR in (a) function
mode and (b) sleep mode. Design: TC1. Technology: 40nm. 80

Figure 3.12: Impact of voltage regulator efficiency on battery lifetime improvement. De-
sign: TC1. Technology: 40nm. 81

Figure 3.13: Impact of voltage regulator efficiency on battery lifetime improvement. De-
sign: TC2. Technology: 40nm. 81

Figure 3.14: (a) Approximate layout of TC2. (b) Approximate partitioning solution of
TC2 (in red are top domains, in blue are bottom domains). 83

Figure 3.15: Block-aware partitioning solution, evaluated in both scenarios (with and
without logic block 2). Current values are normalized to the total current
of the conventional design including both logic block 1 and logic block 2.
Battery lifetime improvements are with respect to the conventional design. 84

Figure 3.16: Two inverters for the clock signal are shared between the two flops in a 2-bit
flop tray. 86

Figure 3.17: Wirelength and power overheads on datapaths due to flop tray-based imple-
mentations compared to implementations using only single-bit flops. Tech-
nology: 28FDSOI. Designs are from OpenCores website [230]. 86

Figure 3.18: Overall optimization flow of flop tray generation. 91
Figure 3.19: Example of min-cost flow with K-bit flop trays. 93
Figure 3.20: Clustering solutions into 64-bit flop trays (i) without awareness of flop tray

aspect ratio and dimensions, and (ii) with awareness of flop tray aspect ratio
and dimensions. Design: AES (530 single-bit flops). Technology: 28FDSOI. 94

Figure 3.21: Best clustering solution (i.e., func(hl) (left) and displacement (right)) with
multiple runs (numbers of runs are shown in the x-axis). 95

Figure 3.22: Example of our ILP-based optimization. 96
Figure 3.23: Illustration of the timing impact due to relative displacement between timing-

critical start-end flop pairs. 99
Figure 3.24: Number of flop trays and average displacement of flops change with differ-

ent α values. Design: JPEG. Technology: 28FDSOI. 99
Figure 3.25: Power change with various β values. Designs: AES, JPEG. Technology:

28FDSOI. 100
Figure 3.26: Layout comparison between implementations with only single-bit flops and

with optimized flop trays. In the flop tray-based solutions, the candidate
flop tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit. 103

Figure 3.27: Flop (tray) power and clock power of designs with various flop tray sizes.
Candidate tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit. 104

Figure 3.28: Datapath leakage power results, normalized to implementations with only
single-bit flops. 105

Figure 3.29: Structure of (a) Razor, (b) Razor-Lite, and (c) TIMBER flip-flops. 108
Figure 3.30: Slack distribution of endpoints in (a) original design; (b) design with only

selective-endpoint optimization; and (c) design with combined selective-
endpoint and useful skew optimization. Red dotted lines indicate required
safety margin. Design: FPU. Technology: 28nm FDSOI. 112

x

Figure 3.31: (a) Illustration of the tradeoff between cost of resilience and cost of data path
optimization. (b) With reduced number of Razor flip-flops, resilience cost
decreases but power of data paths increases. Design: FPU (OpenSPARC
T1). Technology: 28nm FDSOI. 114

Figure 3.32: Cell area and total power resulting from selective-endpoint optimization
with different sensitivity functions. Design: FPU (OpenSPARC T1). Tech-
nology: 28nm FDSOI. 116

Figure 3.33: Implementation flow. OR tree insertion flow is indicated by the red dotted
box. 121

Figure 3.34: Our proposed OR tree insertion flow achieves an average of 29% wirelength
reduction for the error-detection network, as compared to a reference flow.
RSMT cost is a (loose) lower bound. 122

Figure 3.35: Replacement of an error-tolerant flip-flop with a conventional flip-flop for
u2. Note that for readability, nets connected to D, Q and CP pins of flip-flops
are not shown. 123

Figure 3.36: Illustration of how we consider process variation in our implementations.
The slack values shown here are not representative of actual values in 28nm
FDSOI. 124

Figure 3.37: Scenarios of sensitivity-function calculation for selection of TIMBER flip-
flops. 127

Figure 3.38: Actual error rates vs. estimated error rates at different voltages. 128
Figure 3.39: Energy and area results from different implementation methodologies –

pure-margin (PM), brute-force (BF), and CombOpt (CO). 130
Figure 3.40: Impacts of hold margin and error-detection network. Design: MUL (OpenSPARC

T1). Technology: 28nm FDSOI. 132
Figure 3.41: Layout of CombOpt result for the SPU testcase with 3σ corner. Razor flip-

flops are in blue; conventional flip-flops are in purple; OR gates are in red;
and hold buffers are in green. 132

Figure 3.42: Energy consumption with different switching activity factors. Design: MUL
(OpenSPARC T1). Technology: 28nm FDSOI. 134

Figure 3.43: Energy consumption with voltage scaling, and minimum achievable energy
for each method. 136

Figure 4.1: Delay-area tradeoff of 8T and 12T buffers/inverters in 28nm LP foundry
libraries. Load cap = FO4 + 20µm M3 wire. 139

Figure 4.2: Post-synthesis netlist with mixed cell heights has significant area reduction
compared to 12T-only and 8T-only netlists. Technology: 28nm LP. Design:
AES. Frequency: 1.5GHz. Corner: (SS, 0.95V , 125◦C). 140

Figure 4.3: Area cost of “breaker cells”. 144
Figure 4.4: Overall flow of our optimization. In the example, the maximum cut number

(K) = 30. 145
Figure 4.5: (a) Contour map of power cost function. (b) Contour map of delay cost

function. (c) Partitioning solution with β = 1, λ = 0.8, η = 0.2. (d) Partition-
ing solution with β = 1, λ = 0.7, η = 0.3. (e) Partitioning solution with β =
1, λ = 0.6, η = 0.4. Design: AES. Technology: 28nm LP. 147

xi

Figure 4.6: Examples of partitioning solutions for the AES testcase. In red are 12T cells
(with mLEF); and in blue are 8T cells. Yellow lines are cuts. The cell
height of a partition is marked on its side. β = 1, λ = 0 and η = 0. (a) Cut
number = 5, cost = 4818µm2. (b) Cut number = 10, cost = 4584µm2. . . . 148

Figure 4.7: Framework of our optimization. 150
Figure 4.8: Illustration of graph embedding (a) from [59], and (b) for proposed cell

mapping. Vertical connections are not shown. 155
Figure 4.9: Wirelength comparison between our dynamic programming-based optimiza-

tion versus a greedy optimization in [55]. Wirelength values are normalized
to the wirelength before cell mapping. 157

Figure 4.10: Inserted space on the boundaries between 12T and 8T regions to model the
cost of breaker cells. 159

Figure 4.11: Pareto curves of performance-area tradeoff for implementations with 8T-
only, 12T-only and mixed cells. 160

Figure 4.12: Iso-performance power comparison with voltage scaling among implemen-
tations with 8T-only, 12T-only and mixed cells. 160

Figure 4.13: Pareto curves of performance-area tradeoff for implementations with 10T-
only and mixed (8T and 12T) cells. 161

Figure 4.14: Iso-performance power comparison with voltage scaling among implemen-
tations with 10T-only and mixed (8T and 12T) cells. 161

Figure 4.15: (a) A conventional zero-skew chip implementation flow (zero-skew flow).
(b) A standard useful skew flow (typical useful skew flow). 165

Figure 4.16: (a) A chip implementation flow with useful skew back-annotation (back-
annotation flow). (b) Our predictive NOLO (“no-loop”) useful skew flow
(prediction flow). 167

Figure 4.17: Overview of two basic implementation flows. 168
Figure 4.18: Timing slacks at post-synthesis versus timing slacks at post-routing stage:

(a) without useful skew, and (b) with useful skew. Paths are extracted from
the MPEG testcase with 0.4ns clock period (Table 4.5). 169

Figure 4.19: Useful skew versus timing slacks at (a) post-synthesis and (b) post-routing
stages. Paths are extracted from the MPEG testcase with 0.4ns clock period
(Table 4.5). 170

Figure 4.20: Optimal useful skews (obtained from MMWC) based on timing information
at post-synthesis and post-routing stages have good correlation. 171

Figure 4.21: (a) BA-I flow. (b) BA-II flow. (c) BA-III flow. (d) BA-IV flow. 175
Figure 4.22: Comparison among useful skew flows. Our ImpPred flow achieves better or

similar TNS but with 66% runtime reduction compared to back-annotation
flows. 178

Figure 4.23: “STF” stack in which a slow-corner die is located on the bottom tier, a
typical-corner die in the middle, and a fast-corner die on the top tier (adja-
cent to the heat sink). 180

Figure 4.24: MTTF of 3-tier stacks with different stacking styles. Letters S, T and F
indicate the (slow, typical, fast) process corners to which individual dies
belong. Strings over {S, T, F} indicate stacking styles (left-to-right in the
string corresponds to bottom-to-top in the stack). 181

Figure 4.25: Reliability “bathtub curve”. 183

xii

Figure 4.26: Temperature gradient. The top-tier die is in direct contact with the heat
sink, and thus has the lowest temperature. Due to intervening dies that block
thermal conduction to the heat sink, dies in bottom tiers have higher tem-
perature. 186

Figure 4.27: Example simulated temperature gradient in a 5-tier 3DIC stack. The differ-
ence between the peak temperatures in the bottom-tier die and the top-tier
die can reach 35◦C. 186

Figure 4.28: QoR metrics (MTTF, power) of stacks with different stacking orders. Plac-
ing slow dies close to the heat sink helps achieve large MTTF of stacks. . . 187

Figure 4.29: Allowed assignments in ILP-based stacking optimization method. 189
Figure 4.30: Zig-zag method: stack dies from slow to fast, from top tiers to bottom tiers. 191
Figure 4.31: The flow of MTTF estimation. 193
Figure 4.32: As the number of process bins increases, MTTF of stacks increases. The

results approach optimality when the number of bins is equal to 13, noise
appears after that. 195

Figure 4.33: Stacking optimization using the ILP-based method and the zig-zag method
helps increase the minimum MTTF of output stacks, while reducing the
variation in MTTFs. 196

Figure 4.34: Yield decreases with MTTF limitation. The ILP-based and the zig-zag
heuristic methods help increase the yield of 3DICs compared to the random
case. 198

Figure 4.35: The solid lines and dotted lines indicate the average and the minimum MTTF
of stacks, respectively. 199

Figure 4.36: The maximum supply voltage of stacks increases with process variation,
while the minimum voltage decreases. The solid line corresponds to our
experimental results. The dashed line is an extrapolation of the trend. . . . 199

Figure 4.37: Worst negative slack (WNS) of design AES [230] at 28FDSOI technology.
Clock period = 1.2ns. The AES implementation was simply bipartitioned
for minimum net cut using MLPart [25][229]. 201

Figure 4.38: Partitioning solutions affect a design’s performance in the regime of mix-
and-match stacking. 202

Figure 4.39: Area-balanced partitioning solutions on path A-C (26 stages) and path B-C
(30 stages) which respectively minimize (a) delay of path A-C (DAC), (b)
delay of path B-C (DBC), (c) worst-case delay over the two paths, and (d)
worst-case delay over the two paths with large VI delay impact (dV I). . . 204

Figure 4.40: Example of maximum-cut partitioning of the sequential graph. Types of
paths are shown in edge labels. The dotted line indicates the final maximum-
cut solution. We assume the same weight for all edges. 210

Figure 4.41: Example to optimize a cell with a negative gain value. (a) Initial path with
zero slack. (b) Moving one cell to Tier 1 degrades the slack by 70ps due to
VI insertions. (c) Further optimization on the shown segment improves the
slack by 50ps. 211

Figure 4.42: Example of VI insertion/removal due to cell movement across tiers. Shaded
cells are on Tier 1 and the others are on Tier 0. 212

xiii

Figure 4.43: An example of our multi-phase FM optimization. Design: AES. Technol-
ogy: 28FDSOI. WNS improves from -200ps to -14ps. Runtime = 565 sec-
onds on a 2.5GHz Intel Xeon server. 214

Figure 4.44: Comparison of solution qualities between the ILP-based method (which is
near-optimal) and the heuristic method. 217

xiv

LIST OF TABLES

Table 2.1: Experimental setup for the FIND OD problem. 23
Table 2.2: Metrics of circuits implemented for the FIND OD problem. 24
Table 2.3: Experimental setup for the FIND VOLT problem. 25
Table 2.4: Metrics of circuits implemented for the FIND VOLT problem. 25
Table 2.5: Experimental setup for the FIND FREQ problem. 26
Table 2.6: Metrics of circuits implemented for the FIND FREQ problem. 26
Table 2.7: Metrics of circuits implemented with different ropt. 26
Table 2.8: Description of notations used in our work. 30
Table 2.9: Candidate moves in our optimization. 39
Table 2.10: Description of corners. 41
Table 2.11: Summary of testcases. 41
Table 2.12: Experimental results. 42
Table 2.13: Notations used in our work. 50
Table 2.14: Benchmark information. 59
Table 2.15: Scan ordering results. 59
Table 2.16: Gating insertion results. 60

Table 3.1: Description of notations used in our discussion. 64
Table 3.2: Testcase parameters. 77
Table 3.3: Experimental results. (Power unit: mW . Current unit: mA. η values are

estimated based on [19].) . 79
Table 3.4: Results with different current balancing constraints. Designs: TC1 and TC2.

∆I , Pcore and T are normalized to those of the conventional design. 82
Table 3.5: Description of notations used in our formulation. 92
Table 3.6: Testcase parameters. 101
Table 3.7: Normalized flop tray area and power, and layout AR. 101
Table 3.8: Experimental results. 103
Table 3.9: Testcases from OpenSPARC T1. 128
Table 3.10: Penalties of error-tolerant flip-flops. 128
Table 3.11: Impact of SkewOpt. 131
Table 3.12: Pessimism of slow-corner optimization. 133
Table 3.13: Comparison among error-tolerant flip-flops. 134

Table 4.1: Notations used in our work. 142
Table 4.2: User-defined parameters. 153
Table 4.3: Benchmarks. 158
Table 4.4: Parameters and results of implemented designs. 163
Table 4.5: Benchmark designs. 174
Table 4.6: Experimental setups for timing analysis. 174
Table 4.7: Design metrics of routed design from different flows. 177
Table 4.8: Experiment design for reliability-driven stacking optimization. 194
Table 4.9: Impact of number of dies on QoR of the ILP-based method. 196
Table 4.10: QoR of output stacks from different methods. 197
Table 4.11: Description of notations used in our work. 206

xv

Table 4.12: Testcases used in the experiments. 214
Table 4.13: Validation of our partitioning methodology on GT2012 and Shrunk2D flows. 216

xvi

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Professor Andrew B. Kahng for his contin-

uous support and generous advice throughout my Ph.D. study. I have truly learned a lot from his

immense knowledge, serious and responsible work attitude, and passion for research.

I would like to thank my father Biao Li, my mother Yanhua Jiang, and my girlfriend Yun

Sheng for their selfless support and encouragement. This journey would not have been possible

without their sacrifice.

I would like to thank my fellow labmates in the UCSD VLSI CAD Laboratory (Wei-Ting

(Jonas) Chan, Hyein Lee, Kwangsoo Han, Lutong Wang, Bangqi Xu, Ahmed Youssef, Tushar

Shah, Sriram Venkatesh) and former lab members (Professor Seokhyeong Kang, Dr. Tuck-Boon

Chan, Dr. Siddhartha Nath, Ilgweon Kang, Mulong Luo, Yaping Sun) for their assistance and

enthusiastic discussions. I will remember the hard-working time and sleepless nights with them.

Special thanks to Professor Seokhyeong Kang, Dr. Tuck-Boon Chan and Dr. Siddhartha Nath

for their guidance at the beginning of my Ph.D. studies.

My sincere thanks also go to my thesis committee members Professor Chung-Kuan

Cheng, Professor Rajesh Gupta, Professor Patrick Mercier, Professor Tajana Rosing and Profes-

sor Steven Swanson for their time, encouragement and insightful comments.

Last, but not least, I would like to thank my industrial collaborators (especially Dr.

Bongil Park, Professor José Pineda de Gyvez, Dr. Hamed Fatemi, Jongpil Lee, Sorin Dobre,

Nancy MacDonald, Dr. Kun Young Chung, Ajay Kapoor and Kristof Blutman) for their invalu-

able guidance and feedback in many of my research projects.

The material in this thesis is based on the following publications.

Chapter 2 contains reprints of Kun Young Chung, Andrew B. Kahng and Jiajia Li,

“Comprehensive Optimization of Scan Chain Timing During Late-Stage IC Implementation”,

Proc. ACM/IEEE Design Automation Conference, 2016; Tuck-Boon Chan, Andrew B. Kahng,

Jiajia Li, Siddhartha Nath and Bongil Park, “Optimization of Overdrive Signoff in High-Perfor-

mance and Low-Power ICs”, IEEE Transactions on Very Large Scale Integration Systems 23(8),

2015; Kwangsoo Han, Andrew B. Kahng, Jongpil Lee, Jiajia Li and Siddhartha Nath, “A Global-

Local Optimization Framework for Simultaneous Multi-Mode Multi-Corner Skew Variation Re-

duction”, Proc. ACM/IEEE Design Automation Conference, 2015; and Tuck-Boon Chan, An-

drew B. Kahng, Jiajia Li and Siddhartha Nath, “Optimization of Overdrive Signoff”, Proc. Asia

and South Pacific Design Automation Conference, 2013. The dissertation author is the primary

author of the papers.

xvii

Chapter 3 contains reprints of Kristof Blutman, Hamed Fatemi, Andrew B. Kahng, Ajay

Kapoor, Jiajia Li, and José Pineda de Gyvez, “Floorplan and Placement Methodology for Im-

proved Energy Reduction in Stacked Power-Domain Design”, Proc. Asia and South Pacific De-

sign Automation Conference, 2017; Andrew B. Kahng, Jiajia Li and Lutong Wang, “Improved

Flop Tray-Based Design Implementation for Power Reduction”, Proc. IEEE/ACM International

Conference on Computer-Aided Design, 2016; Andrew B. Kahng, Seokhyeong Kang, Jiajia Li

and José Pineda de Gyvez, “An Improved Methodology for Resilient Design Implementation”,

ACM Transactions on Design Automation of Electronic Systems 20(4), 2015; and Andrew B.

Kahng, Seokhyeong Kang and Jiajia Li, “A New Methodology for Reduced Cost of Resilience”,

Proc. Great Lakes Symposium on Very Large Scale Integration, 2014. Chapter 3 also con-

tains the draft submitted to IEEE Transactions on Very Large Scale Integration Systems, Kristof

Blutman, Hamed Fatemi, Andrew B. Kahng, Ajay Kapoor, Jiajia Li and Jose Pineda de Gyvez,

“Logic Design Partitioning for Stacked Power Domains”, 2017. The dissertation author is the

primary author of the papers and the submitted draft.

Chapter 4 contains reprints of Kwangsoo Han, Andrew B. Kahng and Jiajia Li, “Im-

proved Performance of 3DIC Implementations Through Inherent Awareness of Mix-and-Match

Die Stacking”, Proc. Design, Automation and Test in Europe, 2016; Sorin Dobre, Andrew B.

Kahng and Jiajia Li, “Mixed Cell-Height Implementation for Improved Design Quality in Ad-

vanced Nodes”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2015;

Tuck-Boon Chan, Andrew B. Kahng and Jiajia Li, “NOLO: A No-Loop, Predictive Useful

Skew Methodology for Improved Timing in IC Implementation”, Proc. International Sympo-

sium on Quality Electronic Design, 2014; and Tuck-Boon Chan, Andrew B. Kahng and Jiajia

Li, “Reliability-Constrained Die Stacking Order in 3DICs under Manufacturing Variability”,

Proc. International Symposium on Quality Electronic Design, 2013. Chapter 4 also contains the

draft submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, Sorin Dobre, Andrew B. Kahng and Jiajia Li, “Design Implementation with Non-Integer

Multiple-Height Cells for Improved Design Quality in Advanced Nodes”. The dissertation au-

thor is the primary author of the papers and the submitted draft.

My coauthors (Kristof Blutman, Dr. Tuck-Boon Chan, Dr. Kun Young Chung, Sorin

Dobre, Dr. Hamed Fatemi, Professor José Pineda de Gyvez, Kwangsoo Han, Professor Andrew

B. Kahng, Professor Seokhyeong Kang, Ajay Kapoor, Jongpil Lee, Dr. Siddhartha Nath, Dr.

Bongil Park and Lutong Wang listed in alphabetical order) have all kindly approved the inclusion

of the aforementioned publications in my thesis.

xviii

VITA

1989 Born, Taiyuan, Shanxi, China

2011 B.Sc., Software Engineering,
Shenzhen University, Shenzhen, Guangdong, China

2013 M.Sc., Electrical Engineering (Computer Engineering),
University of California, San Diego

2015 C.Phil., Electrical Engineering (Computer Engineering),
University of California, San Diego

2017 Ph.D., Electrical Engineering (Computer Engineering),
University of California, San Diego

All papers co-authored with my advisor Prof. Andrew B. Kahng have authors listed in

alphabetical order.

• Wei-Ting J. Chan, Andrew B. Kahng and Jiajia Li, “Revisiting 3DIC Benefit with Multi-

ple Tiers”, Integration, the VLSI Journal, 2017, to appear.

• Armin Alaghi, Wei-Ting J. Chan, John P. Hayes, Andrew B. Kahng and Jiajia Li, “Trading

Accuracy for Energy in Stochastic Circuit Design”, ACM Journal on Emerging Technolo-

gies in Computing Systems, 2017, to appear.

• Kristof Blutman, Hamed Fatemi, Andrew B. Kahng, Ajay Kapoor, Jiajia Li, and José

Pineda de Gyvez, “Floorplan and Placement Methodology for Improved Energy Reduction

in Stacked Power-Domain Design”, Proc. Asia and South Pacific Design Automation

Conference, 2017, pp. 444-449.

• Andrew B. Kahng, Hyein Lee and Jiajia Li, “Measuring Progress and Value of IC Imple-

mentation Technology”, Proc. IEEE/ACM International Conference on Computer-Aided

Design, 2016, pp. 27:1-27:8.

• Andrew B. Kahng, Jiajia Li and Lutong Wang, “Improved Flop Tray-Based Design

Implementation for Power Reduction”, Proc. IEEE/ACM International Conference on

Computer-Aided Design, 2016, pp. 20:1-20:8.

• Kun Young Chung, Andrew B. Kahng and Jiajia Li, “Comprehensive Optimization of

Scan Chain Timing During Late-Stage IC Implementation”, Proc. ACM/IEEE Design

Automation Conference, 2016, pp. 61:1-61:6.

xix

• Wei-Ting Jonas Chan, Andrew B. Kahng and Jiajia Li, “Revisiting 3DIC Benefit with

Multiple Tiers”, Proc. ACM International Workshop on System-Level Interconnect Pre-

diction, 2016, pp. 6:1-6:8.

• Kwangsoo Han, Andrew B. Kahng and Jiajia Li, “Improved Performance of 3DIC Imple-

mentations Through Inherent Awareness of Mix-and-Match Die Stacking”, Proc. Design,

Automation and Test in Europe, 2016, pp. 61-66.

• Armin Alaghi, Wei-Ting J. Chan, John P. Hayes, Andrew B. Kahng and Jiajia Li, “Op-

timizing Stochastic Circuits for Accuracy-Energy Tradeoffs”, Proc. IEEE/ACM Interna-

tional Conference on Computer-Aided Design, 2015, pp. 178-185.

• Sorin Dobre, Andrew B. Kahng and Jiajia Li, “Mixed Cell-Height Implementation for

Improved Design Quality in Advanced Nodes”, Proc. IEEE/ACM International Confer-

ence on Computer-Aided Design, 2015, pp. 854-860.

• Myung-Chul Kim, Jin Hu, Jiajia Li and Natarajan Viswanathan, “ICCAD-2015 CAD

Contest in Incremental Timing-driven Placement and Benchmark Suite”, Proc. IEEE/ACM

International Conference on Computer-Aided Design, 2015, pp. 921-926.

• Andrew B. Kahng, Seokhyeong Kang, Jiajia Li and José Pineda de Gyvez, “An Improved

Methodology for Resilient Design Implementation”, ACM Transactions on Design Au-

tomation of Electronic Systems 20(4) (2015), pp. 66:1-66:26.

• Tuck-Boon Chan, Andrew B. Kahng, Jiajia Li, Siddhartha Nath and Bongil Park, “Opti-

mization of Overdrive Signoff in High-Performance and Low-Power ICs”, IEEE Transac-

tions on Very Large Scale Integration Systems 23(8) (2015), pp. 1552-1556.

• Kwangsoo Han, Andrew B. Kahng, Jongpil Lee, Jiajia Li and Siddhartha Nath, “A Global-

Local Optimization Framework for Simultaneous Multi-Mode Multi-Corner Skew Varia-

tion Reduction”, Proc. ACM/IEEE Design Automation Conference, 2015, pp. 26:1-26:6.

• Andrew B. Kahng, Hyein Lee and Jiajia Li, “Horizontal Benchmark Extension for Im-

proved Assessment of Physical CAD Research”, Proc. Great Lakes Symposium on Very

Large Scale Integration, 2014, pp. 27-32.

• Andrew B. Kahng, Seokhyeong Kang and Jiajia Li, “A New Methodology for Reduced

Cost of Resilience”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2014,

pp. 157-162.

xx

• Tuck-Boon Chan, Andrew B. Kahng and Jiajia Li, “NOLO: A No-Loop, Predictive Use-

ful Skew Methodology for Improved Timing in IC Implementation”, Proc. International

Symposium on Quality Electronic Design, 2014, pp. 504-509.

• Tuck-Boon Chan, Andrew B. Kahng and Jiajia Li, “Toward Quantifying the IC Design

Value of Interconnect Technology Improvements”, Proc. ACM International Workshop on

System-Level Interconnect Prediction, 2013, pp. 1-6.

• Tuck-Boon Chan, Andrew B. Kahng and Jiajia Li, “Reliability-Constrained Die Stacking

Order in 3DICs under Manufacturing Variability”, Proc. International Symposium on

Quality Electronic Design, 2013, pp. 16-23.

• Tuck-Boon Chan, Andrew B. Kahng, Jiajia Li and Siddhartha Nath, “Optimization of

Overdrive Signoff”, Proc. Asia and South Pacific Design Automation Conference, 2013,

pp. 344-349.

xxi

ABSTRACT OF THE DISSERTATION

Improved Physical Design and Signoff Methodologies for Better Integrated
Circuit Design Quality

by

Jiajia Li

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2017

Professor Andrew B. Kahng, Chair

In the late CMOS era, integrated-circuit physical design and signoff face three major

challenges – (i) complex operating conditions, (ii) low-power demand, and (iii) growing design

margin. Future scaling of designs and the continuation of Moore’s Law itself require better phys-

ical design optimization and signoff methodologies. Toward this end, this thesis presents novel

optimization techniques and signoff methodologies to respectively address these challenges in

three main thrusts.

In modern SoC implementations, multi-mode design is commonly used to achieve bet-

ter circuit performance and power across voltage scaling, “turbo” and other operating modes.

Furthermore, PVT variations result in a large number of corners for circuit design and signoff.

To mitigate the impact of complex operating conditions and corner explosion, in the multi-mode

multi-corner optimization thrust, this thesis presents approaches to optimize signoff corner se-

xxii

lection, reduce skew variation in clock network, and perform scan timing optimization without

causing any QoR degradation in functional mode.

Energy and battery lifetime constraints induce new and critical challenges to IC designs,

especially for mobile and “Internet of Things” (IoT) applications. To achieve power autonomy in

the era of a slowing Moore’s law, low-power techniques must be exploited. To minimize design

power and energy, in the low-power optimization thrust, this thesis presents a stacked power

domain scheme to align SoC power domain voltages with battery voltages for power delivery

efficiency and battery lifetime improvements, a novel flop tray generation technique for clock

power reduction, and a low-cost resilient design flow to enable better than worst-case design for

energy savings.

The 2013 ITRS update of system driver models reveal a “scaling gap” since 2008. One

root cause of the density scaling slowdown is the growing design margins due to variability, re-

liability, etc. To reduce the design margins and to pursue design-based equivalent scaling [31],

in the mixed-fabric optimization thrust, this thesis describes the concept of “mixed-fabric opti-

mization” and presents several novel optimization techniques for improved design performance,

power, area, reliability and turnaround time. First, we propose an optimization flow for imple-

mentation of design blocks with mixed non-integer multiple cell heights, achieving an improved

tradeoff of performance, power and area. Second, we exploit the dual-Vth libraries and pro-

pose a “no-loop” predictive useful skew optimization flow. Last, we integrate dies with different

process conditions in a 3DIC, and apply mix-and-match-aware design optimization to improve

performance and reliability of 3DICs.

xxiii

Chapter 1

Introduction

Due to the slowdown of density scaling and the existence of a “design capability gap” as

highlighted in the 2013 ITRS (International Technology Roadmap for Semiconductors) System

Drivers Chapter analyses [225], the ability of designers to leverage the “available scaling” (e.g.,

of design quality) afforded by process and device has become weaker. There is now an urgent

need for design-based equivalent scaling [31] that will compensate for the scaling gap through

better design techniques, more accurate modeling, and other improvements. As key steps in IC

design implementation, physical design and signoff have significant impacts on the performance,

power, area and cost (PPAC) of designs. However, existing physical design and signoff method-

ologies are severely challenged by increased design complexity, corner explosion, low-power

demand, advanced design rules, reliability issues, etc. Inability to address these challenges will

result in degraded IC design quality. Thus, future scaling of designs and the continuation of

Moore’s Law itself require better physical design optimization and signoff. Towards this goal,

this thesis presents improved physical design and signoff methodologies to address existing and

future challenges, and to enable future design-based equivalent scaling.

1.1 Slowdown of Density Scaling and Need for Design-Based

Equivalent Scaling

Over the past decades, IC designers have continued to extract value from Moore’s Law

by riding the density scaling “wave”. However, as noted in the 2013 edition of ITRS [225], even

as patterning technologies have continued to deliver (at least until the year 2013) “available”

Moore’s Law scaling (i.e., geometric pitch scaling), the “realized” transistor density scaling in

1

2

actual products has slowed down from the traditional Moore’s-Law density scaling of 2× per

technology node to around 1.6× per technology node since ∼2008 (see Figure 1.1). The slow-

down of density scaling indicates that the benefits from technology scaling are significantly less

than what has been expected according to historical trends. As a result, it is more challeng-

ing to achieve the “20% speed, 20% power and 20% density” that comprise the traditionally-

understood threshold for necessary benefits from a new technology node [101]. Such inconsis-

tency between the “available” density scaling and “realizable” density scaling in actual products

may be attributed to a design capability gap caused by failure to address process variation, reli-

ability requirements, patterning constraints, and other challenges.

Figure 1.1: Gap between “available” density scaling (gray arrow) and “realizable” density
scaling in MPU products (red squares), adapted from [100].

The most viable remaining path to mitigating the design capability gap is through design-

based equivalent scaling, which encompasses better design methodology, optimized signoff

constraints, more accurate modeling to improve model-hardware correlation, and other improve-

ments to design technology and design enablement. The 2013 edition of ITRS [225] projects that

for server and desktop processors (MPU), design-based equivalent scaling will need to recover

one entire node from 2013 to 2019, and one node of scaling from 2013 to 2020 for system-on-

chips (SoCs) [100]. Therefore, physical design and signoff, which are key steps in IC design and

have significant impact on design QoR, need to be improved to enable design-based equivalent

scaling.

Evidence of the urgent need for design-based equivalent scaling and better physical de-

sign and signoff is seen in the recent DARPA “Circuit Realization at Faster Timescales (CRAFT)”

program, which aims to reduce the design time of complex mixed-signal SoCs in sub-20nm

3

technologies from years to months without any loss of “performance at power” (PAP) [219].

Figure 1.2 (adapted from [103]) shows hypothesized steps towards the goal, which include a

number of physical design and signoff improvements. Given that Moore’s Law classically cor-

responds to “one week = one percent”, the targeted 100- week reduction of design time (iso-PAP)

is an enormously valuable “moonshot” [110]. Works reported in this thesis (e.g., “optimization

of signoff mode selection” in Chapter 2, “predictive, one-pass useful skew flow” in Chapter 3,

and “mixed cell-height placement” in Chapter 4) address various aspects of #1, #2 and #3 in

Figure 1.2.

Figure 1.2: Three hypothesized steps to reduce the design time of complex mixed-signal SoCs
in sub-20nm technologies from 130 weeks to 30 weeks [219].

1.2 Challenges in Physical Design and Signoff

Besides the urgent need for better physical design and signoff to achieve design-based

equivalent scaling, the physical design and signoff tasks inherently face many challenges due

to increased design complexity, process variation, and number of operating conditions. The

following three subsections summarize three major challenges to physical design and signoff.

1.2.1 Complex Operating Conditions and Corner Explosion

Modern SoCs typically exploit complex operating scenarios to maximize performance

and reduce power consumption. As illustrated in Figure 1.3, high-performance, low-power de-

signs can use frequency overdrive at elevated supply voltages (i.e., overdrive mode) to obtain

4

better performance, and operates at a lower supply voltage for power saving in nominal mode.

However, multi-mode operation requires multi-mode design and signoff, that is, timing must be

closed at multiple modes and power optimization must comprehend the duty cycle of each mode.

Figure 1.3: Example of multi-mode operation. OD = overdrive mode. NOM = nominal mode.

Further challenges arise from the industry’s need for low-cost, high-quality test strate-

gies for complex, high-performance SoCs. IC designs typically have test modes (e.g., scan, at-

speed, BIST) for which timing and power optimization can also be critical. Optimizations in test

modes risk degradation of design quality (e.g., timing and power) in function mode. Therefore,

new test-mode optimizations are needed that comprehend timing and power impact in function

mode.

Moreover, process, voltage and temperature (PVT) variations result in a large number

of corners for design and signoff. For instance, according to the carrier mobilities (e.g., typical

(T), fast (F) and slow (S)) of NMOS and PMOS devices, the front-end-of-line (FEOL) has FF,

SS, FS, TT, etc. process corners. According to the parasitic variation in the back-end-of-line

(BEOL), there are Cbest, Cworst, RCbest, etc. process corners. Taking into account different

combinations of function modes and test modes, along with the many PVT corners, a complex

SoC will have a very large number of views for signoff (i.e., a “corner explosion”). The temper-

ature reversal effect – where the device becomes slower at a low temperature when the supply

voltage is lower than a threshold – further increases the number of signoff corners.

The corner explosion significantly increases the difficulty of physical design and signoff.

Given that the selection of signoff modes and corners has significant impact on design quality,

one critical problem is how to optimize the selection of signoff modes and corners to avoid over

design. Another major challenge in multi-mode multi-corner design is the “ping-pong” effect,

that is, fixing timing issues at one corner leads to violations at other corners. The “ping-pong”

effect can induce large area and power overheads and severely increase design turnaround time

(TAT), and is mainly caused by delay variation in datapath and clock paths across corners. New

5

optimization techniques are needed to address the “ping-pong” effect for better design quality

and shorter design time.

1.2.2 Demand for Low-Power Designs

Power and energy are well-understood as the ultimate “Grand Challenge” for the semi-

conductor industry, as explicitly noted in the ITRS since the early- to mid-2000s. Thus, power

reduction has long been one of the primary goals for IC design. Today, especially for mobile and

IoT (“Internet of Things”) applications, energy/power and battery lifetime constraints present

extremely difficult challenges to IC designers. Traditional physical design applies gate sizing,

Vth swapping, clock gating, power gating, and multiple power domains to achieve power re-

duction while satisfying performance requirements. (Additional levers for low-power design

can be found in the Low-Power Design Technology Innovation Roadmap provided by the 2011

ITRS Design Chapter [224].) As the requirement for power reduction has become more criti-

cal to product competitiveness, more low-power optimization techniques have been introduced.

However, these low-power techniques increase complexity for physical design, which can incur

area and power overheads. Therefore, new low-power techniques must ensure that their power

benefits outweigh their costs.

As an example, the clock network typically consumes a large portion of SoC power

due to its high switching activity. Usage of flop trays (also known as multi-bit flip-flops) can

significantly reduce the number of sinks in a clock tree, and thus the number of buffers as well

as clock power. However, clustering of flip-flops induces additional placement constraints on

their fanin/fanout datapaths, which can cause power and area overheads. We therefore must

ensure that the clock power reduction is larger than the power overhead on datapaths. As another

example, resilient flip-flops, which are error-tolerant, enable better than worst-case (BTWC)

design and power reduction on datapaths. However, the power of a resilient flip-flop is higher

than that of a conventional flip-flop. Therefore, the resilient design optimization must ensure

that the power reduction on datapaths outweighs the power penalties from resilient flip-flops.

Furthermore, to achieve power autonomy in the era of a slowing Moore’s law, new low-

power techniques must be exploited. While many existing low-power techniques have concen-

trated on the circuit side of system design, power management techniques have received growing

attention due to the importance of power efficiency. Notably, the misalignment of battery volt-

ages compared to scaled core voltages causes inefficiencies that present significant opportunities

for power saving.

6

1.2.3 Growing Design Margins

To account for variability (e.g., process variation, dynamic voltage drop) and reliability

(e.g., electromigration (EM), negative-bias temperature instability (NBTI)), designers tend to

insert margins (i.e., overdesign) in the signoff analysis to ensure correctness of operation. As

design complexities and process variations increase, design margins also grow. Figure 1.4 illus-

trates how growing design margins counteract the benefits of technology scaling. If the potential

benefits from technology scaling are already small, then the design margins become even more

costly to apply.

D
es

ig
n

qu
al

ity
 (e

.g
.,

fr
eq

ue
nc

y)

Technology nodes

Signoff with
large margins

Margins  lost benefits of technology

Lost benefits!

Figure 1.4: Growing design margins degrade the benefits of technology scaling.

1.3 This Thesis

To pursue design-based equivalent scaling and to address the existing challenges in mod-

ern SoC physical design and signoff, this thesis presents innovative optimization techniques and

signoff methodologies. Figure 1.5 illustrates the scope and organization of this thesis, in which

three main thrusts respectively address three major challenges:

• Multi-mode multi-corner optimization;

• Low-power optimization; and

• Mixed-fabric optimization.

7

Figure 1.5: Scope and organization of this thesis.

To mitigate the impact of complex operating conditions and corner explosion, in the

multi-mode multi-corner optimization thrust this thesis presents approaches to optimize signoff

corner selection, reduce skew variation in the clock network, and perform scan timing optimiza-

tion without causing any quality-of-results (QoR) degradation in functional mode.

To minimize design power and energy, in the low-power optimization thrust this the-

sis presents a stacked power domain scheme to align SoC power domain voltages with battery

voltages for power delivery efficiency and battery lifetime improvements; a novel flop tray (i.e.,

multi-bit flip-flop) generation technique for clock power reduction; and a low-cost resilient de-

sign flow to enable better than worst-case design for energy saving.

To reduce design margins and improve design quality, in the mixed-fabric optimiza-

tion thrust this thesis describes the concept of “mixed-fabric optimization” and presents sev-

eral novel optimization techniques for improved design performance, power, area, reliability

and turnaround time. First, we propose an optimization flow to implement design blocks with

mixed non-integer multiple cell heights for a better tradeoff among performance, power and

area. Second, we exploit the dual-Vth libraries and propose a “no-loop” predictive useful skew

optimization flow. Last, we integrate dies with different process conditions in a 3DIC and apply

mix-and-match-aware design optimization to improve performance and reliability of 3DICs.

The remainder of this thesis is organized as follows.

• Chapter 2 presents three distinct optimization methodologies for circuit optimization in the

multi-mode and multi-corner context. First, using our concept of “mode dominance” as

a guideline, we propose a scalable, model-based adaptive search methodology to explore

the design space for signoff mode (i.e., (operating frequency, voltage) pair) selection. Our

8

proposed methodology is duty cycle-aware in its minimization of lifetime energy. Second,

we propose a novel framework encompassing both global and local clock network opti-

mizations to minimize the sum of skew variations across different PVT corners between

all sequentially adjacent sink pairs to address the “ping-pong” effects (i.e., fixing viola-

tions at one corner can lead to violations at other corners). The global optimization uses

linear programming to guide buffer insertion, buffer removal and routing detours. The

local optimization is based on machine learning-based predictors of latency change; these

are used for iterative optimization with tree surgery, buffer sizing and buffer displacement

operators. Third, we propose two techniques for late-stage scan chain timing optimization

with negligible timing, area and power impact in function mode. Specifically, we propose

skew-aware scan ordering to minimize the number of hold buffers, and DVD-aware gating

insertion to improve scan shift timing slacks.

• Chapter 3 presents three distinct techniques for low-power optimization, which address the

low-power requirement in three aspects – system, clock and datapath. First, we present an

optimization framework for stacked-domain designs. Based on an initial placement solu-

tion, we apply a flow-based partitioning that is aware of multiple operating scenarios, cell

placement, and timing-critical paths to partition cells into two power domains with bal-

anced cross-domain current and minimized number of inserted level shifters. We further

propose heuristics to define regions for each power domain so as to minimize placement

perturbation, as well as a dynamic programming-based method to minimize the area cost

of power domain generation. Second, we propose an optimization flow to generate and

place flop trays from a library of arbitrary given sizes and aspect ratios (ARs), to achieve

clock network power reduction. Our optimization starts with an initial placement solution

using only single-bit flops. It then performs capacitated K-means clustering to generate

solutions with different flop tray sizes and ARs. Our optimization is aware of flop tray

sizes and ARs, as well as timing-critical start-end pairs. Third, we use resilient design

with minimized overheads to reduce power on datapaths. Our methodology uses two

levers: selective-endpoint optimization (i.e., sensitivity-based margin insertion) and clock

skew optimization. We integrate the two optimization techniques in an iterative optimiza-

tion flow which comprehends toggle rate information and the tradeoff between cost of

resilience and margin on combinational paths.

• Chapter 4 presents a new concept of “mixed-fabric optimization” for improved design

quality, along with three examples. Here, mixed fabric indicates standard cells with dif-

9

ferent Vth flavors or track heights, or tiers with different process corners in a 3DIC, etc.

First, we propose a novel physical design optimization flow to implement design blocks

with mixed non-integer multiple-height cells in a fine-grained manner. Our optimiza-

tion resolves the “chicken-and-egg” loop between floorplan site definition and the opti-

mized choices of cell heights after placement. The optimization also comprehends the

constraints and costs of mixing cells of different heights (e.g., the “breaker cell” area

overheads of row alignment between sub-blocks of 8T and 12T cell rows). Second, we

propose NOLO, a simple, “no-loop” predictive useful skew flow with dual-Vth libraries

that applies useful skew at the post-synthesis stage within a one-pass chip implementation.

Third, we study the “mix-and-match” of multiple stacked die, according to binning infor-

mation, to improve overall product yield. We study die-stacking optimizations to improve

3DIC product reliability, as well as performance improvements in 3DIC implementation

that leverage a priori knowledge of mix-and-match die stacking during manufacturing.

Regarding the design-stage optimization for mix-and-match die stacking, we propose par-

titioning methodologies to partition timing-critical paths across tiers to explicitly optimize

the signed-off timing across the reduced set of corner combinations that can be produced

by the stacked-die manufacturing.

• Chapter 5 concludes the thesis and gives future directions for physical design and signoff

methodologies.

Chapter 2

Multi-Mode Multi-Corner

Optimization

Modern SoCs typically exploit complex operating scenarios to maximize performance

as well as reduce lifetime energy. For example, a baseband processor SoC might be designed to

meet performance and low-power criteria across turbo, nominal and supply voltage-scaled oper-

ating modes. In addition, delay (especially clock skew) variation across different PVT (process,

voltage, temperature) corners and additional signoff criteria incur difficulties for modern SoC

design. Further, challenges arise in the context of cost-efficient testability, notably, scan chain

optimization without design quality (e.g., timing, power) degradation in function mode.

This chapter presents three distinct methodologies for circuit optimization in the multi-

mode and multi-corner context. First, using our concept of “mode dominance” as a guideline,

we propose a scalable, model-based adaptive search methodology to explore the design space

for signoff mode (i.e., (operating frequency, voltage) pair) selection. Our proposed methodology

is duty cycle-aware in its minimization of lifetime energy. Results in both 65nm and 28nm

technologies show that our proposed methodology provides up to > 8% improvement in perfor-

mance, for given V DD, area and power constraints, compared to the conventional “signoff and

scale” method. Further, the signoff modes determined by our methods result in < 4% overhead

in power compared with the optimal signoff modes. Second, we propose a novel framework

encompassing both global and local clock network optimizations to minimize the sum of skew

variations, across different PVT corners, between all sequentially adjacent sink pairs; this ad-

dresses the well-known challenge of “ping-pong” effects in timing closure and optimization

(i.e., fixing violations at one corner can lead to violations at other corners). The global optimiza-

10

11

tion uses linear programming to guide buffer insertion, buffer removal and routing detours. The

local optimization is based on machine learning-based predictors of latency change; these are

used for iterative optimization with tree surgery, buffer sizing and buffer displacement operators.

Our optimization achieves up to 22% total skew variation reduction across multiple testcases

implemented in foundry 28nm technology, as compared to a best-practices CTS solution using

a leading commercial tool. Third, we propose two techniques for late-stage scan chain timing

optimization with negligible timing, area and power impact in function mode. Specifically, we

propose skew-aware scan ordering to minimize the number of inserted hold buffers, and DVD-

aware gating insertion to improve scan shift timing slacks. Our optimizations at the post-CTS

and post-routing stages reduce hold buffers by up to 82%, and DVD-induced timing degradation

by up to 58%.

2.1 Optimization of Overdrive Signoff in High-Performance and

Low-Power ICs

In the era of heterogeneous multi-core SOCs, the performance of single-threaded oper-

ations limits the overall speedup of applications. Designers use frequency overdrive at elevated

voltages to obtain better performance in consumer electronic devices [57]. An operating mode

(for simplicity, mode) is defined by an (operating frequency, voltage) pair. Devices typically

operate at two or three modes, e.g., supply voltage-scaled (SVS), nominal and turbo (overdrive).

The nominal and SVS modes correspond to a lower operating voltage and a lower frequency,

whereas the overdrive mode corresponds to a higher operating voltage and a higher frequency.

We define the average power (Pavg) for a circuit with both nominal and overdrive modes as

Pavg = r × POD + (1− r)× Pnom, 0 < r < 1 (2.1)

where the duty cycle r is the total overdrive time normalized to the total lifetime. POD and Pnom

are the circuit power at overdrive and nominal modes, respectively.

We define the signoff mode design space (or design space) as the set of feasible signoff

mode combinations. A point in this design space specifies m (frequency, voltage) pairs for m-

mode signoff, where m ≥ 1. Signing off at different points in a design space results in circuits

with different performance, power and area. Figure 2.1 shows that the average power of a given

design can vary by up to 26% across 40 different definitions of the overdrive mode, with a fixed

nominal mode. Even when the overdrive frequency is fixed, the average power can vary by up

to 12% for different overdrive voltages. Circuit power varies with signoff voltage because when

12

signing off at a lower voltage, buffer insertion to meet timing constraints leads to higher power.

On the other hand, although circuit area decreases with a higher signoff voltage, power increases

with operating voltage. The optimal signoff voltage must comprehend this tension.

Figure 2.1: Pavg of circuits signed off at the same nominal mode (500MHz, 0.9V) but 40
different overdrive modes. Design: AES [230]. Technology: foundry 65nm. Corner:

FF/125◦C. r = 10%.

Figure 2.1 suggests that we can reduce design cost by carefully optimizing the signoff

modes. Accordingly, in this work, we study the signoff mode optimization problem, which seeks

the optimal nominal and overdrive modes with respect to optimization objectives and constraints.

Similar multi-mode signoff optimization has been studied by [104]. However, our work achieves

greater insight into the basic tradeoff between frequency and voltage at the circuit level. As an

extension to the previous work [30], we propose a more efficient and effective methodology for

multi-mode signoff optimization.

Our contributions are summarized as follows.

1. Based on the property of equivalent dominance, we propose a global optimization flow

(using model-based adaptive search) to analyze and identify the dominant modes before

circuit implementation.

2. Our proposed methodologies lead to > 8% and 6% performance improvements compared

to the traditional “signoff and scale” and previous work [30], respectively, while maintain-

ing similar power and area.

3. The proposed methodologies can successfully determine signoff modes that reduce life-

time energy for a given duty cycle.

13

2.1.1 Dominance of Modes

To analyze the dominance of modes, we define the concept of design cone as follows.

Definition: The design cone of a given mode M is the union of (maximum frequency, voltage)

operating modes for all feasible circuit implementations that are signed off at mode M.

Figure 2.2 illustrates the design cone R of mode A. Circuits signed off at mode A will

have their own frequency vs. voltage tradeoffs.1 At a given voltage, the boundary of the design

cone is determined by the upper and lower bounds of the maximum frequency that is achievable

by circuits signed off at mode A.

Figure 2.2: Illustration of the design cone of mode A (the shaded region).

Given the design cone of mode A, a mode C (fC , VC) has a positive slack (respectively,

a negative slack) with respect to mode A if fC is below (respectively, above) the lower (respec-

tively, upper) boundary of design cone at VC . Since the positive slack can be exploited to reduce

power [30], we say that the existence of positive slack indicates overdesign.

We further define the dominance of modes as follows.

Definition: Given two modes M1 and M2, if mode M2 shows positive slacks with respect to

mode M1, we define mode M1 as the dominant mode, and mode M2 as the dominated mode.

Definition: Given two modes M1 and M2, if mode M1 is in the design cone of mode M2 and

mode M2 is in the design cone of mode M1, we say that modes M1 and M2 exhibit equivalent

dominance.

In Figure 2.2, mode A is dominant and mode C is dominated. The dominant mode has

tighter constraints, thus determining the properties (e.g., area, gate count, total capacitance) of
1Boundaries of a design cone can be affected by threshold voltage, gate type and/or wire resistance. In this work,

we determine the boundaries using frequency vs. voltage curves of high (HVT) and low threshold voltage (LVT) cells
since other parameters have little impact at 65nm technology [30].

14

a design in a multi-mode signoff. Moreover, when equivalent dominance holds for multiple

signoff modes, we expect resulting design properties that are similar to those when the design is

signed off at each mode individually.

Based on the equivalent dominance concept, we state the following Lemmas.

Lemma 1: If two modes do not exhibit equivalent dominance, then each mode is outside of the

design cone of the other.

Proof (by contradiction): Assume toward a contradiction that the claim is false, i.e., modes M1

and M2 do not exhibit equivalent dominance, but one mode (M1) is located in the design cone

of the other (M2). According to the definition of design cone, any point in the design cone of

M2 lies on a frequency vs. voltage tradeoff curve corresponding to a circuit signed off at M2.

Therefore, there is at least one circuit with a frequency vs. voltage tradeoff curve that passes

through both M1 and M2. This means that M2 is also in the design cone of M1. Hence, modes

M1 and M2 exhibit equivalent dominance, contradicting our initial assumption. �

Lemma 2: Multi-mode signoff at modes which do not exhibit pairwise equivalent dominance

leads to overdesign.

Proof: If a set of modes does not exhibit pairwise equivalent dominance, then there exist two

modes for which equivalent dominance does not hold. According to Lemma 1, neither mode

is located in the design cone of the other. Then, one of the modes must be dominant, and

the other dominated. By definition of a dominated mode, the circuit being implemented at the

dominated mode will have positive timing slack. Regardless of the duty cycle, positive timing

slack indicates overdesign (cf. Figure 2.2). Therefore, at least one mode will be overdesigned if

a set of modes does not exhibit pairwise equivalent dominance. �

Lemma 3: Mutual pairwise equivalent dominance holds among m (m ≥ 3) modes if and only if

the modes are collinear in the (v, f) space for signoff.

Proof (by induction on m):

Base Case: (m = 3) Per the discussion in [30], the frequency vs. voltage tradeoff curve for a

given circuit is taken to be a straight line. Further, any one circuit implementation corresponds

to only one frequency vs. voltage tradeoff curve. Thus, signoff with any two out of the three

modes will determine a frequency vs. voltage tradeoff curve (corresponding to the resultant

circuit). Whenever the third signoff mode is below the frequency vs. voltage tradeoff curve of

the other two modes, the supply voltage can be reduced to achieve lower power and still meet

timing constraints; this corresponds to overdesign. And, whenever the third mode is above the

frequency vs. voltage tradeoff curve of the other two modes, there must be a timing violation

15

at the third mode; this corresponds to a failed design. Therefore, the third signoff mode must

be on the frequency vs. voltage tradeoff curve of the other two modes (i.e., the three modes are

collinear) for equivalent dominance.

Inductive Step: By assuming that when any k modes, k ≥ 3 exhibit mutual pairwise equivalent

dominance, they are collinear in the design space. We wish to prove that any (k+1) modes with

mutual pairwise equivalent dominance must be collinear. Pick any subset S1 of k modes and let

A be the remaining (k + 1)st mode. The modes in S1 are collinear. Pick any subset S2 of k

modes that includes A. The modes in S2 are collinear. Since |S1 ∩ S2| ≥ 2 all (k + 1) modes

are collinear. �

Figure 2.3 illustrates an example where four modes exhibit equivalent dominance. The

desired design space (i.e., without incurring overdesign) for signoff is the line D-A-B-C. We

note that marketing or other product requirements may well lead to multiple modes that are not

collinear in the design space. In such a situation, there must be overdesign with respect to at least

one of the modes. A methodology to define signoff modes to minimize some global measure of

overdesign is beyond our present scope, and we focus on scenarios involving just two modes in

our work.

Figure 2.3: Four modes exhibit equivalent dominance. The desired design space is the line
D-A-B-C.

2.1.2 Problem Formulation

To sign off a circuit that operates at both nominal and overdrive modes, we need to select

four parameters: nominal frequency (fnom) and voltage (Vnom), and overdrive frequency (fOD)

and voltage (VOD). In this work, we study the problems where two parameters are given and

two parameters must be determined, as follows.

16

The FIND OD problem. Given fnom, Vnom and r, and upper bounds on VOD, Pavg and POD,

determine fOD and VOD such that fOD is maximized.

The FIND NOM problem. Given fOD, VOD and r, and upper bounds on Pavg and POD,

determine fnom and Vnom such that fnom is maximized.

The FIND VOLT problem. Given fnom, fOD and r, and upper bounds on VOD and POD,

determine Vnom and VOD such that Pavg is minimized.

The FIND FREQ problem. Given Vnom, VOD and r, and upper bounds on Pavg and POD,

determine fnom and fOD such that (1− r)× fnom + r × fOD is maximized.

2.1.3 Efficient Exploration of Design Space

The key challenge in signoff mode optimization is to efficiently search for the desired

modes using a small number of implementation trials. To this end, we propose a model-based

adaptive search to explore the design space for signoff mode selection. In the model-based

adaptive search, new solutions are determined using models, which are updated or derived from

implementations with previous solutions [91]. Figure 2.4 shows our adaptive search flow. We

construct our power model based on initial samples. Using the power model, we predict the

optimal signoff mode and sample (i.e., run SP&R) at the predicted mode. We iteratively sample

and update the power model until the flow converges.

Power Model

Following industry standard models (Liberty format) and tools (e.g., [240]), we model

circuit power as being comprised of three components – switching (Psw), internal (Pint) and

leakage (Pleak). Our power model uses the following circuit properties: load capacitance (Cload),

which includes wire capacitance and the capacitance of input pins driven by nets [113]; to-

tal gate capacitance (Cgate); and percentage of cell instances with different Vth flavors (i.e.,

Pct{LV T,HV T,NV T}). As we observed in Figure 2.1(b), circuit power exhibits unimodal behav-

ior with varying signoff voltage. This suggests that we model power as a second-order poly-

nomial of the signoff voltage. We also observe below that power linearly depends on circuit

properties. Therefore, we also model the circuit properties as second-order polynomials of the

signoff voltage or frequency,2 as

cload = q1 × V 2 + q2 × V + q3 (2.2)

2Note that circuit properties may not always behave as second-order relations with the signoff voltage or fre-
quency, which can lead to errors in power estimation. However, our experimental results show that the estimation
error is less than 10%.

17

Figure 2.4: Our adaptive search flow (top) and power model (dotted box).

cgate = q4 × V 2 + q5 × V + q6 (2.3)

PctLV T = q7 × V 2 + q8 × V + q9 (2.4)

where q1–q9 are fitting parameters. Equations (2.2)–(2.4) are used when V is the variable in

adaptive search; when f is the variable, we use f in place of V . We then use the estimated

circuit properties to model power components.

Net switching power. We model net switching power as

Psw = k1 × α× Cload × f × V 2 (2.5)

where α is the switching activity factor; f and V are operating frequency and supply voltage,

respectively; and k1 is a fitting parameter used during adaptive search.

Internal power. Since the internal power mainly consists of the short circuit power, based

18

on [153][188], we model internal power as

Pint = k2 × α× Cgate × f × V 2 (2.6)

where k2 is a fitting parameter used during adaptive search.

Leakage power. We use gate capacitance as a parameter to fit leakage power [128]. Further, we

use the functional form eβ×V (β is a fitting parameter depending on technology and threshold

voltages of transistors) to model the leakage current. Due to dominant impact of LVT cells on

leakage power as compared to NVT and HVT cells, we also use percentage of LVT cell instances

in our model. We model leakage power as

Pleak = V × Cgate × (k3 × PctLV T + k4)× eβ×V (2.7)

where k3 and k4 are fitting parameters for adaptive search.

We emphasize that Equations (2.5)–(2.7) are not for accurate power calculation. Rather,

they are based on chosen parameters for power estimation within our adaptive search. In multi-

mode signoff, since the circuit is mainly determined by the dominant mode, which has the tight-

est timing constraints, we use the dominant mode to model Cload, Cgate and PctLV T . However,

when two or more modes exhibit equivalent dominance, we choose the modes that are not yet

fixed and among these modes we choose the mode with the largest duty cycle for power modeling

as it has the greatest impact on Pavg.

Adaptive Search

We now propose two generic adaptive search flows for signoff mode selection (shown

in Algorithm 1). We then extend them to solve the problems described in Section 2.1.2.

Given a signoff frequency (f), we use the MIN POWER flow to search for the signoff

voltage (V) that minimizes circuit power (P). The inputs Vmin and Vmax are user-specified

minimum and maximum signoff voltages, respectively. Vstop is a stopping criterion for adaptive

search. We first construct our power model based on three initial samples (Lines 1–3). Based

on the obtained power model, we predict the optimal signoff voltage to minimize power (Line

6). We then run SP&R with the predicted signoff voltage and update the power model (Lines

7–9). If the change in the value of the estimated optimal signoff voltage is less than Vstop, the

adaptive search terminates. Otherwise, more accurate estimation of the optimal signoff voltage

is predicted from the improved power model.

Given a signoff voltage (V), we use the MAX FREQ flow to search for the maximum

19

signoff frequency (f) under particular power constraints (Pmax). The input fmin is the prede-

fined lower bound on performance and fmax is the maximum achievable frequency with voltage

V. fmin and fmax define the range of signoff frequency selection. fstop is a stopping criterion.

Algorithm 1 Adaptive search flows.

Procedure MIN POWER (f , Vmin, Vmax, Vstop)
1: Run SP&R with (f , Vmin), (f , Vmax), (f , Vmin+Vmax

2);
2: Extract circuit information (= Cload, Cgate, PctLV T , Psw, Pint and Pleak);
3: Build the power model based on extracted information;
4: i← 1; V0 ← Vmin;
5: while ∆V ≥ Vstop do
6: Vi ← select the optimal V based on the power model;
7: Run SP&R with (f , Vi);
8: Extract circuit information;
9: Update the power model using LSQR based on extracted information;

10: ∆V ← Vi − Vi−1; i← i + 1;
11: end while
12: return Vi−1

Procedure MAX FREQ (V , Pmax, fmin, fmax, fstop)

1: Run SP&R with (fmin, V), (fmax, V), (fmin+fmax

2 , V);
2: Extract circuit information;
3: Build the power model based on extracted information;
4: i← 1; f0 ← fmin;
5: while ∆f ≥ fstop do
6: fi ← select f based on the power model such that P = Pmax;
7: Run SP&R with (fi, V);
8: Extract circuit information;
9: Update the power model using LSQR based on extracted information;

10: ∆f ← fi − fi−1; i← i + 1;
11: end while
12: return fi−1

2.1.4 Methodology

Design space reduction. According to Lemma 2, we search only the design space in which the

equivalent dominance property holds to reduce overdesign.

Duty-cycle awareness. Our power model estimates Pavg based on r and our optimizations aim

at reducing Pavg or are constrained by an upper bound on Pavg.

Design cone approximation. We estimate a design cone using LVT- and HVT-only inverter

chains, as in [30].

20

The FIND OD Problem

We extend the MAX FREQ flow to solve the FIND OD problem (Algorithm 2). One

key observation which reduces the number of MCMM (Multi-Corner Multi-Mode) implemen-

tations during the adaptive search is that a circuit implemented at a particular pair of nominal

mode and overdrive mode can also run at other overdrive modes along its frequency vs. volt-

age tradeoff curve (Figure 2.5(a)). This implies that circuits implemented with a nominal mode

and any overdrive mode along one frequency vs. voltage tradeoff curve will have similar circuit

properties. Thus, we can extract circuit properties for solutions in the design cone by generating

a few trial circuits with different frequency vs. voltage tradeoffs.

Algorithm 2 Method for solving the FIND OD problem.
1: Find the design cone of the nominal mode (fnom, Vnom);
2: Find the intersections of the maximum supply voltage Vmax and boundaries of the design cone.

Define the minimum and maximum frequencies of these intersections as fa and fb, respectively;
3: Run MCMM SP&R with the given nominal mode and overdrive modes defined by {fa, fb , fa+fb

2 }
and Vmax;

4: Extract circuit information. Build or update the power model;
5: Estimate Pavg , based on the given r, corresponding to feasible overdrive modes within the design

cone. Find the maximum fOD along with the corresponding VOD satisfying power constraints;
6: Run MCMM SP&R with the overdrive mode obtained in Step 5. Repeat Steps 4-6 until ∆fOD is less

than a stopping criterion fstop.

Figure 2.5: (a) Projection of mode B to mode B’ for circuit property modeling. (b) λ(Vnom)
calculation, where λ(Vnom) = ∆V 1/∆V 2. VHV T and VLV T are defined by the intersections of

fOD and the design cone.

The FIND NOM Problem

The FIND NOM problem is similar to the FIND OD problem. We solve the FIND NOM

problem using the same methodology as for the FIND OD problem.

21

The FIND VOLT Problem

Finding the optimal Vnom and VOD pair using exhaustive search incurs large runtime

because there are O(n2) feasible solutions (n is the number of feasible signoff voltages). To

reduce the runtime complexity, we propose an approximate optimization method: for each Vnom,

we consider only one VOD, in which we determine the VOD based on a parameter λ(Vnom) as

illustrated in Figure 2.5(b).3 λ(Vnom) indicates the ratio of HVT cells to total cells in the critical

paths. When the signoff voltage increases, paths become faster and more HVT cells are used

to reduce power. As a result, for a fixed fnom, λ(Vnom) increases with Vnom. We heuristically

approximate λ(Vnom) as a linear function of Vnom in our method.

λ(Vnom) =
λ(Vmax)− λ(Vmin)

Vmax − Vmin
× Vnom + λ(Vmin) (2.8)

in which Vmax and Vmin are respectively the maximum Vnom at the given technology node

and the minimum supply voltage at fnom, which we assume can be determined by designers.

We calculate λ(Vmax) and λ(Vmin) based on the desired VOD that minimizes Pavg when Vnom

equals to Vmax and Vmin, respectively. Algorithm 3 shows the steps to solve the FIND VOLT

problem.

The FIND FREQ Problem

For each fnom, we consider only one fOD. Further, we approximate λ(fnom) as a linear

function of fnom. Since the methodology for the FIND FREQ problem is similar to that for the

FIND VOLT problem (in that the frequency and voltage axes are swapped), we skip the detailed

descriptions.

Algorithm 3 Method for solving the FIND VOLT problem.
1: Define two nominal modes (fnom, Vmin) and (fnom, Vmax); For each nominal mode, determine the

VOD with the minimum Pavg by using the MIN POWER flow;
2: Calculate λ(Vmin) and λ(Vmax) with the resultant VOD;
3: Run MCMM SP&R at {Vmin, Vmax, Vmin+Vmax

2 } (with fnom) and the corresponding VOD (with
fOD) determined by λ values;

4: Extract circuit information. Build or update the power model;
5: Find Vnom and the corresponding VOD that achieve minimum Pavg based on the power model;
6: Run MCMM SP&R with the Vnom and VOD obtained in Step 6. Repeat Steps 4-6 until ∆Pavg is less

than a stopping criterion Pstop.

3Experimental results in Section 2.1.5 show that our approximate optimization can achieve results similar to those
of the exhaustive search.

22

2.1.5 Experimental Results

Our experiments use two RTL designs (AES and JPEG) from OpenCores website [230]

and four blocks (FPU, MUL, EXU and SPU) from OpenSPARC T1 [231]. Designs are im-

plemented with both foundry 65nm triple-Vth libraries and 28nm dual-Vth libraries. We syn-

thesize designs at both nominal and overdrive modes using Synopsys Design Compiler vG-

2012.06 [237], and pick the mode with less power after routing.4 We run MCMM P&R using

Cadence Encounter Digital Implementation System v10.1 [217]. To eliminate tool noise, we ex-

ecute each P&R run three times, perturbing the timing constraints by a small amount (i.e., 0.5%

of the clock period) [95]. We use SensOpt [235] for post-routing leakage optimization, and Syn-

opsys PrimeTime vC-2009.06-SP2 [240] for timing and power analyses. We run timing analysis

at SS corner and power analysis at FF corner. Our basic experimental configuration assumes r

= 50%. All implemented designs have worst negative slacks (WNS) ≥ -10ps.5 During adaptive

search, we derive and refine our power model using MATLAB vR2009B [228].

FIND OD problem. Table 2.1 shows the experimental setup, where Pavg max, POD max and

Vmax respectively constrain Pavg, POD and VOD. We assume the same overdrive mode for all

four blocks from OpenSPARC T1 and combine them into a single instance which we denote

as OST1. For each instance, we implement four methods to optimize the overdrive mode. The

Signoff&Scale method applies the traditional “signoff and scale”, where we first sign off circuits

with the given nominal mode and then perform timing and power analyses with libraries char-

acterized at higher voltages to search for the maximum fOD under power constraints. Note that

we perform an additional MCMM P&R run to optimize power at both modes after the overdrive

mode is selected. The Proposed method uses the proposed adaptive search. The Exhaustive

search explores the entire feasible design space for given design parameters. We also compare

to the Method in [30].

Results in Table 2.2 show that the Proposed method achieves up to > 8% and 6% over-

drive performance improvements compared to the Signoff&Scale and the Method in [30], re-

spectively, while maintaining similar area and power. Further, the Proposed method is within

4% of that obtained from the Exhaustive search, while using less than 8% of the Exhaustive

search runtime. We also note that our Proposed method is scalable due to its use of adaptive

search, which is able to converge to a near-optimal solution after a small number of SP&R runs.
4Although this may be unnecessary when modes are equivalently dominant, we use the same implementation for

all experiments for fair comparisons.
5The small WNS is due to the discrepancy between timing analysis in Cadence Encounter Digital Implementation

System v10.1 [217] and in Synopsys PrimeTime vC-2009.06-SP2 [240].

23

Table 2.1: Experimental setup for the FIND OD problem.

Case Design Technology
fnom Vnom Pavg max POD max Vmax

(MHz) (V) (mW) (mW) (V)

1 AES 65nm 500 0.9 40 55 1.2

2 JPEG 65nm 400 0.9 80 100 1.2

3 OST1 65nm 600 0.9 210 300 1.2

4 AES 28nm 800 0.8 25 30 1.1

5 AES 28nm 800 0.8 35 40 1.1

6 JPEG 28nm 500 0.8 35 50 1.1

When we optimize each block in OST1 individually (fine-grained optimization) the Pro-

posed method achieves 4-8% fOD improvement compared to the Signoff&Scale. For Case 3 in

Table 2.2 (coarse-grained optimization), the corresponding fOD improvement is 6.5%. These

consistent fOD improvements suggest that the Proposed method is scalable.

FIND VOLT problem. Table 2.3 and Table 2.4 respectively show our experimental setup and

results. The Proposed method achieves less than 6% power overhead, with 6× runtime reduction,

compared to Exhaustive search. The Proposed method also achieves up to 12% reduction of

average power compared to the Method in [30].

FIND FREQ problem. Table 2.5 and Table 2.6 respectively show our experimental setup and

results. The Proposed method achieves less than 3% performance overhead, with around 10×
runtime reduction, compared to Exhaustive search.

Duty cycle-awareness validation. To show that our proposed methodology is duty cycle-aware,

we optimize AES (in the context of the FIND OD problem) with different duty cycles (ropt) in

both 65nm and 28nm technologies. In 65nm technology, we assume the nominal mode as

(500MHz, 0.9V) and constraints on Pavg and Vmax as 30mW and 1.2V , respectively. In 28nm

technology, we assume the nominal mode as (800MHz, 0.8V) and constraints on Pavg and

Vmax as 30mW and 1.1V , respectively. We then evaluate the maximum fOD of outcomes with

different duty cycles (reval) under the power constraints.

Results in Table 2.7 show that fOD and VOD decrease with a larger ropt. That is, given

fixed power constraints, optimization with a smaller ropt results in a faster design. Further,

maximum fOD is achieved when reval = ropt. These observations confirm the duty cycle-

awareness of our Proposed method. The results also show the cost of inaccurate prediction for

r. For example, in 65nm, if r = 0.1 (fOD = 845MHz), but the optimization assumes r = 0.9

(fOD = 805MHz), there is a performance penalty of 5%.

24

Table 2.2: Metrics of circuits implemented for the FIND OD problem.

Signoff &Scale Proposed method Exhaustive search Method in [30]

fOD (MHz) 760 822 840 810

AES VOD (V) 1.20 1.18 1.16 1.18

(Case 1) Area (um2) 30002 30594 31405 30832

Pavg (mW) 35.1 36.2 37.3 36.0

#P&R runs 2 4 66 7

fOD (MHz) 580 638 660 600

JPEG VOD (V) 1.16 1.18 1.12 1.18

(Case 2) Area (um2) 114679 122394 127361 117355

Pavg (mW) 67.6 70.5 69.3 69.7

#P&R runs 2 4 66 7

fOD (MHz) 860 916 940 870

OST1 VOD (V) 1.16 1.14 1.12 1.16

(Case 3) Area (um2) 151149 154253 156363 150491

Pavg (mW) 163.2 162.0 162.0 162.4

#P&R runs 2 5 66 7

fOD (MHz) 1220 1270 1280 1260

AES VOD (V) 0.98 0.96 0.98 1.02

(Case 4) Area (um2) 11591 12229 12051 11474

Pavg (mW) 19.4 20.7 20.9 21.2

#P&R runs 2 4 30 10

fOD (MHz) 1400 1470 1480 1440

AES VOD (V) 1.06 1.02 1.06 1.10

(Case 5) Area (um2) 11561 12527 11991 11457

Pavg (mW) 24.5 25.5 26.6 26.5

#P&R runs 2 4 30 8

fOD (MHz) 800 845 880 820

JPEG VOD (V) 1.00 0.98 0.98 1.02

(Case 6) Area (um2) 55125 57225 54549 53207

Pavg (mW) 34.0 35.1 34.5 35.3

#P&R runs 2 4 30 10

2.1.6 Conclusion

Based on the properties of equivalent dominance, we propose guidelines and efficient

methodologies to search for the optimal modes for overdrive signoff. The proposed methodolo-

gies can successfully determine the signoff modes that reduce lifetime energy, and are shown to

25

achieve up to > 8% and 6% performance improvements compared to the traditional “signoff and

scale” and the previous work [30], respectively. The methodologies also result in less than 6%

power overhead as compared to the optimal solutions.

Table 2.3: Experimental setup for the FIND VOLT problem.

Case Design Technology fnom (MHz) fOD (MHz) POD max (mW) Vmax (V)

7 AES 65nm 700 850 50 1.2

8 JPEG 65nm 600 720 100 1.2

9 AES 28nm 1000 1300 30 1.1

10 JPEG 28nm 600 800 40 1.1

Table 2.4: Metrics of circuits implemented for the FIND VOLT problem.

Proposed method Exhaustive search Method in [30]

Vnom (V) 0.92 0.92 0.90

AES VOD (V) 1.02 1.02 1.04

(Case 7) Area (um2) 35349 35349 34599

Pavg (mW) 41.8 41.8 44.1

#P&R runs 7 44 10

Vnom (V) 0.94 0.90 0.86

JPEG VOD (V) 1.04 0.94 0.96

(Case 8) Area (um2) 136747 148360 145906

Pavg (mW) 85.4 80.9 91.9

#P&R runs 6 46 9

Vnom (V) 0.88 0.92 0.96

AES VOD (V) 0.98 1.06 1.08

(Case 9) Area (um2) 12084 12439 10150

Pavg (mW) 24.5 23.9 24.7

#P&R runs 7 42 11

Vnom (V) 0.82 0.82 0.82

JPEG VOD (V) 0.92 0.92 0.92

(Case 10) Area (um2) 55276 55276 55276

Pavg (mW) 32.4 32.4 32.4

#P&R runs 7 42 15

26

Table 2.5: Experimental setup for the FIND FREQ problem.

Case Design Technology Vnom (V) VOD (V) Pavg max (mW) POD max (mW)

11 AES 65nm 0.9 1.1 40 55

12 JPEG 65nm 0.9 1.2 80 120

Table 2.6: Metrics of circuits implemented for the FIND FREQ problem.

Proposed method Exhaustive search

fnom (MHz) 618 610

fOD (MHz) 810 860

AES favg 714 735

(Case 11) Area (um2) 31526 32740

Pavg (mW) 40.3 39.6

#P&R runs 6 70

fnom (MHz) 431 440

fOD (MHz) 623 630

JPEG favg 527 535

(Case 12) Area (um2) 119777 120670

Pavg (mW) 81.2 82.6

#P&R runs 6 52

Table 2.7: Metrics of circuits implemented with different ropt.

Technology ropt

fOD VOD fmax (MHz) with reval =

(MHz) (V) 0.1 0.3 0.5 0.7 0.9

0.1 844 1.20 845 830 725 670 640

0.3 832 1.19 840 830 725 670 640

65nm 0.5 726 1.10 815 815 730 670 635

0.7 670 1.05 805 805 720 670 635

0.9 638 1.02 805 805 720 670 640

0.1 1720 1.10 1660 1410 1225 1110 1035

0.3 1440 1.04 1615 1465 1245 1130 1070

28nm 0.5 1220 0.96 1600 1445 1230 1125 1070

0.7 1110 0.92 1600 1450 1235 1130 1075

0.9 1050 0.90 1600 1445 1225 1125 1075

27

2.2 A Global-Local Optimization Framework for Simultaneous

Multi-Mode Multi-Corner Clock Skew Variation Reduction

Modern SoCs typically exploit complex operating scenarios to maximize performance

and reduce power consumption. For instance, techniques such as dynamic voltage and frequency

scaling (DVFS), split rail power supply, etc. are widely applied in SoC designs to meet perfor-

mance and power targets. However, these techniques increase the number of modes and corners

used for timing closure, which will in turn lead to increased datapath delay variation and clock

skew variation across corners. Such large timing variations increase area and power overheads,

as well as design turnaround time (TAT) due to a “ping-pong” effect whereby fixing timing is-

sues at one corner leads to violations at other corners. To solve this issue, we can minimize either

datapath delay variation or clock skew variation across corners. Given that datapath optimization

is a local optimization and is usually applied after the clock network optimization, what datapath

delay variation minimization can accomplish is limited. In other words, datapath optimizations

are practically less impactful than minimizing clock skew variations in most cases. This is why

clock network optimization is a key first step during the physical implementation flow for timing

closure. Further, clock skew variation can be achieved via both global and local optimizations of

the clock network. Therefore, minimizing clock skew variation across corners is more effective

for multi-corner timing closure. In this work, we minimize clock skew variation.

Moreover, timing violations due to clock skew variation across corners are typically

reduced by (hold and/or setup) buffer insertion, Vth-swapping and gate sizing on datapaths at

later design stages. Thus, clock skew variation between each pair of sequentially adjacent sinks

can lead to potential costs of area, power and design TAT. We therefore minimize the sum of

skew variations between all sink pairs to minimize the overall physical implementation costs

(e.g., in area, power, TAT).

Although many commercial EDA tools are capable of multi-mode multi-corner clock

network synthesis [178][239], our optimization framework can be applied as an incremental op-

timization for further reduction of skew variations in light of our robust interface to commercial

P&R and STA tools. Moreover, experimental results show that our proposed optimization is

able to achieve significant skew variation reduction on clock networks that have been synthe-

sized with a leading commercial tool.

Contributions of our work are as follows.

1. We are the first in the literature to study the problem of minimizing the sum of clock skew

variations across multiple PVT corners.

28

2. We propose a novel global-local framework for clock network optimizations to minimize

the sum, over all pairs of PVT corners, of skew variation between all sequentially adjacent

pairs.

3. We demonstrate that machine learning-based predictors of latency change can provide

accurate guidance on the best moves to test during local optimization for minimization of

skew variation across corners.

4. Our optimization framework has a robust interface to leading commercial P&R and STA

tools and production PDKs/libraries, and can be generalized to other clock network opti-

mization problems.

5. We achieve up to 22% reduction in the sum of skew variations of clock trees in testcases

that reflect high-speed application processor and memory controller blocks.

2.2.1 Related Work

We classify previous works on clock skew optimization as (i) works that target skew

and/or delay optimization at single or multiple corners, and (ii) works that optimize skew varia-

tion across multiple PVT corners.

Several previous works optimize skew at one or more PVT corners, but do not address

skew variation across corners. Cao et al. [27] minimize the worst skew in a clock tree by parti-

tioning the tree into different skew groups. The authors then greedily minimize the worst skew in

each skew group to minimize overall local skew. Cho et al. [37] perform clock tree optimization

that is temperature-aware. The authors modify the deferred merge embedding (DME) algorithm

to include merging diamonds for consideration of temperature variations to guide clock skew and

wirelength minimization. Lung et al. [146] perform multi-mode multi-corner (MMMC) clock

skew optimization by minimizing the worst skew across all corners. They propose a methodol-

ogy to determine the delay correlation factor for clock buffers at 130nm, 90nm and 65nm and

conclude that the correlation across corners is linear. However, such an assumption might not

be valid at 28nm and below. Lung et al. [147] perform chip-level as well as module-level clock

skew optimizations with multiple voltage modes. The authors use power-mode-aware buffers

for chip-level clock tree optimization. For the module-level optimization, they only consider the

worst voltage corner.

Relatively fewer works exist that optimize skew variation across multiple PVT corners.

Restle et al. [167] propose a two-dimensional nontree structure. They divide the nontree struc-

29

ture into two levels – leaf level (close to clock sinks) and top level (close to clock source). The

top level is the same as the traditional clock tree structure, but the leaf level is a mesh structure

such that each sink is connected to the nearest point on the mesh. Although this is a very ef-

fective way to minimize skew variation across corners, the mesh structure consumes enormous

wire resources and power. Su and Sapatnekar [176] use mesh structures for the top-level tree

which consumes less wire resource and power as compared to [167]. However, this consumes

59%-168% more wire resource than a tree structure. Further, the authors do not optimize skew

variation which still exists in the bottom-level subtrees. Rajaram et al. [163][164] propose a

nontree construction method to insert crosslinks6 in a clock tree by estimating subtree delays

using the Elmore delay model. The authors verify their method with SPICE-based Monte Carlo

simulations and report skew variability reduction. However, the approach consumes excess addi-

tional wire and power due to crosslink insertions. Mittal and Koh [151] propose a greedy method

to insert crosslinks to reduce skew variation.

To our knowledge, there has been no systematic framework for minimization of clock

skew variation (across multiple signoff corners) for clock trees. Our work exploits both global

and local iterative optimizations to minimize skew variations across different PVT corners which

is very important for high-speed processor and multimedia blocks that operate at multiple modes

and corners. Further, instead of minimizing the maximum skew or skew variation, we minimize

the sum of skew variations over all sink pairs, which will reduce the potential costs of gate sizing

and buffer insertion for multi-corner timing closure.

2.2.2 Problem Formulation

The notations we use in this section are given in Table 2.8.

For a corner pair (ck, ck′), we define the normalized skew variation between sink pair

(fi, fi′) as

v
ck,ck′
i,i′ = |αk · skewck

i,i′ − αk′ · skew
ck′
i,i′ | (2.9)

where skew (skewck
i,i′) is defined as the latency difference between capture and launch clock

paths at ck. We emphasize that our optimization is local skew-aware, so that we only optimize

skews between launch-capture sink pairs that have valid datapaths in between them (i.e., we

avoid the pessimism that would result from use of global skew in the formulation). αk is the

normalization factor at corner ck with respect to the nominal corner. Note that αk is an input

parameter and can be determined by technology information (e.g., ratio between buffer delays at
6A crosslink is an additional wire between any two nodes of a given clock tree.

30

Table 2.8: Description of notations used in our work.

Term Meaning

ck operating corner, (0 ≤ k ≤ K; c0 is the nominal corner)

αk normalization factor of corner ck with respect to c0

fi sink (e.g., flip-flop) in clock tree, (1 ≤ i ≤ N)

Pi clock path from clock source to fi

skewck
i,i′ clock skew between sink pair (fi, fi′) at corner ck

sj arc (i.e., tree segment without branching) in clock tree, (1 ≤ j ≤M)

Dck
j original arc delay at corner ck

∆ck
j delay change of arc sj at corner ck from optimization

Dck
max maximum latency of a clock path at corner ck

v
ck,ck′
i,i′ normalized skew variation across corner pair (ck, ck′) between (fi, fi′)

Vi,i′ worst normalized skew variation across all corner pairs between (fi, fi′)

ck and c0), clock tree properties (e.g., Vth and sizes of buffers in the tree), etc. Further, one can

define specific αk values for each sink pair. In our work, we define αk as the average skew ratio

between c0 and ck over all sink pairs.

We further define the maximum skew variation across corners, for each sink pair (fi, fi′),

as
Vi,i′ = max

∀(ck,ck′)
v

ck,ck′
i,i′ (2.10)

Based on the above, we address the following problem formulation: Skew Variation

Reduction Problem. Given a routed clock tree, minimize the sum over all sink pairs of the

maximum normalized skew variation across all corners.

Minimize
∑

∀(fi,fi′)

Vi,i′ (2.11)

2.2.3 Optimization Framework

Figure 2.6 illustrates our optimization framework. We perform global and local opti-

mizations to reduce skew variations. The global optimization constructs a linear program (LP)

and uses it to guide buffer insertion, buffer removal, and routing detours. Local optimization is

based on a machine learning-based predictor of latency changes. It iteratively minimizes skew

variation via tree surgery (i.e., driver reassignment), buffer sizing, and buffer displacement. The

iterative optimization continues until there is no further improvement or other stopping condition

is reached.

31

Figure 2.6: Overview of our optimization framework.

Global Optimization

We construct a linear program (LP) to reduce the sum of skew variations between all

sink pairs in a clock tree. Based on the LP solution, we determine the desired delay changes

of arcs at all corners and perform buffer insertion and removal, as well as routing detour, to

accomplish the desired delay changes. We determine number of buffers, buffer size and length

of routing detour based on lookup tables. However, the achievable delay values are discrete due

to the limited number of buffer sizes. Further, placement legalization and routing congestion

also lead to discrepancy between desired delay and actual delay after ECOs in the P&R tool.

Therefore, to minimize the sum of skew variations as well as to increase the likelihood that

the solution is practically implementable, we formulate the LP such that it minimizes the total

amount of delay changes with respect to an upper bound on sum of skew variations. As a result,

we implicitly minimize the number of ECO changes. We then sweep this upper bound to search

for the achievable solution with minimum sum of skew variations. The objective function is:

Minimize
∑

1≤j≤M, 0≤k≤K

|∆ck
j | (2.12)

32

where ∆ck
j is the latency change on arc sj at corner ck.7 The upper bound U on the sum of skew

variations is specified as ∑
(fi,fi′)

Vi,i′ ≤ U (2.13)

where Vi,i′ is the maximum normalized skew variation for the sink pair (fi, fi′) over all corner

pairs (ck, ck′), and is calculated based on the following constraint.

Vi,i′ ≥αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′)−
∑

sj∈Pi

(Dck
j + ∆ck

j)

−αk′ · (
∑

sj′∈Pi′

(Dck′
j′ + ∆ck′

j′)−
∑

sj∈Pi

(Dck′
j + ∆ck′

j))

Vi,i′ ≥αk′ · (
∑

sj′∈Pi′

(Dck′
j′ + ∆ck′

j′)−
∑

sj∈Pi

(Dck′
j + ∆ck′

j))

−αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′)−
∑

sj∈Pi

(Dck
j + ∆ck

j))

We further constrain the optimization such that the solution returned does not degrade

(i) local skew at any corner, nor (ii) the skew variation between corner pairs (ck, c0), for all arcs

on clock paths at all non-nominal corners ck.∑
sj′∈Pi′

(Dck

j′ + ∆ck

j′)−
∑

sj∈Pi

(Dck
j + ∆ck

j) ≤ |
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j |

∑
sj∈Pi

(Dck
j + ∆ck

j)−
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′) ≤ |
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j |

αk·(
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′)−
∑

sj∈Pi

(Dck
j + ∆ck

j))

−
∑

sj′∈Pi′

(Dc0
j′ + ∆c0

j′)−
∑

sj∈Pi

(Dc0
j + ∆c0

j)

≤|αk · (
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j)− (

∑
sj′∈Pi′

Dc0
j′ −

∑
sj∈Pi

Dc0
j)|

∑
sj′∈Pi′

(Dc0
j′ + ∆c0

j′)−
∑

sj∈Pi

(Dc0
j + ∆c0

j)

−αk · (
∑

sj′∈Pi′

(Dck

j′ + ∆ck

j′)−
∑

sj∈Pi

(Dck
j + ∆ck

j))

≤|αk · (
∑

sj′∈Pi′

Dck

j′ −
∑

sj∈Pi

Dck
j)− (

∑
sj′∈Pi′

Dc0
j′ −

∑
sj∈Pi

Dc0
j)|

We also bound the maximum latency for each clock path as follows.∑
sj∈Pi

(Dck
j + ∆ck

j) ≤ Dmax (2.14)

7We formulate ∆
ck
j as positive and negative components to handle the absolute values in our formulation.

33

For each arc, we specify the upper and lower bounds on the latency change. The lower bound

Dck
min j is determined by the delay with optimal buffer insertion, without any routing detour. The

upper bound of delay change is defined as β times of the original arc delay, in which β can be

selected empirically (we assume β = 1.2 in this work).

Dck
min j ≤ Dck

j + ∆ck
j ≤ β ·Dck

j
(2.15)

To increase the likelihood that the LP solution is practically implementable, we charac-

terize lookup tables at each corner for stage delays of inverter pairs8 with various gate sizes and

routed wirelengths between consecutive inverters. We define the stage delay between inverter

pairs as the sum of gate delays of the two inverters in a pair and the delays of their fanout nets

(Figure 2.8). Based on the characterized lookup tables, we observe that for a given stage delay

per unit distance at c0 (i.e., the ratio between stage delay and routed wirelength for an inverter

pair), the stage delay ratios between pairs of corners are limited by the buffer insertion solutions

in lookup tables. Figure 2.7 shows the stage delay ratios between pairs of corners (c0, c1) and

(c0, c2), respectively. In the plot, each circle represents an inverter pair with a particular gate size,

routed wirelength between consecutive inverters, input slew and load capacitance. We use poly-

nomial fit to determine upper (W ck,ck′
max) and lower (W ck,ck′

min) bounds of delay ratios for each pair

of corners, which are shown as the red curves. Any delay ratio larger (smaller) than the upper

(lower) bound is not achievable with available buffer insertion solutions in lookup tables. Fur-

thermore, we assume that the delay per unit distance of an arc does not vary significantly in our

optimization due to Constraints (2.14)-(2.15). Thus, we use delay per unit distance of an arc in

the original clock tree to estimate upper and lower bounds of delay ratios (W ck,ck′
min,max), and apply

these bounds in Constraint (2.16) to avoid LP solutions that are not practically implementable

by ECOs.

W
ck,ck′
min ≤

Dck
j + ∆ck

j

D
ck′
j + ∆ck′

j

≤W ck,ck′
max (2.16)

Complexity Analysis. The LP formulation (Equations (4)-(11)) has O(M ·K) variables to in-

dicate delay change on each arc at each corner (∆ck
j); there are also O(N2) (i.e., the number of

sink pairs) variables to indicate the maximum normalized skew variation across all corner pairs

between each sink pair (Vi,i′). There are C(K, 2) constraints to force Vi,i′ to be no less than

the maximum normalized skew variation between each sink pair (Constraint (2.14)); (4 · K)

constraints to prevent local skew and skew variation degradations (Constraints (2.14)-(2.14)); N

8In this work, we assume that the buffers used to construct the clock tree are comprised of inverter pairs. But, our
methodologies apply to clock trees with both inverting and non-inverting buffers.

34

Figure 2.7: Delay ratios between (c1, c0) and (c2, c0), respectively. c0 = (SS, 0.9V , -25◦C,
Cmax), c1 = (SS, 0.75V , -25◦C, Cmax) and c2 = (FF, 1.1V , 125◦C, Cmin).

constraints to specify the maximum latency (Constraint (2.14)); (2 ·M) constraints to bound arc

delay changes (Constraint (2.15)); and C(K, 2) constraints to enhance ECO feasibility (Con-

straint (2.16)).

ECO Implementation. We apply ECO changes to accomplish the desired arc delays at each

corner, which are determined by LP solution. Given that the buffer insertion problem is NP-

complete [172], although we apply several techniques to enhance ECO feasibility, the LP for-

mulation still cannot guarantee an optimal solution that is practically implementable. Thus, our

target is to minimize the discrepancy between the desired delays in the LP solution and those

that actually result from ECOs. In our ECO implementation, we first remove all original in-

verter pairs on the arc. We then determine the solution (i.e., gate size and routed wirelengths

between consecutive inverters) of inverter pair insertion based on the characterized lookup ta-

bles with stage delays. Note that in this work, we always use one gate size, and uniformly place

inverter pairs, for each individual arc. We place inverter pairs in a “U” shape when routing

detour is required. The lookup table contains stage delays with five inverter sizes and routed

wirelengths between consecutive inverters varying from 10µm to 200µm with a step size of

5µm across different corners. Since these lookup tables are technology-dependent, we only per-

form the characterization once per technology. More specifically, we have two lookup tables: (i)

LUTdetail is characterized with different input slew and fanout load capacitance, and is applied

for the first and last inverter pairs of a given arc, and (ii) LUTuniform is characterized based on

average stage delay of inverter pairs in an arc, and is applied for the inverter pairs in the middle

of an arc (Figure 2.8).

35

Figure 2.8: LUTdetail is characterized with various input slews and fanout loads capacitance;
LUTuniform contains average stage delay with particular gate size and routed wirelengths

between consecutive inverters.

Algorithm 4 describes the flow to select solutions for inverter pair insertions. For each

combination of gate size and routed wirelength between consecutive inverters, we estimate a

range of desired number of inverter pairs (i.e., [max(uest−2, 0), uest +2]) based on the average

stage delay in LUTuniform at corner c0 (Lines 5-6). Dck
LP is the required arc delay at corner ck

in the LP solution. We then assess error for each potential solution (i.e., a combination of gate

size, routed wirelength between consecutive inverters and number of inverter pairs) and select

the solution with minimum error (Lines 7-16). We use p and q to respectively index the gate

size and the routed wirelength between consecutive inverters. Dck
est is the estimated delay using

LUTs. Last, we implement ECO changes based on the selected solution (Lines 19, 21).

Algorithm 4 LP-guided ECO flow.

1: for all sj to be optimized do
2: Remove current inverter pairs on sj

3: errmin ← +∞; sol← ∅
4: for p := 1 to Nsize, q := 1 to NWL do
5: uest ← round(Dck

LP /d(LUTuniform)ck
p,q)

6: for u := Max(uest − 2, 0) to uest + 2 do
7: err ← 0
8: for k := 0 to K do
9: err ← err + |Dck

est −Dck

LP |
10: end for
11: for all corner pair (ck, ck′) do
12: err ← err + |(Dck

est −D
ck′
est)− (Dck

LP −D
ck′
LP)|

13: end for
14: if err < errmin then
15: errmin ← err; sol← (p, q, u)
16: end if
17: end for
18: end for
19: Perform ECO inverter pair insertion based on sol
20: end for
21: Legalize all inserted inverters and perform ECO routing

36

Local Optimization

We apply local iterative optimization to further minimize the sum of skew variations

across corners. More specifically, we consider three types of local moves, which are illustrated

in Figure 2.9(b)-(d) – (I) buffer sizing and/or buffer displacement, (II) displacement of a buffer

and gate sizing on one of its child buffers, and (III) tree surgery (i.e., reassignment of a (child)

node to a different (parent) driver). However, performance of such iterative optimization is

usually limited by its large turnaround time. For instance, each local move requires placement

legalization, ECO routing, parasitic extraction, and timing analysis in the golden timer.9 Given

such large turnaround time, it is practically impossible to explore all possible local moves for

a given design. Therefore, a fast and accurate model to predict the impact of local moves is

necessary. Previous work [84] has demonstrated that machine learning-based models are quite

accurate for delay and slew estimation. In our work, we apply a two-stage machine learning-

based model for prediction of arc delay changes with local moves. The overarching goal is to be

able to accurately predict delta-latency, i.e., the change in post-ECO routing source-sink delays

that results from a given buffer’s resizing and/or placement perturbation.

Machine Learning-Based Model. To predict the impact of a local move, we first estimate

new routing pattern (if the move contains displacement or tree surgery) by constructing two

types of trees – FLUTE [42] tree and single-trunk Steiner tree. We approximate wire delays

correspondingly using Elmore delay and D2M [7] models. We then update the delay and output

slew of the driver based on the estimated wire capacitance and update pin capacitance (if the

move sizes the child node) by performing interpolation in the Liberty table. Last, we perform

slew propagation using PERI [118] and update gate delays one and two stages downstream based

on Liberty tables.10 However, as observed in [84], the interpolated delay values do not always

match those from the golden timer’s analysis. Further, the estimated routing pattern as well as

wire delay can have discrepancy with respect to the commercial router’s actual ECO solution.

We therefore construct machine learning-based models to minimize such discrepancy.

We use Artificial Neural Networks (ANN) [85], Support Vector Machines (SVM) with a Radial

Basis Function (RBF) kernel [85], and Hybrid Surrogate Modeling (HSM) [112].11 In addition

to the estimated delays based on {FLUTE tree, single-trunk Steiner tree} × {Elmore delay,

9In our experiments, the runtime for each local move on a testcase with 1.79M instances and 270K flip-flops,
using one thread per analysis corner on a 2.5GHz Intel Xeon server, is around 70 minutes (i.e., 30 minutes for ECO
and parasitic extraction, and 40 minutes for timing analysis).

10Our analyses show that the delay and slew change of buffers beyond two stages is < 1ps, so we do not update
timings of buffers beyond two stages downstream.

11Further details of the applied machine-learning techniques that we use may be found in [85] and [112].

37

Figure 2.9: Local optimization moves used in our flow. (a) Initial subtree; (b) sizing and/or
displacement; (c) displacement and sizing of child node; and (d) tree surgery, i.e., driver

reassignment.

D2M}, the input parameters to the machine learning-based model also include the number of

fanout cells, as well as the area and aspect ratio of the bounding box which contains driving pin

and fanout cells. To generate training data, we construct artificial testcases (i.e., clock trees) that

resemble real designs with fanout ranging from 1-5 (20-40 for last-stage buffers) and bounding

box area and aspect ratio of the driven pins ranging from 1000µm2 to 8000µm2 and from 0.5

to 1, respectively. We then place fanout cells or sinks randomly within the bounding box. We

generate 150 artificial testcases and perform 450 moves on average to each testcase (the runtime

for one testcase is ∼1 hour). Note that we only construct one model for each corner, and that

this model is applied to all designs.

We create one delta-latency model for each corner used in our experiments. Figure

2.10(a) shows the predicted vs. actual latencies that we compute from the predicted delta laten-

cies by our model at corner c3 in Table 2.10. Figure 2.10(b) shows the corresponding histogram

of percentage errors. Across all the corners, our modeling error is 2.8% on average. The abso-

lute of maximum and minimum errors are 21.98% and 16.21% respectively. The modeling for

each corner using the artificial testcases is a one-time effort. On a 2.5GHz Intel Xeon server,

the time to train a model for each corner is around 5 hours with four threads. Models for each

corner can be trained in parallel, e.g., on a server with 24 threads, we can train six models in

38

Figure 2.10: Examples of (a) predicted vs. actual latencies, and (b) percentage error histograms
from our model for c3 corner in Table 2.10.

5 hours. Our models generalize to different testcases because (i) our training dataset generated

from the artificial testcases span ranges of parameters that are typically seen in clock trees in

SOC application processors and memory controllers, and (ii) we prevent overfitting by perform-

ing cross-validation. Our experimental results indicate that our models are generalizable and

accurate when applied to “unseen” testcases during the model training phase. Figure 6 shows

the accuracy comparison between our learning-based model and analytical models. We observe

that with fewer attempts, our learning-based model is able to identify the best move for more

buffers.

Figure 2.11: Accuracy comparison between our learning-based model and analytical models.
An attempt is an ECO. There are 114 buffers, and each buffer has 45 candidate moves. In one
attempt, the learning-based model (resp. analytical models) can identify best moves for 40%

(resp. up to 20%) of the buffers.

39

Iterative Optimization Flow. Based on our model, we perform iterative local optimization

flow illustrated in Algorithm 5. We first enumerate all candidate local moves and generate the

input data to our model (Line 1). The moves we consider in this work are shown in Table 2.9.

We predict the delta-latency resulting from each move based on our model (Line 2). We then

estimate the skew variation reductions based on the predicted latency changes. Our experimental

results show that we are able to evaluate the impacts of more than 160K moves at three corners

in 17 minutes on a 2.5GHz Intel Xeon server with 15 threads. We sort the candidate moves

in decreasing order of their predicted skew variation reductions, and pick the top R (i.e., R =

5 in this work) moves to implement in R individual threads (Line 3). Last, we perform timing

analysis using the golden timer to assess the actual skew variation changes (Line 4). If there

is skew variation reduction, we update the database with the minimum skew variation solution.

Otherwise, we implement the next R moves (Lines 5-9). The iteration terminates when there is

no move showing skew variation reduction according to our predictor.

Algorithm 5 Iterative optimization flow.

1: Enumerate all candidate moves and generate input data to model
2: Predict delta-latency and skew variation reductions
3: Implement R moves with maximum predicted skew variation reductions using R threads
4: Assess actual skew variation reductions with the golden timer
5: if there is skew variation reduction then
6: Update database with the minimum skew variation solution
7: else
8: Implement the next R moves and go to Line 4
9: end if

Table 2.9: Candidate moves in our optimization.

Type Candidate moves

I displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

II
displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

on one child node

III
reassign to a new driver (i) at the same level as current driver, and (ii) within

bounding box of 50µm × 50µm

2.2.4 Experimental Results

Our experiments are implemented in foundry 28nm LP technology. We construct the

original clock tree and perform ECO optimizations using Synopsys IC Compiler vI-2013.12-

40

SP1 [239]. We use Synopsys PrimeTime vH-2013.06-SP3 [240] and Synopsys PrimeTime-PX

vH-2013.06-SP3 PT-PX [240] for timing and power analyses, respectively. We construct the

machine learning-based model using MATLAB vR2013a [228]. The optimization flow is imple-

mented using C++ and Tcl scripts.

Testcase Description

We have developed two classes of testcase generators to validate our proposed opti-

mization framework. Class CLS1 corresponds to clock networks typically observed in high-

speed application processors and graphics processors. Class CLS2 corresponds to clock net-

works in memory controllers, which are typically used in SoCs to interface SoC components

with DRAM/eDRAM. We implement our testcases at 28nm LP technology. The corners used in

our experiments are shown in Table 2.10. We use the testcase generation methodology described

in [28], and the top-level structures of the testcases T1 and T2 in [28]. We modify the floorplan

and clock tree synthesis flow to develop two variants of CLS1, CLS1v1 and CLS1v2. Each of

CLS1v1 and CLS1v2 contains four identical 650µm × 650µm interface logic modules (ILMs)

to resemble four cores of an application processor. These are floorplanned in a rectangular block

such that the utilization of standard cells is ∼60% before placement.12 Figure 2.12(a) shows the

floorplan of CLS1v1. We implement the CLS1 class testcases at corners c0, c1 and c3 as shown

in Table 2.11. Corners c0 and c1 are setup-critical, and c3 is hold-critical. Table 2.11 summarizes

various post-synthesis metrics of these testcases.

Figure 2.12: Floorplans of (a) CLS1v1, and (b) CLS2v1. In yellow are routed clock nets.

12We understand from our industry collaborators that best-practices flows for high-speed and memory controller
blocks start with 50%–60% utilization before placement [169].

41

Table 2.10: Description of corners.

Corner Process Voltage Temperature Back-end-of-line

c0 ss 0.90V -25◦C Cmax

c1 ss 0.75V -25◦C Cmax

c2 ff 1.10V 125◦C Cmin

c3 ff 1.32V 125◦C Cmin

Table 2.11: Summary of testcases.

Testcase #Cells #Flip-flops Area Util Corners

CLS1v1 0.4M 36K 3.3mm2 62% c0, c1, c3

CLS1v2 0.4M 35K 3.4mm2 60% c0, c1, c3

CLS2v1 1.79M 270K 4.5mm2 58% c0, c1, c2

We also study a testcase CLS2v1 of class memory controller, which is new as compared

to [28]. Table 2.11 summarizes the post-synthesis metrics of this testcase, and Figure 2.12(b)

shows its floorplan. We use the methodology described in [28] to generate random logic and con-

nect this logic to flip-flops; this includes datapaths across different clock groups. The memory

controller is floorplanned in an L-shaped block with the controller at the center and the interface

logic in each of the top and bottom arms of the L-shape. The interface logic has data and control

signals across memory, processor and other blocks. The control signals are generated within the

controller, and the flip-flops in the interface logic and controller are separated by large distances

(e.g., ∼1mm). The large distance between sequentially adjacent sinks leads to large clock skew,

which the commercial tool tries to balance by inserting buffers. However, these clock buffers

lead to skew variations across corners. We implement the CLS2v1 testcase at corners c0, c1 and

c2 as shown in Table 2.11, where c0 and c1 are setup-critical and c2 is hold-critical.

For implementations of all our testcases, we follow a production methodology [169].

We set the skew target as 0ps in the CTS tools, as our studies (with skew targets ranging from

0ps to 250ps, in steps of 50ps) indicate that a target skew of 0ps steers the tool to deliver the

smallest skew at each corner. We perform clock tree optimizations with both multi-corner multi-

mode (MCMM) scenario as well as multi-corner single-mode (MCSM) scenario at each mode.

We then select the optimized clock tree solution with minimum skew variation as the input to

our optimization.

42

Results

Table 2.12 shows the experimental results,13 where variation, skew, #cells, power and

area are respectively the sum of normalized skew variations over union of top 10K critical sink

pairs (in terms of setup and hold timing slacks) at each corner,14 local skew at each corner, total

number of clock cells, clock tree power and total area of clock cells. In the experiments, we

apply three optimization flows to each of the testcases: (i) global is the global optimization flow,

(ii) local is the local iterative optimization flow, and (iii) global-local performs global and local

optimizations in sequence. The global (local) optimization alone achieves up to 16% (5%) re-

duction on the sum of skew variations. Since local moves affect only a subset of sink pairs, they

have smaller impact than that of the global optimization. By combining the two optimizations,

we reduce the sum of skew variations by 22% with negligible area and power overhead. The

results also show no degradation of local skews. Further, we observe that the local iterative opti-

mization reduces skew variations more when applied after the global optimization, as compared

to a standalone local skew optimization (e.g., for CLS1v1, local optimization achieves 13ns more

reduction with a prior global optimization, as compared to the standalone local optimization).

Table 2.12: Experimental results.

Testcase Flow
Variation [norm] Skew (ps)

#Cells
Power Area

(ns) c0 c1 c2,3 (mW) (µm2)

CLS1v1

orig 512 [1.00] 214 530 226 2515 0.355 3615

global 431 [0.84] 179 395 188 2553 0.356 3705

local 493 [0.96] 214 529 223 2515 0.355 3621

global-local 399 [0.78] 175 387 188 2553 0.356 3706

CLS1v2

orig 585 [1.00] 272 594 259 2762 0.369 3968

global 518 [0.89] 269 575 235 2762 0.369 3975

local 557 [0.95] 258 545 259 2762 0.369 3970

global-local 510 [0.87] 265 564 235 2762 0.369 3975

CLS2v1

orig 972 [1.00] 179 192 282 5568 0.865 8556

global 888 [0.91] 175 192 232 5574 0.866 8577

local 926 [0.95] 180 190 282 5568 0.865 8556

global-local 841 [0.87] 176 192 232 5574 0.866 8557

Figure 2.13 shows the skew variation reduction during the local iterative optimization.

We observe that tree surgeries (type-I moves) are more effective than sizing and displacement
13Our optimization does not create any maximum transition or maximum capacitance violations.
14The number of optimized sink pairs for CLS1v1, CLS1v2 and CLS2v2 are respectively 15012, 14671 and 15142.

43

moves (type-II and type-III moves), and are applied by our model in the early iterations. For

CLS1v1, we also show the results with 10 random moves (dots in black), where the gap between

random move and our optimization is 15ns. This validates the benefits of our delta-latency

model. The runtimes per iteration (with 15 threads) are 60 min, 80 min and 200 min for

testcases CLS1v1, CLS1v2 and CLS2v1, respectively.

Figure 2.13: Sum of skew variations reduces during the local iterative optimization. In blue
are type-I moves, in red are type-II moves, and in green are type-III moves.

Figure 2.14: Distribution of skew ratios between (c1, c0) and (c3, c0) of (i) original clock tree,
and (ii) optimized clock tree for CLS1v1.

44

Figure 2.14 shows the distributions of skew ratios between corner pairs (c1, c0) and (c3,

c0), over sink pairs, of the initial clock tree and the optimized clock tree. We observe that our

optimization significantly reduces the variation and range of skew ratios between corner pairs.

2.2.5 Conclusion

In this work, we propose the first framework to minimize the sum of skew variations over

all sequentially adjacent sink pairs, using both global and local optimizations. Our experimental

results show that the proposed flow achieves up to 22% reduction of the sum of skew variations

for testcases implemented in foundry 28nm technology, as compared to a leading commercial

tool. In the global optimization, our LP formulation comprehends the ECO feasibility based

on characterized lookup tables of stage delays. In the local optimization, we demonstrate that

machine learning-based predictors of latency changes can provide accurate estimation of local

move impacts.

Our future works include: (i) study of the resultant power and area benefits of reduced

skew variation; (ii) development of models to predict a buffer location for minimum skew over a

continuous range of possible buffer locations; (iii) explorations, motivated by our current results,

of new library cells whose delay and slew are less sensitive to corner variation so as to enable

fine-grained ECOs based on our LP solutions; and (iv) investigation of whether a worse initial

start point (clock network with large skew variations) can enable us to achieve smaller skew

variation across corners using our optimization flow.

45

2.3 Comprehensive Optimization of Scan Chain Timing During

Late-Stage IC Implementation

Scan chain timing is an important consideration in modern scan chain design. Setup tim-

ing of scan shift timing paths or scan paths directly affects test time and cost, and any improve-

ment of scan shift timing or scan timing will not only reduce test time and cost, but potentially

improve robustness of test as well.15

In modern designs, the volume of test pattern is very likely to increase significantly due

to (i) the increased importance of delay testing (especially in FinFET technology), (ii) increased

test coverage requirements, and (iii) increased design gate counts, which in turn increases test

time. To compensate the large volume of test pattern and to reduce the test time, speedup of

scan shift is needed. However, fast scan shift will result in worse dynamic voltage drop (DVD)

due to higher switching activity and smaller scan timing slacks, which make scan timing more

vulnerable to DVD.

Furthermore, due to the small number of logic instances along scan timing paths (i.e.,

between consecutive scan flip-flops in a given scan chain), scan timing paths are vulnerable

to hold violations. Mitigation of hold timing violations along scan chains entails hold buffer

insertions which induce power and area overheads.

In this work, we address two timing issues related to scan chain.

• First, we perform scan ordering that exploits knowledge of clock skew and scan cell loca-

tions, so as to reduce hold violations along the scan chain and enable the removal of hold

buffers. Figure 2.15 shows a simple example where reordering scan cells leads to positive

skews between consecutive scan cells in a scan chain, thus removing hold violations.

• Second, scan test at a high frequency (especially during scan shift) is highly likely to incur

large dynamic voltage drop (DVD), which in turn degrades scan timing and causes “false

failure” in silicon. To address this, we perform DVD-aware gating insertion to reduce

dynamic voltage drop during scan shift and maximize scan timing slacks.

Although gating insertion and scan ordering optimizations have been proposed by many

previous workers [21][60][65][73][86][89][136][166], these optimizations are performed during

early-stage IC implementation (e.g., during synthesis or placement). However, due to subsequent

physical implementation steps (notably, clock tree synthesis, signal routing, and buffering and
15Depending on the individual SoC design, structural test time can be up to 50% or even a larger proportion of the

total test time. Scan time typically dominates structural test time.

46

Figure 2.15: Illustration of skew-aware scan ordering that removes hold violation. L is clock
latency.

gate sizing), design information such as clock skew, cell power and timing slacks can be very

different at the late design stage (e.g., after routing). Figures 2.16 and 2.17 respectively show that

hold-critical scan timing paths and DVD hotspots vary markedly between post-placement and

post-routing states of the design. As a result, an early-stage optimization might be misleading

and result in poor solution quality.

Figure 2.16: Hold-critical scan timing paths vary between (a) post-placement stage and (b)
post-routing stage. In red are the top 10% of the hold-critical paths. In blue are the non-critical

paths. Design: LEON3MP. Technology: 28LP.

On the other hand, previous post-routing stage scan chain optimizations mainly focus on

test pattern optimization. For example, these optimizations use an ATPG engine to generate low-

power test patterns so as to reduce DVD and improve scan timing. However, flip-flop toggling

ratios may not necessarily be an accurate indicator of circuits’ switching activity or devices’

power consumption, and hence may not be able to effectively mitigate the real DVD hotspot

issues. Furthermore, generating power-aware test patterns suffers significantly from test pattern

inflation and test coverage degradation. For instance, based on our industrial colleague’s design

experience with modern CPU designs containing multi-millions of flip-flops, imposing the limit

of 20% and 30% peak flip-flop switching activities in scan capture and scan shift, respectively,

ends up with a 2 or 3 times higher test pattern count along with degradation in test coverage.

47

Figure 2.17: Dynamic voltage drop (DVD) varies between (a) post-placement stage and (b)
post-routing stage. Design: LEON3MP. Technology: 28LP.

In this work, we are the first to propose late-stage scan timing optimizations for hold

buffer removal and DVD-aware gating insertion. Of course, such late-stage ECO-based scan

optimization risks large impacts on design quality – in particular, timing degradation and/or

power and area overheads from additional gates being inserted in the functional paths as well

as incremental routing due to scan reordering. Therefore, our optimizations necessarily compre-

hend timing impacts on datapaths at function mode, while keeping area and power overheads to

negligible levels (e.g., < 1%). We note that test pattern (compression) optimization is not the

focus of this work. However, our optimizations can easily be combined with existing test pattern

optimizations. Our contributions are as follows.

• We are the first to propose a comprehensive scan timing optimization at late-stage IC

implementation.

• We propose a scan reordering optimization that is aware of clock skew and scan cell lo-

cations; this optimization removes up to 82% of hold buffers along scan chains in 28LP

testcases.

• We propose an ECO-based gating insertion approach to improve DVD-aware scan timing

during scan shift; this optimization reduces the DVD-induced slack degradation by up to

58% with negligible area and power overhead.

• We validate our approaches on a realistic implementation flow (including DFT and DVD-

aware timing analysis) in a commercial 28LP technology; this implementation flow has

been developed under the guidance of our industrial colleagues.

48

2.3.1 Related Work

We now review previous works on scan ordering optimization and gating insertion, as

well as other methods for DVD reduction during scan shift.

Scan ordering. Scan chain ordering optimizations have typically been formulated as (sym-

metric or asymmetric) Traveling Salesperson Problem (TSP) optimizations, usually with a wire-

length minimization (i.e., total tour cost) objective. An early TSP-based heuristic for scan or-

dering, which largely ignores physical information, is due to Feuer and Koo [65]. Works such

as [21][86][89][136][166] consider physical information and routing to minimize the wirelength

overhead of scan chains. Gupta et al. [80] reduce wirelength overhead of scan routing by consid-

ering the availability of connection points on entire fanout routing trees (not simply at scan-out

pins), and use [233] as their TSP solver. The same authors later consider timing in addition to

wirelength minimization [81]. Cui et al. [48] propose pre-ordering of clusters to improve power

reduction. Seo et al. [171] combine gating, clustering and reordering to minimize scan power.

The above-mentioned academic works, along with commercial tools [158], focus on

constructing scan chains from scratch for given new layout. Alternatively, Kahng et al. [109]

address an ECO scan chain optimization context. Tudu et al. [186] propose a graph-based opti-

mization to reorder scan cells based on a given test pattern, such that the transitions during scan

shift and capture are minimized.

For one of our present foci, namely, scan reordering to minimize hold buffers, we are

aware of only the previous work embodied in the 2003 patent of Teene [181]. In Section 2.3.2

below, we propose a scan ordering approach for minimization of hold buffers along scan chains.

As compared to the approach in [181] which is aware of skew, our approach also comprehends

cell locations, wire delay and setup timing constraints along datapaths.

Gating approaches. Due to excessive switching activity during at-speed test, test power is typ-

ically a major issue during circuit design and test pattern generation. Gating insertion is one of

the known methods to reduce scan power. To suppress the activity of fanout combinational cells

from scan flip-flops during scan shifting, Gerstendörfer et al. [73] propose to insert gating logic

at the output (i.e., Q pin) of scan flip-flops. To minimize the area overhead and the delay impact,

Elshoukry et al. [60] propose a critical path-aware partial gating approach, in which the gating

points are selected based on the number of fanout cells and their fanouts. The authors of [60]

also point out that such gating approaches can incur large peak power when gating logic in-

stances change from the gating mode to the transparent mode. They propose to assign a separate

control block for each scan chain and to enable/disable the gating logic instances for different

49

scan chains one at a time. In addition to gating at the Q pin of a scan flip-flop, Jayaraman et

al. [94] propose to also gate the internal nodes inside the fanout cone of a scan flip-flop. The in-

creased flexibility offers a better tradeoff between area overhead of gating logics and test power

reduction. Although such gating approaches reduce shift power, the increased capacitance can

increase the capture power. Zhao et al. [212] study the tradeoff between test power and capture

power reductions.

Although the above gating optimization approaches all reduce test power, they perform

optimization at the post-synthesis stage, when detailed (final) layout information is not available.

Therefore, these approaches cannot accurately capture the locations of DVD hotspots, and may

make suboptimal or guardbanded decisions. Lee et al. [130] address such issues when removing

DVD hotspots by using a post-layout test pattern modification. However, the updated test pattern

is not efficient and can increase the test time. In another work, since the voltage drop issue

typically occurs at the beginning of scan shift (where the scan shift causes a sudden increase

in switching activity), Schulze et al. [170] propose to start scan shift with a lower frequency

(implicitly assuming that the scan shift uses an independent clock). Once the test power supply

has responded to its initial di/dt event, they increase the shift frequency.

We observe that none of the above works consider timing impact of DVD and optimize

DVD-aware scan timing slacks. To our knowledge, ours is the first work to propose gating

insertion to minimize scan timing degradation due to DVD.

2.3.2 Methodology

We propose two basic optimization levers to improve scan timing at the post-routing

stage while minimizing power and area overheads. Our optimizations comprehend both hold

and setup constraints not only in scan mode, but in function mode(s) as well.

• Post-routing scan reordering. Since scan chains contain few combinational gates, they

are typically hold-critical. As a result, hold buffers are inserted during the placement and

routing stages, incurring power and area overheads. Such buffer insertion must be guard-

banded since final routing, extraction and signoff timing analysis are not yet known. On

the other hand, we propose scan chain reordering at the post-routing stage which can ex-

ploit knowledge of clock skews, exact scan cell locations, and post-routing timing slacks.

This enables a more surgical improvement of hold timing and removal of hold buffers.

• Fanout gating for dynamic voltage drop mitigation. Dynamic voltage drop (DVD)

during scan shift can degrade scan setup timing, leading to “false failures” in silicon.

50

We propose gating insertion to reduce the DVD and improve scan setup timing slack.

Again, while gating insertion is a previously-known technique, our contribution lies in

demonstrating practicality and benefits when applied at the post-routing stage.

Table 2.13 lists notations used in the following discussion.

Table 2.13: Notations used in our work.

Term Meaning

qk kth scan chain, (1 ≤ k ≤ K)

Q set of scan chains in design

vk number of hold violations along scan chain qk

pj jth scan timing path (1 ≤ j ≤M)

Sj setup timing slack of scan timing path pj (1 ≤ j ≤M)

ci ith cell (1 ≤ i ≤ N)

gi switching power of cell ci (1 ≤ i ≤ N)

si setup timing slack of cell ci

hr DVD hotspot (1 ≤ r ≤ R)

di,i′ Manhattan distance between cells ci and ci′

Scan Reordering for Hold Buffer Removal

Scan timing paths with negative clock skew values16 and small distances between launch

and capture flip-flops are prone to hold violations (as illustrated in Figure 2.18, (a) negative

skew values correlate with increased likelihood of hold violations, and (b) start-end pairs of scan

cells separated by small distances have small hold slacks), whereby hold buffers are inserted

along the scan chains to meet hold constraints. However, hold buffer insertions cause area and

power overheads, which at least indirectly compromise functional and/or test timing.17 Thus,

we propose a scan cell reordering optimization at the post-routing stage (i) to achieve a greater

incidence of positive skew values, and (ii) to slightly increase distance between consecutive scan

cells so as to increase wire delay and enable buffer removal. We define the scan reordering

problem for hold buffer removal as follows.

Post-Routing Scan Reordering. Given a design (i.e., netlist (.v), placement, CTS, and routing

solutions (DEF) with scan chain(s) inserted), timing constraints (SDC), hold buffer list, upper
16We use the standard definition of skew between two sequentially adjacent flip-flops as launch clock latency minus

capture clock latency. Note that a scan timing path is a timing path between (launch and capture) flip-flops that are
consecutive in a scan chain.

17Larger area spreads and slows timing paths, while larger power may be compensated by reduced clock frequen-
cies. Moreover, hold buffer insertion can potentially create new setup timing criticalities.

51

Figure 2.18: Causes of hold violations on scan timing paths. (a) Skew distribution of scan
timing paths with hold buffers inserted. (b) Distances between consecutive scan cells versus

hold timing slacks. Design: LEON3MP. Technology: 28LP.

bounds on wirelength penalty, Liberty timing and power models (.lib), and fixed subchain order-

ing constraints (SCANDEF), perform scan reordering to maximize the number of hold buffers

removed.

Our reordering optimization uses the 2-opt local search heuristic for the traveling sales-

person problem [129], as explained in Algorithm 6. We sequentially optimize each scan chain

in a design. For each scan chain qk and a given node ci, we perform 2-opt swaps along ci’s

downstream nodes and select the ordering solution with the minimum number of hold violations

(this heuristically maximizes the number of hold buffer removals) (Lines 4-13).

Treatment of subchains. To honor the fixed scan subchain ordering constraints specified by

SCANDEF [238] in the input, each subchain with fixed ordering is merged into a single node

in the input to our optimization. Further, we observe that hold buffers may be shared between

scan timing paths and datapaths: scan timing optimization cannot remove these hold buffers if

the removals will cause hold timing violations along datapaths. We therefore do not optimize the

corresponding subchains, but instead also merge such subchains into single nodes in the input to

our optimization.

52

Avoidance of setup timing violations. We observe that a given hold buffer can shield large wire

capacitance and test input pin capacitance at the Q-pin of a timing-critical flip-flop. Removing

the hold buffer can thus incur setup timing violations along datapaths. Therefore, timing con-

straints for both datapaths and scan timing paths must be comprehended when evaluating the

swap (i.e., scan reordering) moves. In our optimization, we evaluate timing slack changes due

to scan chain ordering based on Liberty timing models (Line 7). We estimate wire delay and

capacitance based on Manhattan distance between consecutive scan cells.

Additional constraints in the local search. During the local search, we select solutions (i)

that have a reduced number of hold violations, (ii) that have no timing degradation along either

scan timing paths and datapaths, and (iii) that satisfy the prescribed upper bound on wirelength

penalty (Lines 8). More specifically, we set upper bounds on wirelength increase for each pair

of consecutive scan cells and each scan chain. Note that to avoid ECO impact (e.g., buffer

insertion, placement legalization), we discard solutions that create additional hold violations for

pairs of consecutive scan cells which were hold timing-feasible (i.e., have non-negative hold

timing slacks) in the original solution. (Without such constraints, additional hold violations can

be created for a hold timing-feasible scan cell pair when the total number of hold violations

along the scan chain reduces).

To summarize: feasible() in Line 8 indicates a solution that is timing feasible, main-

tains a bounded wirelength overhead, and incurs no additional hold violations. Finally, after all

scan chains are optimized, we perform ECO routing with a commercial place-and-route tool.

Algorithm 6 Scan reordering.

1: for all qk ∈ Q do
2: q′ ← qk

3: v′ ← timingAnalysis(q′)
4: for i := 2 to Nk − 2 do
5: for i′ := i + 1 to Nk − 1 do
6: q′′ ← 2OptSwap(q′, i, i′)
7: v′′ ← timingAnalysis(q′′)
8: if v′′ < v′ && feasible(q′′) then
9: q′ ← q′′; v′ ← v′′

10: end if
11: end for
12: qk ← q′

13: end for
14: Reorder scan chain based on updated qk

15: end for
16: ECO route

53

DVD-Aware Gating Insertion

As noted above, scan shift typically consumes high power and causes excessive dynamic

voltage drop (DVD), which in turn degrades scan setup timing and leads to “false failures” in sil-

icon. To address such DVD-aware timing degradation, we propose the post-routing application

of gating insertion [60][73][94] to reduce switching activity of downstream cells and thereby re-

duce DVD impact on scan timing. We state the DVD-aware gating insertion problem as follows.

Dynamic Voltage Drop Mitigation by Gating. Given a design (i.e., netlist (.v), placement,

CTS, and routing solutions (DEF) with scan chain(s) inserted), timing constraints (SDC), Lib-

erty timing and power models (.lib), switching activities per cell instance, and upper bounds on

area/power overheads, perform gating insertion as ECOs to maximize the minimum slack of

DVD-aware scan timing.

Figure 2.19 shows our proposed three-step optimization flow. (1) We first determine

DVD hotspots which have the largest impact on scan timing (i.e., the DVD hotspots containing

timing-critical scan cells with the worst slack degradation due to DVD), by solving an integer

linear program (ILP). (2) We then allocate gating locations (in the netlist) so that the switching

activities of downstream non-scan cells within the selected DVD hotspots are minimized. The

reduced switching activities lead to minimized power and thus DVD reduction within the se-

lected hotspots. We determine the gating locations through a netlist traversal that is guided by

sensitivity functions (i.e., functions to estimate the sensitivity of dynamic power reduction on

downstream cells to a gating insertion). (Note that the potential gating insertion locations are

not limited to Q pins of scan cells.) We use both AND and OR gates for gating. Figure 2.20

shows an example with OR gate. In addition, we honor datapath timing constraints in function

mode. Further, we perform sizing and Vth swapping on the inserted gating cells, such that tim-

ing impact due to gating insertion is minimized. (3) Last, we insert gating cells as an ECO step:

specifically, we perform a matching-based optimization to determine the whitespace suited for

gating insertions. We now give additional details of these steps.

Figure 2.19: Optimization flow for gating insertion to optimize DVD-aware timing slacks.

54

Figure 2.20: Illustration of gating insertion with an OR gate.

(1) Determine DVD hotspots. To minimize the ECO impact and corresponding area and power

overheads of gating insertions while maximizing timing benefits from DVD reduction, it is im-

portant to determine the DVD hotspots that have the largest impact on the worst scan timing

path. To achieve this, we divide the block area into grids, where each grid is a candidate DVD

hotspot. We then set up and solve the following ILP, which selects the DVD hotspots to optimize

from among candidates that have maximum impact on scan timing.

Maximize Smin

Subject to Sj +
∑
ci∈pj

αi ·∆i ≥ Smin, ∀pj (2.17)

αi ≤ L · βr, ∀ci ∈ hr (2.18)∑
βr ≤ R (2.19)

Binary αi, βr (2.20)

Here, Smin is the minimum slack in the design; Sj is the worst slack of scan timing

path pj ; ∆i is the cell slack improvement due to DVD reduction; ci is a cell instance; αi is a

binary indicator of whether the DVD on ci will be optimized (i.e., whether ci is in the selected

DVD hotspot); βr is an indicator of whether hotspot hr will be optimized; L is a large constant

number; and R defines the upper bound on the number of hotspots to be optimized. Given that

the number of scan timing paths grows linearly with the number of flip-flops and the number of

stages along a scan timing path is typically small, the runtime complexity of our ILP is not high.

In our experiments, even for the largest design with 474K instances and 445 scan chains, the

runtime is less than 1 second on a 2.5GHz Intel Xeon server. Three important considerations

are as follows.

Grid size. We note that the sizes of grids (i.e., DVD hotspots) can have significant impact

on solution quality. A large grid size can result in a large number of gating insertions, with

55

corresponding area and power overheads. On the other hand, a small grid size may contain only

a small number of cells; gating these cells will not effectively reduce DVD.

Grid aspect ratio. We observe that the aspect ratios of grids also impact solution quality. Given

that cells within the same row share the same power and ground rails, it is more effective to

define row-based hotspots (i.e., hotspots with single-row height). Our experimental results in a

commercial 28LP technology confirm this hypothesis: the DVD reduction of optimization with

single row-height hotspots is 1.7× that of double row-height hotspots with the same area. Thus,

in the experiments reported below, we empirically define the grid size as 80µm × 1.2µm.

Need for iteration. Last, we note that there is a “chicken-and-egg” loop between the assumed

DVD reduction to estimate ∆i, versus the optimized DVD values. To address this, we perform

iterative optimization such that we use the average DVD reduction value from simulation on the

optimized design as the input DVD reduction assumption to the next-iteration optimization. Our

experimental results show that such an iterative optimization converges (i.e., no improvement

between two consecutive iterations) after the second iteration in most cases.

(2) Find Gating Locations. Based on the selected DVD hotspots, we traverse the netlist and

determine the gating locations based on sensitivity functions. The objective of this optimization

is to minimize the switching activities of non-scan cells within the selected DVD hotspots with

minimized area and power overheads. In addition, such gating insertions must comprehend the

datapath timing constraints at function mode and not create additional timing violations.

All gating cells need to connect to scan enable (SE) nets, which typically have a tree

structure in a design block (shown in Figure 2.21(a)). Since the layout location of SE nets and

the polarity of these SE net signals will affect wirelength penalty due to gating insertions as

well as the types of gating cells used (e.g., AND gate versus OR gate), we extract the SE net

information as input to our optimization. We divide the block area into 5µm × 5µm grids, and

for a grid containing SE nets, we assign the SE net to the grid so that a gating insertion within

the grid will connect to this SE net. We break ties based on the levels of the SE nets, preferring

to select a net closer to the bottom level so as to minimize the delay impact on fanout SE nets.

For the grids without SE routing, we execute spiral search in their neighbor grids for the SE net

with minimum distance (as shown in Figure 2.21 (b)).

Algorithm 7 describes our gating insertion flow. We perform power simulation and use

Gi to store the total switching power of cells within selected DVD hotspots H at the ith iteration

(Line 1). Note that here the cells are non-scan cells. Since we will not insert gating cells along

the scan chain, we only visit non-scan cells when we traverse the netlist. In other words, we

56

Figure 2.21: (a) Layout of scan enable (SE) nets. Different colors indicate different levels
from the SE port. (b) Illustration of spiral search for SE nets in neighbor grids.

Algorithm 7 Gating insertion.

1: G0 ←
∑

ci∈H gi; n← 0
2: while n == 0 —— Gn < Gn−1 · (1− θ) do
3: for all i := 1 to N do
4: f(ci)← 0
5: end for
6: for all ci ∈ H do
7: f ′(ci) = gi; queue← ∅; queue.push(ci)
8: while queue 6= ∅ do
9: ci ← queue.pop()

10: for all ci′ ∈ fanin(ci) do
11: f ′(ci′)← SF (f ′(ci))
12: if ci′ 6= flip-flop then
13: queue.push(ci′)
14: end if
15: end for
16: end while
17: for all i := 1 to N do
18: f(ci)← f(ci) + f ′(ci); f ′(ci)← 0
19: end for
20: end for
21: c← cell with maximum f(ci) ∀i ∈ [1, N]
22: Insert gating at output pin of c; Update power
23: Size/Vth-swap c to minimize power w.r.t. timing constraints
24: n++; Gn ←

∑
ci∈H gi

25: end while

only traverse along the nets which are candidates for gating insertion. At each iteration, we first

initialize to zero the gain value f(ci) of each cell ci (Lines 3-5). We then start from each cell

within the selected DVD hotspots and traverse backwards to calculate the gain values of their

fanin cells, based on a sensitivity function SF () (Lines 7-16). Due to large runtime of power

57

simulation, it is practically infeasible to perform exhaustive search within the fanin cone of cells

in a given DVD hotspot to search for the gating insertion locations.18 In our work, we search

for gating locations based on gain values of cells, which are calculated based on sensitivity

functions. We study different sensitivity functions based on netlist structure, logic function of

cell instances, etc. Figure 2.22 shows the performance of various sensitivity functions (their

sensitivity functions are also shown in the figure) and an example of sensitivity function-based

gain value propagation. Each gating location of the optimal gating insertion solution is achieved

with an exhaustive search. We observe that sensitivity function SF = f · duty cycle offers the

best solution quality, where duty cycle indicates the probability that a particular input signal is

not masked by any other signal. The duty cycle can be estimated by logic function and static

probability of other input signals of the gate. For example, having a ‘0’ signal on one input of an

AND gate will mask the other input signal. Therefore, duty cycle of an input signal of an AND

gate is the probability of ‘1’ signal at the other input of the AND gate. We accumulate the gain

values calculated based on cells within the selected DVD hotspots (Line 18). Last, we select

the cell with maximum gain value to insert gating. Note that at this stage, we only insert gating

cells in the netlist; ECO implementation steps (placement, routing) are executed only when all

gating locations are determined. We perform sizing and Vth-swapping of the inserted gating

cells to minimize power overhead while satisfying timing constraints (Line 23). We terminate

the iterative optimization when the power reduction ratio is less than θ (Line 2).

Figure 2.22: Performance of different sensitivity functions. Left figure shows an example of
sensitivity function SF = f/#fanins, where each cell within DVD hotspots has one unit of

power.
18One iteration of exhaustive search in the fanin cone of 100 cells in a small design (e.g., 15K instances) can take

more than four hours.

58

(3) ECO Optimization. Based on the identified gating insertion locations (in the netlist) and

the design placement, we search for whitespaces near the gating cells and perform a matching

optimization to determine the geometric locations for gating cell insertions.19 We formulate the

cost matrix using distances between the output pins and/or their fanout wire segments, and the

nearby whitespaces. We then apply the Hungarian method to perform the matching optimization.

We perform ECO placement legalization and routing after gating insertion.

2.3.3 Experimental Results

We perform experiments at 28nm LP foundry technology with dual-Vth libraries. The

supply voltage is 0.9V . We use four designs – DES, VGA, LEON3MP, NETCARD – from ISPD-

2012 contest[154] as our benchmarks. The benchmark information is shown in Table 2.14.20

These designs are synthesized using Synopsys Design Compiler vH-2013.03-SP3 [237] and then

placed and routed using Synopsys IC Compiler vI-2013.12-SP1 [239]. We use Synopsys DFT

Compiler vH-2013.03-SP3 to perform scan chain insertion. We set the maximum length of

each chain to 250. We also perform scan compression in our implementation. We enable the

DFT optimization options during placement and clock tree synthesis stages in IC Compiler to

generate our initial scan chain solutions. We further use Synopsys PrimeTime vH-2013.06-SP2

and Synopsys PrimeTime-PX vH-2013.06-SP2 PT-PX [240] for timing and power analysis, with

wire parasitics (SPEF) obtained from IC Compiler.

We perform vectorless dynamic voltage drop (DVD) analysis using ANSYS RedHawk

[232]. As inputs to DVD simulation, we report rise and fall arrival timing windows of all signal

pins using PrimeTime-SI and report instance toggle rate and power information using PT-PX. Our

DVD IR analysis is vectorless (with assumed 50% switching activity at test inputs), due to lack

of open-source representative simulation vectors. To our understanding, this reflects common

industry practice. We also note that our approach can be applied to scenarios with vector-based

DVD analysis. We place power pads uniformly along the block periphery. Our scan ordering

optimization is implemented in C++. Gating insertion flow is implemented in Tcl using PT-PX

and IC Compiler. We conduct our experiments on a 2.5GHz Intel Xeon server.
19When there is no whitespace that satisfies the required minimum width, we either increase the region area to

search for the available whitespaces or select whitespaces with smaller widths. However, these will incur larger
timing impact due to longer wirelength and/or placement legalization.

20We use the same clock period for scan shift. We note that the much smaller clock period for scan shift as
compared to those of industrial designs is due to the simple clock tree structure and single-block implementations.

59

Table 2.14: Benchmark information.

Design Clock period (ns) #Instances #Scan chains

DES 0.85 74035 45

VGA 1.10 80412 78

LEON3MP 2.00 474108 445

NETCARD 1.80 428974 358

Scan Ordering

We perform scan reordering optimization at the post-routing stage to minimize the num-

ber of hold buffers. Table 2.15 shows our experimental results which include the number of

hold buffers along scan chains, worst negative slack (WNS), total negative slack (TNS), total

hold slack (THS) and total wirelength of the initial designs (orig) and of our optimized designs

(opt). We observe that our optimization can remove up to 82% of hold buffers along scan chains

(i.e., for the LEON3MP case). The optimized solution incurs negligible wirelength and timing

penalties. We also observe wirelength reduction for large designs (e.g., for the NETCARD case).

Table 2.15: Scan ordering results.

#Hold WNS TNS THS Wirelength

buffers (ps) (ns) (ns) (mm)

DES
orig 1296 -21 -0.089 -0.101 765.9

opt 487 -21 -0.081 -0.121 766.3

VGA
orig 202 -6 -0.019 -1.222 3087.9

opt 89 -6 -0.018 -1.223 3089.7

LEON3MP
orig 25581 30 0 -0.734 11088

opt 4538 30 0 -0.705 11084

NETCARD
orig 30864 -4 -0.004 -13.317 12729

opt 26887 -4 0.0 -13.304 12720

Gating Insertion

We perform gating insertion to minimize the timing slack degradation due to DVD.

Table 2.16 shows our experimental results, where ∆Slack indicates the scan timing slack degra-

dation due to DVD; #Gating cells indicate the number of inserted gating cells; and DVD is the

maximum DVD of the design. We observe that our optimization achieves up to 58% reduc-

tion of the slack degradation due to DVD (i.e., for the DES case). Our solution inserts only a

60

small number of gating cells, and has minimal area overhead (e.g., < 1%). Since the number

of inserted gates is small, the corresponding power and area overheads and impact on DVD in

function mode is negligible. We further observe that the worst DVD value of a design is not

necessarily correlated with slack degradation. In other words, it is the DVD on timing-critical

scan cells, rather than the worst DVD in the design, that is more critical to optimize; this has not

been captured by previous works.

Table 2.16: Gating insertion results.

∆Slack WNS TNS #Gating DVD Area

(ps) (ps) (ns) cells (mV) (µm2)

DES
orig 60 -21 -0.089 - 85 79662

opt 25 -21 -0.079 36 84 79705

VGA
orig 159 -6 -0.019 - 93 120832

opt 118 -6 -0.029 42 82 120873

LEON3MP
orig 471 30 0 - 129 699885

opt 383 30 0 62 121 699969

NETCARD
orig 576 -4 -0.004 - 163 575869

opt 496 -8 -0.008 111 147 576022

2.3.4 Conclusion

In this work, we propose a comprehensive scan timing optimization during late-stage IC

implementation. We develop two optimization approaches: (i) scan reordering that is aware of

clock skew and scan cell locations to remove hold buffers along scan chains, and (ii) gating in-

sertion to minimize the DVD impact on scan timing slack. Our optimizations achieve up to 82%

hold buffer reduction and 58% improvement of scan timing degradation due to DVD. Our fu-

ture works include: (i) a more comprehensive scan ordering optimization to explore the tradeoff

among wirelength, hold and setup timing of scan chains, (ii) a more comprehensive formulation

of scan ordering cost (e.g., considering lockup latch insertion/removal when multiple scan clocks

are driving cells along a scan subchain), (iii) co-optimization of gating insertion, scan ordering

and test pattern generation to minimize the DVD impact on scan timing, (iv) DVD optimization

during capture stage, and (v) a predictive model to determine DVD hotspots.

61

2.4 Acknowledgments

Chapter 2 contains reprints of Kun Young Chung, Andrew B. Kahng and Jiajia Li,

“Comprehensive Optimization of Scan Chain Timing During Late-Stage IC Implementation”,

Proc. ACM/IEEE Design Automation Conference, 2016; Tuck-Boon Chan, Andrew B. Kahng,

Jiajia Li, Siddhartha Nath and Bongil Park, “Optimization of Overdrive Signoff in High-Perfor-

mance and Low-Power ICs”, IEEE Transactions on Very Large Scale Integration Systems 23(8),

2015; Kwangsoo Han, Andrew B. Kahng, Jongpil Lee, Jiajia Li and Siddhartha Nath, “A Global-

Local Optimization Framework for Simultaneous Multi-Mode Multi-Corner Skew Variation Re-

duction”, Proc. ACM/IEEE Design Automation Conference, 2015; and Tuck-Boon Chan, An-

drew B. Kahng, Jiajia Li and Siddhartha Nath, “Optimization of Overdrive Signoff”, Proc. Asia

and South Pacific Design Automation Conference, 2013. The dissertation author is the primary

author of the papers.

I would like to thank my coauthors Tuck-Boon Chan, Kun Young Chung, Kwangsoo

Han, Andrew B. Kahng, Jongpil Lee, Siddhartha Nath and Bongil Park, as well as the research

support from Samsung Electronics.

Chapter 3

Low-Power Optimization

Energy and battery lifetime constraints are critical challenges for IC product designs.

This chapter presents three distinct techniques for low-power optimization, which address the

low-power requirement in three distinct contexts – system, clock and datapath. First, we present

an optimization framework for stacked-domain designs. Based on an initial placement solu-

tion, we apply a flow-based partitioning to partition cells into two power domains with balanced

cross-domain current and minimized number of inserted level shifters. The partitioning is aware

of multiple operating scenarios, cell placement, and timing-critical paths. We further propose

heuristics to define regions for each power domain so as to minimize placement perturbation.

Our method achieves more than ∼10% and 2× battery lifetime improvements in function and

sleep modes, respectively. Second, we propose an optimization flow to generate and place flop

trays (multi-bit flip-flops) from a library of arbitrary given sizes and aspect ratios (ARs), to

achieve clock network power reduction. Our optimization starts with an initial placement so-

lution using only single-bit flops. It then performs capacitated K-means clustering to generate

solutions with different flop tray sizes and ARs. Our optimization is aware of flop tray sizes

and ARs, as well as timing-critical start-end pairs. Results in foundry 28FDSOI technology

show up to 16% total block power reduction over designs with flop trays generated by logical

clustering during synthesis. Third, we use resilient designs with minimized overheads to reduce

power on datapaths. Our methodology uses two levers: selective-endpoint optimization (i.e.,

sensitivity-based margin insertion) and clock skew optimization. We integrate the two optimiza-

tion techniques in an iterative optimization flow which comprehends toggle rate information and

the tradeoff between cost of resilience and margin on combinational paths. Our proposed flow

achieves energy reductions of up to 21% and 10% compared to a conventional (with only margin

62

63

used to attain robustness) design and a brute-force implementation (i.e., a typical resilient design,

where resilient endpoints are (greedily) instantiated at timing-critical endpoints), respectively.

3.1 Floorplan and Placement Methodology for Improved Energy

Reduction in Stacked Power-Domain Design

Energy and battery lifetime constraints induce new and critical challenges to IC designs,

especially for mobile and IoT (Internet of Things) applications. To achieve power autonomy in

the era of a slowing Moore’s law, new low-power techniques must be exploited. While many

low-power techniques [53] have concentrated on the circuit side of system design, power man-

agement techniques have received growing attention due to the importance of power efficiency.

Notably, the misalignment of battery voltages compared to scaled core voltages causes ineffi-

ciencies that present significant opportunities for power saving. In order to better align SoC

power domain voltages with battery voltages, stacked power domain (or voltage stacking) has

been proposed [131][162][187].

Figure 3.1: Comparison between (a) stacked power-domain design, versus (b) conventional
design. VR indicates voltage regulator. The orange arrows indicate current from voltage

regulators. The red arrow indicates stacked current.

Figure 3.1 illustrates the basic idea of stacked power domain. A stacked power-domain

(or stacked-domain) design connects in series power domains that are connected in parallel in a

conventional design.21 Figure 3.1 shows that one power domain (i.e., the top domain) is placed

over the other (i.e., the bottom domain) to double the voltage and (ideally) halve the current

compared to that in a conventional design. More specifically, if the supply voltage of a conven-

tional design is V (i.e., V DD = V and V SS = 0), then the {V DD, V SS} of the top and bottom

21Our study focuses on optimization with two power domains (i.e., top and bottom domains) and conventional pla-
nar monolithic implementation (as opposed to three-dimensional integration). In other words, both stacked-domain
and conventional designs in the following discussions are planar monolithic implementations. Stacked-domain opti-
mization with more than two power domains and/or in 3DICs is left as a direction for future research.

64

domains in the corresponding stacked-domain design are {2V , V } and {V , 0}, respectively. For

bulk CMOS, note that the {2V , V } top domain must be placed on a deep n-well so that the bulk

potentials can be maintained at (2V , V). Moreover, in the ideal case the current is balanced

across the two domains. The stacked-domain scheme provides implicit 2:1 downconversion of

external supplies. In light of this, there is no need to employ a bulky supply to generate the

supply voltage for the core (i.e., gate instances and memories). Instead, it suffices to employ a

much smaller converter that acts only as a watchdog to the supply rail that connects the power

domains. This results in increased power efficiency for the overall system [19].

Table 3.1: Description of notations used in our discussion.

Term Meaning

Pext total input power from external supply (e.g., battery)

PV R,in input power of voltage regulator from external supply

PV R,out output power of voltage regulator to core

ηV R power conversion efficiency of voltage regulator

Pstk direct power of stacked power domain from external supply

Pcore total power consumption of core

Istk stacked current (current from top domain to bottom domain)

IV R output current from voltage regulator

T battery lifetime

Based on the power conversion modeling proposed in [20], we derive the battery lifetime

improvement from stacked-domain optimization as follows. (Table 3.1 lists the notations used

in our discussion.) Since battery lifetime (T) is inversely proportional to Pext, we compare Pext

of a stacked-domain design to that of a conventional design.22 By definition (see Table 3.1), in a

stacked-domain design we have

Pext = Pstk + PV R,in = Pstk + PV R,out/ηV R (3.1)

On the other hand, in a conventional design, power is only supplied through the voltage regulator.

Thus, the total input power from the external supply of a conventional design (P ′
ext) is calculated

as

P ′
ext = Pcore/ηV R (3.2)

22We use battery lifetime (T) as the metric to evaluate energy improvement achieved by our proposed methodology.
We also report power values of core (Pcore) and the entire system (Pext) from our optimization in Table 3.3.

65

By assuming the same core power consumption in both stacked-domain and conventional de-

signs, we have

Pcore = Pstk + PV R,out (3.3)

Furthermore, based on the model described in [20] which assumes that the voltage regulator

power efficiency is the same for both cases, we have

PV R,out/Pcore = IV R/(2 · Istk + IV R) (3.4)

Finally, based on the above analyses, the battery lifetime ratio between the stacked-domain de-

sign (T) versus the conventional design (T ′) is23

T

T ′ =
P ′

ext

Pext
=

2 · Istk + IV R

2 · ηV R · Istk + IV R
(3.5)

We observe that the battery lifetime benefit from a stacked-domain implementation increases

with a smaller IV R. As a motivating example, if the current is perfectly balanced between two

domains (i.e., IV R = 0), assuming ηV R = 80%, the stacked-domain implementation provides

25% battery lifetime improvement over the conventional implementation. Moreover, since the

power efficiency of the voltage regulator decreases with small supply currents, the battery life-

time benefit from the stacked-domain implementation is expected to be higher for designs in

low-power modes that use a voltage regulator optimized for high-power cases.

Although the stacked-domain implementation provides significant battery lifetime im-

provement, it also raises non-trivial implementation methodology challenges that must be solved.

First, the communication between the power domains must be ensured by level shifters that can

convert such extreme signal levels. Second, the power efficiency improvement is directly de-

pendent on the current balancing between the two power domains. In other words, the design

must be bipartitioned in terms of current consumption. We also note that such a partitioning

optimization must comprehend multiple operating scenarios, area and power penalties as well

as timing impact of level shifters, as well as additional placement constraints imposed by re-

gion definition of power domains. The first challenge has been thoroughly investigated, with

and several different level shifter architectures having been proposed [162][187]. However, the

optimization of partitioning and layout planning of the designs has remained an open challenge

that prior works (which have mostly been ad hoc or design-specific) do not ultimately answer

for general systems. In this work, we address this open challenge and provide a comprehensive

optimization framework for partitioning and floorplanning of stacked-domain implementation

that can be used for a wide range of systems.

23 P ′
ext

Pext
= Pcore/ηV R

Pstk+PV R,out/ηV R
= (2·Istk+IV R)/ηV R

2·Istk+IV R/ηV R
. See also [20].

66

The contributions of this work are as follows.

• We propose a comprehensive optimization framework for stacked-domain implementa-

tion. Key elements include a flow-based partitioning with layout and timing-path aware-

ness, heuristics for layout region generation of power domains, and a matching-based

optimization for level shifter insertion.

• We are the first to propose a partitioning optimization at the sub-block level for stacked-

domain implementation that can be used for a wide range of systems.

• We validate our optimization flow on industrial designs, in the context of an industrial

implementation flow that includes placement, clock tree synthesis and routing.

• Our optimization accommodates current balancing constraints between stacked domains,

and multiple partitioning scenarios with respect to movement of hard macros and logic

across the stacked domains.

• Using the power delivery block described in [19], our optimized stacked-power domain

designs achieve more than 10% and 2× battery lifetime improvement compared to the

conventional designs in function and sleep modes, respectively.

3.1.1 Related Work

In this section, we review the previous literature on (i) stacked-domain implementation

and (ii) netlist partitioning.24

Stacked-Domain Implementation

The circuit blocks needed for a stacked-domain implementation – such as level shifters

and voltage regulators – are well-studied in the literature. However, to our best knowledge,

no existing work is able to fully automate the implementation flow of a stacked-domain design.

Various voltage regulators and level shifters have been studied in [162][187], but the designs used

in their studies lack the complexity of a realistic application. A smart regulation scheme has been

proposed in [131], and the studied design has relatively higher complexity, featuring processor
24Our stacked-domain optimization problem is different from the power-island generation problem [197][36][79],

in that the power-island generation optimization assumes different supply voltages for power domains and minimizes
the power overhead from voltage assignments, while our optimization exploits charge recycling by balancing current
across domains. Moreover, many critical issues such as timing impact of level shifters, insertion of shifter rows,
region definition of power domains, etc. are not addressed in power island-related works.

67

cores. At the same time, in the work of [131] there is no connection between different processor

cores, which makes the partitioning problem much simpler. Similarly, [139] and [24] only focus

on specific design blocks such as IO cells and memories. A recent work [20] applies stacked-

domain optimization to a complete MCU system designed with a standard design flow. The

partitioning approach presented in [20] is somewhat ad hoc, and is not applicable to a general

design. By contrast, here we present a comprehensive optimization framework for stacked-

domain implementation that is applicable to a wider range of designs.

Netlist Partitioning

As a classic problem in VLSI optimization, netlist partitioning has been thoroughly

studied in previous literature. A comprehensive, still-relevant taxonomy of approaches is given

in [8]. We highlight four basic partitioning approaches.

Move-based approach. To partition a given set of vertices into two partitions with balanced

weights and minimized number of hyperedge cuts, Kernighan-Lin [119] and Fiduccia-Mattheyses

[66] iteratively move or swap vertices guided by gain functions (within a pass-based structure)

to achieve a local optimal solution. This greedy iterative improvement approach is efficient

and leads to a relatively good solution quality. Important improvements and/or extensions have

been proposed, such as multi-way partitioning [116], multi-level extension [25], timing path

awareness [115], and “lookahead” gain functions (e.g., gain vectors, CLIP/CDIP and LIFO gain

buckets, etc. [56][82][124]).

Mathematical programming-based approach. Other works formulate mathematical programs

to optimize the netlist partitioning. Shih et al. [173] formulate the timing-aware partitioning

problem as quadratic boolean programming. They minimize the total cost of cell-to-partition

assignments as well as the number of cuts, with respect to capacity and timing constraints. Goe-

mans et al. [76] use semidefinite programming for partitioning optimization. However, their

objective is to maximize the number of cuts under capacity constraints.

Flow-based approach. In light of the max-flow min-cut theorem, Yang et al. [206] propose to

use repeated max-flow computations and clustering operations to achieve a balanced bipartition-

ing solution. The work of [26] documents high efficiency and relatively good solution quality of

flow-based partitioning with a min-cut objective.

Clustering approach. Netlist partitioning can also be achieved by bottom-up clustering. For

example, Rajaraman et al. [165] propose a clustering approach to minimize the delay from PIs

to POs. With a maximum-area constraint for each cluster, they iteratively cluster cells until all

cells are clustered.

68

In this work, we apply the flow-based approach [206] to partition instances into two

power domains. We propose several extensions to the existing flow-based partitioning including

layout and timing-path awareness, multi-scenario weight (i.e., current) balancing, and a prior

clustering step for runtime reduction.

3.1.2 Methodology

We now describe our optimization framework for stacked-domain logic design partition-

ing implementation. We first state our stacked-domain optimization problem as follows.

Given: A netlist, timing constraints, level shifters, voltage regulator efficiency, and

switching information of instances in the netlist,

Do: partition the netlist instances into two domains, define the layout region of each

domain, and place instances and level shifters, such that battery lifetime is maximized.

As implied by Equation (3.5), to maximize the battery lifetime, our basic objective is to balance

the current between the two stacked power domains, while minimizing the power penalty due to

level shifter insertion.

Figure 3.2: Overall optimization flow.

Figure 3.2 shows our overall optimization flow. A common practice in stacked-domain

implementations is to partition the netlist (i.e., define the power domain of each instance or

block) prior to the floorplanning stage [20]. However, performing a power domain assignment

before placement can result in suboptimal floorplan and placement solutions. More importantly,

the placement optimization inserts buffers and upsized cells, which can change the current profile

of each power domain. As a result, currents that have been balanced during the partitioning stage

are no longer balanced after the placement stage. To resolve this, we propose to perform a trial

placement, based on which we perform a layout-aware partitioning (with minimized number of

cuts as well as placement perturbations) to assign instances to power domains.

69

Figure 3.3(a) shows an example of our layout-aware partitioning solution on design

AES [230] in 28LP technology. In blue are instances assigned to the bottom domain and in red

are instances assigned to the top domain. Based on the partitioning solution, we define the layout

region for each power domain such that each domain has a continuous region (Figure 3.3(b)).

Note that since gaps must be inserted along the boundary between two power domains, we pro-

pose a dynamic programming optimization to minimize the boundary length between two do-

mains. We then legalize instance placements within the (updated) region for each power domain

using a commercial P&R (place-and-route) tool [215]. We then update the floorplan by shift-

ing the power domains (as shown in Figure 3.3(c)) and inserting level shifters.25 We perform a

matching-based optimization to determine level shifter placement locations that minimize wire-

length. In Figure 3.3, in yellow are level shifters. Last, we perform an incremental placement

optimization to fix timing violations.

Figure 3.3: Example of optimization: (a) layout-aware partitioning, (b) region definition of
power domains, and (c) level shifter insertion in the updated floorplan. Design: AES (∼11K

instances). Technology: 28LP.

Flow-Based Netlist Partitioning

The greedy iterative partitioning approach is not naturally amenable to timing path-

aware partitioning, and has no mechanism to preserve solution structure of an initial (trial)

placement. And, mathematical programming-based approaches typically have large runtimes.

Thus, we apply the flow-based approach described in [206] to partition instances into two power

domains. Our objectives include (i) to minimize the number of cuts, which reduces timing, area

and power penalties from level shifter insertions, and (ii) to minimize the perturbation to the
25We understand that modification of the block size might not be consistent with certain implementation flows. At

the same time, we believe that performing the initial trial placement (with appropriate instance bloating) in a block
having Figure 3(c)’s shape will not diverge significantly from the initial trial placement in Figure 3(a), particularly
with improved (smaller) level shifter designs. Ongoing work is aimed at a predictive (or, “one loop”) methodology
to determine the block size prior to trial placement.

70

initial placement solution. Figure 3.4 illustrates the basic idea of the flow-based partitioning. To

construct the flow network, following the approach in [206], we insert a vertex for each cell or

cluster of cells. For each net, we insert two nodes and a bridging edge of unit capacity between

the two nodes. For each cell or cluster of cells incident to a net, we insert two edges of infi-

nite capacity between the vertex corresponding to the cell or cluster and each of the two nodes

corresponding to the net. Finally, the weight of a vertex corresponding to a cell or a cluster is

estimated based on the current of the cell or cluster, while the weights of vertices correspond-

ing to nets are set as zero. According to the max-flow min-cut theorem, the approach finds the

partitioning solution with the minimum number of cuts for a given netlist via a max-flow opti-

mization. However, this does not guarantee that the balancing constraint is met. To address this,

after each max-flow optimization, the approach clusters the vertices belonging to the smaller

partition together with one neighbor vertex (to avoid obtaining the same partitioning solution)

into one super vertex. Based on the updated flow network, another max-flow optimization is per-

formed. The approach iteratively performs (incremental) max-flow optimization and clustering

until the balancing constraint is satisfied. In other words, the iterative max-flow optimization and

clustering procedure keeps track of the aggregated current until the currents of two partitions are

balanced.

Figure 3.4: Flow-based partitioning. a and b are source and sink, respectively. All vertices have
the same weight. Red dotted lines indicate cuts. (a) Initial flow network. (b) First max-flow
min-cut computation. (c) Clustering operation. (d) Second max-flow min-cut computation.

We adopt the flow-based partitioning approach to our stacked-domain optimization with

the following five extensions. Algorithm 8 describes our partitioning procedure.

Extension 1. Source and sink selection. The approach in [206] randomly picks two nodes

(instances) in the flow network (netlist) as the source and sink nodes. However, there are cases in

71

Algorithm 8 Flow-based partitioning.
1: Pre-cluster cells into clusters
2: Define source and sink vertices
3: ∆I ← +∞
4: while ∆I > ∆max do
5: Perform max-flow optimization to achieve the min-cut solution
6: Remove outliers (layout awareness)
7: Remove V-shaped vertices (timing-path awareness)
8: Cluster the smaller partition and one neighbor
9: Update ∆I

10: end while

which the flows between selected source and sink vertices cannot cover the entire flow network,

resulting in unbalanced partitioning solutions. As an example, the selection of vertices a and b

as the source and sink from the flow network shown in Figure 3.5(a) will not able to achieve

a balanced partitioning solution. To address this, we add a supersource and a supersink and

connect them to multiple vertices (e.g., PIs and POs in a netlist, or instances located at the

core boundary) with edges of infinite capacity to minimize the number of uncovered vertices

(instances) as shown in Figure 3.5(b).

Figure 3.5: (a) Choosing a / b, or c / d, or d / c as source / sink cannot lead to a balanced
solution. (b) Adding a supersource (s) and a supersink (t) resolves the issue. Edges in black

have unit capacities. Edges in red have infinite capacities.

Extension 2. Layout awareness. To avoid excessive placement perturbation, which can result

in current profile changes and thus power penalty, the partitioning optimization must be aware of

trial placement locations of the instances – such that instances partitioned into the same power

domain are placed close to each other in the original trial placement. We achieve this required

layout awareness in two ways. (i) We only select the instances located close to each other to

connect to the supersource (or supersink). As an example, we select instances located within

a particular distance (e.g., ten cell rows) from the bottom (resp. top) core boundary to connect

to the supersource (resp. supersink). (ii) After each max-flow optimization, we detect outliers,

which are instances belonging to the larger-current partition that are located within a region with

a majority of instances belonging to the smaller-current partition. We then cluster these outliers

with the instances from the smaller-current partition (Line 6 in Algorithm 8).

72

Extension 3. Critical-path awareness. Ignoring signal flow direction and timing path struc-

ture during the partitioning optimization can easily result in multiple cuts along one timing path.

We extend the partitioning flow in [206] to minimize the number of cuts along timing-critical

paths. Similarly to the layout awareness extension discussed above, after each max-flow op-

timization we detect “V-shaped vertices” [115], which are a sequence of instances belonging

to the larger-current partition along a timing-critical path, where the fanin and fanout instances

of these instances along the timing-critical path are in the smaller-current partition. We then

collapse (cluster) the instances corresponding to the V-shaped vertices into the smaller-current

partition as long as this does not violate the balancing constraints (Line 7 in Algorithm 8).

Extension 4. Pre-clustering. Although the max-flow optimization can be achieved with an in-

cremental flow computation and the entire optimization takes O(N) iterations to converge where

N is the number of instances in a design, the runtime in practice can be substantial for a large de-

sign. To reduce the runtime, we perform a pre-clustering optimization based on the heavy-edge

matching (HEM) strategy [117]. We enforce layout-awareness constraints (i.e., an upper bound

on the distance between two vertices that can be clustered) during the HEM. Figure 3.6 shows

an example of the HEM clustering up through 18 levels (clustering ratio = 0.76 at each level),

showing how instances within the same cluster are spatially proximate. But since we are limited

by 64 available colors, different clusters can have the same color. Also, clusters with small size

might not be visible from the figure. Our experimental results show that we can reduce run-

time by 75% (two HEM levels and overall clustering ratio of 0.5) with negligible degradation of

solution quality (e.g., cut number).

Figure 3.6: HEM clustering solution. Different clusters are indicated by different colors.
#Clusters = 200. Levels of clustering = 18. Clustering ratio at each level = 0.76. Design: AES.

Technology: 28LP.

73

Figure 3.7: FM-based grid movement. (a) Initial placement solution. (b) In yellow are outliers
of the top domain. In green are neighboring grids of the top domain. (c) Post-movement

placement, where each domain has a continuous region. Design: AES. Technology: 28LP.

Extension 5. Multiple operating scenarios. To ensure high power efficiency across different

operating scenarios, the partitioning optimization must balance currents between two domains

across multiple scenarios. To achieve this, we use the weighted sum of normalized currents

from different scenarios during our optimization (Line 9 in Algorithm 8). Specifically, the delta

current is calculated as

∆I =
∑

i

(wi · |Ii
top − Ii

bot| / (Ii
top + Ii

bot)) (3.6)

where Ii
top and Ii

bot are respectively the currents of top and bottom domains in the ith mode, and

wi is the weighting factor of the ith mode, such that
∑

i w
i = 1. Our optimization ensures that

∆I does not exceed a predefined upper bound (i.e., ∆max in Algorithm 8).26

Domain Region Definition

In this subsection, we describe our methodologies to define the layout region (power

island) for each power domain. The definition of the layout region for each power domain affects

the design quality in two fundamental ways. (i) Gap area must be inserted along the boundary

between different power domains. Therefore, a longer boundary length will lead to higher area

penalty. (ii) The power domain definitions will have downstream impact on the PDN (power

delivery network) design, which is not yet implemented at this point. Therefore, it is desirable to

adjust the power domain definitions for minimized area, power and performance penalties.27 If

the partitioning and the trial placement results in discontinuous power domains, the length of the

power domain boundaries is highly likely to be longer compared to the case when the regions

of each power domain are merged. Moreover, the power routing will be more difficult, since
26A mode is an operating scenario, such as sleep mode or function mode.
27Since the power domain definitions change after our partitioning optimization, in our implementation flow we

perform re-floorplanning with updated power grids.

74

different power rails will need to be routed to discontinuous power domain regions. Thus, we

seek to have only two regions (i.e., power islands) corresponding to the two power domains.

Although our partitioning optimization is layout-aware, there can still be separated re-

gions for each power domain. Figure 3.7(a) shows an example trial placement and partitioning

solution where the top domain (shown in red) has two separated regions. To merge the regions

while minimizing placement perturbation (e.g., wirelength increase), we perform an FM-based

grid movement optimization (i.e., an iterative, swap-based greedy algorithm as described in Al-

gorithm 9). We first divide the core area into grids. The power domain of each grid if defined as

the power domain of majority instances within the grid. We then define the outliers (i.e., grids

outside the largest continuous region of the corresponding domain) and neighboring grids (i.e.,

grids adjacent to the largest continuous region of the different domain) (Line 1). Figure 3.7(b)

shows an example of outliers and neighboring grids. We calculate the cost to swap pairs of

outliers and neighboring grids (Lines 2-8). We iteratively swap the pair of an outlier and a

neighboring grid with the minimum movement cost, until all outliers (e.g., yellow grids in Fig-

ure 3.7(b)) are removed (Lines 9-16). In Figure 3.7(c)), the small number of remaining outliers

are minority instances in their grids, and will be legalized during an incremental placement.

Algorithm 9 FM-based grid movement.
1: U ← find outliers; H ← find neighboring grids
2: for all u ∈ U , h ∈ H do
3: if u.domain 6= h.domain then
4: cost(u, h)← half-perimeter wirelength increase by swapping u and h
5: else
6: cost(u, h)← +∞
7: end if
8: end for
9: while U 6= ∅ do

10: (u′, h′)←Mincost(u,h){(u, h) | u ∈ U, h ∈ H}
11: swap u′ and h′

12: if create new outliers then
13: revert the swap; cost(u′, h′)← +∞
14: end if
15: update U , H and costs
16: end while

In the last step of domain region definition, we apply dynamic programming to minimize

the length of the boundary between two power domains while maintaining the area within each

domain. As the base cases, we calculate the boundary length decrease of each boundary segment

by simplifying the boundary shape (e.g., highlighted segment in Figure 3.8). We note that such

simplification must meet an upper bound of moved area (i.e., total area with changed domain

75

assignment). Assuming that the (turning) points along the boundary are indexed from left to

right or from bottom to top, the recurrence relation in our dynamic programming optimization is

Sol(j) = Min(Sol(i).length + seg(i, j).length), ∀1 < i < j (3.7)

where Sol(j) is the optimized boundary solution from the first point to jth point, and seg(i, j) is

the simplified boundary segment between the ith and the jth points. The dynamic programming-

based boundary simplification has O(M2) time complexity, where M is the number of points or

segments. The time complexity further decreases to O(M) if we only search a limited range of

existing sub-solutions (i.e., i in Equation (3.7)).

Figure 3.8: Boundary optimization. (a) Original boundary. (b) Optimized boundary with
smaller length. An example of segment optimization is shown. Optimized segments have
smaller total length while maintaining the same area in each power domain. Design: AES.

Technology: 28LP.

Level Shifter Insertion

In the last step of our optimization, we insert and place required level shifters between

the top and bottom domains, and perform re-floorplanning if the total cell area exceeds the block

floorplan area. Specifically, we define placement regions for level shifters, where each region

must have an even number of level shifter rows due to deep n-well sharing. Furthermore, we

assume that the layout of the level shifter has already included the boundary of the deep n-well

of either or both power domains, and that the edges facing either of the power domains have a

standard-cell row structure. As a result, we are able to seamlessly integrate the level shifters with

only a small separation (i.e., 2.5µm) at left and right ends of each level shifter row from standard

cells. The row height of our level shifter is 6X of the standard-cell row height.28 Furthermore,

additional space (i.e., ∼10% of area within each level shifter placement region) is required for
28Our level shifter model is from our industry collaborators.

76

tie and decap cell insertion. The objectives for our level shifter placement optimization are

to minimize the area overhead and minimize the wirelength penalty due to level shifter region

definition and level shifter placement, respectively.

Algorithm 10 Level shifter placement.
1: Matching optimization between candidate locations and level shifters
2: Level shifter placement
3: Clustering of level shifters to define level shifter placement regions
4: Placement blockage insertion and candidate locations update
5: Matching optimization between updated candidate locations and level shifters
6: Level shifter placement
7: Clumping level shifters to create space for tie / decap cell insertion
8: Legalization of standard cells

Since the level shifter insertion approach in [18] does not comprehend the above layout

constraints as well as the space for tie / decap cell insertion, it cannot be applied in a realistic

implementation of a stacked-domain design. We therefore propose a new level shifter placement

approach. Algorithm 10 shows our level shifter placement procedure. We first perform a match-

ing optimization (using the Hungarian algorithm [222]) to map each inserted level shifter to a

candidate placement location (i.e., a level shifter placement site near the boundaries of power do-

mains) with minimized wirelength (Line 1). More specifically, we enumerate possible placement

locations near the boundaries between two domains and calculate the potential cost of placing

each level shifter onto each candidate placement location. We define the cost as the total HPWL

(half-perimeter wirelength) of nets connected to the level shifter. Based on the cost matrix, we

perform matching optimization to assign the placement location for each level shifter while min-

imizing the total cost. Note that such a level shifter placement solution does not honor the layout

constraint where each region must contain an even number of level shifter rows. We therefore

cluster level shifters that are separated by a distance that is smaller than a predefined value (e.g.,

20µm) and create a region having an even number of rows for each cluster of level shifters (Line

3).

According to the clustering solution, we generate placement blockages for standard cells

and update candidate locations for level shifter placement (Line 4). Importantly, we also com-

prehend spacing requirement at the ends of each level shifter row during placement blockage

insertion. We then perform another iteration of matching optimization based on the updated

candidate placement locations, and place level shifters accordingly (Lines 5, 6). Observe that

in the above optimizations we use level shifters with bloated (e.g., by 10%) widths. We now

recover the level shifters’ cell widths and clump them to create space for tie / decap cell insertion

77

(Line 7). Finally, we perform placement legalization of standard cells to move them out from the

created level shifter placement regions. Figure 3.9 shows an example of level shifter placement.

Figure 3.9: Example of level shifter insertion. (a) Level shifter (in blue) placement after first
matching. (b) Placement blockage (in red) insertion. (c) Level shifter placement after second

matching. (d) Clumping of level shifters. (e) Placement legalization applied to nearby standard
cells.

3.1.3 Experimental Results

Table 3.2: Testcase parameters.

Design Technology #Instances #Flops Clock period

AES 28nm LP ∼11K 530 1.2ns

DES 28nm LP ∼17K 530 1.4ns

JPEG 28nm LP ∼42K 4512 1.6ns

VGA 28nm LP ∼58K 17053 2.0ns

TC1 40nm ∼106K 15245 20ns

TC2 40nm 1.00 0.18 20ns

We perform experiments in a 28nm LP foundry technology with dual-Vth libraries.

We use four design blocks (AES, DES, JPEG, VGA) from OpenCores [230] as our testcases.

Parameters of these four testcases are shown in Table 3.2.29 The worst-case timing and power
29The instance and flip-flop counts of design TC2 are normalized with respect to the corresponding (instance and

78

analysis view for AES, DES, JPEG and VGA is (SS, 0.95V , 125◦C). We synthesize designs

using Synopsys Design Compiler vI-2013.12-SP3 [237] and then place and route using Cadence

Innovus Implementation System v16.1 [215]. We set the placement density at the floorplan stage

as 70%, and perform timing and power analyses using Cadence Innovus Implementation System

v16.1. We also validate our optimization framework on two industrial designs, designated as

TC1 and TC2, in a 40nm CMOS foundry technology with HVT-only cells. TC1 contains a

dual-core MCU and six memories. TC2 contains 15 memories and a number of IP blocks. The

worst-case timing and power analysis views for these two industrial designs are respectively (SS,

0.99V , -40◦C) and (TT, 1.1V , 25◦C). We implement these two industrial designs with Cadence

tools. The shifter propagation delay for nominal PVT (TT, 1.1V , 25◦C) is 400ps. For the non-

industrial benchmarks, we generate level shifter models in the 28nm LP technology according

to the delay, area and power ratios between the level shifter and the minimum-size inverter in

the 40nm technology. Figure 3.10 shows the relation between output current versus the power

efficiency of the used voltage regulator. Our optimization flow is implemented in C++. Functions

used in P&R tools are implemented in Tcl. We conduct our experiments using a 2.5GHz Intel

Xeon server.

Figure 3.10: Power efficiency of switched-capacitor voltage regulator used in [19].

Comparison to Conventional Designs

Table 3.3 shows the post-CTS comparison between our stacked-domain optimization

(opt) versus the conventional implementation (ref) on four testcases in 28nm LP and two in-

flip-flop) counts of the conventional implementation.

79

Table 3.3: Experimental results. (Power unit: mW . Current unit: mA. η values are estimated
based on [19].)

Design Flow
WNS Total cell area

#LS
Func mode Sleep mode Runtime

(ps) (µm2) Pcore Ibot/Itop Pext T Pcore Ibot/Itop Pext T (min)

AES ref -2 8853 0 9.36 9.85/0.00 11.68 1.00 0.08 0.09/0.00 0.55 1.00 -

(28nm) opt -5 11035 169 10.23 5.37/5.40 10.40 1.12 0.10 0.06/0.05 0.16 3.34 8

DES ref 10 16828 0 17.63 18.56/0.00 22.01 1.00 0.07 0.07/0.00 0.44 1.00 -

(28nm) opt 16 18428 135 17.87 9.86/8.95 18.39 1.20 0.07 0.04/0.03 0.09 4.97 7

JPEG ref 2 47507 0 42.63 44.87/0.00 53.22 1.00 0.29 0.31/0.00 0.72 1.00 -

(28nm) opt 5 55376 687 43.36 21.32/24.33 44.10 1.21 0.31 0.16/0.16 0.33 2.21 14

VGA ref -1 98004 0 64.82 68.24/0.00 80.92 1.00 0.36 0.38/0.00 0.88 1.00 -

(28nm) opt 2 104087 521 65.07 35.22/33.27 65.69 1.23 0.36 0.20/0.18 0.50 1.75 21

TC1
ref 9 843961 0 13.76 12.51/0.00 17.18 1.00 0.168 0.152/0.000 0.641 1.00 -

opt 2 861128 601 14.02 6.17/6.58 14.54 1.18 0.167 0.075/0.077 0.175 3.66 34

TC2
ref 102 1.00 0 1.00 1.00/0.00 1.00 1.00 1.00 1.00/0.00 1.00 1.00 -

opt -36 1.10 914 1.05 0.63/0.43 0.87 1.15 1.17 0.65/0.49 0.32 3.17 113

dustrial designs in 40nm.30 Our optimization comprehends both function mode and sleep mode

(i.e., with only leakage power). For the industrial design TC2 we only show normalized metrics

– the instance count, area, power (Pcore, Pext) and battery lifetime (T) values of the optimized

designs are normalized to those of the conventional design; the currents (Ibot, Itop) of the opti-

mized designs are normalized to total current of the conventional design. We estimate η values

based on [19]. In 28nm technology, our optimization achieves an average of 19% and 207% bat-

tery lifetime improvements in function and sleep modes, respectively. For the industrial designs

in 40nm, we also achieve more than 10% and 2× battery lifetime improvements in function and

sleep modes, respectively. In other words, we observe similar benefits from the stacked-domain

optimization in both 28nm and 40nm technologies. Moreover, the power penalty due to our op-

timization (see Pcore) is less than 10%, with well-balanced currents (i.e., with < 10% difference)

between the top and bottom power domains (see Ibot / Itop) for most cases. As a result, our opti-

mization significantly reduces Pext, and leads to an improved battery lifetime. We also observe

that the battery lifetime increase is greater in the sleep mode. This is because most of the current

(leakage) goes through the stacked domains, while the regulator needs to provide very little cur-

rent to maintain the mid node voltage. Hence, there is a high power delivery efficiency despite

the voltage regulator having lower efficiency with smaller current (as shown in Figure 3.10).

Therefore, stacked-domain optimization is expected to provide more energy and battery lifetime
30We use command ccopt design from Innovus to perform clock tree synthesis. We observe that the tool inserts

additional clock buffers to compensate the delay of level shifters for a given skew target. Since our optimization
minimizes the number of level shifter insertions, we observe from our experimental results that the power penalty
from such additional clock buffer insertion is small (e.g., < 1% clock buffer area penalty on design TC2).

80

benefits if the voltage regulator efficiency is low. We note that all the implementation solutions

have negligible timing violations (i.e., #timing violation paths < 5), and that the slightly im-

proved worst negative slack (WNS) values of our optimization solutions might be due to P&R

tools’ noise [95]. Moreover, since logic gates are densely connected in blocks AES, DES, JPEG

and VGA, and since the block sizes are small, the relative area overheads due to level shifter

insertion are large. Runtimes shown in Table 3.3 indicate the extra runtime of our optimization

that includes partitioning, re-floorplanning and incremental placement optimization.

Sensitivity to Level Shifter Delay

We further study the impact of level shifter model on our stacked-domain optimization.

We use a pessimistic (i.e., worst-case) model that has roughly 3-4× power, area and delay com-

pared our current (i.e., nominal-case) model. Figure 3.11 shows that the pessimistic level shifter

model leads to slightly larger total design power (Pcore) due to larger level shifter power and

timing impact. Since our partitioning optimization minimizes the number of level shifters, the

corresponding power penalty due to the pessimistic level shifter model is not large. Results also

show larger ∆I with the pessimistic level shifter model. The larger current difference comes

from the level shifters’ timing and area impact.

Figure 3.11: Impact of level shifter delay, area and power on design QoR in (a) function mode
and (b) sleep mode. Design: TC1. Technology: 40nm.

Sensitivity to Voltage Regulator Power Efficiency

Last, we study impact of voltage regulator efficiency on battery lifetime improvement

in stacked-domain designs. More specifically, we vary the η value from 40% to 90% with a step

size of 10%. For each η value, we estimate the battery lifetime improvement from our stacked-

domain optimization compared to the conventional design. Figure 3.12 and Figure 3.13 respec-

tively show normalized battery lifetime with respect to that of the conventional design, evaluated

81

using different voltage regulator efficiencies. Results show that battery lifetime decreases with

a higher voltage regulator efficiency. When the regulator efficiency is high, stacked-domain im-

plementation – which has power penalty due to level shifter insertion – can even degrade the

battery lifetime of the design (e.g., η = 90% in sleep mode).

We note that the voltage regulator efficiency and area cannot both be optimal in the same

power converter [175]. In a typical CMOS process, while highly efficient converters exist, they

have poor power density, and the opposite holds for high power density converters, where the

efficiency is reduced. Since optimization of both power efficiency and power density cannot

be performed beyond technology limitations, an alternate method for further improvement is

voltage stacking. Here, the better the matching between the power domains, the less current the

regulator has to provide, improving the maximum output current requirements that are related

to the area, and also improving the external power supply and, therefore, the power delivery

efficiency, in accordance with (3.5).

Figure 3.12: Impact of voltage regulator efficiency on battery lifetime improvement. Design:
TC1. Technology: 40nm.

Figure 3.13: Impact of voltage regulator efficiency on battery lifetime improvement. Design:
TC2. Technology: 40nm.

82

Tradeoff between Current Balancing versus Level Shifter Cost

A relaxed current balancing constraint will lead to a smaller number of level shifters,

and hence reduced area and power penalties. In this subsection, we study this tradeoff between

current balancing versus the cost of level shifters (e.g., the number of level shifters and resultant

Pcore increase) using the industrial designs TC1 and TC2. Specifically, we vary the instances

defined as source and sink as well as the maximum delta current constraint in our flow-based

partitioning to achieve different partitioning solutions with different numbers of level shifters.

Table 3.4 shows results for designs TC1 and TC2 with different current balancing con-

straints, normalized with respect to those for the conventional design. In Table 3.4 each column

corresponds to one implementation. From left to right, ∆I increases while the number of level

shifter insertions reduces. We evaluate battery lifetime with three η values (i.e., 50%, 80% and

95%). For each η value the solution with the maximum battery lifetime is shown in bold font.

Results show that when η is small, solutions with more balanced current offer larger battery

lifetime. On the other hand, when η is large, solutions with relaxed current balancing constraint

and smaller number of level shifters (e.g., opt’ of TC2) provide larger battery lifetime. Results

in Table 3.4 also show that since our optimization is able to achieve a balanced-current partition-

ing solution with a small number of level shifter insertions, for design TC1 our solution (opt)

achieves the maximum battery lifetime for various voltage regulator efficiencies.

Table 3.4: Results with different current balancing constraints. Designs: TC1 and TC2. ∆I ,
Pcore and T are normalized to those of the conventional design.

design metric ref opt’ opt” opt

∆I 1.00 0.91 0.88 0.03

Pcore 1.00 1.00 1.01 1.02

TC1 #LS 0 174 406 601

T (η = 50%) 1.00 1.11 1.32 1.62

T (η = 80%) 1.00 1.05 1.09 1.15

T (η = 95%) 1.00 1.01 1.00 1.03

∆I 1.00 0.82 0.50 0.20

Pcore 1.00 1.00 1.02 1.05

TC2 #LS 0 362 513 914

T (η = 50%) 1.00 1.06 1.07 1.91

T (η = 80%) 1.00 1.02 1.02 1.22

T (η = 95%) 1.00 1.02 1.01 1.01

83

Block-Aware Partitioning

Design TC2 has two usage scenarios – with and without logic block 2. To ensure that

the currents between two domains are balanced in both scenarios, we perform block-aware par-

titioning on TC2. To achieve this, we first partition the logic block 1 and memories into two

domains with balanced currents. We then fix the partitioning solution on logic block 1 and mem-

ories, and partition logic block 2 into two domains with the current heuristically balanced for the

entire design, and with a minimized number of level shifter insertions. Figure 3.14(a) shows the

relative locations of three blocks. Figure 3.14(b) shows the relative locations of top (in red) and

bottom (in blue) domains within each block.31

Figure 3.14: (a) Approximate layout of TC2. (b) Approximate partitioning solution of TC2 (in
red are top domains, in blue are bottom domains).

Figure 3.15 shows the optimized solution of TC2, evaluated in the two scenarios of

with and without logic block 2 working. The voltage regulator efficiency is estimated based

on the power delivery block described in [19]. The solution has negligible timing violations

(i.e., the worst negative slack is -60ps, with < 5 path timing violations) and 1987 level shifters.

Results show that by applying the block-aware partitioning, we achieve balanced currents in both

working scenarios, and thus improved battery lifetime. The currents are not perfectly balanced

because of the high complexity of the industrial design (otherwise, there will be power and

timing penalties from the large number of level shifter insertions) as well as the multi-scenario

(i.e., function mode and sleep mode) balancing constraints.
31We are unfortunately not able to provide additional floorplan and layout details for TC1 and TC2.

84

Figure 3.15: Block-aware partitioning solution, evaluated in both scenarios (with and without
logic block 2). Current values are normalized to the total current of the conventional design

including both logic block 1 and logic block 2. Battery lifetime improvements are with respect
to the conventional design.

3.1.4 Conclusion

In this work, we propose the first comprehensive optimization framework for stacked

power-domain implementation with maximized battery lifetime. We extend the existing flow-

based partitioning methodology with layout- and timing-path-awareness, as well as multi-scenario

balancing objective. We further propose an FM-based grid movement and a dynamic programming-

based boundary optimization to define the layout region (power island) of each power domain.

Last, we insert level shifter rows in an updated floorplan and place level shifters using a matching

optimization. We validate our optimization flow in both 28nm LP and 40nm technologies, as

well as on industrial designs. Our optimization achieves more than 10% and 2× battery lifetime

improvements for function and sleep modes compared to the conventional design. Our future

works include (i) a predictive methodology to determine the block size prior to trial placement,

and (ii) stacked-domain optimization with > 2 power domains and/or in 3DICs.

85

3.2 Improved Flop Tray-Based Design Implementation for Power

Reduction

Clock network optimization is critical in modern SoC designs due to the following rea-

sons: (i) clock network typically has large power due to its high switching activity; (ii) clock

skew and latency (with on-chip variation) have significant impact on design performance; and

(iii) clock network routing consumes routing resources and can cause routing congestion. In

this work, we study design optimization with flop trays32 (i.e., macro cells of multi-bit flip-

flops), where the application of flop trays can significantly reduce the number of sinks in (sim-

ilar to [9]) and thus result in an improved clock network. Further, careful design of the internal

routing within a flop tray prevents hold buffer insertion between flops within the tray, especially

along scan chains. This reduces the number of hold buffers, DFT (Design for Test) overheads,

and potential placement congestion.

Flop tray potential benefits. It is intuitively reasonable that more clock power reduction can

be achieved by using larger sizes (i.e., greater number of bits) of flop trays. As a motivating

“thought experiment”, consider a clock tree with N sinks and fanout of f at each level: the total

number of (internal) clock buffers between the clock root and the clock pins of sinks (i.e., flops,

flop trays) is≈ N−1
f−1 . If we could replace all single-bit flops with K-bit flop trays, the number of

clock buffers would reduce to only ≈ N/K−1
f−1 (e.g., using 64-bit flop trays to replace single-bit

flops could reduce the number of clock buffers by up to 98.4% (= N−N/64
N−1 ≈ 63

64)). Furthermore,

Figure 3.16 illustrates how inverters for clock signals can be shared among flops in a flop tray,

resulting in power and area reduction as compared to multiple single-bit flops. These power and

area reductions would also increase with flop tray sizes.

Current approaches and their limitations. Flop tray-based implementation is very challeng-

ing due to the following reasons. (1) In advanced nodes, flops (including single-bit flops and

flop trays) typically occupy a large portion of the entire block area due to their large sizes.33

Moreover, flop trays can have high aspect ratios (e.g., a 64-bit flop tray may be implemented

as a 4 × 16 array of flops, with much greater width than height); flop tray size and shape have

been ignored by previous literature on multi-bit flop optimization [135][140][193] and flop clus-

tering [51][157]. Flop trays with large area and high aspect ratio make placement optimization
32Terminology: A flop tray is synonymous with a multi-bit flip-flop (MBFF); we use “flop” as a synonym for

“flip-flop”.
33As an example, a minimum-size inverter occupies two placement sites; a single-bit flop occupies 18 sites; and

a 64-bit flop tray can occupy 244 sites in width and four cell rows in height. Due to their large sizes, flops and flop
trays can consume a substantial fraction of overall cell area (e.g., VGA from OpenCores website [230] has 30% of its
instances as flops, which accounts for 51% of the total cell area).

86

Figure 3.16: Two inverters for the clock signal are shared between the two flops in a 2-bit flop
tray.

very difficult [54][152]. (2) Clustering of flops imposes additional placement constraints on

their fanin and fanout logic cones, which is highly likely to degrade the placement solution

quality [152]. (3) Usage of flop trays can easily cause routing congestion. (4) Clustering of

single-bit flops into flop trays has large impact on timing and limits the application of useful

skew optimization. Most previous works study small-size flop trays, and do not fully address

the above challenges in their optimization approaches. Crucially, further achievable benefits of

using large-size flop trays are not exploited by previous works. To maximize obtained bene-

fits from flop tray deployment, our present work proposes a flop tray-based optimization that

comprehends arbitrary flop tray sizes. (Below, we show results with flop tray size up to 64 bits.)

Figure 3.17: Wirelength and power overheads on datapaths due to flop tray-based
implementations compared to implementations using only single-bit flops. Technology:

28FDSOI. Designs are from OpenCores website [230].

A common practice for flop tray-based implementation is to cluster flops during the syn-

thesis stage based on logic functions of the design, along with clock domain and clock gating

87

information. We refer to this as logical clustering in the following discussion. However, flop

tray generation without physical information can result in placement and routing congestion and

degrade place-and-route (P&R) solution qualities. Figure 3.17 shows examples where flop tray-

based implementations with logical clustering during synthesis stage can result in 8% – 39%

wirelength overhead and 5% – 16% power overhead on datapaths after detailed routing even at

a low conversion ratio from single-bit flops to flop trays. (In the example, numbers of flops and

flop trays in flop tray-based implementations, as percentages of flop numbers in implementations

with single-bit flops, are 43%, 37%, 41% and 45% for AES, JPEG, MPEG and VGA, respec-

tively.) This degrades power benefits from flop tray deployment. Therefore, feedback loops and

iterations are required between early-stage flop clustering and P&R optimization, which can sig-

nificantly increase design time [54]. Furthermore, although splitting large flop trays into smaller

trays or single-bit flops during placement and/or routing can mitigate the congestion and power

penalty, benefits of applying flop trays then become limited. In addition, the capability of logical

clustering to realize flop tray benefits can be limited according to attributes of the given design.

Designs with few multi-bit signals may not derive substantial benefits from flop tray deployment.

On the other hand, designs with many multi-bit signals might use flop trays aggressively, with

large-size flop trays in particular causing placement and routing congestion.

Our approach. In this work, we focus on post-placement flop tray optimization.34 We first

place the design with all single-bit flops, where the placement solution is considered to give

ideal locations of individual flops and combinational cells (given that there are no additional

constraints induced by flop clustering). We then cluster flops based on the placement solution.

In this way, we resolve the “chicken-and-egg” loop between early-stage flop tray generation

and placement optimization of flop trays. However, post-placement flop tray generation such as

ours must carefully comprehend different flop tray sizes and aspect ratios; it must also minimize

perturbation on datapath placement and timing degradation (otherwise, the assumption of “ideal”

combinational cell placement does not hold).

To maximize the benefits of applying flop trays while minimizing the perturbation on

the initial placement solution, we propose a capacitated K-means optimization which iteratively

executes min-cost flow to cluster single-bit flops into flop trays, and a linear programming-based

optimization to place flop trays. Based on the proposed capacitated K-means optimization, we

achieve a solution (including flop clustering and flop tray placement) for each given flop tray

size and AR. We then formulate an integer linear program (ILP) to select the best combination
34Other low-power clocking styles and methodologies (e.g., pulsed-latch, register arrays, and rotary clock) are not

the focus of this work.

88

of flop tray solutions. In addition to minimization of displacement of flops (i.e., from the initial

single-bit flop location to the flop location in a flop tray), our optimization is also aware of

timing-critical start-end flop pairs. Specifically, we minimize the relative location displacement

of timing-critical start-end pairs to minimize the timing impact from flop tray insertion.

The contributions of this work are as follows.

• We propose a capacitated K-means iterative optimization that applies (i) min-cost flow

based clustering, and (ii) LP-based placement optimization) to generate flop trays with

various sizes (e.g., 4-bit, 16-bit and 64-bit) at the post-placement stage.

• Our optimization is aware of flop tray aspect ratios and relative location displacement of

timing-critical start-end pairs.

• We apply a new Silhouette-based metric in addition to displacement distance to evaluate

flop clustering solutions.

• Our optimization is able to convert more single-bit flops into flop trays, but with smaller

datapath power overhead, as compared to a logical clustering flow implemented with com-

mercial tools.

• We achieve up to 32% and 90% reductions of total block power and clock power as com-

pared to implementations using only single-bit flops; and up to 16% and 40% reductions

of total block power and clock power as compared to a commercial tool-based flow with

logical clustering. We also achieve 13% clock power reduction on average compared to

the previous work in [97].

• We evaluate the benefit (i.e., leakage reduction) of useful skew optimization on flop tray-

based design and propose a useful skew-aware clustering to maximize such benefit.

The remainder of this section is organized as follows. Section 3.2.1 reviews related

works on flop tray optimization. Section 3.2.2 describes our capacitated K-means optimization

flow. In Section 3.2.3, we describe our experimental setup and results. Section 3.2.4 concludes

and gives directions for ongoing work.

3.2.1 Related Work

In this section, we review flop clustering and flop tray (multi-bit flop) generation ap-

proaches proposed in previous works. We classify these approaches into two categories: (i)

early-stage flop tray generation, and (ii) flop tray generation during and/or after placement.

89

Several early works propose flop tray generation at early design stages. Kretchmer et

al. [123] and Chen et al. [33] propose register banking during logic synthesis. They create Liberty

models of flop trays, which can be used by logic synthesis tools. But, flop tray generation during

synthesis has only logic topology as its main lever, and the lack of physical information can

result in a sub-optimal clustering solution, degraded timing and larger power. To address this,

Hou et al. [87] further propose register banking removal based on routing congestion and timing

information. However, such a “(flop) clustering at early stage and (flop tray) removal at late

stage” flow is not able to effectively exploit the benefits of flop tray usage. Thus, many other

works propose flop tray generation during and/or after placement.

Yan et al. [204] generate flop trays at the post-placement stage. They first construct

an intersection graph based on routing length and congestion constraints derived from an ini-

tial placement solution with single-bit flops. They then perform minimum-clique partitioning

to reduce the number of flop trays. Lin et al. [134] use progressive window-based optimization

to improve the methodology proposed in [204] considering given flop tray sizes. They solve

the clustering problem by finding K-cliques and maximum independent sets in a merging graph

constructed based on feasible-location regions of flops. Similarly, Wang et al. [193] use clique

partitioning to identify a set of non-conflicting cliques. Jiang et al. [97] propose an efficient post-

placement flop tray generation technique using interval graphs and a pair of linearized sequences.

Liu et al. [140] also propose flop clustering based on an intersection graph. In addition to re-

ducing the number of flop trays, they apply agglomerative clustering to minimize displacements

of flops, wirelength and clock power. More recently, Lin et al. [135] develop a clock tree-aware

in-placement flop tray generation technique. They build an intersection graph considering clock

latency, wirelength and timing, then iteratively perform flop tray generation and timing-driven

incremental placement. Xu et al. [203] propose an analytical clustering score for flop tray gener-

ation, permitting seamless integration with the traditional wirelength objective. Tsai et al. [183]

propose to generate flop trays during placement. During analytical global placement, they guide

placement of flops (to enable flop tray generation) with additional bonding force (resembling

ionic bonds in chemistry). Other works optimize flop trays with awareness of crosstalk [88],

clock gating [143], etc.

In addition to flop tray-based design, flop and/or latch clustering optimizations have

been widely applied in previous works for clock tree and latch placement optimization. Mehta

et al. [149] propose a clustering algorithm to obtain approximately load-balanced clusters and

construct clock trees so as to minimize skew. Papa et al. [157] apply K-means clustering algo-

90

rithm to minimize latch displacement during a physical synthesis optimization. Deng et al. [51]

propose a register clustering methodology in generating the leaf-level topology of the clock tree

to reduce clock power consumption.

We summarize our algorithmic and methodological improvements, compared to previ-

ous works, as follows.

• None of the previous in-placement and post-placement approaches study flop tray opti-

mization with large-size flop trays (e.g., 64-bit flop trays). The ARs of flop trays are

ignored (indeed, many previous works treat flop trays essentially as points in their opti-

mizations). By contrast, our optimization considers arbitrary flop tray sizes and is aware

of flop tray ARs.

• Most previous works assume a feasible displacement region for each flop. However, such

an assumption does not comprehend the movements of fanin/fanout flops, which can be

either pessimistic or optimistic. In addition, such an assumption essentially precludes ex-

ploiting benefits of useful skew. By contrast, our approach considers timing path-aware

timing impact of flop displacement; specifically, we minimize the relative location dis-

placement of timing-critical start-end pairs. We also propose a useful skew-aware opti-

mization flow to maximize such benefit.

• Previous works use local search to cluster flops into flop trays. However, due to capacity

constraints of flop trays, such local search can result in outliers with large displacement

distances. By contrast, in this work we apply a more globally-aware optimization based

on (i) a capacitated K-means formulation (with iterative min-cost flow-based clustering

and LP-based placement optimization), and (ii) a practically scalable ILP-based matching

and selection of flop tray solutions to globally optimize flop clustering with given capacity

constraints (i.e., flop tray sizes).35

3.2.2 Methodology

We now describe our optimization methodology for flop tray generation and placement.

Figure 3.18 illustrates our overall optimization flow, where we integrate our flop tray optimiza-

tion (steps in blue boxes) into a conventional SP&R (synthesis, place, and route) flow. To address

the “chicken-and-egg” loop between flop tray generation and placement optimization, we first
35Our ILP runtime (CPLEX 12.6) is less than one minute on the VGA testcase [230] (with 17K flops and 1000

timing-critical paths) with five candidate flop tray sizes studied in Section 3.2.2 and Section 3.2.3 below, using 20
threads on a 2.5GHz Intel Xeon server.

91

perform an initial placement with only single-bit flops, where the placement is considered to be

“optimal” with no placement constraints induced by flop clustering. We note that since the initial

placement is timing- and congestion-aware, minimizing subsequent perturbations can mitigate

potential congestion due to flop trays, as well as minimize timing impacts. Further, to compre-

hend multiple flop tray sizes and ARs, we perform flop tray optimization for each flop tray choice

(i.e., a {size, AR} combination). Last, we perform an integer linear programming (ILP)-based

optimization to select the optimal combination of flop trays and their placement solutions.36

Figure 3.18: Overall optimization flow of flop tray generation.

We state our post-placement flop tray generation problem as: Given an initial placement

solution with only single-bit flops, flop tray choices, and timing constraints, cluster single-bit

flops into flop trays and determine the placement location of each flop tray, such that total

block power (including clock power and power of sequential cells (i.e., flops and flop trays) and

combinational cells) is minimized after routing.
36Our separate study shows that due to high runtime complexity, it is practically infeasible for our current approach

to optimize flop clustering and flop tray placement considering all possible flop tray candidate sizes simultaneously.
We therefore perform a two-step optimization in this work.

92

The following subsections describe our capacitated K-means clustering and our ILP-

based selection of flop tray solutions. Table 3.5 lists the notations used in our discussion.

Table 3.5: Description of notations used in our formulation.

Term Meaning

ti ith flop tray

ei binary indicator whether ti is used

wi cost of using tray ti

fij jth flop of ti

hl lth single-bit flop

bl,ij binary indicator whether hl is matched to fij

(Xi, Yi) center location of ti

(x′ij , y′ij) relative center location of fij w.r.t. the center of ti

(xl, yl) optimal location of hl

(dl,ij , dl,ij) Manhattan distance between hl and fij

Capacitated K-Means Clustering

We first address the following, narrower problem: Given an initial placement solution

with all single-bit flops (i.e., N single-bit flops), and dN/Ke K-bit flop trays with fixed AR,

cluster the single-bit flops into flop trays and determine the placement location of each flop

tray, such that the total displacement of flops is minimized.

To address this problem, we propose a capacitated K-means algorithm [120]. (As noted

above, K-means clustering algorithms have also been applied to flop (or latch) clustering in

previous works [51][157].) There are two steps in a standard K-means algorithm: (i) clustering,

and (ii) updating the center location of each cluster. We associate these two steps with: (i)

matching of single-bit flops to flop slots in flop-trays, and (ii) updating the locations of flop trays.

We propose a min-cost flow to address (i), and a linear programming (LP)-based optimization to

address (ii). We iterate between these two steps until convergence (i.e., no further displacement

reduction can be achieved, or a maximum number of iterations (= 35 in our experiments below)

is reached).

In our capacitated K-means clustering, we use an algorithm that is similar to K-means++

[10] to select the starting points. Selection of dN/Ke starting points for clustering is described

in Algorithm 11. In Algorithm 11 we calculate center-to-center distances between single-bit

flops. To comprehend the aspect ratio of flop trays, we scale the horizontal distance by (1/AR)

(= height/width) of the given flop tray.

93

Algorithm 11 Selection of starting points.
1: Randomly select one flop among single-bit flops
2: For each flop hl, calculate the total Manhattan distance (dl) from hl to all selected flops
3: Randomly select one new flop with probability dl

4: Repeat Steps 2 and 3 until dN/Ke flops are selected

These selected starting points serve as initial locations of flop trays. We then apply

a min-cost flow to achieve capacitated clustering of flops. Our min-cost flow is illustrated in

Figure 3.19. To construct the flow instance, we create a node for each single-bit flop hl. For

each flop tray ti, we further create K nodes for its K slots, fi1 . . . fiK . For each edge between a

pair of hl and fij , we set its capacity as 1 and its cost as the Manhattan distance between hl and

fij . Here, we directly calculate the Manhattan distance between single-bit flops and flop slots

without any scaling. Finally, we create one source and one sink, and assign edges connected to

them with capacity as 1 and cost as 0, as illustrated in Figure 3.19. Notice that by considering the

distances between the locations of single-bit flops and flop slots in flop trays, our min-cost flow

optimization is explicitly aware of physical information (in particular, dimensions and ARs) of

the given flop trays.

Figure 3.19: Example of min-cost flow with K-bit flop trays.

Based on the capacitated K-means clustering solution from the min-cost flow, we for-

mulate a linear program (shown as follows) to determine the flop tray locations that achieve

minimum total displacement of flops. These placement locations of flop trays will serve as start-

ing points for the next iteration of clustering.

94

Minimize D (3.8)

Subject to |Xi + x′ij − xl|+ |Yi + y′ij − yl| = dl ∀hl (3.9)∑
l

dl = D (3.10)

Constraint (3.9) calculates the displacement for each flop (dl), and the objective seeks to mini-

mize the total displacement over all flops.

We iterate between the min-cost flow-based clustering and the LP-based flop tray place-

ment until no further displacement reduction is achievable (i.e., no flop trays move between two

consecutive iterations).

To confirm benefits from awareness of flop tray ARs, we show in Figure 3.20 represen-

tative clustering solutions from (i) the classic K-means approach, which treats each flop tray as a

point, and (ii) our min-cost flow-based clustering, which is aware of flop tray ARs. We observe

that our clustering solution more closely matches the AR of given flop trays. Further, classic

K-means without awareness of flop tray AR can result in 2× increase in average displacement

from the “ideal” single-bit flop placement; this is likelier to incur datapath power and timing

overheads.

Figure 3.20: Clustering solutions into 64-bit flop trays (i) without awareness of flop tray aspect
ratio and dimensions, and (ii) with awareness of flop tray aspect ratio and dimensions. Design:

AES (530 single-bit flops). Technology: 28FDSOI.

In our capacitated K-means algorithm, as with K-means approaches in general, the se-

lection of starting points has a strong impact on the final solution quality. We adapt the Silhou-

95

ette metric [168] and use Equation (3.11) to evaluate the solution quality of generated starting

points.37

func(hl) =
mini′ 6=i,j′(dl,i′j′)− dl,ij

max(dl,ij , mini′ 6=i,j′(dl,i′j))
(3.11)

where hl is matched to fij . The dissimilarity within a cluster is measured by the displacements

of each of the cluster’s assigned flops hl. The dissimilarity between a given cluster and other

clusters is measured by the distances between assigned flops hl and the nearest flop-tray slot in

another cluster to which hl is not assigned.

Figure 3.21: Best clustering solution (i.e., func(hl) (left) and displacement (right)) with
multiple runs (numbers of runs are shown in the x-axis).

We apply a multistart strategy to improve the selection of starting points. Multiple runs

(five in our experiments) of the procedure in Algorithm 11 are each followed by a small number

(15 in our experiments) of iterations between the min-cost flow and LP-based placement opti-

mization. We then select the solution with the highest average func(hl) value and proceed with

capacitated K-means iterations until convergence. Figure 3.21 shows a typical improvement of

the average value of func(hl) (left) and the average displacement (right) with increased number

of runs. In our studies, the improvement of func(hl) and displacement typically saturates after

five runs. Thus, the experiments reported below apply five multistarts to mitigate the impact of

starting point selection.
37As presented in [168], the Silhouette value is a measure of how similar an object is to its own cluster, compared to

other clusters. A general Silhouette value is defined as s(i) = b(i)−a(i)
max(a(i),b(i))

, where a(i) is the average dissimilarity
(e.g., average distance) of i with all other data within the same cluster, and b(i) is the lowest average dissimilarity (e.g.,
minimum average distance) of i to the data in any other cluster other than its own. By definition, −1 ≤ s(i) ≤ 1,
and a larger Silhouette value indicates a better clustering solution. In this work, data are slots of flop trays, and
dissimilarities are measured by distances.

96

ILP-Based Matching Optimization

The next step of our optimization approach addresses the following problem: Given

candidate flop trays with various capacities, each with a fixed placement location, select the

optimal subset of the candidate flop trays, and determine a mapping of single-bit flops into

slots of selected candidate flop trays, such that (i) every single-bit flop is mapped to a slot of a

selected flop tray (including flop trays with one bit, i.e., no clustering), and (ii) a weighted sum

of the total displacement of flops, relative displacement of timing-critical start-end pairs, and

total flop tray costs is minimized.

Figure 3.22: Example of our ILP-based optimization.

As discussed in Section 3.2.2, we run capacitated K-means clustering with different flop

tray sizes and ARs, and use these flop trays together with their optimized placement locations

as inputs (“candidates”) for an ILP-based matching optimization. Our ILP-based optimization

selects an optimal subset of candidate flop trays with various flop tray sizes as our final solution.

As an example, Figures 3.22(a)-(c) show solutions of flop trays with fixed sizes and ARs on the

AES testcase. Specifically, Figures 3.22(a)-(c) respectively show solutions with only 4-bit flop

trays (flop trays are in red, #flop trays = 133, average displacement = 2µm), only 16-bit flop

trays (flop trays are in green, #flop trays = 34, average displacement = 3µm), and only 64-bit

flop trays (flop trays are in orange, #flop trays = 9, average displacement = 5µm). Figure 3.22(d)

97

shows the final solution, i.e., solution with a combination of single-bit flops and 4-bit, 16-bit

and 64-bit flop trays (#flops + #flop trays = 81, average displacement = 2µm). Our objective

is to minimize a weighted sum of total displacement of flops, relative displacement of timing-

critical start-end flop pairs, and total flop tray cost. Relative displacement of a timing-critical

start-end flop pair is illustrated in Figure 3.23. As an improvement to previous approaches,

we comprehend timing impact of flop tray generation considering timing-critical paths (i.e.,

start-end pairs). Specifically, if the flop tray generation moves two flops towards each other,

combinational cells in the logic cone between the flops are forced to be placed in a more compact

region, which results in congestion and distortion of the placement and routing. Alternatively,

if the flop tray generation moves two flops away from each other, timing paths between the two

flops will tend to have longer wirelength, degrading timing. We therefore seek to minimize the

relative displacement of flops that are timing-critical start-end pairs.

Our ILP to select the optimal combination of flop tray solutions with various sizes and

ARs is given below.38

38Note that our ILP can be extended to be aware of clock gating, clock domain and useful skew optimization, etc.
with additional constraints. Section 3.2.3 briefly describes a useful skew-aware extension and corresponding benefits.

98

Minimize α ·W + D + β · Z (3.12)

Subject to |
∑
ij

(Xi + x′ij − xl) · bl,ij |

+|
∑
ij

(Yi + y′ij − yl) · bl,ij | = dl ∀l (3.13)

∑
l

dl = D (3.14)

dl ≤ dmax ∀l (3.15)

|
∑
ij

(Xi + x′ij − xl) · bl,ij −
∑
i′j′

(Xi′ + x′i′j′ − xl′) · bl′,i′j′ |

+|
∑
ij

(Yi + y′ij − yl) · bl,ij −
∑
i′j′

(Yi′ + y′i′j′ − yl′) · bl′,i′j′ |

= zll′ ∀(hl, hl′) ∈ timing-critical paths (3.16)∑
(hl,hl′)∈cri paths

zll′ = Z (3.17)

zll′ ≤ dmax ∀(hl, hl′) ∈ timing-critical paths (3.18)

bl,ij ≤ ei ∀l, j (3.19)

ei ≤
∑
lj

bl,ij ∀i (3.20)

∑
i

wi · ei = W (3.21)∑
l

bl,ij ≤ 1 ∀j (3.22)∑
i,j

bl,ij = 1 ∀i (3.23)

Here, W is the total cost of selected flop trays, which is determined based on their power con-

sumption and sizes (i.e., number of bits); D is the total displacement over all flops; Z is the

total relative displacement over all timing-critical start-end flop pairs; and α and β are weighting

parameters. Constraints (3.13) and (3.14) calculate the total displacement of all flops. Constraint

(3.15) bounds the maximum displacement of each flop. Constraints (3.16) and (3.17) calculate

the total relative displacement of timing-critical start-end flop pairs (i.e., (hl, hl′)). Constraint

(3.18) bounds the maximum relative displacement of each timing-critical start-end flop pair.

Constraints (3.19) and (3.20) force the binary indicator variable ei to be 1 if the corresponding

flop tray is used, and 0 otherwise. Constraint (3.21) calculates the total cost of selected flop

99

trays. Constraints (3.22) and (3.23) ensure that each flop is matched to exactly one slot, and that

each slot is matched to at most one flop. We note that additional mutual exclusion constraints can

avoid placement overlaps between pairs of flop trays (e.g., ei+ej ≤ 1 if there is overlap between

the ith and jth flop trays). However, such mutual exclusion constraints might limit the solution

space and thus degrade the solution quality. We therefore perform placement legalization in

the commercial P&R tool to remove overlaps among flop trays.39 We also note that although

an ILP-based optimization typically has large runtime, in our formulation, the number of binary

variables is only O(N ·Q), where N is the number of flops and Q is the number of candidate flop

tray choices (i.e., sizes and dimensions). In practice, our method exhibits practically reasonable

runtimes (see Footnote 4 above).

Figure 3.23: Illustration of the timing impact due to relative displacement between
timing-critical start-end flop pairs.

Figure 3.24: Number of flop trays and average displacement of flops change with different α
values. Design: JPEG. Technology: 28FDSOI.

To give an understanding of how the weighting parameters α and β affect solution qual-

ity, Figure 3.24 shows the number of flop trays and the average flop displacement resulting from
39Our experimental results show no more than three sites displacement on average per flop tray during the place-

ment legalization.

100

optimization with various α values. In the figure, each column is an implementation with cor-

responding α. Black-dotted curve indicates the total number of flops and flop trays. Orange

curve indicates the average displacement over all flops. (Small) numbers of 16- and 32-bit flop

trays omitted for figure clarity. We observe that more large-size flop trays are selected with an

increased value of α, so as to minimize the total tray costs. Such selection of large-size flop trays

will reduce power of flop trays as well as the clock power. However, the average flop displace-

ment increases with the value of α, and this can incur datapath power overhead. Therefore, the

choice of α determines a tradeoff point between (i) clock power reduction and power reduction

of flop trays, versus (ii) the power overhead on datapaths. In our experiments, we empirically

set α = 20, 40, 60 and 80. We then select the solution with the minimum total block power from

these four runs.

To evaluate the impact of β, we uniformly place flop trays within the block area and fix

their locations. The number of flop trays is determined according to the number of flops, such

that no flop tray can be empty, which eliminates the impact of W in our objective function. We

then perform an ILP-based matching optimization to cluster flops into flop trays. Figure 3.25

shows the total block power of the AES and JPEG testcases implemented with various β values.

We observe reduced block power with β > 0, where our optimization minimizes the relative dis-

placement between timing-critical start-end flop pairs. This confirms the benefits of minimizing

the relative displacement between timing-critical start-end flop pairs. We also observe increased

block power with a large β value. This is because with a large β value, relative displacements

between timing-critical start-end flop pairs dominate our objective function. The resultant large

displacements of non-timing critical flops incur datapath power penalty. We empirically use β =

1 in our experiments.

Figure 3.25: Power change with various β values. Designs: AES, JPEG. Technology:
28FDSOI.

101

3.2.3 Experimental Results

We perform experiments in a 28nm FDSOI foundry technology with dual-Vth libraries.

We use four design blocks (AES, JPEG, MPEG, VGA) from OpenCores website [230] as our

testcases. Parameters of these four testcases are shown in Table 3.6. We scale flop tray power

and area based on the ratios shown in Table 3.7. Layout ARs of flop trays are also shown in

Table 3.7. We synthesize designs using Synopsys Design Compiler vI-2013.12-SP3 [237] and

then place and route using Cadence Innovus Implementation System v15.2 [215]. We set the

placement density at the floorplan stage as 70%. We also perform timing and power analyses

using Cadence Innovus Implementation System v15.2. We perform vectorless power simulation

with a default switching activity of 10% at primary inputs. Our optimization flow is implemented

in C++. We use CPLEX v12.6 [223] as our ILP solver and LEMON [226] as our min-cost flow

solver. Functions used in P&R tools are implemented in Tcl. We conduct our experiments on a

2.5GHz Intel Xeon server.

Table 3.6: Testcase parameters.

Design #Instances #Flops Clock period

AES ∼12K 530 600ps

JPEG ∼47K 4512 600ps

MPEG ∼13K 3181 500ps

VGA ∼56K 17053 700ps

Table 3.7: Normalized flop tray area and power, and layout AR.

Tray size 4-bit 8-bit 16-bit 32-bit 64-bit

Norm. area/power per bit 0.875 0.854 0.854 0.844 0.844

AR (#rows×#columns) 1×4 2×4 4×4 4×8 4×16

AR (#rows×#sites) 1×63 2×62 4×62 4×122 4×244

Comparison to Logical Clustering

To evaluate the performance of our proposed methodology, we compare our solutions

to three reference flows: (i) the conventional implementation flow with only single-bit flops

(ref 1b), (ii) a flop tray-based implementation flow which generates flop trays during commercial

synthesis based on logical clustering, followed by conventional commercial P&R optimization

(ref mb1), and (iii) a flop tray-based implementation flow which generates flop trays at the post-

102

placement stage using the method proposed in [97], followed by clock tree synthesis and routing

(ref mb2). No value judgment or “benchmarking” regarding any commercial tool is intended by,

or should be inferred from, our present discussion.

Table 3.8 shows results evaluated at the post-routing stage. Figure 3.26 shows the lay-

outs of placement solutions with single-bit flops and optimized flop trays. We observe that our

proposed optimization (opt mb) is able to significantly reduce the number of sinks with appli-

cation of flop trays (e.g., we reduce the number of sinks by 98% on the VGA testcase compared

to the implementation using only single-bit flops). The reduction in number of sinks results in

smaller clock power: our optimization reduces clock power by up to 90% and 40% compared

to implementations with single-bit flops and flop trays generated by logical clustering, respec-

tively. Our flop tray generation also results in reduced power on flops. Moreover, we observe

that although our optimization has large conversion ratio from single-bit flops to flop trays, the

incurred datapath power and wirelength penalties are small as compared to the implementation

with logical clustering. This strongly suggests that our approach of optimization with minimum

perturbation from a “good” initial placement solution forestalls placement and routing conges-

tion while also minimizing the datapath power penalty from application of flop trays. For the

MPEG testcase, our optimization actually results in smaller datapath power as compared to the

“ideal” implementation with single-bit flops; we believe this is likely due to reduced placement

density (i.e., usage of flop trays reduces total area of flops).

Our optimization (opt mb) also achieves up to 7% total block power reduction compared

to the previous work [97] (ref mb2). Since ref mb2 only uses up to 8-bit flop trays, we limit the

flop tray options to 4-bit and 8-bit flop trays in opt mb’ for a fair comparison. Table 3.8 shows

that with the same set of flop tray options our optimization achieves 13% clock power reduction

on average compared to opt mb’, along with smaller datapath power for most of the testcases

(the exception is the JPEG testcase with < 1% power overhead).

Optimization with Various Flop Tray Sizes

We further perform flop tray optimization with various combinations of flop tray sizes.

More specifically, we implement designs with (i) single-bit flops only, (ii) {4-bit} flop trays, (iii)

{4-bit, 8-bit} flop trays, (iv) {4-bit, 8-bit, 16-bit} flop trays, and (v) {4-bit, 8-bit, 16-bit, 32-bit,

64-bit} flop trays with various α values (i.e., 20, 40, 60, 80). We note that setups (ii)-(v) can

also use single-bit flops. For each setup, we select the minimum total block power solution with

< 5% power penalty on datapaths as compared to the case with only single-bit flops. Figure 3.27

103

Table 3.8: Experimental results.

Design Flow
Power (mW) #Flops #Clk WNS Area WL

#Instances
comb seq clk sum (norm) 1 4 8 16 32 64 bufs (ps) (µm2) (µm)

ref 1b 8.11 4.37 1.53 14.02 (1.00) 530 0 0 0 0 0 11 -11 10362 140 12002

ref mb1 8.64 4.00 0.72 13.35 (0.95) 198 5 19 2 2 1 0 9 10606 153 11730

AES ref mb2 8.14 4.05 0.43 12.62 (0.90) 34 56 34 0 0 0 3 -4 10122 140 11595

opt mb 8.15 3.94 0.46 12.56 (0.90) 59 22 46 1 0 0 4 -5 10171 139 11619

opt mb’ 8.09 3.98 0.54 12.60 (0.90) 80 41 36 0 0 0 4 -2 10160 137 11598

ref 1b 35.13 36.04 13.37 84.54 (1.00) 4512 0 0 0 0 0 115 1 47595 420 47567

ref mb1 36.88 33.21 6.10 76.20 (0.90) 1388 109 84 70 0 14 59 0 46374 531 44246

JPEG ref mb2 35.45 32.06 4.56 72.07 (0.85) 308 457 297 0 0 0 40 -1 45888 437 44094

opt mb 35.68 31.28 2.28 69.24 (0.82) 274 77 110 2 9 43 25 1 45535 460 43545

opt mb’ 35.64 31.85 3.12 70.62 (0.84) 83 37 537 0 0 0 28 1 45898 428 43607

ref 1b 5.88 28.93 10.72 45.53 (1.00) 3181 0 0 0 0 0 92 -17 18169 149 12291

ref mb1 6.52 26.99 5.19 38.70 (0.85) 1225 27 17 15 18 14 53 -34 17757 195 10079

MPEG ref mb2 6.03 25.62 3.30 34.95 (0.77) 161 381 187 0 0 0 29 -11 17136 159 9849

opt mb 5.66 25.12 0.98 31.76 (0.70) 120 9 2 3 1 46 15 -3 16666 176 9183

opt mb’ 5.65 25.33 2.24 33.22 (0.73) 77 16 382 0 0 0 21 -23 16780 149 9531

ref 1b 14.32 108.34 42.19 164.84 (1.00) 17053 0 0 0 0 0 361 -5 88015 960 56039

ref mb1 16.63 101.63 20.73 138.99 (0.84) 7325 42 77 75 50 96 215 -2 84537 1337 45793

VGA ref mb2 14.60 94.51 10.24 119.35 (0.73) 129 1299 1466 0 0 0 110 -2 80710 1032 41656

opt mb 15.29 93.99 2.04 111.32 (0.68) 33 1 6 0 2 266 28 3 80083 1132 39129

opt mb’ 14.33 94.29 8.41 117.03 (0.71) 56 51 2114 0 0 0 89 -13 80538 1001 40909

Figure 3.26: Layout comparison between implementations with only single-bit flops and with
optimized flop trays. In the flop tray-based solutions, the candidate flop tray sizes are 4-bit,

8-bit, 16-bit, 32-bit and 64-bit.

shows flop power and clock power, normalized to implementations using only single-bit flops.

We observe that with only 4-bit flop trays, our optimization achieves > 7% power reduction on

flops and flop trays. However, including larger flop trays does not afford much further reduction

104

of flop power. (This may be due to our conservative assumptions regarding power-per-bit in

larger flop trays, as shown in Table 3.7). On the other hand, application of large-size flop trays

can effectively reduce clock power. For example, optimizations with {16-bit, 32-bit, 64-bit} flop

trays achieve 11% more clock power reduction on average as compared to the cases with only

{4-bit, 8-bit} flop trays.

Figure 3.27: Flop (tray) power and clock power of designs with various flop tray sizes.
Candidate tray sizes are 4-bit, 8-bit, 16-bit, 32-bit and 64-bit.

Study of Useful Skew Optimization with Flop Trays

Last, we evaluate the benefits of useful skew optimization in terms of leakage power re-

duction on (i) designs with only single-bit flops (ref 1b), and (ii) flop tray-based designs (opt mb

as shown in Figure 3.28.40 Based on the approach proposed in [4], we formulate the useful

skew optimization as a maximum mean weight cycle problem and apply iterative shortest path

search to maximize the average endpoint slack. We then perform leakage power optimization

using a commercial tool [215], i.e., we exploit the increased timing slacks for leakage power

reduction. We observe from Figure 3.28 that due to clustering of endpoints, flop tray-based de-
40In the technology we use, we do not observe significant dynamic power benefits from useful skew optimization.

We therefore study leakage power reduction from useful skew optimization in this experiment.

105

signs have 9% less leakage power reduction on average across four designs as compared to cases

with only single-bit flops. To reduce the impact of flop tray generation on benefits from useful

skew optimization, we study skew-aware flop tray generation that only allows clustering of flops

with desired skew less than θ (we use θ = 20ps in our experiments). Figure 3.28 shows that the

skew-aware clustering (opt mb (skew aware)) can achieve similar leakage power reduction as

compared to the cases with only single-bit flops (green vs. blue bars), but at the cost of more

sinks (i.e., an average of 21% less reduction in number of sinks).

Figure 3.28: Datapath leakage power results, normalized to implementations with only
single-bit flops.

3.2.4 Conclusion

In this work, we present a novel flop tray-based optimization for improved design power

reduction. We propose a capacitated K-means algorithm which iteratively applies a min-cost

flow-based clustering and a LP-based flop tray placement. We also propose an ILP-based match-

ing optimization to generate flop trays while minimizing the perturbation to the initial placement

solution. Our work achieves several improvements as compared to previous works: (i) aware-

ness of flop tray aspect ratio and (large) size; (ii) explicit minimization of relative displacement

of timing-critical start-end flop pairs; and (iii) global optimization instead of local search. The

proposed techniques allow us to achieve up to 32% total block power reduction as compared to

designs with only single-bit flops, and up to 16% total block power reduction over designs with

flop trays generated by logical clustering during synthesis. We also achieve 13% clock power

106

reduction on average compared to the previous work in [97]. We further study the impact of

flop tray sizes on optimization solution quality. Finally, we study useful skew optimization in

the context of our flop tray-based designs. Our future works include (i) scalable optimization

considering all flop tray candidate sizes simultaneously; (ii) awareness of IR-drop in the flop

tray clustering and placement; and (iii) floorplan blockage-aware and routing congestion-aware

flop tray generation.

107

3.3 An Improved Methodology for Resilient Design Implementa-

tion

IC products in advanced technology nodes are susceptible to dynamic variations that

manifest via supply voltage droop, temperature fluctuation, cross-coupling, aging, and other

mechanisms. To ensure correct functionality and robustness, traditional IC implementation

methodologies build guardband into clock frequencies and design signoffs – notably, timing sig-

noff at slow corners and for hold-time correctness. However, it is well-recognized that designing

for worst-case conditions incurs considerable power and performance overheads. Better Than

Worst-Case design [12], where an error checker and corresponding recovery mechanism enable

typical-case optimization, can significantly reduce overdesign compared to traditional method-

ologies. A similar idea for guardband reduction has been proposed by Bowman et al. in [23],

where several techniques for dynamic variation tolerance (i.e., resilient designs) are presented.

Resilient designs, as discussed in this work, use variant register (i.e., timing endpoint)

circuit designs to trade off design robustness against design quality (performance, power and

area); ideally, they can ensure correctness against variation and improve signoff performance

[40][50][61][74][77][177]. Razor [61] is a well-known technique to detect and correct timing

errors. Razor detects timing violations by supplementing error-tolerant flip-flops with shadow

latches. A shadow latch strobes the output of a logic stage at a fixed delay after the main flip-

flop; if a timing violation occurs, the main flip-flop and shadow latch will have different values,

signaling the need for correction. Correction involves recovery using the correct value(s) stored

in the shadow latch(es), or via instruction rollback/replay. In the following discussion, we define

the maximum timing violation that a resilient design can tolerate as the safety margin of the

corresponding design.

By allowing timing errors, resilient designs are used to improve performance. An exam-

ple is timing speculation [190], which increases the clock frequency and exploits error detection

and recovery mechanisms to correct resulting errors. Timing improvement from resilient designs

can lead to further power and area benefits over conventional designs. In other words, due to re-

laxed timing constraints, we can reduce the power and area of logic cells in the fanin cone of an

endpoint at which an error-tolerant register has been instantiated.

A practical methodology for deployment of resilient designs must overcome a number of

significant overheads of resilience. Notably, resilient designs require additional circuits or cycles

to detect and correct timing errors. Figure 3.29 shows the structure of Razor, Razor-Lite [122]

and TIMBER [40] flip-flops. All have additional circuits, and hence power and area overheads,

108

Figure 3.29: Structure of (a) Razor, (b) Razor-Lite, and (c) TIMBER flip-flops.

compared to a conventional flip-flop. For instance, Razor has its shadow latch and other error-

tolerant circuits (comparator, multiplexer and OR-gate). When compared to a conventional flip-

flop, the total power overhead of a Razor flip-flop is 30% [50]. Although the power overhead

has been significantly reduced for each error-tolerant register in a recent work [122], the cost

incurred by the error-detection network is still large.

We use the term pure-resilient design to indicate a design that uses only error-tolerant

registers (instead of conventional ones). Our background studies indicate that in a pure-resilient

design, the error-detection network alone can consume up to 9% of the total wirelength. Further-

more, the additional cycles needed to recover from errors can lead to performance (throughput)

degradation. Moreover, error-tolerant circuits are vulnerable to hold violations. Designers must

ensure that benefits (in terms of performance, and/or area and power reduction from the error

resilience) outweigh the additional costs of error-tolerant circuits.

A crucial open question is, “What is the minimum achievable cost of (a given amount of)

resilience?” As a step toward answering this question, in this work we perform in-depth studies

of the tradeoff between the overhead of error-tolerant circuits and the cost of the traditional

timing optimizations, with the goal of assessing the ‘true’ benefits of resilient design techniques.

To our knowledge, no previous work has conducted such studies to explore the ‘true’ benefits

of resilience comprehending all types of resilience cost and various types of resilient designs.

109

We propose two effective design optimization techniques – selective-endpoint optimization, and

clock skew (useful skew) optimization – to minimize the costs of resilience, i.e., (i) power and area

overheads of resilient circuits, and (ii) throughput degradation due to additional cycles for error

recovery. Based on the optimization, we develop a complete implementation flow (i.e., from

placement to signoff) for resilient designs. Our flow comprehends the impacts of signoff corners

and process variation, ensuring timing correctness of conventional flip-flops at the slow corner

while optimizing design energy at the typical corner. Since our selective-endpoint optimization

reduces the number of error-tolerant flip-flops and the applied clock skew optimization is hold-

timing aware, we do not specifically optimize on short-path padding, and small hold penalty

is observed. However, our optimization flow can easily be combined with existing short-path

padding optimizations (e.g., [205]). Our contributions include the following.

• We propose an optimization methodology to reduce the cost of resilience. Our methodol-

ogy exploits both error-tolerant registers and clock skew scheduling.

• We study the benefits and cost of resilient design implementations, where we trade off

among (i) power and area overheads of error-tolerant registers, (ii) optimization of logic

cells in the fanin and fanout cones, and (iii) throughput degradation due to timing errors.

• We propose an implementation flow to construct the error-detection network, which is

required in an actual implementation. We exploit geometric placement information of the

error-tolerant registers to substantially mitigate wirelength overhead of the error-detection

network.

• We perform typical-corner optimization of resilient designs to maximize energy reduction.

At the same time, our implementations comprehend both multiple signoff corners and

process variation.

• By reducing the number of error-tolerant registers, our optimization minimizes the cost of

short-path padding.

• We assess the opportunities and costs of resilient implementations across different error-

tolerant register designs as well as in the adaptive voltage scaling (AVS) context.

The rest of this section is organized as follows. Section 3.3.1 presents related works.

Section 3.3.2 formulates the problem of minimizing the cost of resilience and describes our

methodology for implementing low-cost resilience. Section 3.3.3 presents our experimental

results and analyses, and Section 3.3.4 concludes the section.

110

3.3.1 Related Work

A number of resilient design techniques have been proposed that allow timing errors,

in conjunction with different error detection and correction mechanisms. These previous works

can be roughly classified into two categories. In the first category, designs use replica circuits

for error masking. These designs typically incur large power and area overheads due to its addi-

tional circuits. In the second category, designs use error-tolerant registers to detect timing errors.

Although circuit power and area overheads can be smaller, instruction rollback or replay is re-

quired to recover from timing errors. The additional cycles for error recovery lead to throughput

degradation.

Replica Circuits for Error Masking. A well-known technique compares output values in each

cycle using redundant hardware circuits. DIVA [11] applies a functional checker to verify the

correctness of the core processor’s computation, only permitting correct results to commit. Pace-

line [77] employs a leader-checker which checks timing errors due to overclocking. CPipe [177]

enables reliable overclocking through core-replication. The outputs of the main combinational

logic are compared with those of the duplicated logic in each cycle. Choudhury et al. [41] syn-

thesize error-masking circuits and use 2-to-1 multiplexers to mask errors at the output of critical

paths. Similarly, Yuan et al. [210] mask errors by adding redundant approximation logic which

has higher speed than the original circuit. TIMBER flip-flops and latches [40] enable online

timing error masking via time-borrowing from the succeeding pipeline stage. This kind of ap-

proach provides error resilience with high reliability, but also incurs significant power and area

overheads due to the redundant logic circuits.

Error-Tolerant Registers with Error Recovery. Razor and related works [13][50][61][122]

replace registers with specialized flip-flops which detect timing errors by capturing the correct

value at shadow latches with a delayed clock. Razor [61] can correct timing errors within a

specific safety margin of the error-tolerant register. Razor II [50] provides analysis of the Razor

flip-flop – with respect to timing constraints, safety margin and clocking scheme – and reduces

complexity and area of the Razor flip-flop. Bubble Razor [69], which uses two-phase latch tim-

ing, stalls the pipeline based on the propagation of error clock gating control signals (“bubbles”)

to mitigate timing errors. A Markov chain-based analysis for a ring of Bubble Razors is pro-

vided in [211]. A more recent work – Razor-Lite [122] – further reduces the area and power

penalties of error-tolerant registers. STEM [13] improves the capability of error-detection with

a second shadow latch. [22] introduces two error-tolerant circuits – transition detector with

time-borrowing, and double sampling with time-borrowing.

111

Resilient Design Optimization. With the above error-tolerant registers, various design-level

optimization techniques [41][78][105][106][142][141][190][210] have been proposed which iden-

tify and optimize critical paths that are frequently exercised during operation. These works ap-

ply resilient techniques to timing-critical and/or frequently-exercised paths, but typically fail to

holistically consider the ‘true’ benefits and costs of the error-tolerant circuits during the optimiza-

tion. In other words, the tradeoff between the cost of resilience and the costs of margin insertion

for data paths (Figure 3.31) is ignored. Further, none of these works consider all types of costs in

a resilient design (i.e., power and area of resilient circuits and data paths and throughput degrada-

tion) simultaneously. For instance, [41] and [210] optimize area and power of resilient circuits,

but not the costs of data paths; the optimizations in [105][141][190] consider power of data

paths and throughput degradation, but not the overhead of resilient registers; [142] minimizes

the number of error-tolerant registers and the cost of short path padding, but without regard to

the overhead of throughput degradation. In addition, optimizations in [41][142][141][190][210]

occur at the synthesis stage. However, the timing-critical paths can vary after placement and

routing (P&R), and this discrepancy can degrade the solution quality. Our present work is differ-

entiated by performing optimization during P&R stage that comprehends the tradeoff between

the cost of resilience and the costs of margin insertion, as well as by simultaneously considering

(more comprehensively) the costs in a resilient design.

Clock Skew Optimization.

Of particular note are clock skew optimizations that have been proposed by previous

works on enhancement of design robustness and timing speculation. An early work [67] formu-

lates a linear program to maximize the minimum timing slack in a design via clock skew schedul-

ing, which improves the tolerance of the design to variations. [198] adjusts clock latencies to

minimize the probability of timing errors being latched by overlapping separate error-latching

windows. Their optimization also prevents errors from propagating along pipeline stages. [34]

and [207] propose online clock skew tuning methods to minimize timing errors during runtime

using tunable delay buffers and clock tuning elements (i.e., circuits with multiple skew config-

urations), respectively. However, due to implementation complexity, fine-grained optimization

is practically impossible. Further, clock tuning logic can introduce extra area and power costs.

[208] proposes clock skew scheduling optimization to minimize the error rate in a resilient de-

sign. Based on error probability at each endpoint, they determine skew values using a gradient-

descent method. The work uses Razor flip-flops for timing-critical endpoints and ignores the

tradeoff between cost of resilience and data path optimization. The optimization also ignores

112

hold constraints, which are critical in a design with resilient registers, as well as the potential

power implications (e.g., for data paths) of the skew scheduling. Our present work proposes

clock skew optimization that maximizes both setup and hold slacks at all timing-violated paths

with comprehension of toggle rate information. Further, in our work the improved timing slacks

are exploited to enable removal of error-tolerant registers and power reduction on data paths.

3.3.2 Methodology

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

20	
 60	
 100	
 140	
 180	
 220	
 260	
 300	
 340	
 380	

#E
nd

po
in
ts
	

Slack	
 (ps)	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

20	
 60	
 100	
 140	
 180	
 220	
 260	
 300	
 340	
 380	

#E
nd

po
in
ts
	

Slack	
 (ps)	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

20	
 60	
 100	
 140	
 180	
 220	
 260	
 300	
 340	
 380	

#E
nd

po
in
ts
	

Slack	
 (ps)	

(a) Initial design (b) After SEOpt

(c) After SkewOpt

Safety margin

Figure 3.30: Slack distribution of endpoints in (a) original design; (b) design with only
selective-endpoint optimization; and (c) design with combined selective-endpoint and useful

skew optimization. Red dotted lines indicate required safety margin. Design: FPU.
Technology: 28nm FDSOI.

In this section, we define a resilience cost reduction problem and describe our opti-

mization flow for low-cost resilient design implementation. Our flow uses two optimization

techniques – selective-endpoint optimization (SEOpt) and clock skew optimization (SkewOpt)

– to minimize resilience overheads of energy, area and throughput degradation. Figure 3.30 il-

lustrates the basic idea of our optimization approach. In the initial resilient design (a), a large

number of endpoints have timing violations at the target frequency (with respect to the safety

margin), and error-tolerant registers or error-masking circuits are used for those endpoints. In

our selective-endpoint optimization (b), we tightly optimize a set of selected endpoints to re-

duce the resilience overheads. During clock skew optimization (c), we increase timing slacks of

endpoints having timing violations by optimizing the clock-arrival time at individual endpoints,

113

further reducing the resilience overheads. In our optimization flow, we iteratively perform SEOpt

and SkewOpt to minimize the cost of resilient design. We will show in Section 3.3.3 that our

proposed optimization achieves significant improvement in terms of area and energy as com-

pared to previous works – (i) conventional resilient design implementation, and/or (ii) useful

skew optimization on resilient designs.

Resilience Cost Reduction Problem

We solve the following resilience cost reduction problem. Given an RTL design along

with (i) throughput requirements, (ii) power and area overheads as well as safety margin for each

type of error-tolerant register, and (iii) number of cycles needed to recover from an error: im-

plement the design to attain minimum energy, comprehending the energy penalties of additional

circuits and the throughput degradation due to instruction rollback or replay.

We calculate design energy based on total power and throughput information, i.e.,

Energy =
Power

Throughput
(3.24)

We further estimate the throughput based on error rate information as

Throughput =
1− ErrorRate

T
+

ErrorRate
θ × T

(3.25)

where T is the clock period, and θ is the number of cycles needed to recover from an error. For

an accurate design, the throughput is 1/T .

We further estimate the error rate based on toggle information of flip-flops (including

toggles of both negative-slack and positive-slack fanin paths) as

ErrorRate = α×
∑

(hff ×
P

hp negP
hp all

)∑
hff

(3.26)

where hff is the toggle rate of a flip-flop, hp neg and hp all are respectively the toggle rates of

negative-slack fanin paths and all fanin paths to the flip-flop, and α is a parameter to compensate

pessimism due to (i) the fact that multiple errors can occur in one cycle and (ii) the existence of

false paths. We empirically use α = 0.35 in our experiments.

Selective-Endpoint Optimization

We now describe selective-endpoint optimization (SEOpt) for reduction of resilience

cost (primarily area, power and throughput degradation). SEOpt trades off between the costs

of resilience and of data path optimization. We note that ours is the first work to consider such

114

tradeoff in resilient design optimization. As illustrated in Figure 3.31(a), increasing timing mar-

gin at an endpoint allows replacement of the error-tolerant register with a conventional one and

removal of replica circuits. However, these margins incur area and power costs in combina-

tional logic cones. Figure 3.31(b) shows the example of the OpenSPARC T1 FPU: as we reduce

the number of Razor flip-flops from 300 to zero, resilience cost decreases while power of the

non-resilient part increases. This results in an observed unimodal behavior of the design energy

change. In this work, we seek the subset of endpoints for margin insertion that, when optimized

(replaced with conventional registers) in this way, leads to minimum design energy. Two key

questions are (i) ‘which endpoints should be optimized?’, and (ii) ‘how many endpoints should

be optimized?’.

0

1

2

3

4

8

9

10

11

12

En
er

gy
 (m

J)

#Razor FFs

Total energy
Energy of non-resilient part
Resilience cost

300 100 50 0

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

fanin cone
D Q

error

D Q

error

D Q

error

Razor FF

error

normal FF
Q

QSET

CLR

D

endpoint Razor FF

optimize fanin cone w/
tighter constraint

normal FF

area (power)
of fanin cone

area (power)
w/ Razor
overhead

(a) (b)

Figure 3.31: (a) Illustration of the tradeoff between cost of resilience and cost of data path
optimization. (b) With reduced number of Razor flip-flops, resilience cost decreases but power

of data paths increases. Design: FPU (OpenSPARC T1). Technology: 28nm FDSOI.

For Question (i), area and power of combinational cells in the fanin cone of an endpoint

will increase when we add slack margin for the endpoint. Further, each endpoint will exhibit a

different cost versus margin relationship. Therefore, to reduce the optimization cost, we should

preferentially optimize endpoints which are less sensitive to slack margin insertion. In SEOpt,

we evaluate sensitivity functions for endpoints to estimate the potential optimization cost and

guide the selection of endpoints for optimization. That is, a given sensitivity function of an end-

point reflects the available performance versus power and/or area tradeoff of the corresponding

fanin cone. We observe that the optimization cost increases significantly for an endpoint which

(i) is timing-critical, (ii) has a large number of timing-critical fanin cells (i.e., negative-slack

cells in the fanin cone of the endpoint), and (iii) has a fanin cone with large power (e.g., due to

high toggle rate). We therefore use slack at endpoint slack(p), number of timing-critical fanin

cells numcri(p), and power of timing-critical fanin cells power(c) to evaluate the sensitivity

of each endpoint. We study sensitivity functions for a given timing endpoint p with different

115

combinations of these parameters, and the following five empirically show good results:

SF1(p) = |slack(p)| (3.27)

where we consider timing critically at the endpoint;

SF2(p) = |slack(p)| × numcri(p) (3.28)

where we consider slack at the endpoint and the number of negative-slack cells in the fanin cone;

SF3(p) = |slack(p)| × numcri(p)
numtotal(p)

(3.29)

where we consider slack at the endpoint and portion of negative-slack cells over all cells in the

fanin cone;

SF4(p) = |slack(p)| ×
∑

c∈fanin(p)

power(c) (3.30)

where we consider slack at the endpoint and power of timing-critical fanin cells; and

SF5(p) =
∑

c∈fanin(p)

(|slack(c)| × power(c)) (3.31)

where we consider the products of slack and power of timing-critical fanin cells.

To study the performance of each sensitivity function, we sort the endpoints in increasing

order of their estimated sensitivities, based on the given sensitivity function. We then optimize

the top η% endpoints of the sorted list, where we increase η from 0 to 100 with a step size of 5.

Figure 3.32 shows power and area resulting from selective-endpoint optimizations based on the

five sensitivity functions on FPU in a foundry 28nm FDSOI technology. In this example, the

safety margin is 10% of the clock period.41 In all experiments, we assume a switching activity of

0.2 at primary inputs and propagate activities using a commercial P&R tool. We then dump out

a switching activity interchange format (SAIF) file and use it for power analysis and error rate

estimation. Note that our optimization framework can be extended to vector-based scenarios,

where we generate SAIF file from the value change dump (VCD) file derived from gate-level

simulation. We observe in Figure 3.32 that for a given number of endpoints to optimize, SEOpt

based on SF2 and SF5 incurs smaller power and area penalties. We use SF5 in the experiments

reported in Section 3.3.3.42

41In [40], safety margins of 10%, 20% and 30% of clock period are studied.
42Although the best sensitivity function might vary in a different technology/library or with a different implemen-

tation tool, one can apply the same evaluation method given any specific design enablement, i.e., to pick the most
successful sensitivity function from among various options based on the selected parameters.

116

For Question (ii), optimizing more endpoints reduces the number of error-tolerant regis-

ters required. However, the cost of this optimization (i.e., area and power penalty on data paths)

also increases. We iteratively increase the number of endpoints to be optimized and select the

solution with minimum cost (e.g., a function of area and/or power).

Figure 3.32: Cell area and total power resulting from selective-endpoint optimization with
different sensitivity functions. Design: FPU (OpenSPARC T1). Technology: 28nm FDSOI.

Clock Skew Optimization

To further reduce the number of error-tolerant registers and minimize timing errors, we

apply clock skew optimization (SkewOpt), which maximizes slacks at timing-violated endpoints.

In SkewOpt, we formulate the clock skew optimization problem as a maximum mean weight

cycle problem [4]. This is because the maximum achievable timing slack of a given path is

determined by the maximum average slack of a cycle (i.e., a loop formed by timing paths)

which contains that path. We use the parametric shortest path algorithm [209] to determine

the maximum mean weight cycle. The algorithm as we have implemented it is described in

Algorithm 12. We first construct a graph G where each endpoint corresponds to a vertex and

each timing path corresponds to two edges (i.e., one for setup and one for hold) (Line 1). The

weights of edges indicate setup/hold slacks of timing paths in the corresponding FF-to-FF (flop-

to-flop) logic cones.

We optimize setup timing slacks of endpoints with error-tolerant registers (with respect

to hold constraints and setup constraints on other paths). We classify edges in the graph into two

categories – (i) parameterized edges and (ii) non-parameterized edges – where timing corre-

sponding to parameterized edges will be optimized, while non-parameterized edges will serve as

constraints during the optimization. We define parameterized edges based on setup constraints

on paths having timing violations with respect to the safety margin, and non-parameterized edges

based on hold/setup constraints on the remaining paths. We formulate the constraints in SkewOpt

as

117

lq + (T − dq − dmax
p,q − tsetup

q − tmargin
p,q)︸ ︷︷ ︸

sp,q

−λ ≥ lp (q ∈ R)
(3.32)

lq + (T − dq − dmax
p,q − tsetup

q − tmargin
p,q)︸ ︷︷ ︸

sp,q

≥ lp (q 6∈ R)
(3.33)

lp + (dp − dmin
p,q − thold

q − dq)︸ ︷︷ ︸
sp,q

≥ lq (∀q)
(3.34)

where T is the clock period; lp is the clock arrival time of endpoint p; dp is the clock-to-Q delay

of p; dmax
p,q and dmin

p,q are, respectively, the maximum and minimum path delay from p to q; tsetup
q

and thold
q are the setup and hold times of q; and tmargin

p,q is the required safety margin between

p and q. R is the set of endpoints which use error-tolerant registers, and λ is the parameter

which will indicate the slack change. Constraint (3.32) corresponds to a parameterized edge

in the constructed graph with an edge weight of (sp,q − λ). Constraints (3.33) and (3.34) are

respectively induced by setup and hold constraints on a given non-parameterized edge in the

constructed graph with an edge weight of sp,q.
In the graph G(V , E), we always maintain a tree (V , ET) to store edges corresponding

to timing-critical paths. We initialize the tree by inserting a dummy vertex (i.e., root r) and

dummy edges connecting r and other vertices (Lines 3-4). In Line 5, p w(p) is the total weight

along the shortest path (i.e., path with the minimum total weight) from r to p in G. Then, we

iteratively add edges corresponding to the most timing-critical paths to the tree (Lines 7-15)

while removing any dummy edges that have the same head vertex as an added edge (Line 17).

When adding an edge to the tree results in a cycle43, we coalesce the cycle (including vertices

and edges on the cycle) into one vertex (Lines 18-24). The edges on the cycle are added to the

solution graph and the optimized slacks are stored. To each parameterized edge, a weight is

assigned equal to the summation of weights (i.e., slacks) on the cycle divided by the number of

parameterized edges on the cycle. We assign zero slack to the non-parameterized edges on the

cycle. That is, timing paths with conventional registers as endpoints will have zero slack with

respect to the safety margin if they are in a maximum mean weight cycle that contains critical

paths with error-tolerant registers as endpoints. Note that assigning new weights indicates a

change of clock arrival times. Therefore, we update the weights of edges incident to vertices on

the cycle. We then optimize slacks on the updated graph. We iteratively determine and optimize

the most critical maximum mean weight cycle until there is only one edge in the graph (i.e., no
43Since we always add the edge corresponding to the most timing-critical path to the tree, the resulting cycle is the

most critical maximum mean weight (i.e., slack) cycle.

118

Algorithm 12 Clock skew optimization (SkewOpt)

Procedure SkewOpt(N)
1: G(V, E)← construct graph corresponding to N // N is the input netlist
2: Initialize solution graph G′(V, ∅)
3: V ← {r} ∪ V ; E ← {(r, p)} ∪ E, ∀p 6= r; w(r, p)← 0, ∀p 6= r
4: ET ← {(r, p)}, ∀p 6= r
5: Update p w(p), ∀p ∈ V // p w(p) =

∑
w(pi, pj), ∀(pi, pj) ∈ shortest path (SP) from r to p

6: while |E| > 1 do
7: λmin ← +∞
8: for all (p, q) ∈ E for which (p, q) 6∈ ET do
9: λp,q ← Solve p w(p) + w(r, q) = p w(q)

10: if λp,q < λmin then
11: λmin ← λp,q

12: emin ← (p, q)
13: end if
14: end for
15: ET ← ET ∪ {(p, q)}
16: λ← λmin

17: Remove all edges from ET that have the same head vertex as emin

18: if there is a cycle in ET then
19: slack(p, q)← λmin, ∀(p, q) ∈ cycle
20: Add all edges on cycle to G′

21: E ← E \ {(p, q) | (p, q) ∈ cycle}
22: Contract all vertices on cycle into pnew

23: Update E and ET

24: end if
25: end while
26: Traverse G′ to calculate lq based on slack(p, q) and lp
27: Nsol ← apply lp, ∀p to N
28: return Nsol

more cycles can be found). Last, we traverse the solution graph and calculate the clock arrival

times based on the optimized path slacks (Line 26).

To further enable error-rate awareness and reduce the cost of throughput degradation,

we extract toggle rate information of each timing path and replace Constraint (3.32) by

lq +
sp,q

1 + β × h(p, q)
− λ ≥ lp (q ∈ R) (3.35)

where h(p, q) indicates the toggle rate of the maximum-delay path between endpoints p and q,

and β is a weighting factor (we use β = 2 in our experiments).

Proposed Optimization Flow

As mentioned in Section 3.3.2, SEOpt reduces the cost of resilience via optimizations

on data paths. However, such optimization incurs power and area overheads. By contrast, Ske-

119

wOpt migrates timing slacks from timing non-critical paths to timing-critical paths, which does

not incur power and area penalty. But, SkewOpt cannot generate additional slacks, hence its

performance highly depends on the topology of the sequential graph. For example, SkewOpt

might not perform well when there are many cycles consisting of timing-critical paths. In this

work, we combine the SEOpt and SkewOpt methods and execute them iteratively. The basic

idea is that we use SEOpt to create timing slacks on data paths with low power penalty. We then

apply SkewOpt for an improved distribution of timing slacks. In this way, we reduce the number

of error-tolerant registers and minimize error rates of a resilient design without incurring large

power and area penalties.

Algorithm 13 Combined optimization (CombOpt)

Procedure CombOpt(N)
1: Run STA to initialize slack values for the netlist N
2: P ← ∅
3: for all timing endpoints p in the netlist N do
4: if slack(p) < safety margin then
5: Compute sensitivity value for endpoint p
6: P ← P ∪ {p}
7: end if
8: end for
9: m← |P |/k // m indicates the number of iterations

10: Cmin ←∞
11: for i = 0 ; i < m ; i← i + 1 do
12: Pick the top k endpoints Pi with minimum sensitivity in P
13: Ni ← TimingOpt(Ni−1, Pi)
14: Ni ← SkewOpt(Ni−1)
15: Run ISTA(Ni, Pi)
16: for all endpoint p in P do
17: if slack(p) ≥ 0 then
18: Replace error-tolerant register by a conventional one at endpoint p
19: end if
20: end for
21: Ci ← COST (Ni)
22: if Ci < Cmin then
23: Cmin ← Ci

24: Nmin ← Ni

25: end if
26: P ← P − Pi

27: Update sensitivity values for all endpoints in P
28: end for
29: return Nmin

Algorithm 13 describes our combined optimization, which we call CombOpt, to reduce

the error-resilience overhead. The procedure takes as input a netlist N which has error-tolerant

registers at endpoints with timing violations. The procedure runs static timing analysis (STA)

120

and computes a sensitivity value for each endpoint p (Lines 1-8). The procedure finds all fanin

cells by tracing backward from the endpoint register using depth-first search. During the fanin-

cone tracing, we count only the timing-critical fanin cells since non-critical fanin cells have

little effect on the cost of endpoint optimization. The procedure optimizes the top k endpoints

according to the sensitivity in each iteration (Lines 12-13). TimingOpt(Ni−1, Pi) (Line 13)

represents a timing optimization on the set of endpoints Pi in netlist Ni−1. We perform SkewOpt

after optimization on the fanin cones of the top k endpoints (Line 14). ISTA(Ni, Pi) in Line

15 indicates incremental static timing analysis (STA) after optimization. If the timing slack

of endpoint p becomes positive, the procedure replaces the error-tolerant register of p with a

conventional one (Line 18). Then, the cost of the netlist (COST (Ni)) is updated. After the

iterations of endpoint optimization, the procedure finds a netlist (Nmin) which has a heuristically

minimized cost in terms of area and/or power consumption.

Construction of Error-Detection Network

To detect timing errors, resilient designs typically connect all error-detection signals of

error-tolerant registers via the error-detection network (e.g., an “OR tree”). There are two basic

types of error-detection network. In centralized pipeline recovery, one error-detection network

connects to all error-tolerant registers. In distributed pipeline recovery, a separate error-detection

network can be applied to each pipeline stage [49]. For a design with large number of pipeline

stages, centralized pipeline recovery can incur large cost in terms of wirelength, area and power,

as compared to the distributed strategy. To be conservative about the resilience cost, in this

work we assume a centralized pipeline recovery scheme. We also note that in a resilient design

with distributed pipeline recovery our OR tree insertion algorithm can be applied to each pipeline

stage, since all registers in the same pipeline stage are connected together with an error-detection

network.

For a design in which the usage of error-tolerant registers is defined before synthesis, the

construction of the error-detection network can be accomplished by commercial SP&R tools.

However, in our optimization flow, the usage of error-tolerant registers is defined during the

placement stage, where an algorithm is required to guide the construction of error-detection net-

work. Further, the size of the error-detection network increases with the number of error-tolerant

registers in a resilient design, and this can increase cost. Our initial studies show that in a pure-

resilient design, when we construct the error-detection network based on a random clustering

method, the wirelengths of the error-detection nets can contribute up to 9% of the design’s to-

121

Algorithm 14 OR tree insertion

Procedure ORTreeInsertion(N)
1: Q← registers with timing violations w.r.t. required margin in N
2: Nsol ← N
3: while |Q| > 1 do
4: Compute distance matrix D where Di,j = dist(ci, cj) (c{i,j} ∈ Q)
5: Sol← apply Hungarian method on D
6: for all cycle in Sol do
7: Qlocal ← cells on the cycle
8: while |Qlocal| > 1 do
9: (c1, c2)← find the nearest pair of cells in Qlocal

10: cnew.x = c1.x+c2.x
2

11: cnew.y = c1.y+c2.y
2

12: Insert OR cell cnew to Nsol

13: Connect outputs of c1 and c2 to inputs of cnew

14: Qlocal ← Qlocal ∪ {cnew} \ {c1, c2}
15: end while
16: Q← Q ∪ {cnew}
17: end for
18: end while
19: return Nsol

Figure 3.33: Implementation flow. OR tree insertion flow is indicated by the red dotted box.

tal wirelength. To minimize the overhead, we develop a matching-based clustering algorithm

and use a commercial router to construct the OR tree. Figure 3.33 depicts our implementation

flow (red dotted box). Based on the locations of error-tolerant flip-flops extracted from an initial

placement, we construct the OR tree bottom-up. We heuristically cluster error-tolerant flip-flops

and/or OR gates by iteratively applying (i) the Hungarian [222] method to achieve an assignment

(in which cycles are considered to be clusters of flip-flops and/or OR gates) and (ii) a nearest-

neighbor method to build an OR tree within a given cluster. Our OR tree insertion (i.e., clustering

of error-tolerant flip-flops and insertion of OR gates) algorithm is described in Algorithm 14.

122

In the construction of the error-detection network, we start with a synthesized netlist

which has only conventional flip-flops. Based on the timing information extracted from the

initial placement, all flip-flops having negative slacks with respect to safety margin are set to be

error-tolerant flip-flops (Line 1). We then calculate the Manhattan distances between each pair of

error-tolerant flip-flops and construct a distance matrix accordingly. In the distance matrix, each

row and each column corresponds to an error-tolerant flip-flop, such that the matrix entry Di,j is

the distance dist(ci, cj) between the ith and jth flip-flops (Line 4). To avoid a trivial assignment,

we define dist(ci, ci) = +∞ for all i. Since both rows and columns correspond to the same

set of error-tolerant flip-flops, the distance matrix D is a symmetric square matrix. We apply

the Hungarian algorithm on the distance matrix to obtain a matching solution with minimum

total distance (Line 5). The solution matrix (Sol) is a permutation matrix, i.e., there is exactly

one ‘1’ in each row and each column; this permutation can be decomposed into cycles that we

consider as clusters.44 Within each cycle, i.e., cluster, we use a nearest neighbor-based heuristic

to construct an OR tree (Lines 8-14). Then, in the next iteration, we form a new distance matrix

where each row and column correspond to one cluster from the previous iteration. The location

of each cluster is defined by its center coordinates (i.e., the x and y coordinates of the cluster are

respectively the averages of the x and y coordinates of all cells in the cluster). We continue the

construction of the error-detection network until all error-tolerant flip-flops are connected.

Figure 3.34: Our proposed OR tree insertion flow achieves an average of 29% wirelength
reduction for the error-detection network, as compared to a reference flow. RSMT cost is a

(loose) lower bound.

44For example, if the solution Sol contains the matching edges (ci0 , ci1), (ci1 , ci2), ..., (cin−1 , cin) and
(cin , ci0), this is a cycle in the permutation defined by Sol. We heuristically consider each cycle as a cluster of
the ith0 , ith1 , ..., ithn cells.

123

Figure 3.34 compares the wirelength of error-detection nets between our proposed OR

tree insertion flow and a reference flow which performs ECO cell and net insertions to construct

the error-detection network. The reference flow also uses the nearest-neighbor clustering method

for each level of the OR tree. Both the proposed and the reference optimization methods con-

struct an OR tree with only 2-input OR gates. A lower bound for the wirelength is given by the

rectilinear Steiner minimum tree (RSMT) [214] over all error-tolerant flip-flops. However, this

lower bound is far from achievable due to congestion induced by other nets and power/ground

distribution. We compare wirelength values for four pure-resilient designs. The figure shows that

our proposed flow achieves an average of 29% wirelength reduction compared to the reference

flow.

Note that, when SEOpt replaces an error-tolerant flip-flop with a conventional flip-flop,

we need to modify the OR tree as shown in Figure 3.35. The figure shows two cases of the flip-

flop replacement. When the flip-flop (u2) is replaced with a conventional one, we remove the

connected OR gate (u1) and modify the OR tree. The steps of the modification are as follows.

Figure 3.35: Replacement of an error-tolerant flip-flop with a conventional flip-flop for u2.
Note that for readability, nets connected to D, Q and CP pins of flip-flops are not shown.

1. Detach nets (n1, n2 and n3) from the OR gate output (u1/Z) and flip-flop error detection

pins (u2/ED and u3/ED);

2. Delete nets (n2 and n3) which are connected to the OR gate;

3. Delete the OR gate instance (u1);

124

4. Attach net n1 to another flip-flop (u3/ED) or OR gate (u3/Z);

5. Replace the error-tolerant flip-flop (u2) with a conventional flip-flop;

6. Refine placement and update timing.

Typical-Corner Optimization

To accurately assess the benefits and overheads of resilience approaches, it is important

to consider impacts of signoff corners and process variation during implementation. For paths

with conventional registers as endpoints, we ensure that there is no timing violation at the slow

corner. However, since error-tolerant registers can detect and correct timing errors, we can allow

some amount of negative timing slack45 for paths with error-tolerant registers as endpoints, and

we should optimize these paths at the typical corner. Our process-variation-aware implemen-

tation is shown in Figure 3.36. In the figure, the error-detection window indicates the timing

interval, or safety margin, during which a error-tolerant register can detect timing errors. The

right hand side of the figure indicates larger timing slacks at endpoints. When an endpoint has

no timing violation at the slow corner (SS, 125◦C in our experiments), we use the conventional

flip-flop for that endpoint. Introduction of a guardband can enhance design robustness and en-

able adaptive voltage scaling. Error-tolerant registers can be used for other endpoints. Note that

we evaluate error rate at the typical corner (TT, 25◦C in our experiments). Therefore, when an

endpoint has negative slack with respect to the typical corner, this leads to throughput degrada-

tion.

Larger endpoint slacks
Zero slack at
slow corner

Guardband (optional)

Conventional flip‐flops

Zero slack at
typical corner

Max. allowed
negative slack

Error‐detection window

Error‐tolerant flip‐flops

Slack at
typical corner

Slack at
slow corner

0‐50‐100 50 100 150 200 250

‐150‐200‐250 ‐100 ‐50 0 50 100

Conventional flip‐flops

Error‐detection window

Max. allowed
negative slack

Zero slack at
typical corner

Guardband (optional)

Zero slack at
worst corner

Figure 3.36: Illustration of how we consider process variation in our implementations. The
slack values shown here are not representative of actual values in 28nm FDSOI.

45The maximum allowable negative slack is determined by the design of the error-tolerant register.

125

We implement resilient designs at the typical corner, but with CombOpt, there will also

be conventional flip-flops in the design. To ensure timing correctness of conventional flip-flops

at the slow corner, we estimate slow-corner path delays and apply maximum-delay constraints

correspondingly. Specifically, we perform timing analysis at both slow and typical corners,

then calculate maximum-delay constraints based on the ratio between delay values at typical

and slow corners, as shown in Equation (3.36). We perform the timing analysis and update

the maximum-delay constraints before each iteration of the CombOpt and at the pre-placement,

pre-CTS, pre-routing and post-routing (i.e., before signoff) stages.

max delay = (clock period− guardband)× delay TT

delay SS
(3.36)

Optimization with TIMBER Flip-Flops

We now discuss optimization steps that are specific to TIMBER-based designs [40].

As described in Section 3.3.2, our optimization starts with a netlist in which all endpoints with

timing violations use error-tolerant registers. To use TIMBER flip-flops, there are two additional

constraints for selection of endpoints [32][63]. First, since TIMBER flip-flops borrow timing

from their fanout timing paths to mask timing errors, we must avoid a loop of TIMBER flip-flops

within which continuous time borrowing can cause timing failure. Second, additional timing

slacks are required at endpoints with conventional flip-flops to compensate the accumulated

time borrowings of TIMBER flip-flops in previous stages. Thus, a larger number of chained

TIMBER flip-flops will lead to tighter timing constraints on the following timing paths, and

corresponding increased power and area cost. Moreover, a larger number of chained TIMBER

flip-flops requires more complex clock delay circuits, which also incurs area and power cost. In

our study, we limit the chained TIMBER flip-flops to be less than three stages (i.e., assuming

two error-detection intervals).

To address these additional constraints, we select endpoints based on sensitivity func-

tions which indicate power changes due to the usage of TIMBER flip-flops. A higher sensitivity

of an endpoint indicates that greater power reduction is expected from timing margin recovery

with TIMBER. Since the maximum stage number of chained TIMBER flip-flops is two, we for-

mulate the optimization as two maximum-weight independent set (MWIS) problems in sequence

such that no TIMBER flip-flops are adjacent after the first-stage optimization, and no chained

TIMBER flip-flops with more than two stages after the second-stage optimization.

126

We formulate the MWIS problem as a Integer Linear Program (ILP).

Maximize
∑

pi∈P SF (pi)×Bi

Subject to Bi + Bj ≤ 1, (pi and pj are adjacent in G)

Bi = 0 or 1

(3.37)

in which SF (pi) is the sensitivity function of endpoint pi, P is the set of endpoints, and Bi

is a binary variable indicating whether pi uses a TIMBER flip-flop (i.e., Bi = 1) or not (i.e.,

Bi = 0). The constraints specify that no TIMBER flip-flops are adjacent in graph G. Note

that in the first-stage optimization, G is the sequential graph extracted from the netlist. In the

second-stage optimization, we update graph G such that we remove the selected vertices from

the first-stage optimization. Further, for each removed vertex, we connect each of its incoming

vertices to its outgoing vertices.

To describe the calculation of sensitivity functions, we first define function f(c, t) as

f(c, t) =


|slack(c)− t| × power(c), if slack(c) < t

0, otherwise
(3.38)

in which c is a cell in the netlist, slack(c) and power(c) are respectively the worst timing slack

and power of c, and t is a constant timing interval.

We assume that all endpoints in the initial netlist use conventional flip-flops. By replac-

ing an endpoint with a TIMBER flip-flop, we can recover timing margins in the fanin timing

paths by one error-detection window. But this also leads to additional margin insertion which is

equal to one error-detection window in the fanout paths (as shown in Figure 3.37(a)). To estimate

the power change from such timing margin migration, we define the sensitivity of endpoint p as

SFTBF a(p) =
∑

c∈cone(c,p)

f(c, tED)−
∑

c∈cone(p,c)

f(c, tED) (3.39)

in which cone(c, p) (respectively, cone(p, c)) indicates the combinational logic cone between

conventional flip-flops and p (respectively, p and conventional flip-flops), and tED indicates the

duration of the error-detection window.

In the second optimization stage, some of the endpoints have been selected to use TIM-

BER flip-flops. Therefore, to calculate the sensitivity function values for the remaining end-

points, there are four scenarios as shown in Figure 3.37. Endpoints in (a) are not promising,

otherwise they would have been selected in the first optimization stage. Selection of endpoints

in (b) will violate the constraint that there are no chains of more than two TIMBER flip-flops.

127

Figure 3.37: Scenarios of sensitivity-function calculation for selection of TIMBER flip-flops.

Based on analysis similar to that shown above, we calculate the sensitivity functions correspond-

ing to scenarios (c) and (d) as follows.

SFTBF c(p) =
∑

c∈cone(t,p)

f(c, 2× tED) +
∑

c∈cone(c,p)

f(c, tED)−
∑

c∈cone(p,c)

f(c, 2× tED) (3.40)

SFTBF d(p) =
∑

c∈cone(c,p)

f(c, tED)−
∑

c∈cone(p,c)

f(c, tED)−
∑

c∈cone(t,−)

f(c, tED) (3.41)

Here, cone(t, p) indicates the combinational logic cone between TIMBER flip-flops

and p, and cone(t,−) indicates the fanout cone of TIMBER flip-flops which are endpoints of

the fanout timing paths of p.

3.3.3 Experimental Results

Experimental Setup

We implement experiments with four sub-modules (Table 3.9) from the OpenSPARC T1

processor [231]. The modules are implemented in a foundry 28nm FDSOI technology; synthesis

is performed with Synopsys Design Compiler vH-2013.03-SP3 [237], placement and routing are

performed with Cadence Encounter Digital Implementation System v13.1 [217]. We use three

error-tolerant flip-flops in our experiments, with overheads of power, area (estimated based on

extra transistor count), and throughput as given in Table 3.10.

In our experiments, (i) we model power penalty by multiplying the total power of the

error-tolerant flip-flops by the corresponding power overhead; (ii) we model area overhead by

scaling the size of flip-flops in LEF; and (iii) we model the safety margin and additional hold

margin of error-tolerant flip-flops by adding constant shifts to setup and hold constraint values

in the Liberty model. To validate our estimation of error rate (Equation (3.26)) and determine α,

128

we perform gate-level simulation using Cadence NC-Verilog v8.2 [216]. Figure 3.38 compares

the actual error rates and estimated error rates at different supply voltages based on input vectors

with random values. Our estimated error rates roughly match the actual values. To find timing

slack and power values at specific voltages, we prepare Synopsys Liberty (.lib) files containing

90 commonly used cells (40 combinational and five sequential, with dual-Vth flavors) for each

value of supply voltage from 1.20V to 0.50V in 20mV increments, using Synopsys SiliconSmart

v2013.06-SP1 [236].

Figure 3.38: Actual error rates vs. estimated error rates at different voltages.

Table 3.9: Testcases from OpenSPARC T1.

Module Description #Instances Area (µm2)

FPU floating point adder 12986 34633

EXU integer execution 17614 58721

MUL integer multiplier 13162 40693

SPU stream processing 8066 28150

Table 3.10: Penalties of error-tolerant flip-flops.

Design Razor Razor-Lite TIMBER

Power penalty 30% [50] ∼0% [122] 100% [40]

Area penalty 182% [122] 33% [122] 255% [35]

#Recovery cycles 5 [190] 11 [122] 0 [40]

129

Methodology Comparison

In our first experiment, we compare design energy and area resulting from CombOpt to

(i) pure-margin designs46 and (ii) a brute-force methodology, i.e., a typical resilient design im-

plementation, where resilient endpoints are (greedily) instantiated at timing-critical endpoints.47

We use Razor flip-flops for error resilience in this experiment. We compare our methodology

at three different slow corners, where corresponding SS corners are at 1σ, 2σ and 3σ. The

clock period for all implementations is 0.9ns. We use the minimum voltage that satisfies timing

constraints at the slow corner for pure-margin implementations; for brute-force and CombOpt

implementations, we use a discretized exhaustive search to determine the signoff voltages (i.e.,

we search for the signoff voltage that achieves minimum energy within -80mV of the signoff

voltage of pure-margin, with a step size of 20mV). The runtimes for FPU, EXU, MUL and SPU

are respectively 30 min, 20 min, 60 min and 7 min per iteration of CombOpt on a 2.5GHz

Intel Xeon server with four threads. We perform 10 iterations of optimization on each design in

the experiments.

Figure 3.39 shows that the benefits of CombOpt increase with a larger process variation.

In the figure, small, medium and large margins respectively indicate 1σ, 2σ and 3σ for SS cor-

ner. We observe that CombOpt achieves up to 10% (8% on average) energy reduction compared

to the brute-force method, and up to 21% (12% on average) energy reduction compared to the

conventional pure-margin method. With larger process variation, brute-force has larger energy

cost due to throughput degradation (e.g., FPU and EXU), while CombOpt is able to jointly min-

imize the number of error-tolerant flip-flops and error rate, thus achieving greater improvement

over brute-force.

The additional circuits for error detection typically cause resilient designs to have larger

area than conventional designs. We observe that the brute-force method leads to an average of

45% area overhead. Using CombOpt, we reduce the area overhead to 23%. In the regime of

“dark silicon” [62], energy cost is “more expensive” than area cost, and our optimization thus

focuses mainly on energy reduction.

Figure 3.39 also shows the comparison of error rates for designs resulting from Com-

bOpt and brute-force. We observe that CombOpt achieves smaller error rates on most of the

testcases. However, our optimization does not explicitly minimize the error rate of a design, but
46We define a pure-margin design as one wherein only timing margins are inserted to ensure correct operation

under dynamic variation.
47We implement designs without considering the safety margin, then replace with error-tolerant registers any end-

points having timing violations with respect to the safety margin.

130

600

5600

10600

15600

20600

25600

30600

PM BF CO PM BF CO PM BF CO

A
re

a
(u

m
^2

)

6

7

8

9

10

11

PM BF CO PM BF CO PM BF CO

En
er

gy
 (m

J)

Energy penalty of throughput degradation
Energy penalty of additional circuits
Energy w/o resilience

12000

16000

20000

24000

28000

32000

36000

PM BF CO PM BF CO PM BF CO

A
re

a
(u

m
^2

)

27

29

31

33

35

37

PM BF CO PM BF CO PM BF CO

En
er

gy
 (m

J)

16000

18000

20000

22000

24000

26000

28000

PM BF CO PM BF CO PM BF CO

A
re

a
(u

m
^2

)

22

24

26

28

30

32

34

PM BF CO PM BF CO PM BF CO

En
er

gy
 (m

J)

6000

7500

9000

10500

12000

13500

15000

PM BF CO PM BF CO PM BF CO

A
re

a
(u

m
^2

)

4

5

6

7

8

PM BF CO PM BF CO PM BF CO

En
er

gy
 (m

J)

EXU EXU

MUL MUL

SPU SPU

FPU

FPU

Large margin Medium margin Small margin

0%

5%

10%

15%

20%

25%

30%

PM BF CO PM BF CO PM BF CO

Er
ro

r r
at

e

FPU

0%

1%

2%

3%

4%

PM BF CO PM BF CO PM BF CO

Er
ro

r r
at

e

0%

1%

2%

3%

4%

5%

PM BF CO PM BF CO PM BF CO

Er
ro

r r
at

e

EXU

MUL

0%

1%

2%

3%

PM BF CO PM BF CO PM BF CO

Er
ro

r r
at

e

SPU

Figure 3.39: Energy and area results from different implementation methodologies –
pure-margin (PM), brute-force (BF), and CombOpt (CO).

rather the design energy considering the tradeoff between cost of resilience and margin on com-

binational paths. For example, although for MUL with small margin CombOpt leads to a larger

error rate than that resulting from brute-force, the power of combinational paths (i.e., indicated

by energy w/o resilience) is significantly reduced in CombOpt, which leads to smaller design

energy.

Impact of Clock Skew Optimization

As discussed in Section 3.3.2, SkewOpt improves slacks of all timing-violating paths

with respect to the safety margin to minimize the error rate. Moreover, the improved timing

slacks are further exploited to enable removal of error-tolerant registers and power reduction on

data paths. To assess the impact of clock skew optimization, we perform optimization without

SkewOpt and compare the outcomes with those of CombOpt. As shown in Table 3.11, Com-

131

bOpt achieves reduced design energy (in terms of both throughput penalty and power of circuit),

total cell area and number of error-tolerant flip-flops as compared to the optimization without

SkewOpt. Further, since SkewOpt comprehends hold constraints, performing optimization with

SkewOpt does not increase the number of hold buffers significantly. For the MUL testcase, ap-

plying SkewOpt even reduces the number of hold buffers due to the decreased number of error-

tolerant flip-flops. Table 3.11 further compares our optimization solution (CombOpt) to that of a

conventional resilient design implementation with application of SkewOpt at the post-placement

stage. We observe from the fourth and seventh columns of Table 3.11 that although SkewOpt

alone reduces the throughput penalty, ignoring the tradeoff between data path optimization and

cost of resilience (which is captured by SEOpt) leads to more error-tolerant flip-flops and signif-

icant area and power overheads. Specifically, for MUL, CombOpt achieves 5% and 13% more

reduction in energy and area, respectively, as compared to brute-force+SkewOpt.

Table 3.11: Impact of SkewOpt.

Design MUL SPU

Flow CombOpt w/o SkewOpt brute-force+SkewOpt CombOpt w/o SkewOpt brute-force+SkewOpt

Total energy (mJ) 26.19 27.07 27.54 6.12 6.18 6.28

Throughput penalty (mJ) 1.14 1.16 0.92 0.05 0.08 0.05

#Error-tolerant flip-flops 660 780 1003 225 269 465

Total cell area (µm2) 23200 24315 26352 11922 12324 13931

#Hold buffers 214 321 445 345 107 220

Impacts of Short Path Padding and Error-Detection Network

A common observation is that resilient designs require a large hold margin, which ne-

cessitates more buffers for short-path padding. We include this overhead by assuming that the

required hold margin for a resilient design is equal to its safety margin, i.e., 15% of the clock

period. Further, the error-detection network (i.e., OR tree) incurs additional energy and area

penalties. We evaluate short-path padding and error-detection network overheads by remov-

ing the additional hold margin and/or error-detection network in the implementations, and then

assessing energy and area differences.

Figure 3.40 shows the energy and area outcomes for MUL. All implementations are

optimized with CombOpt. For the without hold case, we ignore the additional hold margin

during the implementation; for the without OR tree case, we remove the error-detection network

at the post-routing stage and perform an incremental optimization; and for the without hold &

OR tree case, we ignore the additional hold margin during the implementation and remove the

132

error-detection network at the post-routing stage.

Since CombOpt significantly reduces the number of error-tolerant flip-flops (Razor in

this example) and the size of the error-detection network, the energy and area cost of short-path

padding and error-detection network is small. The short-path padding leads to 4% energy and

2% area cost; and the error-detection network leads to < 1% energy and 2% area cost. Another

reason for the small energy cost of the error-detection network is its low activity. Figure 3.41

shows an example CombOpt implementation result, in which the area overhead of hold buffers

and OR gates is only 2.7%.

Figure 3.40: Impacts of hold margin and error-detection network. Design: MUL (OpenSPARC
T1). Technology: 28nm FDSOI.

Figure 3.41: Layout of CombOpt result for the SPU testcase with 3σ corner. Razor flip-flops
are in blue; conventional flip-flops are in purple; OR gates are in red; and hold buffers are in

green.

133

Typical-Corner Optimization

Because resilient designs can detect and recover from timing errors, it is not necessary

to optimize them at the slow corner. Furthermore, power analysis (especially error rate estima-

tion) of resilient designs at the slow corner (which is the case in [108]) can be pessimistic. We

assess the pessimism of slow-corner optimization by performing error rate estimation and energy

analysis (of designs shown in Figure 3.39) at the slow corner.

As shown in Table 3.12, energy can be overestimated by up to 21% when we perform

an energy analysis at the slow corner for resilient designs. This is mainly caused by the overes-

timated error rates.

Table 3.12: Pessimism of slow-corner optimization.

Design FPU EXU MUL SPU

Typical-corner analysis (TT, 25◦C)

Total energy (mJ) 9.21 32.12 26.19 6.12

Throughput penalty (mJ) 0.63 0.29 0.54 0.05

Slow-corner analysis (SS w/ 3σ, 125◦C)

Total energy (mJ) 10.60 34.50 31.62 6.36

Throughput penalty (mJ) 1.46 1.77 5.36 0.14

Validation with Different Switching Activities

To validate our proposed optimization and study the impact of switching activity on

energy consumption, we analyze the energy of an implemented design (MUL) across a range

of switching activity assumptions. Figure 3.42 shows that CombOpt can achieve the minimum

energy when the activity factor is no lower than 5%. With a lower activity factor (e.g., 1%),

error rate decreases and the benefits of CombOpt over the brute-force method become smaller.

Compared to pure-margin, CombOpt achieves reduced energy of combinational cells through

SEOpt. However, with a low activity factor, clock energy dominates and thus the benefits of

CombOpt also decrease.

Study of Different Error-Tolerant Flip-Flops

We also study the cost of different error-tolerant flip-flops. We compare designs imple-

mented with Razor, Razor-Lite and TIMBER types of error-tolerant flip-flops. We implement

the designs with the brute-force methodology mentioned above, and CombOpt.

134

Figure 3.42: Energy consumption with different switching activity factors. Design: MUL
(OpenSPARC T1). Technology: 28nm FDSOI.

Table 3.13: Comparison among error-tolerant flip-flops.

Design Razor-Lite Razor TIMBER

Method brute-force

Total energy (mJ) 27.71 28.78 33.62

Energy w/o resilience (mJ) 27.16 26.87 29.74

Energy w/ additional circuits (mJ) 0.00 1.32 3.87

Energy w/ throughput penalty (mJ) 0.55 0.59 0.00

#Error-tolerant flip-flops 931 924 575

Total cell area (µm2) 21064 26814 26700

Method CombOpt

Total energy (mJ) 26.14 26.19 28.20

Energy w/o resilience (mJ) 25.55 24.51 27.43

Energy w/ additional circuits (mJ) 0.00 1.14 0.77

Energy w/ throughput penalty (mJ) 0.60 0.54 0.00

#Error-tolerant flip-flops 627 660 128

Total cell area (µm2) 19164 23200 20464

Table 3.13 shows results for MUL, where the slow corner is at SS with 3σ and all designs

are implemented using CombOpt. We observe that although Razor-Lite has negligible energy

and area overheads, it leads to 11% more energy penalties due to throughput degradation as

compared to Razor. The small number of TIMBER flip-flops is because of additional constraints

described in Section 3.3.2. Further, TIMBER flip-flops require additional timing margin on

fanout timing paths to compensate timing errors, which leads to larger energy of combinational

cells as compared to Razor and Razor-Lite. Note that we also consider the area and power

135

overheads of error relay logic48 between two stages of TIMBER flip-flops [63]. We group the

TIMBER flip-flops which share the same fanin TIMBER flip-flops and insert the error relay

logic for each group. We also observe that CombOpt significantly reduces the number of error-

tolerant flip-flops (by 33%, 29% and 77% for Razor-Lite, Razor and TIMBER49 , respectively).

Such reductions can be enabling to the energy- and area-feasibility of resilient designs.

Energy Reduction from Adaptive Voltage Scaling

In our last experiment, we study the energy reduction of resilient design in an adap-

tive voltage scaling context. We compare energy of designs implemented with the brute-force

method and our CombOpt at different supply voltages. Note that to allow voltage downscaling,

we build a margin of 25% of the clock period into the paths that have conventional flip-flops

as endpoints. In addition, for each testcase we implement a pure-margin design that satisfies

timing constraints at minimum voltage, as a reference. Figure 3.43 shows results for our four

testcases. The designs implemented with CombOpt achieve significant energy reduction with

voltage scaling. This is because our optimization comprehends the toggle information and trade-

off between power consumption on combinational cells and error-tolerant registers; this results

in less energy penalty from throughput degradation and additional circuits. Note that although

throughput degradation increases at lower supply voltages, the total power also reduces. This

leads to the observed decrease in energy cost of throughput degradation at lower supply volt-

ages for most cases. However, further downscaling of the supply voltage is limited by the paths

with conventional flip-flops as endpoints. We also observe that the benefits of resilience can

be design-dependent: a design with larger error rate (e.g., FPU) derives less benefit from re-

silience because of large recovery overheads. From our proposed optimization (CombOpt), we

achieve 8% and 17% energy reductions on average compared to the brute-force and conventional

(pure-margin) methods, respectively.

3.3.4 Conclusion

By allowing timing errors, resilient design techniques can reduce design effort and ob-

tain power and area benefits over conventional designs which always operate correctly. However,
48Based on the error-detection signal of a TIMBER flip-flop, an error relay logic determines the number of time

intervals to mask timing errors of the TIMBER flip-flop in the successive stage.
49We observe similar improvement (i.e., 7% energy reduction) on an industrial processor (with 13K instances and

1642 flip-flops) at 40nm technology as compared to the brute-force method. In the example, the number of TIMBER
flip-flops is reduced from 363 to 10, in which cells in the fanin cones of the selected 10 endpoints consumes 56% of
total power in the corresponding conventional design.

136

Figure 3.43: Energy consumption with voltage scaling, and minimum achievable energy for
each method.

throughput and circuit power and/or area overheads can diminish the benefits of resilient design.

In this work, we provide a new design flow for mixing of resilient and non-resilient

circuits within a given implementation, so as to minimize the overhead of error resilience. We

propose a selective-endpoint optimization, which reduces timing-critical endpoints with small

cost of timing optimization. We also propose a clock skew optimization, specifically targeted to

a resilient design methodology, which improves robustness to process, voltage and temperature

variations. In addition, we propose a matching-based algorithm to construct the error-detection

network with substantially reduced wirelength cost. Our implementations further account for the

impacts of signoff corners and process variation. Our proposed optimization techniques achieve

significant energy reductions – up to 21% and 10% – compared to conventional (pure-margin)

design and a brute-force resilience implementation, respectively. In an adaptive voltage scaling

context, our method shows further benefits of error resilience.

A number of research directions remain open. In particular, our ongoing work seeks to

(1) find an improved sensitivity metric to determine the minimum set of endpoints to optimize

for minimum power and area, and (2) build a unified framework for simultaneous data- and

clock-path optimization.

137

3.4 Acknowledgments

Chapter 3 contains reprints of Kristof Blutman, Hamed Fatemi, Andrew B. Kahng, Ajay

Kapoor, Jiajia Li, and José Pineda de Gyvez, “Floorplan and Placement Methodology for Im-

proved Energy Reduction in Stacked Power-Domain Design”, Proc. Asia and South Pacific De-

sign Automation Conference, 2017; Andrew B. Kahng, Jiajia Li and Lutong Wang, “Improved

Flop Tray-Based Design Implementation for Power Reduction”, Proc. IEEE/ACM International

Conference on Computer-Aided Design, 2016; Andrew B. Kahng, Seokhyeong Kang, Jiajia Li

and José Pineda de Gyvez, “An Improved Methodology for Resilient Design Implementation”,

ACM Transactions on Design Automation of Electronic Systems 20(4), 2015; and Andrew B.

Kahng, Seokhyeong Kang and Jiajia Li, “A New Methodology for Reduced Cost of Resilience”,

Proc. Great Lakes Symposium on Very Large Scale Integration, 2014. Chapter 3 also con-

tains the draft submitted to IEEE Transactions on Very Large Scale Integration Systems, Kristof

Blutman, Hamed Fatemi, Andrew B. Kahng, Ajay Kapoor, Jiajia Li and Jose Pineda de Gyvez,

“Logic Design Partitioning for Stacked Power Domains”, 2017. The dissertation author is the

primary author of the papers and the submitted draft.

I would like to thank my coauthors Kristof Blutman, Hamed Fatemi, José Pineda de

Gyvez, Andrew B. Kahng, Seokhyeong Kang, Ajay Kapoor and Lutong Wang, as well as the

research support from NXP Semiconductors.

Chapter 4

Mixed-Fabric Optimization

Circuits are typically designed with “mixed fabrics”, such as standard cells with differ-

ent Vth flavors and track heights, or tiers with different process corners in a 3DIC. In this chapter,

we propose the concept of “mixed-fabric optimization” for improved design quality. We present

three examples of mixed-fabric optimization. First, we propose a novel physical design opti-

mization flow to implement design blocks with mixed, non-integer multiple-height cells in a

fine-grained manner. Our optimization resolves the “chicken-and-egg” loop between floorplan

site definition and the optimized choices of cell heights after placement. With full comprehen-

sion of the constraints and costs of mixing cells of different heights (e.g., the “breaker cell”

area overheads of row alignment between sub-blocks of 8T and 12T cell rows), our optimization

achieves up to 30+ percent area and power reductions versus 12T-only implementation while

maintaining the same performance, and up to 10+ percent performance improvement along with

power and area reductions versus 8T-only implementation. Second, we propose NOLO, a sim-

ple, “no-loop” predictive useful skew flow with dual-Vth libraries that applies useful skew at the

post-synthesis stage within a one-pass chip implementation. Experimental results in a 28nm

FDSOI technology show that our predictive useful skew flow can reduce runtime by 66% and

improve total negative slack by 5% compared to the previous useful skew back-annotation flow.

Third, we study the “mix-and-match” of multiple stacked die, according to binning information,

to improve overall product yield. We study die-stacking optimization to improve 3DIC product

reliability, as well as performance improvements that are achievable in 3DIC implementation

by leveraging – during the design flow – foreknowledge of mix-and-match die stacking during

manufacturing. For the design-stage optimization for mix-and-match die stacking, we propose

partitioning methodologies to partition timing-critical paths across tiers to explicitly optimize

138

139

the signed-off timing across the reduced set of corner combinations that can be produced by the

stacked-die manufacturing. Experimental results show that our optimization flow achieves up

to overall 16% timing improvement, relative to the existing 3DIC implementation flow, in the

context of mix-and-match die stacking.

4.1 Design Implementation with Non-Integer Multiple-Height Cells

for Improved Design Quality in Advanced Nodes

Standard cell-based implementation has been widely used for VLSI designs due to its

relatively accurate abstraction and semi-regular layout. In advanced nodes, cells are designed

with different heights (e.g., different numbers of fins in FinFET node). Larger cell heights have

higher drive strengths at the cost of larger area and power consumption as well as pin capacitance.

Smaller cell heights result in relatively smaller area, but have weaker drive strengths and are more

likely to suffer from routing congestion and pin accessibility issues.50 Figure 4.1 shows the delay

and area tradeoff of buffers and inverters at foundry 28nm LP technology. In red are 12T cells,

and in blue are 8T cells. As expected, 12T cells can achieve smaller delay at the cost of larger

area.

Figure 4.1: Delay-area tradeoff of 8T and 12T buffers/inverters in 28nm LP foundry libraries.
Load cap = FO4 + 20µm M3 wire.

Given that cells of different heights exhibit different tradeoffs among performance,

power and area, mixing cells of different heights in a design is able to provide a larger so-
50Although a cell with smaller height can be designed with large width to gain drive strength, the additional poly

capacitance and metal capacitance can lead to area and power overheads as compared to a cell with the larger height.

140

Figure 4.2: Post-synthesis netlist with mixed cell heights has significant area reduction
compared to 12T-only and 8T-only netlists. Technology: 28nm LP. Design: AES. Frequency:

1.5GHz. Corner: (SS, 0.95V , 125◦C).

lution space and improved design quality. Figure 4.2 shows the post-synthesis area and timing

comparison among implementations of an open-source design AES [230] with 12T-only, 8T-only

and mixed cell heights, where total cell area and number of instances are normalized to those of

the 8T-only case. In the right figure, the solid bar indicates WNS, and the shaded bar indicates

TNS. Implementations with 12T-only and mixed cell heights have no timing violations. Due to

generally larger areas of cell instances (particularly those with low drive strengths), 12T-only

implementation tends to have larger design area. On the other hand, weak drive strengths of

8T cells result in a large number of buffer insertions to meet timing constraints, which also in-

creases design area.51 We observe from the example that mixing cell heights achieves 14% and

18% area reduction at the post-synthesis stage versus the 12T-only and 8T-only implementations,

respectively.

Motivated by the above observations, in this work we propose to mix cell heights at

the sub-block level (i.e., within a single P&R block) of physical implementation, to achieve

improved design quality – specifically, tradeoffs of achievable performance, power and area.52

However, optimizing a design by mixing non-integer multiple cell heights is highly nontrivial.

The challenges include the following.

• Current design methodologies and tool flows can only mix cells of different heights at the

block level, i.e., each block of a design uses cells with a particular height, with fine-grained

mixing not available with today’s EDA tools.
51The larger total cell area of the 8T-only netlist as compared to that of the 12T-only netlist is due to tight timing

constraints. We demonstrate in Section 4.1.4 that with loose timing constraints, 12T-only implementations typically
incur area overhead as compared to 8T-only ones.

52Since today’s P&R tools already support placement of integer multiple-height standard cells (e.g., [217]), this
work mainly focuses on implementation with non-integer multiple-height cells, which has not been addressed in the
literature.

141

• There is a “chicken-and-egg” quandary: heights of cell rows are defined (in the place-

ment site map) at the floorplan stage, but the optimized choices of cell heights are highly

dependent on the placement outcome and timing constraints.

• There are costs associated with mixing cells of different heights. For instance, “breaker

cells” must be inserted for row alignment between sub-blocks of cell rows with different

heights.53

The contributions of this work are as follows.

• To our knowledge, we are the first in the literature to propose mixed cell-height implemen-

tation with non-integer multiple heights at the sub-block or sub-island level in advanced

nodes.

• We develop methodologies which can easily be integrated within existing physical design

flow, using standard commercial tools, for mixed cell-height implementation.

• We show that mixing 12T and 8T cells in a 28nm LP foundry technology achieves up to

30+ percent area and power reductions versus 12T-only implementation while maintaining

the same performance, and up to 10+ percent performance improvement along with power

and area reductions versus 8T-only implementation.

4.1.1 Related Work

To our knowledge, there is no previous work on mixed cell-height design methodology

that addresses non-integer multiple heights within a block. A recent work [137] optimizes cell

placement with heights being integer multiples of a particular cell height. And, commercial plac-

ers have been capable of handling multi-cell row height cells (i.e., with heights that are integer

multiples of a single-row height) for over two decades. However, placement of single-height,

double-height, triple-height etc. cells does not require site map change (i.e., the floorplan rows

and placement sites are fixed during the optimization), whereas in our problem, different non-

integer cell heights require different row and site definitions. Therefore, the placement problem

involving cells with multiple non-integer heights cannot be solved by existing optimizations that

handle the integer-multiples problem.

Notwithstanding the above, the mixed cell-height placement problem bears some sim-

ilarity to the problem of voltage island placement, in that both problems try to assign a certain
53We define a breaker cell as the space (i.e., placement and/or routing blockages) that must be inserted between

the boundaries of regions of different cell heights.

142

attribute with different values (e.g., cell height or supply voltage) to standard-cell instances, in

order to improve performance or reduce power. Further, both problems must comprehend a type

of incurred cost (e.g., area overhead of “breaker cells” or insertion of level shifters) when per-

forming the assignment. We therefore review exemplary works from the literature on voltage

island placement.

Wu et al. [197] and Ching et al. [36] propose partitioning methodologies to divide post-

placement die area into regions which will be assigned to different supply voltages. The ob-

jectives are respectively to minimize the number of partitions and to handle non-rectangular

partitions. Wu et al. [200] further consider timing constraints during the voltage assignment.

However, the interaction with standard-cell placement is missing in all of these works. An im-

proved optimization proposed in [199] performs incremental placement to move timing-critical

cells out from the low-voltage regions by adjusting net weights and cell delays. Guo et al. [79]

embed their voltage-island-aware placement optimization to a partitioning-based placement al-

gorithm to minimize the number of level shifters.

Although the voltage island placement problem has been well-studied in previous lit-

erature, there is still no available solution for mixed cell-height design implementation due to

the existence of “chicken-and-egg” loop between floorplan and cell height selection, additional

layout constraints, and area impact of cell height choices.

4.1.2 Problem Formulation

Table 4.1 gives notations used in the following discussion.

Table 4.1: Notations used in our work.

Term Meaning

hi available cell heights, (0 ≤ i ≤ N ; h0 is the minimum one)

(X l, Y b, Xr, Y t) coordinates of block area (i.e., standard-cell placement region)

Pj partition in which cells are of the same height, (0 ≤ j ≤M)

(xl
j , y

b
j , x

r
j , y

t
j) coordinates of partition Pj , (0 ≤ j ≤M)

Hj height of partition Pj , (0 ≤ j ≤M)

Wj width of partition Pj , (0 ≤ j ≤M)

tj cell height corresponding to partition Pj , (0 ≤ j ≤M)

wsite placement site pitch (width)

d shift of cell rows in vertical direction to avoid cell overlap

143

We state the non-integer multiple-height cell placement problem as follows.54

Given a design (i.e., gate-level netlist), timing constraints, Liberty and technology models for

cell libraries with multiple track heights, and P&R block area and aspect ratio, place the design

such that each cell instance is legally placed in row sites with corresponding height. The objec-

tive of the placement is to achieve minimum design power or area while maintaining the (same)

target performance.

Additional layout constraints for mixed cell-height implementation applied in our stud-

ies below are as follows.55

C1: To ensure manufacturability, each region of a particular cell height must have at least two

cell rows.

C2: Due to N-well sharing, each region of a particular cell height must have an even number of

rows.

C3: Every region with a particular cell height must align with the block’s overall metal and poly

track definitions.

C4: The horizontal distance between two regions of different cell heights must be no less than

four placement sites.

C5: The minimum vertical distance between two partitions of different cell heights must ensure

that the power/ground (P/G) rail of one cell does not encroach beyond the P/G rail of another

cell. (Figure 4.3 shows an example with M2 pitch = 64nm, and P/G rail width = 48nm and

64nm for 8T and 12T cells, respectively. Although the P/G rail width difference between 8T

and 12T cells is less than one M2 pitch, to align cells to routing tracks, the minimum d in the

example is 64nm.)

C6: “Breaker cells” must be inserted to ensure the minimum horizontal and vertical distances

between two regions of different cell heights.

4.1.3 Methodology

We now describe our optimization methodology for mixed cell-height implementation.

The overall optimization flow is shown in Figure 4.4. Given an input design (i.e., RTL netlist)

and timing constraints, we first synthesize it with Liberty files of all available cell heights having
54Since we focus on placement with non-integer multiple-height cells, in the following discussions “mixed cell

heights” or “mixed heights” refers to “mixed non-integer multiple cell heights”.
55Our proposed approaches given below transparently handle other values of the parameters that define these con-

straints (e.g., minimum number of cell rows in a given-height region, or minimum separation between two different-
height regions, etc.).

144

Figure 4.3: Area cost of “breaker cells”.

been made available to the logic synthesis tool. To resolve the “chicken-and-egg” loop between

floorplan and cell height selection, we modify standard-cell LEF files such that all cells have

the same height (i.e., the minimum cell height among all the available heights), while maintain-

ing the original area of each cell.56 In the discussion below, we refer to such modified LEF

files as mLEF. In this way, we break the “chicken-and-egg” loop and enable a commercial

placement tool to “freely” place cells with timing-awareness. Since we use the original Liberty

timing/power models and preserve the original area for each standard cell (although with differ-

ent aspect ratio of cell layout), this placement optimization is able to comprehend the tradeoff

between timing constraints, power and area overheads. As a result, timing-critical cells tend

to have larger heights (i.e., larger width with mLEF), while non-critical cells are smaller. An

example initial placement solution of design AES is shown in Figure 4.4(a), in which 12T cells

(with mLEF) are in red, and 8T cells are in blue.

Based on the initial placement solution, we partition the block area into regions of par-

ticular cell heights with awareness of area cost due to “breaker cells”.57 We then legalize the
56In doing so, we round cell widths to the nearest whole site with no cell area reduction. E.g., given three libraries

with heights 8T, 9T and 12T, (i) a 12T, 6-site cell would be represented by an 8T, 9-site cell; (ii) a 9T, 5-site cell
would be represented by an 8T, 6-site cell; etc.

57Here cell height indicates the original cell height as opposed to the cell height in mLEF.

145

Figure 4.4: Overall flow of our optimization. In the example, the maximum cut number (K) =
30.

placement solution by (i) displacement of cells (i.e., placement perturbation) and (ii) swapping

of cells across different heights (i.e., gate sizing). Here, we say that a placement solution is

legal when each cell instance is placed in a region with the same height (e.g., as shown in Fig-

ure 4.4(b)). Once the placement solution is legal, we update the floorplan with space inserted

to model the cost of breaker cells. We then map cells to the cell rows of the updated floorplan,

using the original standard-cell LEF files. In the end, we perform clock tree synthesis and route

the design (Figure 4.4(c)).

Floorplan Partitioning and Region Definition

We perform slicing-based partitioning using dynamic programming to divide the block

area into regions of particular cell heights. Algorithm 15 shows our partitioning procedure. We

first evaluate the cost of each candidate partition, i.e., cost(xl, yb, xr, yt, 0), in which the fifth

146

parameter indicates the number of cuts within the partition (Line 1). If the height of a candidate

partition is hj , the cost of the partition is calculated as

cost = β ·
∑

hi 6=hj

areai + λ ·∆power + η ·∆delay (4.1)

where areai is the total area of cells with height hi located within the candidate partition;

∆power is the estimated total cell power increase by swapping cells with original cell height

hi < hj to height hj ; ∆delay is the estimated total cell delay increase by swapping timing-

critical cells (i.e., cells with slack < 20% of the clock period) with original height hi > hj to

height hj ; and β, λ and η are weighting factors.

Reducing the value of component
∑

hi 6=hj
areai (i.e., the sum of areas of cells whose

heights differ from the height of the partition) will help to minimize the cost of placement le-

galization (i.e., displacement and cell-height swapping) as well as the perturbation to the initial

placement solution. Furthermore, to reduce the potential power and timing penalties due to

legalization, we minimize the estimated cell power and delay increase within each candidate

partition. More specifically, we first find the best candidate library cell (with height hj) for each

cell instance (assume that the original height of the cell instance is hi), such that the best can-

didate library cell has the minimum cell power without any delay increase (resp. the minimum

cell delay without any power penalty) if hj > hi (resp. hj < hi). We then estimate ∆power

and ∆delay values for each candidate partition accordingly.

Furthermore, we set the cost of a candidate partition to infinity if it violates any of the

constraints (e.g., Constraints C1 and C2) described in Section 4.1.2. More specifically, a partition

(xl, yb, xr, yt) with height hj must satisfy

yt − yb ≥ 2 · hj (4.2)

by
t − yb

2 · hj
c · 2 · hj · (xr − xl) ≥ (yt − yb) · (xr − xl) · Uj (4.3)

Inequality (4.2) forces each partition to have at least two rows. Inequality (4.3) ensures

that partitions in the updated floorplan, after rounding to an even number of rows per partition

according to Constraint C2, have enough sites to place cells; here, Uj is the placement utilization

within the partition. Finally, for each candidate partition, we set the height of the partition as the

height which leads to the minimum cost function value.

Figure 4.5 shows contour maps of power and delay costs, as well as partitioning solu-

tions with various weighting factors of design AES, where cell area, power and delay are respec-

tively measured in units of µm2, µW and ps for cost estimation. In red are 12T cells, and in

147

Algorithm 15 DP-based partitioning.

1: calculate cost(xl, yb, xr, yt, 0)
∀X l ≤ xl ≤ xr ≤ Xr, Y b ≤ yb ≤ yt ≤ Y t

2: for k := 1 to K do
3: for xl := X l to Xr −∆x do
4: for yb := Y b to Y t −∆y do
5: for xr := xl + ∆x to Xr do
6: for yt := yb + ∆y to Y t do
7: cost(xl, yb, xr, yt, k) = min

xl≤×≤xu,yb≤y≤yt
(

cost(xl, yb, x, yt, k′) + cost(x, yb, xr, yt, k′′) + 4 · wsite · (yt − yb),
cost(xl, yb, xr, y, k′) + cost(xl, y, xr, yt, k′′) + d · (xr − xl)

) ∀k′, k′′ s.t. k′ + k′′ = k − 1
8: end for
9: end for

10: end for
11: end for
12: if cost(X l, Y b, Xr, Y t, k) ≥ cost(X l, Y b, Xr, Y t, k − 1) then
13: return cost(X l, Y b, Xr, Y t, k − 1)
14: end if
15: end for
16: return cost(X l, Y b, Xr, Y t,K)

Figure 4.5: (a) Contour map of power cost function. (b) Contour map of delay cost function.
(c) Partitioning solution with β = 1, λ = 0.8, η = 0.2. (d) Partitioning solution with β = 1, λ =
0.7, η = 0.3. (e) Partitioning solution with β = 1, λ = 0.6, η = 0.4. Design: AES. Technology:

28nm LP.

blue are 8T cells.58 As the value of λ decreases and the value of η increases, the area of 12T

regions and power both increase, while timing slack improves. In other words, by comprehend-

ing power and timing penalties, our partitioning optimization defines the height of regions with

large power penalty as 8T (e.g., region defined by black boundaries) and the height of regions
58We measure area, power and delay in units of µm2, µW and ps for cost function estimation. A small value of β

will result in large perturbation to the initial placement, such that the power, area and timing costs due to legalization
can be high. On the other hand, a large value of β will limit the timing- and power-awareness in the partitioning
optimization. We empirically use β = 1 and vary the values of λ and η between 0 and 1 to explore the tradeoff
between power and timing during partitioning optimization.

148

with large timing penalty as 12T (e.g., regions in yellow-dotted boxes). In our experiments, we

empirically set (β, λ, η) as (1, 1, 1), (1, 0.1, 1), (1, 1, 0.1), (1, 0.1, 0.1) and select the outcome

with minimum power that satisfies timing constraints.

The heart of the dynamic programming recurrence (i.e., in determining the partitioning

solution with minimum cost) is given in Lines 2-16. We recursively search for the minimum-

cost partitioning solution of a rectangular region with k cuts, and increase the value of k in

each iteration up to a given maximum allowable number of cuts, K, which is a user-defined

parameter.59 Figure 4.6 and its caption tell us that the total cost within partitions reduces as the

number of cuts increases. However, the area cost of breaker cells increases with the number of

cuts. We therefore sweep the number of cuts during our partitioning optimization and select the

solution with the minimum total cost.

Figure 4.6: Examples of partitioning solutions for the AES testcase. In red are 12T cells (with
mLEF); and in blue are 8T cells. Yellow lines are cuts. The cell height of a partition is marked
on its side. β = 1, λ = 0 and η = 0. (a) Cut number = 5, cost = 4818µm2. (b) Cut number = 10,

cost = 4584µm2.

To find the best partitioning solution of a region (xl, yb, xr, yt) using exactly k cuts, we

observe that such a solution can always be seen as a single “top-level” cut, along with the best

solutions of the two sub-regions induced by that cut. Hence, to find the best k-cut solution, we

enumerate all potential vertical and horizontal cuts of the region, and select the solution that

minimizes the sum of the costs of the two separate parts (sub-regions) – with respective number

of cuts k′ and k′′ satisfying k′ + k′′ = k − 1 – plus the cost of the single vertical or horizontal

“top-level” cut. Note that the proposed partitioning comprehends the area cost of breaker cells,

for which width = 4 ·wsite for a vertical cut, and height = d for a horizontal cut (Line 7). For the

example shown in Figure 4.3, d must be larger than 64nm. The procedure terminates when the

cost does not decrease with an increased cut number (Line 13), or the maximum cut number K is
59In our experiments, we set K to a large value (e.g., 30 for a 100µm× 100 µm floorplan) in order to ensure good

solution quality.

149

achieved (Line 16). To improve the scalability, we divide the block area into M×N grids (where

M and N are also user-defined parameters), and perform the proposed partitioning method on

these grids. The runtime complexity of the procedure is O((M + N)(M ·N ·K)2).60

Timing-Aware Placement Legalization

Based on the partitioning solution, we perform iterative optimization to achieve a legal

placement. Note that we still use mLEF at this optimization stage, but boundaries and cell

heights of regions have been defined. We apply two knobs in our iterative heuristic: displacement

of a cell (e.g., moving a 12T cell from an 8T region to a 12T region), and cell-height swapping

(e.g., assign an 8T cell to a 12T cell master in a 12T region via gate sizing). Both of these knobs

affect timing, and cell-height swapping also affects area. Thus, to ensure that the optimization

does not lead to large design quality degradation, we evaluate the timing and area impacts of

each potential move (one move is a cell displacement or a cell-height swap).

Because timing analysis with commercial P&R tools is typically slow, our optimization

approach requires a relatively accurate and fast timing engine. We have developed an internal

timing analysis engine (i.e., internal timer) to guide the optimization. Our internal timer esti-

mates gate delay and slew at an output pin based on the Liberty lookup tables. It further uses

D2M [7] and PERI [118] models that respectively estimate wire delay and slew propagation

along the interconnect. Wirelength change due to cell displacement is measured by net HPWL

(Half-Perimeter Wire Length), and wire capacitance and resistance are scaled correspondingly.

To comprehend wire congestion effects, we add a penalty in the form of wire resistance

and capacitance scaling, based on routing demand vs. supply overflows within the bounding box

of a given net.61 More specifically, if the average horizontal (resp. vertical) routing congestion

within the bounding box of a net is X%, we penalize the horizontal (resp. vertical) portion of

HPWL by a multiplicative factor of (X%-Xth%) whenever X > Xth. Here, Xth% is a threshold

that we set to 95% based on separate studies. The value Xth% = 95% is used in all experiments

reported below.62 To maintain the accuracy of our internal timer, we correlate timing slack, wire

capacitance and overflow information during the optimization through a Tcl socket with Cadence

Innovus Implementation System v16.1 [215]. Figure 4.7 shows our optimization framework. We
60In our experiments, partitioning with number of grids no larger than 30 × 30, and maximum cut number no

larger than 40, requires less than one minute of a single thread on a 2.5GHz Intel Xeon server.
61We estimate overflow based on the trial routing solution from Cadence Innovus Implementation System

v16.1 [215].
62For example, if the average horizontal congestion is 98%, we multiply the x-component of HPWL by 1.03 =

0.98 / 0.95.

150

Figure 4.7: Framework of our optimization.

believe that our internal timer approach most closely resembles that of the previous work [107];

however, our internal timer better comprehends the impact of cell displacement on timing by

considering both wirelength change and routing congestion information.

Algorithm 16 describes our heuristic to legalize the placement. We first evaluate the cost

(in terms of area and timing) of each potential move (i.e., cell displacement or swapping) (Line

4). We consider cell displacement in eight directions (i.e., {N, S, E, W, NE, NW, SE, SW}) with

the maximum movement distance of D (D = 15µm in our experiments). The set of candidate

cell displacements is similar to what is applied in the local optimization of [83]. For cell-height

swapping, we consider candidate library cells whose heights match that of the partition. We use

the cost function shown in Equation (4.4)

cost =α · max(0,−∆slack)
max(1ps, slackorig)

+(1− α) · max(0,∆area)
max(1µm2, whitespaceorig)

where ∆slack and ∆area are respectively the timing slack and cell area changes due to displace-

ment and/or swapping. slackorig and whitespaceorig are the original timing slack of the cell and

whitespace of the corresponding grid. We divide the block area into an M × N mesh of grids.

For each grid, we estimate whitespace based on placement utilization. The parameter α is a

weighting factor, which has an initial value of 0.5. We adaptively change the value of α for each

cell during the iterative optimization, such that when an attempt leads to timing violation (resp.

placement utilization violation), we increase (resp. decrease) α of the cell by 1.5×.

The cost function (4.4) only considers area and timing impacts due to each move. In

151

separate studies, we have also included input pin and wire capacitance, as well as leakage power,

into our cost function for legalization moves. However, the resultant solutions show negligible

improvement (e.g., < 1%) in terms of power, area and timing. This might be due to the positive

correlations among area, pin capacitance and leakage power. Furthermore, we adaptively change

the value of α during our optimization. As a result, we observe from our experiments that moves

with small area and power costs are typically selected during the early steps. As the value of α

increases, moves with small delay penalties are selected during the late-stage legalization.

We sort all cells which have different height than their partition in decreasing order of

cost, and apply moves to legalize the placement (Line 7). When a move results in timing failure

or violation of placement density, we undo the move (Lines 12-13); here ω is the required whites-

pace according to the area of breaker cells and maximum placement density constraints.63 To

ensure the convergence of the flow (i.e., that optimization can lead to a legalized placement), we

commit the move of a cell which has been visited F times, regardless of its impact on timing and

area. We use F = 5 in our optimization.64 In addition, we apply a form of Tabu search [75] dur-

ing the optimization to increase the likelihood of finding feasible solutions for cells. Specifically,

we record the latest three attempts and forbid these moves for the current move of optimization.

During the optimization, we (re-)correlate our internal timer with Innovus in terms of timing

slack/slew, cell location, wire parasitic, and routing overflow after every γ% of the total number

of cells has been changed (Lines 17-19). We use γ = 2 in our optimization. We also include area

recovery (Lines 20-26) and timing recovery (Lines 27-32) in our optimization to maintain timing

and area quality. The parameter θ is a threshold of slack violation that triggers timing recovery;

we empirically set this to 0.15. Note that during the timing recovery, we perform backward (in

which we downsize fanout cells) and forward (in which we upsize cells) maximum transition

violation fixes, which enhance the timing recovery quality.

We observe from our experimental results that the ratio between the number of cells

being swapped and the number of cells being displaced ranges from 1.2 to 5.4. This ratio

seems highly dependent on the partitioning solution, timing constraints, netlist structure, etc.

For instance, fewer partitions and/or tighter timing constraints can lead to more swaps relative

to displacements.

We list all the user-defined parameters applied during partitioning and placement legal-

ization in Table 4.2.
63In our experiments, we set the maximum placement density of the entire block as the placement density from the

initial placement plus 5%.
64We observe in our experiments that the number of cells which have been visited six times without a feasible

solution is quite small, e.g., less than 60 in a design with 15K cells.

152

Algorithm 16 Heuristic to legalize placement.

1: while there exists a cell with a different height than its partition do
2: list← ∅
3: for all cell g with a different height than its partition do
4: calculate cost function of g
5: add g to list
6: end for
7: sort list in order of decreasing cost
8: swap cnt← 0
9: for all g ∈ list do

10: apply displacement/swapping based on cost function
11: incremental timing analysis
12: if slack of g < Min(0, original slack of g) || whitespace of grid < ω then
13: undo change
14: else
15: ++swap cnt
16: end if
17: if swap cnt ≥ γ · total gate count then
18: apply ECOs in Innovus
19: correlate internal timer with Innovus
20: for all cell g in the design do
21: downsize g
22: incremental timing analysis
23: if slack of g < Min(0, original slack of g) then
24: undo change
25: end if
26: end for
27: if WNS ≤ −θ · clock period then
28: fix maximum transition violations
29: timing recovery
30: apply ECOs in Innovus
31: correlate internal timer with Innovus
32: end if
33: end if
34: end for
35: end while

Mapping from mLEF to Original LEF in Assigned Regions

As discussed above (e.g., in the context of Figure 4.4), we use mLEF with adjusted

aspect ratios for cell layouts during the initial placement, partitioning and legalization stages,

where all cells have the same height (i.e., the minimum cell height h0) but scaled cell widths.

When the placement solution is legalized (i.e., each cell instance is placed in a region with the

same height), we update the floorplan to insert cell rows according to the actual cell height of

each partition. We also allocate space to model the area cost of breaker cells in the updated

floorplan.

153

Table 4.2: User-defined parameters.

Term Meaning

β, λ, η weighting factors used in partitioning cost function

K maximum number of cuts

M ×N number of grids

D maximum displacement distance

γ determines correlation frequency

θ slack violation tolerance threshold

F maximum number of visits of a cell before a move is applied

Cells with the minimum height have their original layout aspect ratios in mLEF, and

therefore no aspect ratio changes are needed to map these cells in the updated floorplan. In a

partition with the minimum cell height, we only remove overlaps between cell instances and

breaker cells. In other words, we perform cross-row cell displacement to ensure that the total

cell width (i.e., total number of placement sites) in a row does not exceed the available num-

ber of placement sites with the existence of breaker cells (which are modeled as spaces in our

experiments).

Algorithm 17 describes our cross-row cell displacement procedure. We perform four

iterations of cross-row cell displacements. The first and the third iterations are top-to-bottom,

traversing from the topmost row to the bottommost row, and optimizing one row at a time. The

second and the fourth iterations optimize similarly, but in a bottom-to-top manner. Furthermore,

in the first and second iterations, we move cells to adjacent rows only if there is enough space in

the adjacent rows. In the third (resp. fourth) iteration, we force cells to move to the lower (resp.

upper) adjacent row regardless of available space in the adjacent row. This strategy enables

chained moves of cells across rows. In Algorithm 17, k is the row index, which ranges from 1

(the bottommost row) to R (the topmost row); Wi is the total cell width in the ith row; Wmax
i

is the maximum allowed cell width in the ith row; w(g) is the width of cell g; ∆ records the

HPWL increase due to cross-row cell displacement; and function move(g, dir) moves cell g

to the row that is adjacent in direction dir. After the cross-row cell displacements, we perform

single-row incremental placement optimization using dynamic programming to further reduce

wirelength.65

On the other hand, cells originally with large height (i.e., larger than the minimum cell

height) become shorter and wider in mLEF. We must recover the original aspect ratio of cell
65Our dynamic programming formulation is the same as the “Minimum HPWL” formulation in [114]. Formulation

details are given in [114].

154

Algorithm 17 Cross-row cell displacement.

1: for k := 1 to 4 do
2: for all ith row in the partition do
3: while ith row has capacity/overlap violation do
4: ∆min ← +∞; gmove ← ∅
5: for all g ∈ ith row do
6: if i 6= 1 && (Wi−1 + w(g) ≤Wmax

i−1 || k == 3) then
7: ∆← HPWL increase by moving g to (i− 1)th row
8: if ∆ < ∆min then
9: ∆min ← ∆; gmove ← g; dir = down

10: end if
11: end if
12: if i 6= R && (Wi+1 + w(g) ≤Wmax

i+1 || k == 4) then
13: ∆← HPWL increase by moving g to (i + 1)th row
14: if ∆ < ∆min then
15: ∆min ← ∆; gmove ← g; dir = up
16: end if
17: end if
18: end for
19: if gmove == ∅ then
20: break
21: else
22: move(gmove, dir)
23: end if
24: end while
25: end for
26: end for

layouts in the updated cell rows with actual cell heights. For example, assume that there are 20

10T cells uniformly placed in five 8T cell rows (i.e., as a 5 × 4 mesh). To update the floorplan,

we maintain the same partition area and place cell rows according to the height of the partition.

We therefore have four 10T cell rows. Given that the layout of these 10T cells (with the same

cell area) are scaled back to their original height with a reduced cell width, five cells now can

fit into one row in the updated floorplan. The mapped cell placement becomes a 4 × 5 mesh.

As shown in the example, cell mapping in the updated floorplan can be viewed as embedding a

graph to another graph with a different aspect ratio (e.g., embed a 5 × 4 mesh to a 4 × 5 mesh).

We therefore revisit the graph embedding literature.

Ellis [59] shows that to embed a 2D mesh of size w × h (with unit distance between

every two adjacent nodes in both horizontal and vertical directions) to another 2D mesh of size

w′ × h′, where w′ < w and h′ is the smallest integer satisfying w′ · h′ ≥ w · h, if w
w′ is no larger

than 2, the maximum wirelength of a two-pin net (in Manhattan distance) in the embedded graph

is no more than two units. An example with w
w′ = 5

4 is shown in Figure 4.8(a): the wirelength

155

Figure 4.8: Illustration of graph embedding (a) from [59], and (b) for proposed cell mapping.
Vertical connections are not shown.

of each connection in the original graph is one, and the maximum wirelength in the embedded

graph (i.e., the diagonal connection) is two. Note that our optimization of cell mapping differs

from [59], in that [59] varies the area of the graph (i.e., mesh) while our optimization assumes a

fixed mesh area (i.e., area of a partition).

Following the discussions in [59], we can show that if we map a 2D-mesh placement

with cell height h0, in which all cells have the same cell area, to another 2D-mesh placement with

cell height h1, the maximum wirelength scaling of a mesh edge (i.e., two-pin net) according to

the mapping is no more than h0
h1

+ h1
h0

.66 Figure 4.8(b) shows an example with 10T and 8T cells.

Assuming unit wirelength for each two-pin connection between any horizontally or vertically

adjacent cells in the original 2D-mesh placement, the maximum wirelength increase is 1.05.

Inspired by the graph-embedding theory, we propose an approach to map cells to cell

rows with original cell heights for general cases, in which cells have different widths and are not

necessarily placed in a 2D mesh. Algorithm 18 shows our procedure to map cells from an initial

floorplan with R rows of height h0 to an updated floorplan with R′ rows of height hj . We first

estimate the average total cell width of each cell row in the updated floorplan (Line 1), in which

g is a cell in partition Pj ; w(g) is the actual width of cell g corresponding to height hj . We then

store cells in the ith row from the initial floorplan into list1 and sort them by increasing order

of their X-coordinates (Lines 5-6). For each cell on the (i + 1)th row of the initial floorplan,

we estimate the wirelength (i.e., HPWL) difference between the case of assigning the cell to the

i′th row of the updated floorplan versus the case of assigning the cell to the (i′ + 1)th row of

66Proof details are given in [59].

156

the updated floorplan (Lines 9-12). We then sort the cells on the (i + 1)th row of the initial

floorplan by the corresponding delta wirelength values (Line 13). We iteratively add these cells

to list2 until the total width of cells in list1 and list2 exceeds 1.05× of the average total cell

width of each row (Wavg) or the maximum allowed total width in the i′th row (Wmax
i′ , where

the width of breaker cells is considered) (Lines 14-18). If all cells from list′ are added to list1

and list2, we fill list′ with cells from the next row in the initial floorplan (Lines 21-22). Finally,

we use dynamic programming to order and place cells from list1 and list2 onto the i′th row in

the updated floorplan. In summary, Lines 1-23 of Algorithm 18 determine Y-coordinates of cells

and optimize the vertical component of HPWL; while the DPPlacer(i′, list1, list2) further

minimizes the horizontal component of HPWL. As an improvement to [92] which also uses

dynamic programming to optimally order two rows of cells into a single row with minimized

wirelength, our formulation also determines the optimal cell locations. The recurrence relation

in our dynamic programming optimization is

sol(i, j, k) = Min


sol(i, j, k − 1)

sol(i− 1, j, k − w(gi)) + cost(gi, k)

sol(i, j − 1, k − w(gj)) + cost(gj , k)
where sol(i, j, k) is the wirelength corresponding to the optimal placement solution of the first

i cells in list1 and the first j cells in list2 within the first k placement sites in the updated cell

row; gi is the ith cell in list1; gj is the jth cell in list2; w(g) is cell width (i.e., in terms of the

number of sites) of g; and cost(g, k) is the HPWL increase by allocating g (i.e., right edge of g)

at the kth placement site.

Figure 4.9 shows the optimized wirelength (i.e., HPWL) comparison between our pro-

posed method (using dynamic programming) versus a greedy method proposed in [55]. We

observe that our proposed optimization achieves up to 16% wirelength reduction compared to

the greedy method. Furthermore, it is obvious that the proposed algorithm can achieve the map-

ping solution or a solution with the same total wirelength shown in Figure 4.8(b). We note that

the procedure described in Algorithm 18 only applies to the case where the ratio between hj and

h0 is no larger than two. We can easily extend our mapping procedure to address cases with

height ratio greater than two by extending our dynamic programming formulation to optimize

more than two lists of cells.

157

Algorithm 18 Cell mapping.

1: Wavg = (
∑

g∈Pj
w(g)) /R′

2: i = 1
3: list′ ← cells in ith row from the initial floorplan
4: for i′ := 1 to R′ do
5: list1 ← list′

6: sort list1 in order of increasing cells’ X-coordinate
7: W ← total width of list1
8: ++i
9: for all cell g in ith row from the initial floorplan do

10: ∆(g)← HPWL diff(g, i′, i′ + 1)
11: list′.push(g)
12: end for
13: sort list′ in order of increasing ∆(g)
14: while list′ 6= ∅ && W ≤Min(1.05 ·Wavg, Wmax

i′) do
15: g ← list′.pop()
16: list2.push(g)
17: W ←W + w(g)
18: end while
19: sort list2 in order of increasing cells’ X-coordinate
20: if list′ == ∅ then
21: ++i
22: list′ ← cells in ith row from the initial floorplan
23: end if
24: DPPlace(i′, list1, list2)
25: end for

Figure 4.9: Wirelength comparison between our dynamic programming-based optimization
versus a greedy optimization in [55]. Wirelength values are normalized to the wirelength before

cell mapping.

4.1.4 Experimental Results

We perform experiments in a 28nm LP foundry technology with dual-Vth libraries,

0.95V nominal supply voltage, and cell height choices 12T and 8T. To confirm that our opti-

mization can perform a fine-grained mixed cell-height implementation, we select four design

158

blocks (AES, DES, JPEG, MPEG) from the OpenCores website [230]. Parameters of these four

testcases are shown in Table 4.3. For each design, we determine a range of clock periods start-

ing from a clock period with relative loose timing constraint, up to the clock period at which

the 8T-only implementation shows setup timing violations. These designs are synthesized us-

ing Synopsys Design Compiler vI-2013.12-SP3 [237] and then placed and routed using Cadence

Innovus Implementation System v16.1 [215]. We set the gate density at the floorplan stage as

60%. We respectively use Cadence Innovus Implementation System and Synopsys PrimeTime-

PX vH-2013.06-SP3 (PT-PX) [240] for timing and power analysis at the post-routing stage (with

ideal clocks) and wire parasitics (SPEF) obtained from Innovus. We use Synopsys PrimeTime

vH-2013.06-SP2 [240] to search for the minimum supply voltage that satisfies a given frequency

target. Our optimization flow is implemented in C++. Functions used in P&R tools and the

socket between our optimizer and the P&R tool are implemented in Tcl. We conduct our exper-

iments on a 2.5GHz Intel Xeon server.

Table 4.3: Benchmarks.

Design #Instances #Flip-flops Clock period range

AES ∼16K 530 650ps – 800ps

DES ∼23K 1984 600ps – 750ps

JPEG ∼60K 4512 750ps – 900ps

MPEG ∼16K 3193 550ps – 700ps

Modeling breaker cell costs. The placement site pitch (width) and the M2 metal pitch in the

28nm LP technology that we use are respectively 0.136µm and 0.1µm. Based on the discussion

in Section 4.1.2, the horizontal and vertical shifts between any 8T and 12T regions must be no

less than 0.544µm and 0.1µm, respectively. In addition, to preserve cell row alignment in the

design, we shift cell rows by 0.8µm in the vertical direction between any 12T and 8T regions.67

We also insert placement and routing blockages correspondingly. Figure 4.10 shows one layout

example.

Performance-Area Tradeoff Comparison

We implement our benchmark designs using our proposed flow with mixed 8T/12T cells.

We also perform conventional SP&R (synthesis, placement, clock tree synthesis and routing)
67We have separately observed in our experiments that slight decrease or increase of the breaker cell cost leads to

negligible power and area impacts (i.e., < 2%). However, increase the breaker cell cost by more than 2× can result
in severe routing and placement congestion where floorplan resizing is needed.

159

Figure 4.10: Inserted space on the boundaries between 12T and 8T regions to model the cost
of breaker cells.

with 12T-only cells and 8T-only cells for comparison. The designs are implemented with clock

periods shown in Table 4.3. We use the nominal voltage 0.95V at (SS, 125◦C) corner for de-

sign implementation and timing analysis. Table 4.4 shows our experimental results, in which

the clock period is the clock period used for implementation and each benchmark design is im-

plemented in four clock periods. Total power values are reported at the signoff frequency. We

divide the block area of each design into grids of size around 6µm × 6µm for partitioning and

placement density evaluation. Figure 4.11 further shows the Pareto curves illustrating trade-

offs between performance and area of implemented designs at the post-routing stage, where the

frequency given is the maximum achievable operating frequency.

Results show that by mixing 8T and 12T cells, our optimization achieves significant

area reduction (e.g., 20+ percent on design AES) compared to designs with only single-height

cells, especially for comparison to 12T-only designs (e.g., 30+ percent area reduction on design

AES).68 This is because mixed cell heights provide a wider range of tradeoff between perfor-

mance and area such that 8T cells are applied to timing paths with large slacks for area reduc-

tion, and 12T cells are used in timing-critical paths to meet timing constraints. Furthermore,

with loose timing constraints, the area benefit of mixed cell-height designs over 8T-only de-

signs reduces. On the other hand, mixed cell heights also have similar or even higher maximum

achievable performance compared to designs with only single-height cells. For instance, we ob-

serve up to 13% performance improvement from mixed cell heights over 8T-only designs (i.e.,

on design AES). This is because the maximum achievable performance of an 8T-only design is

limited by the weak drive strengths of 8T cells. Moreover, mixed cell heights are able to have
68Note that our mixed-height optimization on design AES (clock period = 800ps) results in a 8T-only design, but

with 27% area reduction compared to that of the 8T-only implementation. This might be due to pessimism and a large
number of inserted buffers during the synthesis stage of the 8T-only flow.

160

more compact area, which reduces wire capacitance, as well as smaller pin capacitance (i.e., by

using 8T cells) on non-timing critical fanouts of a timing-critical driver (which is typically a 12T

cell) compared to 12T-only designs.

Experimental results also show that our optimization with mixed cell heights offers com-

parable routed wirelength compared to 8T-only designs and smaller routed wirelength compared

to 12T-only designs, which is mainly due to our wirelength-aware cell mapping and reduced

total cell area (i.e., a more compact layout). Furthermore, in our experimental flow we use

command ccopt design from Innovus to perform clock tree synthesis. Results show that our

optimized designs with mixed cell heights have similar clock tree metrics (i.e., total buffer area

and clock tree wirelength) compared to designs with only single-height cells. This indicates

that our optimization does not incur any power and area penalties with respect to the clock tree

synthesis optimization. On the downside, we observe in our experiments that including more

libraries (i.e., with mixed cell heights) typically increases the runtime of commercial SP&R

tools. Furthermore, although we apply our internal timer during the placement legalization, the

incremental timing analysis, placement legalization and trial routing used for correlation also

incur runtime overhead. Therefore, our mixed-height implementations are achieved at the cost

of larger runtimes compared to single-height cases.

Figure 4.11: Pareto curves of performance-area tradeoff for implementations with 8T-only,
12T-only and mixed cells.

Figure 4.12: Iso-performance power comparison with voltage scaling among implementations
with 8T-only, 12T-only and mixed cells.

161

Figure 4.13: Pareto curves of performance-area tradeoff for implementations with 10T-only
and mixed (8T and 12T) cells.

Figure 4.14: Iso-performance power comparison with voltage scaling among implementations
with 10T-only and mixed (8T and 12T) cells.

Iso-Performance Power Comparison

Given that certain designs have timing violations, to achieve a fair power comparison we

perform voltage scaling on each design so that all designs meet the timing constraints. We then

compare power at the scaled supply voltage. In our experiments, we define scaling lib group

in the PT-PX tool to enable such comparisons. Note that to compensate the slack discrepancy

between Innovus and PrimeTime, we apply a constant slack shift (i.e., the difference between

the WNS from PrimeTime versus the WNS from Innovus) of the entire block to correlate the

post-routing worst slack values, then perform voltage scaling. When the difference between the

scaled voltage and the signoff voltage is larger than 30mV , we perform SP&R with the scaled

voltage and use the smaller power value between that of the initial implementation and that of

the additional implementation in our comparison.

Figure 4.12 shows the iso-performance power comparison. We observe that 8T-only de-

signs typically have smaller power compared to 12T-only ones. The exception of design MPEG

with frequency = 1.8GHz might be due to a larger number of buffer insertion as well as voltage

scaling in the 8T-only design to meet the performance constraints. Moreover, our optimized

designs with mixed cell heights provide power reduction compared to 8T-only and 12T-only de-

signs. Such power reduction mainly comes from reduced cell area and wirelength, as well as

power-awareness in our partitioning optimization. Similarly to area benefit, power benefit from

mixed heights over 8T-only designs also reduces at a loose timing constraint.

162

Comparison to 10T-Only Designs

We generate 10T cell libraries by performing interpolation on timing and power tables

of 12T and 8T libraries. We also generate cell LEF by scaling area of cells proportional to

cell drive strengths according to area and drive strength information of 8T and 12T cells. There-

fore, 10T cells offer averaged performance-area and performance-power tradeoffs of 8T and 12T

cells. Figure 4.13 and Figure 4.14 respectively show performance-area Pareto curves and iso-

performance comparisons between 10T-only designs and mixed-height designs with 12T and 8T

cells. We observe significant power and area reductions from the optimized designs with mixed

heights over the 10T-only designs. This indicates that single-height designs with an optimized

performance-power/area tradeoff are not able to provide the similar performance, power and area

benefits compared to mixed cell-height designs which are able to explore a wider range of trade-

off among performance, power and area.69 Moreover, we perform mixed-height optimization

with 8T, 10T and 12T cells as an example to demonstrate the scalability of our methodology to

more than two cell heights. The black curves and dots in Figure 4.13 and Figure 4.14 respec-

tively show performance-area and performance-power tradeoffs of the optimized design with

three cell heights. Results show similar design quality between the mixed-height solutions with

8T and 12T cells versus the solutions with 8T, 10T and 12T cells for most of the designs. On de-

sign DES, adding 10T cells reduces power and area. The slight power increase on design MPEG

(frequency = 1.66MHz) might come from the noise of SP&R tools as well as our optimization.

4.1.5 Conclusion

In this work, we have proposed a novel physical design optimization flow (which in-

cludes synthesis, placement, clock tree synthesis and routing) to mix cells with different, non-

integer multiple heights in a fine-grained manner within a single place-and-route block. Our flow

addresses the “chicken-and-egg” loop between floorplan site definition and the post-placement

choice of cell heights, and correctly models (based on industry feedback from 20SOC and 16FF

design experience) “breaker cell” overheads of the mixed-height placement. Our optimization,

applied to production 12T and 8T libraries in a 28LP foundry technology, can achieve 30+

percent area and power reductions while maintaining performance, as compared to a 12T-only

design flow. Moreover, our optimized mixed-height designs can achieve significant performance

increase along with area and power reductions as compared to designs with 8T-only cells.
69For our benchmark designs and selected clock periods, 8T (resp. 12T) cells typically lead to timing violations

(resp. power and area overheads), we therefore consider 10T cells to have an optimized performance-power/area
tradeoff.

163

Table 4.4: Parameters and results of implemented designs.
Flow 12T 8T mix 12T 8T mix 12T 8T mix 12T 8T mix

Design (clk period) AES (650ps) DES (600ps) JPEG (750ps) MPEG (550ps)

#Instances 14466 16056 14967 19896 23699 24738 52887 60137 57756 14117 15709 14820

Setup WNS (ps) -54 -119 1 -0 -18 1 -0 -20 -0 -10 -143 2

Setup TNS (ns) -2.755 -18.963 0.000 -0.000 -1.083 0.000 -0.000 -2.741 -0.000 -0.107 -18.861 0.000

Area (µm2) 15481 13582 12190 20470 18218 15598 59998 49156 41703 21055 15494 13730

WL (mm) 160 151 157 183 173 177 535 512 510 150 148 152

Leakage (mW) 0.489 0.366 0.158 0.346 0.385 0.203 1.017 0.959 0.511 0.216 0.206 0.090

Total power (mW) 35.0 30.0 25.7 57.2 52.9 44.9 67.1 58.6 51.4 34.4 30.2 27.7

Clock area (µm2) 15 13 12 53 41 39 158 131 112 102 167 64

Clock WL (µm) 2017 1841 1463 8050 6834 6490 23977 19549 17912 11678 10620 10470

Runtime (min) 146 147 224 113 140 257 237 265 514 57 91 163

Design (clk period) AES (700ps) DES (650ps) JPEG (800ps) MPEG (600ps)

#Instances 14126 15688 14594 18504 22708 22321 54439 57310 56084 13776 15957 13655

Setup WNS (ps) -3 -60 1 -0 -13 0 -2 -8 -0 1 -82 -5

Setup TNS (ns) -0.009 -7.452 0.000 -0.000 -0.367 0.000 -0.005 -0.182 -0.000 0.000 -8.482 -0.048

Area (µm2) 14021 13241 8755 19586 16186 14539 59529 44998 41240 20171 14849 13268

WL (mm) 166 141 135 180 159 158 518 477 468 147 139 136

Leakage (mW) 0.387 0.350 0.128 0.290 0.302 0.144 1.038 0.760 0.516 0.164 0.153 0.081

Total power (mW) 29.4 27.5 17.7 51.0 44.6 39.1 59.6 50.9 46.3 30.9 26.4 24.9

Clock area (µm2) 15 13 11 49 35 36 109 100 93 81 102 65

Clock WL (µm) 2079 1915 1363 7823 6107 6019 21308 22895 16612 11631 11270 9724

Runtime (min) 136 158 128 91 151 176 239 310 495 37 65 107

Design (clk period) AES (750ps) DES (700ps) JPEG (850ps) MPEG (650ps)

#Instances 13805 14981 14122 18123 22206 21782 52401 58055 57304 13421 14490 13478

Setup WNS (ps) -3 -24 3 0 -8 -0 0 -11 0 1 -56 2

Setup TNS (ns) -0.003 -1.740 0.000 0.000 -0.091 -0.000 0.000 -0.241 0.000 0.000 -5.163 0.000

Area (µm2) 12202 11901 8334 19158 15040 13767 57128 44073 40678 19717 14635 13127

WL (mm) 157 137 131 171 154 156 539 425 423 149 143 135

Leakage (mW) 0.275 0.290 0.096 0.253 0.243 0.104 0.915 0.679 0.423 0.141 0.147 0.063

Total power (mW) 24.0 22.7 16.3 46.1 39.1 34.9 54.5 48.1 44.1 28.5 23.3 22.9

Clock area (µm2) 19 10 12 47 29 40 100 106 95 82 58 51

Clock WL (µm) 1960 1683 1959 7605 5933 6326 20133 18441 16055 11709 10027 9734

Runtime (min) 49 73 113 97 111 93 189 244 579 59 91 63

Design (clk period) AES (800ps) DES (750ps) JPEG (900ps) MPEG (700ps)

#Instances 12883 14480 14043 17636 20178 19788 51991 57388 56287 11977 14514 13445

Setup WNS (ps) 0 -11 2 -0 -6 1 0 -11 0 1 -12 3

Setup TNS (ns) 0.000 -0.280 0.000 -0.000 -0.024 0.000 0.000 -0.375 0.000 0.000 -0.455 0.000

Area (µm2) 11294 10244 7402 18637 14359 13447 54647 44758 40400 19434 14038 12794

WL (mm) 155 133 128 165 150 153 591 483 479 159 138 140

Leakage (mW) 0.220 0.224 0.078 0.220 0.207 0.094 0.711 0.699 0.413 0.129 0.116 0.054

Total power (mW) 21.2 19.2 13.7 41.8 35.5 32.3 52.0 42.7 38.4 26.8 21.4 21.0

Clock area (µm2) 13 11 11 47 30 32 111 85 93 101 50 46

Clock WL (µm) 2004 1566 1570 7397 6451 7270 21171 17433 17862 11823 9717 9818

Runtime (min) 74 107 76 81 120 76 139 285 424 61 83 58

164

4.2 NOLO : A No-Loop, Predictive Useful Skew Methodology for

Improved Timing in IC Implementation

Zero-skew clock tree synthesis is commonly used in conventional chip implementation

flows to minimize the maximum clock skew. Figure 4.15(a) shows a conventional chip imple-

mentation flow, in which we synthesize a design described in RTL to obtain a gate-level netlist.

We then place the gate-level netlist, perform clock tree synthesis (CTS) based on the placement

results, and route the connections in the design. We refer to this as a zero-skew flow.

By intentionally skewing clock latencies70 of flip-flops (flops), we can increase the tim-

ing slacks on critical paths while still satisfying the timing constraints on non-timing critical

paths [67][179]. This skew scheduling methodology for timing optimization is well-known as

useful skew. Previous works that study useful skew mainly focus on two objectives – (i) to

minimize the clock period and (ii) to maximize the timing margin (robustness). Fishburn [67]

formulates a linear program (LP) to optimize clock latencies for performance improvement. The

LP formulation considers both setup and hold constraints. Szymanski [179] further improves

the efficiency of the LP by selectively generating constraints. Wang et al. [194] also propose an

LP-based approach to evaluate potential slacks in circuits and optimize clock skew. The clock

skew optimization problem can also be solved by graph-based methods as in [52].

More recent work of Albrecht et al. [3][4] formulates useful skew optimization as a

maximum mean weight cycle (MMWC) problem, which optimizes not only the minimum slack

in a circuit, but also the slacks on other paths. The MMWC approach achieves better timing

improvement than the LP-based approach, and is currently the standard approach for useful skew

optimization in commercial EDA tools. Runtimes are reduced using faster MMWC algorithms

such as [192][195].

Figure 4.15(b) shows a typical useful skew flow, in which the clock latencies are opti-

mized after synthesis, placement and CTS in the Skew opt step. A crucial observation is that the

typical useful skew flow suffers from a “chicken-and-egg” quandary: after the netlist has been

synthesized and placed with zero skew, what useful skew can accomplish is limited.

To fully exploit the potential of useful skew, Albrecht et al. [6] interleave useful skew

with RTL synthesis to optimize the performance and area of a design. Hurst et al. [93] propose

a placement algorithm with a tight integration of useful skew to minimize maximum mean delay

in any circuit loop. Although these methods can inject useful skew into synthesis or placement
70We define clock latency as the delay from the clock source to a flip-flop clock input pin.

165

Figure 4.15: (a) A conventional zero-skew chip implementation flow (zero-skew flow). (b) A
standard useful skew flow (typical useful skew flow).

stages of implementation, substantial changes would be required to implement them with ex-

isting commercial tools. Thus, the work of Wang et al. [191] is notable for its feasibility with

modern back-end EDA tools: the authors propose to back-annotate post-placement clock laten-

cies (obtained from useful skew optimization) to the pre-synthesis stage, and re-execute the flow.

I.e., after feeding back the clock latencies, [191] re-performs synthesis and placement, followed

by another useful skew optimization (see Figure 4.16)(a). This synthesis, placement and useful-

skew loop continues until there are no further improvements; empirical results in [191] imply

that only two iterations are required to realize the benefits of the proposed methodology.

Our Work

Although the back-annotation flow can account for interactions between synthesis, place-

ment and useful skew optimizations, having such a loop in the flow has unacceptable turnaround

time impacts. According to [148], it is practically infeasible to make multiple iterations through

re-synthesis and physical implementation, as even the time for placement alone of a large hard

macro block in a 28nm SOC can be five days (and, a single pass through placement + placeOpt

+ CTS can have over a week of runtime). This motivates us to seek a predictive, one-pass means

of addressing the chicken-egg problem for useful skew.

To avoid turnaround time impact, we predict and enforce useful skews at the post-

synthesis stage, within a one-pass implementation. As outlined in Figure 4.16(b), our new

166

NOLO (“no-loop”) flow predicts useful skews based on timing analysis of the synthesized netlist

using the default wireload model provided in timing libraries. Experimental results in Sec-

tion 4.2.2 show that our simple prediction flow achieves good timing quality compared to a Typ-

ical useful skew flow without only a single implementation pass (i.e., no runtime penalty). We

further improve circuit timing with a variant flow (the dotted box in Figure 4.16(b)) that predicts

the useful skews based on two synthesized netlists. With the optional flow, we can improve total

negative slack by 5% compared to the back-annotation flow of [191]. Note that the additional

synthesis run has no turnaround impact as we can launch both synthesis runs in parallel.

To complete our study, we also implement a wide range of alternative back-annotation

flows (e.g., post-routing information can be fed back to synthesis, to placement, or to clock tree

synthesis stages) to experimentally assess their runtime and timing quality tradeoffs.

Our discussion below will use the following definitions.

• Zero-skew flow : the conventional chip implementation flow with zero-skew CTS.

• Typical useful skew flow : one-pass chip implementation flow with useful skew optimiza-

tion using a commercial tool, e.g., skew opt in Synopsys IC Compiler vH-2013.03-ICC-

SP3 [239].

• Back-annotation flow : a chip-implementation flow that feeds back circuit information

to earlier stages for useful skew optimization. Variants of back-annotation flows are de-

scribed in Section 4.2.2.

• Prediction flow : our new one-pass chip implementation flow, NOLO, with useful skew

optimization at the post-synthesis stage.

We use slack to denote the endpoint setup slack on maximum-delay paths between sequentially

adjacent flops or ports [71]. Furthermore, since MMWC is the de facto standard approach for

useful skew optimization, we perform useful skew scheduling using the maximum mean weight

cycle formulation of [4] and the algorithms given in [3]. Thus, (i) our useful skew optimization

is same as that in the back-annotation flow of Wang et al. [191], and (ii) we assume that the

“typical useful skew flow” also optimizes the skew schedule using the MMWC formulation.

Scope and Organization

Our work achieves the somewhat surprising result that an improved useful skew opti-

mization at the post-synthesis stage can enable a single-pass flow to achieve similar or better

167

Figure 4.16: (a) A chip implementation flow with useful skew back-annotation
(back-annotation flow). (b) Our predictive NOLO (“no-loop”) useful skew flow (prediction

flow).

timing improvements compared to back-annotation flows. We focus on optimization of useful

skews rather than the downstream physical implementation (i.e., CTS, placement and routing

with given useful skews). Our three main contributions are summarized as follows.

1. We show that applying useful skews at post-synthesis stage of circuit implementation im-

proves the timing correlation between post-synthesis stage and post-routing stage.

2. We also show that with an additional synthesis run, our predictive useful skew flow can

achieve better timing slacks compared to back-annotation flows.

3. We implement different useful skew flows to study the tradeoffs between runtime and

timing slacks (with the same area and power).

We present our NOLO prediction flow in Section 4.2.1. Section 4.2.2 describes our ex-

perimental setup, implementation details of different useful skew flows and experimental results.

Section 4.2.3 concludes our discussion and gives several directions for future work.

168

4.2.1 Methodology

Our predictive flow applies useful skew optimization to a post-synthesis netlist, such that

the useful skew optimization is not affected by an initial placement, and allows for a one-pass

chip implementation flow.

Analysis of the Impact of Placement and Timing Optimization

Intuitively, applying predicted useful skews at the post-synthesis stage is risky, in that

timing information at this stage is incomplete. In other words, the circuit timing will be changed

by subsequent placement, routing and optimization steps (e.g., cell resizing and/or swapping,

buffer insertion, cloning, parasitics from wiring, etc.). To gain initial understanding of the impact

of a predictive useful skew flow at the post-synthesis stage, we run two basic implementation

flows as illustrated in Figure 4.17.

Netlist_A
(post‐synthesis)

Netlist_B
(Post‐route)

P&R, timing
optimization

Netlist_C
(Post‐route)

P&R, timing
optimization

Useful skew
optimization

A conventional flow

A simple predictive flow

Figure 4.17: Overview of two basic implementation flows.

Given a post-synthesis netlist (Netlist A), we run placement and routing (P&R) to

obtain a post-routing netlist without any useful skew optimization (Netlist B). Meanwhile, we

extract timing information from Netlist A, and apply MMWC-based useful skew optimization.

Based on the useful skew results, we annotate clock latencies in an SDC file and run the same

P&R flow to obtain another post-routing netlist (Netlist C).

Figure 4.18 shows the timing slacks (for all sequentially adjacent flop pairs) at post-

synthesis stage versus the timing slacks at the post-routing stage. In Figure 4.18(a), we can

see that in a chip implementation flow without any useful skew optimization (i.e., the top flow

in Figure 4.17), the timing slacks at post-synthesis stage have poor correlation with the timing

slacks at post-routing stage. For example, critical paths at post-routing stage (timing slack = 0)

correspond to the paths with 0ps to 250ps timing slacks at post-synthesis stage. On the other

hand, Figure 4.18(b) shows that with useful skew optimization at post-synthesis stage, the timing

slacks at post-synthesis and post-routing stages have much better correlation. More specifically,

169

Figure 4.18: Timing slacks at post-synthesis versus timing slacks at post-routing stage: (a)
without useful skew, and (b) with useful skew. Paths are extracted from the MPEG testcase with

0.4ns clock period (Table 4.5).

the critical paths at post-routing stage (timing slack = 0) correspond to the paths with 0ps to

150ps timing slacks at post-synthesis stage when useful skew is applied at post-synthesis stage.

This is because the useful skew optimization at post-synthesis relaxes the timing constraints.

As a result, the P&R stages do not need to significantly perturb the netlist to meet the timing

constraints. Further, Figure 4.19 shows that the relative values of useful skew and timing slacks

are similar for post-synthesis and post-routing stages. The post-routing slack is slightly smaller

due to the impact of interconnect delay and power/area optimization during the P&R stage.

A Key Observation. Because of the good correlation between timing slacks at post-synthesis

stage and post-routing stages, the clock latencies resulting from useful skew optimization are

similar at these two stages. Therefore, we expect that applying useful skew optimization at

post-synthesis stage will lead to similar timing improvements compared to applying useful skew

170

skew_vs_slack

Figure 4.19: Useful skew versus timing slacks at (a) post-synthesis and (b) post-routing stages.
Paths are extracted from the MPEG testcase with 0.4ns clock period (Table 4.5).

optimization at later stages. We validate this hypothesis by generating the optimal useful skews

at post-routing stage (Netlist C) and comparing with the predictive useful skews generated at

post-synthesis stage (Netlist A). Each dot in Figure 4.20 represents the useful skew of a pair of

sequentially adjacent flops, where paths are extracted from the MPEG testcase with 0.4ns clock

period (Table 4.5). The x-axis is the optimal useful skew at post-synthesis stage and the y-axis

is the optimal useful skew at post-routing stage; the correlation coefficient for the useful skews

is 0.83.

Since the predicted useful skews at the post-synthesis stage are very similar to the op-

timal useful skews at the post-routing stage, our predictive useful skew flow would seem likely

to achieve near-optimal timing quality. In other words, results in Figure 4.18 suggest why sim-

ple prediction of useful skews at the post-synthesis stage is feasible. Note that the results in

Figures 4.18 to 4.20 are representative for all other testcases in our study.

171

Figure 4.20: Optimal useful skews (obtained from MMWC) based on timing information at
post-synthesis and post-routing stages have good correlation.

Implementation of Predictive Useful Skew Flow

It is well known that useful skew optimization migrates timing slack from a non-critical

path to the sequentially adjacent critical paths. Thus, the maximum achievable timing slack is

bounded by the mean timing slack of paths that form a cycle. Therefore, we follow standard prac-

tice and formulate the useful skew optimization as the maximum mean weight cycle (MMWC)

problem [3][4]. Given a post-synthesis netlist with edge-triggered flops, we model the netlist

using the directed graph G(V,E), where each flop in the netlist is represented by a vertex71 and

there is an edge between two vertices whenever there is a purely combinational path between

the corresponding flops. The setup and hold slacks on the path are modeled by the following

equations
si,j,setup = −xi + xj + T − di − dmax

i,j − tsetup
j

si,j,hold = xi − xj + di − dj + dmin
i,j − thold

j

(4.4)

where si,j,setup and si,j,hold are respectively the setup and hold slack on the path from the ith

flop (fi) to the jth flop (fj). xi denotes the clock latency of the ith flop. T is the clock period, di

is the clock-to-Q delay of fi, and dmax
i,j and dmin

i,j are respectively the maximum and minimum

path delay from fi to fj . Last, tsetup
j and thold

j are the setup and hold time of fj , respectively.

71Following guidance from [2], all input (resp. output) ports are merged and treated as a single vertex in our
MMWC useful skew optimization. This step enables every maximum-delay combinational path (flop-flop, PI-flop or
flop-PO) to be included in at least one cycle.

172

We then formulate our useful skew optimization as

Maximize
∑
i,j

si,j,setup

Subject to si,j,hold ≥ 0,∀i, j
(4.5)

We optimize the sum of setup slacks (flop pairs) because a larger setup slack can poten-

tially improve the achievable operating frequency, or be traded off for power and area recovery.

We also consider hold time constraints to ensure correct circuit operation. In the MMWC opti-

mization, we first calculate the weight of each edge (i.e., the worst setup slack corresponding to

a pair of flops). We then find the minimum-weight edge in each iteration and label it as a critical

path. For an efficient implementation, we determine the minimum-weight edges using the para-

metric shortest path algorithm (details of which are given in [3]). When the critical paths form

a cycle, we set the weight (i.e., timing slack) of each edge on the cycle as the maximum mean

weight of the cycle. Based on the timing slack, we then determine the clock latency for each

vertex (flop). After assigning the clock latencies, we contract the cycle into one vertex and up-

date the weights of incoming/outgoing edges of the contracted vertex. We iteratively search for

the minimum-mean-weight cycle and contract the cycle until every vertex is assigned to a clock

latency. To incorporate hold constraints in the MMWC, we add edges in parallel to the edges

corresponding to setup slack (but with reversed direction). Similarly, each of these (hold) edges

is given a weight that corresponds to the hold slack. The parametric shortest path algorithm will

honor the constraints defined by hold edges when it searches for the minimum (setup) weight

edge.

An Improved Predictive Useful Skew

The solution quality of useful skew optimization at the post-synthesis stage will be af-

fected by various timing optimizations during place and route, such as Vth-swapping and sizing.

To address this issue, we also predict useful skews based on a netlist synthesized with only the

fastest available cells (e.g., low threshold voltage (LVT) library) (Algorithm 19). Prediction of

useful skews based on the LVT-only netlist not only comprehends the impact of Vth-swapping in

later-stage optimizations, but also estimates the achievable slack between each flop pair. How-

ever, hold time analysis on a netlist with only the fastest cells is too conservative. Thus, we also

propose to synthesize the design with multiple libraries (e.g., multi-Vth cell libraries) and for-

mulate the hold constraints based on the multi-Vth netlist (Line 4 in Algorithm 19). As shown in

Algorithm 19, this prediction flow requires two synthesis runs, which can be executed in parallel

173

so that there is no turnaround time impact. Based on the synthesized LVT and multi-Vth netlists,

we optimize useful skews using the MMWC algorithm (Line 5). We then use the LVT netlist for

placement and routing (P&R) (Line 6). Note that we use multi-Vth libraries for P&R implemen-

tations, i.e., the P&R tools will optimize power by swapping LVT cells to other Vth flavors on

non-critical timing paths. Thus, the accuracy of our useful skew prediction based on LVT-only

netlist is less affected by the Vth swapping. In the following discussion, we use SimPred to

refer to the simple prediction flow described in Section 4.2.1, and ImpPred for this improved

predictive useful skew flow based on two synthesis runs.

Algorithm 19 No-loop, predictive useful skew methodology
Procedure ImpPred(RTL, SDC, LibertyLV T , LibertyMV T)
Output: Nout

1: NLV T ← Synthesis(RTL, SDC, LibertyLV T);
2: NMV T ← Synthesis(RTL, SDC, LibertyMV T);
3: V ← flops, PIs, POs in NLV T ;
4: E ← max-delay paths in NLV T ∪ min-delay paths in NLV T ;
5: clock latencies←MMWC(V , E);
6: Nout← P&R(NLV T , SDC, LibertyLV T , clock latencies);

4.2.2 Experimental Results

Our experiments use a dual-Vth 28nm FDSOI library and three RTL designs from the

OpenCores website [230]. We show statistics of testcases (including clock period, total number

of cells, number of flops, and number of maximum/minimum delay paths (i.e., number of edges

in the sequential graph)) in Table 4.5. We use Synopsys Design Compiler vH-2013.03-SP3 [237]

to synthesize the RTL netlists.72 We run P&R using Synopsys IC Compiler vH-2013.03-ICC-

SP3 [239]. We also use Synopsys IC Compiler for power analysis, and Synopsys PrimeTime

H-2013.06-SP2 [240] for timing analysis. The setups for timing analysis are given in Table 4.6,

where in the absence of AOCV tables we use timing derates to model on-chip variation. All

(dual-Vth) implementation experiments are run with two signoff corners at {125◦C, 0.9V , SS}
and {-40◦C, 1.05V , FF}. To mitigate the effects of tool noise [95], each P&R implementation

executes three separate runs with small perturbations of clock period (i.e., -1ps, 0ps, +1ps); we

report the largest endpoint slack results obtained over all three final-routed netlists.

The back-annotation flow can have different variants. In addition to the back-annotation

flow proposed in [191], we have implemented four variant back-annotation flows, designated as
72A physical synthesis flow is used: We first run the default synthesis flow, then implement a fast placement of the

synthesized netlist, based on which another pass of synthesis is made with topographical (“topo”) option.

174

Table 4.5: Benchmark designs.

Design
Clk period

#Cells
#Flip-flops #Paths

(ns) (#Vertices) (#Edges)

AES 0.6 ∼23K 530 16251

DES 0.5 ∼11K 1985 23153

JPEG 0.6 ∼50K 4712 137333

MPEG 0.4 ∼11K 3381 95490

Table 4.6: Experimental setups for timing analysis.

Parameter Value

Clock uncertainty (synthesis) 0.15 × clock period

Clock uncertainty (placement, CTS) 0.10 × clock period

Clock uncertainty (CTS opt, routing) 0.05 × clock period

Maximum transition 0.08 × clock period

Timing derate on net delay (early/late) 0.90 / 1.19

Timing derate on cell delay (early/late) 0.90 / 1.05

Timing derate on cell check (early/late) 1.10 / 1.10

BA-I, BA-II, BA-III and BA-IV.

In BA-I (Figure 4.21(a)), we collect timing information at post-placement stage, opti-

mize useful skew, and back-annotate the clock latencies to the post-synthesis stage. For BA-II,

BA-III and BA-IV, we collect timing information at post-routing stage and optimize useful

skew. The optimized clock latencies are then back-annotated to the synthesis, placement, and

CTS stages, respectively, in BA-II, BA-III and BA-IV.

We perform chip implementations on designs (listed in Table 4.5) with eight chip im-

plementation flows – (a) the standard useful skew flow (Typical) where we use the command

skew opt in Synopsys IC Compiler vH-2013.03-SP3 [239] to generate desired clock latencies for

incremental clock tree optimization; (b) the back-annotation flow by Wang et al. [191] (BA-

W), which is depicted in Figure 4.16(a); (c) four variants of back-annotation flows described in

Section 4.2.2; and (d) our two NOLO (“no-loop”) predictive flows (SimPred and ImpPred), in

which we apply predicted useful skews at post-synthesis stage and continue to use them through-

out timing optimization in P&R.

Results in Table 4.7 show that different flows achieve similar power and area. Also, all

designs are free of any hold time violation. Thus, we achieve clean comparisons of different

flows based on the total negative slack.

175

Figure 4.21: (a) BA-I flow. (b) BA-II flow. (c) BA-III flow. (d) BA-IV flow.

Back-annotation vs. Typical. Results in Table 4.7 show that the BA-W flow can achieve

better total negative slack (TNS) compared to the Typical flow (average across all testcases in

Table 4.5). This is mainly because the useful skew optimization in the BA-W flow can interact

with the synthesis and placement stages through the feedback loop. As a result, the cells on crit-

ical paths can be re-sized, re-structured and/or re-allocated to improve timing quality. However,

the runtime of the BA-W flow is 85% longer than the Typical flow.

SimPred vs. Back-annotation. Results in Table 4.7 show that although the SimPred flow can

also achieve significant improvement compared to the Typical flow, the average TNS achieved

by the SimPred flow is approximately 20% worse compared to BA-W. This is expected because

the useful skew solution (at post-synthesis stage) may be suboptimal due to design changes in

176

the place and route stages. However, the SimPred reduces runtime by 66% compared to the

BA-W flow.

ImpPred vs. Back-annotation. Our results also show that with the concurrent LVT-only

synthesis run, the ImpPred flow achieves improved TNS, power and area (on average) compared

to BA-W. This is because the benefit of useful skew optimization is limited by the zero-skew

placement in BA-W. For example, buffers are inserted in the zero-skew netlist to fix timing

violations, which increases area and power. Moreover, the critical paths will not fully exploit

the potential benefits of useful skew. In contrast, our ImpPred flow relaxes timing constraints

at the post-synthesis stage via an early-stage useful skew optimization (see Section 4.2.1). We

believe that this enables the optimized netlist to meet timing constraints with less area and power

penalty (e.g., less buffer insertions).

Among the four testcases, BA-W only does better for the JPEG testcase, by a small

margin. Overall, our prediction of useful skew at post-synthesis stage is superior to the BA-

W back-annotation flow. Moreover, our ImpPred is a one-pass implementation which reduces

runtime by 66% compared to BA-W. Note that the runtime of the ImpPred flow is smaller than

the runtime of the SimPred flow, even though ImpPred implements two synthesis runs. This is

because we execute the synthesis runs simultaneously, and the improved timing quality leads to

a faster convergence in the P&R stages.

Design Dependencies. We observe that the improvements from useful skew implementations

are design-dependent. Timing improvements with useful skew are less for a design with fewer

flops, because the number of paths that can be improved is smaller (e.g., AES). In this work,

we have focused only on optimization of timing. Conventional wisdom would suggest that our

improvements in timing can be traded for power and area improvements, and we plan to consider

the tradeoffs between timing and power/area objectives in our future work.

Comparison Among Variants of Useful Skew Flows. We compare the runtime and resultant

total negative slacks of various useful skew flows. In the back-annotation flows, we iteratively

optimize until the improvement in the average setup slack is less than 50ps. All the back-

annotation flows converge within three iterations.

Figure 4.22 shows that the TNS values of the back-annotation flows vary depending on

the testcase. This suggests that even with back-annotation, the useful skew optimization may be

misled by the initial netlist and thus end up with suboptimal solutions. Since the back-annotation

flows achieve different TNS values, we also plot the average TNS of all back-annotation flows

(including BA-W) for comparison (i.e., the blue diamond symbol and dotted lines). The re-

177

Table 4.7: Design metrics of routed design from different flows.

Design Flow
Power Area #Hold TNS WNS Runtime

(mW) (µm) violations (ns) (ns) (min)

AES

Typical 16984 35.8 0 -7.806 -0.047 117

BA-W 16860 35.0 0 -4.898 -0.042 145

SimPred 16539 34.7 0 -5.089 -0.035 79

ImpPred 16002 34.3 0 -4.883 -0.036 62

DES

Typical 21971 65.8 0 -13.920 -0.046 108

BA-W 20445 61.2 0 -5.574 -0.032 101

SimPred 20603 62.2 0 -5.885 -0.034 61

ImpPred 19618 57.2 0 -4.726 -0.035 53

JPEG

Typical 72799 77.0 0 -136.650 -0.131 496

BA-W 58874 64.6 0 -14.166 -0.043 1171

SimPred 57878 63.4 0 -19.317 -0.043 358

ImpPred 56970 61.7 0 -14.695 -0.045 339

MPEG

Typical 27655 52.6 0 -137.855 -0.168 134

BA-W 25761 48.5 0 -7.590 -0.049 165

SimPred 25415 48.3 0 -8.251 -0.054 97

ImpPred 25250 48.4 0 -6.408 -0.046 79

Typical 34852 57.8 0 -74.058 -0.098 213

Average of BA-W 30485 52.3 0 -8.057 -0.042 395

4 designs SimPred 30108 52.2 0 -9.636 -0.042 148

ImpPred 29460 50.4 0 -7.678 -0.041 133

sults show that ImpPred can achieve better results compared to the average TNS of the back-

annotation flows (BA avg) for larger testcases (JPEG and MPEG). For smaller testcases (AES

and DES), ImpPred achieves similar TNS compared to the average of back-annotation flows.

Also, it is clear that our predictive flows have significantly less runtime than the back-annotation

flows for all testcases.

4.2.3 Conclusion

We propose NOLO, a “no-loop” predictive useful skew optimization flow, based on tim-

ing information of a post-synthesis netlist. To account for the potential of timing changes during

the place and route stages, we improve our estimate of potential slack in the netlist by running

an additional logic synthesis step using fast library cells. Based on this technique, we show that

178

0

50

100

150

200

250

‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0
20
40
60
80
100
120
140
160
180

‐7 ‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

50

100

150

200

250

‐9 ‐8 ‐7 ‐6

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

200

400

600

800

1000

1200

1400

‐30 ‐25 ‐20 ‐15 ‐10

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

(a) AES.

0

50

100

150

200

250

‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0
20
40
60
80
100
120
140
160
180

‐7 ‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

50

100

150

200

250

‐9 ‐8 ‐7 ‐6
Ru

nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

200

400

600

800

1000

1200

1400

‐30 ‐25 ‐20 ‐15 ‐10

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

(b) DES.

0

50

100

150

200

250

‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0
20
40
60
80
100
120
140
160
180

‐7 ‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

50

100

150

200

250

‐9 ‐8 ‐7 ‐6

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

200

400

600

800

1000

1200

1400

‐30 ‐25 ‐20 ‐15 ‐10

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

(c) JPEG.

0

50

100

150

200

250

‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0
20
40
60
80
100
120
140
160
180

‐7 ‐6 ‐5 ‐4 ‐3

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

50

100

150

200

250

‐9 ‐8 ‐7 ‐6
Ru

nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

0

200

400

600

800

1000

1200

1400

‐30 ‐25 ‐20 ‐15 ‐10

Ru
nt
im

e
(m

in
)

TNS (ns)

BA‐I

BA‐II

BA‐III

BA‐IV

BA‐W

SImPred

ImpPred

BA avg

(d) MPEG.

Figure 4.22: Comparison among useful skew flows. Our ImpPred flow achieves better or
similar TNS but with 66% runtime reduction compared to back-annotation flows.

an improved predictive useful skew flow (ImpPred) can achieve similar or better total negative

slack compared to back-annotation flows, with only one pass through chip implementation. The

runtime of our predictive useful skew flows is similar to the runtime of the Typical flow, which

is approximately 66% less than the runtime of the back-annotation flow in [191].

Our study of different back-annotation flows indicates that back-annotation (or optimiza-

tion loops) cannot completely resolve the “chicken-and-egg” problem. We see that the timing

quality varies depending on testcases. This is because even with back-annotation, the useful

flows can be misled to a suboptimal local solution.

There are two major directions for our future work. First, we plan to analyze and apply

our useful skew flows across multiple PVT corners. Second, we plan to study and develop

models of the tradeoffs among area, power and timing with useful skew.

179

4.3 Reliability-Constrained Die Stacking Order in 3DICs Under

Manufacturing Variability

Stacked-die 3D integrated circuits (3DICs) using through-silicon via (TSV) technology

are an emerging architecture for heterogeneous integration and More-than-Moore scaling in late-

CMOS technologies. A 3DIC die stack, or simply stack, offers increased transistor density in

a given form factor, as well as potential cost and yield benefits (multiple smaller dies versus a

single larger die). However, the stacking of multiple thinned die (also referred to as tiers) in-

creases power density, creating temperature management and reliability challenges. Puttaswamy

et al. [160] show that 3DICs with two tiers and four tiers increase peak temperature by 17◦C and

33◦C, respectively, compared to planar implementations. Since current density and temperature

have a significant impact on IC reliability, reliability issues are especially important in the 3DIC

context [180][185].

With technology scaling, additional challenges arise from process variability, with vari-

ation sources spanning dopant fluctuation, mask data preparation and OPC, line-edge roughness,

misalignment in double-patterning, and a variety of across-field and across-wafer variability

mechanisms [126][127]. These process variations are present (and, uncorrelated) within a 3DIC

stack; because of higher temperatures due to die stacking, the process variations can heavily

affect performance as well as leakage power of the 3DIC product [64]. So that a given product

can meet its performance requirements, process variations in each manufactured die are typically

characterized at manufacturing time (e.g., for product binning, or to set one-time programmable

tables for adaptive voltage scaling [125][213]).

In this section, we study reliability-variability interactions and optimizations in the con-

text of 3DIC die stacking. Specifically, we focus on the stacking of multiple copies of logic dies

(e.g., as envisioned for many-core processor die in high-performance computing architectures)

[43][161]. We use the term stacking style to indicate both the selection of dies which exhibit

particular process variations (e.g., fast, typical, or slow dies) as well as the ordering of dies

within a given 3DIC product stack. Because of inter-die process variation, the choice of stacking

styles will impact performance, power consumption and reliability of 3DICs. In our studies, the

required performance for each die is predefined, and the adaptive voltage scaling (AVS) [58] is

assumed.

There are three methods to bond dies in 3DIC fabrication: die-to-die, die-to-wafer

and wafer-to-wafer. Applying different methods results in different flexibility, yield, and cost.

Among these three methods, die-to-die bonding offers the highest flexibility and yield, but also

180

incurs high cost. On the other hand, although wafer-to-wafer bonding offers the highest through-

put in production, bad dies cannot be scrapped before bonding, which results in the lowest yield.

Die-to-wafer bonding, which is easy to implement while offering flexibility and yield that are

similar to the die-to-die method, is promising for 3DIC fabrication. Our work applies primarily

to the die-to-die and die-to-wafer bonding contexts.

We assume that all logic dies are identical (a similar assumption can be applied to

memory-logic integration, where all memory dies are identical). Such a case may arise if apply-

ing the identical design to all the tiers in a stack reduces design efforts as well as manufacturing

cost [70]. Based on such an assumption, dies can be used interchangeably in different tiers.

Hence, we are able to change the stacking order during optimization.

Our discussion below will assume face-to-back stacking of the multiple logic-die tiers,

with a heat sink (or other heat removal mechanism) adjacent to the top tier as illustrated in

Figure 4.23. The figure shows a “STF” stacking order for a 3-tier stack, i.e., a slow-corner die

on bottom, typical-corner die in the middle, and fast-corner die on top.

TSV TSV MOSFET

TSV TSV MOSFET

Bulk

Heat sink

MOSFET

Slow-corner die

Typical-corner die

Fast-corner die

Face

Back

Face

Figure 4.23: “STF” stack in which a slow-corner die is located on the bottom tier, a
typical-corner die in the middle, and a fast-corner die on the top tier (adjacent to the heat sink).

To motivate our present work, Figure 4.24 shows the mean time to failure (MTTF) of

3-tier stacks with different stacking styles (orders). The maximum difference in MTTF result-

ing from different stacking styles can be up to 2 years (44%), where we assume that the same

performance requirement and AVS are applied to all dies in a stack. The study is conducted

by estimating temperature using Hotspot [221] and calculating MTTF based on Black’s equa-

tion [15], with the assumption that the supply voltage of each tier in a stack is adjusted using

adaptive voltage scaling (AVS) to meet a given fixed performance requirement. (Details of this

experiment are given in Section 4.3.4 below.)

181

0

1

2

3

4

5

6

7

8

SSS SST SSF STS STT STF TSS TST TSF SFS SFT SFF TTS TTT TTF FSS FST FSF TFS TFT TFF FTS FTT FTF FFS FFT FFF

M
TT

F
(y

ea
r)

Stack
Figure 4.24: MTTF of 3-tier stacks with different stacking styles. Letters S, T and F indicate
the (slow, typical, fast) process corners to which individual dies belong. Strings over {S, T, F}
indicate stacking styles (left-to-right in the string corresponds to bottom-to-top in the stack).

Related Work

Relatively few previous works study the issue of stacking styles (and, stacking of multi-

ple logic dies is not yet the focus of current 3DIC products). Ferri et al. [64] examine the impact

of process variation on 3DICs, and propose optimization strategies for stacking to increase para-

metric yield (performance and leakage power) of 3DICs. However, their studies only focus on

3DICs with two tiers, integrating one memory die and one logic die. Ferri et al. use reduc-

tion from 3D matching to show that stacking dies to optimize parametric yield (“as measured

by performance, leakage, or revenue”) is NP-hard; such a problem is tractable only when the

number of tiers is ≤ 2. Cho et al. [38] propose efficient models to predict geo-spatial thermal

characteristics within and across different dies without detailed cycle-level simulation. Based on

these models, optimal stacking methods are given to improve temperature in 3DICs. However,

the work of [38] does not consider the issues of process variation and reliability that are our

motivation here.

In general, TSV-based 3DIC integration offers a variety of value propositions. Beyond

the integration of heterogeneous technologies (memory, logic, RF, analog, microfluidic, etc.

components - e.g., [64]), previous works mainly focus on logic-memory stacking [64][138][145]

to increase performance and reduce memory bottlenecks. Logic-logic stacking shortens global

wiring and thus decreases signaling latency between blocks, potentially yielding higher per-

formance and smaller power consumption [16]. As noted above, our present study performs

experiments with logic-logic stacking; however, we believe that insights from our studies can

also be applied to memory-logic integration, particular in scenarios where multiple commodity

memory dies are stacked with logic [144][159].

182

Scope and Organization

Based on modeling of power consumption and temperature gradients, and their impacts

on chip-level power consumption and reliability, we study the variability and reliability impli-

cations of various alternative stacking styles for several distinct product objectives. Our main

contributions are as follows.

1. We identify a simple rule-of-thumb (namely, that slower dies should be located closer to

the heat sink in 3DICs to achieve better reliability and reduce temperature) for 3DIC stack

ordering.

2. We propose an O(n log n) heuristic method (based on the simple rule-of-thumb) and an

integer linear programming (ILP) method to determine stacking styles for large popula-

tions of manufactured dies to optimize 3DIC product yield or reliability.

3. Experiments using 5-tier die stacks demonstrate that the methods we propose achieve

∼7%, ∼28% and ∼3% improvements in average MTTF, minimum MTTF and perfor-

mance (under a reliability constraint), respectively, of the die stacks.

4. Interestingly, our results show that when high-quality stacking optimizations are applied,

a limited amount of manufacturing variation can be helpful in improving 3DIC product

reliability metrics.

The remainder of this section is organized as follows. Section 4.3.1 describes how we

model reliability of 3DICs as well as process variation. The simple rule-of-thumb for stacking is

also introduced in this section. Section 4.3.2 formulates several stacking optimization problems

to improve reliability, yield and performance (under a reliability constraint) of 3DICs. Sec-

tion 4.3.3 proposes heuristic and ILP-based methods for reliability-driven stacking optimization.

Experimental results are described in Section 4.3.4. The section concludes in Section 4.3.5.

4.3.1 Modeling

Reliability

Narrower line widths and larger current densities make interconnect reliability of in-

creasing concern for overall IC reliability. In particular, signal and power-delivery electromigra-

tion (EM) is now a dominant reliability constraint in current IC designs [180][202]. Especially

given the exponential dependence of EM lifetime on temperature, we will focus our discus-

sion on EM reliability; however, in principle our methodology can apply to any (power- and

183

temperature-dependent) IC reliability mechanism. We use the well-known empirical estimate

given by Black’s equation [15] to estimate the EM mean time to failure (MTTF) of each given

die:

MTTF =
A

Jn
· exp(

Ea

k · T
) (4.6)

where A is a process parameter based on the cross-sectional area of the wire, J is the current

density, n is a scaling factor, Ea is the activation energy, k is the Boltzmann constant, and T is

the temperature. Our work uses Ea = 0.7eV , n = 2 [15][133]. To evaluate the MTTF of 3DIC

stacks, we must establish necessary definitions of failure rate and reliability, as follows.

Definition: The failure rate (λ) is defined as the number of units failing per unit time.

Figure 4.25 illustrates the familiar reliability “bathtub curve” that models the change of

failure rate during the lifetime of an electronic device [196]. Such lifetime can be divided into

three periods. The first, early-lifetime or “infant mortality” period is characterized by decreasing

failure rate. Dominant reliability concerns during this period include oxide defects, masking

defects and contamination. Techniques such as burn-in and power- and thermal-cycling are

applied during this period to filter out bad devices. During the second period, random failures

appear, and the failure rate is modeled as a constant. This period indicates the typical lifetime

for usage (useful lifetime) of a device. Thus, our studies mainly focus on this period. The third

period is the wear-out period, failure rate increases during this period till the end of a device’s

lifetime.

Failure rate

Time

Early life
period

End of life
period

useful life period

Figure 4.25: Reliability “bathtub curve”.

Definition: The reliability (R(t)) is defined as the probability that a device (or a die) operating

under specified conditions shall perform satisfactorily for a given period of time (t).

184

The reliability can be calculated as [220]

R(t) = e−λ·t (4.7)

Based on (4.7) and a constant λ during the useful lifetime, the MTTF of a die (i.e.,

expectation of the time to failure) can be calculated as

MTTF =
∫ ∞

0

R(x) · dx =
∫ ∞

0

e−λ·x · dx =
1
λ

(4.8)

Note that according to (4.8), the value of λ can be calculated using Black’s equation

(4.6).

Furthermore, since any failure of any die in a 3DIC can cause the 3DIC to fail, the failure

rate of a 3DIC can be evaluated as

λstack =
L∏

i=1

λdiei
(4.9)

where λstack is the failure rate of the 3DIC, and λdiei
(i = 1, 2, . . . , L) is the failure rate of the

ith die in the stack. Based on (4.8) and (4.9), the MTTF of a 3DIC is

MTTFstack =
1∏L

i=1

1
MTTFdiei

(4.10)

where MTTFstack is the MTTF of the 3DIC, and MTTFdiei
(i = 1, 2, . . . , L) is the MTTF of

the ith die in the stack.

In our MTTF calculations reported below, we use Black’s equation (4.6) to estimate the

MTTF for each die in a 3DIC based on temperature and current density information. We then

apply (4.10) to calculate the MTTF of a given 3DIC.

Process Variation

Given an arbitrary number of dies, each exhibiting different process variation (e.g., char-

acterized during manufacturing test [125][213]), the number of possible stacking styles in 3DICs

composed of these dies can be quite large. For example, if there are 2000 distinct (in terms of

process variation) manufactured dies, and the 3DIC to be produced has 5 tiers, then the number

of distinct stacking styles is P (2000, 5) = 2000 · 1999 · . . . · 1996. Stacking the 2000 dies into

400 5-tier stacks would have an even more unmanageable solution space, wherein figuring out

the optimal (set of) stacking styles is intractable. (As noted above, the previous work of [64]

shows that the stacking optimization problem for certain objectives is NP-hard.)

In our work, we classify dies into a constant number of (i.e., O(1)) process bins ac-

cording to the speed of dies. Dies are classified into the same bin if they have similar process

185

variations, and to make the stacking optimization tractable, we assume the same process variation

characteristics for all dies that are classified into a given bin. This bin-based model assumption

greatly reduces the number of distinct stacking styles as well as the solution space for stacking

optimization. (E.g., for the same example of 2000 manufactured input dies and a 5-tier stack, if

we classify the dies into 3 process bins, the number of feasible stacking styles is reduced to 35.)

Taking advantage of such a bin-based model, we are able to explore the reduced solu-

tion space and determine optimal stacking styles when given a small number of bins. When

instantiating each distinct 3DIC stack (e.g., each of the 400 5-tier stacks to be made out of 2000

manufactured dies), we randomly select dies from corresponding bins to make up the stack.73

As discussed below, when the number of process bins is sufficiently large, results from stack

optimization flows that apply the bin-based models can be near-optimal.

A Rule-of-Thumb

For EM reliability, peak temperature is the main determinant of a given die’s reliability.

Additionally, the die with the weakest reliability in a stack determines the reliability of the entire

stack. Thus, to optimize reliability of a 3DIC, we seek to minimize the peak temperature among

all stacked dies in a 3DIC. It is not difficult to realize that two factors have significant impacts

on the temperature of dies in a 3DIC stack: process variation and stacking order.

As previewed in the discussion above, we assume that the same performance require-

ment is applied to all dies in a 3DIC, and that to compensate for interdie process variation, AVS

is deployed.74 In this context, individual dies will have different supply voltages, corresponding

to process variation. Slow dies require higher supply voltages than fast dies in order to satisfy

the performance requirements. Such high supply voltages can lead to high power consumption

on slow dies, which increases temperature. Hence, as a consequence of process variation and

deployment of AVS, slow dies will have higher temperature than fast dies.

The stacking order can also affect the temperature distribution of dies. We assume that

a vertical temperature gradient always exists in the 3DIC stack, because only the top-layer die

is directly contacted to the heat sink (a cartoon is shown in Figure 4.26). For dies in lower

tiers, the thermal dissipation through the heat sink, which is the primary mechanism for thermal

dissipation in 3DICs, is blocked by dies in the upper tiers. Hence, higher temperatures are
73For example, in a “FTTTS” 5-tier stack, we would successively pick one random die from the Fast bin, three

random dies from the Typical bin, and one random die from the Slow bin, and stack them bottom-up in this order.
74Indeed, for nearly all low-power consumer SOCs in advanced nodes today, sensor-based AVS is the norm; it is the

only available mechanism to recover power from a chip that has been overdesigned due to large model guardbanding.

186

Heat Sink
Top – low temp.

Bottom – high temp.

Figure 4.26: Temperature gradient. The top-tier die is in direct contact with the heat sink, and
thus has the lowest temperature. Due to intervening dies that block thermal conduction to the

heat sink, dies in bottom tiers have higher temperature.

observed in bottom-tier dies. Moreover, heat generated from dies in adjacent tiers exacerbates

thermal issues for any individual die in the stack. Figure 4.27 shows a simulated 5-tier 3DIC,

where all dies in the stack are assumed to exhibit the same process variation. In this example, the

maximum temperature difference between the bottom-layer die and the top-layer die is 35◦C.75

Top tier

Bottom tier

Figure 4.27: Example simulated temperature gradient in a 5-tier 3DIC stack. The difference
between the peak temperatures in the bottom-tier die and the top-tier die can reach 35◦C.

Based on the above analysis, considering effects of process variation as well as stack-

ing order on temperature distribution, we expect that if the same performance is required from

dies which exhibit different process variations, the worst-case peak temperature among feasible

stacking styles will occur when we locate slower dies in lower tiers (e.g., the slowest die is lo-

cated in the bottom tier, the second-slowest die is located in the next-to-bottom tier, and so on).

Furthermore, such worst-case peak temperature will likely correspond to the minimum MTTF
75In the simulation, we assume that the thermal resistivity for silicon is 100mK/W , die thickness is 50µm,

ambient temperature is 45◦C, and that there is a heat sink on top of the stack.

187

among all stacking styles, that is, the worst-case of reliability of the 3DIC. On the other hand,

if we locate slow dies on top, by taking advantage of thermal dissipation through the heat sink,

high temperature caused by high supply voltages can be relieved. Hence, the peak temperature

will decrease, and the MTTF of the stack will increase. Note that even when the thermal gradient

is small, the vertical thermal distribution is still monotonic, so that placing slow dies on top still

results in improved MTTF.

The experimental results shown in Figure 4.28 confirm our expectation. Figure 4.28

shows QoR metrics (MTTF and power) of 5-tier stacks implemented with different stacking

orders. We observe in the experimental results that placing slow dies close to the heat sink helps

improve the MTTF of the stack. We conclude this part of our discussion with the following

rule-of-thumb.

STTTF

TTTSF

TSTFT

TTSFT

TSFTT

TTTFS

SFTTT

TTFST

TFSTT
FSTTT

TFTST FTTTS

0.534

0.535

0.536

0.537

0.538

0.539

0.540

7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60

Po
w

er
 (W

)

MTTF (year)

Figure 4.28: QoR metrics (MTTF, power) of stacks with different stacking orders. Placing
slow dies close to the heat sink helps achieve large MTTF of stacks.

Rule-of-thumb: To optimize reliability of a 3DIC, the slowest dies should be located closest to

the heat sink in the stack.

The rule-of-thumb can further reduce the complexity of the stacking optimization prob-

lem, since for a stack with fixed composition, the reliability-aware optimal stacking order can

be fixed according to the rule-of-thumb. In other words, for a stack whose input dies are given,

instead of enumerating all permutations (stacking orders), the optimal stacking style is defined

by the rule-of-thumb. Therefore, in a case where input dies are classified into K bins and output

stacks are assumed to have L tiers, the number of stacking styles that need to be considered for

reliability-driven stacking optimization can be reduced from KL to
(
K+L−1

L

)
.

188

4.3.2 Problem formulation

Given N dies which are classified into K bins, we want to determine the optimal stack-

ing style for each output stack that contains L tiers. Our experimental results show that power

consumption mainly depends on composition of the stack. We observe that for a particular num-

ber of given input dies, the power consumption of output stacks exhibits only slight differences

(< 1%) across different stacking orders, while the difference in MTTF can be up to 16% for

5-die implementations. Therefore, we only focus on optimization for reliability in our studies.

Three exemplary reliability-driven stacking optimization problems are formulated as follows.

Formulation 1: OPT MTTF.

One objective of reliability-driven 3D stacking optimization is to maximize the sum

of MTTFs of output stacks (MTTFsum), where a required frequency (freq) is predefined as a

constraint for dies in a stack. AVS is applied to achieve the same performance across dies. In

other words, in a 3DIC, due to interdie process variation, each die has a particular supply voltage

corresponding to its process variation. The problem that searches for the optimal stacking style

of each stack can be formulated as follows.

OPT MTTF: Given N dies, each of which is classified into one of the K process bins

Maximize MTTFsum

such that frequency of each die in a stack = freq

Formulation 2: OPT YIELD.

We may also optimize the minimum MTTF (MTTFmin) among all output stacks to

improve the yield of 3DICs with respect to a particular reliability (MTTF) requirement. In this

scenario, MTTF constraints are predefined for 3DICs, and when constraints are not satisfied, the

failed 3DICs are scrapped. The objective for optimization is to maximize the number of good

stacks.

OPT YIELD: Given N dies, each of which is classified into one of the K process bins

Maximize Number of good stacks

such that frequency of each die in a stack = freq

MTTF of each good stack ≥MTTFreq

Note that we can maximize the minimum MTTF over all stacks by performing binary

search over MTTFreq, until the number of good stacks equals to the number of all stacks (i.e.,

N/L).

189

Formulation 3: OPT PERFORMANCE.

We also formulate a reliability-driven stacking optimization problem to improve the

performance (fstack) of 3DICs where reliability constraints are applied, e.g., by setting a lower

bound MTTF (MTTFreq) on 3DICs.

OPT PERFORMANCE: Given N dies, each of which is classified into one of the K process bins

Maximize fstack

such that MTTF of each stack ≥ MTTFreq.

4.3.3 Methodology

ILP-Based Method

S dies
SSS

SST

TTT

FFF

...
...

FFT

Input dies Stacking styles

MTTFSSS

MTTFTTT

MTTFFFF

MTTFSST

MTTFFFT

T dies

F dies

Figure 4.29: Allowed assignments in ILP-based stacking optimization method.

We propose an ILP-based method for reliability-driven stacking optimization. As men-

tioned in Section 4.3.2, inputs of such optimization are N dies that are classified into K bins,

while outputs are stacks such that each stack has L tiers. We create matching relationships be-

tween input dies and feasible stacking styles of output stacks. This is conceptually shown in Fig-

ure 4.29. Vertices on the left part of the bipartite graph indicate the available pools/populations

of input dies which are classified into process bins. Feasible stacking styles are enumerated on

the right part of the bipartite graph. In the graph, all input dies classified into a particular process

bin are connected to the stacking styles containing dies belonging to that bin. The relationships

between input dies and stacking styles define the assignment constraints in the ILP formulation.

Such constraints indicate that each die can be used exactly once. During the assignments, the

190

process bins should be consistent between the composition of stacking styles and the dies used

(e.g., a die belonging to the Slow bin cannot be assigned to the stacking style “FFT”). Each

stacking style corresponds to a MTTF estimated from simulation. In the ILP-based method, we

optimally assign input dies to stacking styles to maximize the sum of MTTFs of output stacks.

We give the notations and formulate the ILP as follows.

Notations:

1. Diei (i = 1, 2, . . . , N): input dies

2. Stylej (j = 1, 2, . . . ,M): feasible stacking styles (based on the rule-of-thumb, M =(
K+L−1

L

)
)

3. Binq (q = 1, 2, . . . ,K): process bins

4. Xq (q = 1, 2, . . . ,K): number of input dies that are classified into Binq, such that∑
1≤q≤K Xq = N

5. Yq,j (q = 1, 2, . . . ,K; j = 1, 2, . . . ,M): number of dies that are classified to Binq

contained in Stylej , such that ∀j
∑

1≤q≤K Yq,j = L

6. MTTFj (j = 1, 2, . . . ,M): MTTF of the stack implemented with Stylej

7. Cj (j = 1, 2, . . . ,M): number of output stacks implemented with Stylej , where L ·∑
1≤j≤K Cj = N .

ILP formulation (OPT MTTF , OPT PERFORMANCE):

Maximize
∑

1≤j≤M

MTTFj · Cj (4.11a)

Subject to
∑

1≤j≤M

Cj · Yq,j = Xq, ∀q (4.11b)

Cj ≥ 0, ∀j (4.11c)

This formulation is used to solve the OPT MTTF and OPT PERFORMANCE problems.

In the formulation, (4.11a) gives the objective of maximizing the sum of MTTFs of output stacks;

(4.11b) are the assignment constraints, which indicate that each input die should be used exactly

once in the stacking implementation, consistent with its process bin; and (4.11c) are the non-

negativity constraints which indicate that the number of output stacks implemented with stacking

style Stylej cannot be negative. An additional loop, which searches for the maximum frequency,

is applied to solve the OPT PERFORMANCE problem.

191

To solve the OPT YIELD problem, we set up the following ILP.

ILP formulation (OPT Y IELD):

Maximize
∑

1≤j≤M

Cj (4.12a)

Subject to
∑

1≤j≤M

Cj · Yq,j = Xq, ∀q (4.12b)

Cj ≥ 0, ∀j (4.12c)

Cj ·MTTFj ≥ Cj ·MTTFmin (4.12d)

where (4.12a) is the objective function which maximizes the number of good dies; (4.12b) are

the assignment constraints; (4.12c) are the non-negativity constraints; and (4.12d) are the lower-

bound constraints on MTTF, in which MTTFmin indicates the lower bound. Note that the factor

Cj in (4.12d) eliminates the constraints on the MTTF for stacking styles which are not imple-

mented (i.e., when Cj = 0, the MTTF of Stylej does not affect MTTFmin). We determine the

maximum value of MTTFmin by doing binary search. The binary search terminates when the

change in MTTFmin is less than 0.01 year.

Greedy Method

We also study a greedy method, based on process binning, for reliability-driven stacking

optimization. We evaluate MTTFs of all stacking styles. Then, we select the stacking style with

maximum MTTF for each stack, one at a time. A stacking style is valid only if the numbers of

dies required by the stacking style are less than or equal to the remaining dies in process bins.

“Zig-zag” Heuristic Method

The rule-of-thumb proposed in Section 4.3.1 suggests that slower dies should be located

closer to the heat sink. Based on the rule-of-thumb, we propose a heuristic method which stacks

dies in a “zig-zag” manner as shown in Figure 4.30.

top tier
(nearest to
 heat sink)

bottom tier
Figure 4.30: Zig-zag method: stack dies from slow to fast, from top tiers to bottom tiers.

192

Given the input dies, we sort them according to their performance (as measured at man-

ufacturing test). Then, we assign the sorted dies (starting from the slowest die) one at a time,

from top tiers to bottom tiers. For die assignment in each tier, we record the sequence of die

assignment. The sequence is reversed when we start the assignment for the next tier. In this

way, all output stacks satisfy the rule-of-thumb proposed in Section 4.3.1. The time complexity

of this method is O(n · log n) (n indicates the number of input dies), which is required for die

sorting. As we will discuss in Section 4.3.4, the zig-zag stacking method offers similar or even

better QoR compared to the ILP-based method.

4.3.4 Experimental Results

Implementation Tools

Our experiments use RTL design JPEG obtained from the OpenCores website [230]

as the logic die. The design is implemented using 65nm NVT, LVT and HVT libraries. The

RTL is synthesized using Synopsys Design Compiler vC-2009.06-SP2 [237] and then placed and

routed using Cadence Encounter Digital Implementation System v10.1 [217]. We characterize

all libraries at different corners (SS, TT and FF), for a range of voltages (0.8V -1.2V) and tem-

peratures (45◦C-165◦C) using Cadence Library Characterizer v9.1 [217]. Timing analyses and

power estimation are performed using Synopsys PrimeTime C2009.6 [240]. We estimate the

temperature of stacks using Hotspot 5.02 [221] and solve ILPs using lp solve 5.5 [227].

Hotspot Configuration

In Hotspot, we set the chip thickness as 50µm, convection capacitance as 140.4J/K,

convection resistance as 0.7K/W , ambient temperature as 60◦C, the thickness of heat spreader

and heat sink as 1mm and 6.9mm respectively [174][221]. Based on number of I/O pins (∼100

per die), we set the spreader side and the heat sink side as 15mm and 30mm, respectively, for

5-tier stacks. We model TSVs by changing the thermal resistivity of thermal interface material

layers [150]. The thermal resistivity of such a layer is set as 0.2mK/W .

Estimation of Stacks’ MTTF

We implement a flow deploying voltage-temperature feedback loops to estimate the

MTTF of an output stack or a stacking style. A change in temperature will change perfor-

mance. Thus, voltages are altered to retain the required performance. This in turn results in

193

a change in the temperature, and again affects frequencies. Taking such a “chicken-egg” chain

into consideration, an accurate estimation of MTTF requires a feedback loop in the analysis flow,

as illustrated in Figure 4.31. The inputs to the flow are stacking styles, the required frequency

and an initial temperature (ambient temperature). Then, a voltage-temperature feedback loop is

applied to each tier. To avoid large execution time resulting from running simulation for power

and timing analysis in each loop, we build lookup tables and apply interpolation to estimate the

supply voltage and power consumption.

Stacking
style

Required
freq.

Initial temp.
(for the 1st loop)

Interpolation
freq. vs. voltage

 LUT

Supply
voltage

upp

Interpolation

g

power vs. voltage
 LUT

on
f

p

Temp. estimation
using Hotspot

Power

ti Die area

Temp.
change less than

0.1°C?

Temp.

Temp

Int

Int

em
usi

ch

Te

N Y Black’s
equation

YY Bla

Current
density

kkl MTTFs
of dies

Flow for one die

Combine
MTTFs

MTTF of
stack

M

Figure 4.31: The flow of MTTF estimation.

First, based on the required frequency and temperature either from input (for the first

loop) or from the Hotspot simulation, we estimate the required supply voltage.

Second, based on the supply voltage we estimate the power consumption of each die.

According to the estimated power and area of each die, Hotspot is used to estimate each die’s

temperature. Then, we check the temperature change with respect to the previous loop. If

the change in temperature is less than 0.1◦C, the loop converges. Otherwise, the impact of

temperature change on frequencies is estimated, and another loop is applied. Based on the output

temperature from the voltage-temperature feedback loop, together with the current density, we

194

use Black’s equation (4.6) to evaluate the MTTF of each die. We calculate the MTTF of the

entire stack using the model proposed in Section 4.3.1.

Design of Experiments

We implement experiments on the JPEG circuit [230] in TSMC 65nm technology. We

assume that the process variation distributions of input dies are Gaussian, where the SS corner

and FF corner of TSMC 65nm technology are at ±3σ. For the bin-based model of process

variation, we implement 30 trials of picking dies randomly from process bins to stack 3DICs.

We observe that the variation in results are small (< 1%), so we only show the average results

of the 30 trials in the following discussion.

In the experiments, we compare QoR of four different stacking methods including the

ILP-based method (ILP), the zig-zag heuristic method (Zig-zag), the Greedy method (Greedy)

and a reference case where no stacking optimization is applied (Random). Three problems

formulated in Section 4.3.2 are studied.

OPT MTTF. We implement four methods to optimize the sum of MTTFs of output stacks (Cases

1-6 in Table 4.8). The average MTTF of stacks resulting from four methods are compared.

OPT YIELD. We implement four methods to optimize the minimum MTTF of output stacks.

We apply different MTTF limitations on output stacks and compare the number of good stacks

resulting from different optimization methods. Such experiments are implemented on Case 5

shown in Table 4.8.

OPT PERFORMANCE. We implement stacking optimization to improve performance of stacks

under the reliability constraints. For 3-tier cases (Case 1 in Table 4.8), the lower bound on MTTF

is set as 12 years; for 4-tier and 5-tier cases (Cases 2-6 in Table 4.8), such constraints are set as

10 years.

Table 4.8: Experiment design for reliability-driven stacking optimization.

Case #Dies #Tiers σ µ #Bins

1 1200 3 1.0 0.0 9

2 1600 4 1.0 0.0 9

3 2000 5 0.2 0.0 9

4 2000 5 0.6 0.0 9

5 2000 5 1.0 0.0 9

6 2000 5 1.4 0.0 9

195

Results for Optimization Problems

Results for OPT MTTF. We study the impacts of bin-based modeling and the number of input

dies on QoR of the ILP-based method to solve the OPT MTTF problem.

Figure 4.32 shows the average MTTF of output stacks resulting from the ILP-based

method modeled with different number of bins. We observe that as the number of bins increases,

better MTTF is achieved. With certain number of bins (e.g., 13 in this case), the solution ap-

proaches optimality and noise occurs afterwards (e.g., number of bins ≥ 13 in this case).

7.56

7.57

7.58

7.59

7.60

7.61

7.62

7.63

7.64

5 7 9 11 13 15

M
TT

F
(y

ea
r)

of bins

Figure 4.32: As the number of process bins increases, MTTF of stacks increases. The results
approach optimality when the number of bins is equal to 13, noise appears after that.

Table 4.9 shows the QoR of the ILP-based method with different numbers of input dies

and the number of process bins equal to 9. We observe that as the number of dies increases,

the average MTTF of output stacks increases. This is because the degradation induced by dis-

cretization in bin-based modeling reduces as number of dies increases. We also use the zig-zag

heuristic method as reference and observe that (for this experiment, where the number of bins is

9) the zig-zag heuristic method always performs better than the ILP-based method.

From the results in Table 4.10 we observe that the ILP-based and the zig-zag heuristic

methods offer ∼7% improvement in the average MTTF (MTTFavg) compared to the random

method where no optimization is applied.

Results for OPT YIELD. Table 4.10 shows that the ILP-based and the zig-zag heuristic methods

achieve ∼28% improvement in the minimum MTTF (MTTFmin). In addition, the ILP-based

and zig-zag heuristic methods also reduce the variation in MTTFs of stacks, which is illustrated

in Figure 4.33. Among the four methods, the greedy method leads to large variation in MTTFs

of output stacks.

196

Table 4.9: Impact of number of dies on QoR of the ILP-based method.

#Dies QoR ILP Zig-zag

200
MTTF (year) 7.57 7.58

Power (mW) 533.6 533.6

Runtime 86 min <1 sec

500
MTTF (year) 7.58 7.59

Power (mW) 533.4 533.4

Runtime 86 min <1 sec

2000
MTTF (year) 7.61 7.63

Power (mW) 530.9 531.0

Runtime 86 min <1 sec

10000
MTTF (year) 7.63 7.65

Power (mW) 530.6 530.6

Runtime 86 min <1 sec

100000
MTTF (year) 7.63 7.65

Power (mW) 530.8 530.8

Runtime 86 min <1 sec

2
3
4
5
6
7
8
9

10
11
12

σ=0.2 σ=0.6 σ=1.0 σ=0.2 σ=0.6 σ=1.0 σ=0.2 σ=0.6 σ=1.0 σ=0.2 σ=0.6 σ=1.0

M
TT

F
(y

ea
r)

ILP Zig-zag Greedy Random

Figure 4.33: Stacking optimization using the ILP-based method and the zig-zag method helps
increase the minimum MTTF of output stacks, while reducing the variation in MTTFs.

Figure 4.34 shows the yield of stacks constrained by different MTTFreq using the four

methods. We observe that the improvement in yield can be up to 300% (when MTTF limitation

= 7.5 years) by using the zig-zag heuristic method, compared to the random case.

Results for OPT PERFORMANCE. Table 4.10 shows that the ILP-based and the zig-zag heuris-

tic methods offer ∼3% improvement in performance compared to the random case.

197

Table 4.10: QoR of output stacks from different methods.

Case ILP Zig-zag Greedy Random

1
MTTFavg (year) 11.20 11.20 10.37 10.31

MTTFmin (year) 10.42 10.78 6.02 7.20

Power (mW) 319.4 319.4 318.8 318.8

fmax (MHz) 975.0 975.4 943.4 943.4

Runtime 11 min <1 sec 11 min –

2
MTTFavg (year) 9.85 9.88 9.29 9.23

MTTFmin (year) 9.47 9.66 5.91 7.11

Power (mW) 424.8 424.9 424.2 424.2

fmax (MHz) 993.7 995.4 966.4 966.5

Runtime 33 min <1 sec 33 min –

3
MTTFavg (year) 7.30 7.30 7.22 7.22

MTTFmin (year) 7.23 7.27 6.71 6.98

Power (mW) 527.7 527.7 527.4 527.4

fmax (MHz) 860.3 862.3 857.1 856.0

Runtime 86 min <1 sec 86 min –

4
MTTFavg (year) 7.47 7.47 7.22 7.20

MTTFmin (year) 7.30 7.39 5.72 6.40

Power (mW) 528.9 528.9 528.1 528.2

fmax (MHz) 867.3 869.7 854.7 853.1

Runtime 86 min <1 sec 86 min –

5
MTTFavg (year) 7.61 7.63 7.21 7.16

MTTFmin (year) 7.34 7.51 4.61 5.88

Power (mW) 530.9 531.0 530.1 530.2

fmax 875.1 876.7 851.8 849.2

Runtime 86 min <1 sec 86 min –

6
MTTFavg (year) 7.78 7.80 7.21 7.12

MTTFmin (year) 7.29 7.62 3.16 5.05

Power (mW) 533.3 533.4 532.5 532.7

fmax (MHz) 884.0 886.0 849.1 844.3

Runtime 86 min <1 sec 86 min –

Suboptimality of the Zig-zag Heuristic Method

Although experimental results show that the zig-zag heuristic method performs bet-

ter than other methods, it is still suboptimal for an adversarial example. Given 6 input dies

198

0
50

100
150
200
250
300
350
400

5 6 7 8 9

of

 g
oo

d
di

es

MTTF limitation (year)

ILP

Zig-zag

Greedy

Random

Figure 4.34: Yield decreases with MTTF limitation. The ILP-based and the zig-zag heuristic
methods help increase the yield of 3DICs compared to the random case.

(die{1...6}), and each output stack has 3 tiers. Without loss of generality, we assume that diei is

faster than diej , when i > j. Further, we assume large performance difference between die5 and

die6. In this example, the output stacks resulting from the zig-zag heuristic method are “die6

die3 die2” and “die5 die4 die1”. Due to the large performance difference between die5 and

die6, the bottom two tiers of stack “die5 die4 die1” generate more heat than the bottom two tiers

of stack “die6 die3 die2”. If we swap die1 and die2, the MTTFmin of output stacks is higher.

On the other hand, due to the nonlinear relationship between temperature and MTTF, the stacks

“die5 die3 die1” and “die6 die4 die2” can achieve better MTTFavg compared to stacks result-

ing from the zig-zag heuristic method, at the cost of having larger MTTF variation for output

stacks.

Variability Helps

The experimental results show that when no stacking optimization is applied, the MTTF

of output stacks decreases as process variation increases. However, when stacking optimiza-

tion is applied, MTTF increases with process variation. This trend is illustrated in Figure 4.35,

in which the solid lines indicate the average MTTF and the dotted lines indicate the minimum

MTTF of output stacks with different process variation distributions. When the σ of process

variation distribution changes from 0.2 to 0.6, the improvement in the average MTTF changes

from 1.1% to 9.6%, while the improvement in the minimum MTTF changes from 4.2% to 50.9%,

where the zig-zag heuristic method is applied. A similar benefit from process variation is ob-

served in [121], where process variation with a proposed matching solution helps to reduce clock

skew in 3DICs. In other words, manufacturing variation helps improve the average MTTF and

the minimum MTTF with the zig-zag stacking optimization.

199

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0.2 0.4 0.6 0.8 1 1.2 1.4

M
TT

F
(y

ea
r)

Zig-zag (MTTF_avg)
Random (MTTF_avg)
Zig-zag (MTTF_min)
Random (MTTF_min)

σ
Figure 4.35: The solid lines and dotted lines indicate the average and the minimum MTTF of

stacks, respectively.

σ

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Su
pp

ly
 v

ol
ta

ge
 (V

)

Max. supply voltage

Min. supply voltage

Figure 4.36: The maximum supply voltage of stacks increases with process variation, while the
minimum voltage decreases. The solid line corresponds to our experimental results. The dashed

line is an extrapolation of the trend.

The benefit from process variation disappears when the variation exceeds a certain

amount. This is because supply voltages of slow dies can exceed the maximum voltage al-

lowed by the package as the process variation keeps increasing. Figure 4.36 shows the increase

(decrease) of the maximum (minimum) supply voltage with process variation. If the package

can only tolerate up to 1.3V supply voltage, the help of variability in stacking optimization will

stop when σ is close to 1.7. Therefore, we conclude that a limited amount of manufacturing vari-

ation can “help” improve reliability of die stacks when stacking optimization is applied. In other

words, the reliability benefit of stacking optimization depends on the magnitude of die-to-die

process variation.

200

4.3.5 Conclusion

In this work, we study variability-reliability interactions and optimizations in 3DIC. We

propose a “rule-of-thumb” guideline for stacking optimization to reduce the peak temperature

and increase the MTTF of 3DICs. An ILP-based method and an O(n log n) zig-zag heuristic

method for reliability-driven stacking optimization achieve∼7%,∼28% and∼3% improvement

in average MTTF, minimum MTTF and performance (under reliability constraints) of 3DICs,

respectively, compared to the case where no optimization is applied. Optimization of yield

of 3DICs under reliability requirements is also implemented. Interestingly, our studies show

that a limited amount of variability can “help” to improve reliability of stacks when stacking

optimization is applied.

201

4.4 Improved Performance of 3DIC Implementations Through

Inherent Awareness of Mix-and-Match Die Stacking

Small footprint and high transistor density in three-dimensional integrated circuits

(3DICs) make 3D logic-logic integration an important future lever for cost and density scaling.

Specific to 3DICs, a number of works [29][64][72][98] have pointed out that “mix-and-match”

of multiple stacked die, according to binning information, can improve overall product yield.76

Without loss of generality, assuming that dies are classified into two process bins, SS and FF,

the example in Figure 4.37 (where SS-SS, SS-FF and FF-SS respectively indicate SS Tier 0 +

SS Tier 1, SS Tier 0 + FF Tier 1 and FF Tier 0 + SS Tier 1) shows that mix-and-match die

stacking can offer 75ps timing improvement for a small 28nm FDSOI block as compared to the

conventional worst-case analysis.77 However, in the previous works each of the stacked die is

independently designed, that is, there is no holistic “design for eventual stacking” of any of the

die.

Figure 4.37: Worst negative slack (WNS) of design AES [230] at 28FDSOI technology. Clock
period = 1.2ns. The AES implementation was simply bipartitioned for minimum net cut using

MLPart [25][229].

Separately, many works [45][90][96][132][156][182] have suggested approaches for

partitioning of logic into multiple die, e.g., to obtain the wirelength (hence, power and delay)
76The mix-and-match stacking optimization is also applicable to wafer-to-wafer bonding integration where SS

wafers are integrated with FF wafers, and to monolithic 3D integration with adaptive adjustment of the top-tier
process according to the bottom-tier process condition. For simplicity, we use “(die) stacking” to refer collectively to
these multiple contexts.

77In the following discussions and our experiments, we assume that dies are classified into two process bins, SS
and FF. However, given matched pairs of process bins based on die-level and/or wafer-level stacking optimization,
our approaches can be extended to scenarios with > 2 process bins, e.g., additional combinations can be { SS Tier 0
+ TT Tier 1, TT Tier 0 + SS Tier 1, FF Tier 0 + TT Tier 1, TT Tier 0 + FF Tier 1, TT Tier 0 + TT Tier 1 } when we
also consider the TT process bin.

202

savings implied by implementing a 1 × 1 die area into two stacked 0.7 × 0.7 dies. However,

the signoff criteria used to implement such a multi-die solution must necessarily validate timing

correctness for all combinations of process conditions on the multiple die – e.g., the four com-

binations { SS Tier 0 + SS Tier 1, SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1, FF Tier 0 + FF

Tier 1 }.78 Satisfying this combinatorial number of signoff constraints induces area and power

overheads as a result of the sizing and buffering operations needed to close timing.

To our knowledge, no previous work has examined the fundamental issue of design

partitioning and signoff specifically for mix-and-match die stacking. In particular, if we know a

priori that, say, SS Tier 0 and SS Tier 1 die will never be stacked together, or that FF Tier 0 and

FF Tier 1 die will never be stacked together, this changes our signoff criteria. Even more, this

a priori knowledge allows us to partition timing-critical paths across tiers to explicitly optimize

the design’s performance in the regime of mix-and-match stacking. The simple example in

Figure 4.38 (where we assume that SS Tier 0 + FF Tier 1 and FF Tier 0 + SS Tier 1 are utilized

for die stacking, the partitioning solution indicated by the blue dotted line has the maximum

timing slack, while the partitioning solution indicated by the red solid line has the minimum

timing slack) illustrates how the partitioning solution can impact design signoff timing in the

regime of mix-and-match stacking.

Figure 4.38: Partitioning solutions affect a design’s performance in the regime of
mix-and-match stacking.

In this work, we propose partitioning methodologies and signoff flows that are aware

of mix-and-match die stacking to improve design timing (i.e., to improve worst negative slack

(WNS)). However, 3D partitioning for mix-and-match die stacking is nontrivial. First, the opti-

mal cut locations on one timing path might conflict with those on other timing paths. Thus, the

partitioning optimization must trade off timing optimizations among timing paths. This can be

quite challenging in a design with a large number of potentially critical paths and shared logic
78Here, a tier refers to one stacked die in a 3DIC. In a two-tier 3DIC, Tier 0 is the bottom tier and Tier 1 is the top

tier.

203

cones among multiple pairs of timing startpoints-endpoints. Further, the partitioning optimiza-

tion must comprehend the timing impact of vertical interconnects or VIs (i.e., the vertical elec-

trical connections (vias) between tiers, such as through-silicon vias), and can no longer “freely”

partition a timing path into segments. In addition, delay variations across different process con-

ditions can be different for cells of different types (e.g., INV, NAND or NOR), sizes and Vth

flavors. Last, asymmetric distribution of process bins (e.g., 3σ FF + 2σ SS) as discussed in [102]

will also increase the difficulty of the partitioning optimization. Figure 4.39 shows a simple ex-

ample with different optimal partitioning solutions that respectively minimize (a) delay of path

A-C, (b) delay of path B-C, and (c) the worst case over the two paths. Moreover, the optimal

partitioning solution changes with increased VI delay impact, as shown in Figure 4.39(d). In

Figure 4.39, the red bars are VIs. We further assume the same stage delay (30ps at SS, 10ps

at FF) for every stage in the two paths, and that the timing analysis is aware of mix-and-match

stacking (i.e., { SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) and assumes ideal clock.

Our contributions in this work are as follows.

• We are the first to study design-stage optimization specifically for mix-and-match die

stacking.

• We develop partitioning methodologies that are inherently aware of mix-and-match die

stacking. Our approaches achieve up to 16% timing improvement as compared to a min-

cut based partitioning approach.

• We extend the existing 3DIC implementation flows to incorporate mix-and-match-stacking-

aware partitioning and signoff, demonstrating the simplicity of adopting our techniques.

4.4.1 Related Work

We classify related works into two categories: (i) mix-and-match die stacking optimiza-

tion, and (ii) 3D netlist partitioning.

Mix-and-match optimization. Several works propose approaches for mix-and-match die stack-

ing optimization. Ferri et al. [64] propose methodologies to benefit from the flexibility of die-to-

die and/or die-to-wafer 3D integration with awareness of the inter-die process variation. Their

optimization improves performance and parametric yield of 3DICs with one CPU die and one L2

cache die. Garg et al. [72] formulate mathematical programs to improve the performance yield of

3DICs via mix-and-match die stacking. Chan et al. [29] propose an integer linear programming-

based method as well as a heuristic method to optimize reliability of 3DICs (i.e., to improve the

204

Figure 4.39: Area-balanced partitioning solutions on path A-C (26 stages) and path B-C (30
stages) which respectively minimize (a) delay of path A-C (DAC), (b) delay of path B-C

(DBC), (c) worst-case delay over the two paths, and (d) worst-case delay over the two paths
with large VI delay impact (dV I).

mean time to failure). To avoid the large runtime of thermal simulation, Juan et al. [98] develop

a learning-based model for temperature prediction in 3DICs. Based on the model, they perform

thermal-aware matching and stacking of dies to improve thermal yield. These optimization ap-

proaches operate at die level or wafer level (essentially, post-manufacturing). By contract, our

work addresses design-stage optimization and signoff for mix-and-match die stacking.

3D netlist partitioning. As mentioned above, quite a few works study 3D partitioning. Li et

al. [132] use a simulated annealing engine to partition blocks across tiers during the floorplanning

stage to minimize wirelength. Several works cast 3D partitioning as a form of standard hyper-

205

graph partitioning. Thorolfsson et al. [182] use hMetis [116] to partition the design into balanced

halves while minimizing the number of cuts. A multilevel partitioning methodology is proposed

in [90], which first applies Hyperedge Coarsening (HEC) techniques to coarsen the netlist, then

performs an FM-like K-way partitioning procedure to partition the netlist such that the number

of VIs is minimized. An integer linear programming for 3D partitioning is formulated in [96],

where the objective is to reduce the number of VIs subject to area balancing constraints. Par-

titioning methodologies based on an initial 2D implementation solution are also proposed in

previous literatures. Cong et al. [45] assign cells to tiers through folding-based transformations

of an initial 2D placement solution. Based on a 2D implementation solution with scaled dimen-

sion (i.e., 0.7 x), Panth et al. [156] perform routability-driven partitioning to minimize the overall

routing overflow; this can mitigate routing congestion and help minimize wirelength. Compared

to these works, our work is again distinguished by being the first to inherently comprehend

mix-and-match die stacking integration. In particular, unlike previous works, our partitioning

methods directly maximize the design’s timing slack in the mix-and-match regime.

4.4.2 Problem Formulation

We formulate the partitioning problem for mix-and-match die stacking as follows.

Given: post-synthesis netlist, Liberty files according to various process bins, vertical intercon-

nect (VI) parasitics, timing constraints and area balancing criteria,

Perform: 3D partitioning to determine the tier index for each cell, such that the worst timing

slack is maximized in the context of mix-and-match die stacking.79

In the next section, we describe an ILP-based partitioning methodology which is able to

achieve near-optimal solutions. Section 4.4.4 then proposes a heuristic partitioning methodology

in which we (i) perform maximum-cut partitioning on the subgraph of the sequential graph that

is induced by timing-critical pairs of startpoints and endpoints, then (ii) apply a signoff timing-

aware FM optimization for further slack improvement.

4.4.3 ILP-Based Partitioning Methodology

We now formulate an integer linear program (ILP) to partition the netlist into two tiers

such that the worst timing slack, over the corner combinations that can be formed by mix-and-

match stacking, is maximized. Table 4.11 summarizes our notations.
79In this work, we only consider partitioning into two-tier 3DICs. But, our formulation generalizes easily to larger

numbers of tiers.

206

Table 4.11: Description of notations used in our work.

Term Meaning

αj process condition (corner), (1 ≤ j ≤ J)

P set of timing paths

pk kth timing path (pk ∈ P)

C set of cells

ci ith cell (ci ∈ C)

ai area of cell ci

yi binary indicator whether cell ci is on Tier 0 (yi = 0) or on Tier 1 (yi = 1)

βi,i′ binary indicator whether a cut (VI) exists between adjacent cells ci and ci′ ,

(βi′,i) where cell ci is on Tier 0 (Tier 1) while cell ci′ is on Tier 1 (Tier 0).

dj
i stage delay of cell ci and its fanout wire at αj

Dk maximum delay of path pk over all pairs of process corners

Dmax maximum delay over all paths among all pairs of process corners

dV I delay impact of VI insertion

θ area balancing criterion

Minimize Dmax

Subject to

βi,i′ ≥ yi′ − yi ∀ adjacent cells ci, ci′ ∈ C (4.13)

βi′,i ≥ yi − yi′ ∀ adjacent cells ci, ci′ ∈ C (4.14)

βi,i′ + βi′,i ≤ 1 ∀ adjacent cells ci, ci′ ∈ C (4.15)∑
ci∈pk

(dj
i · (1− yi) + dj′

i · yi) +
∑

adjacent ci,ci′∈pk

(∆j,j′

i′ · βi,i′ + ∆j′,j
i′ · βi′,i)

+
∑

adjacent ci,ci′∈pk

(βi,i′ + βi′,i) · dV I ≤ Dk ∀(αj , αj′), pk ∈ P (4.16)

Dk ≤ Dmax ∀pk ∈ P (4.17)∑
ci∈C

ai · yi −
∑
ci∈C

ai · (1− yi) ≤ θ ·
∑
ci∈C

ai (4.18)

∑
ci∈C

ai · (1− yi)−
∑
ci∈C

ai · yi ≤ θ ·
∑
ci∈C

ai (4.19)

Our objective is to minimize the maximum path delay Dmax over all paths pk ∈ P ,

across all relevant pairs of process corners in the context of mix-and-match die stacking. yi is a

binary indicator of cell ci’s tier assignment, with yi = 0 (resp. yi = 1) indicating that ci is on Tier

207

0 (resp. Tier 1). For any pair of adjacent cells ci and ci′ , we use Constraints (4.13) and (4.14)

to force either βi,i′ or βi′,i to be one when cells ci and ci′ are on different tiers. In other words,

βi,i′ and βi′,i are indicators of a cut (or VI) such that βi′,i = 1 (resp. βi,i; = 1) when ci is on

Tier 0 (resp. Tier 1) while ci′ is on Tier 1 (resp. Tier 0). Therefore, βi,i′ and βi′,i are mutually

exclusive.

Constraint (4.16) defines the maximum delay Dk for each path pk ∈ P among all pairs

of process corners with mix-and-match stacking. The first term on the left-hand side of Con-

straint (4.16) is the sum of stage delays along path pk. We extract stage delays at a particular

corner αj based on the timing analysis assuming all cells are at αj . However, such an assump-

tion can lead to an inaccurate stage delay estimation because cells of different process corners

output different slews, which affect the delays of downstream cells. For example, our assump-

tion can be pessimistic for a cell at SS when its driver is at FF. This is because to estimate the

stage delay at SS, our timing analysis assumes all cells (including its driver) are at SS, which re-

sults in pessimistic input slew estimation. To compensate for such inaccuracy, we pre-calculate

the delta stage delays (that is, the second term) between the case where the driver cell ci and

driven cell ci′ are at different process corners (i.e., ci is at αj , and ci′ is at αj′) versus the case

where the ci and ci′ are at the same process corner.80 We denote such delta stage delays as ∆j,j′

i′ .

Incorporating the second term, i.e., the sum of delta stage delays along path pk, enables us to

achieve a more accurate delay estimation.81 The third term on the left-hand side of Constraint

(4) accounts for VI delay impact along the path. Note that VI insertion at the output pin of a

small-size cell can have quite large delay impact. However, such delay impact will be addressed

with sizing/Vth-swapping optimization during the P&R (placement and routing) flow. Since no

sizing/Vth-swapping optimization is involved during the partitioning stage, to avoid pessimism

in estimation of VI delay impact, we simply use a constant value to estimate the delay impact

of one VI insertion. In Constraint (4.17), we obtain the maximum delay Dmax over all paths

pk ∈ P . Last, our formulation satisfies area balancing criteria which are indicated by θ in

Constraints (4.18) and (4.19). We set θ as 5% in our experiments.
80Our separate study shows that delay impact caused by cells more than one stage upstream of the current cell is

negligible (i.e., < 2ps). We therefore only consider the slew change due to current cell’s direct fanins.
81We note that since the partitioning optimization is performed before placement and routing, the wire delay and

accurate wire load information are not available, which might lead to suboptimality in the partitioning solution.

208

4.4.4 Heuristic Partitioning Methodology

Although the ILP-based methodology can achieve near-optimal partitioning solutions,

its runtime can be large. Moreover, it is practically impossible to extract all timing paths for a

large design.82 We therefore propose a timing-aware FM partitioning methodology with better

scalability. Our heuristic partitioning methodology contains two optimization stages – (i) the

global optimization performs maximum cut on the timing-critical sequential graph (i.e., a par-

tial sequential graph which contains only startpoints and endpoints of timing-critical paths) and

(ii) the incremental optimization performs timing-aware multi-phase Fiduccia-Mattheyses (FM)

optimization to achieve the final partitioning solution. Unlike previous works which minimize

the number of cuts [116] or the number of paths passing across different partitions [115], we di-

rectly target the timing slack improvement during our partitioning optimization. Our objective is

to minimize the maximum path delay (i.e., maximize the worst timing slack) for mix-and-match

die stacking. Further, we show that a maximum-cut partitioning is more suitable than the tra-

ditional minimum-cut partitioning for 3DICs in the mix-and-match regime. To our knowledge,

few if any previous works have applied a semidefinite program-based maximum cut optimiza-

tion [76] to VLSI design.

Maximum-Cut Partitioning on Timing-Critical Sequential Graph

We first study the tradeoff between delay impact of VI insertions versus timing improve-

ment from mix-and-match stacking. Without loss of generality, we assume a die stacking of {
SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }. We denote the path delay of path pk at SS (resp.

FF) as DSS
k (resp. DFF

k), and the total number of stages along pk as lk. Approximating the path

delay as a linear function of the stage number and assuming that there are l′k stages on Tier 0, the

corresponding path delay without considering delay impact of VI insertion can be estimated as

l′k ·
DSS

k

lk
+ (lk − l′k) · D

FF
k

lk
(4.20)

l′k ·
DFF

k

lk
+ (lk − l′k) · D

SS
k

lk
(4.21)

where (4.20) assumes the stacking of SS Tier 0 + FF Tier 1, and (4.21) assumes the stacking of

FF Tier 0 + SS Tier 1. Maximizing the minimum value between (4.20) and (4.21) corresponds to
82Slight suboptimality of the ILP comes from the estimations of stage delay and delay impact of VI insertions,

which are inputs to the ILP. The runtime to extract timing path information and solve the ILP can be even larger if
there are more process bins, which makes the ILP-based methodology infeasible. The runtime of the ILP on AES
(with 11K instances and 254K timing paths) is > 24 hours.

209

having (4.20) = (4.21) and l′k = lk/2. We therefore estimate the timing improvement from mix-

and-match stacking over the worst-case analysis (i.e., SS Tier 0 + SS Tier 1) as (DSS
k −DFF

k)/2.

Furthermore, we denote the worst slack of pk among combinations of process conditions (i.e.,

{ SS Tier 0 + FF Tier 1, FF Tier 0 + SS Tier 1 }) as sk, and denote the delay increase due

to an inserted VI as dV I . Based on the above, we classify timing paths of a design into three

categories:

1. Type I: Timing non-critical paths (sk ≥ sth);

2. Type II: Timing-critical paths without tolerance of VI insertion (sk < sth && DSS
k −DFF

k
2 ≤

dV I + sgb);

3. Type III: Timing-critical paths with tolerance of VI insertions (sk < sth && DSS
k −DFF

k
2 >

dV I + sgb);

Here, sth is the threshold of timing slack to define the timing-critical paths (i.e., sth =

10% of clock period); and sgb is the slack guardband to evaluate tradeoff between delay impact

of VI insertions versus timing improvement from mix-and-match stacking.83 We note that when

the delay of a VI insertion is so large that most of the timing-critical paths are Type-II paths, the

timing benefits from mix-and-match die stacking will be limited.

Our optimization focuses on timing-critical paths (i.e., Type-II and Type-III paths). Our

optimization ensures that startpoint and endpoint of a Type-II path are assigned to the same tier.

Further, our optimization maximizes the number of Type-III paths being cut, so as to improve the

potential timing benefits from mix-and-match die stacking. The procedure of our optimization is

described in Algorithm 20. To construct the sequential graph, each startpoint or endpoint (e.g.,

register, PI or PO) becomes one vertex, and a directed edge is inserted between two vertices if

there exists a (combinational) timing path between the vertices when they are taken as startpoint

and endpoint. Note that in this optimization we only consider the maximum-delay path between

any startpoint-endpoint pair. We use the algorithm in [76] for our maximum-cut optimization,

in which the maximum-cut problem is relaxed to a semidefinite program (SDP). The SDP so-

lution is then randomly rounded to achieve a partitioning solution. We use SDPA [234] as our

semidefinite programming solver.
83The value of sth needs to be empirically determined such that timing-critical paths are optimized. However,

a too-large value of sth can result in a large number of VI insertions and large runtime for timing analysis. Slack
guardband sgb is a flat timing margin, where the timing improvement from mix-and-match must exceed the VI delay
impact by more than sgb.

210

Algorithm 20 Partitioning of the sequential graph.

1: Extract restricted sequential graph G0 that contains only Type-II and Type-III paths.
2: Collapse vertices connected with Type-II paths (edges) into one vertex to obtain a new graph G1.
3: Perform maximum cut on G1.

Figure 4.40: Example of maximum-cut partitioning of the sequential graph. Types of paths are
shown in edge labels. The dotted line indicates the final maximum-cut solution. We assume the

same weight for all edges.

Figure 4.40 illustrates Algorithm 20 with an example consisting of five vertices and eight

edges. The figure shows each updated graph, and the dotted line indicates the final maximum-cut

solution.

Timing-Aware Multi-Phase FM Partitioning

Based on the maximum-cut partitioning solution of a timing-critical sequential graph,

we fix the tier assignments of flip-flops and then perform timing-aware multi-phase partition-

ing to achieve the final partitioning solution. At each phase of our optimization, we perform

optimizations in parallel with multiple threads. Optimization in each thread first clusters cells

such that the size of the cluster is within a given range (i.e., [Nlb, Nub]). Based on the clustered

netlist, each thread then performs Fiduccia-Mattheyses (FM) optimization [66] to improve the

partitioning solution in terms of the worst timing slack in the context of mix-and-match stacking.

We vary the range of cluster sizes across different threads during our optimization. At the end

of each phase, we select the partitioning solution with the maximum timing slack as the input to

the next phase.

In our FM optimization, the gain function of a cluster u is defined as

gain(u) =
∆slack(u)

slack(u)−WNS
(4.22)

where slack(u) is the worst slack of cluster u; ∆slack(u) is the slack change when moving u

across tiers; and WNS is the worst negative slack of the entire design.

211

Clustering cells at each phase before the FM optimization not only reduces the runtime

of FM optimization but more importantly also improves the solution quality. Figure 4.41 shows

an example in which moving one cell with negative gain can eventually lead to slack improve-

ment after moving its neighbor cells, where we assume that the difference between cell delays

at SS and FF is 30ps, delay impact due to VI insertion is 50ps, and all cells along the path (only

a segment of five cells is shown) are initially on Tier 0. We also assume that a stacking of SS

Tier 0 + FF Tier 1 is applied. In the example, although moving one cell across tiers degrades

the slack of the path due to VI insertions, moving its neighbor cells compensates for the delay

impact of VI insertions and eventually improves the path timing for mix-and-match stacking.

However, during the FM optimization, it is difficult and expensive (in terms of runtime) to “fore-

see” such slack benefits. In other words, to evaluate the gain function of one cell including its

future impact, one must consider a large number of potential moves of its neighbor cells. The

number of potential future move sequences can be large if only moving multiple stages of cells

can compensate for the delay impact of VI insertions.84 We therefore cluster cells such that tim-

ing improvement from moving a cluster can compensate for the delay impact of VI insertions.

Further, since the goal of clustering and partitioning is to balance cell delays across tiers along

each timing path, the desired cluster size highly depends on number of stages along the paths,

fanout number at each stage, and netlist topology. Given that the number of stages along the path

is limited by timing constraints, along with the maximum fanout constraint, a too-large cluster

size might not help to balance delays across tiers along a timing path. We empirically set the

cluster size to be no larger than 120 in our experiments.

Figure 4.41: Example to optimize a cell with a negative gain value. (a) Initial path with zero
slack. (b) Moving one cell to Tier 1 degrades the slack by 70ps due to VI insertions. (c) Further

optimization on the shown segment improves the slack by 50ps.

Algorithm 21 shows our clustering procedure. We first sort all cells in increasing order

of their slacks (Line 1). We use topological order to break ties. We then select an unclustered cell
84We are aware of “lookahead” approaches, such as gain vectors, CLIP/CDIP and LIFO gain buckets,

etc. [56][82][124]. However, these are cut-centric and not path-aware, hence inapplicable to our current problem.

212

from the ordered list as the starting point for clustering (Line 2). Based on the selected cell, we

evaluate its slack changes due to moves (i.e., tier re-assignment) on its neighbor cells. If slack

improves, we add the corresponding neighbor cell into the cluster (i.e., u), and further consider

moves on neighbor cells of the new added cell (Lines 7-11, 15). However, when no move with

slack improvement is available, we select the neighbor cell corresponding to the move with

the minimum slack degradation and add it to the cluster (Lines 17-22, 27-30). The clustering

procedure terminates when the cluster size meets the required range (i.e., [Nlb, Nub]) or there is

no unclustered neighbor cell (Lines 12-14, 24-26).

Note that each cluster contains cells originally belonging to the same tier. The slack of

a cluster (i.e., slack(u)) is defined as the worst slack of cells within the cluster. Further, the esti-

mation of slack({c, u}) comprehends mix-and-match stacking (i.e., worst case over SS Tier 0 +

FF Tier 1 and FF Tier 0 + SS Tier 1). Moreover, our timing analysis takes into account the delay

impact of VI insertions (Figure 4.42 shows one example). Assuming that the incremental timing

analysis is performed in constant time,85 the runtime complexity of our clustering algorithm is

O(|C|3).

Figure 4.42: Example of VI insertion/removal due to cell movement across tiers. Shaded cells
are on Tier 1 and the others are on Tier 0.

In each run of FM optimization, we iteratively select the cluster with the maximum gain

value and move it across tiers. We lock the clusters (cells) that have been moved. After each

move, we perform incremental timing analysis and update the gain values of the neighboring

clusters of which the worst slack is changed. We empirically observe that the slack improvement

at the later stages of an FM run is small (e.g., shown in Figure 4.43, where cluster size ranges are

[60, 70], [30, 40] and [15, 20] and each phase contains two runs of FM optimization shown as

red and blue curves). Therefore, we terminate each FM iteration when 25% of clusters have been

moved. Given that the initial partitioning solution is not area-balanced, in the first FM iteration
85In incremental timing analysis, we propagate slew and update cell delay through interpolation in Liberty lookup

tables. Starting from the moved cell, we traverse the timing graph both forwards and backwards until there is no
slack change. Given the maximum fanout constraints (e.g., 20) and limited number of stages to which “ripple effects”
propagate (e.g., ∼2-3 stages at most), in practice there is a constant bound on the number of cells updated during the
incremental timing analysis.

213

Algorithm 21 Clustering.
1: cell list← sort all cells in increasing order of their slacks
2: for all c ∈ cell list that is not clustered do
3: queue.push front(c); u← ∅ // initialize cluster u
4: while |u| < Nub do
5: s′ ← −∞; c′ ← ∅; queue′ ← ∅
6: while |queue| > 0 do
7: c← queue.pop front()
8: su ← slack(u); sc ← slack(c)
9: move c to a different tier; incremental timing analysis

10: if |u| == 0 || slack(u) ≥ su && slack(c) ≥ sc then
11: u← u ∪ {c}
12: if |u| ≥ Nub then
13: break
14: end if
15: queue.push back(neighbors of c that are not clustered)
16: else
17: if Min(slack(c), slack(u)) > s′ then
18: s′ ← min(slack(c), slack(u)); c′ ← c
19: end if
20: queue′.push back(c)
21: recover c to its original tier; incremental timing analysis
22: end if
23: end while
24: if |u| ≥ Nub || |queue′| == 0 then
25: break
26: end if
27: move c′ to a different tier; incremental timing analysis
28: u← u ∪ {c′}
29: queue.push back(neighbors of c′ that is not clustered)
30: queue.push back(queue′); queue′ ← ∅
31: end while
32: end for

we terminate the optimization when the area balancing criterion is met. Figure 4.43 shows an

example of our FM optimization on design AES. The optimization has three phases, where each

phase contains two runs of FM optimization. We observe that the worst slack improves from

-200ps to -14ps in this example with ∼3000 moves.

4.4.5 Experimental Results

Experimental Setup

Our partitioning methodologies for mix-and-match stacking are implemented in C++.

We use CPLEX v12.5 [223] as our ILP solver and SDPA [234] as our semidefinite programming

solver. Our SP&R (synthesis, placement and routing) flow uses Synopsys Design Compiler vH-

214

Figure 4.43: An example of our multi-phase FM optimization. Design: AES. Technology:
28FDSOI. WNS improves from -200ps to -14ps. Runtime = 565 seconds on a 2.5GHz Intel

Xeon server.

2013.03-SP3 [237], Cadence Encounter Digital Implementation System v12.0 [217], Synopsys

PrimeTime vH-2013.06-SP2 [240] for logic synthesis, P&R, and timing and power analyses,

respectively. Similarly to [155], we stitch SPEF files of Tier 0 and Tier 1, with annotated VI

parasitics for timing and power analyses.

We use six open-source designs (DMA, USB, AES, MPEG, JPEG, VGA) [230] and

an ARM CORTEX M0 in our experiments. These testcases are generated with foundry 28nm

FDSOI 12-track, dual-Vth libraries. We use a BEOL stack of six metal layers for routing.

Table 4.12: Testcases used in the experiments.

Design #Instances Clock period (ns)

DMA ∼2K 0.6

USB ∼4K 0.8

ARM CORTEX M0 ∼9K 1.2

AES ∼11K 1.1

MPEG ∼13K 1.2

JPEG ∼36K 1.4

VGA ∼73K 1.0

We conduct three experiments to evaluate the performance of our partitioning method-

ologies. (i) We validate the solution quality of our heuristic partitioning optimization by compar-

ing its solutions with those of the ILP-based method. Due to poor scalability of the ILP-based

215

method, we perform experiments on two small testcases (DMA and USB). (ii) We assess the

benefit from our heuristic partitioning method within a brute-force 3DIC implementation flow,

which we refer to as GT2012 [99]. (iii) We further assess the benefit from our partitioning

method within a state-of-the-art 3DIC implementation flow (Shrunk2D) [155]. In our experi-

ments, we perform three-phase optimization; each phase contains two FM runs. The ranges we

use for cluster sizes are [100, 120], [80, 90], [60, 70], [40, 50], [20, 30], [10, 20]. Thus, our

optimization uses six threads.

3DIC Implementation Flows

Based on the conventional 2D implementation (P&R) flow, we study the GT2012 3DIC

implementation as shown in Algorithm 22.86 We first partition the netlist into two tiers (Line

1). After the partitioning, we place cells on Tier 0, and determine the VI locations based on that

placement (Lines 2-3). With the fixed VI locations, we perform placement optimization on Tier

0 and Tier 1 separately (Line 4). We then insert a VI as the clock port on Tier 1. The clock VI

location on Tier 1 is close to the clock port location on Tier 0 to minimize the cross-tier clock

skew. We perform clock tree synthesis (CTS) on Tier 0 and Tier 1 separately (Lines 6-7). Last,

we perform routing and routing optimization on each tier (Line 9). Note that we perform 3D

timing analysis and update timing constraints for each tier after placement and CTS.

Algorithm 22 GT2012 3DIC implementation flow.

1: Netlist partitioning (MLPart [229] or our partitioning method);
2: Initial placement on Tier 0;
3: VI insertion based on placement of Tier 0;
4: Placement optimization on Tier 0 and Tier 1;
5: Timing constraint update;
6: VI insertion for clock port on Tier 1;
7: Clock tree synthesis (CTS) on Tier 0 and Tier 1;
8: Timing constraints update;
9: Routing and routing optimization on Tier 0 and Tier 1;

We also use the 3DIC implementation flow in [155] to validate our partitioning method.

The flow first performs 2D implementation with scaled (i.e., 0.7 x) cell sizes and floorplan.

Based on the shrunk 2D implementation, it partitions cells into two tiers. It further modifies

the technology files so that BEOL stacks of two tiers (each has six layers) are connected as one

(12-layer) BEOL stack and performs routing on both tiers to determine VI locations. Last, it

performs routing and routing optimization on each tier separately. In the flow, all the clock cells
86This 3DIC flow is similar to early flows that we have seen used, e.g., at U.S. Department of Energy laboratories.

216

are forced to be on Tier 0. Following [155], we refer to this flow as the Shrunk2D flow.

To be aware of mix-and-match die stacking, we extend both flows to perform a multi-

view optimization after the netlist is partitioned, such that the die stacking of { SS Tier 0 + FF

Tier 1, FF Tier 0 + SS Tier 1 } is captured during the P&R optimization. In addition, we assume

face-to-face (F2F) die stacking in both flows.87

Experimental Results

Table 4.13: Validation of our partitioning methodology on GT2012 and Shrunk2D flows.

Design Flow
WNS TNS Area Power

#Instances
Wirelength

#VIs
Utilization

(ps) (ns) (µm2) (mW) (µm) (bottom / top)

ARM CORTEX M0

GT2012 (orig) -178 -56.735 8451 6.701 8816 116966 304 77% / 69%

GT2012 (opt) -23 -0.173 8448 6.210 8780 136631 2744 70% / 76%

Shrunk2D (orig) -89 -11.040 9697 6.499 9855 83462 3715 83% / 86%

Shrunk2D (opt) -13 -0.080 10106 6.985 9982 93495 4490 86% / 90%

AES

GT2012 (orig) -181 -26.113 8536 10.700 10964 129896 250 74% / 70%

GT2012 (opt) -8 -0.012 8554 9.351 10947 156716 4417 65% / 79%

Shrunk2D (orig) -4 0.000 9621 10.600 11302 113209 4787 78% / 81%

Shrunk2D (opt) 56 0.000 9611 10.200 11356 116816 6304 75% / 83%

MPEG

GT2012 (orig) -68 -2.043 18089 13.900 13152 227734 307 69% / 73%

GT2012 (opt) 73 0.000 18125 14.100 13185 321866 4674 74% / 67%

Shrunk2D (orig) 20 0.000 18620 14.800 13275 158386 4741 72% / 74%

Shrunk2D (opt) 79 0.000 18691 15.400 13279 174804 7727 77% / 70%

JPEG

GT2012 (orig) -155 -7.094 44758 32.100 36521 703770 1159 69% / 72%

GT2012 (opt) -52 -0.462 45094 31.800 36631 1007156 12571 76% / 67%

Shrunk2D (orig) -115 -1.760 54457 42.900 52824 520123 14075 85% / 88%

Shrunk2D (opt) -82 -1.210 54637 43.000 52947 562430 20635 88% / 85%

VGA

GT2012 (orig) -244 -6.213 100143 113.300 72682 2201814 1546 76% / 70%

GT2012 (opt) -80 -0.251 102683 117.200 72731 3667133 15353 70% / 80%

Shrunk2D (orig) -47 -0.270 104525 90.000 73950 904742 27780 76% / 77%

Shrunk2D (opt) 11 0.000 104008 86.800 74051 929942 35908 79% / 73%

Calibration of Heuristic Partitioning. We calibrate our heuristic partitioning method by com-

paring its solutions to those of the ILP-based method. We perform experiments on designs DMA

and USB. We vary the VI insertion delay impact from 10ps to 50ps. We also assume different

combinations of process conditions (i.e., { 3σ SS + 3σ FF, 2σ SS + 3σ FF, 3σ SS + 2σ FF }).
87To maximize the timing benefit from mix-and-match die stacking, large number of VIs will be inserted. On

the other hand, VI insertions will have area impact in a face-to-back stacking-based implementation. We therefore
assume F2F stacking. We also note that F2F stacking and monolithic 3D integration are more preferable in the regime
of mix-and-match die stacking due to their small VI area impact.

217

Comparison results in Figure 4.44 show that except for one outlier, the timing slack resulted

from our heuristic method is always within 30ps difference compared to the solution of the

ILP-based method, where the ILP-based solution is considered to be very close to the optimal

solution. This confirms that our heuristic method is able to comprehend asymmetric distribution

of process bins and VI delay impact. The outlier occurs with the setup of large VI delay impact,

where the problem becomes more challenging.

Figure 4.44: Comparison of solution qualities between the ILP-based method (which is
near-optimal) and the heuristic method.

Validation of Our Method on GT2012 Flow. Table 4.13 shows the timing quality, total cell

area, power, gate count, wirelength, number of VIs and post-routing utilization of implementa-

tions using the GT2012 flow and the GT2012 flow with our heuristic partitioning method. Note

that the reported timing and power are the worst cases between SS Tier 0 + FF Tier 1 and FF Tier

0 + SS Tier 1. We observe that our partitioning approach leads to up to 16% timing improvement

(i.e., on designs AES and VGA) compared to the GT2012 flow, which uses conventional min-cut

218

partitioning [25][229], while achieving similar area and power. This is a significant improve-

ment, considering that even 20% improvement in performance per new technology generation is

now quite difficult to achieve. The larger wirelength is because of additional wires routed to the

increased number of VIs.

Validation of Our Method on Shrunk2D Flow. Table 4.13 shows design metrics of implemen-

tations using the original Shrunk2D flow [155] and its extension with our partitioning method.

We observe that the extended flow with our partitioning approach achieves up to 7% timing im-

provement (i.e., on design ARM CORTEX M0) with similar area, power and wirelength. Note

that to maintain the solution of the 2D implementation in the scaled floorplan, we include addi-

tional bin-based area balancing constraints such that we uniformly divide the core area into N ×
N bins and set area balancing criteria for each bin during the FM optimization. We use three bin

sizes in our optimizations – 20µm × 20µm, 30µm × 30µm and 50µm × 50µm – and report

the result with the maximum timing slack.

4.4.6 Conclusion

In this work, we study design-stage optimization for mix-and-match die stacking. Our

motivating insight is that a priori knowledge of mix-and-match 3DIC integration should in-

fluence multi-die partitioning optimization and signoff. We propose an ILP-based partition-

ing methodology and a heuristic partitioning methodology that performs maximum cut on the

timing-critical sequential graph followed by an iterative multi-phase FM optimization. We val-

idate our partitioning optimization on two 3DIC implementation flows, each of which we have

extended to be aware of mix-and-match die stacking. Our optimization leads to up to 16% timing

improvement, as compared to a flow with min-cut based partitioning solution, when measured by

RC extraction and signoff timing at the post-routing stage. Our study also indicates that a gate-

level 3D integration has more flexibility and thus larger timing benefits in the mix-and-match

regime as compared to a block-level integration. Our ongoing works include (i) integration of

design-stage optimization and die- and/or wafer-level optimization for mix-and-match die stack-

ing; (ii) clock tree synthesis for mix-and-match stacking; (iii) including BEOL variation in our

optimization; (iv) a new abstraction model for slack improvement with mix-and-match stacking,

for faster calculation of gain functions in FM optimization; and (v) more general formulations

of die-level mix-and-match optimizations. We will also seek to develop more detailed cost mod-

eling for multi-die integration – e.g., to understand how testability or other considerations might

affect our study and/or its conclusions.

219

4.5 Acknowledgments

Chapter 4 contains reprints of Kwangsoo Han, Andrew B. Kahng and Jiajia Li, “Im-

proved Performance of 3DIC Implementations Through Inherent Awareness of Mix-and-Match

Die Stacking”, Proc. Design, Automation and Test in Europe, 2016; Sorin Dobre, Andrew B.

Kahng and Jiajia Li, “Mixed Cell-Height Implementation for Improved Design Quality in Ad-

vanced Nodes”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2015;

Tuck-Boon Chan, Andrew B. Kahng and Jiajia Li, “NOLO: A No-Loop, Predictive Useful

Skew Methodology for Improved Timing in IC Implementation”, Proc. International Sympo-

sium on Quality Electronic Design, 2014; and Tuck-Boon Chan, Andrew B. Kahng and Jiajia

Li, “Reliability-Constrained Die Stacking Order in 3DICs under Manufacturing Variability”,

Proc. International Symposium on Quality Electronic Design, 2013. Chapter 4 also contains the

draft submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, Sorin Dobre, Andrew B. Kahng and Jiajia Li, “Design Implementation with Non-Integer

Multiple-Height Cells for Improved Design Quality in Advanced Nodes”. The dissertation au-

thor is the primary author of the papers and the submitted draft.

I would like to thank my coauthors Tuck-Boon Chan, Sorin Dobre, Kwangsoo Han and

Andrew B. Kahng.

Chapter 5

Conclusion and Future Directions

This thesis has presented innovative physical design optimization techniques and sig-

noff methodologies to address pressing challenges faced by current and future SoC designs. The

methods presented enable design teams and product companies to realize design-based equiva-

lent scaling for improved PPAC tradeoffs.

Chapter 2 presents three distinct multi-mode multi-corner optimization methodologies

that respectively optimize signoff corner selection, skew variation in a clock tree, and scan (shift)

timing. Based on the properties of equivalent dominance, the chapter presents guidelines and ef-

ficient methodologies to search for the optimal modes for multi-mode signoff. The proposed

methodologies can successfully determine the signoff modes that reduce lifetime energy, and are

shown to achieve up to > 8% performance improvement compared to the traditional “signoff

and scale” approach. The chapter also presents the first framework to minimize the sum of skew

variations over all sequentially adjacent sink pairs, using both global and local optimizations.

Experimental results show that the proposed flow achieves up to 22% reduction of the sum of

skew variations for testcases implemented in foundry 28nm technology, as compared to a lead-

ing commercial tool. In the global optimization, a linear programming formulation comprehends

ECO feasibility based on characterized lookup tables of stage delays. In the local optimization,

the chapter demonstrates that machine learning-based predictors of latency changes can provide

accurate estimation of local move impacts. Last, the chapter presents a comprehensive scan

timing optimization that can be deployed during late-stage IC implementation without causing

any function-mode solution quality degradation. Specifically, the chapter presents two optimiza-

tion approaches: (i) scan reordering that removes hold buffers along scan chains with awareness

of clock skew and scan cell locations, and (ii) gating insertion to minimize the DVD impact

220

221

on scan timing slack. These optimizations achieve up to 82% hold buffer reduction and 58%

improvement of scan timing degradation due to DVD.

Chapter 3 addresses the low-power imperative in modern SoC designs through three op-

timization techniques. First, the chapter presents a comprehensive optimization framework for

stacked power-domain implementation with maximized battery lifetime. The approach extends

the existing flow-based partitioning methodology with layout- and timing-path-awareness, as

well as a multi-scenario balancing objective. It further uses an iterative grid movement and a

dynamic programming-based boundary optimization to define the layout region (power island)

of each power domain. Validations are performed in both 28nm LP and 40nm technologies, as

well as on industrial designs. The optimization achieves more than 10% and 2× battery lifetime

improvements for function and sleep modes compared to the conventional design. Second, the

chapter presents a flop tray-based optimization for improved design power reduction. The opti-

mization uses a capacitated K-means algorithm which iteratively applies a min-cost flow-based

clustering and an LP-based flop tray placement. The optimization also includes an ILP-based

matching optimization to generate flop trays while minimizing the perturbation to the initial

placement solution. The proposed techniques achieve up to 32% total block power reduction

relative to designs with only single-bit flops, and up to 16% total block power reduction relative

to designs with flop trays generated by logical clustering during synthesis. Last, the chapter

presents a new design flow for mixing of resilient and non-resilient circuits within a given im-

plementation, so as to minimize the overhead of error resilience. The new design flow includes

(i) a selective-endpoint optimization, which reduces timing-critical endpoints while maintaining

small cost of timing optimization; and (ii) a clock skew optimization, specifically targeted to a

resilient design methodology, which improves robustness to process, voltage and temperature

variations. The proposed optimization techniques achieve significant energy reductions of up

to 21% and 10% compared to conventional (pure-margin) design and a brute-force resilience

implementation, respectively.

Chapter 4 presents the concept of “mixed-fabric optimization” for physical design and

signoff. First, the chapter presents a mixed cell-height optimization flow, which mixes cells with

different, non-integer multiple heights in a fine-grained manner within a single place-and-route

block. The flow applies a dynamic programming-based partitioning to define regions for differ-

ent cell heights, and performs iterative displacement and/or cell height swapping to achieve a

legal placement solution. By comprehending the “breaker cell” overheads of the mixed-height

placement, the optimization achieves 30+ percent area and power reductions while maintain-

222

ing performance, as compared to a 12T-only design flow in 28LP technology. Moreover, the

optimized mixed-height designs can achieve significant performance increase along with area

and power reductions as compared to designs with 8T-only cells. Second, the chapter presents

NOLO, a “no-loop” predictive useful skew optimization flow, based on timing information (with

dual-Vth libraries) of a post-synthesis netlist. The predictive useful skew flow achieves similar

or better total negative slack compared to back-annotation flows, with only one pass through

chip implementation. The runtime of the predictive useful skew flows is similar to the runtime

of the typical (i.e., without useful skew optimization) flow, which is approximately 66% less

than the runtime of the back-annotation flow in [191]. Last, the chapter presents two studies

of mix-and-match die stacking optimization in 3DICs. To help product companies better nav-

igate future variability-reliability interactions and optimizations, the chapter proposes a “rule-

of-thumb” guideline for stacking optimization that reduces the peak temperature and increases

the MTTF of 3DICs. An ILP-based method and an O(n log n) zig-zag heuristic method for

reliability-driven stacking optimization achieve ∼7%, ∼28% and ∼3% improvement in average

MTTF, minimum MTTF and performance (under reliability constraints) of 3DICs, respectively,

compared to the case where no optimization is applied. Furthermore, the chapter develops a

design-stage optimization for mix-and-match die stacking. An ILP-based partitioning method-

ology and a heuristic partitioning methodology perform maximum cut on the timing-critical

sequential graph followed by an iterative multi-phase FM optimization. The optimization yields

up to 16% timing improvement, as compared to a flow with min-cut based partitioning solution,

when measured by RC extraction and signoff timing at the post-routing stage.

Looking beyond this thesis, future directions and ongoing works include the following.

• 3DIC with multiple tiers is a promising technology in the “More-than-Moore” era to inte-

grate more functionality with greater bandwidth and less power. However, due to inter-tier

process variation, delay and area penalties from vertical interconnects, and high thermal

density, physical design and signoff for 3DICs are challenging. Moreover, there is no

production-quality 3D design tool/flow available. Therefore, physical design (especially,

multi-tier partitioning and clock network synthesis) and signoff methodologies must be

considered as key future directions beyond this thesis.

• Many alternative low-power computing techniques (e.g., approximate computing and stoc-

hastic computing) are promising for specific applications such as neural networks, image

processing and communication. Further, IC design for these alternative computing tech-

niques typically introduces new constraints and requirements (e.g., [1]) that are unseen

223

in conventional designs; these require new physical design and signoff methodologies.

Hence, physical design and signoff must go beyond traditional PPAC tradeoffs: it must

comprehend and address the additional tradeoffs in these alternative computing designs

such as the accuracy-power or accuracy-area tradeoff in approximate computing, and the

tradeoffs among power (or area), accuracy and computation latency in stochastic comput-

ing.

• New interconnect and device technologies typically yield new objectives for traditional

P&R optimizations. For instance, while wirelength minimization and routing congestion

reduction are the main objectives in the traditional routing optimization, signal loss mini-

mization, which is affected by waveguide crossings and bends, is a primary objective for

on-chip optical interconnect routing [44]. Therefore, new physical design techniques are

needed to enable the usage of new interconnect and device technologies in IC designs. As

an example, a recent work [47] performs floorplan optimization for silicon photonic NoCs

(Networks-on-Chip) in many-core systems.

• Last, there remain many rich opportunities to apply machine learning (ML) techniques to

physical design and signoff optimizations. Armed with relatively accurate modeling and

prediction of design flow outcomes in late-design stages, an ML-based predictive flow

can break the “chicken-and-egg” loops that pervade today’s physical design flows, thus

reducing design turnaround time and improving design quality. Moreover, many steps in

the physical design flow (such as floorplanning, and post-routing timing closure) cannot

be optimally solved due to the large runtime complexity. Therefore, many heuristics and

trial-and-error techniques are applied in current physical design and signoff flows. To

systematically optimize the design and leverage a design organization’s or an EDA tool’s

previous optimization results (experience), reinforcement learning might be a promising

framework.

Bibliography

[1] A. Alaghi, W.-T. J. Chan, J. P. Hayes, A. B. Kahng and J. Li, “Optimizing Stochastic
Circuits for Accuracy-Energy Tradeoffs”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2015, pp. 178-185.

[2] C. Albrecht, personal communication, July 2013.

[3] C. Albrecht, “Efficient Incremental Clock Latency Scheduling for Large Circuits”, Proc.
Design, Automation and Test in Europe, 2006, pp. 6-10.

[4] C. Albrecht, B. Korte, J. Schietke and J. Vygen, “Maximum Mean Weight Cycle in a
Digraph and Minimizing Cycle Time of a Logic Chip”, Discrete Applied Mathematics
123(1-3) (2002), pp. 103-127.

[5] C. Albrecht, B. Korte, J. Schietke and J. Vygen, “Cycle Time and Slack Optimization for
VLSI-Chips”, Proc. IEEE/ACM International Conference on Computer-Aided Design,
1999, pp. 232-237.

[6] C. Albrecht, P. Witte and A. Kuehlmann, “Performance and Area Optimization using
Sequential Flexibility”, Proc. International Workshop on Logic and Synthesis, 2004.

[7] C. J. Alpert, A. Devgan and C. Kashyap, “A Two Moment RC Delay Metric for Perfor-
mance Optimization”, Proc. ACM International Symposium on Physical Design, 2000,
pp. 73-78.

[8] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A Survey”,
Integration, the VLSI Journal 19(1-2) (1995), pp. 1-81.

[9] C. J. Alpert, Z. Li, G.-J. Nam, S. Ramji, C. N. Sze, P. G. Villarubia and N.
Viswanathan, “Structured Placement of Latches/Flip-Flops to Minimize Clock Power in
High-Performance Designs”, U.S. Patent No. US8954912B2, February 2015.

[10] D. Arthur and S. Vassilvitskii, “K-Means++: The Advantages of Careful Seeding”, Proc.
ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1027-1035.

[11] T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture De-
sign”, Proc. IEEE/ACM International Symposium on Microarchitecture, 1999, pp. 196-
207.

224

225

[12] T. Austin, V. Bertacco, D. Blaauw and T. Mudge, “Opportunities and Challenges for Bet-
ter Than Worst-Case Design”, Proc. Asia and South Pacific Design Automation Confer-
ence, 2005, pp. 2-7.

[13] N. D. P. Avirneni, V. Subramanian and A. K. Somani, “Low Overhead Soft Error Miti-
gation Techniques for High-Performance and Aggressive Systems”, Proc. International
Conference on Dependable Systems & Networks, 2009, pp. 185-194.

[14] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical
Approach, Springer, 2009.

[15] J. R. Black, “Electromigration – A Brief Survey and Some Recent Results”, IEEE Trans-
actions on Electron Devices 16(4) (1969), pp. 338-347.

[16] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. McCauley, P.
Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen and C. Webb,
“Die Stacking (3D) Microarchitecture”, Proc. IEEE/ACM International Symposium on
Microarchitecture, 2006, pp. 469-479.

[17] K. Blutman, NXP Semiconductors, personal communication, June 2016.

[18] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li and J. Pineda de Gyvez, “Floorplan
and Placement Methodology for Improved Energy Reduction in Stacked Power-Domain
Design”, Proc. Asia and South Pacific Design Automation Conference, 2017, pp. 444-449.

[19] K. Blutman, A. Kapoor, A. Majumdar, J. G. Martinez, J. Echeverri, L. Sevat, A. van
der Wel, H. Fatemi, J. Pineda de Gyvez and K. Makinwa, “A Microcontroller with 96%
Power-Conversion Efficiency using Stacked Voltage Domains”, Proc. IEEE Symposium
on VLSI Circuits, 2016, pp. 1-2.

[20] K. Blutman, A. Kapoor, J. G. Martinez, H. Fatemi and J. Pineda de Gyvez, “Lower Power
by Voltage Stacking: A Fine-grained System Design Approach”, Proc. ACM/EDAC/IEEE
Design Automation Conference, 2016, pp. 78:1-78:5.

[21] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch and A. Virazel,
“Design of Routing-Constrained Low Power Scan Chains”, Proc. Design, Automation
and Test in Europe, 2004, pp. 62-67.

[22] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S. L. Lu, T. Karnik
and V. K. De, “Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic
Variation Tolerance”, IEEE Journal of Solid State Circuits 44(1) (2009), pp. 49-63.

[23] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De and S. Borkar, “Cir-
cuit Techniques for Dynamic Variation Tolerance”, Proc. ACM/IEEE Design Automation
Conference, 2009, pp. 4-7.

[24] A. C. Cabe, Z. Qi and M. R. Stan, “Stacking SRAM Banks for Ultra Low Power Standby
Mode Operation”, Proc. ACM/IEEE Design Automation Conference, 2010, pp. 699-704.

226

[25] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Algorithms for Hypergraph
Bipartitioning”, Proc. Asia and South Pacific Design Automation Conference, 2000, pp.
661-666.

[26] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal Partitioners and End-Case Plac-
ers for Standard-Cell Layout”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 19(11) (2000), pp. 1304-1313.

[27] A. Cao, S.-M. Chang and D.-C. Yuan, “Local Clock Skew Optimization”, U.S. Patent No.
US8635579B1, January 2014.

[28] T.-B. Chan, K. Han, A. B. Kahng, J.-G. Lee and S. Nath, “OCV-Aware Top-Level Clock
Tree Optimization”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2014,
pp. 33-38.

[29] T.-B. Chan, A. B. Kahng and J. Li, “Reliability-Constrained Die Stacking Order in 3DICs
Under Manufacturing Variability”, Proc. International Symposium on Quality Electronic
Design, 2013, pp. 16-23.

[30] T.-B. Chan, A. B. Kahng, J. Li and S. Nath, “Optimization of Overdrive Signoff”, Proc.
Asia and South Pacific Design Automation Conference, 2013, pp. 344-349.

[31] W.-T. J. Chan, A. B. Kahng, S. Nath and I. Yamamoto, “The ITRS MPU and SOC Sys-
tem Drivers: Calibration and Implications for Design-Based Equivalent Scaling in the
Roadmap”, Proc. IEEE International Conference on Computer Design, 2014, pp. 153-
160.

[32] V. Chandra, ARM and M. Choudhury, IBM, personal communication, June 2014.

[33] L. Chen, A. Hung, H. M. Chen, E. Tsai, S. H. Chen, M. H. Ku and C. C. Chen, “Using
Multi-bit Flip-Flop for Clock Power Saving by Design Compiler”, Proc. Synopsys Users
Group Conference, 2010.

[34] H. Chen, S. Roy and K. Chakraborty, “DARP: Dynamically Adaptable Resilient Pipeline
Design in Microprocessors”, Proc. Design, Automation and Test in Europe, 2014, pp. 1-6.

[35] C.-H. Chen, Y. Tao and Z. Zhang, “Efficient In Situ Error Detection Enabling Diverse
Path Coverage”, Proc. IEEE International Symposium on Circuits and Systems, 2013, pp.
773-776.

[36] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung and C. Chu, “Post-Placement Voltage
Island Generation”, Proc. IEEE/ACM International Conference on Computer-Aided De-
sign, 2006, pp. 641-646.

[37] M. Cho, S. Ahmed and D. Z. Pan, “TACO: Temperature Aware Clock-tree Optimization”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2005, pp. 582-
587.

[38] C. B. Cho, W. Zhang and T. Li, “Thermal Design Space Exploration of 3D Die Stacked
Multi-core Processors Using Geospatial-Based Predictive Models”, Proc. SPEC Bench-
mark Workshop on Computer Performance Evaluation and Benchmarking, 2009, pp. 102-
120.

227

[39] H.-M. Chou, H. Yu and S.-C. Chang, “Useful-Skew Clock Optimization for Multi-Power
Mode Designs”, Proc. IEEE/ACM International Conference on Computer-Aided Design,
2011, pp. 647-650.

[40] M. Choudhury, V. Chandra, K. Mohanram and R. Aitken, “TIMBER: Time Borrowing
and Error Relaying for Online Timing Error Resilience”, Proc. Design, Automation and
Test in Europe, 2010, pp. 1554-1559.

[41] M. R. Choudhury and K. Mohanram, “Masking Timing Errors on Speed-Paths in Logic
Circuits”, Proc. Design, Automation and Test in Europe, 2009, pp. 87-92.

[42] C. Chu, “FLUTE: Fast Lookup Table Based Wirelength Estimation Technique”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2004, pp. 696-701.

[43] R. L. Clay, “Exascale Computing Systems R&D at Sandia”, talk at Texas A&M Univer-
sity, September 27, 2011, http://www.cs.tamu.edu/tref/clay

[44] C. Condrat, P. Kalla and S. Blair, “Channel routing for integrated optics”, Proc. ACM
International Workshop on System-Level Interconnect Prediction, 2013 pp. 1-8.

[45] J. Cong, G. Luo, J. Wei and Y. Zhang, “Thermal-Aware 3D IC Placement Via Transfor-
mation”, Proc. Asia and South Pacific Design Automation Conference, 2007, pp. 780-785.

[46] B. D. Cory, R. Kapur and B. Underwood, “Speed Binning with Path Delay Test in 150-nm
Technology”, IEEE Design and Test of Computers 20(5) (2003), pp. 41-45.

[47] A. Coskun, A. Gu, W. Jin, A. J. Joshi, A. B. Kahng, J. Klamkin, Y. Ma, J. Recchio, V.
Srinivas and T. Zhang, “Cross-Layer Floorplan Optimization For Silicon Photonic NoCs
In Many-Core Systems”, Proc. Design, Automation and Test in Europe, 2016, pp. 1309-
1314.

[48] A. Cui, T. Yu, G. Qu and M. Li, “An Improved Scan Design for Minimization of Test
Power under Routing Constraint”, Proc. IEEE International Symposium on Circuits and
Systems, 2015, pp. 629-632.

[49] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner and T. Mudge, “A
Self-Tuning DVS Processor Using Delay-Error Detection and Correction”, IEEE Journal
of Solid State Circuits 41(4) (2006), pp. 792-804.

[50] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull and D. T.
Blaauw, “Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance”,
Proc. International Solid State Circuits Conference, 2008, pp. 400-622.

[51] C. Deng, Y.-C. Cai and Q. Zhou, “Register Clustering Methodology for Low Power Clock
Tree Synthesis”, Journal of Computer Science and Technology 30(2) (2015), pp. 391-403.

[52] R. B. Deokar and S. S. Sapatnekar, “A Graph-theoretic Approach to Clock Skew Opti-
mization”, Proc. IEEE International Symposium on Circuits and Systems, 1994, pp. 407-
410.

228

[53] S. Devadas and S. Malik, “A Survey of Optimization Techniques Targeting Low Power
VLSI Circuits”, Proc. ACM/IEEE Design Automation Conference, 1995, pp. 242-247.

[54] S. Dobre, Qualcomm CDMA Technologies, Inc., personal communication, April 2016.

[55] S. Dobre, A. B. Kahng and J. Li, “Mixed Cell-Height Implementation for Improved
Design Quality in Advanced Nodes”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2015, pp. 854-860.

[56] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-removal Using Iterative Im-
provement Techniques”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 1996, pp. 194-200.

[57] M. Elgebaly, K. Z. Malik, L. G. Chua-Eoan and S. Jung, “Adaptive Voltage Scaling for an
Electronics Device”, U.S. Patent No. 7417482B2, August 2008.

[58] M. Elgebaly and M. Sachdev, “Variation-Aware Adaptive Voltage Scaling System”, IEEE
Transactions on Very Large Scale Integration Systems 15(5) (2007), pp. 560-571.

[59] J. A. Ellis, “Embedding Rectangular Grids Into Square Grids”, IEEE Transactions on
Computers 40(1) (1991), pp. 46-51.

[60] M. Elshoukry, M. Tehranipoor and C. P. Ravikumar, “A Critical-Path-Aware Partial Gat-
ing Approach for Test Power Reduction”, ACM Transactions on Design Automation of
Electronic Systems 12(2) (2007), pp. 17:1-17:22.

[61] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K.
Flautner and T. Mudge, “Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation”, Proc. IEEE/ACM International Symposium on Microarchitecture, 2003, pp.
7-18.

[62] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D. Burger, “Dark Silicon
and the End of Multicore Scaling”, Proc. International Symposium on Computer Archi-
tecture, 2011, pp. 365-376.

[63] S. Fabrie, NXP Semiconductors, personal communication, May–July 2014.

[64] C. Ferri, S. Reda and R. I. Bahar, “Parameter Yield Management for 3DICs: Models
and Strategies for Improvement”, ACM Journal on Emerging Technologies in Computing
Systems 4(4) (2008), pp. 19:1-19:22.

[65] M. Feuer and C. C. Koo, “Method for Rechaining Shift Register Latches Which Contain
More Than One Physical Book”, IBM Technical Disclosure Bulletin 25(9) (1983), pp.
4818-4820.

[66] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Improving Network
Partitions”, Proc. ACM/IEEE Design Automation Conference, 1982, pp. 175-181.

[67] J. P. Fishburn, “Clock Skew Optimization”, IEEE Transactions on Computers 39(7)
(1990), pp. 945-951.

229

[68] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw and D. Sylvester, “Bubble
Razor: An Architecture-Independent Approach to Timing-Error Detection and Correc-
tion”, Proc. International Solid State Circuits Conference, 2012, pp. 488-489.

[69] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. M. Harris, D. Blaauw and D. Sylvester,
“Bubble Razor: Eliminating Timing Margins in an ARM Cortex-M3 Processor in 45 nm
CMOS Using Architecturally Independent Error Detection and Correction”, IEEE Journal
of Solid State Circuits 48(1) (2013), pp. 66-81.

[70] P. D. Franzon, W. R. Davis, M. B. Steer, H. Hao, S. Lipa, S. Luniya, C. Mineo, J. Oh,
A. Sule and T. Thorolfsson, “Design for 3D Integration and Applications”, Proc. Interna-
tional Symposium on Signals, Systems and Electronics, 2007, pp. 263-266.

[71] E. G. Friedman, Clock Distribution Networks in VLSI Circuits and Systems, New York,
IEEE Press, 1995.

[72] S. Garg and D. Marculescu, “Mitigating the Impact of Process Variation on the Perfor-
mance of 3-D Integrated Circuits”, IEEE Transactions on Very Large Scale Integration
Systems 21(10) (2013), pp. 1903-1914.

[73] S. Gerstendorfer and H.-J. Wunderlich, “Minimized Power Consumption for Scan-Based
BIST”, Journal of Electronic Testing 16(3) (2000), pp. 203-212.

[74] S. Ghosh and K. Roy, “CRISTA: A New Paradigm for Low-Power and Robust Circuit
Synthesis Under Parameter Variations Using Critical Path Isolation”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 26(11) (2007), pp. 1947-
1956.

[75] F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1999.

[76] M. X. Goemans and D. P. Williamson, “Improved Approximation Algorithms for Maxi-
mum Cut and Satisfiability Problems Using Semidefinite Programming”, Journal of the
ACM 42(6) (1995), pp. 1115-1145.

[77] B. Greskamp and J. Torrellas, “Paceline: Improving Single-Thread Performance in
Nanoscale CMPs through Core Overclocking”, Proc. International Conference on Par-
allel Architectures and Compilation Techniques, 2007, pp. 213-224.

[78] B. Greskamp, L. Wan, W. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen and C. Zilles,
“BlueShift: Designing Processors for Timing Speculation from the Ground Up”, Proc.
IEEE Symposium on High Performance Computer Architecture, 2009, pp. 213-224.

[79] L. Guo, Y. Cai, Q. Zhou and X. Hong, “Logic and Layout Aware Voltage Island Genera-
tion for Low Power Design”, Proc. Asia and South Pacific Design Automation Conference,
2007, pp. 666-671.

[80] P. Gupta, A. B. Kahng and S. Mantik, “Routing-Aware Scan Chain Ordering”, Proc. Asia
and South Pacific Design Automation Conference, 2003, pp. 857-862.

230

[81] P. Gupta, A. B. Kahng and S. Mantik, “A Proposal for Routing-Based Timing-Driven Scan
Chain Ordering”, Proc. International Symposium on Quality Electronic Design, 2003, pp.
339-343.

[82] L. W. Hagen, D. J.-H. Huang and A. B. Kahng, “On Implementation Choices for Iterative
Improvement Partitioning Algorithms”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 16(10) (1997), pp. 1199-1205.

[83] K. Han, A. B. Kahng, J. Lee, J. Li and S. Nath, “A Global-Local Optimization Framework
for Simultaneous Multi-Mode Multi-Corner Clock Skew Variation Reduction”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2015, pp. 26:1-26:6.

[84] S. S. Han, A. B. Kahng, S. Nath and A. Vydyanathan, “A Deep Learning Methodology to
Proliferate Golden Signoff Timing”, Proc. Design, Automation and Test in Europe, 2014,
pp. 1-6.

[85] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer, 2009.

[86] M. Hirech, J. Beausang and X. Gu, “A New Approach to Scan Chain Reordering Using
Physical Design Information”, Proc. International Test Conference, 1998, pp. 1089-3539.

[87] W. Hou, D. Liu and P.-H. Ho, “Automatic Register Banking for Low-Power Clock Trees”,
Proc. International Symposium on Quality Electronic Design, 2009, pp. 647-652.

[88] C.-C. Hsu, Y.-T. Chang and M. P.-H. Lin, “Crosstalk-Aware Power Optimization with
Multi-Bit Flip-Flops”, Proc. Asia and South Pacific Design Automation Conference, 2012,
pp. 431-436.

[89] L.-C. Hsu and H.-M. Chen, “On Optimizing Scan Testing Power and Routing Cost in
Scan Chain Design”, Proc. International Symposium on Quality Electronic Design, 2006,
pp. 451-456.

[90] Y. C. Hu, Y. L. Chung and M. C. Chi, “A Multilevel Multilayer Partitioning Algorithm
for Three Dimensional Integrated Circuits”, Proc. International Symposium on Quality
Electronic Design, 2010, pp. 483-487.

[91] J. Hu, M. C. Fu and S. I. Marcus, “A Model Reference Adaptive Search Method for Global
Optimization”, Operations Research 55(3) (2005), pp. 549-568.

[92] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Placement”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2000, pp. 165-170.

[93] A. Hurst, P. Chong and A. Kuehlmann, “Physical Placement Driven by Sequential Timing
Analysis”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2004,
pp. 379-386.

[94] D. Jayaraman, R. Sethuram and S. Tragoudas, “Gating Internal Nodes to Reduce Power
During Scan Shift”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2010,
pp. 79-84.

231

[95] K. Jeong and A. B. Kahng, “Methodology From Chaos in IC Implementation”, Proc.
International Symposium on Quality Electronic Design, 2010, pp. 885-892.

[96] I. H.-R. Jiang, “Generic Integer Linear Programming Formulation for 3D IC Partitioning”,
Proc. IEEE International SOC Conference, 2009, pp. 321-324.

[97] I. H.-R. Jiang, C. L. Chang and Y. M. Yang, “INTEGRA: Fast Multibit Flip-Flop Cluster-
ing for Clock Power Saving”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31(2) (2012), pp. 192-204.

[98] D.-C. Juan, S. Garg and D. Marculescu, “Statistical Peak Temperature Prediction and
Thermal Yield Improvement for 3D Chip Multiprocessors”, ACM Transactions on Design
Automation of Electronic Systems 19(4) (2014), pp. 39:1-39:23.

[99] M. Jung, personal communication, 2013.

[100] A. B. Kahng, “Lithography-Induced Limits to Scaling of Design Quality”, Proc. SPIE,
2014, pp. 905302-1-905302-14.

[101] A. B. Kahng, “Toward Holistic Modeling, Margining and Tolerance of IC Variability”,
Proc. IEEE Computer Society Annual Symposium on VLSI, 2014, pp. 284-289.

[102] A. B. Kahng, “New Game, New Goal Posts: A Recent History of Timing Closure”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2015, pp. 1-6.

[103] A. B. Kahng, “PPAC Scaling at 7nm and Below”, Cadence Distinguished Speaker Series
talk, San Jose, CA, April 7, 2016.

[104] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Enhancing the Efficiency of Energy-
Constrained DVFS Designs”, IEEE Transactions on Very Large Scale Integration Systems
21(10) (2013), pp. 1769-1782.

[105] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Recovery-driven Design: A Method-
ology for Power Minimization for Error Tolerant Processor Modules”, Proc. ACM/IEEE
Design Automation Conference, 2010, pp. 825-830.

[106] A. B. Kahng, S. Kang, R. Kumar and J. Sartori, “Slack Redistribution for Graceful Degra-
dation Under Voltage Overscaling”, Proc. Asia and South Pacific Design Automation Con-
ference, 2010, pp. 825-831.

[107] A. B. Kahng, S. Kang, H. Lee, I. L. Markov and P. Thapar, “High-Performance Gate
Sizing with a Signoff Timer”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2013, pp. 450-457.

[108] A. B. Kahng, S. Kang and J. Li, “A New Methodology for Reduced Cost of Resilience”,
Proc. Great Lakes Symposium on Very Large Scale Integration, 2014, pp. 157-162.

[109] A. B. Kahng, I. Kang and S. Nath, “Incremental Multiple-Scan Chain Ordering for ECO
Flip-Flop Insertion”, Proc. IEEE/ACM International Conference on Computer-Aided De-
sign, 2013, pp. 705-712.

232

[110] A. B. Kahng, H. Lee and J. Li, “Measuring Progress and Value of IC Implementation
Technology”, Proc. IEEE/ACM International Conference on Computer-Aided Design,
2016, pp. 27:1-27:8.

[111] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure, Springer, 2011.

[112] A. B. Kahng, B. Lin and S. Nath, “Enhanced Metamodeling Techniques for High-
Dimensional IC Design Estimation Problems”, Proc. Design, Automation and Test in
Europe, 2013, pp. 1861-1866.

[113] A. B. Kahng, B. Lin and S. Nath, “Explicit Modeling of Control and Data for Improved
NoC Router Estimation”, Proc. ACM/EDAC/IEEE Design Automation Conference, 2012,
pp. 392-397.

[114] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-Based Placements”,
Proc. Great Lakes Symposium on Very Large Scale Integration, 2004, pp. 214-219.

[115] A. B. Kahng and X. Xu, “Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff
in Performance-Driven Bipartitioning”, Proc. ACM International Symposium on Physical
Design, 2003, pp. 81-86.

[116] G. Karypis and V. Kumar, “Multilevel K-Way Hypergraph Partitioning”, Proc. ACM/IEEE
Design Automation Conference, 1999, pp. 343-348.

[117] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs”, SIAM Journal on Scientific Computing 20(1) (1998), pp. 359-392.

[118] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “PERI: A Technique for Extending
Delay and Slew Metrics to Ramp Inputs”, Proc. ACM International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systems, 2002, pp. 57-62.

[119] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs”,
Bell Labs Technical Journal 49(2) (1970), pp. 291-307.

[120] S. Khuller and Y. J. Sussmann, “The Capacitated K-Center Problem”, SIAM Journal on
Discrete Mathematics 13(3) (2000), pp. 403-418.

[121] T. Y. Kim and T. Kim, “Post Silicon Management of On-Package Variation Induced 3D
Clock Skew”, Journal of Semiconductor Technology and Science 12(2) (2012), pp. 139-
149.

[122] S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen and D. Sylvester, “Razor-Lite: A Side-
Channel Error-Detection Register for Timing-Margin Recovery in 45nm SOI CMOS”,
Proc. International Solid State Circuits Conference, 2013, pp. 264-265.

[123] Y. Kretchmer, “Using Multi-Bit Register Inference to Save Area and Power: The Good,
The Bad, and The Ugly”, EE Times Asia, 2001.

[124] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Networks”,
IEEE Transactions on Computers 33(5) (1984), pp. 438-446.

233

[125] M. W. Kuemerle, S. K. Lichtensteiger, D. W. Douglas and I. L. Wemple, “Inte-
grated Circuit Design Closure Method for Selective Voltage Binning”, U.S. Patent No.
US7475366B2, January 2009.

[126] K. J. Kuhn, “Reducing Variation in Advanced Logic Technologies: Approaches to Pro-
cess and Design for Manufacturability of Nanoscale CMOS”, Proc. IEEE International
Electron Devices Meeting, 2007, pp. 471-474.

[127] K. J. Kuhn, “CMOS Transistor Scaling Past 32nm and Implications on Variation”, Proc.
Advanced Semiconductor Manufacturing Conference, 2010, pp. 241-246.

[128] R. Kumar and C. P. Ravikumar, “Leakage Power Estimation for Deep Submicron Cir-
cuits in an ASIC Design Environment”, Proc. Asia and South Pacific Design Automation
Conference, 2002, pp. 45-50.

[129] E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan and D. Shmoys, The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, Wiley, 1985.

[130] J. Lee, S. Narayan, M. Kapralos and M. Tehranipoor, “Layout-Aware, IR-drop Tolerant
Transition Fault Pattern Generation”, Proc. Design, Automation and Test in Europe, 2008,
pp. 1172-1177.

[131] S. K. Lee, T. Tong, X. Zhang, D. Brooks and G.-Y. Wei, “A 16-Core Voltage-Stacked
System with An Integrated Switched-Capacitor DC-DC Converter”, Proc. Symposium on
VLSI Circuits, 2015, pp. C318-C319.

[132] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani, C.-K. Cheng, “Hier-
archical 3-D Floorplanning Algorithm for Wirelength Optimization”, IEEE Transactions
on Circuits and Systems I 53(12) (2006), pp. 2637-2646.

[133] J. Lienig, “Introduction to Electromigration-Aware Physical Design”, Proc. ACM Inter-
national Symposium on Physical Design, 2006, pp. 39-46.

[134] M. P.-H. Lin, C. C. Hsu and Y.-T. Chang, “Post-Placement Power Optimization with
Multi-Bit Flip-Flops”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 30(12) (2011), pp. 1870-1882.

[135] M. P. H. Lin, C. C. Hsu and Y. C. Chen, “Clock-Tree Aware Multibit Flip-Flop Genera-
tion During Placement for Power Optimization”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(2) (2015), pp. 280-292.

[136] L. Y.-Z. Lin, C. C.-H. Liao and C. H.-P. Wen, “Synthesizing Multiple Scan Chains by
Cost-Driven Spectral Ordering”, Proc. Asia and South Pacific Design Automation Con-
ference, 2013, pp. 540-545.

[137] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert and D.
Z. Pan, “MrDP: Multiple-row Detailed Placement of Heterogeneous-sized Cells for Ad-
vanced Nodes”, Proc. IEEE/ACM International Conference on Computer-Aided Design,
2016, pp. 7:1-7:8.

234

[138] L. Liu, I. Ganusov, M. Burtscher and S. Tiwari, “Bridging the Processor-Memory Perfor-
mance Gap with 3D IC Technology”, IEEE Design and Test of Computers 22(6) (2005),
pp. 556-564.

[139] Y. Liu, P.-H. Hsieh, S. Kim, J. Seo, R. Montoye, L. Chang, J. Tierno and D. Friedman, “A
0.1pJ/b 5-to-10Gb/s Charge-Recycling Stacked Low-Power I/O for On-Chip Signaling in
45nm CMOS SOI”, Proc. International Solid State Circuits Conference, 2013, pp. 400-
401.

[140] S. S. Y. Liu, W. T. Lo, C. J. Lee and H. M. Chen, “Agglomerative-Based Flip-Flop Merg-
ing and Relocation for Signal Wirelength and Clock Tree Optimization”, ACM Transac-
tions on Design Automation of Electronic Systems 18(3) (2013), pp. 40:1-40:20.

[141] Y. Liu, R. Ye, F. Yuan, R. Kumar and Q. Xu, “On Logic Synthesis for Timing Specula-
tion”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2012, pp.
591-596.

[142] Y. Liu, F. Yuan and Q. Xu, “Re-Synthesis for Cost-Efficient Circuit-Level Timing Specu-
lation”, Proc. ACM/EDAC/IEEE Design Automation Conference, 2011, pp. 158-163.

[143] S.-C. Lo, C.-C. Hsu and M. P.-H. Lin, “Power Optimization for Clock Network with Clock
Gate Cloning and Flip-Flop Merging”, Proc. ACM International Symposium on Physical
Design, 2014, pp. 77-84.

[144] G. H. Loh, “3D-Stacked Memory Architecture for Multi-core Processors”, Proc. Interna-
tional Symposium on Computer Architecture, 2008, pp. 453-464.

[145] G. Loi, B. Agarwal, N. Srivastava, S. Lin, T. Sherwood and K. Banerjee, “A Thermally-
Aware Performance Analysis of Vertically Integrated (3-D) Processor-Memory Hierar-
chy”, Proc. ACM/IEEE Design Automation Conference, 2006, pp. 991-996.

[146] C.-L. Lung, H.-C. Hsiao, Z.-Y. Zeng and S.-Y. Chang, “LP-Based Multi-Mode Multi-
Corner Clock Skew Optimization”, Proc. International Symposium on VLSI Design, Au-
tomation and Test, 2010, pp. 335-338.

[147] C.-L. Lung, Z.-Y. Zeng, C.-H. Chou and S.-Y. Chang, “Clock Skew Optimization Consid-
ering Complicated Power Modes”, Proc. Design, Automation and Test in Europe, 2010,
pp. 1474-1479.

[148] N. MacDonald, Broadcom Corp., personal communication, June 2013.

[149] A. D. Mehta, Y.-P. Chen, N. Menezes, D. F. Wong and L. T. Pileggi, “Clustering and Load
Balancing for Buffered Clock Tree Synthesis”, Proc. IEEE International Conference on
Computer Design, 1997, pp. 217-223.

[150] J. Meng, K. Kawakami and A. K. Coskun, “Optimizing Energy Efficiency of 3-D
Multicore Systems with Stacked DRAM under Power and Thermal Constraints”, Proc.
ACM/EDAC/IEEE Design Automation Conference, 2012, pp. 648-655.

235

[151] T. Mittal and C.-K. Koh, “Cross Link Insertion for Improving Tolerance to Variations
in Clock Network Synthesis”, Proc. ACM International Symposium on Physical Design,
2011, pp. 29-36.

[152] G.-J. Nam, IBM, personal communication, March 2016.

[153] K. Nose and T. Sakurai, “Analysis and Future Trend of Short-Circuit Power”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 19(9) (2000), pp.
1023-1030.

[154] M. M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke and C. Zhuo, “ISPD-2012
Discrete Cell Sizing Contest and Benchmark Suite”, Proc. ACM International Symposium
on Physical Design, 2012, pp. 161-164,
http://archive.sigda.org/ispd/contests/12/ispd2012 contest.html.

[155] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Design and CAD Methodologies for Low
Power Gate-level Monolithic 3D ICs”, Proc. International Symposium on Low Power
Electronics and Design, 2014, pp. 171-176.

[156] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Placement-Driven Partitioning for Congestion
Mitigation in Monolithic 3D IC Designs”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 34(4) (2015), pp. 540-553.

[157] D. Papa, N. Viswanathan, C. Sze, Z. Li, G.-J. Nam, C. Alpert and I. L. Markov, “Physical
Synthesis with Clock-Network Optimization for Large Systems on Chips”, IEEE Micro
31(4) (2011), pp. 51-62.

[158] N. Parimi, “Leveraging Physically Aware Design-for-Test to Improve Area, Power, and
Timing”,
https://www.cadence.com/rl/Resources/white papers/PhysicallyAware DFT wp.pdf

[159] J. T. Pawlowski, “Hybrid Memory Cube: Breakthrough DRAM Performance with a
Fundamentally Re-architected DRAM Subsystem”, HOT Chips: A Symposium on High
Performance Chips 23, 2011,
http://www.hotchips.org/wp-content/uploads/hc archives/hc23/HC23.18.3-memory-
FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf

[160] K. Puttaswamy and G. H. Loh, “Thermal Analysis of a 3D Die-Stacked High-Performance
Microprocessor”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2006,
pp. 19-24.

[161] R. Radojcic, “Roadmap for Design and EDA Infrastructure for 3D Products”, Electronic
Design Processes Workshop, April 2012.

[162] S. Rajapandian, K. Shepard, P. Hazucha and T. Karnik, “High-Tension Power Delivery:
Operating 0.18 µm CMOS Digital Logic at 5.4V”, Proc. International Solid State Circuits
Conference, 2005, pp. 298-299.

[163] A. Rajaram, J. Hu and R. Mahapatra, “Reducing Clock Skew Variability via Crosslinks”,
Proc. ACM/IEEE Design Automation Conference, 2004, pp. 18-23.

236

[164] A. Rajaram and D. Z. Pan, “Variation Tolerant Buffered Clock Network Synthesis with
Cross Links”, Proc. ACM International Symposium on Physical Design, 2006, pp. 157-
164.

[165] R. Rajaraman and D. F. Wong, “Optimum Clustering for Delay Minimization”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 14(12)
(1995), pp. 1490-1495.

[166] J.-C. Rau, C.-H. Lin and J.-Y. Chang, “An Efficient Low-Overhead Policy for Construct-
ing Multiple Scan-Chains”, Proc. IEEE Asian Test Symposium, 2004, pp. 82-87.

[167] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins,
D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N.
Bailey, J. G. Petrovick, B. L. Krauter and B. D. McCredie, “A Clock Distribution Network
for Microprocessors”, IEEE Journal of Solid State Circuits 36(5) (2001), pp. 792-799.

[168] P. J. Rousseeuw, “Silhouettes: A Graphical Aid to the Interpretation and Validation of
Cluster Analysis”, Journal of Computational and Applied Mathematics 20 (1987), pp.
53-65.

[169] Samsung Electronics Corporation (System LSI application processor principal engineer),
personal communication, July 2014.

[170] J. Schulze and R. Tally, “Mitigating Voltage Droop During Scan with Variable Shift Fre-
quency”, Proc. International Test Conference, 2014, pp. 1-8.

[171] S. Seo, Y. Lee, J. Lee and S. Kang, “A Scan Shifting Method based on Clock Gating of
Multiple Groups for Low Power Scan Testing”, Proc. International Symposium on Quality
Electronic Design, 2015, pp. 162-166.

[172] W. Shi and Z. Li and C. Alpert, “Complexity Analysis and Speedup Techniques for Opti-
mal Buffer Insertion with Minimum Cost”, Proc. Asia and South Pacific Design Automa-
tion Conference, 2004, pp. 609-614.

[173] M. Shih and E. S. Kuh, “Quadratic Boolean Programming for Performance-Driven Sys-
tem Partitioning”, Proc. ACM/IEEE Design Automation Conference, 1993, pp. 761-765.

[174] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan and D. Tarjan,
“Temperature-Aware Microarchitecture”, Proc. International Symposium on Computer
Architecture, 2003, pp. 2-13.

[175] M. Steyaert, N. Butzen, H. Meyvaert, A. Sarafianos, P. Callemeyn, T. Van Breussegem
and M. Wens, “DCDC performance Survey”.
http://homes.esat.kuleuven.be/ steyaert/DCDC Survey/DCDC PS.html

[176] H. Su and S. S. Sapatnekar, “Hybrid Structured Clock Network Construction”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2001, pp. 333-336.

[177] V. Subramanian and A. Somani, “Conjoined Pipeline: Enhancing Hardware Reliability
and Performance through Organized Pipeline Redundancy”, Proc. IEEE Pacific Rim In-
ternational Symposium on Dependable Computing, 2008, pp. 9-16.

237

[178] S. Sunder and K. Scholtman, “Multi-Mode Multi-Corner Clocktree Synthesis”, U.S.
Patent No. US20090217225A1, August 2009.

[179] T. G. Szymanski, “Computing Optimal Clock Schedules”, Proc. ACM/IEEE Design Au-
tomation Conference, 1992, pp. 399-404.

[180] C. M. Tan and F. He, “3D Circuit Model for 3DIC Reliability Study”, Proc. International
Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in
Micro-Electronics and Micro-Systems, 2009, pp. 1-7.

[181] Andres R. Teene, “Clock Skew Insensitive Scan Chain Reordering”, U.S. Patent No.
US6539509B1, May 2003.

[182] T. Thorolfsson, G. Luo, J. Cong and P. D. Franzon, “Logic-on-logic 3D Integration and
Placement”, Proc. 3D Systems Integration Conference, 2010, pp. 1-4.

[183] C. C. Tsai, Y. Shi, G. Luo and I. H.-R. Jiang, “FF-bond: Multi-Bit Flip-Flop Bonding at
Placement”, Proc. ACM International Symposium on Physical Design, 2013, pp. 147-153.

[184] C.-W. A. Tsao and C.-K. Koh, “UST/DME: A Clock Tree Router for General Skew Con-
straints”, ACM Transactions on Design Automation of Electronic Systems 7(3) (2002), pp.
359-379.

[185] K. N. Tu, “Reliability Challenges in 3D IC Packaging Technology”, Microelectronics
Reliability 51(3) (2011), pp. 517-523.

[186] J. T. Tudu, E. Larsson, V. Singh and H. Fujiwara, “Graph Theoretic Approach for Scan
Cell Reordering to Minimize Peak Shift Power”, Proc. Great Lakes Symposium on Very
Large Scale Integration, 2010, pp. 73-78.

[187] K. Ueda, F. Morishita, S. Okura, L. Okamura, T. Yoshihara and K. Arimoto, “Low-Power
On-Chip Charge-Recycling DC-DC Conversion Circuit and System”, IEEE Journal of
Solid State Circuits 48(11) (2013), pp. 2608-2617.

[188] H. J. M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact
on the Design of Buffer Circuits” IEEE Journal of Solid State Circuits 19(4) (1984), pp.
468-473.

[189] G. Venkataraman, N. Jayakumar, J. Hu, P. Li and S. Khatri, “Practical Techniques to
Reduce Skew and Its Variations in Buffered Clock Networks”, Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2005, pp. 592-596.

[190] L. Wan and D. Chen, “DynaTune: Circuit-Level Optimization for Timing Speculation
Considering Dynamic Path Behavior”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2009, pp. 172-179.

[191] K. Wang, L. Duan and X. Cheng, “ExtensiveSlackBalance: An Approach to Make Front-
end Tools Aware of Clock Skew Scheduling”, Proc. ACM/IEEE Design Automation Con-
ference, 2006, pp. 951-954.

238

[192] K. Wang, H. Fang, H. Xu and X. Cheng, “A Fast Incremental Clock Skew Scheduling Al-
gorithm for Slack Optimization”, Proc. Asia and South Pacific Design Automation Con-
ference, 2008, pp. 492-497.

[193] S. H. Wang, Y. Y. Liang, T. Y. Kuo and W. K. Mak, “Power-Driven Flip-Flop Merging
and Relocation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 31(2) (2012), pp. 180-191.

[194] K. Wang and M. Marek-Sadowska, “Potential Slack Budgeting with Clock Skew Opti-
mization”, Proc. IEEE International Conference on Computer Design, 2004, pp. 265-271.

[195] X. Wei, Y. Cai and X. Hong, “Effective Acceleration of Iterative Slack Distribution Pro-
cess”, Proc. IEEE International Symposium on Circuits and Systems, 2007, pp. 1077-
1080.

[196] M. H. Woods, “MOS VLSI Reliability and Yield Trends”, Proc. of the IEEE 74(12)
(1986), pp. 1715-1729.

[197] H. Wu, I.-M. Liu, M. D. F. Wong and Y. Wang, “Post-Placement Voltage Island Gener-
ation under Performance Requirement”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2005, pp. 309-316.

[198] K-.C. Wu and D. Marculescu, “Clock Skew Scheduling for Soft-Error-Tolerant Sequential
Circuits”, Proc. Design, Automation and Test in Europe, 2010, pp. 717-722.

[199] H. Wu and M. D. F. Wong, “Improving Voltage Assignment by Outlier Detection and In-
cremental Placement”, Proc. ACM/IEEE Design Automation Conference, 2007, pp. 459-
464.

[200] H. Wu, M. D. F. Wong and I.-M. Liu, “Timing-Constrained and Voltage-Island-Aware
Voltage Assignment”, Proc. ACM/IEEE Design Automation Conference, 2006, pp. 429-
432.

[201] J. G. Xi and W. W.-M. Dai, “Jitter-Tolerant Clock Routing in Two-phase Synchronous
Systems”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 1996,
pp. 316-320.

[202] J. Xie, V. Narayanan and Y. Xie, “Mitigating Electromigration of Power Supply Networks
Using Bidirectional Current Stress”, Proc. Great Lakes Symposium on Very Large Scale
Integration, 2012, pp. 299-302.

[203] C. Xu, P. Li, G. Luo, Y. Shi and I. H.-R. Jiang, “Analytical Clustering Score with Appli-
cation to Post-Placement Multi-Bit Flip-Flop Merging”, Proc. ACM International Sympo-
sium on Physical Design, 2015, pp. 93-100.

[204] J. T. Yan and Z. W. Chen, “Construction of Constrained Multi-Bit Flip-Flops for Clock
Power Reduction”, Proc. International Conference on Green Circuits and Systems, 2010,
pp. 675-678.

239

[205] Y.-M. Yang, I. H.-R. Jiang and S.-T. Ho, “PushPull: Short Path Padding for Timing Error
Resilient Circuits”, Proc. ACM International Symposium on Physical Design, 2013, pp.
50-57.

[206] H. H. Yang and D. F. Wong, “Efficient Network Flow Based Min-Cut Balanced Partition-
ing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
15(12) (1996), pp. 1533-1540.

[207] R. Ye, F. Yuan and Q. Xu, “Online Clock Skew Tuning for Timing Speculation”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2011, pp. 442-447.

[208] R. Ye, F. Yuan, H. Zhou and Q. Xu, “Clock Skew Scheduling for Timing Speculation”,
Proc. Design, Automation and Test in Europe, 2012, pp. 929-934.

[209] N. E. Young, R. E. Tarjan and J. B. Orlin, “Faster Parametric Shortest Path and Minimum
Balance Algorithms”, Networks 21(2) (1991), pp. 205-221.

[210] F. Yuan and Q. Xu, “InTimeFix: A Low-Cost and Scalable Technique for In-Situ Timing
Error Masking in Logic Circuits”, Proc. ACM/EDAC/IEEE Design Automation Confer-
ence, 2013, pp. 183:1-183:6.

[211] G. Zhang and P. A. Beerel, “Stochastic Analysis of Bubble Razor”, Proc. Design, Au-
tomation and Test in Europe, 2014, pp. 109:1-109:6.

[212] W. Zhao, M. Tehranipoor and S. Chakravarty, “Power-Safe Test Application Using An Ef-
fective Gating Approach Considering Current Limits”, Proc. IEEE VLSI Test Symposium,
2011, pp. 160-165.

[213] V. Zolotov, C. Visweswariah and J. Xiong, “Voltage Binning Under Process Variation”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2009, pp. 425-
432.

[214] Bookshelf: Rectilinear Steiner Minimum Tree Slot.
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/

[215] Cadence Innovus Implementation System User Guide.

[216] Cadence NC-Verilog User Guide.

[217] Cadence SOC Encounter User Guide.

[218] CAD/CAM/CAE Wallchart.
http://www.garysmitheda.com/wp-content/uploads/2015/05/All WC-15.pdf

[219] CRAFT Program Aims for Affordable Designer Circuits that Do More with Less Power.
http://www.darpa.mil/news-events/2015-08-17

[220] Guidelines to Understanding Reliability Prediction. http://www.epsma.org

[221] Hotspot User Guide. http://lava.cs.virginia.edu/HotSpot/index.htm

[222] Hungarian Algorithm. http://www.informatik.uni-freiburg.de/stachnis/index.html

240

[223] IBM ILOG CPLEX. www.ilog.com/products/cplex/

[224] ITRS 2011 Design Chapter. http://www.itrs2.net/2011-itrs.html

[225] ITRS 2013 System Drivers Chapter. http://www.itrs2.net/2013-itrs.html

[226] LEMON (Library for Efficient Modeling and Optimization in Networks).
http://lemon.cs.elte.hu/trac/lemon

[227] LP Solve Manuals. http://lpsolve.sourceforge.net/5.5/

[228] MATLAB. http://www.mathworks.com/products/matlab/

[229] MLPart. http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart

[230] OpenCores: Open Source IP-Cores. http://www.opencores.org

[231] Sun OpenSPARC Project. http://www.sun.com/processors/opensparc/

[232] RedHawk User Guide. https://www.apache-da.com/products/redhawk

[233] ScanOpt. http://vlsicad.ucsd.edu/GSRC/Bookshelf/Slots/ScanOpt/

[234] SDPA Official Page. http://sdpa.sourceforge.net/

[235] Sensitivity-Based Leakage Optimizer. http://vlsicad.ucsd.edu/SIZING/

[236] Synopsys SiliconSmart User Guide.

[237] Synopsys Design Compiler User Guide.

[238] Synopsys DFT Compiler User Guide.

[239] Synopsys IC Compiler User Guide.

[240] Synopsys PrimeTime User Guide.

