
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Scalable Algorithms for Inference and Simulation under Complex Phylogenetic Models

Permalink
https://escholarship.org/uc/item/59x9m4bw

Author
Zhang, Chao

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/59x9m4bw#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59x9m4bw
https://escholarship.org/uc/item/59x9m4bw#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Scalable Algorithms for Inference and Simulation under Complex Phylogenetic Models

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Bioinformatics and System Biology

by

Chao Zhang

Committee in charge:

Professor Siavash Mirarab, Chair
Professor Pavel Pevzner, Co-Chair
Professor Vineet Bafna
Professor Greg Rouse
Professor Glenn Tesler

2022



Copyright

Chao Zhang, 2022

All rights reserved.



The Dissertation of Chao Zhang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To colleagues and comrades who believe in and advocate for open science and democratization
of knowledge, and who strive for a better shared future.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Supplemental Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 ASTRAL-III: Polynomial Time Species Tree Reconstruction from Partially
Resolved Gene Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 ASTRAL (old versions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 ASTRAL-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 RQ1: Impact of contracting low support branches on accuracy . . . . . . . . 29
2.3.3 RQ2: Running time improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 RQ3: ASTRAL-II versus ASTRAL-III accuracy . . . . . . . . . . . . . . . . . . . . 36

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Comparisons to ASTRAL-III-beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



2.A Supplementary method details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.A.1 Defining the set X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.A.2 Similarity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.A.3 Greedy trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.A.4 Gene tree polytomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.B Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.B.1 Derivation of Equation 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.B.2 Derivation of the upper bound U(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.C Simulations and commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.C.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.C.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.D Supplementary Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 3 Weighting by Gene Tree Uncertainty Improves Accuracy of Quartet-based
Species Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Weighted ASTRAL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 Biological data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1 Further observations based on the results . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.2 Limits and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Common notations and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.2 Theoretical results: improved consistency and sample complexity . . . . . 93
3.4.3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.4 Branch support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.6 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.A Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.A.1 Approximate Bayesian Branch Support Annotation . . . . . . . . . . . . . . . . . . 127
3.A.2 Running wASTRAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.B Supplementary Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.C Supplementary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.D Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.D.1 Weighting by support: Proof of Proposition 3.1 and Theorem 3.1 . . . . . . 155
3.D.2 Weighting by length: Proof of Propositions 3.2 and 3.3 and Theorem 3.2 159
3.D.3 Placement-based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

vi



Chapter 4 ASTRAL-Pro: Quartet-based Species Tree Inference Despite Paralogy . . . . 186
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.2.1 ASTRAL-Pro Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.2.2 Accuracy of ASTRAL-Pro in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.2.3 S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.2.4 Accuracy on biological datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.4.2 Solving the MLQST problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.4.4 Methods compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
4.B Supplementary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
4.C Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.D Supplementary Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Chapter 5 ASTERISK: Species Tree Inference from Site Patterns under the Multi-
species Coalescent Despite Molecular Clock . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

5.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.2.4 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.2.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.A Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Chapter 6 TAPER: Pinpointing Errors in Multiple Sequence Alignments Despite Vary-
ing Rates of Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

vii



6.2.1 The TAPER Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.2.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.3.2 Real biological data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
6.A Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Chapter 7 Scalable Models of Antibody Evolution and Benchmarking of Clonal Tree
Reconstruction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

7.2.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.2.2 Benchmarking Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.3.1 Demonstration of the simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.3.2 Benchmarking reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
7.4.1 Implications for reconstructing antibody evolution . . . . . . . . . . . . . . . . . . 346
7.4.2 Implications for evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
7.4.3 Comparison to other simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
7.4.4 Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
7.4.5 Applications of the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

7.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.A Brief introduction of relevant concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.B Supplementary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

7.B.1 Efficient sampling from the BDT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.B.2 Somatic hypermutagenesis frequency models . . . . . . . . . . . . . . . . . . . . . . . 375
7.B.3 Default parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
7.B.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

7.C Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
7.D Supplementary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

viii



LIST OF SUPPLEMENTAL FILES

zhang-taper-supplementary-error-pictures.xlsx

ix



LIST OF FIGURES

Figure 2.1. Properties of the S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.2. Impact of contraction on the S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.3. Impact of contraction on the avian simulated dataset . . . . . . . . . . . . . . . . . . 31

Figure 2.4. Avian dataset with 14,446 genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.5. Running time versus k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.6. Weight calculation and |X | on S100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.7. Empirical search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure S2.1. Impact of contraction on the S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure S2.2. Running time versus k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure S2.3. Weight calculation and |X | on S100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure S2.4. Change in species tree FN rates between ASTRAL-II and ASTRAL-III for
S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure S2.5. Percent change in species tree quartet scores between ASTRAL-II and
ASTRAL-III for S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure S2.6. Percent change in species tree search space (|X |) between ASTRAL-II and
ASTRAL-III for S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure S2.7. Controlled studies of ASTRAL-II and ASTRAL-III on S200 dataset . . . . . 68

Figure S2.8. Empirical running time of ASTRAL-III with n . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.1. Illustration of weighting methods and a toy example of weighting by support 110

Figure 3.2. Species tree topological error on simulated datasets . . . . . . . . . . . . . . . . . . . 111

Figure 3.3. Support accuracy across S100 and S200 dataset . . . . . . . . . . . . . . . . . . . . . . 112

Figure 3.4. Comparison of the running time, quartet score, and accuracy between the
old and the new optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 3.5. Results on OneKp and canis datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 3.6. Recursive definitions of Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



Figure S3.1. Species tree error by weighting scheme on the S100 dataset . . . . . . . . . . . . 130

Figure S3.2. Lineage Through Time (LTT) plots for thee simulated model conditions . . 131

Figure S3.3. Species tree error by weighting scheme on the S200 dataset . . . . . . . . . . . . 132

Figure S3.4. Species tree error on the S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure S3.5. Species tree error on the S200 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure S3.6. ROC of S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure S3.7. ECDF of S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure S3.8. Binned accuracy-verses-support plot of S100 dataset . . . . . . . . . . . . . . . . . . 137

Figure S3.9. ROC of S200 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure S3.10. ECDF of S200 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure S3.11. Binned accuracy-verses-support plot of S200 dataset . . . . . . . . . . . . . . . . . . 140

Figure S3.12. The distribution of support values of conflicting branches between
wASTRAL-h and ASTRAL-III on the 1kp dataset . . . . . . . . . . . . . . . . . . . . 141

Figure S3.13. Inferred species trees on canis dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure S3.14. Normalized time per round of placement by dividing running time by the
total number of rounds of placements for ASTRAL on the Canis dataset . . 143

Figure S3.15. Inferred species trees on avian dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure S3.16. Inferred species trees on cetacean dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure S3.17. Inferred species trees on Nomiinae dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure S3.18. Inferred species trees on Lepidoptera dataset . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure S3.19. Inferred species trees on Papilionidae dataset . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure S3.20. An illustration of the process of creating a random gene tree with branch
lengths in SU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure S3.21. The species tree estimation error (FN) of wASTRAL-h on S100 dataset . . 150

Figure S3.22. Illustration of the unbalanced case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xi



Figure S3.23. Illustration of the balanced case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure S3.24. Illustration of the unbalanced case (general model) . . . . . . . . . . . . . . . . . . . . 168

Figure S3.25. Illustration of the balanced case (general model) . . . . . . . . . . . . . . . . . . . . . . 172

Figure 4.1. Per-locus quartet score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure 4.2. Species tree error on the S25 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Figure 4.3. Accuracy (y-axis) and running time (x-axis) of A-Pro as the number of
genes or the number of species n changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Figure 4.4. Species tree error on S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Figure 4.5. Biological dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Figure 4.6. Accuracy of the estimated species tree versus the number of single-copy
genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Figure 4.7. An example of a quartet and equivalence classes . . . . . . . . . . . . . . . . . . . . . . 207

Figure S4.1. Distribution of the number of duplication events, loss events and sizes of
leaf set for gene trees in the default condition by replicates . . . . . . . . . . . . . 240

Figure S4.2. Distribution of gene tree ILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Figure S4.3. Distribution of the gene tree errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Figure S4.4. Distribution of the number of duplication events, loss events and sizes of
leaf set for gene trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Figure S4.5. Distribution of gene tree ILS levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Figure S4.6. Distribution of gene tree errors by the number of in-group species n. . . . . . 243

Figure S4.7. Comparison of DupTree and iGTP-DupLoss methods on all the datasets . . 244

Figure S4.8. Comparing running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Figure S4.9. The running time of A-Pro versus k and n . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Figure S4.10. DupTree on biological plant dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Figure S4.11. Species tree error on S100 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xii



Figure 5.1. A comparison of species tree error (FN) of various reconstruction methods
on S200 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Figure 6.1. Data pipeline errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Figure 6.2. Comparison of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Figure 6.3. Comparison of methods on early birds and AA . . . . . . . . . . . . . . . . . . . . . . . 288

Figure 6.4. Avian biological dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Figure S6.1. Score function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Figure S6.2. Accuracy of TAPER as we change the parameter k . . . . . . . . . . . . . . . . . . . . 305

Figure S6.3. A comparison of various strategies for selecting k as the length of error
changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Figure S6.4. A comparison of various strategies for selecting k as the length of error
changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Figure S6.5. A comparison of various strategies for selecting k on AA dataset . . . . . . . . 308

Figure S6.6. Impact of changing c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Figure S6.7. Percentage of the alignment remaining after filtering and change in percent
error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Figure S6.8. Impact of diameter on Recall and FPR on the 16S dataset. . . . . . . . . . . . . . 311

Figure S6.9. Impact of sequence count on the Recall and FPR on the 16S dataset. . . . . 312

Figure S6.10. Impact of sequence error, error length, diameter, sequence count, and
sequence length on recall and FPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Figure S6.11. Removal of species from the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Figure S6.12. Results on AA dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Figure S6.13. The AA alignment RV100 BBA0039 from the BALIBASE benchmarking
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Figure S6.14. Statistics of the AA alignment RV100 BBA0039 from the BALIBASE
benchmarking dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Figure S6.15. The number of nucleotides removed from species does not correspond to
phylogenetic relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

xiii



Figure S6.16. Impact of step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Figure S6.17. Distribution of the error length on the empirical dataset . . . . . . . . . . . . . . . . 320

Figure S6.18. Tree Error change by TrimAl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Figure 7.1. Examples of a phylogenetic tree, a Steiner tree, and a spanning tree; the
evaluation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Figure 7.2. States of cells and transitions during infected stage and illustration of
various parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Figure 7.3. Illustration of an example run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Figure 7.4. Tree properties and benchmarking results under default condition . . . . . . . 355

Figure 7.5. Impact of selective pressure and mutation rate . . . . . . . . . . . . . . . . . . . . . . . . 356

Figure 7.6. Heatmap on combined impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Figure 7.7. Impact of other parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Figure S7.1. Properties of an example run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Figure S7.2. Other reconstruction methods under default condition . . . . . . . . . . . . . . . . . 386

Figure S7.3. Impact of selective pressure and mutation rate on other reconstruction
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Figure S7.4. Impact of selective pressure and mutation rate on sequence-based branch
length properties on true trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Figure S7.5. Impact of benchmarking metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Figure S7.6. Impact of BLOSUM weight multiplier of framework region . . . . . . . . . . . . 389

Figure S7.7. Impact of carrying capacity of germinal center . . . . . . . . . . . . . . . . . . . . . . . 390

Figure S7.8. Impact of memory cell life-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Figure S7.9. Impact of the fraction of activated cells turning into plasma cell per cell
division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Figure S7.10. Impact of BLOSUM score ratio of antibody-coding sequences to antigen
sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

xiv



Figure S7.11. Impact of BLOSUM score of activated cell antibody-coding sequences that
leads to cure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Figure S7.12. Correlations of evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

xv



LIST OF TABLES

Table 2.1. ASTRAL-II versus ASTRAL-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 2.2. ASTRAL-III-beta vs ASTRAL-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table S2.1. The accuracy of UPGMA tree and Greedy tree of two model conditions of
dataset S100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table S2.2. Species tree and gene tree generation parameters used for Simphy, and
sequence evolution parameters for the GTR model used for Indelible for the
S100 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table S2.3. Species tree error (FN ratio) for all model conditions of the S100 dataset,
with true gene trees (true), no filtering (non), and all filtering thresholds
(columns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table S2.4. Species tree and gene tree generation parameters in Simphy for 1K-taxon,
2K-taxon and 5K-taxon datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 3.1. Joint probabilities and weights of estimated and true gene tree topologies
under the MSC+Error+Support with the worst-case scenario . . . . . . . . . . . . . 95

Table 3.2. Joint probabilities and weights of estimated and true gene tree topologies
under the MSC+Error+Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table S3.1. Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table S3.2. Running time of species tree inference methods on biological datasets . . . . 129

Table 4.1. Simulation settings for S25 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Table S4.1. Simphy parameters for all experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Table S4.2. Rank of methods on S100 dataset over all 120 test conditions . . . . . . . . . . . . 239

Table 6.1. Datasets used in simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Table S6.1. ANOVA test on the 16S dataset, showing impact of four factors and their
interactions: Error Length (ErrLen), Error Frequency (n), Diameter, and
Sequence Count (N). X:Y corresponds to interactions of variables X and Y. 321

Table S6.2. ANOVA test on the early-bird dataset, showing impact of five factors and
their interactions: Error Length (ErrLen), Error Frequency (n), Diame-
ter, Sequence Length (SL), and Sequence Count (N). X:Y corresponds to
interactions of variables X and Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

xvi



Table S6.3. Errors identified by Springer and Gatesy (2018) that TAPER is able to detect
fully (Found), mostly (Majority), or to a lesser degree (Minority) . . . . . . . . . 323

Table S6.4. Errors identified by Springer and Gatesy (2018) and missed by TAPER . . . 324

Table 7.1. Parameters of the AM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Table 7.2. Birth, death, and transformation rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Table 7.3. Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Table 7.4. Properties of a clonal tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Table 7.5. Metrics for comparing the reference tree R to estimated tree E . . . . . . . . . . . 359

Table 7.6. A comparison of Most relevant tools for AM simulation. . . . . . . . . . . . . . . . . 359

Table S7.1. Birth, death, and transformation rate functions as polynomials. . . . . . . . . . . 373

Table S7.2. BLOSUM table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Table S7.3. Flu accession number, CDRs of target sequences, and starting day of infec-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Table S7.4. Properties of a clonal tree T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Table S7.5. Metrics for comparing the reference simulated tree R to estimated tree E. . 382

xvii



ACKNOWLEDGEMENTS

First of all, I would like to acknowledge all my dissertation committee members. Espe-

cially, I would like to express my deepest gratitude to Prof. Siavash Mirarab, the chair of my

dissertation committee. As many of my fellow Ph.D. students say that the greatest blessing of a

Ph.D. student is to have a nice and caring P.I. with great characteristics, fortunately, I am among

the most blessed ones. Your great care, flexibility, mentorship, and support helped to shape me

and enabled me to become who I am. I really enjoy and appreciate these five years of my Ph.D.

experience in your lab.

I would like to thank Prof. Pavel Pevzner, the co-chair of my dissertation committee.

You are the one who introduced me to the algorithm side of bioinformatics when I was an

undergraduate student and firmed my belief in dedicating myself to this field. Without you,

I would not be who I am today. I would also like to thank Prof. Vineet Bafna. Thank you

for introducing me to the Bioinformatics and Systems Biology program, and also thank you

for introducing me to Prof. Siavash Mirarab. I would like to thank Prof. Glenn Tesler for his

high-quality proofreading and polishing this thesis. I really appreciate your advice and your help

in Latex writing. I also want to thank Prof. Greg Rouse for his input from a biologist’s point of

view. I am very glad to have you are a member of my dissertation committee.

I would like to acknowledge and express my appreciation to my lab mates: Erfan

Sayyari, Maryam Rabiee, Niema Moshiri, Uyen Mai, Metin Balaban, Eleonora Rachtman, Yueyu

Jiang, and Puoya Tabaghi. Your countless conversations greatly enriched my graduate school

experience, and I feel blessed working with you all. I specifically thank Erfan Sayyari and

Maryam Rabiee for their support on ASTRAL-III. I was lucky being able to take classes from

Prof. Daniel Kane, Prof. Li-Fan Lu, and Prof. Jiawang Nie. Their valuable teachings inspire

me on various projects. Besides, I want to thank my dear friend and roommate Yuan Wang who

takes care of me while I was busy writing this dissertation. I also thank Yong Gan and Zheng

Wang who encourage me to make the right decision to join the University of California San

Diego.

xviii



Finally, I would like to make a formal acknowledgment to the collaborators and co-

authors of the papers that I published and used to write this dissertation:

Chapter 2, in full, is a reprint of the material as it appears in “ Zhang, C., Rabiee,

M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from

partially resolved gene trees. BMC Bioinformatics. 19, 15-30 (2018) .” The dissertation author

was the primary investigator and first author of this paper.

Chapter 3, in full, has been submitted for publication of the material as it may appear in “

Zhang, C. & Mirarab, S. Weighting by Gene Tree Uncertainty Improves Accuracy of Quartet-

based Species Trees. Molecular Biology And Evolution. (2022) .” The dissertation author was

the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in “ Zhang, C., Scornavacca, C.,

Molloy, E. & Mirarab, S. ASTRAL-Pro: quartet-based species-tree inference despite paralogy.

Molecular Biology And Evolution. 37, 3292-3307 (2020) .” The dissertation author was the

primary investigator and first author of this paper.

Chapter 5, in full, is currently being prepared for submission for publication of the

material. “ Zhang, C. & Mirarab, S. Scalable Coalescence-aware Ancestry Reconstruction from

Aligned Genomes .” The dissertation author was the primary investigator and author of this

material.

Chapter 6, in full, is a reprint of the material as it appears in “ Zhang, C.†, Zhao, Y.†,

Braun, E. & Mirarab, S. TAPER: Pinpointing errors in multiple sequence alignments despite

varying rates of evolution. Methods In Ecology And Evolution. 12, 2145-2158 (2021) .” The

dissertation author was the co-primary investigator and co-first author of this paper.

Chapter 7, in full, has been submitted for publication of the material as it may appear in “

Zhang, C., Bzikadze, A., Safonova, Y. & Mirarab, S. Scalable Models of Antibody Evolution

and Benchmarking of Clonal Tree Reconstruction Methods. Frontiers In Immunology. (2022) .”

The dissertation author was the primary investigator and author of this paper.

xix



VITA

2017 Bachelor of Sciences in Bioengineering: Bioinformatics, University of California
San Diego

2017 Bachelor of Sciences in Mathematics – Computer Science, University of California
San Diego

2022 Doctor of Philosophy in Bioinformatics and System Biology, University of Cali-
fornia San Diego

PUBLICATIONS

1. Zhang, C.†, Zhao, Y.†, Braun, E. & Mirarab, S. TAPER: Pinpointing errors in multiple
sequence alignments despite varying rates of evolution. Methods In Ecology And Evolution.
12, 2145-2158 (2021)

2. Zhang, C., Scornavacca, C., Molloy, E. & Mirarab, S. ASTRAL-Pro: quartet-based
species-tree inference despite paralogy. Molecular Biology And Evolution. 37, 3292-3307
(2020)

3. Luebeck, J., Coruh, C., Dehkordi, S., Lange, J., Turner, K., Deshpande, V., Pai, D., Zhang,
C., Rajkumar, U., Law, J. & Others AmpliconReconstructor integrates NGS and optical
mapping to resolve the complex structures of focal amplifications. Nature Communications.
11, 1-14 (2020)

4. Yin, J., Zhang, C. & Mirarab, S. ASTRAL-MP: scaling ASTRAL to very large datasets
using randomization and parallelization. Bioinformatics. 35, 3961-3969 (2019)

5. Carlin, D., Fong, S., Qin, Y., Jia, T., Huang, J., Bao, B., Zhang, C. & Ideker, T. A fast and
flexible framework for network-assisted genomic association. Iscience. 16 pp. 155-161
(2019)

6. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species
tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 19, 15-30
(2018)

7. Zhang, C., Sayyari, E. & Mirarab, S. ASTRAL-III: increased scalability and impacts of
contracting low support branches. RECOMB International Workshop On Comparative
Genomics. pp. 53-75 (2017)

8. Petras, D., Nothias, L., Quinn, R., Alexandrov, T., Bandeira, N., Bouslimani, A., Castro-
Falcón, G., Chen, L., Dang, T., Floros, D. & Others. Mass spectrometry-based visualiza-
tion of molecules associated with human habitats. Analytical Chemistry. 88, 10775-10784
(2016)

In prep., in review, & under revision:

1. Zhang, C. & Mirarab, S. Scalable coalescence-aware ancestries reconstruction from
aligned genomes. (in prep.)

xx



2. Zhang, C. & Mirarab, S. Weighting by gene tree uncertainty improves accuracy of quartet-
based species trees. Molecular Biology And Evolution. (2022) (in review)

3. Zhang, C., Bzikadze, A., Safonova, Y. & Mirarab, S. Scalable models of antibody evolu-
tion and benchmarking of clonal tree reconstruction methods. Frontiers in Immunology.
(2022) (in review)

4. Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from
multi-copy gene family trees. Bioinformatics. (2020) (under revision)

xxi



ABSTRACT OF THE DISSERTATION

Scalable Algorithms for Inference and Simulation under Complex Phylogenetic Models

by

Chao Zhang

Doctor of Philosophy in Bioinformatics and System Biology

University of California San Diego, 2022

Professor Siavash Mirarab, Chair
Professor Pavel Pevzner, Co-Chair

Phylogenetics has been widely adopted across biology. Yet, a continuing difficulty

in phylogenetics is modeling all biological processes that shape evolution while maintaining

computational scalability. My dissertation focuses on several problems, in each case, developing

scalable algorithms that advance biological realism. Much of the dissertation focuses on species

tree reconstruction confronting discordance among evolutionary histories of genes (gene trees)

for biological reasons such as incomplete lineage sorting.

Past work had already developed statistically consistent methods such as ASTRAL for

species tree reconstruction given gene trees. However, these methods failed to account for
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gene tree error (GTE). Contracting low-support branches was a potential solution, but ASTRAL

was not efficient in handling polytomies. Here, I introduce ASTRAL-III, which drastically

reduces the computational complexity in handling polytomies and improves robustness to GTE.

Not satisfied with the need for a contraction threshold, I also introduce weighted ASTRAL, a

method that down-weights error-prune gene tree branches and further improves the accuracy.

Furthermore, I propose a method called ASTERISK to infer the species tree directly from

multi-sequence alignments (MSAs), forgoing the need to infer error-prone gene trees. Having

dealt with gene tree errors, I turn to errors in MSAs, which can impact phylogenetic analyses. I

introduce TAPER, a novel two-dimensional outlier detection algorithm that looks for errors in

small species-specific stretches of MSAs. TAPER can reduce GTE by finding much of the error

while removing very little data.

Another shortcoming of ASTRAL was that it failed to model gene duplication and loss

(GDL). I present a new algorithm called ASTRAL-Pro to accommodate datasets with high GDL

rates, showing that ASTRAL-Pro is more accurate than alternatives.

Finally, I turn to selective pressure, a process that phylogenetics often fails to model. To

benchmark the performance of tools under selection, I develop DIMSIM, an efficient simulator

for sequence evolution under selection. I apply DIMSIM to the B-cell affinity maturation process

that involves somatic hypermutations to B-Cell sequences followed by selective pressure. My

study reveals that phylogenetic reconstruction tools fail to capture key features of clonal tree

expansion if applied naively but can be easily rescued by contracting short branches.
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Chapter 1

Introduction
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Phylogenetic analysis has been widely adopted in different fields of science, including

evolutionary biology (Leebens-Mack et al., 2019), cancer biology (Roerink et al., 2018), vi-

rology (Pekar et al., 2022), immunology (Kim et al., 2022), and even linguistics (Sagart et al.,

2019). Despite its applicability in various fields, phylogenetic inferences remain challenging,

especially with the ever-growing amount of data available today.

Species tree reconstruction is arguably one of the most important and computationally

challenging task in phylogenetic analysis. One notable challenge is that the evolutionary history

of one segment of the genome can differ from the evolutionary history of another segment and

thus that of the species (Maddison, 1997; Degnan and Rosenberg, 2009). Such discrepancy

has multiple causes, including incomplete lineage sorting (ILS), gene duplication and loss

(GDL), horizontal gene transfer (HGT), and hybridization. As omitting the discrepancy may

lead into a positively misleading result (Roch and Steel, 2015), discrepancy-aware species tree

reconstruction methods are developed to specifically account for the discordance between the

histories of genomic segments and that of species.

One popular approach to species tree reconstruction consists of two-steps: first recon-

structing the history of each genomic segment, a gene tree, and then reconstructing the history of

species, the species tree, by summarizing the information from the gene trees. Another approach

directly infers species trees from MSA, circumventing the need for gene trees reconstruction. The

former approach is computationally more efficient than the latter approach and is used by many

phylogenomic projects (Chen et al., 2020; Zhang et al., 2021; Nissen et al., 2021; Li et al., 2020).

ASTRAL (Mirarab et al., 2014) is a summary method that takes as input gene trees and outputs

a species tree. ASTRAL maximizes the number of shared quartets – tree topologies induced by

four species – between input gene trees and the output species tree. One remarkable result by

Markin and Eulenstein (2020) states that ASTRAL is statistically consistent in presence of both

ILS and GDL. Besides, Roch and Steel (2015) have also proven that ASTRAL is still consistent

under a limited amount of random HGT. Despite being highly accurate under error-free gene

trees, ASTRAL is not robust to error-prune input gene trees, both theoretically (Roch et al.,
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2019) and practically (Degiorgio and Degnan, 2014; Huang and Lacey Knowles, 2016; Molloy

and Warnow, 2018).

One way to improve the accuracy of ASTRAL is by contracting input gene tree branches

with very low support, which will create polytomies (nodes with degree more than three) in input

trees. As earlier versions of ASTRAL are not efficient in handling polytomies, in Chapter 2, I

design a new version of ASTRAL, called ASTRAL-III, which drastically reduced the bottleneck

in handling polytomies. I also incorporate various algorithmic techniques into the ASTRAL-III

dynamic programming step to improve its running time.

As contracting low-support branches risks losing true biological signal, in Chapter 3, I

take one step further and improve the robustness of ASTRAL to error-prune gene trees using

a different approach: instead of contracting branches which effectively omits some quartets, I

assign each quartet with a weight according to the support values and branch lengths relevant to

the quartet. Such weighting scheme further improves the accuracy of ASTRAL under error-prune

input gene trees.

Although ASTRAL has been proven consistent under GDL, it is not designed for it and

suffers from dramatically increasing sample complexity under high GDL rates, which makes it

unusable in practice with high GDL due to low accuracy. In Chapter 4, I first modify the objective

function of ASTRAL to a measure of quartet similarity between single-copy and multi-copy trees

that specifically accommodates datasets with high GDL rates. I then introduce a method called

ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our

quartet similarity measure using dynamic programming. ASTRAL-Pro distinguishes quartets

reflecting orthologous relations and quartets reflecting paralogous relations. The former provides

true biological signal and the latter does not. We call the former speciation-driven quartets

(SDQs). SDQs can be equivalent to each others, and ASTRAL-Pro avoids double-counting

equivalent SDQs by assigning SDQs to equivalence classes. One prominent result by ASTRAL-

Pro comes from a reanalysis of a plant transcriptome dataset (Wickett et al., 2014) which leads

into the One Thousand Plant Transcriptome (OneKP) project (Leebens-Mack et al., 2019). In
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the original study, a species tree of 103 plant species is inferred from 424 single-copy genes

using ASTRAL. The original study has also inferred 9,683 multi-copy gene trees with up to

2,395 leaves for 80 of the 103 species and three other genomes (a total of 83). However, due to a

lack of suitable species tree methods, these gene trees were left unused. ASTRAL-Pro makes

it possible to analyze all 9,683 multi-copy gene trees. ASTRAL-Pro successfully recovers at

least one well-established biological relationship, which the original study fails to recover using

single-copy genes; the species tree by ASTRAL-Pro is also more congruent to the species tree

from OneKP consisting of 1,153 species inferred from 410 single-copy genes.

An alternative to the two-step approach is the direct approach. Example of methods

using this approach are *BEAST (Heled and Drummond, 2010), SNAPP (Bryant et al., 2012),

MrBayes (Ronquist et al., 2012), SVDQuartet (Chifman and Kubatko, 2014), QuCo (Rabiee and

Mirarab, 2022). The major shortcoming of those methods is that they are not scalable enough

to overhaul the exponentially growing data size, despite some more recent efforts in improving

their scalabilities (Ogilvie et al., 2017; Vachaspati and Warnow, 2018; Zhang et al., 2020). For

quartet-based site-based methods, one reason for lack of scalability is that they rely on first

optimizing each quartet and then summarizing quartets to get the final tree. Even though they

can sub-sample quartets, this process is intransigently slow. Alternatively, if each site partitions

taxa into multiple groups and all the quartet topologies implied that by partition can be counted

at the same time using simple combinatorics instead of iterating through all quartets, then the

optimization can be very efficient using a trick similar to what ASTRAL uses. In Chapter 5, I

introduce ASTERISK which has the following innovations: i) I introduce quartet site kernel, a

new optimization objective computed based on DNA site patterns that is statistically consistent

under MSC+GTR, even allowing for changes in rate across sites (with some limitations) and

no assumption about species tree branch lengths (including no assumption of ultrametricity).

ii) I design a scalable algorithm to optimize the total quartet site kernels for all quartets and all

sites. iii) I propose various modifications to quartet site kernel for various applications. I test

ASTERISK on a simulated dataset. It shows that ASTERISK dominates concatenation in all
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conditions and with abundant genes, ASTERISK levels the performance of weighted ASTRAL.

Phylogenetic analysis relies heavily on accurate multi-sequence alignments (MSAs).

Erroneous data can creep into sequence datasets for various reasons. As datasets keep getting

larger, it has become difficult to check MSAs visually for errors, and thus, automatic error

detection methods are needed more than ever before. In Chapter 6, I introduce a method called

TAPER that uses a novel two-dimensional outlier detection algorithm to look for errors in small

species-specific stretches of the multiple sequence alignments. Importantly, TAPER adjusts

its null expectations per site and species, and in doing so, it attempts to distinguish the real

heterogeneity (signal) from errors (noise). TAPER removes very little data yet finds much of the

error, and thus, improves the accuracy of downstream phylogenetic analysis.

Currently, the golden standard for benchmarking phylogenetic inferences is through simu-

lation, as true evolutionary histories are difficult to acquire. This is true even for microevolutions

such as somatic hypermutations (SHMs) of B cell receptor (BCR) sequences. In Chapter 7, I

design and implement DIMSIM, an efficient simulator which simulates the affinity maturation

(AM) of B cells. DIMSIM simulates B cell lineages and BCR sequences at the same time, as

B cell AM is not under neutral evolution. In fact, B cells during AM are under high selective

pressure on their affinities to the antigens. DIMSIM can efficiently simulate sequence evolu-

tion under selective pressure based on affinity binding and enables simultaneous simulation of

hundreds of B cell lineages at the same time. From benchmarking results using simulations

under DIMSIM, I show that maximum likelihood phylogenetic reconstruction methods can fail

to capture key features of clonal tree expansion if applied naively.
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Chapter 2

ASTRAL-III: Polynomial Time Species
Tree Reconstruction from Partially Re-
solved Gene Trees
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Background

Evolutionary histories can be discordant across the genome, and such discordances need

to be considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods

for inferring species trees from gene trees while accounting for gene tree discordance. ASTRAL

uses dynamic programming to search for the tree that shares the maximum number of quartet

topologies with input gene trees, restricting itself to a predefined set of bipartitions.

Results

We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-

II and guarantees polynomial running time as a function of both the number of species (n) and

the number of genes (k). ASTRAL-III limits the bipartition constraint set (X) to grow at most

linearly with n and k. Moreover, it handles polytomies (nodes with degree more than three) more

efficiently than ASTRAL-II, exploits similarities between gene trees better, and uses several

techniques to avoid searching parts of the search space that are mathematically guaranteed not

to include the optimal tree. The asymptotic running time of ASTRAL-III in the presence of

polytomies is O((nk)1.726D) where D = O(nk) is the sum of degrees of all unique nodes in input

trees. The running time improvements enable us to test whether contracting low support branches

in gene trees improves the accuracy by reducing noise. In extensive simulations, we show that

removing branches with very low support (e.g., below 10%) improves accuracy while overly

aggressive filtering is harmful. We observe on a biological avian phylogenomic dataset of 14K

genes that contracting low support branches greatly improve results.

Conclusions

ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction

and can scale up to 10,000 species. With ASTRAL-III, low support branches can be removed,

resulting in improved accuracy.
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2.1 Background

The potential for genome-wide discordance of evolutionary histories (Maddison, 1997;

Degnan and Rosenberg, 2009) has motivated the development of several approaches for species

phylogeny reconstruction. Reconstructing a collection of gene trees, each inferred from a

different part of the genome, and then summarizing them to get a species tree is one such

approach and is used by many phylogenomic projects (e.g., Song et al., 2012; Wickett et al.,

2014; Jarvis et al., 2014; Laumer et al., 2015; Tarver et al., 2016) (while “gene trees” need

not be inferred from functional genes, following the conventions of the field, we will refer to

them as such). This two-step approach stands in contrast to concatenation (Rokas et al., 2003),

where all the data are combined and analyzed in a single analysis. The two-step approach

aims to account for discordance between gene trees and the species tree (but its effectiveness

is debated Springer and Gatesy, 2016; Meiklejohn et al., 2016; Edwards et al., 2016; Shen

et al., 2017) and is more computationally efficient than statistical co-estimation of gene trees

and the species tree (Heled and Drummond, 2010). Incomplete lineage sorting (ILS) is a

ubiquitous (Edwards, 2009) cause of discordance. ILS is typically modeled by the multi-species

coalescent model (MSCM) (Pamilo and Nei, 1988; Rannala and Yang, 2003), where branches of

the species tree represent populations, and lineages are allowed to coalesce inside each branch;

lineages that fail to coalesce at the root of each branch are moved to the parent branch.

Many “summary” methods have been developed to infer a species tree from a collec-

tion of input trees. Examples include MP-EST (Liu et al., 2010), NJst (Liu and Yu, 2011),

ASTRID (Vachaspati and Warnow, 2015), DISTIQUE (Sayyari and Mirarab, 2016a), AS-

TRAL (Mirarab et al., 2014b; Mirarab and Warnow, 2015) and STAR (Liu et al., 2009), which

only use gene tree topologies, and GLASS (Mossel and Roch, 2010) and STEAC (Liu et al.,

2009), which also use branch lengths. These methods are all proved statistically consistent under

the MSCM, given error-free input gene trees; when input trees are inferred from sequence data,

statistical consistency is not guaranteed (Roch and Warnow, 2015). Most methods take rooted
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gene trees as input, but some methods (e.g., ASTRAL, NJst/ASTRID and DISTIQUE) use

unrooted input trees. ASTRAL-II (Mirarab and Warnow, 2015) is currently one of the commonly

used summary methods.

In this paper, we introduce an improved version of ASTRAL called ASTRAL-III. As we

will show, compared to ASTRAL-II, the new version has better running time without sacrificing

accuracy. The improvements in the running time are both theoretical (reducing the asymptotic

running time so that it is guaranteed to grow polynomially with the dataset size) and empirical.

2.2 Methods

2.2.1 Notations and definitions

Let the set of n species be called L and let G be the set of k input gene trees on L. Let [d]

represent the set {1,2 . . . ,d}. We use Q(t) to denote the set of quartet trees induced by a tree

t. Any subset of L is called a cluster. We define a partition as a set of clusters that are pairwise

mutually exclusive; note that we abuse the term “partition” here because the union of all clusters

in a partition need not give the complete set. Each node in an unrooted tree defines a partition. A

bipartition (tripartition) is a partition with cardinality two (three); a partition with cardinality at

least four corresponds to a multifurcation (also referred to as a polytomy). Let X (the constraint

bipartition set) be a set of clusters such that for each A ∈ X , we also have L−A ∈ X . We use Y

to represent the set of all tripartitions that can be built from X :

Y = {(A′|A−A′|L−A) : A′ ⊂ A,A ∈ X ,A′ ∈ X ,A−A′ ∈ X} .

We use E to denote the set of all unique partitions and their frequency in G. Thus,

E = {(M, ∑
g∈G
|N(g)∩{M}|) : M ∈ N(g),g ∈ G} (2.1)
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where N(g) is the set of all partitions representing all internal nodes in the tree g. We also define

D as the sum of the cardinalities of unique partitions in gene trees:

D = ∑
(M,c)∈E

|M| . (2.2)

2.2.2 ASTRAL (old versions)

The problem addressed by ASTRAL is to find the tree that shares the maximum number

of induced quartet topologies with the collection of input gene trees:

Problem statement: Given a set G of input gene trees, find the species tree t that maximizes

∑g∈G |Q(g)∩Q(t)|.

Lafond and Scornavacca recently proved this problem is NP-hard (Lafond and Scornavacca,

2016).

ASTRAL-I and ASTRAL-II algorithms

ASTRAL solves a constrained version of the problem where a set of clusters X restricts

bipartitions that the output species tree may include (recall ∀A ∈ X : L−A ∈ X). Note that setting

X to the powerset solves the unconstrained problem. Based on the fact that an unrooted quartet

species tree always matches the most likely unrooted quartet gene tree (Allman et al., 2011),

ASTRAL is proved statistically consistent (Mirarab et al., 2014b).

ASTRAL uses dynamic programming to solve the problem using the recursive relation:

V (A) =


0 |A|= 1

maxA′⊂A,(A′|A−A′|L−A)∈Y V (A,A′) |A|> 1

V (A,A′) =V (A′)+V (A−A′)+w(A′|A−A′|L−A)

where the function w(T ) scores each tripartition T = (A|B|C) against each node in each input

gene tree. Let partition M = (M1|M2|...|Md) represent an internal node of degree d in a gene
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tree. The overall contribution of T to the score of any species tree that includes T is:

w(T ) = ∑
g∈G

∑
M∈N(g)

1
2

QI(T,M) (2.3)

where, defining ai = |A∩Mi|, bi = |B∩Mi|, and ci = |C∩Mi|, we have:

QI(T,M) = ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

ai +b j + ck−3
2

aib jck . (2.4)

As previously proved (Mirarab et al., 2014b), QI(T,M) computes twice the number of quartet

trees that are going to be shared between any two trees if one includes only T and the other

includes only M. ASTRAL-II requires Θ(d3) time for computing QI(.), making its overall

running time O(n3k|Y |) with polytomies of unbounded degrees or O(nk|Y |) in the absence of

polytomies.

Noting trivially that |Y | < |X |2, the previously published running time analysis of

ASTRAL-II was O(nk|X |2) for binary gene trees and O(n3k|X |2) for trees with polytomies.

A recent result by Kane and Tao (Kane and Tao, 2017) (motivated by the analysis of ASTRAL)

proved that |Y | ≤ |X |3/log3(27/4). This result immediately gives us a better upper bound on the

running time.

Corollary 2.1. ASTRAL-II runs in O(nk|X |1.726) and O(n3k|X |1.726), respectively, with and

without polytomies in gene trees.

In ASTRAL-I, X is the set of all bipartitions observed in input gene trees. While

sufficient for statistical consistency and often for accuracy, under some conditions, this set X

is too restrictive. To address this shortcoming, ASTRAL-II (Mirarab and Warnow, 2015) uses

several heuristics (see Appendices 2.A) and further expands the set X . Even though ASTRAL-II

tries to limit |X |, it does not provide any guarantees as to how it grows with n and k. In the worst

case, |X | can grow exponentially, and thus, ASTRAL-II does not guarantee polynomial running

time. The relatively high accuracy of ASTRAL-II has been shown in several simulations (Mirarab
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and Warnow, 2015; Sayyari and Mirarab, 2016a; Shekhar et al., 2017; Davidson et al., 2015)

and it has been adopted by the community as one of the main methods used in phylogenomics.

ASTRAL has the ability to compute branch lengths in coalescent units (Degnan and Rosenberg,

2009) and a measure of branch support called local posterior probability (Sayyari and Mirarab,

2016b).

Limitations of ASTRAL-II

Several shortcomings of ASTRAL-II in terms of running time are addressed here

(ASTRAL-III); our improvements, in turn, enable new types of analyses.

While ASTRAL-II can analyze datasets with a thousand species and gene trees in

reasonable time, it does not easily scale to many tens of thousands of input trees. Datasets with

more than ten thousand loci are already available (e.g., Jarvis et al., 2014) and as more genomes

are sequenced, more are destined to become available in the near future. Moreover, being able

to handle large k (i.e., numbers of input trees) enables using multiple trees per locus (e.g., a

Bayesian sample) as input to ASTRAL. The limited scalability of ASTRAL with k has two

reasons. First, the set X is not bounded in ASTRAL-II and can grow to become the power set.

Thus, in ASTRAL-II, |X | can theoretically grow exponentially with n. We fix this in ASTRAL-III

by modifying heuristics that form the set X so that they all guarantee that |X | = O(nk). The

second cause of the slowdown is that computing each w(T ) for a tripartition T requires Θ(nk).

This computation does not exploit similarities between gene trees, a shortcoming that we fix in

ASTRAL-III.

Beyond large k, ASTRAL-II, which scales as O(n3k|X |1.726) in the presence of poly-

tomies, can quickly become prohibitively slow for input trees with large polytomies. ASTRAL-III

uses a mathematical trick to enable scoring of gene tree polytomies in time similar to binary

nodes. The ability to handle large polytomies in input gene trees is important for two reasons.

Some of the conditions that are conducive to ILS, namely shallow trees, are also likely to produce

identical gene sequence data for several species. The gene tree should leave the relationship
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between identical sequences unresolved (FastTree (Price et al., 2010) automatically does it and

RAxML, which outputs an arbitrary resolution, warns the user about the input). Moreover, all

summary methods, including ASTRAL, are sensitive to gene tree estimation error (Mirarab and

Warnow, 2015; Mirarab et al., 2014a; Bayzid et al., 2015; Mirarab et al., 2016; Patel, 2013;

Gatesy and Springer, 2014). One way of dealing with gene tree error, previously studied in the

context of minimizing deep coalescence (Yu et al., 2011), is to contract low support branches in

gene trees and use these unresolved trees as input to the summary method. While earlier studies

found no evidence that this approach helps ASTRAL-II when the support is judged by SH-like

FastTree support (Mirarab and Warnow, 2015), no study has tested this approach with bootstrap

support values. We will for the first time evaluate the effectiveness of contracting branches with

low bootstrap support and show that conservative filtering of very low support branches does, in

fact, help the accuracy.

2.2.3 ASTRAL-III

ASTRAL-III has six new features:

1. Heuristics for building the set X are modified to ensure |X | = O(nk). This step alone

(without subsequent improvements) guarantees the overall running time is O((nk)2.726)

for binary gene trees and O(n4.726k2.726) for polytomies.

2. Heuristics for building the set X are modified to enlarge X for gene trees with polytomies

without breaking |X | = O(nk) guarantees. This can impact the accuracy and empirical

running times but not the asymptotic running time.

3. A new way of computing w(q) is introduced to reduce the running time for scoring a gene

tree to O(n), instead of O(n3), in the presence of polytomies. This step, combined with

the previous steps, reduces the total running time to O((nk)2.726) irrespective of whether

gene trees have polytomies.

18



4. A polytree (a graph with at most one undirected path between any two vertices) is used to

represent gene trees, and this enables an algorithm that reduces the overall running time

from O((nk)2.726) to O(D(nk)1.726), which is the final theoretical analysis of ASTRAL-III

running time.

5. A new algorithm, similar to A* (Hart et al., 1968), is used to compute an upper-bound on

the best possible resolution of a clade; we need not expand a clade recursively when its

upper-bound is below the best available score. The worst case asymptotic running time

does not change due to this feature.

6. A two-stage heuristic mechanism is designed to further tighten the upper bounds used in

pruning unnecessary parts of the search space. The worst case asymptotic running time is

not impacted.

A beta version of ASTRAL-III was recently described (Zhang et al., 2017) and that

version included features 3–5 but not the others. We next describe each improvement.

New search space: |X |= O(nk)

ASTRAL-II uses several heuristic methods to build X (see the original paper (Mirarab

and Warnow, 2015) for details). The main method involves computing several extended majority

consensus trees from gene trees and then resolving polytomies in these consensus trees using

three techniques (mentioned below). These steps are repeated for 10 rounds or more until very

few (less than a constant threshold) of the bipartitions observed are new to X . Because the

number of rounds is not constant or a function of n and k, we cannot bound how X grows with

n and k for ASTRAL-II. In ASTRAL-III, we limit the number of rounds by a constant value

(default set to 110). This enables us to provide guarantees of a polynomial growth of |X | with n

and k.

To get to X = O(nk), we need further changes. As mentioned, three techniques are used

to resolve each polytomy of degree d in extended majority consensus trees. The first technique
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uses a precomputed distance matrix to build a UPGMA tree starting from sides of the polytomy

and adds the new bipartitions from the UPGMA tree to X . This can only add O(d) = O(n)

resolutions. The second technique computes a greedy consensus of gene trees subsampled to

randomly selected taxa (one from each side of the polytomy) and adds bipartitions from the

greedy consensus to X . This also can only add O(d) new bipartitions. The third resolution

samples a taxon from each side of the polytomy, computes d caterpillar trees, each constructed

based on decreasing similarity to each sampled taxon, and adds the bipartitions from all these

caterpillar trees to X . This quadratic resolution step can add O(d2) = O(n2) bipartitions to X .

To have |X |= O(n), we need to change this step. Let d1 . . .dr be the list of all polytomy degrees

in an extended majority consensus tree in the ascending ordered. We find the smallest threshold

q such that ∑
q
i=1 d2

i ≤ cn for some constant c (default = 25). In ASTRAL-III, we apply the

quadratic resolution technique only for polytomies d1 . . .dq; this, by definition, ensures no more

than O(d) = O(n) bipartitions are added in each round.

New search space: handling gene tree polytomies

We also change the way ASTRAL builds X in the presence of gene tree polytomies. Our

goal is to increase |X | compared to ASTRAL-II for multifurcating gene trees. However, |X | is

enlarged at most by a constant factor and we retain |X |= O(nk).

If a gene tree includes polytomies, ASTRAL-II adds bipartitions implied by resolutions

of that polytomy to the set X using a guide tree g. To build g, a greedy consensus of all gene

trees is computed and is further refined to become binary by applying UPGMA to each polytomy

of the greedy tree using a precomputed similarity matrix (see the original paper (Mirarab and

Warnow, 2015) for details). To resolve a gene tree polytomy of degree d, ASTRAL-II first

randomly samples d taxa, each from one side of the polytomy. Let S be the sampled taxa. All

bipartitions from the tree g restricted to the set S of leaves are added to X . While in ASTRAL-II

this process is done only once, in ASTRAL-III, we repeat the process three times with different

random samples S. This increases |X | but at most by a constant factor. The enlarged X can lead
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to improved accuracy when input trees include many polytomies.

The second change in ASTRAL-III is that we now use a UPGMA tree inferred based on

the similarity matrix as the guide tree. We observed that the UPGMA tree summarizes the input

gene trees more accurately than the greedy tree (see Table S2.1). Finally, in ASTRAL-III, we

improve the definition of the similarity matrix in the presence of gene tree polytomies. Unlike in

ASTRAL-II, we ensure that unresolved quartet trees induced by gene trees do not increase the

similarity between pairs of taxa included in those quartets. Note that the similarity matrix, which

is based on quartets, should not be confused with the quartet score optimized by ASTRAL.

Efficient handling of Polytomies

Recall that ASTRAL-II uses Equation 2.4 to score a tripartition against a polytomy of

size d in Θ(d3) time. Our next Lemma shows that this can be improved.

Lemma 2.1. Let QI(T,M) be twice the number of quartet tree topologies shared between an

unrooted tree that only includes a node corresponding to the tripartition T = (A|B|C) and

another tree that includes only a node corresponding to a partition M = (M1|M2|...|Md) of

degree d; then, QI(T,M) can be computed in time Θ(d).

Proof. In Θ(d) time, we can compute:

Sa = ∑
i∈[d]

ai and Sa,b = ∑
i∈[d]

aibi (2.5)

where ai = |A∩Mi| and bi = |B∩Mi|; we can also compute Sb, Sc, Sa,c and Sb,c (similarly

defined). Equation 2.4 computes twice the number of quartet tree topologies shared between

an unrooted tree with internal node T and another tree with one internal node M (Mirarab and
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Warnow, 2015). Equation 2.4 can be rewritten as:

QI((A|B|C),M) = ∑
i∈[d]

(
ai

2

)
((Sb−bi)(Sc− ci)−Sb,c +bici)

+ ∑
i∈[d]

(
bi

2

)
((Sa−ai)(Sc− ci)−Sa,c +aici)

+ ∑
i∈[d]

(
ci

2

)
((Sa−ai)(Sb−bi)−Sa,b +aibi)

(2.6)

(the derivation is given in the Appendices 2.B). Computing Equation 2.6 instead of Equation 2.4

clearly reduces the running time to Θ(d) instead of Θ(d3).

ASTRAL needs to score each of the |Y | tripartitions considered in the dynamic program-

ming against each internal node of each input gene tree. The sum of degrees of k trees on n

leaves is O(nk) (since that sum can never exceed the number of bipartitions in gene trees) and

thus:

Corollary 2.2. Scoring a tripartition (i.e., computing w) can be done in O(nk).

Gene trees as a Polytree

ASTRAL-II scores each dynamic programming tripartition against each individual node

of each gene tree. However, nodes that are repeated in several gene trees need not be recomputed.

Recalling the definitions of E and D (Eqs. 2.1 and 2.2),

Lemma 2.2. The score of a tripartition T = (A|B|C) against all gene trees (i.e., the w(T ) score)

can be computed in Θ(D).

Proof. In ASTRAL-III, we keep track of nodes that appear in multiple trees. This enables us to

reduce the total calculation by using multiplicities:

w(T ) = ∑
(M,c)∈E

c×QI(T,M) . (2.7)
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We achieve this in two steps. In the first step, for each distinct gene tree cluster W , we compute

the cardinality of the intersection of W and sets A, B, and C once using a depth-first search with

memoization. Let children(W ) denote the set of children of W in an arbitrarily chosen tree g ∈G

containing W . Then, we have the following recursive relation:

|W ∩A|= ∑
Z∈children(W )

|Z∩A| (2.8)

(ditto for |W ∩B| and |W ∩C|). All such intersection values can be computed in a post-order

traversal of a polytree. In this polytree, all unique clusters in the gene trees are represented as

vertices and parent-child relations are represented as edges; note that when a cluster has different

resolutions in two different input trees, we arbitrarily choose one set of children in building the

polytree. The polytree will include no more than D edges; thus, the time complexity of traversing

this polytree (to compute Eq. 2.8) for all nodes is O(D). Once all intersections are computed, in

the second step, we simply compute the sum in Eq. 2.7. Each QI(.) computation requires Θ(d)

time by Lemma 2.1. Recalling that D = ∑(M,c)∈E |M|, it is clear that computing Equation 2.7

requires Θ(D) time. Therefore, both steps can be performed in Θ(D) time.

Theorem 2.1. The running time of ASTRAL-III grows as O(D(nk)1.726) for both binary and

multifurcating gene trees.

Proof. By results of Kane and Tao (Kane and Tao, 2017), the size of the set Y is O(|X |1.726),

and for each element in Y , by Lemma 2.2, we require O(D) to compute the weights, regardless

of the presence or absence of polytomies. The running time of ASTRAL is dominated by

computing the weights (Mirarab and Warnow, 2015). Thus, the overall running time is O(D|Y |)=

O(D|X |1.726). Moreover, ASTRAL-III forces |X | to grow as O(nk), giving the overall running

time of O(D(nk)1.726)
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Trimming of the dynamic programming

We now introduce an upper-bound (proved in Appendices 2.B):

V (A)≤U(A) =
w(A|A|L)

2
− w(A|A|A)

3
.

Let

U(A,A′′) =U(A′′)+U(A−A′′)+w(A′′|A−A′′|L−A).

Since V (A)≤U(A), for any (A′|A−A′|L−A′) ∈ Y and (A′′|A−A′′|L−A′′) ∈ Y , we no longer

need to recursively compute V (A′′) and V (A−A′′) when U(A,A′′)≤V (A,A′). When computing

V (A) by maximizing the score over all resolutions of A, imagine that we first encounter A′ and

then A′′. We avoid expanding A′′ when U(A,A′′)≤V (A,A′). This approach clearly makes the

order of processing of the resolutions important. To heuristically improve the efficiency of this

approach, we order all (A′|A−A′|L−A) ∈ Y according to U(A,A′). Note that computing U(A)

does not require recursive computations down the dynamic programming DAG. Thus, the use of

this upper-bound results in the trimming of the search space. However, as far as we can tell, this

trimming does not improve the theoretical running time.

Two-staged α-trimming

In order to further trim the search space, another upper-bound of V (A) is calculated. For

a given α ≥ 1 and any ordering of the set {A′ : (A′|A−A′|L−A) ∈ Y} denoted by A1 . . .Ar, we

define Vα(A) as follows.

V i
α(A) =


0, i = 0

Vα(A,Ai), Vα(A,Ai)> αV i−1
α (A)

V i−1
α (A), otherwise

 for 0≤ i≤ r

Vα(A,Ai) =Vα(Ai)+Vα(A−Ai)+w(Ai|A−Ai|L−A) and Vα(A) =V r
α(A)
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We can compute Vα(A) using an algorithm equivalent to our dynamic programming

for computing V (A), except that, as resolutions of a clade A are being tested, a new one is

accepted only if it improves upon the previous best resolution by a factor of α (thus, α = 1

simply reproduces our existing dynamic programming). When computing Vα(A), for any i < j,

if α
(
Vα(A,Ai)

)
≥U(A,A j), then it is guaranteed that α

(
Vα(A,Ai)

)
≥Vα(A,A j), and thus we no

longer need to recursively compute Vα(A j) and Vα(A−A j). After all Vα(A) values are computed

for some choice of α , we turn to computing V (A).

Observe that Vα(A)≤V (A)≤ αVα(A). Let Uα(A,A j) be defined as

min
(
U(A j),αVα(A j)

)
+min

(
U(A−A j),αVα(A−A j)

)
+w(A j|A−A j|L−A)

and note that

Uα(A,A j)≥V (A,A j) =V (A j)+V (A−A j)+w(A j|A−A j|L−A) .

Thus, during the dynamic programming, for i < j, if V (A,Ai)>Uα(A,A j), then it is guaranteed

that V (A,Ai)≥V (A,A j), and thus we no longer need to recursively compute V (A j) and V (A−

A j). The hope is that the Uα function will give us tighter upper bounds compared to the U

function previously defined. Whether this happens or not depends on the choice of α , the order

of visiting clusters, and the particularities of a dataset.

While any choice of α ≥ 1 would guarantee the correct solution to the dynamic program-

ming, we have empirically selected a heuristic to choose α . We set α = U(L)
g(L) , where

g(A) = g(Ai)+g(A−Ai)+w(Ai|A−Ai|L−A)

where

i = argmax
j

U(A j)+U(A−A j)+w(A j|A−A j|L−A)
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and g(A) = 0 for |A|= 1. Just as before, we order the clusters in the decreasing order of U(A,Ai).

2.3 Results

2.3.1 Experimental setup

We study three research questions:

RQ1: Can contracting low support branches improve the accuracy of ASTRAL?

RQ2: How do the running time and search space compare between ASTRAL-II and ASTRAL-

III?

RQ3: How accurate is ASTRAL-III, which guarantees polynomial size search space, compared

to ASTRAL-II?

Datasets

Avian biological dataset:

Neoavian relationships show extremely high levels of gene tree discord, perhaps because

their ancestors experienced a rapid radiation (Jarvis et al., 2014). A dataset of 48 genomes

representing all avian orders has been used to partially resolve this rapid radiation (Jarvis et al.,

2014). A set of 14,446 loci (including exons, introns, and UCEs) was used to produce two

reference species trees using concatenation and using a coalescent-based method (Jarvis et al.,

2014; Mirarab et al., 2014a). We use the set of all unbinned gene trees and compare ASTRAL-III

with and without contraction against both reference trees.

Simulated avian-like dataset:

This simulated dataset, previously used to emulate the biological avian dataset (Mirarab

et al., 2014a), has three model conditions with respect to the simulated levels of ILS: 1X is the

default, whereas 0.5X divides each branch length in half (increasing ILS) and 2X multiplies

them by 2 (reducing ILS). Average RF distances between true species tree and true gene trees

are 0.35, 0.47, and 0.59, respectively for 2X, 1X, and 0.5X. To further test the impact of gene
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tree estimation error, sequence lengths were also varied to create four model conditions: 250bp

alignments (0.67 RF distance between true gene trees and estimated gene trees), 500bp (0.54

RF), 1000bp (0.39 RF) and 1500bp (0.30 RF), all based on the 1X ILS. We use 1000 gene trees,

and 20 replicates per condition. Gene trees are estimated using RAxML (Stamatakis, 2014) with

200 replicates of bootstrapping.

SimPhy-homogeneous (S100):

We simulated a new 101-taxon dataset using SimPhy (Mallo et al., 2016) with 50

replicates, each with a different species tree. The species trees are simulated under the birth-only

process with birth rate 10−7, fixed haploid Ne of 400K, and the number of generations sampled

from a log-normal distribution with mean 2.5M. For each replicate, 1000 true gene trees are

simulated under the MSCM (exact commands shown in Appendices 2.C and parameters given

in Table S2.2). The average normalized RF distance between true species trees and true gene

trees was in most replicates in the [0.3,0.6] range, with an average of 0.46 (Fig. 2.1). We use

Indelible (Fletcher and Yang, 2009) to simulate the nucleotide sequences along the gene trees

using the GTR evolutionary model (Tavaré, 1986) with 4 different fixed sequence lengths: 1600,

800, 400, and 200bp. We then use FastTree2 (Price et al., 2010) to estimate both ML and 100

bootstrapped gene trees under the GTR+Γ (requiring more than two million runs in total). Gene

tree estimation error, measured by the FN rate between the true gene trees and the estimated

gene trees, depended on the sequence length as shown in Fig. 2.1 (0.55, 0.42, 0.31, and 0.23 on

average for 200bp, 400bp, 800bp, and 1600bp, respectively). We sample 1000, 500, 200, or 50

genes to generate datasets with varying numbers of gene trees.

SimPhy-ASTRAL2 (S200):

This dataset (201 taxa) is from the ASTRAL-II paper (Mirarab and Warnow, 2015). We

use its most challenging model conditions with max tree height set to 500K generations and two

rates of speciation: 10−6 and 10−7 (respectively, recent and deep speciation events). Compared

to S100, this dataset has a much higher level of ILS. This was the only case in the ASTRAL-II
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Figure 2.1. Properties of the S100 dataset. (a) The density plot of the amount of true gene
discordance measured by the FN rate between the true species tree and the true gene trees. (b)
The density plot of gene tree estimation error measured by FN rate between true gene trees and
estimated gene trees for different sets of sequence lengths.

paper where enlarging X substantially impacted accuracy (Mirarab and Warnow, 2015). We use

S200 to test if our changes to X have compromised the accuracy. Like S100, gene alignments

have varying lengths and mutation rates, leading to a wide range of gene tree error (Mirarab and

Warnow, 2015). We analyze the data using 1000, 200, or 50 genes, and each model condition

has 50 replicates; following the original paper, three replicates with low signal are removed.

Methods and Evaluation

We compare ASTRAL-III (version 5.5.4) to ASTRAL-II (version 4.11.1) in terms of

running time and accuracy. To address RQ1, we draw bootstrap support values on the ML gene

trees and then contract branches with bootstrap support up to a threshold (0, 3, 5, 7, 10, 20, 33,

50, and 75%,) using the newick utility package (Junier and Zdobnov, 2010). Together with the

original gene trees, we have 10 different versions of ASTRAL-III.

To measure the accuracy of estimated species trees, we use False Negative (FN) rate. Note

that in all our species tree comparisons, FN rate is equivalent to normalized Robinson–Foulds

(RF) (Robinson and Foulds, 1981) metric because the ASTRAL species trees are fully resolved.

All running times are measured on a cluster with servers with Intel(R) Xeon(R) CPU E5-2680

v3 @ 2.50GHz; each run was assigned to a single process, sharing cache and memory with other

jobs.
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2.3.2 RQ1: Impact of contracting low support branches on accuracy

We investigate RQ1 on the two simulated datasets where bootstrapping was feasible

(avian and S100) and on the real avian dataset. On S200, due to its size, bootstrapping was not

feasible and thus we cannot test RQ1.

S100

On this dataset, contracting very low support branches in most cases improves the

accuracy (Fig. 2.2 and Table S2.3). However, the excessive removal of branches with high,

moderate, or occasionally low support degrades the accuracy. Nevertheless, filtering at 10% is

always beneficial on average (Table S2.3). The threshold where contracting starts to become

detrimental depends on the condition, especially the number of gene trees and the alignment

length, perhaps representing a signal to noise ratio trade-off.
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Figure 2.2. Impact of contraction on the S100 dataset. The FN error of ASTRAL-III species
trees is shown on the S100 dataset given k = 50, 200, 500, or 1000 genes (boxes) run on the
original FastTree gene trees (non) or gene trees with branches with ≤ {0,3,5,7,10,20,33,50}%
support contracted (x-axis). Average FN error and standard error bars (200 replicates) are shown
with the four alignment lengths combined (black solid line). average FN error broken down by
alignment length (50 replicates) is also shown (dashed colored lines).

As the number of genes increases, the optimal threshold for contracting also tends to

increase. Combining all model conditions, the error continues to drop until a 20% contracting

threshold with 1000 genes, whereas no substantial improvement is observed after contracting

branches with 5% support for 50 genes (Fig. 2.2). Nevertheless, removing branches with 10% or

20% does not increase the error with 50 genes. Perhaps, with few gene trees, removing branches
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of low support leaves us with very little information left; thus, regardless of whether we contract

or not, we don’t get much signal around the most difficult branches. In contrast, when many

gene trees are given, perhaps even after removing many branches, still enough gene trees with a

resolution around difficult species tree branches are left.

The alignment length and gene tree error also impact the effect of contraction. For short

alignments (200bp) and 1000 genes, contracting branches with up to 10% support reduces the

species tree error by 21% (from 8.8% with no contraction to 6.9%). As alignment length grows,

benefits of gene tree contraction diminish, so that with 1600bp genes, the reduction in error is

merely from 4.1% to 3.7%. This pattern is perhaps expected because, with longer alignments,

branch support is expected to increase. Thus, with longer gene alignments and consequently

better gene trees with higher support, there is less room for improvement by reducing the noise.

Consistent with this explanation, grouping replicates based on average gene tree error gives

similar results as grouping by alignment length (see Fig. S2.1).

avian-like simulations

On the avian simulated dataset, contracting low support branches helps accuracy

marginally, but the extent of impact depends on the model condition (Fig. 2.3). With mod-

erate ILS (2X), we see no improvements as a result of contracting low support branches, perhaps

because the average error is below 5% even with no contraction, leaving little room for improve-

ments. Increasing ILS, we start to see improvements using contracted gene trees. Removing

branches of up to 5% support reduces the error from 13% to 11% with 0.5X, and from 8% to 7%

for the 1X condition.

When ILS is fixed to 1X and sequence length is varied (Fig. 2.3), contracting is helpful

mostly with short sequences (e.g., 250bp). With longer sequences, where gene tree estimation

error is low, little or no improvement in accuracy is obtained. The best accuracy is typically

observed by contracting at 0–5%. The gains in accuracy comparing no contraction to contraction

at 0%, 3%, 5% thresholds are statistically significant (p = 0.017, 0.028, and 0.013) according to
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Figure 2.3. Impact of contraction on the avian simulated dataset. The FN error of ASTRAL-
III species trees is shown on the avian simulated dataset given k = 1000 genes with (left)
fixed sequence lengths = 500 and varying levels of ILS, or (right) fixed ILS (1X) and varying
sequence length, in each case both with full FastTree gene trees (non) or trees with branches with
≤ {0,3,5,7,10,20,33,50}% support contracted (x-axis). Average and standard error bars are
shown for all conditions combined (black solid line) and also for each model condition separately
(dashed color lines). Each model condition has 20 replicates.

one-tailed paired t-tests.

Avian biological dataset

The original analyses on this dataset (Jarvis et al., 2014; Mirarab et al., 2014a) report that

MP-EST (Liu et al., 2010) run on 14,446 gene trees produces a tree that conflicts with strong

evidence from the literature and other analyses on the same dataset. The statistical binning

method was developed to address this shortcoming by combining loci together to reduce gene

tree error (Mirarab et al., 2014a; Bayzid et al., 2015). MP-EST run on binned gene trees (i.e.,

binned MP-EST) produced results (Jarvis et al., 2014; Mirarab et al., 2014a) that were largely

congruent with the concatenation using ExaML (Kozlov et al., 2015) and differed in only five

branches with low support (Fig. 2.4ab); both trees were used as the reference (Jarvis et al.,

2014). Here, we test if simply contracting low support gene tree branches and using ASTRAL-III

produces trees congruent with the reference trees.

Similar to MP-EST, when ASTRAL-III is run on 14,446 gene trees with no contraction,
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Figure 2.4. Avian dataset with 14,446 genes. Shown are reference trees from the original paper
(Jarvis et al., 2014) using the coalescent-based binning (a) and concatenation (b), and two new
trees using ASTRAL-III with no contraction (c) and with contraction with 3%, 5%, and 10%
thresholds (d). Support values (bootstrap for a,b and local posterior probability for c,d) shown
for all branches except those with full support; in (d), support is shown for 3%, 5%, and 10%,
respectively. Branches conflicting with the reference coalescent-based tree are shown as dotted
red lines.

the results differ in nine and 11 branches, respectively, with respect to the reference binned MP-

EST and concatenation trees (Fig. 2.4c). Moreover, this tree contradicts some strong results from
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the avian analyses (e.g., not recovering the Columbea group, Jarvis et al., 2014). ASTRAL-III

with no contraction finishes in 32 hours, but with contraction, depending on the threshold, it takes

3 to 84 hours (> 50 hours for 0% – 20% thresholds and < 26 hours for 33% – 75%). Contracting

0% branches has minimal impact on the discordance (eight discordant branches with binned

MP-EST instead of nine). However, contracting low support branches with 3%–33% thresholds

dramatically reduces the discordance with the reference tree (2, 2, 4, 2, 3, and 3 discordant

branches, respectively, for 3%, 5%, 7%, 10%, 20%, and 33%). Three thresholds (3%, 5%, and

10%) produce an identical tree (Fig. 2.4d). The remaining differences are among the branches

that are deemed unresolved by Jarvis et al. and change among the reference trees as well (Jarvis

et al., 2014). Contracting at 50% and 75% thresholds, however, increases discordance to five and

six branches, respectively.

Thus, consistent with simulations, contracting very low support branches seems to

produce the best results, when judged by similarity with the reference trees. To summarize,

ASTRAL-III obtained on unbinned but collapsed gene trees agreed with all major relations in

Jarvis et al., including the novel Columbea group, whereas the unresolved tree missed important

clades (Fig. 2.4).

2.3.3 RQ2: Running time improvements

Varying the number of genes (k)

We compare ASTRAL-III to ASTRAL-II on the avian simulated dataset, changing the

number of genes from 28 to 214 and forcing X to be the same for both versions to enable

comparing impacts of improved weight calculation. We allow each replicate run to take up

to two days. ASTRAL-III improves the running time over ASTRAL-II and the extent of the

improvement depends on k (see Fig. S2.2). With 1000 genes or more, there is at least a 2.1X

improvement. With 213 genes, the largest value where both versions could run, ASTRAL-III

finishes on average 3.2 times faster than ASTRAL-II (234 versus 758 minutes). ASTRAL-II

is not able to finish on the dataset with k = 214, while ASTRAL-III finishes on all conditions.
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Moreover, fitting a line to the average running time in the log-log scale graph reveals that on this

dataset, the running time of ASTRAL-III on average grows as O(k2.08), which is better than that

of ASTRAL-II at O(k2.28), and both are better than the theoretical worst case, which is O(k2.726).

These results are consistent with the fact that ASTRAL-III considers similarities between gene

tree nodes.
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Figure 2.5. Running time versus k. Average running times (4 replicates) are shown for ASTRAL-
II and ASTRAL-III on the avian dataset with 500bp or 1500bp alignments with varying numbers
of gens (k), shown in log scale (see Fig. S2.2 for normal scale). A line is fit to the data points in
the log/log space and line slopes are shown. ASTRAL-II did not finish on 214 genes in 48 hours.

Running time for large polytomies

ASTRAL-III has a clear advantage compared to ASTRAL-II with respect to the running

time when gene trees include polytomies (Fig. 2.6a and Fig. S2.3). Since ASTRAL-II and

ASTRAL-III can have a different set X , we show the running time per each weight calculation

(i.e., Eq. 2.3). As we contract low support branches and hence increase the prevalence of

polytomies, the weight calculation time quickly grows for ASTRAL-II, whereas, in ASTRAL-III,

the weight calculation time remains flat, or even decreases. These results are consistent with a

change of asymptotic running time to score a polytomy of size d from O(d3) in ASTRAL-II to

O(d) in ASTRAL-III.
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Figure 2.6. Weight calculation and |X | on S100. Average and standard error of (a) the time
it takes to score a single tripartition using Eq. 2.3 and (b) search space size |X | are shown for
both ASTRAL-II and ASTRAL-III on the S100 dataset. Running time is in log scale. We vary
numbers of gene trees (boxes) and sequence length (200 and 1600). See Fig. S2.3 for similar
patterns for with 400 and 800bp alignments.

The search space

Comparing the size of the search space (|X |) between ASTRAL-II and ASTRAL-III

shows that as intended, the search space is decreased in size for cases with no polytomy but

can increase in the presence of polytomies (Fig. 2.6b). With no contraction, on average, |X | is

always smaller for ASTRAL-III than ASTRAL-II. With few error-prone gene trees (50 gene

trees from 200bp alignments), the search space has reduced dramatically but with many genes or

high-quality gene trees, the reductions are minimal. Moreover, the search space for gene trees

estimated from short alignments (e.g., 200bp) is several times larger than those based on longer

alignments (e.g., 1600bp) for both methods. These are results of the first feature of ASTRAL-III
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that forces the search space to grow at O(nk).

Contracting low support branches initially increases the search space. This is because

ASTRAL-III unlike ASTRAL-II adds multiple resolutions per polytomy to X . Further contraction

results in reductions in |X |, presumably because many polytomies exist and they are resolved

similarly inside ASTRAL-III.

2.3.4 RQ3: ASTRAL-II versus ASTRAL-III accuracy

Despite limiting |X | to grow at most linearly with n and k, the accuracy of ASTRAL-III

remains unchanged compared to ASTRAL-II (Table 2.1 and Figs. S2.4–S2.7). Importantly, even

for the very challenging S200 dataset, the accuracy is not reduced substantially even though

|X | is reduced by up to 47%. Over all datasets, differences in error are less than 0.002, except

for three datasets where the error of ASTRAL-III was less than ASTRAL-II by 0.003, 0.005,

and 0.006 and two cases where the error increased by 0.004. Over all datasets, the differences

between ASTRAL-II and ASTRAL-III were not statistically significant according to a paired

t-test (p-value = 0.496). Since ASTRAL-III has a reduced search space, its quartet scores are

typically slightly lower than ASTRAL-II, but these reductions are never more than 0.06%. As

expected, the largest drops in the quartet score happen for the challenging S200 dataset with only

50 gene trees. The search space reduces in almost all cases and the reductions can be as much as

72%. Thus, the improved running time of ASTRAL-III does not come at the price of reduced

accuracy.

2.4 Discussion

Below we further comment on ASTRAL-III in terms of accuracy and running time. We

finish by comparing ASTRAL-III and ASTRAL-III-beta.
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Table 2.1. ASTRAL-II versus ASTRAL-III. Average and standard error (inside parenthesis)
are shown for changes in accuracy (normalized FN rate), quartet score, and search space size
(|X |). FN: we show ASTRAL-III−ASTRAL-II; negative numbers indicate ASTRAL-III is more
accurate. |X |: we show ASTRAL-III−ASTRAL-II

ASTRAL-II ×100; negative numbers indicate that ASTRAL-
III has a reduced search space. Quartet score: we show ASTRAL-III−ASTRAL-II

ASTRAL-II × 100; positive
numbers indicate that ASTRAL-III has improved quartet scores. See Figures. S2.4–S2.7 for full
distributions.

data set model condition FN |X | quartet score

avian

0.5X-500bp −0.006 (0.007) −3% (0) −0.01% (0.01)
1X-1000bp 0.001 (0.002) −1% (0) 0.00% (0.00)
1X-1500bp 0.004 (0.003) −1% (0) 0.00% (0.00)
1X-250bp 0.004 (0.007) −3% (0) −0.01% (0.00)
1X-500bp −0.001 (0.004) −2% (0) 0.00% (0.00)
2X-500bp −0.003 (0.003) −2% (0) 0.00% (0.00)

S200

1000gt-10−6 −0.001 (0.000) 0% (0) 0.00% (0.00)
200gt-10−6 0.000 (0.001) −5% (1) 0.00% (0.00)
50gt-10−6 −0.001 (0.001) −42% (2) −0.06% (0.01)

1000gt-10−7 0.001 (0.001) −1% (0) 0.00% (0.00)
200gt-10−7 −0.001 (0.001) −6% (1) 0.00% (0.01)
50gt-10−7 0.000 (0.002) −47% (2) −0.06% (0.01)

S100

1000gt-1600bp 0.000 (0.000) −3% (0) 0.00% (0.00)
500gt-1600bp 0.000 (0.000) −6% (1) 0.00% (0.00)
200gt-1600bp 0.000 (0.001) −17% (1) −0.01% (0.00)
50gt-1600bp −0.001 (0.001) −46% (3) −0.01% (0.01)

1000gt-200bp −0.001 (0.002) −9% (1) 0.00% (0.00)
500gt-200bp −0.001 (0.001) −19% (1) −0.01% (0.01)
200gt-200bp −0.001 (0.001) −40% (1) −0.01% (0.00)
50gt-200bp −0.002 (0.002) −72% (1) −0.05% (0.01)

1000gt-400bp −0.001 (0.002) −6% (1) 0.00% (0.00)
500gt-400bp 0.001 (0.001) −12% (1) −0.01% (0.00)
200gt-400bp 0.000 (0.001) −29% (2) −0.01% (0.01)
50gt-400bp −0.005 (0.001) −61% (2) −0.02% (0.01)

1000gt-800bp 0.000 (0.000) −4% (0) 0.00% (0.00)
500gt-800bp 0.001 (0.001) −9% (1) 0.00% (0.00)
200gt-800bp 0.001 (0.000) −22% (2) −0.01% (0.01)
50gt-800bp 0.000 (0.001) −52% (3) −0.02% (0.01)

2.4.1 Accuracy

Although tree accuracy can improve with contracted gene trees, the gap between per-

formance on true gene trees and estimated gene trees remains wide (Table S2.3). On the S100
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dataset, respectively for 50, 200, 500, and 1000 genes, the best average error with 1600bp gene

trees among all contraction levels were 9.8%, 5.9%, 4.3%, and 3.7% compared to 7.0%, 3.7%,

2.4%, and 1.5% with true gene trees. Thus, while contracting low support branches helps in

addressing gene tree error, improved methods of gene tree estimation remain crucial. Our results

also indicate that in the presence of noisy gene trees, increased numbers of genes are needed to

achieve high accuracy. For example, on the S100 dataset, with 1000 gene trees of only 200bp and

contracting with a 10% threshold, the species tree error was 6.9%, which slightly outperformed

the accuracy with only 50 true gene trees. This observation encourages the use of a large number

of gene trees; incidentally, a main feature of ASTRAL-III is improved running time with many

genes.

The best choice of the threshold of contraction was somewhat sensitive to the dataset.

Testing up to 1000 gene trees, we observed that more gene trees clearly increased the optimal

threshold, but did not test beyond 1000 genes. One can predict that perhaps the trend may

continue but also that the optimal threshold will not indefinitely increase. Similarly, we saw

that the amount of gene tree error due to lack of signal impacts the optimal threshold. One may

expect that other sources of error, including incorrect orthology, incorrect alignment, and model

misspecifications may also impact the optimal threshold. Regardless of the choice of the optimal

threshold, it seems that the largest benefits are associated with removing the least supported

branches. Overall, a threshold of 10% seemed to provide a good default value.

In most datasets, a substantial accuracy improvement was observed when 0% BS branches

were removed. Branches of 0% support are presumably resolved arbitrarily. The use of conserved

genes or closely related taxa can increase instances where two or more taxa have identical

sequences in some genes. Some tree estimation methods generate binary trees even under such

conditions. Removing branches that are arbitrarily resolved make sense and, as our results

indicate, improves accuracy.

The main competitor of ASTRAL is NJst (Liu and Yu, 2011) and its fast implementation,

ASTRID (Vachaspati and Warnow, 2015), but these tools are not able to handle polytomies
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in input gene trees. ASTRAL-III makes it efficient to use unresolved gene trees. Moreover,

beyond contracting low support branches, other strategies could be used to reduce impacts of

gene tree uncertainty. Previous studies indicate that simply using the set of all bootstrap gene

tree replicates as input to ASTRAL increases error (Mirarab et al., 2014b), perhaps due to the

increased noise (Mirarab et al., 2016; Sayyari and Mirarab, 2016b). However, using a sample

from the Bayesian distribution for each gene tree may improve the accuracy of ASTRAL.

Finally, theoretical implications of removing low support branches are less clear than its

empirical impact. In principle, branches that have low support are not necessarily expected to

be randomly selected among gene trees. Thus, while our empirical results support the use of

(conservative) filtering, the resulting procedure may lose statistical guarantees of consistency.

Future work should study conditions where ASTRAL remains statistically consistent with

contracted gene trees.

2.4.2 Running time

Large n

To assess limits of ASTRAL-III in terms of scalability, we tested it on 20 replicates

of a dataset with 5,000 species and 1000 true gene trees (simulation procedure described in

Appendices 2.C and parameters given in Table S2.4). ASTRAL-III took between 2 and 62 hours

to run on this dataset (9.4 hours on average). We also attempted to test ASTRAL-III on four

replicates of a dataset with 10,000 species and 1000 true gene trees, allowing a week of running

time. Of the four replicates, two were able to finish within the allotted time. Thus, depending on

the nature of the data, ASTRAL-III may be able to scale to datasets with up to 10,000 species

given sufficient running time.

Average running time, |X |, and |Y |

The ASTRAL-III running time analysis is based on several worst-case assumptions, and

real data may grow less rapidly with both n and k. Overall, although the exact value depends
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on the dataset and especially the amount of discordance, the running time of ASTRAL seems

to grow roughly quadratically with both n and k (i.e., proportionally to n2k2); see Figures S2.2

and S2.8.

ASTRAL-III bounds |X | to grow at most linearly with n and k. Empirically, we observe

that |X | grows sublinearly with k (close to O(k
3
4 )) on the avian simulated dataset (Fig. 2.7a). Note

that the avian dataset has one of the highest levels of ILS; the dependence on k is expected to be

lower for datasets with lower gene tree discordance. Testing the growth with n is more difficult

because as n changes, other factors such as the amount of discordance also change. Nevertheless,

across all the datasets that we had available, we tested the change in running time for fixed k as n

changes and observed a linear growth (Fig. 2.7b), matching the worst-case scenario.
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Figure 2.7. Empirical search space. (a) |X | is shown for ASTRAL-II and ASTRAL-III for
avian-like simulated dataset with varying numbers of genes. (b) |X | is shown for ASTRAL-III
for several datasets with varying n. (c) The density plots of logX |Y | across all ASTRAL-III runs
reported in this paper. Size of the dynamic programming space Y is never above |X |1.312 here.
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Finally, establishing empirical running time growth requires establishing the rate of the

growth of |Y | with respect to |X |. The |Y | ≤ |X |1.726 upper-bound is for specialized formations

of the set X (Kane and Tao, 2017). Empirically, as |X | increases, the size of |Y | in ASTRAL-III

does not increase as fast as the worst-case scenario implies. Across all of our ASTRAL-III runs

in this paper, |Y | ranged in 90% of our runs between |X |1.07 and |X |1.20, and the overall average

was |X |1.11 (Fig. 2.7c).

2.4.3 Comparisons to ASTRAL-III-beta

The beta version of ASTRAL-III (Zhang et al., 2017) included features 3–5 but not

changes to X (features 1 and 2) or the two-staged α-trimming technique (feature 6). For

completeness, we compared ASTRAL-III-beta and ASTRAL-III in terms of accuracy, quartet

score, and the running time (Table 2.2). Accuracy and quartet scores are very similar, perhaps

with a small improvement since the beta version. The search space is reduced since the beta

version (due to features 1 and 2), and the running times are substantially decreased (at least by

half in most cases). The reductions in the running time are due to α-trimming, reduced |X |, in

addition to further improvements in details of our implementation of the polytree data-structure.

Table 2.2. ASTRAL-III-beta vs ASTRAL-III. Columns are defined similar to Table 2.1. Negative
numbers indicate ASTRAL-III-beta has a larger value (i.e., has higher error, larger search space,
better quartet scores, and is slower).

model condition contraction FN |X | |Y | quartet score running time
avian-0.5X-500bp None −0.003 −3% −9% −0.02% −48%

avian-1X-250bp None −0.001 −3% −9% 0.00% −56%
avian-1X-500bp None −0.001 −2% −6% 0.00% −50%

avian-1X-1000bp None −0.001 −1% −4% 0.00% −58%
avian-1X-1500bp None 0.001 −1% −4% 0.00% −57%
avian-2X-500bp None −0.002 −2% −4% 0.00% −65%

avian-0.5X-500bp 10% −0.003 −3% −29% −0.01% −69%
avian-1X-250bp 10% −0.001 −50% −40% 0.00% −81%
avian-1X-500bp 10% 0.003 −18% −62% −0.01% −62%

avian-1X-1000bp 10% 0.000 −5% −8% 0.00% −61%
avian-1X-1500bp 10% 0.003 0% −1% 0.00% −55%
avian-2X-500bp 10% −0.002 −14% −18% 0.00% −62%
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To further demonstrate the impact of the α-trimming feature, we randomly chose 18

species from the avian dataset with 1500bp and 1X ILS. On this limited dataset, we ran ASTRAL-

III in its exact mode (i.e., setting X to the power set) with 100 gene trees. Without any trimming

of the dynamic programming (i.e., without features 5 and 6), the running time was 40 minutes.

Emulating ASTRAL-III-beta, we disabled α-trimming but kept the trimming (feature 5) and

the running time reduced to 33 minutes. Adding the α-trimming feature dramatically reduced

the running time to 13 minutes. Thus, when X includes many bipartitions that have very little

promise in improving the quartet score (as in the exact mode of ASTRAL), the α-trimming

approach is very effective in reducing the running time.

2.5 Conclusions

We introduced ASTRAL-III, which compared to ASTRAL-II, improves scalability,

especially for datasets with large k and many polytomies. These improvements enabled us to

test the accuracy of ASTRAL after contracting low support branches. Overall, we observed

improvements in accuracy when very low support branches were contracted, but also evidence

that aggressive filtering reduces the accuracy. ASTRAL-III bounds the theoretical running time

to O((nk)1.726.D) where D = O(nk) is the sum of degrees of all unique gene tree nodes. In

practice, the running time tends to grow no worse than quadratically with both n and k.
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Appendices

2.A Supplementary method details

2.A.1 Defining the set X

ASTRAL-II uses several techniques to augment the set X , which we describe below. We

also describe how ASTRAL-III modifies each technique.

2.A.2 Similarity matrix

All bipartitions from a UPGMA tree based on a quartet-based measure of distance are

added to X . In ASTRAL-III, we improve the distance matrix when gene trees have polytomies.

Unlike ASTRAL-II, in ASTRAL-III we make sure that unresolved quartets in input gene trees

contribute exactly 0 to our counts of different quartet topologies used in building the similarity

matrix. Note that this similarity matrix is separate from and has no impact on the quartet scores.

2.A.3 Greedy trees

ASTRAL-II uses a set of heuristics based on the greedy consensus of gene trees to

augment the set X . It first constructs a set of greedy consensus trees using a set of thresholds for

minimum frequency of bipartitions. The polytomies in the greedy consensus trees are resolved

in three different ways and resulting bipartitions are added to X (see Algorithm S2.1). Of the

methods used to resolve the polytomy with degree d, two of them (i.e., using a UPGMA tree

started from sides of the polytomy and a greedy consensus of gene trees subsampled to randomly

selected taxa) can only add O(d) new bipartitions. The third resolution samples a taxon from
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each side of the polytomy; it then computes a caterpillar tree constructed based on decreasing

similarity to each sampled taxon and adds the bipartitions from all these caterpillar trees to

the search space. This step can add O(d2) bipartitions to the search space. In ASTRAL-III, to

guarantee |X |= O(nk), we need to constrain this step. Let d1 . . .dr be the list of all polytomies,

ordered from the smallest to the largest. Then, we find the smallest threshold q such that

∑
q
i=1 d2

i ≤ cn for a constant c, set by default to 25. In ASTRAL-III, we only compute and

add bipartitions using caterpillar resolutions for polytomies d1 . . .dq (see Algorithm S2.1). By

construction, this will ensure that at most O(n) bipartitions are added in this step. Finally, these

resolutions can happen in multiple rounds. In ASTRAL-III, we make sure these rounds of

resolutions do not grow beyond a constant (default: 100).

2.A.4 Gene tree polytomies

If a gene tree includes polytomies, ASTRAL-II adds bipartitions implied by resolutions

of that polytomy to the set X . ASTRAL-II computes a single “reference” tree by computing a

greedy consensus of all gene trees and forcing the consensus to be fully resolved with further

refinements using the UPGMA algorithm. To resolve a gene tree polytomy, it samples a taxon

from each cluster defined by each side of the polytomy, finds the reference tree induced on the

sampled taxa, and adds the resulting resolution to the search space. In ASTRAL-III, the definition

of the reference tree is modified to use the UPGMA tree inferred on the similarity matrix used by

ASTRAL. We observed that the UPGMA tree summarizes the input gene trees more accurately

than the greedy trees (Table S2.1). Moreover, unlike ASTRAL-II, in ASTRAL-III, this process

is repeated three times with different random samplings.
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Algorithm S2.1. Additions to X using greedy consensus. greedy(G , t,b) returns the greedy
consensus of G , including only branches with frequency ≥ t; if b is true, polytomies in the
consensus are randomly resolved. updateX(t) adds bipartitions from tree t to the set X ; when
edges in t are labelled with a frequency label (e.g., frequencies in the greedy consensus), it
returns the maximum label of any new bipartition added to X . clusters(p) returns the taxon
partitions defined by an unrooted node p. upgma(S,C) runs the UPGMA algorithm using the
similarity matrix S; when C is given, UPGMA starts by groups defined in C. randSample(p)
selects a random taxon from each subtree around a node p, and resolve(p,r) resolves polytomy
p according to a tree r on such a sampling. Operator ↾ restricts a tree or a matrix to a subset.
pectinate(O) returns a pectinate tree based on O, an ordered list of taxa. sortBy sorts a list of taxa
based on their decreasing similarity to a given taxon. Constants: T HS = {0, 1

100 ,
1

50 ,
1

20 ,
1

10 ,
1
4 ,

1
3};

MIT = 10; RWD = 2; and FRQ = LT H = 1
100 ; MAXR = 100.

function ADDBYGREEDY(G ,S)
for t ∈ T HS do

gc← greedy(G , t,False)
for p ∈ polytomies(gc) do

if degree(p)≥ POLY LIMIT then
quadratic← FALSE

else
quadratic← True

updateX(upgma(S,start = clusters(p)))
c← 0 and max←MIT
while c < max do

c← c+1
sample← randSample(p)
r← greedy(G ↾ sample,0,True)
mt← updateX(resolve(p,r))
if mt ≥ FRQ AND max≤MAXR then

max← max+RWD
updateX(resolve(p,upgma(S ↾ sample)))
if t ≤ LT H and c < MIT and quadratic then

for s ∈ sample do
r← pectinate(sortBy(S,s,sample)
updateX(resolve(p,r))
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2.B Derivations

2.B.1 Derivation of Equation 2.6

First note that:

QI((A|B|C),M) = ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

ai +b j + ck−3
2

aib jck

= ∑
i∈[d]

(
ai

2

)
∑

j∈[d]−{i}
∑

k∈[d]−{i, j}
b jck

+ ∑
i∈[d]

(
bi

2

)
∑

j∈[d]−{i}
∑

k∈[d]−{i, j}
a jck

+ ∑
i∈[d]

(
ci

2

)
∑

j∈[d]−{i}
∑

k∈[d]−{i, j}
a jbk .

(2.9)

Now, we note that:

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

b jck = ∑
j∈[d]−{i}

b j ∑
k∈[d]−{i, j}

ck

= ∑
j∈[d]−{i}

b j(Sc− ci− c j)

= −bi(Sc− ci− ci)+ ∑
j∈[d]

b j(Sc− ci− c j)

=2bici−Scbi +SbSc−Sbci−Sb,c

=(Sb−bi)(Sc− ci)−Sb,c +bici

(2.10)

Replacing this (ditto for other terms) in Equation 2.9 directly gives us the Equation 6:

QI((A|B|C),M) = ∑
i∈[d]

(
ai

2

)
((Sb−bi)(Sc− ci)−Sb,c +bici)

+ ∑
i∈[d]

(
bi

2

)
((Sa−ai)(Sc− ci)−Sa,c +aici)

+ ∑
i∈[d]

(
ci

2

)
((Sa−ai)(Sb−bi)−Sa,b +aibi)

(2.11)
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2.B.2 Derivation of the upper bound U(Z)

In ASTRAL, V (Z) denotes the total contribution to the support of the best rooted tree TZ

on taxon set Z, where each quartet tree in the set of input gene trees contributes 0 if it conflicts

with TZ or only intersects it with one leaf, and otherwise contributes 1 or 2, depending on the

number of nodes in TZ it maps to. Let U(Z) be the sum of max possible support of each quartet

tree in the gene trees with respect to any resolution TZ of set Z, allowing the resolution to change

for each gene tree. In other words, let Q(Z) be the set of quartets that would be resolved one

way or another in any resolution of Z, and note that these are quartets that include two or leaves

in Z; then, U(Z) is the number of resolved gene tree quartets that would match some resolution

of Z and are included in Q(Z). More formally,

U(Z) = ∑
g∈G

∑
M∈N(g)

∑
T∈Q(Z)

QI(T,M) ,

where

Q1(Z) = {{{v,w},{x},{y}} : {x,y} ⊂ Z,{v,w} ⊂ L−{x,y}} ,

Q2(Z) = {{{v,w},{x},{y}} : {v,w,x} ⊂ Z,y ∈ L−Z} , and

Q(Z) = Q1(Z)∪Q2(Z) ,Q1(Z)∩Q2(Z) = /0 .

Clearly, V (Z)≤U(Z) (equality can be achieved only if all gene trees are compatible with

some resolution of Z). Then, letting d = |M| and defining zi = |Z∩Mi| and li = |L∩Mi|= |Mi|,

we have:
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∑
{A,B,C}∈Q(Z)

QI((A|B|C),M)

= ∑
{A,B,C}∈Q1(Z)

QI((A|B|C),M)+ ∑
{A,B,C}∈Q2(Z)

QI((A|B|C),M)

= ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i}−[ j]

(
li
2

)
z jzk

+ ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i}−[ j]

(
zi

2

)
(z j(lk− zk)+(l j− z j)zk)

= ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

(
li
2

)
z jzk

2

+ ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

(
zi

2

)
z j(lk− zk)+(l j− z j)zk

2

= ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

(
li
2

)
z jzk

2

+ ∑
i∈[d]

∑
j∈[d]−{i}

∑
k∈[d]−{i, j}

(
zi

2

)
z j(lk− zk) .

(2.12)
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Notice that based on Equation 2.4,

QI((Z|Z|L),M)

2
− QI((Z|Z|Z),M)

3

=
1
2 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}
ziz jlk

zi + z j + lk−3
2

− 1
3 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}
ziz jzk

zi + z j + zk−3
2

=
1
2 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}

((zi

2

)
z jlk + zi

(
z j

2

)
lk + ziz j

(
lk
2

))
− 1

3 ∑
i∈[d ]

∑
j∈[d ]−{i}

∑
k∈[d ]−{i, j}

((zi

2

)
z jzk + zi

(
z j

2

)
zk + ziz j

(
zk

2

))
=

1
2 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}

((zi

2

)
z jlk +

(
zi

2

)
z jlk +

(
li
2

)
z jzk

)
− 1

3 ∑
i∈[d ]

∑
j∈[d ]−{i}

∑
k∈[d ]−{i, j}

((zi

2

)
z jzk +

(
zi

2

)
z jzk +

(
zi

2

)
z jzk

)
=

1
2 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}

((li
2

)
z jzk +2

(
zi

2

)
z jlk
)

− 1
3 ∑

i∈[d ]
∑

j∈[d ]−{i}
∑

k∈[d ]−{i, j}
3
(

zi

2

)
z jzk

= ∑
A,B,C∈Q(Z)

QI((A|B|C),M) .

(2.13)

(going from the fourth term to the fifth is accomplished by changing the order of sums).

Therefore,

U(Z) = ∑
g∈G

∑
M∈N(g)

(QI((Z|Z|L),M)

2
− QI((Z|Z|Z),M)

3

)
=

w(Z|Z|L)
2

− w(Z|Z|Z)
3

.

(2.14)
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2.C Simulations and commands

2.C.1 Simulation setup

S100

In order to generate the gene trees and species trees using the Simphy we use this

command:

simphy -rs 50 -rl f:1000 -rg 1 -sb f:0.0000001 -sd f:0 -st

ln:14.70055,0.25 -sl f:100 -so f:1 -si f:1 -sp f:400000 -su

ln:-17.27461,0.6931472 -hh f:1 -hs ln:1.5,1 -hl ln:1.551533,0.6931472

-hg ln:1.5,1 -cs 9644 -v 3 -o ASTRAL-III -ot 0 -op 1 -od 1

Larege-n simulated dataset

In order to compare running time performances of ASTRAL-II and ASTRAL-III, we

created another dataset with very large numbers of species using Simphy and under the MSCM.

Since we are only comparing running times, we only use true gene trees to infer the ASTRAL

species trees. We have three sub-datasets with 5000, 2000, and 1000 species (plus one outgroup).

Each sub-dataset has 4 replicates, and each replicate has a different species tree with 500 gene

trees. Species trees are generated based on the birth-death process with birth and date rates from

log uniform distributions. We sampled the number of generations and effective population size

from log normal and uniform distributions respectively such that we have medium amounts of

ILS. The average FN rates between the true gene trees and the species tree ranges between 4%

and 23% for 1K, between 21% and 58% for 2k, and between 21% and 33% for 5k.

In order to generate the gene trees and true species trees using the Simphy we use

parameters given in Table S2.4 and the following command.

1K:
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simphy -rs 20 -rl f:1000 -rg 1 -sb lu:0.0000001,0.000001 -sd lu:0.0000001,sb

-st ln:16,1 -sl f:1000 -so f:1 -si f:1 -sp u:10000,1000000 -su

ln:-17.27461,0.6931472 -hh f:1 -hs ln:1.5,1 -hl ln:1.551533,0.6931472 -hg

ln:1.5,1 -cs 9644 -v 3 -o 5k.species -ot 0 -op 1 -od 1

2K:

simphy -rs 20 -rl f:1000 -rg 1 -sb lu:0.0000001,0.000001 -sd lu:0.0000001,sb

-st ln:16,1 -sl f:2000 -so f:1 -si f:1 -sp u:10000,1000000 -su

ln:-17.27461,0.6931472 -hh f:1 -hs ln:1.5,1 -hl ln:1.551533,0.6931472 -hg

ln:1.5,1 -cs 9644 -v 3 -o 5k.species -ot 0 -op 1 -od 1

5K:

simphy -rs 20 -rl f:1000 -rg 1 -sb lu:0.0000001,0.000001 -sd lu:0.0000001,sb

-st ln:16,1 -sl f:5000 -so f:1 -si f:1 -sp u:10000,1000000 -su

ln:-17.27461,0.6931472 -hh f:1 -hs ln:1.5,1 -hl ln:1.551533,0.6931472 -hg

ln:1.5,1 -cs 9644 -v 3 -o 5k.species -ot 0 -op 1 -od 1

10K: For the 10K-taxon dataset of S2 we use this command

simphy -rs 20 -rl f:1000 -rg 1 -sb lu:0.0000001,0.000001 -sd lu:0.0000001,sb

-st ln:16.2,1 -sl f:10000 -so f:1 -si f:1 -sp u:10000,1000000 -su

ln:-17.27461,0.6931472 -hh f:1 -hs ln:1.5,1 -hl ln:1.551533,0.6931472 -hg

ln:1.5,1 -cs 9644 -v 3 -o 10k.species -ot 0 -op 1 -od 1

2.C.2 Commands

Contracting branches

In order to contract gene tree branches with bootstrap up to a certain threshold we used

this command:

nw_ed genetree ’i & (b<= $threshold)’ o
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Drawing bootstrap support on ML gene trees:

In order to draw bootstrap support on best ML gene trees we first reroot both best ML

gene tree, and the bootstrap gene trees using this command:

nw_support bootstrapgenetrees taxon > bootstrapgenetrees.rerooted

nw_support bestMLgenetree taxon > bestMLgenetree.rerooted

Then we draw bootstrap supports on the branches:

nw_support -p bestMLgenetree.rerooted bootstrapgenetrees.rerooted

> bestMLgenetree.rerooted.final

Gene tree estimation

We used FastTree version 2.1.9 Double precision. In order to estimated best ML

gene trees we used the following command: fasttree -nt -gtr -nopr -gamma -n <num>

<all-genes.phylip> where we have all the alignments in the PHYLIP format in the file

all-genes.phyip for each replicate, and < num > is the number of alignments in this file.

For bootstrapping analysis, we first generate bootstrapped sequences using RAxML

version 8.2.9 with the following command:

raxmlHPC -s alignment.phylip -f j

-b <seed number > -n BS -m GTRGAMMA -# 100

and then we Fasttree to perform the actual ML analyses; for FastTree bootstrap runs, we

use the same command and models that we used for best ML gene trees.

Running ASTRAL

ASTRAL-II in this paper refers to ASTRAL version 4.11.2 and ASTRAL-III refers to

ASTRAL version 5.5.4. Both versions can be found in the link below:

https :// github.com/chaoszhang/ASTRAL/releases/tag/paper

Both versions of ASTRAL program were run with following command:
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java -jar <program > -t 0 -i <input > -o <output > &> <log >
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2.D Supplementary Figures and Tables

Table S2.1. The accuracy of UPGMA tree and Greedy tree of two model conditions of dataset
S100

Contraction threshold Greedy tree RF UPGMA tree RF
0% 0.168 0.1461
10% 0.169 0.1451

Table S2.2. Species tree and gene tree generation parameters used for Simphy, and sequence
evolution parameters for the GTR model used for Indelible for the S100 dataset.

Parameter Name parameter Value
Speciation rate 0.0000001
Extinsion rate 0
Number of Leaves 100
Ingroup divergence to the ingroup ratio 1.0
Generations LogN(1.470055e+01,2.500000e-01)
Haploid effective population size 400000
Global substitution rate LogN(-1.727461e+01,6.931472e-01)
Lineage specific rate gamma shape LogN(1.500000e+00,1)
Gene family specific rate gamma shape LogN(1.551533e+00,6.931472e-01)
Gene tree branch specific rate gamma shape LogN(1.500000e+00,1)
Seed 9644
Sequence Length 1600, 800, 400, 200
Sequence base frequencies Dirichlet(A=36,C=26,G=28,T=32)
Sequence transition rates Dirichlet(TC=16,TA=3,TG=5,CA=5,CG=6,AG=15)
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Table S2.3. Species tree error (FN ratio) for all model conditions of the S100 dataset, with true
gene trees (true), no filtering (non), and all filtering thresholds (columns).

Genes Alignment true non 0 3 5 7 10 20 33 50 75
50 200bp

7.0

17.4 15.7 16.1 16.0 16.1 16.8 16.9 19.0 22.9 31.4
50 400bp 13.4 13.2 12.8 12.8 13.0 12.8 13.6 14.3 16.4 20.7
50 800bp 12.0 11.7 11.3 11.1 11.0 11.0 10.9 11.7 12.4 15.4
50 1600bp 10.2 10.2 10.1 10.1 9.8 9.9 10.0 10.0 10.4 11.9
200 200bp

3.7

11.3 10.4 10.1 10.3 10.3 10.4 10.3 12.1 14.3 20.5
200 400bp 9.0 8.3 8.3 8.0 8.0 8.2 8.3 8.8 9.8 12.9
200 800bp 7.4 7.2 6.9 6.9 6.9 6.8 6.9 7.2 7.5 8.9
200 1600bp 6.1 6.3 6.2 6.2 6.1 6.1 5.9 6.1 6.2 7.3
500 200bp

2.4

9.5 8.5 8.4 8.5 8.1 8.1 8.1 9.4 10.9 15.7
500 400bp 7.1 6.7 6.4 6.3 6.5 6.3 6.5 6.7 7.7 9.9
500 800bp 5.7 5.4 5.3 5.4 5.2 5.3 5.1 5.1 5.6 6.4
500 1600bp 4.8 4.6 4.5 4.5 4.3 4.4 4.4 4.3 4.5 5.0

1000 200bp

1.5

8.8 7.8 7.2 7.2 7.0 6.9 7.1 7.9 9.2 12.5
1000 400bp 6.7 5.9 5.5 5.6 5.3 5.4 5.2 5.4 6.3 7.9
1000 800bp 5.3 4.9 4.8 4.7 4.8 4.7 4.3 4.4 4.5 5.4
1000 1600bp 4.1 4.2 4.0 3.8 3.9 3.7 3.7 3.8 3.8 4.1

Table S2.4. Species tree and gene tree generation parameters in Simphy for 1K-taxon, 2K-taxon
and 5K-taxon datasets

Parameter Name parameter Value
Speciation rate LogU[1.000000e-07,1.000000e-06)
Extinsion rate LogU[1.000000e-07,SB)
Locus trees 1000
Gene trees 1
Number of Leaves 1000, 2000, or 5000
Ingroup divergence to the ingroup ratio 1.0
Generations LogN(16,1)
Haploid effective population size Uniform[10000,1000000]
Global substitution rate LogN(-1.727461e+01,6.931472e-01)
Lineage specific rate gamma shape LogN(1.500000e+00,1)
Gene family specific rate gamma shape LogN(1.551533e+00,6.931472e-01)
Gene tree branch specific rate gamma shape LogN(1.500000e+00,1)
Seed 9644
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Figure S2.1. Impact of contraction on the S100 dataset. The error in species trees estimated
by ASTRAL-III on the S100 dataset given k = 50, 200, 500, or 1000 genes (boxes) and with
full FastTree gene trees (non) or trees with branches with ≤ {0,3,5,7,10,20,33,50}% support
contracted (x-axis). Average FN error and standard error bars are shown for all 50 replicates with
the four alignment lengths combined (black solid line); average FN error broken down by gene
tree error is also shown (dashed colored lines). We divide the replicates based on their average
gene tree error (normalized RF) into four categories: [0, 1
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Figure S2.2. Running time versus k. Average running time of ASTRAL-II versus ASTRAL-III
on the avian dataset with 500bp or 1500bp alignments with varying numbers of gens (k), shown
in normal scale. A LOESS curve is fit to the data points. ASTRAL-II could not finish on 214

genes in the allotted 48-hour time slot. Averages are over 4 runs.
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Figure S2.3. Weight calculation and |X | on S100. Average and standard error of (a) the time it
takes to score a single tripartition using Eq. 3 and (b) search space size |X | for both ASTRAL-II
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Figure S2.4. Change in species tree FN rates between ASTRAL-II and ASTRAL-III (ASTRAL-
III − ASTRAL-II) for S100 dataset varying number of genes, number of base pairs, and
contraction levels. Negative values indicate improvements over ASTRAL-II.
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Figure S2.5. Percent change in species tree quartet scores between ASTRAL-II and ASTRAL-III
(ASTRAL-III−ASTRAL-II

ASTRAL-II ×100) for S100 dataset varying number of genes, number of base pairs,
and contraction levels. Positive values indicate improvements over ASTRAL-II.
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Figure S2.6. Percent change in species tree search space (|X |) between ASTRAL-II and
ASTRAL-III (ASTRAL-III−ASTRAL-II

ASTRAL-II ×100) for S100 dataset varying number of genes, number of
base pairs, and contraction levels. Positive values indicate larger search space over ASTRAL-II.
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Figure S2.7. (a) Change in species tree FN rates between ASTRAL-II and ASTRAL-III
(ASTRAL-III − ASTRAL-II) for S200 dataset. Negative values indicate improvements over
ASTRAL-II. (b) Percent change in species tree quartet scores between ASTRAL-II and ASTRAL-
III (ASTRAL-III−ASTRAL-II

ASTRAL-II × 100) for S200 dataset. Positive values indicate improvements
over ASTRAL-II. (c) Percent change in running time between ASTRAL-II and ASTRAL-
III (ASTRAL-III−ASTRAL-II

ASTRAL-II ×100) for S200 dataset. Positive values indicate longer running times
over ASTRAL-II. (d) Percent change in species tree search space (|X |) between ASTRAL-II
and ASTRAL-III (ASTRAL-III−ASTRAL-II

ASTRAL-II ×100) for S200 dataset. Positive values indicate larger
search space over ASTRAL-II.
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Figure S2.8. Empirical running time of ASTRAL-III with n. Average running time is shown
for ASTRAL-III for datasets with varying n. Averages are over 20 replicates. One replicate
of 2000 species dataset could not finish in 2 days and is removed from the analysis. Note that
these datasets have factors other than n that change as well (e.g., the amount of ILS, etc.). Thus,
these running times should be treated as ball-park estimates. Finally, we note that on the 10,000
dataset, we have only 2 replicates and not 20.
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Chapter 3

Weighting by Gene Tree Uncertainty Im-
proves Accuracy of Quartet-based Species
Trees
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Phylogenomic analyses routinely estimate species trees using methods that account

for gene tree discordance. However, the most scalable species tree inference methods, which

summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-

avoid errors introduced in the gene tree estimation step. This dilemma has created much debate

on the merits of concatenation versus summary methods and practical obstacles to using summary

methods more widely and to the exclusion of concatenation. The most successful attempt at

making summary methods resilient to noisy gene trees has been contracting low support branches

from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new

challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species

tree inference, the metric used in the popular method ASTRAL. By reducing the impact of

quartets with low support or long terminal branches (or both), weighting provides stronger

theoretical guarantees and better empirical performance than the original ASTRAL. More

consequentially, weighting dramatically improves accuracy in a wide range of simulations and

reduces the gap with concatenation in conditions with low gene tree discordance and high noise.

On empirical data, weighting improves congruence with concatenation and increases support.

Together, our results show that weighting, enabled by a new optimization algorithm we introduce,

dramatically improves the utility of summary methods and can reduce the incongruence often

observed across analytical pipelines.

3.1 Introduction

Genome-wide data are increasingly available across the tree of life, giving researchers

a chance to systematically resolve the evolutionary relationships among species (i.e., species

trees) using phylogenomic data. A central promise of phylogenomics is that processes such

as incomplete lineage sorting (ILS) that can cause discordance (Maddison, 1997; Degnan and

Rosenberg, 2009) among evolutionary histories of different parts of the genome (i.e., gene trees)

can be modeled (Edwards, 2009). There has been much progress in developing the theory and
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methods for species tree inference in the presence of ILS (Mirarab et al., 2021) and other sources

of discordance (Smith and Hahn, 2021; Elworth et al., 2019). These phylogenomics approaches

have also been widely and increasingly adopted in practice. Yet, substantial challenges remain.

Analyses of real data using different methods often reveal incongruent results (Smith et al., 2015;

Reddy et al., 2017; Shen et al., 2017; Walker et al., 2018; Gatesy et al., 2019), sparking debate

about the cause. Meanwhile, simulation studies have revealed that the best choice of the method

is data-dependent (e.g., Bayzid and Warnow, 2013; Mirarab and Warnow, 2015).

A major challenge in phylogenomics is that when we infer gene trees, often from relatively

short sequences, the results tend to be highly error-prone (Patel, 2013; Mirarab et al., 2014a;

Springer and Gatesy, 2016). Co-estimation of gene trees and species trees (Szöllõsi et al., 2014)

is perhaps the most accurate approach to dealing with such noise (Leaché and Rannala, 2011;

Knowles et al., 2012). However, despite some progress (Ogilvie et al., 2017), these methods

have remained limited in their scalability to even moderately large numbers of species. The

approach that is far more scalable and is used often is the “summary” approach: first estimate

gene trees from sequence data independently and then summarize them into a species tree by

solving optimization problems that provide guarantees of statistical consistency if we allow

ourselves to ignore the error in the input tree.

Many summary methods (e.g., Liu et al., 2009; Mossel and Roch, 2010; Liu et al.,

2010; Liu and Yu, 2011; Vachaspati and Warnow, 2015) were developed and proved statistically

consistent under the multi-species coalescent (MSC) model (Takahata, 1989) of the discordance

caused by ILS. Species trees inferred by these tools can be highly accurate even under high levels

of ILS. Among the summary tools, ASTRAL (Mirarab et al., 2014b) is among the most widely

used and is integrated into other packages (Wang et al., 2020; Alanjary et al., 2019). ASTRAL

simply seeks the species tree that maximizes the number of shared quartets (unrooted four-taxon

subtrees) between gene trees and the species tree, an optimization problem that guarantees a

statistically consistent estimator under the MSC model. The empirical accuracy and scalability

of ASTRAL have compared favorably to other methods (e.g., Mirarab, 2019). Moreover, it has
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now been shown that ASTRAL is also consistent and/or accurate under the gene duplication

and loss (GDL) model (Legried et al., 2021; Yan et al., 2021), some horizontal gene transfer

models (Davidson et al., 2015), and combined models of ILS and GDL (Markin and Eulenstein,

2021), but not gene flow (Solı́s-Lemus et al., 2016). Zhang et al. 2020 have further adopted the

quartet-based approach to multi-copy inputs.

Nevertheless, all summary methods, ASTRAL included, have a shortcoming: inaccura-

cies in input gene trees can translate to errors in the output species tree (DeGiorgio and Degnan,

2014; Huang and Knowles, 2016; Molloy and Warnow, 2018; Lanier and Knowles, 2015; Patel,

2013). In fact, Roch et al. 2019 proved that summary methods (and concatenation) are positively

misleading under pathological examples even in the absence of much true gene tree discordance.

These concerns are not just theoretical and can impact biological analyses. For example, on

an order-level avian phylogenomic dataset (Jarvis et al., 2014), summary methods, including

ASTRAL, produce species trees contradicting the well-established relationships when given

input gene trees that have extremely low support (Bayzid et al., 2015), a condition that motivated

Mirarab et al. 2014a to bin multiple genes together. As an alternative, Zhang et al. 2018 showed

that contracting very low-support branches before running ASTRAL can improve accuracy in

simulations and on biological datasets such as the avian dataset. However, this form of reduction

in species tree estimation error comes with caveats. Contracted branches may still include signals

that will be lost. In particular, when contraction is overly aggressive (e.g., with moderately

high thresholds such as 50% or 75%), filtering is often harmful. More pragmatically, the best

choice of threshold is dataset dependent, and making a principled choice is challenging if not

impossible.

Threshold-free approaches for incorporating gene tree branch support into summary

methods have also been proposed. Multi-locus bootstrapping (MLBS) runs the summary method

on the bootstrap replicates of gene trees, repeating the process many times to obtain several

species trees, which are then combined using a consensus method (Seo, 2008). MLBS can be

understood as weighting inferences made from each gene by their uncertainty, and thus, a way
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to deal with noise. However, previous studies show that MLBS, in fact, reduces the accuracy

compared to using Maximum Likelihood (ML) trees (Mirarab et al., 2016). The related method

of simply combining all bootstrap replicates into a single run of the summary method has also

not been accurate (Mirarab et al., 2014b). A plausible explanation is that bootstrap replicates

have much higher rates of discordance and error than ML trees (Sayyari and Mirarab, 2016), and

thus, using them directly as input adds noise, even if it reveals uncertainty.

An alternative to using bootstrap trees is to use ML trees as input but explicitly weight

gene tree branches (or their quartets) by their statistical support. We can generalize the moderately

successful gene contraction approach, which effectively assigns weights zero or one to quartets,

to weight each quartet shared between an estimated gene tree and the proposed species tree

according to the statistical support of the quartet resolution. Such an approach will free us from

picking arbitrary contraction thresholds and may lead to better accuracy. The idea of weighting

can be trace back to Farris (1969). However, weighting by branch support has not yet been

incorporated into existing summary methods such as ASTRAL for several reasons. i) Quartet

weights must be implicitly calculated, as explicitly examining all quartets of n species alone

will take Θ(n4) time. The existing general (e.g., Avni et al., 2015) and MSC-based weighted

quartet methods (Yourdkhani and Rhodes, 2020; Richards and Kubatko, 2021) require weights

explicitly calculated for every quartet, making them less scalable with n. The reason ASTRAL

can scale to a large number of species is that it optimizes a score defined over all quartets without

explicitly examining them. Designing a scalable weighting method will require weights that can

be implicitly computed based on examining O(n) gene tree branches. ii) It is difficult to design

efficient algorithms to optimize a weighted score. Unless weights satisfy certain properties, it

may not be possible to find an algorithm better than O(n4) even for the much simpler problem

of computing the total quartet weights of a gene tree. However, with favorable definitions of

weights, these difficulties are not insurmountable.

Here, we introduce implicit weighting schemes that avail themselves to efficient opti-

mization with weights conveniently obtained from tree branch lengths (wASTRAL-bl), branch
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support values (wASTRAL-s), or both (wASTRAL-h). We introduce the weighted ASTRAL

algorithm, an efficient method that is similar to ASTRAL in optimizing a quartet score but

is different in several ways: i) Its optimization criteria weights each gene tree quartet. ii) Its

optimization algorithm is entirely different from ASTRAL. While the algorithm is more complex

and slower in some cases, it scales much better (linearly instead of quadratically) as the number of

genes (k) increases. iii) Its software package is implemented from scratch and is in C++ instead

of Java. Our results show that weighted ASTRAL is superior to ASTRAL in terms of theoretical

guarantees that it provides, accuracy on simulated data, and the accuracy of its branch support

values. Weighted ASTRAL is more accurate than CA-ML in our simulations except when there

is a large number of inaccurate gene trees or low levels of discordance, where concatenation

is slightly more accurate. Most interestingly, weighted ASTRAL is more congruent than the

original ASTRAL with concatenation on real datasets.

3.2 Result

3.2.1 Weighted ASTRAL algorithm

Unlike ASTRAL-III, where each (resolved) quartet in each gene tree contributes equally

to the objective function, weighted ASTRAL assigns each quartet with a weight based on the

support or lengths of branches corresponding to it. More specifically, we define three weighting

schemes (Fig. 3.1a).

Weighting by support

extends the definition of branch support to a quartet. Let P be the set of branches on the

path between internal nodes of a quartet tree (also called anchors; orange dots in Fig. 3.1a) and

let s(e) denote the support of a branch e. We define the support of the quartet as

1− ∏
e∈P

(
1− s(e)

)
,
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which essentially assumes support values are probabilities of correctness and that branches are

independent (both assumptions can be disputed). Given a set of gene trees where each internal

branch has a support value, using this definition, we define the weight of each quartet of each

gene tree to be its support. The goal is to improve the accuracy by down-weighting quartets with

low support. While we study this goal in our simulation and empirical analyses, we also provide

some theoretical results.

Making theoretical statements about estimated gene trees is difficult because we lack

an accepted way of modeling gene tree estimation errors. To be able to interrogate theoretical

properties of weighted ASTRAL, we propose a simple model of gene tree estimation error called

MSC+Error (Material and Methods). In this model, for any true gene tree topology on a quartet

Q, the estimated topology is drawn from a distribution that has two features: first, each gene G

has a gene-specific level of signal, controlled by a parameter αG,Q, and second, all genes can

be adversarially biased towards any topology by an amount bounded by a parameter called βQ.

The joint distribution of true and estimated quartet gene trees in the most difficult case can be

expressed as a function of αG,Q and βQ as well as θQ = 1− e−d where d is the coalescent unit

(CU) length of the internal branch of the quartet (Table 3.1 and Fig. 3.1b). Under the MSC+Error

model, the distribution of quartet gene tree topologies, written as a vector with the first element

corresponding to the species tree, changes (in the worst case) from

1
3


1+2θQ

1−θQ

1−θQ

 for true gene trees to
1
3

αG,Q


1+2θQ

1−θQ

1−θQ

+ 1
3
(1−αG,Q)


1−βQ

1+βQ

1


for estimated gene trees.

The estimated gene tree distribution matches the MSC model when αG,Q = 1 and is uni-

formly random when αG,Q = βQ = 0. A choice of αG,Q < 1 adds noise to the MSC probabilities,
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and any βQ > 0 creates an adversarial bias towards the second topology (Fig. 3.1b). Because

noise and bias parameters can change across genes and quartets, the MSC+Error model is very

general and makes minimal assumptions.

Under the MSC+Error model, the original ASTRAL is statistically consistent with

estimated gene trees under limited choices of αG,Q and βQ. Assuming that the support of a

quartet matches the estimated gene tree distribution, we can get our main result. Theorem 3.1

in Material and Methods proves that support-weighted ASTRAL (wASTRAL-s) is statistically

consistent under a strictly larger super-set of αG,Q and βQ parameters than those of unweighted

ASTRAL. Thus, there are levels of bias in gene tree estimation (e.g., due to long branch attraction)

that, combined with low signal, render unweighted ASTRAL inconsistent (as shown by Roch

et al. 2019) but keep wASTRAL-s consistent.

Examining the marginal probabilities and expected weights can illuminate the reason

behind the advantage of wASTRAL-s (Fig. 3.1b). First, gene trees with higher levels of noise

(i.e., lower αG,Q) are down-weighted relative to gene trees with less noise (Fig. 3.1b: note lighted

colors as α decreases). Thus, the correct topology benefits from summing weights over gene

trees with different αG,Q. For example, assume some genes have high noise, and others have

low noise following the αG,Q distribution shown in Figure 3.1c. The less noisy genes will be

up-weighted such that wASTRAL-s becomes consistent even when unweighted ASTRAL is not

(Fig. 3.1d). Second, unless gene trees are extremely noisy (i.e., very low αG,Q), wASTRAL-s

down-weights the species tree topology less than the other two topologies; in extreme cases, we

have scenarios (Fig. 3.1b, bottom, highlighted boxes) where the species tree is dominant with

weighted scores but not with unweighted scores. In fact, for fixed α and β , there exists a range

of CU quartet internal branch lengths for which ASTRAL is not consistent but wASTRAL-s is

(Fig. 3.1e).
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Weighting by length

down-weights quartets with long terminal branches. Let L be the sum of terminal branch

lengths in the gene tree induced to a quartet provided in substitution-per-site units (SU). We

assign e−L as the weight of the quartet and offer two justifications. First, deeper coalescence

events tend to generate longer terminal branch lengths; thus, gene trees that match the species

tree are expected, on average, to have shorter branch lengths (see proof of Theorem 3.2). Thus,

down-weighting gene tree quartets with long terminal branches is expected to down-weight

genes that do not match the species tree. Doing so can provably provide a bigger gap between

the score of the true species tree and alternatives, as shown in Theorem 3.2. Besides the

connection to the MSC model, it has also been long appreciated that the so-called long quartets

are harder to estimate correctly due to long branch attraction (Erdos et al., 1999; Snir et al.,

2008). Many quartet-based methods focus their attention on the so-called short quartets (Warnow

et al., 2001; Nelesen et al., 2012). Our weighting scheme naturally achieves the same impact

by down-weighting long quartets versus short quartets around difficult species tree branches

(Fig. 3.1a).

Hybrid weighting

combines both weighting schemes where each quartet is assigned with weight

e−L
(

1− ∏
e∈P

(
1− s(e)

))
.

This weighting scheme aims to combine the strengths of both weighting by support and weighting

by length and to improve over both; we will empirically show that such improvements are

obtained.

While defining weighting schemes is easy, designing scalable algorithms to optimize

the weighted quartet score is not. Adopting the existing ASTRAL algorithm to incorporate

per-quartet weights is challenging for reasons elaborated in Material and Methods. A major

contribution of this paper is designing a set of algorithms (Algorithm S3.1–S3.3) to optimize
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the weighted quartet using a set of new techniques paired with a dynamic programming (DP)

step similar to ASTRAL. We leave the detailed description of the algorithm to the Optimization

algorithm section; esp., see Theorems 3.3, 3.4, and 3.6 for correctness and Theorem 3.5 for the

asymptotic running time being O(kn1.5+εH) where H is the average gene tree height.

3.2.2 Simulation results

Comparison of weighting schemes

We start by comparing the accuracy of weighting schemes and branch support types on

two simulated datasets (S100 and S200). Our default method for computing branch support,

used unless otherwise specified, is approximate Bayesian supports from IQ-TREE (aBayes)

normalized to range from 0 to 1.

S100.

This dataset adopted from Zhang et al. 2018 has gene trees inferred from sequences

with varying lengths resulting in various levels of gene tree error (see Datasets). In most cases,

weighting by support (wASTRAL-s) produces species trees with higher accuracy than weight-

ing by length (wASTRAL-bl), and the improvements are statistically significant (Fig. S3.1);

p-value < 10−15 according to a repeated-measure ANOVA test (see Statistical tests). The

improvement in accuracy varies with k (p < 10−15) and perhaps sequence length (p ≈ 0.04).

The accuracy of hybrid weighting (wASTRAL-h) on average is better than the accuracy of

wASTRAL-s on all model conditions (p < 10−10) and the improvement in accuracy may depend

on k (p≈ 0.06) and sequence length (p≈ 0.03). With ≥ 500 genes, wASTRAL-h is better than

both support and length, showing that combining the two weightings makes wASTRAL-h more

powerful.

On this dataset, bootstrap support computed using FastTree-2 is provided by Zhang et al.

2018. Thus, we also compute weighted ASTRAL trees using bootstrap supports (wASTRAL-s*

and wASTRAL-h*). For weighting by support, aBayes weighting is much better than bootstrap
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weighting (p < 10−15), but the gap in error significantly (p < 10−9 for both) shrinks as k and

sequence length increase (Fig. S3.1). For hybrid weighting, aBayes weighting is, on average,

only slightly better than bootstrap weighting (the mean error increases across all conditions by

only 0.2%).

S200.

This 200-taxon dataset has species trees sampled under two birth rates (10−6,10−7),

which control whether speciations are dispersed at random or closer to the tips (Fig. S3.2), and

tree heights, which control levels of ILS (see Datasets). On this dataset, bootstrapped gene

trees are not available; instead, local SH-like support from FastTree-2 is available, which we

use (wASTRAL-s* and wASTRAL-h*). Patterns of accuracy across wASTRAL versions are

similar to S100 (Fig. S3.3) as wASTRAL-h is more accurate than wASTRAL-s on all model

conditions (p < 10−6), and the improvements depend on k (p ≈ 10−4), ILS level (p < 10−7),

and birth rate (p < 10−10). Using SH-like support with wASTRAL-h is, on average worse than

aBayes support, increasing the error by 9%.

Comparison of topological accuracy to other methods

We next compare wASTRAL-h, the most accurate version of wASTRAL, to other

methods.

Impact of gene tree estimation error (S100 dataset).

On the S100 dataset (Fig. 3.2a and S3.4), wASTRAL-h is more robust to gene tree

estimation error than ASTRAL-III, regardless of whether low bootstrap support (BS) branches

(≤ 5%) are contracted. While contracting low support branches improves the accuracy of

ASTRAL-III, weighting improves accuracy even more. For example, the average error with 1000

200bp genes goes down from 9% with ASTRAL-III to 7% after contracting ≤ 5% BS branches

and 6% with wASTRAL-h. While wASTRAL-h dominates ASTRAL-III in all conditions

with or without contraction (p < 10−15), the difference in accuracy varies across sequence
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lengths (p < 10−6 without contraction and p≈ 0.003 with contraction). Similar to wASTRAL-h,

wASTRAL-h* has mean error lower than that of ASTRAL-III-5% in every condition (p< 10−11).

The clearest patterns are observed when comparing wASTRAL-h and concatenation

using ML performed using ML (CA-ML). While increasing the sequence length (and hence

reducing the gene tree error) dramatically reduces the error of all ASTRAL variants, it has a

much more subdued impact on CA-ML. As a result, the relative accuracy significantly depends

on k (p < 10−15) and gene sequence length (p < 10−9) and the choice of the best method varies

across conditions. Generally, wASTRAL-h tends to be more accurate than CA-ML under smaller

k and greater sequence lengths. With k ≤ 200, wASTRAL-h dominates CA-ML for all sequence

lengths. With k > 200, CA-ML is better for smaller gene alignments, and wASTRAL-h is better

for longer alignments, with the only conditions when CA-ML has noticeable improvements over

wASTRAL-h corresponding to 200bp genes.

Impact of ILS level (S200 dataset).

On the S200 dataset that controls levels of ILS (see Datasets), overall, error rates of

wASTRAL-h are lower than that of ASTRAL-III (Fig. 3.2b and S3.5) and the improvements are

significant (p < 10−15). The improvements of wASTRAL-h compared to ASTRAL-III increase

with more gene trees (p≈ 7×10−4) but appear to decrease with more ILS (p≈ 0.08). While

Mirarab and Warnow 2015 reported no improvement in accuracy when contracting branches

with low SH-like support, contracting branches with aBayes support < 90% (ASTRAL-III-90%)

does improve accuracy. Nevertheless, wASTRAL-h has yet lower error (p < 10−5). Also,

improvements of wASTRAL-h are significantly larger for the 10−7 birth rates, which tend to

have earlier speciations (Fig. S3.2), than the 10−6 rate (p≈ 1.5×10−5).

The comparison between wASTRAL-h and CA-ML significantly depends on several

factors (birth rate: p < 10−7; ILS: p < 10−15; k: p < 10−11). Overall, CA-ML is less robust to

ILS levels and is always worse than wASTRAL-h when ILS is high and in most cases when ILS

is at the medium level. However, with low ILS and birth rate = 10−6 (more recent speciation),
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wASTRAL-h is better than CA-ML (p≈ 1.7×10−5) while with low ILS and birth rate = 10−7

(earlier speciation), CA-ML is better (p < 10−11). Thus, in some conditions with low enough

ILS, wASTRAL-h has reduced but not eliminated the gap between ASTRAL and CA-ML.

For example, given 1000 gene trees and low ILS with 10−6 birth rate, ASTRAL-III has 5%

error, which is not helped by branch contraction, whereas wASTRAL-h has 3%, which is much

closer to the 2% achieved by CA-ML. To summarize, wASTRAL-h retains and magnifies the

advantages of ASTRAL-III over CA-ML for high ILS conditions and eliminates or reduces the

advantages of CA-ML under medium and low ILS conditions.

Support accuracy

We next test whether, by accounting for gene tree uncertainty, wASTRAL improves

support values computed using the local Posterior Probability (PP) measure (see Branch support).

We examine the calibration of support (i.e., whether the support matches the probability of

correctness of a branch), its ability to distinguish correct and incorrect branches examined through

Receiver operating characteristic (ROC) curves, and distributions of support (see Evaluation

criteria).

S100.

While wASTRAL-h generally gives higher support values than ASTRAL-III (Fig. S3.7),

it has fewer cases of highly supported incorrect branches, especially with higher k and shorter se-

quences (Fig. 3.3a). For both ASTRAL-III and wASTRAL-h, while increased support often leads

to increased frequency of correctness (Fig. 3.3b), support under-estimation or over-estimation

can also be observed for certain sequence length and k combinations. For example, wASTRAL-h

has a tendency to overestimate for large k values and short sequences. In terms of predictive

power, for any desired false positive rate (FPR), the recall of wASTRAL-h is as good as or better

than ASTRAL-III in all conditions (Fig. 3.3c), though the improvements in ROC can be small.

Moreover, in most conditions, the minimum FPR obtained by wASTRAL-h (e.g., at 1.0 support)

is lower than the minimum FPR obtained by ASTRAL-III.
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S200.

Support values on the S200 dataset exhibit similar patterns to S100 (Fig. 3.3d-f). The most

notable difference is that when k = 1000, wASTRAL-h has a clear advantage over ASTRAL-III

in trading off precision and recall according to ROC curves (Fig. 3.3f and S3.9). This advantage

shrinks as k decreases. Here, wASTRAL-h has a slight tendency to under-estimate support

values < 1 (Fig. S3.10 and S3.11), and this tendency is most pronounced with 50 genes, high

ILS level, and birth rate 10−6 (Fig. 3.3e and S3.11).

Comparison of the optimization algorithms

Assigning weights to quartets forced us to develop a new optimization algorithm, which

can also be used for unweighted optimization. We next study whether the new optimization

algorithm (denoted as DAC) is as effective as that of ASTRAL-III (denoted as A3) when no

weights are used.

Testing on the S200 dataset, without missing data, DAC is in most cases slower than

the A3 (Figs. 3.4a and 3.4c), a pattern that is pronounced with lower ILS levels. The change in

relative running time with ILS levels is due to the dependence of the search space of A3 but not

DAC on gene tree discordance levels (Zhang et al., 2018). In terms of accuracy, DAC and A3

are comparable for low and medium ILS levels (Fig. 3.4c). However, in the high ILS case, A3

is clearly better with only 50 genes, slightly better with 200 genes, and perhaps slightly worse

with 1000 genes. Cases with reduced accuracy also have reduced quartet scores for the 50 genes

scenario and high ILS (Fig. 3.4a), showing that A3 is preferable, especially with few gene trees.

Thus, the improved accuracy of wASTRAL over ASTRAL-III is despite the fact that its DAC

optimization algorithm is not always as effective as A3.

These patterns change when we add low levels of missing data by randomly removing

5% of leaves in each gene tree (Figs. 3.4b and 3.4d). DAC becomes closer to A3 in terms of

running time in most cases and is even faster with high ILS and k = 1000 (Fig. 3.4b). Regarding

accuracy, A3 and DAC are comparable in low and medium ILS levels (Fig. 3.4d). However, in
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the high ILS case, the error of A3 is slightly less, comparable, and slightly higher with 50, 200,

and 1000 genes, respectively. Substantial changes in accuracy are caused by changes in quartet

scores (Fig. 3.4b). Thus, DAC is competitive or better than the A3 in the presence of even low

levels of missing data found to varying degrees in biological datasets.

3.2.3 Biological data

We next study seven biological datasets (Datasets). On the canis dataset, which was the

only input with at least 5 hours of running time for wASTRAL-h (Table S3.2), we also examine

the running time.

OneKp

Overall, 47 out of 1175 (4%) branches change between the published ASTRAL-III

tree and our wASTRAL-h tree. Most of these branches had low support in the ASTRAL-III

tree (mean: 62%, max: 99%) but not in the wASTRAL-h tree (Fig. S3.12). OneKP Initiative

2019 focused most of their attention on 20 branches, corresponding to nine major evolutionary

events that have been historically hard to resolve (e.g., early Eudicot diversification). Among 47

branches that change in wASTRAL-h, four of them are among the 20 focal branches. Beyond

topological changes, the support values tend to increase in wASTRAL-h (Fig. 3.5a). In particular,

all of the 20 focal branches that had less than full support in the original ASTRAL-III tree

have increased support in the wASTRAL-h tree, leaving only four with support below 0.95 (as

opposed to 12 branches with ASTRAL-III).

Significantly, all four focal branches that change from ASTRAL-III to wASTRAL-h

become consistent with CA-ML, whereas the original ASTRAL-III tree was inconsistent with

CA-ML. At the base of eudicots, Vitales (grapes) becomes sister to Santalales in wASTRAL-h

tree with moderate support (0.87), which is consistent with CA-ML (Fig. 3.5b). Two branches

in the so-called TUC clade also change: ASTRAL-III breaks down the class Ulvophyceae by

uniting Bryopsidales with Chlorophyceae while wASTRAL-h recovers Ulvophyceae as sister to
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Chlorophyceae, which is the traditional resolution and is in agreement with CA-ML. Finally, the

early diversification of ferns differs between CA-ML and ASTRAL-III but is identical between

CA-ML and wASTRAL-h. Thus, wASTRAL-h makes coalescent analyses more congruent with

CA-ML for the focal branches.

Canis

On the canis dataset of Gopalakrishnan et al. 2018 that spans a relatively shallow time

scale (many branches are among populations of the same species), the majority of branches of

the ASTRAL-III tree are shorter than 0.1 CU (Fig. 3.5c). Despite that, due to the large numbers

of genes used, both wASTRAL-h and ASTRAL-III produce species trees with at least 99%

support on all branches (Fig. S3.13). The ASTRAL-MP tree (on 100k gene trees) is identical to

the published consensus tree, while the wASTRAL-h tree (on 450k gene tees) differs from it in

only one branch (i.e., placement of the Egyptian dogs).

The linear running time scaling of wASTRAL-h with respect to k enables us to analyze

randomly sampled subsets of 1000–450000 genes (Fig. 3.5c). The shortest branches need very

many genes to achieve universal full support. Using fewer genes (even as many as 100,000)

always leaves at least one branch with less than 99% support. Since many of the shortest

branches are within species, a tree-like model of evolution is likely insufficient for such branches

(Gopalakrishnan et al., 2018). Longer branches, which are mostly across species, do not require

large numbers of genes to reach high support; the 21 longest branches have at least 99% support

with as few as 1000 gene trees. Furthermore, wASTRAL-h is more scalable compared to

ASTRAL-III with respect to the number of genes k (Fig. 3.5d). As Theorem 3.3 predicts, the

running time of wASTRAL-h scales almost linearly with k, while ASTRAL-III scales close

to quadratically (Fig. 3.5d and Fig. S3.14). ASTRAL-III fails to finish for k ≥ 2×103 within

24 hours, and ASTRAL-MP with 16 cores takes more than 36 hours for k = 105. By contrast,

wASTRAL-h finishes on k = 4.5× 105 within 18 hours and 2 hours with one and 16 cores,

respectively. Even when k = 103, ASTRAL-III takes 4× more than wASTRAL-h due to the
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high levels of gene tree discordance and abundance of missing data, both of which increase the

running time of ASTRAL-III but not wASTRAL-h.

Avian

On the avian dataset, the wASTRAL-h tree fully agrees with the ASTRAL-III trees after

contracting low support branches and is very similar to original trees published by Jarvis et al.

2014 based on CA-ML (only five branches differ) and statistical binning (only two branches

differ). This is in contrast to the ASTRAL-III tree without contraction from Zhang et al. 2018,

which is in conflict with strong results from the literature and other methods. Moreover, all

but one branch in the wASTRAL-h tree has higher or equal support compared to ASTRAL-III

with any thresholds of contraction (Fig. S3.15). Interestingly, the only branch that experiences

a reduction in support, the placement of Caprimulgimorphae as sister to Telluraves (core land-

birds), is a branch that disagrees with both the published CA-ML and statistical binning trees.

Finally, four branches with 99-100% support in wASTRAL-h are found by all coalescent-based

methods (wASTRAL-h, ASTRAL-III and binned MP-EST) but not CA-ML, possibly pointing

to a consistent signal that can be recovered only using coalescent-based analyses.

Cetaceans

The wASTRAL-h tree (Fig. S3.16) is similar to ASTRAL-multi and CA-ML trees re-

ported by McGowen et al. 2020 with only a few differences (three branches to ASTRAL-multi

and four to CA-ML). Interestingly, wASTRAL-h agrees with CA-ML and earlier studies (Mc-

Gowen et al., 2009) and disagrees with ASTRAL-multi tree on the position of the Lissodelphis

with high support (though the placement has low support in the ASTRAL-multi). On the other

hand, both wASTRAL-h and ASTRAL-III break the monophyly of the genus Tursiops as Tur-

siops truncatus moves away from Tursiops aduncus and Stenella with high support. The question

of the monophyly of Tursiops, supported by morphology, has been answered differently in two

recent analyses and remains likely (Moura et al., 2020) but uncertain due to evidence for gene
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flow Guo et al. (2022). Close to Tursiops is also the placement of the two Stenella clymene

individuals, which is a known hybrid species evolved from Stenella longirostris and Stenella

coeruleoalba. Interestingly, the two Stenella clymene individuals are placed apart, one as sister

to Stenella longirostris and the other at the most recent common ancestor of Stenella longirostris

and Stenella coeruleoalba. This placement is in contrast to CA-ML, which puts both individuals

as sister to Stenella longirostris. Beyond Delphininae, two branches, the placements of Orcinus

orca and Neophocaena phocaenoides, disagree with both ASTRAL-multi and CA-ML, but both

branches have very low support in wASTRAL-h and cannot be trusted. These two are among 11

species where McGowen et al. 2009 used data from existing genomes and transcriptomes instead

of their own targeted capture, and it is possible that differences in the analytical pipeline may

have caused the low support in wASTRAL.

Insect datasets

On all three insect datasets, the differences between wASTRAL-h and ASTRAL-III are

minimal and strictly limited to branches with low support. On the Nomiinae dataset, there is no

conflict among highly supported branches. wASTRAL-h and ASTRAL-III differ in only one

low support branch, and both trees differ from CA-ML in two low support branches (Fig. S3.17).

On the Lepidoptera dataset, only seven out of 200 branches differ between wASTRAL-h and

ASTRAL-III, and all of these branches have support below 75% (Fig. S3.18). Across the tree,

wASTRAL-h has slightly more branches with support above 95% than ASTRAL-III (173 versus

169). On the Papilionidae datasets, wASTRAL-h tree and ASTRAL-III tree share the same

topology, and all branches in both trees have high (≥ 99%) support (Fig. S3.19).

3.3 Discussion

We introduced a family of new weighting schemes for quartet-based species tree estima-

tion, including weighting quartets by terminal branch length (wASTRAL-bl), internal branch

support (wASTRAL-s), or both (wASTRAL-h). We saw that the combined method (wASTRAL-
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h) has the best accuracy among the three and dominates unweighted ASTRAL in terms of

accuracy. We next further comment on more subtle patterns observed in the data and end by

pointing out directions for future research.

3.3.1 Further observations based on the results

The choice between CA-ML and summary methods has been a long-standing debate

(Simmons and Gatesy, 2015; Giarla and Esselstyn, 2015; Leaché et al., 2015; Edwards et al.,

2016; Meiklejohn et al., 2016). While CA-ML is inconsistent under MSC (Roch and Steel, 2015),

the most careful simulation studies have found that the best method depends on the dataset:

CA-ML has been more accurate when gene discordance is low and gene signal is limited, and

summary methods have been more accurate when discordance is high. Other factors such as

deep versus shallow radiations, changes in evolutionary rates across genes, heterotachy, and

the number of genes may also matter. Since we cannot reliably predict the superior method

in practice, studies often report both types of analyses. We saw that weighting dramatically

reduced (but did not fully eliminate) the gap between CA-ML and ASTRAL in conditions with

lower ILS or heightened gene tree error (Fig. 3.2). Overall, our results point to wASTRAL-h

being a reasonable, if not always optimal, choice regardless of the condition. Consistent with

simulations, on real datasets, we observed that wASTRAL-h eliminates many of the differences

between ASTRAL and CA-ML. Thus, using wASTRAL-h can help reduce the long-standing

challenge of getting incongruent results from different analyses.

In our simulations, wASTRAL-h dominates ASTRAL in all model conditions in terms

of accuracy, leaving no incentive to prefer ASTRAL in this regard. Contracting low support

branches improved ASTRAL trees, but the weighting is more accurate than contracting and does

not require hard-to-tune (Bossert et al., 2021) thresholds. Interestingly, the improvements, which

were modest in many conditions but substantial in others, appeared more pronounced as the

number of genes increased. We speculate the reason is that with more genes, not only the noise

in the frequency of observed quartet topologies reduces, but also, the quartet weights become
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less noisy. Thus, having more genes benefits wASTRAL in two ways (less topological noise and

better weights), only one of which is enjoyed by ASTRAL.

While topological improvements of wASTRAL-h over ASTRAL were marginal in many

cases, the improvements in support were dramatic. The percentage of full support branches

that were wrong was reduced in wASTRAL by half or more in most conditions (Fig. 3.3ad),

rendering the full support branches more reliable. This increase in precision did not come at

the cost of lowering support. Both real and simulated datasets (e.g., Figs. S3.7 and S3.10) saw

increased support with wASTRAL. Two aspects of how we compute support have changed

(Branch support). One is the handling of missing data (see (3.8)); it can be easily shown that, all

else being equal, this change will decrease the localPP. Thus, the increase has to be due to the

second change, which is the incorporation of weights. Since localPP support is a function of

discordance, the increased support is empirical evidence that down-weighted gene tree quartets

tend to be those that are more incongruent with others and the output species tree.

Branch support used as input by weighted ASTRAL can be computed in numerous

ways with vastly different computational requirements. One practical question is whether one

method should be preferred and, if so, which? We tested three ways of computing support on

simulated data and noticed that IQ-TREE’s aBayes has the best accuracy, closely followed by

bootstrapping (Fig. S3.1). In contrast, SH-like support was noticeably less effective. IQ-TREE’s

aBayes is a local measure of support (i.e., computed for the nearest neighbor interchanges around

a branch), and a local notion of support is consistent with how we interpret branch support (i.e.,

as independent, leading to a product). Moreover, computing local support is much faster than

bootstrapping. Thus, while bootstrapping is a good option in terms of accuracy, IQ-TREE’s

aBayes support can be used to build an accurate and efficient pipeline. Nevertheless, note that in

the presence of rouge taxa that move widely across a gene tree, local measures of support may

provide high support for most branches, whereas global support can result in low support for

many branches, effectively down-weighting that gene. In such situations, global support may be

more robust.
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3.3.2 Limits and future work

The wASTRAL-s optimization, when solved exactly, gives a statistically constant species

tree estimator given estimated gene trees under our MSC+Error+Support model. While this

model is general, our assumptions about support values are strong, and support estimation

methods do not necessarily fulfill them (e.g., see debates in Felsenstein and Kishino, 1993;

Hillis and Bull, 1993; Susko, 2009). Thus, the proofs of consistency should be taken more as

a theoretical justification of the weighting approach used rather than a prediction of behavior

on real data. Support values that over or under-estimate branch supports (compared to our

assumptions) may or may not lead to inconsistency of the method, as our assumptions are

sufficient but not necessary. Future work can seek more forgiving conditions for support that

retain consistency, or conversely, conditions where the method is misleading.

We only proved the statistical consistency of wASTRAL-s and wASTRAL-bl under

the MSCand MSC+Error+Support models, respectively, and hope that future works can prove

wASTRAL-h is also consistent. Even more intriguing is whether wASTRAL (which can take

multi-individual/multi-copy trees as input) is statistically consistent under combined models

of GDL and ILS, as ASTRAL-multi is (Markin and Eulenstein, 2021; Hill et al., 2020). This

question is particularly important for datasets where assumptions of MSC are violated. For

example, on the OneKP dataset, examining the relative support for the three topologies around

each branch (Fig. 3.5b) reveals that the quartet frequencies do not always follow the MSC

expectations (one high frequency and two equal low frequencies). We believe weighting will

continue to be beneficial for models of GDL. However, it is unclear whether weighting by branch

length is profitable when gene tree discordance is due to GDL and especially horizontal transfer;

thus, we caution the use of branch length when these processes are suspected. Finally, future

work can incorporate weighting in the ASTRAL-Pro (Zhang et al., 2020) algorithm that natively

supports paralogy.

While wASTRAL-h was more accurate than ASTRAL-III, if we turned off the weights,
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the new optimization algorithm (DAC) was slower (in many conditions) and less accurate (in

some conditions) than the old algorithm (A3). While DAC tended to be as accurate or more

accurate in the presence of missing data (Fig. 3.4b), our simulation results had no missing data,

showing that the improved accuracy of wASTRAL-h was due to a better optimization objective,

not a better optimization algorithm. Similar to A3, DAC is also a heuristic method addressing an

NP-hard problem. Just as the speed and accuracy of ASTRAL changed substantially through

tweaks to the heuristics from ASTRAL-I to ASTRAL-III, we anticipate that future work can

further increase our accuracy, speed, or both. ASTRAL is also finely optimized for CPU, GPU,

and vectorization (Yin et al., 2019). Currently, wASTRAL is only trivially parallelized for CPU,

and future work can further optimize the code and implement GPU parallelization.

Our simulations, like any other, lacked some of the complexities of real biological data

(Springer and Gatesy, 2018; Philippe et al., 2017). We did not include recombination, horizontal

transfer, gene flow, hidden paralogy, alignment error, mistaken homology, violations of the model

of sequence evolution, or missing data. It can be hoped that weighting helps alleviate the effects

of some of these other sources of error as well. However, since many of these can lead to high

support for the wrong trees, there is no guarantee that weighting would not leave these misleading

signals intact or even amplified. Methods for simulating many of these effects are available

and can be used in future studies to compare wASTRAL with both CA-ML and unweighted

ASTRAL. A related promising avenue for future research is exploring other ways of weighting

quartets. For example, future work can incorporate homology and alignment quality metrics

into the weighting schemes. The weights could also reflect other factors, such as evidence of

heterotachy impacting gene trees (Braun et al., 2019) and deviations from stationarity Jeffroy

et al. (2006). Even more ambitious approaches could be imagined where biases in support

estimation could be predicted using machine learning (Suvorov et al., 2020). In designing and

testing such weighting schemes, one must remember that not every weighting method will allow

fast optimization using DP.

Finally, several features of ASTRAL are missing from wASTRAL, but future work can
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address this limitation. Currently, wASTRAL does not output branch lengths since the natural

branch lengths that it could compute would be in a hard to interpret unit (e.g., CU +2×SU).

Future work can examine ways to compute branch lengths in substitution or coalescent units.

Other missing features left to future work are the test of polytomy (Sayyari and Mirarab, 2018),

integration with visualization tools such as DiscoVista (Sayyari et al., 2018), and completion of

gene trees with respect to each other. Nevertheless, the most valuable features of ASTRAL-III,

including handling multi-individual datasets, handling polytomies, and outputting branch support,

are all supported.

3.4 Material and Methods

3.4.1 Common notations and background

Let LS := {1, . . . ,n} be a set of n species. Let us suppose that we are given a set of

input binary gene trees G with k := |G |. For each tree G ∈ G , let its leaf set be LG and its

edge set be EG. For each branch e ∈ EG, we let lG(e) note its length. For a species set A,

let G ↾ A denotes G restricted to A. We refer to a set of four species as a quartet and define

Q(G) := {Q : |Q|= 4,Q⊆LG} as the set of all quartets in G. We define δG(ab|cd) := 1 when

{a,b,c,d} ∈Q(G) and G ↾ {a,b,c,d} has topology ab|cd; otherwise we define δG(ab|cd) := 0.

For nodes u and v of a gene tree G, we let PG(u,v) denote the set of branches on the path

between u and v and let lG(u,v) := ∑e∈PG(u,v) lG(e). For a quartet Q = {a,b,c,d}, we denote

PG(Q) := PG(u,v), for u and v being nodes of g corresponding to the internal nodes (called

the anchors) of G ↾ Q; i.e., in case that G ↾ Q has topology ab|cd, anchors are the only node on

PG(a,b)∩PG(a,c)∩PG(b,c) and on PG(b,c)∩PG(b,d)∩PG(c,d).

We assume each true gene tree G∗ is generated from the true species tree S∗ under

the MSC model. Branch lengths of G∗ are in coalescent units (CUs). For each quartet Q =

{a,b,c,d} ⊆Q(S∗) with topology ab|cd in the species tree, let θQ = 1− e−d where d is the

CU length of the internal branch of the quartet. Under MSC, for each true gene tree G∗, the
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following holds (Degnan, 2013): P
(
δG(ab|cd) = 1

)
= 1

3(1+ 2θQ) and P
(
δG(ac|bd) = 1

)
=

P
(
δG(ad|bc) = 1

)
= 1

3(1−θQ). The input set G is a set of estimated gene trees, not true gene

trees. In practice, these gene trees are estimated from sequence data using methods such as ML

with branch lengths lG(e) given in the substitution-per-site units (SU). Moreover, input gene

trees are furnished with support values: sG(e) maps each edge e of G to a support value in [0,1].

3.4.2 Theoretical results: improved consistency and sample complexity

For a given species tree topology S, we define its score against gene tree set G as

W (S,G ) := ∑
G∈G

∑
Q∈Q(S)

wG(S ↾ Q) , (3.1)

where wG is a function mapping a quartet of G to a number. In unweighted ASTRAL, for any

{a,b,c,d},

wG(ab|cd) := δG(ab|cd) . (3.2)

In this paper, we introduce three new ways of defining wG. Weighting by support sets:

wG(ab|cd) :=
(

1− ∏
e∈PG({a,b,c,d})

(
1− sG(e)

))
δG(ab|cd) . (3.3)

Weighting by branch length uses

wG(ab|cd) := e−
(

lG(a,b)+lG(c,d)
)
δG(ab|cd) . (3.4)

Finally, the hybrid weighting scheme combines weighting by support and weighting by length

and uses:

wG(ab|cd) :=
(

1− ∏
e∈PG(u,v)

(
1− s(e)

))
e−
(

lG(a,b)+lG(c,d)
)
δG(ab|cd) . (3.5)
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We study hybrid weighting only empirically but provide theoretical justifications for weighting

by support (for estimated gene tree topologies) and weighting by length (for true gene tree

topologies).

Weighting by support

Genes have varying levels of signal, and hence gene tree estimation error,and estimated

gene trees can also be biased towards a specific topology due to factors such as long branch

attraction. When bias goes against the species tree topology, unweighted ASTRAL can be

positively misleading (Roch et al., 2019). It is reasonable to assume that gene trees with lower

signals have lower support regardless of bias. By down-weighting those genes, wASTRAL-s

can rescue consistency. To formalize this intuition, we introduce a model of gene tree error

that allows us to make a more formal statement, showing that support weighted ASTRAL is

consistent under some conditions where unweighted ASTRAL is not.

MSC+Error+Support model. We assume each input estimated gene tree G is a draw from a

distribution that depends on the true gene tree G∗. For each quartet Q = {a,b,c,d} ⊆Q(S∗)

and each gene G, let αG,Q ∈ [0,1] denote a parameter controlling the quality of the estimated

quartet gene tree G ↾ Q. We assume αG,Q is independently drawn from the topology of G∗ and

we let the expected value and variance of αG,Q across genes be denoted by ᾱQ and σ2
α . For each

true gene tree topology, with probability αG,Q, we simply set the estimated gene tree to the true

topology. With probability 1−αG,Q, we choose among the three topologies with probabilities

pG,Q
1 , pG,Q

2 , pG,Q
3 . When these numbers are equal, there is no bias in gene tree estimation, and

ASTRAL remains consistent (easy to prove). However, in our model, we allow systematic bias

towards any topology. Let βQ = maxG
(

max(3pG,Q
1 − 1,3pG,Q

2 − 1,3pG,Q
3 − 1,1− 3pG,Q

1 ,1−

3pG,Q
2 ,1−3pG,Q

3 )
)

be the maximum bias towards or away any topology across genes. Under

this model, the joint probability of true and estimated gene trees would follow the inequalities

laid out in Table 3.2. For example, in the worst case, where 3pG,Q
1 = 1−βQ, 3pG,Q

2 = 1+βQ,

and 3pG,Q
3 = 1, the joint distribution of true and estimated gene trees is given in Table 3.1 and
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depicted in Figure 3.1b.

Table 3.1. Joint probabilities (top) and weights (bottom) of estimated and true gene tree
topologies under the MSC+Error+Support with the worst-case scenario when 3p1 = 1− β ,
3p2 = 1+β , and 3p3 = 1 for all genes; note that parameters are per quartet and per gene but we
omit Q and G superscript for brevity.

E
[
(·)(·)

∣∣α] δG∗ (ab|cd) δG∗ (ac|bd) δG∗ (ad|bc)
δG(ab|cd) 1

3 (1+2θ)
(
α + 1

3 (1−α)(1−β )
) 1

3 (1−θ)
( 1

3 (1−α)(1−β )
) 1

3 (1−θ)
( 1

3 (1−α)(1−β )
)

δG(ac|bd) 1
3 (1+2θ)

( 1
3 (1−α)(1+β )

) 1
3 (1−θ)

(
α + 1

3 (1−α)(1+β )
) 1

3 (1−θ)
( 1

3 (1−α)(1+β )
)

δG(ad|bc) 1
3 (1+2θ)

( 1
3 (1−α)

) 1
3 (1−θ)

( 1
3 (1−α)

) 1
3 (1−θ)

(
α + 1

3 (1−α)
)

wG(ab|cd) 1
3 (1+2θ)

(
α + 1

3 (1−α)(1−β )
)2 1

3 (1−θ)
( 1

3 (1−α)(1−β )
)2 1

3 (1−θ)
( 1

3 (1−α)(1−β )
)2

wG(ac|bd) 1
3 (1+2θ)

( 1
3 (1−α)(1+β )

)2 1
3 (1−θ)

(
α + 1

3 (1−α)(1+β )
)2 1

3 (1−θ)
( 1

3 (1−α)(1+β )
)2

wG(ad|bc) 1
3 (1+2θ)

( 1
3 (1−α)

)2 1
3 (1−θ)

( 1
3 (1−α)

)2 1
3 (1−θ)

(
α + 1

3 (1−α)
)2

Table 3.2. Joint probabilities (top) and weights (bottom) of estimated and true gene tree
topologies under the MSC+Error+Support will follow the inequalities shown here. We omit Q
and G superscript for brevity.

E
[
(·)(·)

∣∣αG,Q
]

δG(ab|cd) δG(ac|bd)
δG∗(ab|cd) ≥ 1

3 (1+2θQ)
(
αG,Q + 1

3 (1−αG,Q)(1−βQ)
)

≤ 1
3 (1+2θQ)

( 1
3 (1−αG,Q)(1+βQ)

)
δG∗(ac|bd) ≥ 1

3 (1−θQ)
( 1

3 (1−αG,Q)(1−βQ)
)

≤ 1
3 (1−θQ)

(
αG,Q + 1

3 (1−αG,Q)(1+βQ)
)

δG∗(ad|bc) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)
≤ 1

3 (1−θQ)
( 1

3 (1−αG,Q)(1+βQ)
)

E
[
(·)(·)

∣∣αG,Q
]

wG(ab|cd) wG(ac|bd)

δG∗(ab|cd) ≥ 1
3 (1+2θQ)

(
αG,Q + 1

3 (1−αG,Q)(1−βQ)
)2 ≤ 1

3 (1+2θQ)
( 1

3 (1−αG,Q)(1+βQ)
)2

δG∗(ac|bd) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)2 ≤ 1
3 (1−θQ)

(
αG,Q + 1

3 (1−αG,Q)(1+βQ)
)2

δG∗(ad|bc) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)2 ≤ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1+βQ)

)2

We assume that for each quartet, the quartet support defined using (3.3) matches the

probability of that topology being observed given the true gene tree. Thus, with our model for

estimated gene tree distributions, the support of the quartet topology i is αG,Q +(1−αG,Q)pG,Q
i

if it matches the true tree and (1−αG,Q)pG,Q
i if it does not, leading to expected topology weights

wG(.) given in Tables 3.1–3.2.

We now state our main results. Proofs of all results are given in Appendix Proofs.

Proposition 3.1. For each estimated gene tree G, E
[
δG(ab|cd)− δG(ac|bd)

]
≥ θQᾱQ −

2
3(1− ᾱQ)βQ and E

[
wG(ab|cd)−wG(ac|bd)

]
≥ 1

9θQ(3+2βQ)(ᾱQ
2+σ2

α)+
2
9(3−βQ)θQᾱQ−

4
9(1− ᾱQ)βQ.

For consistency of ASTRAL and wASTRAL-s, we need E
[
δG(ab|cd)−δG(ac|bd)

]
≥ 0

and E
[
wG(ab|cd)−wG(ac|bd)

]
≥ 0, respectively. Figure 3.1e depicts the RHS of equations of
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Proposition 3.1, solving for θQ and setting σ2
α to zero (which is the worst-case for wASTRAL-s).

It shows that wASTRAL-h is consistent for a larger set of species tree CU branch lengths, even

in absence of any variation in gene tree quality. We next state this observation formally.

Theorem 3.1. Given estimated gene trees furnished with support generated under

MSC+Error+Support model, there exist conditions where (3.3) guarantee a statistically consis-

tent estimator of S∗ but (3.2) does not, and the reverse is not true.

Weighting by length

Our next result shows that using the length-based weighting function (3.4) leads to a

larger gap than unweighted ASTRAL between the expected score of the true species tree and

the alternative trees and thus has better sample complexity. Shekhar et al. 2017 has established

that the number of gene trees required by ASTRAL to recover the species tree scales with f−2

as f −→ 0 where f is the CU length of the shortest species tree branch. Following that paper,

we focus on the regime with k = Θ( f−2) gene trees and show a constant factor improvement

in sample complexity. All theoretical results in this section assume that an input gene tree G

matches the true gene tree G∗ in topology.

The improved sample complexity essentially follows from the fact that under the MSC

model, gene trees that match the species tree have shorter CU terminal branch lengths on average

because discordance is caused by deep coalescence. However, a theoretical difficulty is that input

gene trees have SU branch lengths instead of CU length. Thus, we need a model to translate CU

lengths in G∗ to SU lengths in G, capturing the effects of change in mutation rates and population

sizes. We examine two such models.

Naive model. We start with a simple choice akin to a strict clock. Under this naive model, all

branches of G are scaled from branches of G∗ using a fixed multiplier λ .

Variable rate model. Let branches of the species tree S∗ be broken into segments of arbitrary

length (Fig. S3.20). For each gene tree G∗, a species tree in SU units S† is drawn from a fixed

distribution D (which does not change with G∗). S† matches S∗ in topology. The length of each
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segment I in S† is scaled from the length of its corresponding segment in S∗ using a multiplier

ΛI
S† . The set of all multipliers can be jointly drawn from any distribution as long as for each

segment I, ES†[ΛI
S†] = λ . Segments in S∗ can be used to divide G∗ into segments defined at the

same points along each branch (Fig. S3.20). The gene tree G is obtained from G∗ by multiplying

the CU length of each of its segments by the multiplier assigned to that segment in S†. Because

segments have different multipliers (even though they have the same expectation), gene tree G†

deviates from ultrametricity. Because multipliers are drawn separately for each gene, deviations

from ultrametricity happen in different ways across different genes.

We now state the results. Let XG := wG(ab|cd)−wG(ac|bd) and YG := δG(ab|cd)−

δG(ac|bd). Then,

Proposition 3.2. For a true quartet species tree S∗ with topology ab|cd and input gene trees G

generated under the naive model with any multiplier λ , let f be the distance between anchors of

S∗. As f −→ 0, given k = Θ( f−2) gene trees, we have Var[XG] = Θ f (1) and

E[XG]√
Var[XG]

=
1+4λ

1+2λ

√
3
2

f +O( f 2) .

Similarly, under the variable rates model and assuming limited variance of rates across

genes, we prove:

Proposition 3.3. For a true quartet species tree S∗ with topology ab|cd and input gene trees G

generated under the variable rate model, let f be the distance between anchors of S∗ and L be

the total length of all other branches. Assume that for every branch segment I, the variance of

its multiplier is bounded above: Var(ΛI
S†)≤ ε2 where ε2 = e−λL

(16+32λ )+(6+32λ+32λ 2)L

(
20(λ+λ 2)

9(1+2λ )2

)3
.

As f −→ 0, given k = Θ( f−2) gene trees, we have Var[XG] = Θ f (1) and

E[XG]√
Var[XG]

≥
√

3
2

(
1− 4λ 2

(1+4λ )2

)− 1
2

f +O( f 2) .
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These propositions lead us to the main result.

Theorem 3.2. Under the conditions of Proposition 3.2 or Proposition 3.3,

P
(

∑
G∈G

wG(ab|cd)≤ ∑
G∈G

wG(ac|bd)
)
≤ P

(
∑

G∈G
δG(ab|cd)≤ ∑

G∈G
δG(ac|bd)

)
.

3.4.3 Optimization algorithm

The objective of our optimization task is to find S maximizing W (S,G ) given in (3.1) for

one of the wG functions (3.2)–(3.5). For a species tree S, let TS denote the set of tripartitions

corresponding to the internal nodes of S. For a tripartition A|B|C ∈ TS corresponding to an

internal node v in S and a gene tree G, let W (A|B|C,G) be the total score of all shared quartets of

S and G that anchor at v. Then,

W (A|B|C,G) =
1
2 ∑

a∈A∩LG
b∈B∩LG
c∈C∩LG

(
∑

d∈A∩LG−{a}
wG(ad|bc)+ ∑

d∈B∩LG−{b}
wG(bd|ac)+ ∑

d∈C∩LG−{c}
wG(cd|ab)

)
,

and W (S,G ) = 1
2 ∑A|B|C∈TS ∑G∈G W (A|B|C,G) .

ASTRAL-III uses a traversal of gene trees to compute W (A|B|C,G) with weight function

(3.2) without enumerating all
(n

4

)
quartets. At each gene tree node, the total number of shared

quartets between that node and v is computed using simple combinatorics. When quartets

are weighted differently using weight functions (3.3)–(3.5), computing the aggregated weights

of quartets around a node becomes more difficult as simple combinatorial equations become

unavailable in the general case. Thus, we cannot simply use the same algorithm as ASTRAL and

instead propose a new algorithm. In its simplest form (called the base version), the algorithm

works as follows.

1. Starting from an empty tree, add each species to the tree one-by-one with a random order to

obtain a full tree (see the Placement algorithm section and Algorithm S3.1). The algorithm

also computes and stores tripartition scores W (A|B|C,G) for all tripartitions of the output
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tree.

2. Repeat the previous step for r rounds; by default r ∈ [16,32] (see details under Placement

algorithm).

3. Combine results of the r rounds using a final dynamic programming (DP) step, which

reuses the tripartition weights computed in step 1; each internal node of the output is

constrained to be in at least one of the r greedy trees (see Dynamic programming section

and Algorithm S3.2).

What makes this approach possible is step 1: a new algorithm that allows each addition to an

existing tree to be performed optimally and efficiently. Importantly, while the base algorithm is a

greedy heuristic, as Theorem 3.4 and the remark afterward will show, it retains the statistical

consistency properties proved in Theorems 3.1–3.2. The running time of the base algorithm

scales with O(kn3 log(n)) in the worst case (Proposition 3.4) and is better with respect to k but

worse with respect to n compared to ASTRAL-III, which is O
(
(kn)2.73) in the worst case and

roughly O(k2n2) in practice. Thus, we also propose a divide-and-conquer (DAC) algorithm

for n ≥ 200 that uses the base algorithm on subsets of size O(
√

n) (see the DAC algorithm

section and Algorithm S3.3). This strategy improves the running time to O(n2.5+εk) under some

assumptions, as detailed below under Theorem 3.5. The DAC algorithm also retains the statistical

consistency guarantees (Theorem 3.6). We next detail each algorithmic component mentioned

above.

Placement algorithm

Mai and Mirarab 2022 use the idea pioneered by Brodal et al. 2013 to design a quasi-

linear algorithm to find the optimal placement of a species on a backbone tree that minimizes its

quartet distance to a set of reference trees (e.g., gene trees). This algorithm traverses a binary (or

multifurcating) species tree in a top-down manner and colors species using three (or more) colors,

A, B, and C. When entering any node u of the species tree, all species under u are already colored
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A and all other species are colored C. At this point, the smaller child of u is recolored with B.

The recoloring is done one species at a time; for each species, the path from the associated leaf

in each gene tree to the root is visited, and several counters assigned to each gene tree node are

updated. These counters enable calculating the score for placing the query on each species tree

branch. After this recoloring is done and before moving from u to any of its children v, the sister

of v is colored C, and if v is the smaller child of u, then v is changed back to A. This algorithm

performs only O(n logn) species recoloring steps due to the smaller-child trick, which recolors

the larger child of each node less often than the smaller child. Moreover, by representing each

gene tree using an O(logn)-height tree called HDT adopted from Brodal et al. 2013, it ensures

each recoloring takes O(k logn) time.

We build on the idea by Mai and Mirarab 2022 and adapt it to optimally solve the weighted

quartet score placement problem (Algorithm S3.1), changing it in three substantial ways. i) We

have created a new set of counters that enable us to compute the total weighted quartet score of

all tripartitions resulting from all possible placements of the query. These counters essentially

count the total weight of all the quartets with the same MRCA using recursive equations shown

in Figure 3.6 and Table S3.1. The derivation of these counters is the heart of the algorithm but

is too complex to detail here. We leave a full description to Proof of Theorem 3.3. ii) At each

node u, we also recolor the query species as A, B, and C and recompute the counters; this allows

us to compute the quartet score for all tripartitions resulting from all placements of the query.

iii) Since our counters are more complex than Mai and Mirarab 2022, we use input gene trees

instead of HDTs, which would be hard to implement. As a result, the cost of a leaf recoloring in

our algorithm is O(kH) where H is the average height of gene trees instead of O(k logn) had we

used HDTs. Note that for sufficiently balanced gene trees, O(kH) and O(k logn) are similar. We

next prove that this algorithm finds the optimal solution.

Theorem 3.3. Let S be a species tree, i be a species not in LS, S be the set of possible

species tree topologies by placing i onto S, and S′ be the output of Algorithm S3.1. Then,
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W (S′,G ) = maxŜ∈S W (Ŝ,G ).

While each individual placement is optimal, the greedy search is not guaranteed to

find the optimal tree. We run the greedy search r times each of which produces a full tree Si.

Empirically, we found r ≥ 4 to have minimal impact on the accuracy, but small improvements

in the quartet score are observed for up to r = 32 rounds in outlier cases (Fig. S3.21). Based

on these results, we set r (which the user can adjust) using a dynamic heuristic: i) start with

12 rounds and perform the DP algorithm to get an optimal score; ii) run another 4 rounds and

perform DP using bipartitions from all previous rounds; iii) repeat step (ii) until no improvement

to the optimal score is obtained or step (ii) has been repeated five times.

Dynamic programming

In each greedy search, we add the tripartitions of each Si and their weights to a lookup

table W ∗. The DP step computes an optimal species tree restricted to the tripartitions of

W ∗ (Algorithm S3.2). The DP algorithm proceeds almost identically to ASTRAL, with one

difference: While the search space in ASTRAL is the set of bipartitions found in all of the Si

trees, here, the search space is the set of all tripartitions. With this change, we do not need to

compute weight scores for any tripartition as those are precomputed and stored in W ∗ in the

placement step.

Proposition 3.4. The time complexity of Algorithm S3.2 is O(kHn2 logn).

Since H = O(logn) for balanced trees and H = O(n) for caterpillar trees, the time com-

plexity of Algorithm S3.2 is O(kn2 log2 n) when gene trees are roughly balanced and O(kn3 logn)

when they are not. Note that because the counters are linearly related to counters of children of a

node, in theory, the HDT structure can be adopted in our algorithm leading to a O(kn2 log2 n)

worst-case complexity. Since adopting HDT would add much more complexity for (potentially)

little gain, we do not pursue it further.

Algorithm S3.2 is not guaranteed to find the optimal solution. However, a positive
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theoretical result ensures that this lack of optimality does not impede the statistical consistency

of the solution:

Theorem 3.4. If there exists a species tree topology S∗ satisfying that for each quartet subtree

ab|cd,

∑
G∈G

w(ab|cd)> max
(

∑
G∈G

w(ac|bd), ∑
G∈G

w(ad|bc)
)
, (3.6)

then the output of Algorithm S3.2 will be S∗.

Remark. For a binary true species tree S∗, as k→ ∞, S∗ satisfies the condition of Theorem 3.4

with an arbitrarily high probability for wASTRAL-s under the assumptions of Theorem 3.1 and

for wASTRAL-bl under the assumptions of Theorem 3.2. To see this point, note that due to the

consistency of the estimator, for a quartet Q to achieve a high probability 1− ε ′ a certain kε ′,Q

must be sufficient. Setting ε ′ = 1− (1− ε)1/(n
4) and using a union bound, it is easy to see that

k = maxQ kε ′,Q is enough to achieve the probability 1− ε of correctness for all quartets. Thus,

by Theorem 3.4, Algorithm S3.2 is a statistically consistent estimator of the species tree under

the assumptions of Theorems 3.1 and 3.2. We conjecture that wASTRAL-h can also be proved

statistically consistent under assumptions similar to Theorem 3.1 for topology and support and

Theorem 3.2 for branch length.

DAC algorithm

The DAC procedure (Algorithm S3.3) first computes a backbone tree on fewer species,

adds all the remaining species onto the backbone tree, and then locally refines the topology

around the backbone branch.

1. To compute a backbone tree Si, we randomly select m = ⌈
√

n⌉ leaves and apply the

Algorithm S3.2 with r = ⌈
√

n⌉ rounds of placements to get a backbone tree with m species.

2. For the remaining n−m species, we independently find their optimal placement on Si

using the Algorithm S3.1. We group species placed on the same branch together to obtain

2m−3 clusters.
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3. For each cluster Ce corresponding to a branch e, we sequentially place species in Ce onto

Si using the Algorithm S3.1 and remove any “orphan” species that are not placed on e or

its derived branches; the result is called Se.

4. All trees in {Se : e ∈ ESi} induce the same scaffold tree Si on their shared taxa. Thus, they

can be easily merged into a uniquely defined tree S′i.

5. If S′i orphan species exist, at the end, we place them onto S′i using the Algorithm S3.2.

The potential for orphan taxa makes it harder to establish the time complexity of the

DAC algorithm theoretically, but a result can be proved:

Theorem 3.5. When the inequality condition in Theorem 3.4 is satisfied, then the time complexity

of the DAC algorithm is O(n1.5+εkH) with arbitrarily high probability.

Similar to the base algorithm, the DAC algorithm retains statistical consistency.

Theorem 3.6. Under the conditions of Theorem 3.4, the DAC Algorithm S3.3 will output S∗.

Remark. Under assumptions of Theorem 3.1 for wASTRAL-s and Theorem 3.2 for wASTRAL-bl,

Algorithm S3.3 gives a statistically consistent estimator of the species trees.

3.4.4 Branch support

We adopt the quartet-based metric introduced by Sayyari and Mirarab 2016 used for

measuring branch support. This metric essentially quantifies the probability of the true quartet

score around a species tree branch being more than 1
3 given the observed quartet topologies

assuming that gene trees are fully independent, but the quartets around the branch are fully

dependent. The original metric gives all gene trees with at least one quartet around a branch

of interest an equal weight of one. In wASTRAL-h, we instead weight each gene tree by the

total support of all three topologies and normalize the counts. Removing an internal branch e

of the species tree and its four adjacent branches defines a quadripartition of species A|B|C|D,
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and we assume (A∪B)|(C∪D) is the bipartition defined by e. Note that any quartet (a,b,c,d) ∈

A×B×C×D has the same internal branch as e. Let G denote the subset of gene trees with at

least one element from each of A, B, C, and D. We define x1, the normalized quartet count for

branch e, as

x1 =
∑G∈G ∑(a,b,c,d)∈A×B×C×D wG(ab|cd)√

1
|G |∑G∈G

(
∑(a,b,c,d)∈A×B×C×D wG(ab|cd)+wG(ac|bd)+wG(ad|bc)

)2
. (3.7)

The quartet counts for (A∪C)|(B∪D) and (A∪D)|(B∪C) are similarly defined and are denoted

by x2 and x3. This form of normalization models the observation that gene trees with higher

weights also have higher variance in their weights. Using the localPP method of Sayyari and

Mirarab 2016, we set the localPP support to: h(x1)
h(x1)+h(x2)+h(x3)

, where h(x) = 2xB(x+1,x1+x2+

x3− x+2λ )
(
1− I 1

3
(x+1,x1 + x2 + x3− x+2λ )

)
, B is the beta function, Ix is the regularized

incomplete beta function, and λ is birth rate in the Yule prior distribution (default: 1
2 ).

When all weights are set to 1, as in ASTRAL-III, the new definition is identical to

the original one in the absence of missing data but can be different with missing data. Let

Ng = |A∩Lg|× |B∩Lg|× |C∩Lg|× |D∩Lg| be the number of quartets around the branch of

interest present in a gene tree g; let ng be the number of those quartets that are compatible with

(A∪B)|(C∪D). Then, the old definition sets x1 = ∑G∈G
ng
Ng

while the new definitions uses

x1 =
∑G∈G ng√
1
|G|∑G∈G N2

g

. (3.8)

The two definitions are identical only when all Ng values are the same, which is the case when

there is no missing data but can also happen in other scenarios. When patterns of missing

data are different, the old calculations made sure all genes had equal weights (each gene has

x1 + x2 + x3 = 1). In the new definition, since each gene is weighted differently in wASTRAL,

to begin with, we also allow genes to have a different total vote depending on their patterns of

missing data. In the new formula, each gene votes (contributes to x1 + x2 + x3) proportionally to
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the number of quartets they have around a branch.

3.4.5 Datasets

Simulated data

S100 Simulated dataset by Zhang et al. 2018, includes 100 ingroups and one outgroup and

is simulated using SimPhy (Mallo et al., 2016) with 50 replicates. The species trees are simulated

under the birth-only process with birth rate 10−7, a fixed haploid population size of 4× 105,

and the number of generations sampled from a log-normal distribution with mean 2.5× 106.

1000 true gene trees are simulated under the MSC model. The ILS level substantially varies

across replicates, with a mean of 0.46 when measured by the average normalized Robinson and

Foulds (1981) (RF) distance between the true species trees and true gene trees. Gene alignments

of length {200,400,800,1600} bps are simulated using Indelible (Fletcher and Yang, 2009)

under the GTR model after assigning SU gene tree branch lengths that deviate from the clock

using rate multipliers. Gene trees are reconstructed under the GTR+Γ model using FastTree-2

(Price et al., 2010). The gene tree estimation error, measured by the False Negative (FN) rate

between the true gene trees and the estimated gene trees is {0.55,0.42,0.31,0.23} for lengths

{200,400,800,1600}. The original publication has made bootstrap support obtained from 100

replicates run using FastTree-2 available for each gene tree.

S200 Simulated dataset by Mirarab and Warnow 2015 includes 200 ingroup species and

an outgroup. Its species trees are generated under two different birth rates 10−6,10−7 each with

50 replicates and three different ILS levels, low (≈ 10%), medium (≈ 35%), and high (≈ 70%),

controlled by max tree heights 107,2× 106,5× 105 generations, respectively. The sequence

length of each gene is uniformly drawn between 300 and 1500 bps, resulting in a wide range of

gene tree estimation errors across replicates (mean: 25%, 31%, and 47%, for low, medium, and

high ILS). Gene trees are estimated using FastTree-2, but because bootstrap replicates are not

available, we compute aBayes support using IQ-Tree with fixed topologies.

By default, we compute branch length and support using IQ-TREE (v 1.6.12) aBayes
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option (--abayes) under GTR+Γ model. As each support value s is between 1
3 and 1, we

normalize support value to 3s−1
2 so that the minimum is 0. To run wASTRAL (which currently

takes only binary trees as input), we randomly resolve polytomies in input trees with length and

support set to 0, which is equivalent to a polytomy for wASTRAL-s and -h.

ASTRAL-III version 5.7.4 is used throughout. ASTRAL-III-5% (S100 dataset) denotes

running ASTRAL-III on gene trees with low bootstrap support branches (< 5%) contracted. The

5% threshold is used because Zhang et al. 2018 found it to have the best accuracy overall. On

the S200 dataset, because bootstrap support is not available, we instead rely on IQ-TREE aBayes

support, which tends to be much higher than bootstrap support. Thus, we contract branches with

support below a 0.90 threshold with aBayes, denoted as ASTRAL-III-90%.

CA-ML is performed using unpartitioned ML. On the S200 dataset, CA-ML was available

from the original study (where they used FastTree-2 as the ML method) and is used here. On

S100, we ran CA-ML using FastTree-2. Thus, on both datasets, the same tool is used for gene

tree estimation and CA-ML, ensuring the comparisons are fair.

Biological datasets

Seven biological datasets were used.

OneKP (OneKP Initiative, 2019) dataset includes 1178 species spanning the plant

tree of life obtained using transcriptomics. The original study has inferred 410 AA-based gene

trees from putative single-copy genes using RAxML with bootstrap support (which we use), an

ASTRAL-III species tree, and CA-ML using RAxML.

Canis (Gopalakrishnan et al., 2018) dataset includes 48 genomes across genus Canis

with taxon sampling that allows reconstruction at both species and population levels. Loci with

roughly 10kbp lengths were selected across the genome at random, leading to 449,450 gene

trees. Since ASTRAL-II could not handle this size, the original study partitioned the gene tree

into 100 subsets and inferred one ASTRAL-II species tree per subset and published a consensus

of those trees. We used wASTRAL-h to analyze all the available gene trees, which the original
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paper estimated using FastTree-2; we were also able to analyze up to 100,000 gene trees using

ASTRAL-MP (Yin et al., 2019) (within 48 hours). Due to the large number of genes, we simply

use the provided SH-like FastTree-2 support instead of re-estimating support.

Avian (Jarvis et al., 2014) dataset includes 48 species designed to resolve the order-level

avian relationships, which experience extremely high levels of gene tree discordance potentially

due to a rapid radiation. Authors studied three data types: concatenation of exons per gene

(exons), concatenation of introns per gene (introns), and Ultra Conserved Elements (UCE).

Here, we analyze all 14,446 input gene trees (8251 exons, 2516 introns, and 3679 UCEs) with

bootstrap-annotated branches available from the original study. The main challenge on this

dataset is the low gene tree resolution, which led to the development of the statistical binning

method (Mirarab et al., 2014a). Without binning, the analyses of all 14,446 loci resulted in

species trees that were clearly wrong. More recently, species tree inferred from ASTRAL-III

without dealing with gene tree error also resulted in incorrect species trees (Zhang et al., 2018);

however, contracting low support branches (e.g., ≤ 3, 5, and 10%) appeared to solve the problem.

Cetaceans (McGowen et al., 2020) dataset includes targeted-captured exonic data for

100 individuals from 77 cetacean species and 12 outgroups. The original study estimated gene

trees using RAxML under the GTRCAT model but without support for 3191 protein-coding

genes. We computed Bayesian local supports and branch lengths for fixed gene tree topologies

using IQ-Tree, and reanalyzed the dataset using wASTRAL-h. We compare the results to two

trees produced by the original study: a CA-ML tree and an ASTRAL-multi tree that forces

individuals of the same species to be grouped together.

Insect datasets. We also tested three insect datasets, in each case, using available gene

trees. i) a 32-taxon collection of 853 RAxML gene trees with bootstrap supports obtained from

alignments of ultraconserved elements focused on the bee subfamily Nomiinae and particularly

genus Pseudapis (Bossert et al., 2021), ii) a 203-taxon set of 1930 RAxML gene trees with

bootstrap support obtained from transcriptomic alignments focused on Lepidoptera (butterflies

and moths) (Kawahara et al., 2019), and iii) a 61-taxon dataset of the Papilionidae (swallowtail
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butterflies) with 6407 IQ-TREE gene trees with supports that we computed using aBayes (Allio

et al., 2020) and obtained from amino-acid alignments of orthologous protein-coding genes.

3.4.6 Evaluation criteria

To compare topological accuracy, we use the false-negative rate (FN) in recovering

bipartitions of the true species tree. Since the true species tree and the reconstructed species tree

are both binary, false-negative rate, false-positive rate, and normalized RF are all the same. For

measuring the accuracy of support, we use three methods with different goals.

Calibration plots ask if support values perfectly indicate correctness (i.e., are calibrated).

We break support values into these bins: [1
3 ,0.5), [0.5,0.75), [0.75,0.9), [0.9,0.95), [0.95,1),

and {1} (note that 1 means anything rounded to 1 by the tool). For each bin, we compute the

average accuracy of branches with support in that range and plot it versus the midpoint of the

boundaries of that bin. On such plots, points above (below) diagonal indicate under-estimation

(over-estimation) of branch support. Even when support is not calibrated, it can be useful if

higher support correlates with correctness; e.g., if all support values are uniformly increased or

decreased (say, divided by two), it can still be perfectly correlated with support. To measure this

aspect, we use ROC curves. For a large number of thresholds between 0 and 1, we contract all

branches with support below that threshold. We call contracted correct branches FN, contracted

incorrect branches TN, kept correct branches TP, kept incorrect branches FP; these allow us to

define true positive rate and recall, and thus ROC. Note that the ROC curve remains the same

with any monotonic transformation of support values assuming an infinite number of thresholds.

We also plot the empirical cumulative density function (ECDF) of correct and incorrect branches.

We expect higher support for correct branches than for incorrect branches; thus, the accuracy can

be judged by the gap between ECDF curves of correct and incorrect branches.
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Statistical tests.

We perform repeated measures ANOVA tests between two species tree reconstruction

methods to test the significance of topological accuracy differences and whether the gap in

accuracy depends on simulation model parameters. We limit the data to only the two methods

being compared, and for each experimental condition, we use replicates as the repeated measures

(i.e., the error term). We perform double-sided ANOVA tests on reconstruction methods vs.

experimental conditions and report p-values for the difference between methods and the impact

of other variables on that difference.

Availability:

The wASTRAL software is available publicly at https://github.com/chaoszhang/ASTER.

Data used here are available at https://github.com/chaoszhang/Weighted-ASTRAL data.
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Figure 3.1. (a) Illustration of weighting methods. The generic formula and an example of weighting
gene tree quartet ab|cd. Trees are annotated with the support (red) of all branches between anchors
(orange dots) and the substitution per site unit length of each leaf-to-anchor path (blue). (b-e) Illustration
of the impact of weighting using our MSC+Error+Support model for a quartet species tree with internal
branch length set to − ln0.75 CU. (b) Top: each 3× 3 square shows the joint probabilities of true (by
column) and estimated (by row) gene trees for each of the three possible quartet topologies. The first
row/column represents the topology matching species tree, and the second row/column corresponds to the
topology towards which gene tree estimation is biased. The gene tree estimation quality α ranges in [0,1],
and the bias in gene tree estimation β is set to zero, moderate (0.4), or high (0.6). These probabilities
correspond to expected weights in normal ASTRAL. Middle: The expected weights in wASTRAL-s for
each scenario. Bottom: The 3×2 grids show the marginal expected score of each topology (rows) for
unweighted ASTRAL (UW; first column) and weighted ASTRAL (W; second column). Note the reduced
darkness of W columns as α decreases. The two girds highlighted in yellow: the score is highest for
the wrong (second row) topology without weights but is higher for the correct topology (first row) with
weights. (c) Distribution α drawn from Beta(0.5,0.5) across genes in a toy example. (d) Joint (blue) and
marginal (red) probabilities of topologies with and without weighting with moderate bias (β = 0.4) and α

drawn from the distribution shown on top. (e) Each band shows the range of coalescent unit (CU) quartet
internal branch length where ASTRAL is not consistent but support weighted ASTRAL is, for different α

and β valeus.

110



500 genes 1000 genes

200 400 800 1600 200 400 800 1600
5.0%

7.0%

9.0%

11.0%

4.0%

6.0%

8.0%

10.0%

50 genes 200 genes

200 400 800 1600 200 400 800 1600

10.0%

12.0%

14.0%

16.0%

18.0%

5.0%

7.0%

9.0%

11.0%

Seq length (per gene)

Sp
ec

ie
s 

tre
e 

er
ro

r (
FN

)

ASTRAL−III ASTRAL−III−5% wASTRAL−h CA−ML

a) Speciation rate: 1e−6 Speciation rate: 1e−7

50 genes
200 genes

1000 genes

Low Medium High Low Medium High

10%

20%

30%

5.0%

10.0%

15.0%

2.0%

4.0%

6.0%

8.0%

ILS level (controlled by height)

Sp
ec

ie
s 

tre
e 

er
ro

r (
FN

)

ASTRAL−III ASTRAL−III−90% wASTRAL−h CA−ML

b)

Figure 3.2. Species tree topological error on simulated datasets, comparing weighted ASTRAL
hybrid (wASTRAL-h) against ASTRAL-III using fully resolved and contracted gene trees and
concatenation using ML (CA-ML). (a) Results on the S100 dataset with k = {50,200,500,1000}
gene trees (boxes) and gene sequence length {200,400,800,1600} (x-axis). Gene trees and
CA-ML both inferred using FastTree-2. ASTRAL-III-5% contracts branches with < 5% BS. (b)
Results on the S200 dataset with k = {50,200,1000}, rates of speciation 1E-6 and 1E-7, and
three ILS levels. Gene trees and CA-ML both inferred using FastTree-2. ASTRAL-III-90%
contracts branches with aBayes support < 90%. See Fig. S3.4 and S3.5 for box plots.
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Figure 3.3. Support accuracy across (a-c) S100 dataset with k = {50,200,500,1000} and
sequence length {200,400,800,1600} and (d-f) S200 dataset with k = {50,200,1000} and levels
of ILS from low to high. (a,d) Change in 100% support branches. Each line shows the portion
of full-support branches that are wrong (y-axis) and the percentage of all branches that have
full support (x-axis) for wASTRAL-h (the arrowhead) and ASTRAL-III (other shapes). Arrows
pointing downwards indicate less frequent errors in wASTRAL-h. (b,e) Support calibration.
Branches are binned by their support, and for each bin, the percentage of branches that are
correct are depicted versus the center of the bin. The dotted lines indicate ideal (calibrated)
support. Top (bottom) triangle corresponds to the under-estimation (over-estimation) of support.
(c,f) Receiver operating characteristic (ROC) curves where each dot corresponds to a contraction
threshold, (Evaluation criteria). See Figs. S3.6-S3.11.

112



0.999 1.000 1.001 1.000 1.001 1.002 0.99 1.00 1.01

0.1

0.3

1.0

3.0

0.1

0.3

1.0

3.0

0.1

0.3

1.0

3.0

new/old quartet score

ol
d/

ne
w

 ru
nn

in
g 

tim
e

b)Low ILS Med ILS High ILS

50 genes
200 genes

1000 genes

0.998 0.999 1.000 1.0 0.997 0.998 0.999 1.000 1.001 1.002 0.98 0.99 1.00

0.01

0.10

1.00

0.01

0.10

1.00

0.01

0.10

1.00

new/old quartet score

ol
d/

ne
w

 ru
nn

in
g 

tim
e

old/new
species tree
 error (FN)

(0.4,0.75]
(0.75,0.95]
(0.95,1.05]
(1.05,1.33]
(1.33,2.5]

a)

50 genes 200 genes 1000 genes

0.5

1.0

2.0

model

ol
d/

ne
w

 s
pe

ci
es

 tr
ee

 e
rr

or
 (F

N
)

c)

0.6

0.7

1.0

model

ol
d/

ne
w

 s
pe

ci
es

 tr
ee

 e
rr

or

0.98
0.99
1.00
1.01
1.02

d)

new/old 
quatet 
score

L6 L7 M6 M7 H6 H7 L6 L7 M6 M7 H6 H7 L6 L7 M6 M7 H6 H7 L6 L7 M6 M7 H6 H7 L6 L7 M6 M7 H6 H7 L6 L7 M6 M7 H6 H7

50 genes 200 genes 1000 genes

Low ILS Med ILS High ILS

50 genes
200 genes

1000 genes
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species tree topological error using the A3 algorithm divided by the DAC algorithm before (c)
and after (d) randomly removing of 5% taxa from each gene tree with colors denoting the ratio
of quartet scores. L6 to H7 indicate model conditions with low, medium, and high ILS with 1E-6
and 1E-7 rates.
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Figure 3.5. Results on OneKp (a,b) and canis (c,d) datasets. (a) Local posterior probabilities (PP)
support of all species tree branches shared between wASTRAL-h and the published ASTRAL-III. Focal
branches (squares) with support less than 100% in one of the two trees are colored and labeled in panel
b. (b) wASTRAL-h resolutions of focal branches that differ from ASTRAL-III in topology or support.
Branch labels: total weights of all quartets around each branch for the three possible topologies computed
using (3.7) with weights coming from (3.5); the species tree topology is shown first. Node labels: localPP
support when not equal to 100%. Dashed: focal branches that differ from ASTRAL-III. (c) Local PP of
wASTRAL-h internal branches versus the number of genes k for each branch found in the wASTRAL-h
output tree with all gene trees as input (x-axis). The inset with right y-axis scale shows the internal branch
lengths in coalescent units on ASTRAL-III tree, sorted from low to high. The leftmost three branches
are found only with k ≥ 100000. d) Log-log plot of total running time of ASTRAL-III and wASTRAL-h
using both a single core (light colors) and 16 cores (dark colors) vs k on the canis dataset for k ranging
from 1000 to 450000; Slopes of fitted lines, which estimate asymptotic growth exponent, are labeled. All
test cases are performed on a server with AMD EPYC 7742 CPUs.
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Figure 3.6. Recursive definitions of Counters. For a species tree tripartition (X |Y |Z), and a
gene tree node w, we compute the total hybrid weight of all quartets anchored at the species
tripartition and with w as the MRCA on the gene tree. Each solid colored path is weighed by the
negative exponent of its length; each dashed path is weighted by one minus its support; each
dotted path is weighted by its support. See also Table S3.1.
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Appendices

3.A Commands

3.A.1 Approximate Bayesian Branch Support Annotation

iqtree2 -s SEQ_ALIGNMENT -te GENE_TREE -m TVM+I+G4 -abayes

-pre ANNOTATED_GENE_TREE

Note: When inferring support as a post-processing step, the same model used for inferring

the tree should be used, a task that requires care when the original trees are inferred using a

different tool (e.g., RAxML). TVM+I+G4 is simply an example.

3.A.2 Running wASTRAL

Exact commands when running on gene trees with approximate Bayesian/Bootstrap/SH-

like supports.

astral-hybrid -x 1 -n 0.333 APPROXIMATE_BAYESIAN_ANNOTATED_GENE_TREE

astral-hybrid -x 100 -n 0 BOOTSTRAP_ANNOTATED_GENE_TREE

astral-hybrid -x 1 -n 0 SH_LIKE_ANNOTATED_GENE_TREE
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3.B Supplementary Figures and Tables

Table S3.1. Counters w∗∗ are defined for each node w in each gene tree, and Q is defined globally.
Here, X ,Y,Z are distinct colors of A, B, and C. Let u,v be the children of w; e be the parental
edge of w; p be the parent of w; Px,w be the path between x and w; s(P) = 1−∏ê∈P(1− s(ê));
m(i, j) = MRCA of i and j. Counters for leaves are set to zero unless explicitly noted. For each
counter, we show a recursive equation on top and the equivalent non-recursive definition on the
bottom.

wX
(uX + vX )e−l(e) for internal node w; e−l(e) for leaf node w colored X
∑i e−l(Pi,p) for all leaf nodes i colored X under w

(w+
XX ,w

+
XY )

(
u+XX + v+XX +uX vX ,u+XY + v+XY +uX vY +uY vX

)
∑i, j e−l(Pi, j) for all leaf nodes i colored X and j colored X/Y under w

(w−XX ,w
−
XY )

(
(u−XX + v−XX +uX vX )

(
1− s(e)

)
,(u−XY + v−XY +uX vY +uY vX )

(
1− s(e)

))
∑i, j e−l(Pi, j)

(
1− s(Pm(i, j),p)

)
for all leaf nodes i colored X and j colored X/Y under w

(wXX |Y ,

wXY |Z)

((
uXX |Y + vXX |Y+(u+XX −u−XX )vY +uY (v+XX − v−XX )

)
e−l(e),(

uXY |Z + vXY |Z+(u+XY −u−XY )vZ +uZ(v+XY − v−XY )
)
e−l(e)

)
∑i, j,k e−l(Pi, j)−l(Pk,p)s(Pm(i, j),m(i,k)) for leaf nodes i colored X, j colored X/Y,
k colored Z under w, and m(i, j) under m(i,k)

wXX |Y Z

vX uY Z|X +uX vY Z|X +uXX |ZvY + vXX |ZuY +uXX |Y vZ + vXX |Y uZ
+(u+Y Zv+XX −u−Y Zv−XX )+(u+XX v+Y Z −u−XX v−Y Z)

∑h,i, j,k wG(hi| jk) for all leaf nodes h, i colored X, j colored Y, k colored Z, and w = MRCA h, i, j,k

Q
∑G∈G ∑w(wAA|BC +wBB|AC +wCC|AB) for internal nodes w in G
∑G∈G ∑h,i, j,k wG(hi| jk) for leaf nodes h, i, j,k in G where h, i have the same color and i, j,k have different

colors; when species coloring matches all gene trees, Q =W [A|B|C] = ∑G∈G W (A|B|C,G) (Proposition 3.5).
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Table S3.2. Running time of species tree inference methods on biological datasets. We use
5.17.3 version of ASTRAL-III if not otherwise clarified.

Dataset n k Method #Cores Wall-clock time CPU time

OneKP 1178 410
wASTRAL-h 16 17.1 min 4.57 hr

ASTRAL-III (5.0.3) 1 17.2 hr 17.2 hr
Canis 48 449450 wASTRAL-h 1 17.7 hr 17.7 hr

Avian 48 14446
wASTRAL-h 16 1.76 min 28.1 min
ASTRAL-III 16 20.9 min 5.57 hr

Cetacean 98 3191
wASTRAL-h 16 35.2 sec 9.39 min
ASTRAL-III 16 1.97 min 31.5 min

Nomiinae 32 853
wASTRAL-h 1 5.93 sec 5.93 sec
ASTRAL-III 1 8.64 sec 8.64 sec

Lepidoptera 203 1930
wASTRAL-h 16 2.02 min 32.3 min
ASTRAL-III 16 9.14 min 2.44 hr

Papilionidae 61 6405
wASTRAL-h 16 24.8 sec 6.61 min
ASTRAL-III 16 1.11 min 17.8 min
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Figure S3.1. Species tree error by weighting scheme on the S100 dataset with k =
{50,200,500,1000} and gene sequence length {200,400,800,1600}. Results with aBayes
supports are labeled wASTRAL-s and wASTRAL-h; results with bootstrap support are labelled
wASTRAL-s* and wASTRAL-h*.
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Figure S3.2. Lineage Through Time (LTT) plots for thee simulated model conditions with 10−7

(red) and 10−6 (blue) rates tend to lead to deeper and shallower speciation.
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Figure S3.3. Species tree error by weighting scheme on the S200 dataset with k =
{50,200,1000} and population size (ILS levels). Species tree shape with parameters E1-6
and E1-7 are used. Results with aBayes supports are labeled wASTRAL-s and wASTRAL-h;
results with SH-like support are labeled wASTRAL-s* and wASTRAL-h*.
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Figure S3.4. Species tree error on the S100 dataset with k = {50,200,500,1000} and gene
sequence length {200,400,800,1600}. Results with aBayes supports are labelled wASTRAL-s
and wASTRAL-h; results with bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
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Figure S3.5. Species tree error on the S200 dataset with k = {50,200,1000} and population
size (ILS levels). Species tree shape with parameter E1-6 and E1-7 (box columns) and ILS levels
(box rows) low (1e+07), medium (2e+06), and high (5e+05) are used. Results with Bayesian
supports are labeled wASTRAL-s and wASTRAL-h; results with SH-like support are labeled
wASTRAL-s* and wASTRAL-h*.
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Figure S3.6. ROC of S100 dataset with k = {50,200,500,1000} and gene sequence length
{200,400,800,1600} as we change the threshold of support considered. Results with aBayes
supports are labelled wASTRAL-s and wASTRAL-h; results with FastTree-2 bootstrap support
are labelled wASTRAL-s* and wASTRAL-h*.
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Figure S3.7. ECDF of S100 dataset with k = {50,200,500,1000} and gene sequence length
{200,400,800,1600}. Results with aBayes supports are labelled wASTRAL-s and wASTRAL-
h; results with FastTree-2 bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
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Figure S3.8. Binned accuracy-verses-support plot of S100 dataset with k = {50,200,500,1000}
and gene sequence length {200,400,800,1600}. Results with aBayes supports are la-
belled wASTRAL-s and wASTRAL-h; results with FastTree-2 bootstrap support are labelled
wASTRAL-s* and wASTRAL-h*.
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Figure S3.9. ROC of S200 dataset with k = {50,200,1000} and population size (ILS levels).
Species tree shape with parameter E1-6 and E1-7 are used. Results with aBayes supports are
labeled wASTRAL-h; results with SH-like support are labelled wASTRAL-h*.
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Figure S3.10. ECDF of S200 dataset with k = {50,200,1000} and population size (ILS levels).
Species tree shape with parameter E1-6 and E1-7 (box columns) and ILS levels (box rows) low
(1e+07), medium (2e+06), and high (5e+05) are used. Results with aBayes supports are labelled
wASTRAL-h; results with SH-like support are labelled wASTRAL-h*.
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Figure S3.11. Binned accuracy-verses-support plot of S200 dataset with k = {50,200,1000}
and population size (ILS levels). Species tree shape with parameter E1-6 and E1-7 are used.
Results with aBayes supports are labeled wASTRAL-h; results with SH-like support are labeled
wASTRAL-h*.
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Figure S3.12. The distribution of support values of conflicting branches between wASTRAL-h
and ASTRAL-III on the 1kp dataset. The ASTRAL-III conflicting branches range between 14%
and 99.00% with a mean of 62%. The wASTRAL-h conflicting branches range between 37%
and 99.98% with a mean of 78%.
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Figure S3.13. Inferred species trees (a) from wASTRAL-hybrid with FastTree-2 branch support
values as weights using all 459,450 gene trees and (b) from ASTRAL-III using a subset of
100,000 gene trees on canis dataset. Branches support of 100% are omitted.
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Figure S3.14. Normalized time per round of placement by dividing running time by the total
number of rounds of placements for ASTRAL on the Canis dataset for various k using the new
pipeline.
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Figure S3.15. Inferred species trees from (a) wASTRAL-hybrid with normalized bootstrap
support values as weights and (b) ASTRAL-III on gene trees with low (< 3% bootstrap) support
branches contracted on avian dataset. Branches support of 100% are omitted. Branches that
disagree with concatenation (blue), MP-EST binned (red) or both (purple) are identified on the
wASTRAL-h tree.
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Figure S3.16. Inferred species trees from (a) wASTRAL-hybrid with normalized Bayesian
support values as weights (with clades of taxa from the same species contracted) and (b)
ASTRAL-multi on cetacean dataset. Branches support of 100% are omitted. Branches conflicting
with RAxML concatenation are marked red.
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Figure S3.17. (a) RAxML on concatenated genes; (b) wASTRAL-hybrid (top and solid red line)
and ASTRAL-III (bottom and dashed red line) on Nomiinae dataset.
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Figure S3.18. Inferred species trees from (a) wASTRAL-hybrid with normalized bootstrap
support values as weights and (b) ASTRAL-III on Lepidoptera dataset.
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Figure S3.19. Inferred species trees from (a) wASTRAL-hybrid with normalized approximate
Bayesian support values as weights and (b) ASTRAL-III on Papilionidae dataset.
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Figure S3.20. An illustration of the process of creating a random gene tree with branch lengths
in SU. Branches in the true species tree S∗ are broken into intervals I0 . . . I6. The species tree with
SU branch lengths S† is created by multiplying each branch length in S∗ with a corresponding
multiplier; the multipliers are jointly drawn from some distribution and are drawn independently
across gene trees. Gene tree G∗ is sampled under MSC process from S∗ independent of S†.
However, it inherits the same division of its lineages into segments as S∗ at the same locations.
The gene tree with SU branch lengths G is created by translating branch lengths of G∗ into SU
by multiplying the CU length of each of segment Ii by Λ

Ii
S† , the multiplier associated with the

segment Ii in S† and hence G.
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Figure S3.21. The species tree estimation error (FN) of wASTRAL-h on S100 dataset as we
change the number of rounds of placements in the base algorithm (r). The most difficult case
where gene length= 200 and k = 50 is selected. Mean and standard error (50 replicates) are
shown in blue.
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3.C Supplementary Algorithm
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Algorithm S3.1. Recursive placement algorithm. Place inserts the species i into an existing
species tree S and computes tripartition scores W (A|B|C,G ) := ∑G∈G W (A∩LG|B∩LG|C∩
LG,G) for all tripartitions resulting from adding i onto each branch of S. A global counter Q and
a set of per-node counters wA,wB,wC,w+

.. ,w
−
.. ,w..|.,w..|.. are all initialized to 0. OptimalTreeDP

is defined in Algorithm S3.2. Each gene tree is rooted on an arbitrary branch e and the support
of e is kept for the branch on one side of the root and zero support is given to the branch on the
other side of root. Lv is the set of leaves under v.
1: procedure PLACE(i,S,G ) ▷ Places species i on tree S according to G
2: W ← empty lookup table ▷ global variables
3: COLORLEAFSET(LS,C, /0,G ,W ) ▷ Color all leaves of S as C
4: COLORLEAFSET({i},B, /0,G ,W ) ▷ Color new species i as B
5: COLORNODE(the root of S, i,S,G ,W ) ▷ Traverse S bottom up
6: O←OPTIMALTREEDP(LS∪{i},LS∪{i},W )
7: return (W,O, edge of S onto which i is added to get O)
8: procedure COLORLEAFSET(L ∗,X ,T,G ,W ) ▷ Condition: Coloring L ∗ as X should match T
9: for G ∈ G do

10: for j ∈L ∗∩LG do
11: W [T ]←UPDATECOUNTERS(leaf node corresponding to j in g, X)
12: procedure COLORNODE(w, i,S,G ,W ) ▷ On start: i is B, others are C; On exit: w is A, others kept
13: if w is a leaf then
14: COLORLEAFSET(Lw,A,Lw|{i}|LS−Lw,G ,W )
15: else
16: (u,v) := ( the larger child of w, the smaller child of w )
17: COLORNODE(v, i,S,G ,W ) ▷ Recurse on v, the smaller child
18: COLORLEAFSET(Lv,C, /0,G ,W ) ▷ Undo coloring of v to enable recursing on u.
19: COLORNODE(u, i,S,G ,W ) ▷ Recurse on u, the large child
20: COLORLEAFSET(Lv,B,Lu|{i}∪Lv|LS−Lw,G ,W ) ▷ Tripartition of w when adding i above v
21: COLORLEAFSET({i},A,{i}∪Lu|Lv|LS−Lw,G ,W ) ▷ Tripartition of w when adding i above u
22: COLORLEAFSET({i},C,Lu|Lv|{i}∪LS−Lw,G ,W ) ▷ Tripartition of w when adding i above w
23: COLORLEAFSET({i},B, /0,G ,W )
24: COLORLEAFSET(Lv,A,Lw|{i}|LS−Lw,G ,W ) ▷ Tripartition of the new parent of i and w
25: procedure RECURSIVEUPDATE(w)
26: (u,v,e) := ( the left child of w, the right child of w, the parent branch of w )
27: for (X ,Y,Z) ∈ {(A,B,C),(B,C,A),(C,A,B)} do
28: Q← Q−wXX |Y Z
29: wXX |Y Z ← vX uY Z|X +uX vY Z|X +uXX |ZvY + vXX |ZuY +uXX |Y vZ + vXX |Y uZ

30: +(u+Y Zv+XX −u−Y Zv−XX )+(u+XX v+Y Z−u−XX v−Y Z)
31: Q← Q+wXX |Y Z
32: if w is not the root then
33: (wX ,wY ,wZ)←

(
(uX + vX )e−l(e),(uY + vY )e−l(e),(uZ + vZ)e−l(e)

)
34: w+

XX ← u+XX + v+XX +uX vX
35: w−XX ← (u−XX + v−XX +uX vX )

(
1− s(e)

)
36: w+

Y Z ← u+Y Z + v+Y Z +uY vZ +uZvY
37: w−Y Z ← (u−Y Z + v−Y Z +uY vZ +uZvY )

(
1− s(e)

)
38: wY Z|X ←

(
uY Z|X + vY Z|X+(u+Y Z−u−Y Z)vX +uX (v+Y Z− v−Y Z)

)
e−l(e)

39: wXX |Y ←
(
uXX |Y + vXX |Y+(u+XX −u−XX )vY +uY (v+XX − v−XX )

)
e−l(e)

40: wXX |Z ←
(
uXX |Z + vXX |Z+(u+XX −u−XX )vZ +uZ(v+XX − v−XX )

)
e−l(e)

41: RECURSIVEUPDATE(the parent of w)
42: procedure UPDATECOUNTERS(w,X) ▷ w is a leaf, X is a color
43: e := the parent branch of w
44: (wA,wB,wC)← (0,0,0)
45: wX ← e−l(e)

46: RECURSIVEUPDATE(the parent of w)
47: return Q
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Algorithm S3.2. The Algorithm S3.2 of O(n2kH logn) running time. At start, the function is
called as with LS,G ,r as input.

1: procedure NAIVEPLACEMENT(T,G ,r)
2: W ∗← empty lookup table from tripartitions to their weights
3: for i ∈ {1, ...,r} do
4: shuffle T
5: Si← tree with leaves T1,T2, and T3
6: for j ∈ {4, ..., |T |} do
7: Wi,Si,e← PLACE(Tj,Si,G )
8: Add all elements of Wi to W ∗
9: return OPTIMALTREEDP(T,T ,W ∗)

10: procedure OPTIMALTREEDP(P,L ,W )
11: if DPTree(P) available then
12: return DPTree(P)
13: if |P|= 1 then
14: DPScore(P)← 0
15: DPTree(P)← Singleton rooted tree with leafset P
16: else
17: X ←−∞

18: for A ∈ {A : W [A|P−A|L −P] has been computed} do
19: S1← OPTIMALTREEDP(A,L ,W )
20: S2← OPTIMALTREEDP(P−A,L ,W )
21: if DPScore(A)+DPScore(P−A)+W [A|P−A|L −P]> X then
22: X ← DPScore(A)+DPScore(P−A)+W [A|P−A|L −P]
23: DPTree(P)← merge subtrees S1 and S2 at root
24: DPScore(P)← X
25: return DPTree(P)
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Algorithm S3.3. The DAC algorithm of O(n1.5+εk) running time given some assumptions.
OptimalTreeDP and NaivePlacement are defined in Algorithm S3.2, and Place is defined in
Algorithm S3.1. At start, the function is called as with LS,G ,r as input.

1: procedure TWOSTEPPLACEMENT(T,G ,r)
2: W ∗← empty lookup table from tripartitions to their weights
3: for i ∈ {1, ...,r} do
4: Ti← a subsample of T by removing each element independently with probability

1−1/
√
|T |

5: Si := NAIVEPLACEMENT(Ti,G ,
√
|T |)

6: for e ∈ ESi do
7: Ce← empty list
8: for j ∈ T −Ti do
9: W,So,e← PLACE( j,Si,G )

10: add Tj to Ce
11: C/0← empty list
12: S′i← Si
13: for e ∈ branches of Si do
14: Se← Si
15: for j ∈Ce do
16: W,So,e′← PLACE( j,Se,G )
17: if e′ ∈ Si−{e} then
18: add j to C/0
19: else
20: Se← So
21: S′i← The merger of compatible trees Se and S′i
22: for j ∈C/0 do
23: Wi,S′i,e← PLACE( j,S′i,G )
24: if C/0 = /0 then
25: Wi,S′i,e← PLACE( /0,S′i,G )
26: Add all elements of Wi to W ∗
27: return OPTIMALTREEDP(T,T,W ∗)
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3.D Proofs

3.D.1 Weighting by support: Proof of Proposition 3.1 and Theorem 3.1

For ease of reference, we reproduce Table 3.2 from the main paper here:

E
[
(·)(·)

∣∣αG,Q
]

δG(ab|cd) δG(ac|bd)
δG∗(ab|cd) ≥ 1

3 (1+2θQ)
(
αG,Q + 1

3 (1−αG,Q)(1−βQ)
)

≤ 1
3 (1+2θQ)

( 1
3 (1−αG,Q)(1+βQ)

)
δG∗(ac|bd) ≥ 1

3 (1−θQ)
( 1

3 (1−αG,Q)(1−βQ)
)

≤ 1
3 (1−θQ)

(
αG,Q + 1

3 (1−αG,Q)(1+βQ)
)

δG∗(ad|bc) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)
≤ 1

3 (1−θQ)
( 1

3 (1−αG,Q)(1+βQ)
)

E
[
(·)(·)

∣∣αG,Q
]

wG(ab|cd) wG(ac|bd)

δG∗(ab|cd) ≥ 1
3 (1+2θQ)

(
αG,Q + 1

3 (1−αG,Q)(1−βQ)
)2 ≤ 1

3 (1+2θQ)
( 1

3 (1−αG,Q)(1+βQ)
)2

δG∗(ac|bd) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)2 ≤ 1
3 (1−θQ)

(
αG,Q + 1

3 (1−αG,Q)(1+βQ)
)2

δG∗(ad|bc) ≥ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1−βQ)

)2 ≤ 1
3 (1−θQ)

( 1
3 (1−αG,Q)(1+βQ)

)2

Recall that the expected value and variance of αG,Q across genes is denoted by ᾱQ and

σ2
α .

Proposition 3.1. For each estimated gene tree G, E
[
δG(ab|cd)− δG(ac|bd)

]
≥ θQᾱQ −

2
3(1− ᾱQ)βQ and E

[
wG(ab|cd)−wG(ac|bd)

]
≥ 1

9θQ(3+2βQ)(ᾱQ
2+σ2

α)+
2
9(3−βQ)θQᾱQ−

4
9(1− ᾱQ)βQ.

Proof. To prove the Proposition, we start with the following lemma.

Lemma 3.1. For each estimated gene tree G with a given αG,Q,

E
[
δG(ab|cd)−δG(ac|bd)

∣∣αG,Q
]
≥ θQαG,Q−

2
3
(1−αG,Q)βQ

and

E
[
wG(ab|cd)−wG(ac|bd)

∣∣αG,Q
]
≥ 1

9
(3αG,Q−2βQ+2αG,QβQ+6)θQαG,Q−

4
9
(1−αG,Q)βQ .
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Proof. From Table 3.2, we can compute

E
[
δG(ab|cd)−δG(ac|bd)

∣∣αG,Q
]

=E
[(

δG(ab|cd)−δG(ac|bd)
)(

δG∗(ab|cd)+δG∗(ac|bd)+δG∗(ad|bc)
)∣∣∣αG,Q

]
≥1

3
(
(1+2θQ)αG,Q +

1
3
(1−αG,Q)(1−βQ)

)
− 1

3
(
(1−θQ)αG,Q +

1
3
(1−αG,Q)(1+βQ)

)
=θQαG,Q−

2
3
(1−αG,Q)βQ ;

similarly,

E
[
wG(ab|cd)−wG(ac|bd)

∣∣αG,Q
]

=E
[(

wG(ab|cd)−wG(ac|bd)
)(

δG∗(ab|cd)+δG∗(ac|bd)+δG∗(ad|bc)
)∣∣∣αG,Q

]
≥1

3
(1+2θQ)αG,Q

(
αG,Q +

2
3
(1−αG,Q)(1−βQ)

)
+
(1

3
(1−αG,Q)(1−βQ)

)2

− 1
3
(1−θQ)αG,Q

(
αG,Q +

2
3
(1−αG,Q)(1+βQ)

)
−
(1

3
(1−αG,Q)(1+βQ)

)2

≥1
9
(3αG,Q−2βQ +2αG,QβQ +6)θQαG,Q−

4
9
(1−αG,Q)βQ .

From this lemma, we can prove the proposition. First, assume αG,Q is drawn from a

discrete distribution. Then,

E
[
δG(ab|cd)−δG(ac|bd)

]
= ∑

αG,Q

E
[
δG(ab|cd)−δG(ac|bd)

∣∣αG,Q
]
P(αG,Q)

≥ ∑
αG,Q

(
θQαG,Q−

2
3
(1−αG,Q)βQ

)
P(αG,Q) = θQᾱQ−

2
3
(1− ᾱQ)βQ
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and

E
[
wG(ab|cd)−wG(ac|bd)

]
= ∑

αG,Q

E
[
wG(ab|cd)−wG(ac|bd)

∣∣αG,Q
]
P(αG,Q)

≥ ∑
αG,Q

(1
9
(
3αG,Q−2βQ +2αG,QβQ +6

)
θQαG,Q−

4
9
(1−αG,Q)βQ

)
P(αG,Q)

=
1
9

θQ(3+2βQ)E[α2
G,Q]+

2
9
(3−βQ)θQᾱQ−

4
9
(1− ᾱQ)βQ

=
1
9

θQ(3+2βQ)(ᾱQ
2 +σ

2
α)+

2
9
(3−βQ)θQᾱQ−

4
9
(1− ᾱQ)βQ .

It is straightforward to change these calculations to use integral instead of sum and P(αG,Q) to

the PDF in the case that the distribution of αG,Q is continuous.

Theorem 3.1. Given estimated gene trees furnished with support generated under

MSC+Error+Support model, there exist conditions where (3.3) guarantee a statistically consis-

tent estimator of S∗ but (3.2) does not, and the reverse is not true.

Proof. Recall that (3.1) states

W (S,G ) := ∑
G∈G

∑
Q∈Q(S)

wG(S ↾ Q) .

It means that in order to produce a statistically consistent estimator using (3.1), the

following equation must be satisfied for the true species tree topology S∗ and any species tree

topology S:

E
[
W (S∗,G )−W (S,G )

]
= |G | ∑

Q∈Q(S)
E
[
wG(S∗ ↾ Q)−wG(S ↾ Q)

]
≥ 0 (3.9)

Notice that proving for any quartet Q = {a,b,c,d} we have E
[
wG(ab|cd) −

wG(ac|bd)
]
≥ 0 and E

[
wG(ab|cd)−wG(ad|bc)

]
≥ 0 where S∗ ↾ Q = ab|cd is sufficient to

prove (3.9); on the other hand, proving for any quartet Q = {a,b,c,d} where the internal branch
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of S∗ ↾ Q corresponds to only one branch in S∗, we have E
[
wG(ab|cd)−wG(ac|bd)

]
≥ 0 and

E
[
wG(ab|cd)−wG(ad|bc)

]
≥ 0 where S∗ ↾ Q = ab|cd is necessary to prove (3.9).

Thus, from Proposition 3.1, we have guaranteed statistical consistency for weighted
ASTRAL for support under

D =
⋂

Q∈Q(S)

{
(θQ, ᾱQ,σα ,βQ) ∈ [0,1]4 :

1
9

θQ(3+2βQ)(ᾱQ
2 +σ

2
α )+

2
9
(3−βQ)θQᾱQ−

4
9
(1− ᾱQ)βQ ≥ 0

}
.

Similarly, we have guaranteed statistical consistency for unweighted ASTRAL under

D′ =
⋂

Q∈Q(S)

{
(θQ, ᾱQ,σα ,βQ) ∈ [0,1]4 : θQᾱQ−

2
3
(1− ᾱQ)βQ ≥ 0

}
.

To prove Theorem 3.1, we only need to prove that D′ is a proper subset of D.

We can prove D′ ⊆ D, as for any Q, if (θQ, ᾱQ,σα ,βQ) ∈ [0,1]4 and θQᾱQ −
2
3(1− ᾱQ)βQ ≥ 0, then

1
9

θQ(3+2βQ)(ᾱQ
2 +σ

2
α)+

2
9
(3−βQ)θQᾱQ−

4
9
(1− ᾱQ)βQ

=
1
9

θQ(3+2βQ)σ
2
α +

1
3

θQ(1−θQ)ᾱQ
2 +(

1
3

θQᾱQ +
2
3
)
(
θQᾱQ−

2
3
(1− ᾱQ)βQ

)
≥ 0 .

We can also prove D′ ̸= D, as if for some Q, θQ = 0.25, ᾱQ = 0.5,βQ = 0.4,

θQᾱQ−
2
3
(1− ᾱQ)βQ =− 1

120
< 0

and

1
9

θQ(3+2βQ)(ᾱQ
2 +σ

2
α)+

2
9
(3−βQ)θQᾱQ−

4
9
(1− ᾱQ)βQ =

7
720

+
19

180
σ

2
α > 0 .

Thus D′ is a proper subset of D and we conclude the proof.
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3.D.2 Weighting by length: Proof of Propositions 3.2 and 3.3 and
Theorem 3.2

Before providing the proofs, we remind the reader of one property of the coalescent

model. According to the coalescent model, at any point along a branch of the species tree with i

gene tree lineages, the time (i.e., distance) x to the next coalescent event, reducing the number of

lineages to i−1, is exponentially distributed with the rate
( i

2

)
, resulting in probability density

function (PDF):
i(i−1)

2
e−

i(i−1)
2 x , (3.10)

and the two lineages that coalesce are independent of x.

Proposition 3.2. For a true quartet species tree S∗ with topology ab|cd and input gene trees G

generated under the naive model with any multiplier λ , let f be the distance between anchors of

S∗. As f −→ 0, given k = Θ( f−2) gene trees, we have Var[XG] = Θ f (1) and

E[XG]√
Var[XG]

=
1+4λ

1+2λ

√
3
2

f +O( f 2) .

Proof. We analyze balanced and unbalanced trees separately.

Case 1: Unbalanced trees (i.e., the root of S∗ has a terminal branch as a child). W.o.l.g.,

we assume the root branch is located on branch leading to d.

Let p,q, and r be the MRCA nodes of (a,b), (a,c), and (a,d) on rooted species tree

S∗, respectively. Let p′ and r′ be the points of coalescence of leaves a,b and leaves c,d on

the rooted gene tree G, respectively. Let x, y0, and z be the CU difference in heights of

points (p, p′), (q,r), and (r,r′), respectively. Note that f is the length of (p,q). Let L :=

lS∗(a, p)+ lS∗(b, p)+ lS∗(c,r)+ lS∗(d,r). Notice that lG(a, p)+ lG(b, p)+ lG(c,r)+ lG(d,r)= λL

and lG(a,b)+ lG(c,d) = λ (2x+2z+L).

Let fX(x) be the probability density that x is the CU difference in heights of (p, p′) and
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p′ is the lowest point of coalescence. Notice that by (3.10):

fX(x) =



e−x 0≤ x≤ f

1
(2

3)

(
e− f (2

3

)
e−(

2
3)(x− f )

)
= e−3x+2 f f ≤ x≤ f + y0

1
(2

4)

(
e− f e−(

2
3)y0
(2

4

)
e−(

2
4)(x− f−y0)

)
= e−6x+5 f+3y0 f + y0 ≤ x

Let fZ|X(z;x) be the probability density that z is the CU difference in heights of (r,r′),

conditioned on that x is the CU difference in heights of (p, p′) and p′ is the lowest point of

coalescence. Notice that:

fZ|X(z;x) =


e−z 0≤ x≤ f + y0 and 0≤ z

e−
(

z−(x− f−y0)
)
= e−z+x− f−y0 0≤ x− f − y0 ≤ z

We specify three coalescence scenarios by indicator functions δ1,δ2,δ3: i) δ1 indicates

0≤ x < f ; ii) δ2 indicates f ≤ x < f + y0; iii) δ3 indicates f + y0 ≤ x.

Note that

E
[
wG(ab|cd)

]
= E

[
(δ1 +δ2 +δ3)wG(ab|cd)

]
E
[
w2

G(ab|cd)
]
= E

[
(δ1 +δ2 +δ3)w2

G(ab|cd)
]
.

Similarly, since only scenarios 2 and 3 have deep coalescence events that may lead to gene tree

disagreement with the species tree, and by the symmetry of all three topologies under scenarios

2 and 3,

E
[
wG(ac|bd)

]
= E

[
(δ2 +δ3)wG(ab|cd)

]
E
[
w2

G(ac|bd)
]
= E

[
(δ2 +δ3)w2

G(ab|cd)
]
.
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Figure S3.22. Illustration of the unbalanced case. Lengths in CU/SU units are denoted in
blue/red. Branches in green have a total length L/λL in CU/SU units. The right-hand side shows
the position of p′ in relation to q and r in various cases.
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Thus,

E[XG] = E
[
wG(ab|cd)

]
−E

[
wG(ac|bd)

]
= E

[
δ1wG(ab|cd)

]
, (3.11)

and since wG(ab|cd)wG(ac|bd) = 0,

Var[XG] =E[X2
G]−E2[XG] = E

[
w2

G(ab|cd)+w2
G(ac|bd)

]
−E2[XG]

=E
[
(δ1 +2δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG] .

(3.12)

We next compute both elements of (3.11) as well as some elements of (3.12) (others will not be

necessary).

• δ1: When G has topology ab|cd, p′ must be the lowest point of coalescence. Thus,

E
[
δ1wG(ab|cd)

]
=
∫ f

0

∫ +∞

0
e−λ (2x+2z+L) fX(x) fZ|X(z;x)dzdx

=
∫ f

0

∫ +∞

0
e−λ (2x+2z+L)e−xe−zdzdx

=
e−λL(1− e−(1+2λ ) f )

(1+2λ )2 ;

E
[
δ1w2

G(ab|cd)
]
≤ E

[
δ1wG(ab|cd)

]
= O( f ) .

• δ2: When G has topology ab|cd, p′ must be the lowest point of coalescence. Thus,

E
[
δ2w2

G(ab|cd)
]

=
∫ f+y0

f

∫ +∞

0
e−λ (4x+4z+2L) fX(x) fZ|Y (z;y)dzdx

=
∫ f+y0

f

∫ +∞

0
e−λ (4x+4z+2L)e−3x+2 f e−zdzdx

=
1− e−(3+4λ )y0

(1+4λ )(3+4λ )
e−(1+4λ ) f−2λL .
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• δ3: When G has the topology ab|cd, either p′ or q′ must be the lowest point of coalescence,

and by symmetry, the two cases must have the same PDFs. Thus,

E
[
δ3w2

G(ab|cd)
]

=
∫ +∞

f+y0

∫ +∞

x− f−y0

e−λ (4x+4z+2L)2 fX(x) fZ|X(z;x)dzdx

=
∫ +∞

f+y0

∫ +∞

x− f−y0

e−λ (4x+4z+2L)2e−6x+5 f+3y0e−z+x− f−y0dzdx

=
∫ +∞

f+y0

e−4λ (x+x− f−y0)−2λL2e−6x+5 f+3y0
1

1+4λ
dx

=
1

(3+4λ )(1+4λ )
e−(1+4λ ) f−(3+4λ )y0−2λL .

Replacing in (3.11), we get

E[XG] =E
[
δ1wG(ab|cd)

]
=

e−λL(1− e−(1+2λ ) f )

(1+2λ )2 =
e−λL

1+2λ
f +O( f 2) ;

and replacing in (3.12), we get

Var[XG] =E
[
(δ1 +2δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG] = E

[
2(δ2 +δ3)w2

G(ab|cd)
]
+O( f )

=
2e−(1+4λ ) f−2λL

(3+4λ )(1+4λ )
+O( f ) =

2e−2λL

(3+4λ )(1+4λ )
+O( f ) ,

from which our assumption of Var[XG] = Ω(1) follows.

Case 2: Balanced tree.

Let p,q, and r be the MRCA nodes of (a,b), (c,d), and (a,d) on rooted species tree

S∗, respectively. Let p′ and q′ be the points of coalescence of leaves a,b and leaves c,d on the

rooted gene tree G, respectively. Let x, x0, y, and y0 be the CU difference in heights of points

(p, p′), (p,r), (q,q′), and (q,r), respectively. Note that f = x+ y is CU length of path (p,q).

Let L := lS∗(a, p)+ lS∗(b, p)+ lS∗(c,q)+ lS∗(d,q). Notice that lG(a, p)+ lG(b, p)+ lG(c,q)+

lG(d,q) = λL and lG(a,b)+ lG(c,d) = λ (2x+2y+L).

We specify three coalescence scenarios by indicator functions δ1,δ2,δ3: i) δ1 indicates
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0≤ x < x0; ii) δ2 indicates x0 ≤ x,0≤ y < y0; iii) δ3 indicates x0 ≤ x,y0 ≤ y.
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Figure S3.23. Illustration of the balanced case. Lengths in CU/SU units are denoted in blue/red.
Branches in green have a total length L/λL in CU/SU units. The right-hand side shows the
position of p′ and q′ in relation to r in various cases.

Note that

E
[
wG(ab|cd)

]
= E

[
(δ1 +δ2 +δ3)wG(ab|cd)

]
E
[
w2

G(ab|cd)
]
= E

[
(δ1 +δ2 +δ3)w2

G(ab|cd)
]
.

Similarly, since only scenarios 3 have deep coalescence events that may lead to gene tree

disagreement with the species tree, and by the symmetry of all three topologies under scenarios

3,

E
[
wG(ac|bd)

]
= E

[
δ3wG(ab|cd)

]
E
[
w2

G(ac|bd)
]
= E

[
δ3w2

G(ab|cd)
]
.
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Thus,

E[XG] = E
[
wG(ab|cd)

]
−E

[
wG(ac|bd)

]
= E

[
(δ1 +δ2)wG(ab|cd)

]
; (3.13)

and since wG(ab|cd)wG(ac|bd) = 0,

Var[XG] =E[X2
G]−E2[XG] = E

[
w2

G(ab|cd)+w2
G(ac|bd)

]
−E2[XG]

=E
[
(δ1 +δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG] .

(3.14)

• δ1: Here,

E
[
δ1wG(ab|cd)

]
=
∫ x0

0

∫ +∞

0
e−λ (2x+2y+L)e−xe−ydydx

=
e−λL(1− e−(1+2λ )x0)

(1+2λ )2 =
e−λLx0

1+2λ
+O(x2

0) =
e−λLx0

1+2λ
+O( f 2) ;

and

E
[
δ1w2

G(ab|cd)
]
≤ E

[
δ1wG(ab|cd)

]
= O( f ) .

• δ2: Here,

E
[
δ2wG(ab|cd)

]
=
∫ +∞

x0

∫ y0

0
e−λ (2x+2y+L)e−xe−ydydx

=
e−λL(1− e−(1+2λ )y0)e−(1+2λ )x0

(1+2λ )2 =
e−λLy0

1+2λ
+O( f 2) ;

and

E
[
δ2w2

G(ab|cd)
]
≤ E

[
δ2wG(ab|cd)

]
= O( f ) .

• δ3: Similar to the unbalanced case, when G has the topology ab|cd, either p′ or q′ must be

the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs.
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Thus,

E
[
δ3w2

G(ab|cd)
]
=
∫ +∞

x0

∫ +∞

x−x0+y0

e−λ (4x+4y+2L)2e−x0e−y0e−6x+6x0e−y+x−x0+y0dydx

=
∫ +∞

x0

e−4λ (x+x−x0+y0)−2λL2e−x0e−y0e−6x+6x0
1

1+4λ
dx

=
1

(3+4λ )(1+4λ )
e−(1+4λ )(x0+y0)−2λL =

1
(3+4λ )(1+4λ )

e−(1+4λ ) f−2λL .

Replacing in (3.13), we get

E[XG] = E
[
(δ1 +δ2)wG(ab|cd)

]
=

e−λL(x0 + y0)

1+2λ
+O( f 2) =

e−λL f
1+2λ

+O( f 2) ;

and replacing in (3.14), we get

Var[XG] =E
[
(δ1 +δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG]

=E
[
2δ3w2

G(ab|cd)
]
+O( f )

=
2e−(1+4λ ) f−2λL

(3+4λ )(1+4λ )
+O( f ) =

2e−2λL

(3+4λ )(1+4λ )
+O( f ) ,

from which our assumption of Var[XG] = Θ f (1) follows.

Thus, in both balanced and unbalanced cases,

E[XG]√
Var[XG]

=
e−λL

1+2λ
f +O( f 2)√

2e−2λL

(1+4λ )(3+4λ ) +O( f )
=

√
1+

4λ +4λ 2

3(1+2λ )2

√
3
2

f +O( f 2)

Proposition 3.3. For a true quartet species tree S∗ with topology ab|cd and input gene trees G

generated under the variable rate model, let f be the distance between anchors of S∗ and L be

the total length of all other branches. Assume that for every branch segment I, the variance of
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its multiplier is bounded above: Var(ΛI
S†)≤ ε2 where ε2 = e−λL

(16+32λ )+(6+32λ+32λ 2)L

(
20(λ+λ 2)

9(1+2λ )2

)3
.

As f −→ 0, given k = Θ( f−2) gene trees, we have Var[XG] = Θ f (1) and

E[XG]√
Var[XG]

≥
√

3
2

(
1− 4λ 2

(1+4λ )2

)− 1
2

f +O( f 2) .

Proof. We follow the same logic in proof of Proposition 3.2.

Case 1: Unbalanced trees. Let P(x) be functions to random variables denoting SU

difference in heights of points (p, p′) where p′ is x CU distance above p; let R(z) be functions to

random variables denoting SU difference in heights of points (r,r′) where r′ is z CU distance

above r. Note that P( f + y0)+R(z) = P( f + y0 + z) where P( f + y0) denote the SU length

of (p,r). Let random variable Λ :=
(
lS†(a, p)+ lS†(b, p)+ lS†(c,r)+ lS†(d,r)

)
be the total SU

terminal branch lengths and the constant value L be the CU distance corresponding to Λ.

• δ1: When G has topology ab|cd, p′ must be the lowest point of coalescence. Thus,

E
[
δ1wG(ab|cd)

]
=E
[∫ f

0

∫ +∞

0
e−2P(x)−2R(z)−Λ fX(x) fZ|X(z;x)dzdx

]
=E
[∫ f

0

∫ +∞

0
e−2P(x)−2R(z)−Λe−xe−zdzdx

]
=E
[∫ f

0

∫ +∞

0
e−2P(x)−2R(z)−Λ−x−zdzdx

]
;

and

E
[
δ1w2

G(ab|cd)
]
≤ E

[
δ1wG(ab|cd)

]
= O( f ) .
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Figure S3.24. Illustration of the unbalanced case. Lengths in CU/SU units are denoted in
blue/red. Branches in green have a total length L/Λ in CU/SU units. The right-hand side shows
the position of p′ in relation to q and r in various cases.
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• δ2: When G has topology ab|cd, p′ must be the lowest point of coalescence. Thus,

E
[
δ2w2

G(ab|cd)
]

=E
[∫ f+y0

f

∫ +∞

0
e−4P(x)−4R(z)−2Λ fX(x) fZ|Y (z;y)dzdx

]
=E
[∫ f+y0

f

∫ +∞

0
e−4P(x)−4R(z)−2Λe−3x+2 f e−zdzdx

]
=
∫ f+y0

f

∫ +∞

0
E
[
e−4P(x)−4R(z)−2Λ

]
e−3x−z+2 f dzdx .

• δ3: When G has the topology ab|cd, either p′ or q′ must be the lowest point of coalescence,

and by symmetry, the two cases must have the same PDFs. Thus,

E
[
δ3w2

G(ab|cd)
]

=E
[∫ +∞

f+y0

∫ +∞

x− f−y0

e−4P(x)−4R(z)−2Λ2 fX(x) fZ|X(z;x)dzdx
]

=E
[∫ +∞

f+y0

∫ +∞

x− f−y0

e−4P(x)−4R(z)−2Λ2e−6x+5 f+3y0e−z+x− f−y0dzdx
]

=
∫ +∞

f+y0

∫ +∞

x− f−y0

E
[
e−4P(x)−4R(z)−2Λ

]
2e−5x−z+4 f+2y0dzdx .

Replacing in (3.11), by Jensen’s inequality, we get

E[XG] =E
[
δ1wG(ab|cd)

]
= E

[∫ f

0

∫ +∞

0
e−2P(x)−2R(z)−Λ−x−zdzdx

]
≥
∫ f

0

∫ +∞

0
eE
[
−2P(x)−2R(z)−Λ−x−z

]
dzdx

=
∫ f

0

∫ +∞

0
e−2λx−2λ z−λL−x−zdzdx

=
e−λL(1− e−(1+2λ ) f )

(1+2λ )2 =
e−λL

1+2λ
f +O( f 2) .

And replacing in (3.12), we get

Var[XG] =E
[
(δ1 +2δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG] = E

[
2(δ2 +δ3)w2

G(ab|cd)
]
+O( f )

=
∫ f+y0

f

∫ +∞

0
E
[
e−4P(x)−4R(z)−2Λ

]
2e−3x−z+2 f dzdx

+
∫ +∞

f+y0

∫ +∞

x− f−y0

E
[
e−4P(x)−4R(z)−2Λ

]
4e−5x−z+2 f+2y0dzdx+O( f ) ,
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from which our assumption of Var[XG∗] = Θ f (1) follows.

Let FP(u;x), FR(v;z), and FΛ(w) be the CDF of P(x), R(z), and Λ respectively; let

FPRΛ(u,v,w;x,z) and FPRΛ(u,v,w;x,z) be the joint CDF and the joint PDF. Let F−1
P (t;x),

F−1
R (t;z), and F−1

Λ
(t) be the inverse function of CDF of P(x), R(z), and Λ respectively.

Then,

E
[
e−2
(

2P(x)+2R(z)+Λ

)]
=
∫ +∞

0

∫ +∞

0

∫ +∞

0
e−2(2u+2v+w)FPRΛ(u,v,w;x,z)dwdvdu

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
e−2(2u+2v+w) ∂ 3FPRΛ

∂u∂v∂w
dwdvdu

=
∫ +∞

0

∫ +∞

0

(
e−2(2u+2v+w) ∂ 2FPRΛ

∂u∂v

∣∣∣+∞

w=0

−
∫ +∞

0
(−2)e−2(2u+2v+w) ∂ 2FPRΛ

∂u∂v
dw
)

dvdu

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
2e−2(2u+2v+w) ∂ 2FPRΛ

∂u∂v
dvdudw

=
∫ +∞

0

∫ +∞

0

(
2e−2(2u+2v+w) ∂FPRΛ

∂u

∣∣∣+∞

v=0
−
∫ +∞

0
(−8)e−2(2u+2v+w) ∂FPRΛ

∂u
dv
)

dudw

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
8e−2(2u+2v+w) ∂FPRΛ

∂u
dudwdv

=
∫ +∞

0

∫ +∞

0

(
8e−2(2u+2v+w)FPRΛ(u,v,w;x,z)

∣∣∣+∞

u=0

−
∫ +∞

0
(−32)e−2(2u+2v+w)FPRΛ(u,v,w;x,z)du

)
dwdv

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
32e−2(2u+2v+w)FPRΛ(u,v,w;x,z)dwdvdu

≤
∫ +∞

0

∫ +∞

0

∫ +∞

0
32e−2(2u+2v+w) min{FP(u;x),FR(v;z),FΛ(w)}dwdvdu

=
∫ +∞

0

∫ +∞

0

∫ +∞

0
32e−2(2u+2v+w)

(∫ 1

0
1t≤FP(u;x)1t≤FR(v;z)1t≤FΛ(w)dt

)
dwdvdu

=
∫ 1

0

∫ +∞

0

∫ +∞

0

∫ +∞

0
32e−2(2u+2v+w)1u≥F−1

P (t;x)1v≥F−1
R (t;z)1w≥F−1

Λ
(t)dwdvdudt

=
∫ 1

0

∫ +∞

F−1
P (t;x)

∫ +∞

F−1
R (t;z)

∫ +∞

F−1
Λ

(t)
32e−2(2u+2v+w)dwdvdudt

=
∫ 1

0
e−2
(

2F−1
P (t;x)+2F−1

R (t;z)+F−1
Λ

(t)
)

dt .
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Thus, for any 0 < t0 < 1,

E
[
e−2
(

2P(x)+2R(z)+Λ

)]
≤
∫ 1

0
e−2
(

2F−1
P (t;x)+2F−1

R (t;z)+F−1
Λ

(t)
)

dt

≤
∫ t0

0

1︷ ︸︸ ︷
e−2
(

2F−1
P (0;x)+2F−1

R (0;z)+F−1
Λ

(0)
)

dt +
∫ 1

t0
e−2
(

2F−1
P (t0;x)+2F−1

R (t0;z)+F−1
Λ

(t0)
)

dt

≤t0 + e−2
(

2F−1
P (t0;x)+2F−1

R (t0;z)+F−1
Λ

(t0)
)
.

By Chebyshev’s inequality (using t
− 1

2
0 as the constant), F−1

P (t0;x)≥ (λ − ε√
t0
)x, F−1

R (t0;z)≥

(λ − ε√
t0
)y, and F−1

Λ
(t0)≥ (λ − ε√

t0
)L. Thus,

E
[
e−2
(

2P(x)+2R(z)+Λ

)]
≤ t0 + e(−λ+ ε√

t0
)(4x+4z+2L)

.

Thus,

Var[XG∗ ]≤
∫ f+y0

f

∫ +∞

0

(
t0 + e

(−λ+ ε√
t0
)(4x+4z+2L)

)
2e−3x−z+2 f dzdx

+
∫ +∞

f+y0

∫ +∞

x− f−y0

(
t0 + e

(−λ+ ε√
t0
)(4x+4z+2L)

)
4e−5x−z+2 f+2y0 dzdx+O( f )

=
∫ f+y0

f

(
2t0e−3x+2 f +

2
1+4λ − 4ε√

t0

e
(−λ+ ε√

t0
)(4x+2L)−3x+2 f

)
dx

+
∫ +∞

f+y0

(
4t0e−6x+3 f+3y0 +

4
1+4λ − 4ε√

t0

e
(−λ+ ε√

t0
)(8x−4 f−4y0+2L)−6x+3 f+3y0

)
dx+O( f )

=
2
3

t0(e− f − e− f−3y0 )+
2

(1+4λ − 4ε√
t0
)(3+4λ − 4ε√

t0
)

(
e
(−λ+ ε√

t0
)(4 f+2L)− f − e

(−λ+ ε√
t0
)(4 f+4y0+2L)− f−3y0)

+
4
6

t0e−3 f−3y0 +
4

(1+4λ − 4ε√
t0
)(6+8λ − 8ε√

t0
)

e
(−λ+ ε√

t0
)(4 f+4y0+2L)−3 f−3y0 +O( f )

=
2
3

t0 +
2e
−2L(λ− ε√

t0
)

(1+4λ − 4ε√
t0
)(3+4λ − 4ε√

t0
)
+O( f ) .

Case 2: Balanced tree. Let P(x) be functions to random variables denoting SU difference

in heights of points (p, p′) where p′ is x CU distance above p; let Q(y) be functions to random

variables denoting SU difference in heights of points (q,q′) where q′ is y CU distance above q.

Note that P(x0 + z)−P(x0) = Q(y0 + z)−Q(y0) where P(x0) and Q(y0) denote the SU length

of (p,r) and (q,r), respectively. Let random variable Λ :=
(
lS†(a, p)+ lS†(b, p)+ lS†(c,q)+
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lS†(d,q)
)

be the total SU terminal branch lengths and the constant value L be the CU distance

corresponding to Λ.

𝑥;𝑃(𝑥)

a b c d

𝑥0;𝑃(𝑥0)

𝑦0;𝑄(𝑦0)

p

r

q

pʼ

qʼ
𝑦;𝑄(𝑦)

a b c d

p

r

pʼ

𝑥;𝑃(𝑥)𝑥0;𝑃(𝑥0)

i)

a b c d

p

r

q

pʼ

qʼ

𝑥;𝑃(𝑥)

𝑥0;𝑃(𝑥0)

𝑦0;𝑄(𝑦0)
𝑦;𝑄(𝑦)

ii)

a b c d

p

r

q

pʼ qʼ

𝑥;𝑃(𝑥)

𝑥0;𝑃(𝑥0)

𝑦0;𝑄(𝑦0)

𝑦;𝑄(𝑦)

iii)

Figure S3.25. Illustration of the balanced case. Lengths in CU/SU units are denoted in blue/red.
Branches in green have a total length L/Λ in CU/SU units. The right-hand side shows the
position of p′ and q′ in relation to r in various cases.

• δ1: Here,

E
[
δ1wG(ab|cd)

]
=E
[∫ x0

0

∫ +∞

0
e−2P(x)−2Q(y)−Λe−xe−ydydx

]
;

and

E
[
δ1w2

G(ab|cd)
]
≤ E

[
δ1wG(ab|cd)

]
= O( f ) .
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• δ2: Here,

E
[
δ2wG(ab|cd)

]
=E
[∫ +∞

x0

∫ y0

0
e−2P(x)−2Q(y)−Λe−xe−ydydx

]
;

and

E
[
δ2w2

G(ab|cd)
]
≤ E

[
δ2wG(ab|cd)

]
= O( f ) .

• δ3: Similar to the unbalanced case, when G has the topology ab|cd, either p′ or q′ must be

the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs.

Thus,

E
[
δ3w2

G(ab|cd)
]
=E
[∫ +∞

x0

∫ +∞

x−x0+y0

e−4P(x)−4Q(y)−2Λ2e−x0e−y0e−6x+6x0e−y+x−x0+y0dydx
]

=
∫ +∞

x0

∫ +∞

x−x0+y0

E
[
e−4P(x)−4Q(y)−2Λ

]
2e−5x−y+4x0dydx .

Replacing in (3.13), we get

E[XG] = E
[
(δ1 +δ2)wG(ab|cd)

]
= E

[∫ x0

0

∫ +∞

0
e−2P(x)−2Q(y)−Λe−xe−ydydx+

∫ +∞

x0

∫ y0

0
e−2P(x)−2Q(y)−Λe−xe−ydydx

]
≥
∫ x0

0

∫ +∞

0
e−2λx−2λy−λLe−xe−ydydx+

∫ +∞

x0

∫ y0

0
e−2λx−2λy−λLe−xe−ydydx

=
(x0 + y0)e−λL

1+2λ
+O( f 2) =

f e−λL

1+2λ
+O( f 2) ;
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and replacing in (3.14), for any 0 < t0 < 1,

Var[XG] =E
[
(δ1 +δ2 +2δ3)w2

G(ab|cd)
]
−E2[XG]

=E
[
2δ3w2

G(ab|cd)
]
+O( f )

=
∫ +∞

x0

∫ +∞

x−x0+y0

E
[
e−4P(x)−4Q(y)−2Λ

]
4e−5x−y+4x0dydx

≤
∫ +∞

x0

∫ +∞

x−x0+y0

(
t0 + e(−λ+ ε√

t0
)(4x+4y+2L)

)
4e−5x−y+4x0dydx+O( f )

=
∫ +∞

x0

(
4e−6x−y0+5x0t0 +

4
1+4λ − 4ε√

t0

e−6x−y0+5x0+(−λ+ ε√
t0
)(8x−4x0+4y0+2L)

)
dx+O( f )

=
4
6

e−x0−y0t0 +
4

(1+4λ − 4ε√
t0
)(6+8λ − 8ε√

t0
)
e−x0−y0+(−λ+ ε√

t0
)(4x0+4y0+2L)

+O( f )

=
2
3

t0 +
2e−2L(λ− ε√

t0
)

(1+4λ − 4ε√
t0
)(3+4λ − 4ε√

t0
)
+O( f ) ,

from which our assumption of Var[XG] = Θ f (1) follows.

Thus, for both balanced and unbalanced trees, the variance is bounded the by same

expression, and thus in both cases,

Var[XG∗ ]≤
2
3

t0 +2
e−2λL

(1+4λ )(3+4λ )

(1− 4ε

(1+4λ )
√

t0
)(1− 4ε

(3+4λ )
√

t0
)e−

2εL√
t0

+O( f )

≤2
3

t0 +2
e−2λL

(1+4λ )(3+4λ )

(1− 4ε

(1+4λ )
√

t0
)(1− 4ε

(3+4λ )
√

t0
)(1− 2εL√

t0
)
+O( f )

≤2
3

t0 +2
e−2λL

(1+4λ )(3+4λ )

(1− 4ε

(1+4λ )
√

t0
− 4ε

(3+4λ )
√

t0
− 2εL√

t0
)
+O( f )

=
2
3

t0 +
2e−2λL

(3+16λ +16λ 2)− ε√
t0

(
(16+32λ )+(6+32λ +32λ 2)L

) +O( f ) .

Now, let C := (16+32λ )+(6+32λ +32λ 2)L, t0 =
( C

1
3 ε

1
3

(3+16λ+16λ 2)e
2
3 λL

)2, we get

Var[XG∗ ]≤
2e−2λL

3(3+16λ +16λ 2)2

(
(εeλLC)

2
3 +

9+48λ +48λ 2

1− (εeλLC)
2
3

)
+O( f )

=
2e−2λL

3(3+16λ +16λ 2)

( (εeλLC)
2
3

3+16λ +16λ 2 +3+
3(εeλLC)

2
3

1− (εeλLC)
2
3

)
+O( f ) .
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Now, recalling that ε = e−λL

C

(
20(λ+λ 2)

9(1+2λ )2

) 3
2
,

Var[XG∗ ]≤
2

3(3+16λ +16λ 2)(1+2λ )2( 20
9 (λ +λ 2)

3+16λ +16λ 2 +3+
3(20

9 )(λ +λ 2)

1−
20
9 (λ+λ 2)

1+4λ+4λ 2

)
+O( f )

≤ 2

3(3+16λ +16λ 2)(1+2λ )2

(20
27

λ +3+
20
3 (λ +λ 2)

1− 5
9

)
+O( f )

=
2

3(3+16λ +16λ 2)(1+2λ )2

(20
27

λ +3+15(λ +λ
2)
)
+O( f )

<
2

3(1+2λ )2

(3+16λ +15λ 2

3+16λ +16λ 2

)
+O( f ) .

Theorem 3.2. Under the conditions of Proposition 3.2 or Proposition 3.3,

P
(

∑
G∈G

wG(ab|cd)≤ ∑
G∈G

wG(ac|bd)
)
≤ P

(
∑

G∈G
δG(ab|cd)≤ ∑

G∈G
δG(ac|bd)

)
.

Proof. We start with proving this theorem under the conditions of Proposition 3.2. Recall

XG := wG(ab|cd)−wG(ac|bd) and YG := δG(ab|cd)−δG(ac|bd), and let X̄G = 1
k ∑G∈G XG and

ȲG = 1
k ∑G∈G YG. Recall also that under Proposition 3.2, proved below, under conditions of

Theorem 3.2, we have Var[XG] = Ω(1) and

E[XG]√
Var[XG]

=−

√
3+16λ +16λ 2

3+16λ +15λ 2

√
3
2

f +O( f 2) . (3.15)

Similarly, we can compute the ratio of mean and variance for Y (corresponding to

unweighted ASTRAL):

E[YG] := E
[
δG(ab|cd)−δG(ac|bd)

]
= 1− e− f = f +O( f 2)
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Var[YG] := Var
[
δG(ab|cd)−δG(ac|bd)

]
=

5
3

e− f − e−2 f =
2
3
+O( f )

and thus,

E[YG]√
Var[YG]

=

√
3
2

f +O( f 2) . (3.16)

Given Proposition 3.2, we can use Berry–Esseen theorem to derive

P
(
X̄G ≤ 0

)
=P
( √

k√
Var[XG]

(X̄G −E[XG])≤−
√

k√
Var[XG]

E[XG]
)
=

Φ(−
√

k
E[XG]√
Var[XG]

)+O(
1√
k
) ,

where Φ denotes CDF of the standard Normal distribution. Since k = Θ( f−2),

P
(
X̄G ≤ 0

)
=Φ(−

√
k

E[XG]√
Var[XG]

)+O( f ) (3.17)

and

P
(
ȲG ≤ 0

)
= Φ(−

√
k

E[YG]√
Var[YG]

)+O( f ) , (3.18)

Combining equations (3.17) and (3.18) with (3.15) and (3.16), we get

P
(

∑
G∈G

wG(ab|cd)≤ ∑
G∈G

wG(ac|bd)
)
= Φ(−

√
3+16λ +16λ 2

3+16λ +15λ 2

√
3
2

f
√

k)+O( f )

and

P
(

∑
G∈G

δG(ab|cd)≤ ∑
G∈G

δG(ac|bd)
)
= Φ(−

√
3
2

f
√

k)+O( f ) .

As f −→ 0, the interval (−
√

1+ 4λ+4λ 2

3(1+2λ )2

√
3
2 f
√

k,−
√

3
2 f
√

k) does not shrink because
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Θ( f
√

k) = Θ(1). Thus, we have

Φ(−
√

3
2

f
√

k)−Φ(−

√
1+

4λ +4λ 2

3(1+2λ )2

√
3
2

f
√

k) = Θ(1)

ensuring that

P
(

∑
G∈G

wG(ab|cd)≤ ∑
G∈G

wG(ac|bd)
)
≤ P
(

∑
G∈G

δG(ab|cd)≤ ∑
G∈G

δG(ac|bd)
)
.

The proof under Proposition 3.3 is similar. Recall that under Proposition 3.3, Var[XG∗ ] =

Θ f (1) and

E[XG∗ ]√
Var[XG∗ ]

≥
√

3
2

(
1− 4λ 2

(1+4λ )2

)− 1
2

f +O( f 2) . (3.19)

Given this result, the rest of the proof is similar to the proof under the conditions of

Proposition 3.2, culminating in

P
(

∑
G∗∈G

wG∗(ab|cd)≤ ∑
G∗∈G

wG∗(ac|bd)
)
≤Φ

(
−
(

1− 4λ 2

(1+4λ )2

)− 1
2

√
3
2

f
√

k

)
+O( f ) .
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3.D.3 Placement-based Algorithm

In this section, for a node v in tree G, we let Lv denote the set of leaves under v.

Proof of Theorem 3.3

Theorem 3.3. Let S be a species tree, i be a species not in LS, S be the set of possible

species tree topologies by placing i onto S, and S′ be the output of Algorithm S3.1. Then,

W (S′,G ) = maxŜ∈S W (Ŝ,G ).

Proof. We start with two propositions, proved below.

Proposition 3.5. After each call to ColorLeafSet(L ∗,X ,T,G ,W ) with a T ̸= /0, W [T ] =

∑G∈G W (T,G).

Proposition 3.6. Before calling OptimalTreeDP in line 6 of Algorithm S3.1, lookup table W

contains all tripartitions corresponding to internal nodes of all tree topologies in S .

By Proposition 3.6, all tripartitions corresponding to internal nodes of all tree topologies

in S pre-computed. Then, OptimalTreeDP uses a dynamic programming algorithm similar to

the one formulated by Mirarab and Warnow 2015 to compute argmaxŜ∈S W (Ŝ,G ).

Proposition 3.5. After each call to ColorLeafSet(L ∗,X ,T,G ,W ) with a T ̸= /0, W [T ] =

∑G∈G W (T,G).

Proof. For a gene tree node w and a color X , let L X
w denote the set of leaves in Lw colored by

X . For an internal node w, let u,v be the children of w, p be the parent of w (if w is not the root),

and e denote the branch (w, p). For a leaf i and internal node w, let Pi,w denote path between

i and w and s(P) = 1−∏ê∈P(1− s(ê)). For leaves i, j, let m(i, j) denote MRCA of i and j.

Referring back to Table S3.1, we first establish the connection between recursive formulas of the

algorithm and counter definitions.
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• When uX = ∑i∈L X
u

e−l(Pi,w), vX = ∑i∈L X
v

e−l(Pi,w),

wX :=
(
(uX + vX )e−l(e)

)
= ∑

i∈L X
w

e−l(Pi,w)e−l(e) = ∑
i∈L X

w

e−l(Pi,p) .

• When u+XX = ∑{i, j}⊆L X
u

e−l(Pi, j), v+XX = ∑{i, j}⊆L X
v

e−l(Pi, j),

w+
XX := u+XX + v+XX +uX vX = ∑

{i, j}⊆L X
u

e−l(Pi, j)+ ∑
{i, j}⊆L X

v

e−l(Pi, j)+ ∑
i∈L X

u

e−l(Pi,w) ∑
j∈L X

v

e−l(P j,w)

= ∑
{i, j}⊆L X

u

e−l(Pi, j)+ ∑
{i, j}⊆L X

v

e−l(Pi, j)+ ∑
i∈L X

u

∑
j∈L X

v

e−l(Pi, j)

= ∑
{i, j}⊆L X

w

e−l(Pi, j) .

• For X ̸= Y , when u+XY = ∑(i, j)∈L X
u ×L Y

u
e−l(Pi, j), v+XY = ∑(i, j)∈L X

v ×L Y
v

e−l(Pi, j),

w+
XY :=u+XY + v+XY +uX vY +uY vX

= ∑
(i, j)∈L X

u ×L Y
u

e−l(Pi, j)+ ∑
(i, j)∈L X

v ×L Y
v

e−l(Pi, j)+ ∑
(i, j)∈L X

u ×L Y
v

e−l(Pi, j)+ ∑
(i, j)∈L X

v ×L Y
u

e−l(Pi, j)

= ∑
{i, j}⊆L X

w ×L X
w

e−l(Pi, j) .

• When u−XX = ∑{i, j}⊆L X
u

e−l(Pi, j) ∏ê∈Pm(i, j),w

(
1− s(ê)

)
, v−XX = ∑{i, j}⊆L X

v
e−l(Pi, j) ∏ê∈Pm(i, j),w

(
1− s(ê)

)
,

w−XX :=(u−XX + v−XX +uX vX )
(
1− s(e)

)
= ∑
{i, j}⊆L X

u

e−l(Pi, j) ∏
ê∈Pm(i, j),p

(
1− s(ê)

)
+ ∑
{i, j}⊆L X

v

e−l(Pi, j) ∏
ê∈Pm(i, j),p

(
1− s(ê)

)
+ ∑

(i, j)∈L X
u ×L X

v

e−l(Pi, j)
(
1− s(e)

)
= ∑
{i, j}⊆L X

w

e−l(Pi, j) ∏
ê∈Pm(i, j),p

(
1− s(ê)

)
.

• When u−XY = ∑(i, j)∈L X
u ×L Y

u
e−l(Pi, j)

(
1− s(Pm(i, j),w)

)
, v−XY = ∑(i, j)∈L X

u ×L Y
u

e−l(Pi, j)
(
1− s(Pm(i, j),w)

)
,

and X ̸= Y , similarly,

w−XY :=(u−XY + v−XY +uX vY +uY vX )
(
1− s(e)

)
= ∑

(i, j)∈L X
w ×L Y

w

e−l(Pi, j)
(
1− s(Pm(i, j),p)

)
.

• For X ̸= Y , when uXX |Y = ∑{i, j}⊆L X
u

∑k∈
{

k′∈L Y
v :Lm(i, j)⫋Lm(i,k′)

} e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k)), vXX |Y =
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∑{i, j}⊆L X
v

∑k∈
{

k′∈L Y
v :Lm(i, j)⫋Lm(i,k′)

} e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k)),

wXX |Y :=
(
uXX |Y + vXX |Y +(u+XX −u−XX )vY +uY (v+XX − v−XX )

)
e−l(e) .

Notice that (u+XX − u−XX )vY = ∑{i, j}⊆L X
u

∑k∈L Y
v

e−l(Pi, j)−l(Pk,w)s(Pm(i, j),w) and uY (v+XX − v−XX ) =

∑{i, j}⊆L X
v

∑k∈L Y
u

e−l(Pi, j)−l(Pk,w)s(Pm(i, j),w). Thus,

wXX |Y = ∑
{i, j}⊆L X

w

∑
k∈
{

k′∈L Y
w :Lm(i, j)⫋Lm(i,k′)

}e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k))e
−l(e)

= ∑
{i, j}⊆L X

w

∑
k∈
{

k′∈L Y
w :Lm(i, j)⫋Lm(i,k′)

}e−l(Pi, j)−l(Pk,p)s(Pm(i, j),m(i,k)) .

• Similarly, when uXY |Z = ∑(i, j)∈L X
u ×L Y

u
∑k∈

{
k′∈L Z

u :Lm(i, j)⫋Lm(i,k′)

} e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k)), v−XY |Z =

∑(i, j)∈L X
v ×L Y

v
∑k∈

{
k′∈L Z

v :Lm(i, j)⫋Lm(i,k′)

} e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k)), for distinct X ,Y,Z,

wXY |Z = ∑
(i, j)∈L X

w ×L Y
w

∑
k∈
{

k′∈L Z
w :Lm(i, j)⫋Lm(i,k′)

}e−l(Pi, j)−l(Pk,p)s(Pm(i, j),m(i,k)) .

• For distinct X ,Y,Z,

wXX |Y Z :=vX uY Z|X +uX vY Z|X +uXX |ZvY + vXX |ZuY +uXX |Y vZ + vXX |Y uZ

+(u+Y Zv+XX −u−Y Zv−XX )+(u+XX v+Y Z−u−XX v−Y Z) .

Notice that,

vX uY Z|X = ∑
(h,i, j,k)∈L X

v ×L Y
u ×L Z

u ×L X
u

δG(hk|i j)e−l(Ph,w)e−l(Pi, j)−l(Pk,w)s(Pm(i, j),m(i,k))

= ∑
(h,i, j,k)∈L X

v ×L Y
u ×L Z

u ×L X
u

δG(hk|i j)e−l(Pi, j)−l(Pk,h)s(Pm(i, j),m(i,k))

= ∑
(h,i, j,k)∈L X

v ×L Y
u ×L Z

u ×L X
u

wG(hk|i j) .
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Similarly,

uX vY Z|X = ∑
h∈L X

u
i∈L Y

v
j∈L Z

v
k∈L X

v

wG(hk|i j),uXX |ZvY = ∑
{h,i}⊆L X

u
j∈L Z

u
k∈L Y

v

wG(hi| jk),vXX |ZuY = ∑
{h,i}⊆L X

v
j∈L Z

v
k∈L Y

u

wG(hi| jk),

uXX |Y vZ = ∑
{h,i}⊆L X

u
j∈L Y

u
k∈L Z

v

wG(hi| jk),vXX |Y uZ = ∑
{h,i}⊆L X

v
j∈L Y

v
k∈L Z

u

wG(hi| jk) .

Also,

u+Y Zv+XX −u−Y Zv−XX = ∑
(h,i)∈L Y

u ×L Z
u

∑
{ j,k}⊆L X

v

e−l(Ph,i)−l(P j,k)

− ∑
(h,i)∈L Y

u ×L Z
u

∑
{ j,k}⊆L X

v

e−l(Ph,i)−l(P j,k) ∏
ê∈Pm(h,i),w

(
1− s(ê)

)
∏

ê∈Pm( j,k),w

(
1− s(ê)

)

= ∑
(h,i)∈L Y

u ×L Z
u

∑
{ j,k}⊆L X

v

e−l(Ph,i)−l(P j,k)

1− ∏
ê∈Pm(h,i),m( j,k)

(
1− s(ê)

)
= ∑

(h,i)∈L Y
u ×L Z

u

∑
{ j,k}⊆L X

v

wG(hi| jk) .

Similarly,

u+XX v+Y Z−u−XX v−Y Z = ∑
{h,i}⊆L X

u

∑
( j,k)∈L Y

v ×L Z
v

wG(hi| jk) .

Notice that above cases count exactly once all quartets hi| jk for all leaf nodes h, i colored X, j colored Y, k

colored Z such that MRCA of h, i, j,k is w; namely,

wXX |Y Z = ∑
{h,i}⊆L X

w

∑
j∈L Y

w

∑
k∈{k′:k′∈L Z

w ,MRCA(h,i, j,k′)=w}
wG(hi| jk) .

• We define I(G) to be the set of internal nodes of gene tree G and L X
G be the set of leaves of gene tree G with

color X . It is trivial to verify that at the

Q = ∑
G∈G

∑
w∈I(G)

wAA|BC + ∑
G∈G

∑
w∈I(G)

wBB|CA + ∑
G∈G

∑
w∈I(G)

wCC|AB .

At the end of procedure UpdateCounters, ∑w∈I(G) wXX |Y Z = ∑{h,i}⊆L X
G

∑( j,k)∈L Y
G×L Z

G
wG(hi| jk). Thus, Q
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returned by UpdateCounters satisfies:

Q = ∑
G∈G

 ∑
{h,i}⊆L A

G
( j,k)∈L B

G×L C
G

wG(hi| jk)+ ∑
{h,i}⊆L B

G
( j,k)∈L C

G×L A
G

wG(hi| jk)+ ∑
{h,i}⊆L C

G
( j,k)∈L A

G×L B
G

wG(hi| jk)

 .

For tripartition T = A|B|C, note that by assumption, before the call, all the gene tree leaves are colored

such that recoloring L ∗ by X would produce a coloring that matches T . Thus, at the end of the call to

ColorLeafSet, for each gene tree G, we have A∩LG = L A
G , B∩LG = L B

G , and C∩LG = L C
G . Then,

the value returned by UpdateCounters satisfies:

Q = ∑
G∈G

W (A|B|C,G) . (3.20)

It can be easily verified that after each call to ColorLeafSet(L ∗,X ,T,G ,W ), the species

tree tripartition T matches the coloring of all gene trees as required by conditions of (3.20),

concluding W [T ] = Q = ∑G∈G W (T,G).

Proposition 3.6. Before calling OptimalTreeDP in line 6 of Algorithm S3.1, lookup table W

contains all tripartitions corresponding to internal nodes of all tree topologies in S .

Proof. Each Ŝ ∈S places i above a different node w of S creating a new node corresponding to

tripartition Lw|{i}|LS−Lw covered in line 24. Besides new nodes, each existing internal node

w of S will correspond to a different tripartition after placing i onto S depending on the relative

location of w and i. Let u,v denote the larger and the smaller child of w. Node w corresponds to

Lu|{i}∪Lv|LS−Lw if i is under u, corresponds to {i}∪Lu|Lv|LS−Lw if i is under v, and

corresponds to Lu|Lv|{i}∪LS−Lw if i is above w. All three cases for each node w is covered

in lines 20–22.
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Proof of Theorem 3.4

Theorem 3.4. If there exists a species tree topology S∗ satisfying that for each quartet subtree

ab|cd,

∑
G∈G

w(ab|cd)> max
(

∑
G∈G

w(ac|bd), ∑
G∈G

w(ad|bc)
)
, (3.6)

then the output of Algorithm S3.2 will be S∗.

Proof. We start with a Corollary 3.1 of Theorem 3.3

Corollary 3.1. Assuming (3.6), if S is compatible with the true tree S∗, then S′ is compatible

with S∗.

By induction, Wi in line 8 of Algorithm S3.2 should contain all tripartitions of S∗, as at

that time Si = S∗ by Corollary 3.1. Consequentially, the output of Algorithm S3.2 must also be

S∗.

Proof of Proposition 3.4

Proposition 3.4. The time complexity of Algorithm S3.2 is O(kHn2 logn).

Proof. We begin by a proposition and a corollary.

Proposition 3.7. Procedure ColorNode on any species tree node w takes O(kH|Lw| log |Lw|)

time.

Proof (sketch) of Proposition 3.7. We can prove this proposition by induction. For an in-

ternal node w with larger child u and smaller child v, if for some constant C ≥ 6
log2 ,

ColorNode on u calls UpdateCounters at most Ck|Lu|(log |Lu|+ 1) times and ColorNode

on u calls UpdateCounters at most Ck|Lv|(log |Lv|+ 1) times, then ColorNode on w calls
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UpdateCounters at most

Ck|Lu|(log |Lu|+1)+Ck|Lv|(log |Lv|+1)+3k(|Lv|+1)

≤Ck|Lu|(log |Lw|+1)+Ck|Lv|(log
|Lw|

2
+1)+6k|Lv|

≤Ck|Lu|(log |Lw|+1)+Ck|Lv|(log |Lw|+1)−Ck|Lv| log2+6k|Lv|

≤Ck|Lw|(log |Lw|+1)+(6−C log2)k|Lv|

≤Ck|Lw|(log |Lw|+1) times.

It is easy to verify that each UpdateCounters takes O(HG) time where HG is the height of the

gene tree, and thus ColorNode on node w takes O(kH|Lw| log |Lw|) time.

Corollary 3.2 (Corollary of Proposition 3.7). For any tree topology S with n species, the Place

procedure on S takes O(kHn logn) time.

NaivePlacement of taxon set T makes r(|T |−3) calls to Place, each of which takes

O(kH|T | log |T |) time. Thus, NaivePlacement takes O(rkH|T |2 log |T |) time and when T =LS

and r = O(1), O(rkH|T |2 log |T |) = O(n2kH logn).

Proofs of Theorems 3.6 and Theorem 3.5

Theorem 3.6. Under the conditions of Theorem 3.4, the DAC Algorithm S3.3 will output S∗.

Proof. By Theorem 3.4, Si in line 5 of Algorithm S3.3 are compatible with S∗. With Corollary 3.1,

by induction, each Se in line 21 of Algorithm S3.3 is compatible with S∗. Consequentially, Wi in

line 26 contain all tripartitions of S∗, as at that time S′i = S∗, and the output of Algorithm S3.3

must also be S∗.

Theorem 3.5. When the inequality condition in Theorem 3.4 is satisfied, then the time complexity

of the DAC algorithm is O(n1.5+εkH) with arbitrarily high probability.
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Proof (sketch). From the inequality (3.6), we can trivially deduct that S∗ is the species tree

topology that maximizes the weighted quartet score and each Si in line 5 of Algorithm S3.3 is

compatible to S∗. Also, each Ce in line 15 of Algorithm S3.3 equals the set of species under the

edges coming off of the internal nodes on the path of S∗ corresponding to e.

We now introduce a proposition

Proposition 3.8. With high probability, maxe∈ESi
|Ce| ≤ 2

√
n logn+O(

√
n).

Proof. For each pair of nodes u,v of S∗, let Cu,v := {x : x ∈

LS,u is not on Px,v and v is not on Px,u}. It is easy to verify that for every e of Si,

Ce =Cu,v for some nodes u,v of S∗. For every u and v that are sufficiently apart so that Cu,v has

2
√

n logn+ω(
√

n) elements and a random Ti in line 4 of Algorithm S3.3,

P(Cu,v∩Ti = /0) =
(

1− 1√
n

)|Cu,v|
≤ e−

1√
n |Cu,v| =

1
n2 e−ω(1) = o

( 1
n2

)
.

By union bound, the probability that there exists a pair of nodes u,v of S∗ such that |Cu,v| ≥

2
√

n logn+ω(
√

n) and Cu,v∩Ti = /0 is o(1). Since, by definition, Ce∩Ti = /0 for every Ce, with

high probability, there exists no Ce having 2
√

n logn+ω(
√

n) elements.

Since |Ti| ∼ Binomial(n, 1√
n), with high probability |Ti| = O(

√
n) and calling

NaivePlacement on line 5 takes O(n1.5kH logn) time. It is easy to confirm that C/0 = /0 and

every call to Place takes as input a species tree topology of O(
√

n logn) species with high

probability. Thus, with high probability, each call to Place takes O(
√

nkH log2 n log logn) time

and all O(n) calls to Place takes O(n1.5kH log2 n log logn) time. Therefore, the time complexity

of the DAC algorithm is O(n1.5kH log2 n log logn) = O(n1.5+εkH) with high probability.
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Chapter 4

ASTRAL-Pro: Quartet-based Species Tree
Inference Despite Paralogy
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Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the

study of evolution because it enables accounting for discordance among evolutionary histories

across the genome. To this end, summary methods have been developed to allow accurate and

scalable inference of species trees from gene trees. However, most of these methods, including

the widely-used ASTRAL, can only handle single-copy gene trees and do not attempt to model

gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-

copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet

similarity between single-copy and multi-copy trees that accounts for orthology and paralogy.

We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find

the species tree that optimizes our quartet similarity measure using dynamic programming. By

studying its performance on an extensive collection of simulated datasets and on real datasets,

we show that ASTRAL-Pro is more accurate than alternative methods.

4.1 Introduction

The evolutionary history of a gene can differ from that of the species containing the gene

for several reasons (Maddison, 1997), including incomplete lineage sorting (ILS), duplication

and loss (duploss for short), gene transfer, hybridization. Species tree inference is a central

question in evolutionary biology and dealing with these sources of discordance is crucial. Many

approaches have been proposed for species tree inference, including gene trees-species tree

co-estimation (Heled and Drummond, 2010; Boussau et al., 2013; Szöllõsi et al., 2014; Liu,

2008; An et al., 2013) and species tree inference from sequence data (Chifman and Kubatko,

2014; Bryant et al., 2012; De Maio et al., 2013). However, the most scalable approach has

remained a two-step process: first infer gene trees independently of sequence data and then

combine them using summary methods. The goal of a summary method is to find the species

tree best explaining the gene trees according to a model of gene tree discordance. While the

ultimate goal is to develop summary methods modelling all sources of discordance, the literature
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has mostly focused on separate causes.

A major family of summary methods focuses on duplication and loss processes producing

multi-copy gene trees (Wehe et al., 2008; Chaudhary et al., 2010; Bansal et al., 2010; Ma et al.,

2000; Hallett and Lagergren, 2000; Bayzid et al., 2013). Most of these summary methods rely on

maximum parsimony reconciliation (Goodman et al., 1979) and aim at finding the species tree

with the minimum reconciliation cost. Example methods include DupTree (Wehe et al., 2008),

its later extension iGTP (Chaudhary et al., 2010; Bansal et al., 2010), DynaDup (Bayzid et al.,

2013) and earlier similar dynamic programming algorithms (Hallett and Lagergren, 2000). Other

methods take a more agnostic approach and minimize the distance between species trees and the

gene trees without necessarily invoking specific reasons for discordance. Example methods of

this type include MulRF (Chaudhary et al., 2013) and guenomu (De Oliveira Martins et al., 2016).

A recent result asserts that the optimal solution to the optimization problem solved by MulRF

is indeed a statistically consistent estimate of the species tree under a generic duplication-only

model of gene evolution (Molloy and Warnow, 2019). These methods are mostly designed to

handle duplication and loss, and although in simulations some have reasonable accuracy under

ILS and gene transfer (Chaudhary et al., 2015), they have not been widely adopted by biologists.

Several summary methods target ILS as modelled by the multi-species coalescence (MSC)

model (Pamilo and Nei, 1988; Rannala and Yang, 2003), and many of them are statistically

consistent (e.g., Liu et al., 2009; Larget et al., 2010; Mossel and Roch, 2010; Liu et al., 2010; Wu,

2012; Sayyari and Mirarab, 2016a; Liu and Yu, 2011; Vachaspati and Warnow, 2015). The most

successful summary method for ILS has arguably been ASTRAL (Mirarab et al., 2014), which,

due to its high accuracy (Giarla and Esselstyn, 2015; Molloy and Warnow, 2018; Ballesteros

and Sharma, 2019) and scalability (Mirarab and Warnow, 2015; Yin et al., 2019), has been used

to perform species-tree inference in numerous studies. ASTRAL, like several other methods

(e.g., Chifman and Kubatko, 2014; Sayyari and Mirarab, 2016a; Larget et al., 2010), relies

on dividing gene trees into unrooted four-taxon trees (called quartets), a feature that allows it

to address ILS and may contribute to its high accuracy. ASTRAL, however, was designed to
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handle single-copy gene trees reconstructed from sets of orthologous genes. This limitation

has restrained its application scope. As an example, two studies on plant transcriptomes had

to discard thousands of available multi-copy genes (Wickett et al., 2014; Leebens-Mack et al.,

2019) and only use the 400–800 single-copy gene trees. A recent result by Legried et al. (2020)

asserts that treating gene copies as alleles of a same gene, a feature ASTRAL supports (Rabiee

et al., 2019), is a valid method under a parametric model of gene duplication and loss and may

lead to accurate results. Du et al. (2019) have shown that random sampling of leaves works

well empirically and Markin and Eulenstein (2020) have shown that method to be consistent

under a model combining ILS and duplication and loss. Beyond ASTRAL, several methods have

focused on dividing multi-copy gene trees into single-copy genes without apparent duplications

(e.g., Marcet-Houben and Gabaldón, 2011; Scornavacca et al., 2011; Yang and Smith, 2014;

Dunn et al., 2013; Ballesteros and Hormiga, 2016). However, to our knowledge, no quartet-

based methods designed to handle duplication and loss currently exist. Extending quartet-based

methods to multi-copy gene trees while modeling orthology and paralogy is difficult.

We introduce the quartet-based species tree inference method ASTRAL for PaRalogs

and Orthologs (ASTRAL-Pro). Given a set of multi-copy gene family trees, ASTRAL-Pro seeks

to compute a single-copy tree (the species tree) maximizing the total similarity to the input

gene trees. To define the similarity, we introduce a new measure of quartet similarity between

single-copy and multi-copy trees accounting for orthology and paralogy. Tests on an extensive

set of simulated and real datasets provide evidence of ASTRAL-Pro’s robustness and accuracy.

4.2 Results

We start by informally introducing the methodology underlying ASTRAL-Pro, leaving

the formal definition and proofs to the Methods section. We will then compare the performances

of ASTRAL-Pro to leading alternative methods on simulated and real datasets.

189



4.2.1 ASTRAL-Pro Algorithm

Per-locus quartet similarity.

ASTRAL-Pro maximizes a measure of quartet similarity between a multi-copy and a

single-copy tree. Let us consider a rooted gene family tree where multiple leaves can have the

same label (i.e., the species identifier). We need a principled way to compare this tree to a species

tree where each species identifier appears once. The measure we define is based on several

observations.

(i) Internal nodes of the gene tree correspond to either duplication or speciation events;

thus, we can tag nodes of the tree as speciation or duplication (Def. 4.1). While the true tagging

is unknown, as we will see, it can be partially inferred (Fig. 4.1). (ii) Each quartet of leaves in the

gene tree defines two anchor nodes, and we refer to the Least Common Ancestor (LCA) of the

two anchors as the anchor LCA (Fig. 4.1). In a correctly tagged tree, a quartet has information

about the speciation events only if it includes four distinct species and if the LCA of any three out

of four leaves of the quartet is a speciation node (Fig. 4.1). Thus, to define our measure of quartet

similarity, we only include these speciation-driven quartets (SQ) and ignore the rest (Def. 4.2).

(iii) All the SQs on the same four species that share the same anchor LCA must also share the

same topology (Proposition 4.1). Thus, once we know the topology of one of them, the others do

not provide new information. We call these SQs equivalent (Def. 4.4); in our quartet measure,

we count them as one unit, and we consider them as part of the same quartet equivalence class.

Moreover, we show that, for all equivalent quartets, the gene copies present at the current time

all share the same ancestral locus at the time of the speciation event corresponding to the anchor

LCA (Proposition 4.2). See Methods for formal statements.

Based on these observations, we define the per-locus quartet score of a species tree S

with respect to a gene family tree G with tagged internal nodes to be the number of quartet

equivalence classes of G agreeing with S (Def. 4.5). We then define the Maximum per-Locus

Quartet-score Species Tree (MLQST) for a set G of gene trees as the tree that has the maximum
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Figure 4.1. Per-locus quartet score. Example gene family tree from the fungi dataset (Butler
et al., 2009) restricted to 5 species and a potential species tree. Two nodes of the gene tree are
tagged as duplication (red dots) and others as speciation. Quartet sbay1, smik1 | spar1,

scer1 is anchored by nodes u and v, where u is the anchor LCA. Because the LCAs of any
three leaves (u or v) are speciation nodes, this quartet is a speciation-driven quartet (SQ). Quartet
scas1, sbay2 | smik1, scer1 is anchored by node v and a duplication (red dot). Since
the duplication node is the LCA of three leaves, this quartet is a non-speciation-driven quartet
(non-SQ) that does not count toward the per-Locus (PL) Quartet score. Note u is the anchor
LCA of both scas1, sbay1 | smik1, scer1 and scas2, sbay1 | smik1, scer1; thus,
they form the equivalence class scas*, sbay1 | smik1, scer1. In this example, there are
10 equivalence classes of SQ quartets, eight of which match the species tree; thus, the PL quartet
similarity is 8. The goal of ASTRAL-Pro is to find the species tree that maximizes this score.

total per-locus quartet score with respect to G (Def. 4.6).

ASTRAL-Pro

As formalized in Theorem 4.1 in Methods, our new method is based on an efficient

dynamic programming algorithm to find the MLQST tree. The ASTRAL-Pro algorithm, like

ASTRAL, solves this problem restricted to a large search space X , defined heuristically using

Algorithm S4.1. The running time of ASTRAL-Pro grows polynomially with the number of

species, the number of genes, and the size of X (Claim 4.3). Finally, note that the per-locus

quartet score is only defined for rooted and tagged gene trees. Since, in practice, gene trees are

often unrooted and untagged, we also provide Algorithm 4.1 to tag and root gene trees using the

parsimony principle.
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Statistical consistency and local support.

In the presence of gene duplication and losses only, under the birth-death model called

GDL proposed by Arvestad et al. (2009), Theorem 4.2 (Methods) states that ASTRAL-Pro is

statistically consistent given correctly tagged and rooted error-free gene trees, even with partially

correct rooting (see Claim 4.1). Under the MSC model and in the absence of gene duplication

and gene loss, gene trees are single-copy. For single-copy gene trees, ASTRAL-Pro solves the

same problem as ASTRAL and thus, like ASTRAL, it is a statistically consistent estimator of

the species tree under the MSC model given a random sample of error-free gene trees (Mirarab

et al., 2014). However, we do not currently have a proof of consistency of ASTRAL-Pro under

models that combine GDL and ILS (see Discussions).

With correctly tagged error-free gene trees, differences in SQ topologies from the species

tree must be due to processes other than GDL, such as ILS (Proposition 4.3). We use this

observation to extend the local posterior probability (localPP) measure of branch support to

multi-copy gene trees (Def. 4.8).

4.2.2 Accuracy of ASTRAL-Pro in simulations

We first test ASTRAL-Pro (A-Pro for short) against two leading summary methods:

MulRF (Chaudhary et al., 2013) (optimizing an extension of the RF distance, Robinson and

Foulds, 1981, to multi-labelled trees) and DupTree (Wehe et al., 2008) (minimizing the duplica-

tion reconciliation cost, Maddison, 1997). We also compare A-Pro to ASTRAL-multi (Rabiee

et al., 2019), which is the feature of ASTRAL designed for handling multiple alleles (as opposed

to multiple copies); although ASTRAL-multi is not designed for multi-copy data, we include it

because of recent theoretical results showing that it is consistent under the GDL model (Legried

et al., 2020). We compare the methods in terms of the accuracy of the species tree topology that

they produce.

In our tests, we use two simulated datasets, one called S25, which is new to this study,
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Table 4.1. Simulation settings for S25 dataset with varying parameters. See Table S4.1 for full
parameters and Figures S4.1–S4.6 for full statistics.

Condition Parameter ranges
n = 25; k = 1000; τ ∼ LN(21.25;0.2)

Default λ+ = 4.9×10−10; λ− = λ+; Ne = 4.7×108

model C ≈ 5; ILS ≈ 70%
MGTE = 15% (500bp) or 36% (100bp)

Varying λ+,λ− λ+ ∈ {4.9,2.7,1.9,0.52,0}×10−10

(duploss rate) λ− ∈ {1,0.5,0.1,0}×λ+; C ≈ {5,2,1,0.2,0}
λ+ ∈ {4.9,1.9,0}×10−10;

Varying λ+,Ne Ne ∈ {4.7,1.9,0.48,0.0001}×108

(dup rate, ILS) ILS ≈{70,52,20,0}% ; C ≈ {5,1,0}
MGTE ≈ {15,15,15,16}% (500bp) or
{36,36,36,35}% (100bp) as Ne changes

n ∈ {10,25,100,250,500}
Varying n MGTE ≈ {15,15,17,18,18}% (500bp)

or {34,36,40,43,43}% (100bp)
Varying k k ∈ {25,100,250,1000,2500,10000}

n: number of ingroup species. k: number of genes. τ : tree height in generations. λ+: duplication
rate. λ−: loss rate. Ne: Haploid effective population size. We estimated the following empirically.
C: mean number of copies per species minus one when λ− = 0 and n = 25. ILS: mean RF
distance between true gene trees and the species tree when λ+ = 0. MGTE: mean RF distance
between true and estimated gene tree when λ+ = 0.
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(a) (b)

Figure 4.2. Species tree error on the S25 dataset for n = 25 in-group species, k = 1000 gene
trees, and both true and estimated gene trees from 100bp and 500bp alignments. (a) Controlling
duplication rate (box columns; labelled by C) and the loss rate (x-axis; ratio of the loss rate to
duplication rate). (b) Controlling the duplication rate (columns; labelled by C) and the ILS level
(x-axis; NRF between true gene trees and the species tree for λ+ = 0). A-Pro and ASTRAL-multi
are identical with λ+ = 0. See Table 4.1 for parameters and Fig. S4.7 for iGPT-duploss.

and one called S100 from Molloy and Warnow (2019), which is based on a real fungal dataset

(Butler et al., 2009; Rasmussen and Kellis, 2012). Both datasets were created by (1) simulating

true species and true gene trees under the DLCoal model, which is a unified model of ILS and

gene duplication and loss (Rasmussen and Kellis, 2012), (2) simulating a sequence alignment

from each true gene family trees, and (3) estimating a gene tree from each gene alignment. In

S25, we varied parameters that control the rate of duplication (λ+), the rate of loss (λ−), the

ILS level, the number of species (n), and the number of genes (k) (Table 4.1). We also varied

alignment length, which effectively varied the level of gene tree estimation error. The S100

dataset also varies all these parameters, except n. Thus, we simulate effects of ILS, duplication

and loss, and gene tree estimation error. See Methods for details.
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S25 dataset

Controlling duplication and loss rates.

We begin by describing the results of experiments that vary the duplication and loss

rates (λ+,λ−) (Fig. 4.2a). On true gene trees, A-Pro and DupTree are essentially tied in terms

of accuracy, except for the case with no duplication and loss where A-Pro is slightly more

accurate. Overall, the accuracy of A-Pro and DupTree is statistically indistinguishable under

these conditions (p-value = 0.79 according to a multi-variate ANOVA test). Increasing λ+

reduces error (p < 10−5), perhaps because additional copies provide more information, akin

to increasing the number of loci. Despite statistically significant increases (p = 0.006) in error

as λ− increases, both methods are quite robust to loss rates, losing at most 1.5% accuracy on

average when λ− = λ+ compared to no losses. MulRF has much higher error than other two

methods, with errors that range between 10% and 17% across model conditions (we remind the

reader that all these conditions exhibit high ILS, a process that MulRF ignores).

On estimated gene trees, the pattern changes, and the error of DupTree increases dramat-

ically while A-Pro remains relatively accurate. When λ+ = λ− = 0, DupTree has on average

an 11.5% error, whereas A-Pro has only a 4.5% error for 500bp. Adding duplications helps

both methods, but A-Pro remains more accurate. For example, with 100bp input gene trees (i.e.,

high estimation error), DupTree has an error between 50% to 260% higher than A-Pro. With

500bp input (i.e., low-error gene trees), differences are statistically significant (p < 10−5) but

are more modest in magnitude (across conditions, DupTree has a median of 28% more error).

The relative accuracy of A-Pro and DupTree is not a function of λ− (p =0.8) but may depend on

λ+ (p =0.05).

In terms of running time, on the default model condition, we observe that A-Pro is the

fastest method, taking less than a minute on this dataset, followed closely by DupTree (Fig. S4.8).
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Figure 4.3. Accuracy (y-axis) and running time (x-axis) of A-Pro as the number of genes k (a)
or the number of species n (b) changes. Both axis are in log-scale. As k increases, accuracy
increases. See also Figure S4.9.

Controlling the level of ILS.

As we change the ILS level (Table 4.1), the reason for the poor performance of MulRF

becomes clear (Fig. 4.2b). Without ILS, MulRF has excellent accuracy, often matching A-Pro

and beating DupTree on low-error gene trees. As the ILS level increases (especially above 20%),

the accuracy of MulRF deteriorates quickly. Overall, ILS has the strongest effect on accuracy

(p≪ 10−5) but its impact on methods varies (p≪ 10−5). DupTree seems as tolerant of ILS

as A-Pro, despite the fact that DupTree is not designed specifically for ILS, and both methods

are much more tolerant of ILS than MulRF. Nevertheless, once again, DupTree shows extreme

sensitivity to gene tree error.

To summarize, DupTree is relatively tolerant of ILS but less tolerant of gene tree error;

MulRF is tolerant of gene tree error but not of ILS; A-Pro is quite robust to both.
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Controlling the number of genes and species.

Increasing the number of genes k in the most difficult model condition (i.e., high λ+, λ−,

and ILS) results in continued improvement in accuracy for A-Pro for every value we tested up to

k = 104 (Fig. 4.3a). With true gene trees, the error reduces from 26% with k = 25 to below 1%

with k = 104. Even with less accurate gene trees, the error reduces to below 2% with increased

numbers of genes. Increasing k increases running time, which empirically grows proportionally

with k1.4 (Fig. S4.9a). Nevertheless, using 28 cores, the running time was never more than 3.5

minutes even with k = 104.

Increasing n from 25 to 500 shows that A-Pro is relatively robust to a large number of

species (Fig. 4.3b). With true gene trees, the error ranges between 2.5% with 10 species to

3.5% with 500 species. With estimated gene trees, error ranges between 4.1% to 9.5% (for

100bp) and between 2% and 5% (for 500bp). Note that as n increases, the gene tree error also

increases (Table 4.1; Fig S4.6). The running time of A-Pro increases roughly quadratically with

n (Fig. S4.9b) but is below 2 hours (given 28 cores) even for n = 500 (k = 1000).

4.2.3 S100 dataset

Patterns of performance on the S100 dataset are consistent with the S25 dataset (Fig. 4.4).

DupTree is highly accurate with true gene trees and gene trees with low estimation error but

quickly degrades in accuracy as gene tree error increases. MulRF is less sensitive to gene tree

error but is more sensitive to the ILS level (which is always moderate or low on this dataset). As

in S25, here, we see that using ASTRAL-multi to handle duplication and loss is not beneficial.

A-Pro works the best overall, ranking first in terms of mean error (rounded to two

significant digits) in 105 out of 120 test conditions and ranking second in 14 of the 15 remaining

cases (Table S4.2). Many of the conditions where A-Pro is ranked second are among those with

true gene trees where DupTree works great. The second-best method overall is MulRF, which

is not surprising given the low ILS levels in this dataset. As expected, all methods are helped

with increased numbers of genes; however, even with 500 genes, differences in accuracy remain,
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Figure 4.4. Species tree error on S100 dataset. We compare the species tree error of the four
methods, showing mean and standard error over 10 replicates for each model condition, with
varying numbers of genes (k) and sequence lengths (with Inf signifying true gene trees). Model
conditions are labeled as a/b where a is the level of ILS (1 or 5) and b is the duplication/loss
rate (1, 2, or 5).

especially with shorter gene sequences.

4.2.4 Accuracy on biological datasets

Plant (1kp) dataset

We reanalyze the transcriptome dataset of 103 plant species, which was previously

analyzed by Wickett et al. (2014) using 424 single-copy gene trees using ASTRAL. The original

study had also inferred 9683 multi-copy gene trees with up to 2395 leaves for 80 of the 103

species and three other genomes (a total of 83). However, due to a lack of suitable species tree
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methods, these gene trees were left unused (Methods). Here, we analyze all 9683 multi-copy

gene trees using A-Pro.
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Figure 4.5. Biological dataset. (a) Plant dataset (1kp). Right: ASTRAL on 424 single-copy
gene trees. Left: ASTRAL-Pro on 9683 multi-copy gene trees. Three genomes (noted by * and
dashed lines) were present in multi-copy dataset but not in the single-copy data. The single-copy
tree includes 23 species that were not in the multi-copy data and are pruned from the species
tree (localPP support is recomputed using gene trees pruned to the 80 common species). Five
branches (red) differ between the two trees. LocalPP support shown except when equal to 1. For
the main highly supported conflict (Gnetifer vs Gnepine), we show quartet support of alternative
topologies among single-copy gene trees using DiscoVista (Sayyari et al., 2018). (b) Fungi
dataset. Right: Concatenation of 706 single-copy gene trees with the red branch enforced as a
constraint(Butler et al., 2009). Left: ASTRAL-Pro on 7280 multi-copy gene trees.

A-Pro on multi-copy gene trees returns a species tree (Fig. 4.5a) similar to the single-copy

ASTRAL tree reported by the original study but with five differences. In contrast, DupTree

differs from the ASTRAL tree in 33 out of 77 branches (21/77 for iGTP-DupLoss) and violates
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many known biological relationships (Fig. S4.10). A-Pro has higher localPP than ASTRAL

(e.g., four versus eight branches with localPP below 0.95). The A-Pro tree is consistent with

ASTRAL for major groups, including placing Zygnematales (not Chara) as sister to all land

plants, the placement of Amborella as sister to the rest of angiosperms, and the monophyly of

Bryophytes (liverworts, mosses, and hornworts). Some of these consistencies with ASTRAL

(e.g., monophyly of Bryophytes) are in contrast to the concatenation analyses of single-copy

genes, as reported by Wickett et al. (2014).

Changes between the ASTRAL and A-Pro trees mostly have low support. In A-Pro,

unlike ASTRAL, Rosmarinus and Ipomoea are grouped together (albeit, with 0.6 localPP

support), which is likely the correct result as these species are in the same order (Lamiales).

The ASTRAL tree has only 0.75 localPP for dividing this order. The position of genus Yucca

has low support in the ASTRAL tree and has changed in the A-Pro tree. Interestingly, a recent

update to this transcriptome analysis using 1124 species (Leebens-Mack et al., 2019) (which

samples close genera Asparagales and Liliales) finds Yucca in a position identical to A-Pro.

Another change is the relative position of Coleochaetale and Chara which has low localPP

in both trees. Most consequentially, the main highly supported change is that A-Pro, unlike

ASTRAL, recovers the GnePine hypothesis (i.e., combining Gnetales and Pinaceae) with 1.0

localPP. This hypothesis is supported by several studies (Burleigh and Mathews, 2004; Zhong

et al., 2010, 2011; Laurin-Lemay et al., 2012) and all concatenation analyses from Wickett et al.

(2014). Examining quartet frequencies for single-copy gene trees around this branch, we see that

the second and third most frequent quartets do not match (Fig. 4.5a) and are skewed towards

GnePine; this pattern is not consistent with ILS as the main source of discordance, and may

suggest other processes such as hybridization. However, multi-copy gene trees also show a

similar pattern, with support for GnePine and Gnetifer swapped.

200



Fungal dataset

We reanalyze a dataset of 16 yeast species with 7,280 multi-copy gene families available

from Butler et al. (2009). To obtain the species tree, the original study used only 706 one-to-one

orthologs with concatenation and did not use multi-copy gene trees in species tree inference

(Methods). We used all amino acid multi-copy gene families as input to A-Pro.

The A-Pro species tree has 1.0 localPP everywhere and matches the published species tree

except for one branch (Fig. 4.5b). The position of Saccharomyces castellii as sister to Candida

glabrata and the Saccharomyces group in the original study was enforced by a constraint in

the ML search because the unconstrained analyses did not recover the relationship the authors

expected. This enforced constraint was justified based on genome rearrangement and syntenic

conservation, but was not recovered in the concatenation analyses. In the A-Pro tree, Candida

glabrata is at the base of this clade, matching the unconstrained concatenation analysis. Salichos

and Rokas (2013) also recovered the same topology as A-Pro and used this branch as an example

of relationships that challenge phylogenomics. While gene synteny evidence suggests that A-Pro

may be finding the wrong resolution, it is worth highlighting that it matches trees inferred using

substitution models.

4.3 Discussions

We introduced A-Pro, a summary method for combining multi-copy gene trees. By

allowing the use of multi-copy gene trees, A-Pro enables a manyfold increase in the number

of genes used in phylogenomic analyses. Note that neither concatenation nor ASTRAL (the

dominant methods used by practitioners) are able to use multi-copy genes. The main set of

methods available for multi-copy analyses are the co-estimation methods (e.g., Szollosi et al.,

2012; Szöllõsi et al., 2013; Boussau et al., 2013). However, these methods, while accurate,

are inherently less scalable than summary methods. A-Pro provides a scalable yet accurate

alternative to these co-estimation methods.
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Figure 4.6. Accuracy of the estimated species tree (y-axis) versus the number of single-copy
genes (x-axis) across all 50 replicates of the S25 dataset with k = 10,000 gene trees (from the
experiment varying k). The “Multi-copy” line, representing A-Pro, is using all gene trees while
the “Single-copy” line, representing ASTRAL, is only using the single-copy gene trees.

As an example for testing the advantage of using all multi-copy gene trees, we revisit

the simulated S25 dataset with k = 104 multi-copy gene trees. Among the 104 gene trees, we

have between 200 and 900 single-copy gene trees across our 50 replicates (the variation is due

to stochastic differences). An alternative to using ASTRAL-Pro is to use normal ASTRAL on

single-copy gene trees. Comparing ASTRAL on single-copy gene trees and ASTRAL-Pro on all

104 multi-copy gene trees shows a great loss of accuracy as a result of the filtering (Fig. 4.6).

Our simple filtering strategy, keeping all single-copy gene trees, does not consider orthology,

but is not dramatically different from the approach used by many (e.g., Wickett et al., 2014;

Leebens-Mack et al., 2019). Despite the potential for paralogy in single-copy genes, the example

shows the negative impact of gene filtering. This observation is consistent with prior results that

have established a close link between the accuracy of summary methods and the number of input

genes both in practice (for an overview, see Mirarab, 2019) and in theory (Shekhar et al., 2018).
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A-Pro is based on a per-locus quartet-based measure of similarity between multi-copy

gene trees and a species tree. The measure relies on internal nodes of gene trees being tagged

as speciation or duplication. Somewhat counter-intuitively, despite being a quartet measure, it

needs partially rooted trees (Claim 4.1). The measure defines an equivalence relationship on

quartets and counts each equivalence class only once, avoiding double-counting quartets that are

bound to have identical topologies. Avoiding double-counting is at the heart of the approach and

likely is a main reason behind its high accuracy on the simulated and empirical data we tested.

Quartet-based methods for handling multi-copy gene trees are not abundant. Besides

our method, one can attempt to sample single-copy gene trees, an approach that shows promise

but fails to model orthology/paralogy (Du et al., 2019). Legried et al. (2020) recently provided

theoretical and empirical evidence that simply treating gene copies as alleles may be sufficient.

We showed that this alternative, although attractive in theory, is less accurate and less scalable

than A-Pro. We are unaware of other quartet-based species tree inference methods for multi-copy

input. Nevertheless, our approach is not the only one that can be imagined and future work

should explore other quartet metrics.

To get rooted and tagged gene trees, we used the maximum parsimony principle, with

duplication and loss each penalized equally and deep coalescence not penalized at all (Methods).

The algorithm we use is not guaranteed to find the correct tags or the root under complex

scenarios involving gene duplication and subsequent losses. Thus, the consistency results under

the GDL model should be interpreted with this caveat in mind. A-Pro may be statistically

consistent even when gene trees are imperfectly rooted and tagged, but we leave this to be

determined in future work. Furthermore, there is a large literature on various ways of tagging and

rooting gene trees (e.g., Bansal et al., 2013; Durand et al., 2006; Jacox et al., 2016), including

other penalties for the duplication and loss events (e.g., there is a suggestion of losses having

half the penalty of duplications, David and Alm, 2011). It may also be possible to improve

tagging of gene trees using probabilistic orthology inference (Arvestad et al., 2004; Sennblad

and Lagergren, 2009) or using synteny information (Bourque et al., 2005; Chauve et al., 2013).
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However, these methods often require a species tree. It may be possible to use A-pro in an

iterative fashion, where the species tree is inferred, gene trees are re-tagged and re-rooted, and a

new species tree is inferred. Future work should explore these approaches.

A-Pro, like other summary methods, depends on accurate input trees. While A-Pro is

more robust to gene tree error than alternatives, combining it with co-estimation (Boussau et al.,

2013) or gene tree correction (Wu et al., 2013; Lafond et al., 2013, 2014; Scornavacca et al.,

2015; Noutahi et al., 2016; El-Mabrouk and Noutahi, 2019) may further improve its accuracy.

Future work should also explore extending A-Pro to multifurcating input gene trees because

contracting low support branches may help deal with gene tree error (Zhang et al., 2018).

ASTRAL-Pro, which maximizes the per-locus quartet score, is statistically consistent

under the MSC model (when given single-copy gene trees as input) and under a GDL model

(when given multi-copy gene trees as input). This makes one hope that it may also be consistent

under both causes of discordance combined. The DLCoal model (Rasmussen and Kellis, 2012)

accounts for ILS, duplication, and loss. Under this model, each duplication immediately creates

a daughter locus, which is unlinked from the parent locus; the duplication event gets fixed in

all species. Gene trees are seen as generated by first producing a locus tree via a birth-death

process that runs on the species tree and then running a MSC process on the locus tree. Because

the loci are considered as unlinked, the coalescence processes occur independently between the

parent and daughter loci (but the daughter MSC process is “bounded” at the time of duplication).

Interestingly, a new paper has suggested that simply selecting one copy of each gene at random

and feeding the resulting gene trees to ASTRAL would be consistent under the DLCoal model

(Markin and Eulenstein, 2020). Due to the independence of loci, dividing a multi-copy gene

family into its constituent loci can give us distributions on gene tree topologies that behave

similarly (though not identically) to the MSC model. The per-locus metric seeks to count quartet

topologies across loci as they existed at the time of speciation events relevant to a quartet (i.e., at

the time of the anchor LCA). When successful, it counts only topologies that are drawn from

independent coalescent processes. However, complicated scenarios involving a combination of
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duplications, losses and ILS can lead to incorrectly tagged gene trees. These scenarios create

complications for theoretical proofs. While our simulations were performed under the DLCoal

model, we leave it to the future to study whether ASTRAL-Pro is statistically consistent under

the DLCoal model.

Our simulations, which all followed the DLCoal model, do not consider some relevant

biological scenarios. Examples include whole genome duplication (WGD) events, interlocus

gene conversion, and hemiplasy of duplication and loss events (Li et al., 2020). Since ASTRAL-

Pro is non-parametric (i.e., does not assume rates of duplication), we predict that WGD events

do not impose a major obstacle. The impact of interlocus gene conversion is much harder to

predict and needs careful testing. Future work should study ASTRAL-Pro under these more

complex scenarios of duplication and loss.

4.4 Methods

4.4.1 The algorithm

Proofs of all propositions, lemmas, and claims can be found in supplementary material

(Proofs).

Notations and definitions

Let S be a set of n species. Let us suppose that we are given a set of binary gene trees

G , and, for each tree G ∈ G with leaf set LG = {1 . . .mG}, we have a mapping αG : LG→S

specifying in which species each gene is sampled. For a rooted tree G, we denote the set of

internal nodes in G by I(G), and, for each u ∈ I(G), we define LG(u) as the set of leaves below

u. We define two short-hands: αG(A) = {αG(i) : i ∈ A} for A⊂LG and αG(u) = αG(LG(u))

for a node u (i.e.; all species labels corresponding to a set A of gene tree leaves and all species

labels under a gene tree node u, respectively). The notation G ↾ A denotes G restricted to the set

A.

We let Ω(G) be the multi-labelled tree obtained by replacing each leaf l ∈ LG with
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αG(l). Multiple copies of the same species in a gene tree G may be created by gene duplication.

Note that we ignore other processes such as transfers, gene conversion, and hybridization. We

assume that each duplication creates a new genomic locus (i.e., a position along the genome) and

therefore, each locus, except the original one, has a parent locus (which may or may not have

survived to the present day). Thus, each element of LG can be theoretically mapped to its parent

locus, allowing us to “trace” the locus of each leaf to its ancestors.

In each gene tree G, we refer to a subset Q of four distinct elements of LG as a quartet.

The subtree of a fully resolved tree G restricted to a quartet Q exhibits two degree-three nodes.

We refer to these nodes as anchors of Q on G. As shown in Fig. 4.7, for a rooted tree G and for

a quartet Q, up to label permutations, G ↾ Q can only have two topologies: an unbalanced one

(when one anchor descends from the other), denoted as Q ∠ G, and a balanced one (otherwise),

denoted as Q ⊥ G. We say a tripartition (P1,P2,P3) of S “can anchor” a quartet Q of G iff

∀i : Pi∩αG(Q) ̸= /0.

Definition 4.1 (Tagged trees). We say that a rooted tree G is tagged if every internal node is

tagged either as duplication or as speciation. A node u with children u1 and u2 can be tagged as

speciation only if the sets αG(u1) and αG(u2) are mutually exclusive.

We note that these tags may or may not correspond to real speciation and duplica-

tion events. In particular, when loci coalescence before duplication events, a correct tagging

corresponding to actual events may not be possible.

Per-locus quartet score

Definition 4.2 (SQ). A quartet Q on a rooted tagged gene tree G is called a speciation-driven

quartet (SQ) iff |αG(Q)|= 4 and the LCA of any three out of four leaves of Q is a speciation

node. Equivalently, a quartet with topology ab|cd is a SQ if and only if its genes are all contained

in different species and the LCA of either a or b with either c or d is tagged as speciation. Let

ΣG denote the set of SQs in G.
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Figure 4.7. 1. An example of a quartet Q = {a,b,c,d} with (a) unbalanced topology (Q ∠ G)
and (b) balanced topology (Q⊥G). Anchors are u and v, and w is the anchor LCA. While w has
to be a speciation for Q to be considered a SQ, u and v (when different from w) can be either
speciation or duplication. 2. An example of equivalence classes. Three equivalence classes are
anchored on z: all eight quartets of the form {ai,b j,dk,e3}, of the form {ai,c j,dk,e3}, and of the
form {bi,c j,dk,e3}, all with balanced topology. Anchored on x: two equivalence classes with
unbalanced topology: {a1,b1,c1,d1} ∼ {a1,b1,c1,d3} and {a1,b1,c1,e3}. Anchored on y: two
equivalence classes: {a2,b2,c2,d1} ∼ {a2,b2,c2,d3} and {a2,b2,c2,e3}.

Definition 4.3 (Quartet anchor LCA). Let u and v be anchors of a quartet Q on a rooted tree G.

We refer to the LCA of u and v as the anchor LCA of Q on G and denote it as ψG(Q).

The last definition is central to our approach. Note that anchors of a SQ can be spe-

ciations or duplications (Fig. 4.7) and thus SQs are not simply quartets with anchors being

speciation nodes. Instead, they are quartets with a topology pre-determined by the speciation

event represented by the anchor LCA, regardless of subsequent duplications and losses. Such

subsequent duplications and losses may lead to multiple quartets being associated to the same

speciation event. Since these events include no new information on the speciation event, we

count only SQs towards the quartet score of a species tree and weight them in a non-trivial way

to avoid double-counting.

Definition 4.4 (Equivalent SQs). Two SQs on the same 4 species are equivalent if they have the

same anchor LCA; i.e., for two SQs, Q1 ∼ Q2 ⇐⇒ αG(Q1) = αG(Q2)∧ψG(Q1) = ψG(Q2).

Proposition 4.1. If Q1 and Q2 are equivalent SQs on G, then Ω(G ↾ Q1) and Ω(G ↾ Q2) are

isomorphic.
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Thus, equivalent SQs have the same quartet topology when mapped to species. Proposi-

tion 4.1 tells us that equivalent SQs do not provide any extra information on the speciation event,

and therefore, it is reasonable to count all equivalent SQs as one unit when computing the quartet

score of a species tree. This intuition is backed by the following proposition:

Proposition 4.2. Assuming a correctly rooted tagged tree G, for all equivalent SQs with a shared

anchor LCA w, the three (in the unbalanced case) or four (in the balanced case) quartet leaves

below w will all share an ancestral locus at the time of the speciation event corresponding to w.

We can now provide a natural definition of the quartet score. The equivalence relation

(Def. 4.4) partitions all quartets in equivalence classes and, by Proposition 4.1, for each equiva-

lence class, we can define a unique quartet tree labelled by S . By Proposition 4.2, each class

corresponds to an ancestral locus. We can denote each equivalence class in G as a pair, consisting

of the set of species and the anchor node
(
αG(Q),ψG(Q)

)
.

Definition 4.5 (Per-locus Quartet Score). The per-locus quartet score of a species tree S with

respect to a rooted tagged gene tree G is the number of equivalent quartet classes that match the

S topology. More formally, q(S,G) is defined as:

|{
(
αG(Q),ψG(Q)

)
: Q ∈ ΣG,Ω(G ↾ Q)≃ S ↾ αG(Q)}| .

The PL quartet score of S with respect to a set of tagged gene trees G is q(S,G ) = ∑G∈G q(S,G) .

Note that this definition gracefully handles missing data; gene family trees that do not

include a specific species will not contribute quartets that include that species.

Definition 4.6 (Maximum per-Locus Quartet Score Tree (MLQST) problem). Given a set of

rooted tagged gene trees G , find the species tree that maximizes the PL quartet score with

respected to input gene trees, i.e., argmaxS q(S,G ).

Finally, note that while the PL quartet score depends on rooting and tagging, it is robust

to some changes in the root placement; thus, the tree needs to be only partially rooted.
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Claim 4.1. If all nodes on the path between the root r and a node u are tagged as speciations,

changing the root to any branch on the path does not alter the PL quartet score.

4.4.2 Solving the MLQST problem

We start by briefly describing the ASTRAL algorithm to solve a related problem (the

MQSST problem), and then describe how we extend this approach to the MLQST problem.

Background: ASTRAL on single-copy gene trees.

Note that, a node in a binary single-copy unrooted species tree forms a tripartition of S

that implies the topology for all quartets anchored at that node, and this observation is at the base

of the scoring scheme of ASTRAL. More formally, let P = P1|P2|P3 and M = M1|M2|M3 be two

tripartitions, and let Ii j = |Mi∩Pj|. Any species tree that displays P will share a certain number

of quartets with any gene tree that displays M, and we call this number QI(P,M) (calculations

below extends to multifurcations if M is a d-partition). Defining B3 as the set of all permutations

of {1,2,3}, Mirarab et al. (2014) showed:

W (P) =
1
2 ∑

G∈G
∑

M∈P(G)

QI(P,M) where

QI(P,M) =
1
2 ∑
(i, j,k)∈B3

Ii1I j2Ik3(Ii1 + I j2 + Ik3−3)
(4.1)

and P(G) is the set of partitions representing internal nodes of G. The quartet score of a species

tree is simply the sum of the weights of its tripartitions. The division by half in W (P) is necessary

because the sum counts each shared quartet twice (once at each anchor).

ASTRAL finds the tree S that maximizes the quartet score using dynamic programming.

It recursively divides S into subsets, in each step, choosing the division that maximizes the sum

of the weights. To avoid exponential running time, instead of considering all ways of partitioning

a set A⊂S into A′ and A\A′, we constrain the search space to a given set of bipartitions. Let X
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be this set and X ′= {A : A|(S \A)∈X} and Y = {(C,D) :C∈X ′,D∈X ′,C∩D= /0,C∪D∈X ′}.

The quartet score of an optimal subtree on the cluster A, denoted as V (A), is

V (A) = max
(A′,A\A′)∈Y

V (A′)+V (A\A′)+W (A′|(A\A′)|(S \A)), (4.2)

where V ({a}) = 0 for all leaves a∈S . This value can be computed recursively, and the optimal

tree for V (S ) is the ASTRAL tree.

ASTRAL-Pro Algorithm

We extend here ASTRAL to multi-copy gene trees. The input to the new method, called

ASTRAL-Pro, is a set of rooted tagged gene trees. This extension involves three changes in

the way the weight w is computed: (i) To handle multi-copy gene trees, when computing the

tripartition associated to each node, we use αG to map labels to S . Note that, in a tripartition

M = M1|M2|M3, the Mi are sets and not multisets, so multiple copies of the same species are

considered only once. (ii) We change the weight calculation W (P) so that each equivalence class

of quartets is counted once instead of twice (only at its LCA anchor). (iii) When computing w,

we only sum over internal nodes tagged as speciations. In addition, two changes to the algorithm

procedure are needed: we need to root and tag gene trees and properly define the set X for

multi-copy trees). We now detail these changes.

Weight calculation.

Let G be a rooted tagged gene tree, w an internal node of G tagged as speciation and

P = (P1|P2|P3) a tripartition of S .

Definition 4.7. For a species tree tripartition P and a SQ equivalence class that has the LCA

anchor w in a gene tree G, we say that the SQ is mapped from left to P iff for each quartet Q in

the equivalence class (i) P can anchor Q and (ii) the leaves a and b under the anchor of Q that

appear first in a post-order traversal of G (e.g., u in Fig. 4.7) both map to the same side of P (that

is, αG(a) ∈ Pi,αG(b) ∈ Pi for some 1≤ i≤ 3). We denote such quartets by Q w−→ P.
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We now state a set of lemmas, followed by the main result.

Lemma 4.1. If Q1 ∼ Q2 and Q1
w−→ P, then Q2

w−→ P.

Lemma 4.2. For a speciation node w with left child w1 and right child w2, let M1 = αG(w1),

M2 = αG(w2) and M3 = {αG(z) : z ∈ LG \LG(w), LCA of w and z is tagged as speciation}.

Let Mw = (M1|M2|M3). Recall Ii j = |Mi∩Pj|. The number of SQ quartet equivalence classes

anchored to w and mapped from left to the species partition P can be counted as follows:

QIpro(P,Mw) = |{αG(Q) : Q⊂LG,Q
w−→ P}|=

∑
(i, j,k)∈B3, j<k

(
I1i

2

)
I2 jI2k + ∑

(i, j,k)∈B3

I1iI2 jI3k(I1i + I2 j−2)
2

(4.3)

Lemma 4.3. If Ω(G ↾ Q)≃ S ↾ αG(Q), there exists a unique P ∈P(S) satisfying Q
ψG(Q)−−−−→ P.

Lemma 4.4. Let 1speciation(w) be 1 for speciation nodes and 0 for duplication nodes, and let

wpro(P) = ∑
G∈G

∑
w∈I(G)

QIpro(P,Mw)×1speciation(w) .

Then: q(S,G ) = ∑P∈P(S)wpro(P) .

Theorem 4.1. The ASTRAL-Pro algorithm obtained by replacing W (P) function with wpro(P) in

the ASTRAL dynamic programming solves the MLQST problem exactly if X = 2S .

Proof. By Lemma 4.4, argmaxS q(S,G ) = argmaxS ∑P∈P(S)wpro(P). Thus, ASTRAL dynamic

programming can solve the optimization problem exactly given the full search space (the

argument is identical to that of ASTRAL and follows from the additive nature of q(S,G )).

We now make two claims and provide a sketch of proofs in Appendix (Proofs). Note that

by Claim 4.3, ASTRAL-Pro has polynomial running time.

Claim 4.2. For a set of gene trees G including only speciations, the tree returned by ASTRAL-Pro

is the same as the one returned by ASTRAL.
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Algorithm 4.1. Gene tree tagging and rooting.
procedure TAGANDROOT(G)

s← ∞

for edge e in G do
root G at e and let re be the new root
se← TAG(re)
if se < s then

r← re

s← se

root at r
TAG(r)

procedure TAG(u)
if u is a leaf then

score(u)← 0
else

ul,ur← children of u
score(u)← TAG(ur) + TAG(ul)
if αG(ul)∩αG(ur) = /0 then

tag u as Speciation
else

tag u as Duplication
if αG(ul) = αG(u)∨αG(ur) = αG(u) then

if αG(ul) = αG(ur) then
score(u)← score(u)+1

else
score(u)← score(u)+2

else
score(u)← score(u)+3

return score(u)

Claim 4.3. The asymptotic running time of ASTRAL-Pro is O(D|X |1.73) = O(D(nN)1.73) where

N =∑G∈G |LG| and D denotes the number of unique gene tree tripartitions tagged as speciations.

Tagging and rooting gene trees

Gene trees inferred from sequence data are neither rooted nor tagged. We use the

heuristics presented in Algorithm 4.1 to root and tag gene trees, noting that a partially-correct

rooting suffices (Claim 4.1). Given a rooted tree, we tag a node as duplication only if the node

cannot be tagged as speciation by Definition 4.1 (similar to observable duplication nodes defined

by Scornavacca et al., 2011); other nodes are assumed to be speciation.
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For rooting, we seek the root position that minimizes the number of duplications and

losses while allowing for “free” ILS. In more details, in each gene tree G, for two nodes u and

v where αG(u) = αG(v), we explain all differences in topologies below u and v by invoking

“free” ILS (as opposed to duplication/loss). Then, three scenarios are possible for a node u with

children ul and ur. (i) When u is duplication and αG(ul) = αG(ul), we do not need to invoke any

loss. One duplication suffices. (ii) If αG(ul)⊂ αG(ur) or vice versa, we need one loss on ul and

an arbitrary amount of ILS. (iii) Else, we need two losses (one in each side) and ILS to describe

the differences. Algorithm 4.1 computes the number of duplication and loss events using this

strategy, without penalizing ILS and fixing a cost of one for both duplications and losses. As

described, it requires quadratic time per rooting and thus cubic time to find an optimal rooting.

In our implementation, we used memoization to reduce this time to quadratic (details omitted).

The LCA-based linear algorithm of Scornavacca et al. (2011) could also be adapted.

Search Space

We need to constrain the ASTRAL search space to bipartitions in a set X . To define

X , we use a heuristic method relying on several strategies (see Algorithm S4.1; supplementary

material). First, we use a sampling algorithm (SampleFull procedure) to create single-copy

versions of each gene tree, creating a set F . This sampling algorithm prunes the right (or left)

subtrees below the highest duplication nodes in the tree, and recurses on each pruned tree, until

no species has multiple copies. In addition, per each gene, 2C (default: C = 4) single-copy trees

are sampled from F , creating a multiset I . This sampling can be probabilistic (taking each side

of a duplication with probability 1
2 ) for high numbers of duplications. When the number of input

trees is small, I may become too small; in these cases, I is augmented using another sampling

algorithm (SampleExtra procedure). We provide I as input to the algorithms implemented

in ASTRAL-III for building the set X . Finally, we complete all trees from F using the tree

completion algorithm of ASTRAL-III and add the resulting bipartitions to X . All methods used

guarantee that |X | grows polynomially with the number of species, gene trees, and duplication
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nodes.

Implementation

We implemented Algorithms 4.1 and S4.1 as part of a native C++ library called from

Java. We based on code on the ASTRAL-MP (Yin et al., 2019) code. The code is available for all

platforms, and can exploit multi-threading. A-Pro is available at https://github.com/chaoszhang/

A-pro.

Statistical Consistency

When the input set G has only speciation nodes, the MLQST problem reduces to the

Maximum Quartet Support Species Tree (MQSST) problem solved by ASTRAL (Mirarab

et al., 2014). Thus, like the MQSST, the MLQST is NP-hard (Lafond and Scornavacca, 2019).

Moreover, the solution to the MQSST problem is a statistically consistent estimator of the species

tree under the MSC model and thus ASTRAL-Pro is also statistically consistent in absence of

duplication.

In the presence of gene duplication and losses only, let us consider the birth-death model

proposed by Arvestad et al. (2009) and refer to it as the GDL model.

Proposition 4.3. Under the GDL model, every SQ in every correctly tagged rooted gene tree is

isomorphic in topology to the species tree.

Since all quartets in every equivalence class of SQs match the species tree, the per-locus

quartet score will be maximized by the species tree. The following theorem follows.

Theorem 4.2. Under the GDL model (Arvestad et al., 2009), the solution to the MLQST problem

is a statistically consistent estimator of the species tree for correctly rooted and tagged gene

trees.

In fact, we suspect that ASTRAL-Pro is statistically consistent under the GDL model

even when gene trees are imperfectly rooted and tagged. We leave the proof to future work.
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Finally, note that restricting to X does not impact statistical consistency, as each bipartition of

the species tree has a non-zero chance of appearing in the output of this algorithm.

Adopting local posterior probability for A-pro

By Proposition 4.3, assuming no error in the input gene trees or their tagging, differences

between topologies of SQs and the species tree are due to processes other than GDL. The main

such process is ILS. Thus, we can adopt the same quartet-based metric used for measuring

support of ASTRAL trees for A-Pro trees.

For each quadripartition A|B|C|D of LS, representing an internal branch in the species

tree, we define z1, which is the quartet count of the topology (A∪B)|(C∪D), as:

∑G∈G ∑a∈A,b∈B,c∈C,d∈D |{ψG(Q) : αG(Q) = ab|cd,Q ∈ ΣG}|
|A||B||C||D|

.

The quartet count for (A∪C)|(B∪D) and (A∪D)|(B∪C) are similarly defined and are denoted

by z2 and z3. We use these counts as input the local posterior probability calculation (Sayyari

and Mirarab, 2016b). Thus,

Definition 4.8. The localPP support of a branch with counts z1 . . .z3 is defined as:

h(z1)

h(z1)+2z2−z1h(z2)+2z3−z1h(z3)

where h(x) = B(x+1,k′− x+2λ )(1− I1
3
(x+1,k′− x+2λ )), B is the beta function, Ix is the

regularized incomplete beta function, λ is the Yule prior parameter, set by default to 1
2 , and

k′ = z1 + z2 + z3.

4.4.3 Datasets

We use new and existing simulated datasets as well as a biological dataset to test A-Pro.
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New simulated dataset (S25)

We perform a set of simulations using SimPhy (Mallo et al., 2016) starting from a

default model condition and adjusting five parameters (Table 4.1). We simulate 50 replicates per

condition, and each replicate draws its parameters from prior distributions. Exact commands are

given in the supplementary material.

Default model: The species tree, simulated under the Yule process with birth rate 5×10−9 and

the maximum number of generations of the tree sampled from a log-normal distribution (mean

1.9×109), has 25 in-group and an out-group species. Each replicate has 1000 true gene trees

simulated under DLCoal with fixed haploid population size Ne = 4.7× 108. Gene trees have

mean ILS level in [60%,80%] range (mean 70%) across replicates (Fig. S4.2). The duplication

rate λ+ = 4.9×10−10; when there is no loss, gene trees on average include 145 leaves (≈ 5 extra

copies per species). The loss rate λ− is set to λ+; with loss, gene trees have on average 43 leaves.

The average number of duplication and loss events are 11 and 9, respectively, but variance

is high (Fig. S4.1). For each gene, we use Indelible (Fletcher and Yang, 2009) to simulate

gap-free nucleotide sequences along the gene trees using the GTR+Γ model (Tavaré, 1986) with

2 different sequence lengths: 500bp and 100bp. We then use FastTree2 (Price et al., 2010) to

estimate maximum likelihood gene trees under the GTR+Γ model. Gene tree estimation error,

measured by the FN rate between the true gene trees and the estimated gene trees, depends on

the sequence length and fluctuates significantly (from 0–100%) both within and across replicates

(Fig. S4.3); mean error is 36% and 15% for 100bp and 500bp, respectively.

Controlling λ+,λ−: Here, we consider 5×4 = 20 conditions, changing duplication and loss

rates. Our λ+ settings result in 0 to 5 extra copies per gene, and the λ−
λ+

varies between 0 and 1

(Table 4.1; Fig. S4.4). All other parameters are identical to the default condition.

Controlling λ+,Ne: Here, we consider 3×5 = 15 conditions, fixing λ− to be equal to λ+, but

changing λ+ and ILS levels (controlled by Ne). Our λ+ settings result in 0 to 5 extra copies per

gene, and the mean ILS level between true and estimated gene trees varies between 0 and 70%
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RF. (Table 4.1; Fig. S4.5) All other parameters are identical to the default model.

Controlling n: Fixing all parameters, we vary the number of in-group taxa n from 10 to 500.

Controlling k: Fixing all parameters, we vary the number of gene trees k from 25 to 10,000.

Existing simulations (S100)

We also used an existing dataset that Molloy and Warnow (2019) simulated based on

a real fungal dataset (Rasmussen and Kellis, 2012). The simulation protocol of this dataset

is similar to that of S25 dataset, with some notable differences. (i) The dataset included 100

species (no out-group); species tree height, speciation rate, and mutation rates all differed from

S25. (ii) Shorter gene alignments were also used, resulting in higher MGTE (25bp: 67%, 50bp:

52%, 100bp: 35%, 500bp: 19%). (iii) The duplication rate λ+ was set to 1×10−10, 2×10−10,

or 5× 10−10 (named 1, 2, and 5, respectively), and the duplication rate equaled the loss rate

for all model conditions. (iv) ILS was much lower than S25; two conditions were simulated

with Ne set to 1×107 and 5×107 (named 1 and 5, respectively), which result in 2% and 12%

RF between true gene trees and the species tree. (v) Gene trees were estimated using RAxML

instead of FastTree2.

Biological data

Wickett et al. (2014) has performed a transcriptome analysis of 103 plant species and

424 single-copy gene trees (out of thousands of genes) using both concatenation and ASTRAL.

In preliminary analyses, the authors had inferred multi-copy gene trees using RAxML from

9683 genes for 83 of those species, ranging in size between 5 and 2395 leaves. However, not

being able to obtain an accurate species tree from the multi-copy gene trees, they abandoned

the strategy in later analyses. The gene trees are available from Matasci et al. (2014). We used

RAxML gene trees inferred from the first two codon positions (C12) as the original study.

For the fungal dataset, all the peptide ML gene trees were downloaded from Butler et al.

(2009) and used here. We used peptide gene trees because the reference species tree, inferred
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through concatenation using MrBayes (Huelsenbeck and Ronquist, 2001), also uses peptide

sequences. Authors comment on unreliability of their nucleotide-based analyses due to grouping

by GC content.

4.4.4 Methods compared

We compare A-Pro to the following methods, which are the leading methods that can

handle multiple copies. Another method, STAG (Emms et al., 2018), is not included because of

its poor performance in the study by Molloy and Warnow (2019), including that it fails to run on

some model conditions (Fig. S4.11).

DupTree (Wehe et al., 2008) infers a species tree from rooted or unrooted gene trees minimizing

the duplication reconciliation cost (Maddison, 1997) under the duplication-only model, but

it does not model ILS. We provide DupTree with unrooted gene trees. We also tried iGTP,

minimizing Dup-Loss score, but we only show results in supplement (Fig. S4.7) as it was almost

universally worse than DupTree.

MulRF (Chaudhary et al., 2013), based on an extension of the RF distance (Robinson and

Foulds, 1981) to multi-labelled trees, is a hill-climbing method that aims at finding the tree

with the minimum RF distance to the input. We use MulRF because of its advantage over other

methods shown in previous studies (Chaudhary et al., 2015).

ASTRAL-multi (Rabiee et al., 2019) is a feature of ASTRAL designed for handling multiple

individuals. Legried et al. (2020) proposes to use ASTRAL-multi for multi-copy data. Due to its

high memory requirements, we were able to include it in only one experiment of S25.
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Appendices

4.A Proofs

Proof of Proposition 4.1. Denote Q1 = {a,b,c,d} and Q2 = {ã, b̃, c̃, d̃} (with obvious corre-

spondence of labels). Let w be the anchor LCA and note that anchor LCA is the LCA of three (if

Q1 ∠ G) or four (if Q1⊥G) of the quartet leaves; thus, by Definition 4.2, w is a speciation node or

otherwise Q1 would not be a SQ. Let the children of w be denoted by w1 and w2; by Definition 4.1,

αG(w1) and αG(w2) must be mutually exclusive. In the unbalanced case, w.l.o.g, assume the

topology is (((a,b),c),d); then, let u denote the LCA of w and d and note that u is the LCA of a,

b, and d. Thus, by Definition 4.2, u is a speciation node or otherwise Q1 would not be a SQ. Let

the children of u be denoted by u1 and u2, and w.l.o.g., let u1 be the child on the same side as w.

By Definition 4.1, αG(u1) and αG(u2) must be mutually exclusive. Therefore αG(w)⊆ αG(u1).

Consequently, αG(w1), αG(w2), and αG(u2) are mutually exclusive. Given that a,b ∈LG(w1),

c ∈LG(w2), d ∈LG(u2), mutual exclusivity is possible only if ã, b̃ ∈LG(w1), c̃ ∈LG(w2),

d̃ ∈ LG \LG(u1). In the case of balanced topology (w.l.o.g, ((a,b),(c,d))), mutual exclu-

sivity of αG(w1) and αG(w2) and the fact that a,b ∈LG(w1) and c,d ∈LG(w2) implies that

ã, b̃ ∈LG(w1), c̃, d̃ ∈LG(w2). Thus, in either case, Ω(G ↾ Q1)≃Ω(G ↾ Q2).

Proof of Proposition 4.2. Each node of a gene tree represents an ancestral or present-day gene

and thus belongs to a locus. The children of a speciation node stay in the same locus that their

parent, while for a duplication node we have that exactly one of the two children change locus

and the other stays in the same locus as its parent. Therefore, all nodes under w, which is a

speciation node, belong to the descendants (including itself) of the locus to which w belongs,
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and when tracing back to the time of speciation event w, they will lead to the same locus. Since

all equivalence classes share the same anchor LCA, the result follows.

Proof of Lemma 4.1. Note that P can anchor Q1 only if any species tree that includes P must

match the gene tree topology for Q1 By Proposition 4.1, due to equivalence of Q1 and Q2, we

infer Q2 must (i) match the same species quartet set as Q1 and (ii) share the same anchor LCA w.

Thus, P can also anchor Q2. (iii) When Q1 ∠ G as shown in Figure 4.7, ã, b̃ ∈LG(w1) are the

leaves mapped to the quartet tree and thus mapped to the same partition as a,b; similarly, when

Q1 ⊥ G, the pair of leaves under the left subtree of the anchor LCA of both quartets map to the

same partition of P.

Proof of Lemma 4.2. First note that:

|{αG(Q) : Q⊂LG,Q
w−→ P}|=

|{αG(Q) : Q⊂LG,Q
w−→ P,Q⊥ G}|+

|{αG(Q) : Q⊂LG,Q
w−→ P,Q ∠ G}|

We compute each part separately. Recall here that, since Q w−→ P, Q is a SQ quartet and thus

|Q|= |αG(Q)|= 4.

When Q ⊥ G, let Q = {a,b,c,d} with αG(a),αG(b) ∈ M1,αG(c),αG(d) ∈ M2. Since

Q w−→ P, leaves αG(a) and αG(b) must be in the same partition of P. When αG(a),αG(b) ∈ P1,

leaves αG(c) and αG(d) must be in partition P2 and P3 respectively since P can anchor Q. W.l.o.g.,

we can assume αG(c) ∈ P2. Therefore, αG(a),αG(b) ∈ M1 ∩P1, αG(c) ∈ M2 ∩P2, αG(d) ∈

M2∩P3. The number of such αG(Q) is
(|M1∩P1|

2

)
|M2∩P2||M2∩P3|=

(I11
2

)
I22I23. Similarly, when

αG(a),αG(b) ∈M1∩P2 and αG(a),αG(b) ∈M1∩P3 , the number of such αG(Q) is
(I12

2

)
I21I23

and
(I13

2

)
I21I22 respectively. Thus,

|{αG(Q) : Q⊂LG,Q
w−→ P,Q⊥ G}|=

(
I11

2

)
I22I23 +

(
I12

2

)
I21I23 +

(
I13

2

)
I21I22
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Similarly, when Q ∠ G, let Q = {a,b,c,d} with αG(a) and αG(b) in the same partition

of P. Notice that, in the unbalanced case, αG(a) and αG(b) can be both either in M1 or

either in M2, and since c and d are not interchangeable as in the balanced case, we can have

αG(a),αG(b) ∈ Pi,αG(c) ∈ Pj,αG(d) ∈ Pk for (i, j,k) with any permutation of (1,2,3), from the

definition of P anchoring Q. All together, we have 12 cases.

In the case that αG(a),αG(b) ∈ P1,αG(c) ∈ P2,αG(d) ∈ P3, and αG(a),αG(b) ∈M1, we

have αG(a),αG(b) ∈ M1 ∩P1, αG(c) ∈ M2 ∩P2, and αG(d) ∈ M3 ∩P3. The number of such

αG(Q) is
(|M1∩P1|

2

)
|M2 ∩P2||M3 ∩P3| =

(I11
2

)
I22I33. The other 11 permutations are similar. In

total,

|{αG(Q) : Q⊂LG,Q
w−→ P,Q ∠ G}|

=

(
I11

2

)
(I22I33 + I32I23)+

(
I12

2

)
(I21I33 + I31I23)

+

(
I13

2

)
(I21I32 + I31I22)+

(
I21

2

)
(I12I33 + I32I13)

+

(
I22

2

)
(I11I33 + I31I13)+

(
I23

2

)
(I11I32 + I31I12)

(4.4)

Thus,

QIpro(P,Mw) =|{αG(Q) : Q⊂LG,Q
w−→ P}|=(

I11

2

)
I22I23 +

(
I12

2

)
I21I23 +

(
I13

2

)
I21I22

+

(
I11

2

)
(I22I33 + I32I23)+

(
I12

2

)
(I21I33 + I31I23)+

(
I13

2

)
(I21I32 + I31I22)

+

(
I21

2

)
(I12I33 + I32I13)+

(
I22

2

)
(I11I33 + I31I13)+

(
I23

2

)
(I11I32 + I31I12)

(4.5)

With simple manipulations, it can be shown that the right-hand side of this equation can

be rewritten as:

∑
(i, j,k)∈B3, j<k

(
I1i

2

)
I2 jI2k + ∑

(i, j,k)∈B3

I1iI2 jI3k(I1i + I2 j−2)
2
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Proof of Lemma 4.3. Let Ω(G ↾ Q) be designated by ab|cd and assume w.l.o.g that the anchor

corresponding to a and b is the first anchor observed on the post-order traverse of G. It is

easy to show (see Mirarab et al., 2014) that if Ω(G ↾ Q) ≃ S ↾ αG(Q) there exist exactly two

tripartitions P1 and P2 in P(S) that imply a quartet topology that matches Ω(G ↾ Q) (condition

(ii) of Definition 4.7). Each of the two tripartitions has two leaves of αG(Q) in one of its parts

and the other two leaves fall on two different parts. Also, the two leaves that are together can only

be a and b or c and d and thus, only one of P1 and P2 would include both a and b in the same

part. Therefore, by condition (iii) of Definition 4.7, exactly one of Q
ψG(Q)−−−−→ P1 and Q

ψG(Q)−−−−→ P2

can be true.

Proof of Lemma 4.4.

q(S,G ) = ∑
G∈G

q(S,G) (4.6)

= ∑
G∈G
|{
(
αG(Q),ψG(Q)

)
: Q ∈ ΣG,Ω(G ↾ Q)≃ S ↾ αG(Q)}| (4.7)

= ∑
P∈P(S)

∑
G∈G
|{
(
αG(Q),ψG(Q)

)
: Q⊂LG,Q

ψG(Q)−−−−→ P}| (4.8)

= ∑
P∈P(S)

∑
G∈G

∑
w∈I(G)

|{αG(Q) : Q⊂LG,Q
w−→ P}| (4.9)

= ∑
P∈P(S)

∑
G∈G

∑
w∈I(G)

|{αG(Q) : Q⊂LG,Q
w−→ P}|×1speciation(w) (4.10)

= ∑
P∈P(S)

∑
G∈G

∑
w∈I(G)

QIpro(P,Mw)×1speciation(w) (4.11)

= ∑
P∈P(S)

wpro(P) (4.12)

The first two lines are implied by Definition 4.5. Equation (4.8) follows from Lemma 4.1

and Lemma 4.3 that together establish that each equivalence class of quartets maps to exactly one

P. Equation (4.9) follows from Definition 4.4 combined with a simple rearrangement obtained by

counting unique tuples once. Equation (4.10) follows from the fact that when w is a duplication
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node, |{αG(Q) : Q⊂LG,Q
w−→ P}|= 0. Equation (4.11) follows from Lemma 4.2.

Proof sketch of Claim 4.1. The rooting that minimizes the number of duplications and losses

(#duploss for short) in Alg. 4.1 may not be unique. In particular, if a rooted tree G minimizes

#duploss, then rooting it at any branch such that the path between the parent node of the branch

and the current root (including the two end nodes) does not contain any duplication node will also

minimize #duploss. We call a correctly-tagged gene tree partially-correctly-rooted if the path

between the parent node of the branch where it is rooted and the root in the correctly-rooted tree

does not contain any duplication node. In particular, when gene trees do not have duplications,

then any rooting of a gene tree is partially-correctly. We observe that the equivalence classes

of quartets in all partially-correctly-rooted trees stay the same (although all quartet trees in the

same equivalence class may change from balanced to unbalanced or vice versa), and thus any

partially-correct-rooting of gene trees will result in the same species tree.

Sketch of proof of Claim 4.2. When G only includes speciation nodes, regardless of rooting,

each quartet is a SQ. Since each leaf corresponds to distinct taxa in the species tree, each quartet

equivalence class contains only one quartet. Therefore, each quartet is counted exactly once and

thus ∑P∈P(S)wpro(P) = ∑P∈P(S)W (P) regardless of rooting.

Sketch of proof of Claim 4.3 (Running time of ASTRAL-Pro). Let

N = ∑
G∈G
|LG|

denote the sum of the number of leaves in the gene trees. Then the number of anchor LCAs

in all gene trees is O(N). Let D denote the number of unique gene tree tripartitions tagged as

speciations and note D = O(N). By only counting each unique gene tree tripartition once against

each species tree tripartition, the running time of ASTRAL-Pro becomes O(D|X |1.73) (by an

argument that is identical to that provided for ASTRAL-III (Mirarab et al., 2014) and follows

from results of Kane and Tao (2017). However, while ASTRAL-III guarantees |X |= O(nk) with
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k = |G |, in ASTRAL-Pro, in the presence of duplications, |X | can be large; in particular with

our sampling algorithm (Algorithm S4.1), |X | = O(nN). Thus, the running time of A-Pro is

O(D(nN)1.73). Note that this analysis is not tight and can be made more precise in the future.

Also, in the future, we will explore sub-sampling a constant number of trees from the output of

Algorithm S4.1 per gene tree, which will limit the |X |= nk and thus limit the running time of

ASTRAL-pro to O(D(nk)1.73).

Proof of Proposition 4.3. Under GDL, besides leaves, each internal node uG ∈ I(G) in a gene

tree G corresponds to an internal node uS ∈ I(S); if uG is a duplication node, uS is the node

down the branch in S where the duplication event happened, and if uG is a speciation node, uS

is the respective speciation node. It is easy to see that αG(uG)⊂LS(uS). For each SQ quartet

Q = {a,b,c,d}, assuming w.o.l.g that G ↾ Q has unrooted topology ab|cd, let wG = ψG(Q),

and uG and vG be the children of wG. Let uG, vG, and wG correspond to uS, vS, and wS in S,

respectively. Since wG is a correctly tagged speciation node, uS and vS are descendants from

different children of wS.

When Q ⊥ G, assuming w.o.l.g. a,b ∈ LG(uG) and c,d ∈ LG(vG), we get

αG(a),αG(b) ∈ LS(uS) and αG(c),αG(d) ∈ LS(vS) and thus αG(a)αG(b)|αG(c)αG(d) is in-

duced by S.

When Q ∠ G, assuming w.o.l.g. a,b ∈LG(uG), c ∈LG(vG), and d /∈LG(wG), we get

αG(a),αG(b) ∈LS(uS) and αG(c) ∈LS(vS). Since d is not under wG, αG(d) and wS are under

different children of the species tree node to which the LCA of d and wG corresponds. Therefore,

αG(d) /∈ LS(wS) and thus αG(d) /∈ LS(uS); since αG(a) ∈ LS(uS) and αG(b) ∈ LS(uS), it

follows that αG(a)αG(b)|αG(c)αG(d) in S.
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4.B Supplementary Algorithms
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Algorithm S4.1. Building set X . Default constant parameters: C = 4, Em = 500, Es = 4. The
algorithm uses the (arbitrary) left/right orientation of children of a node as given in the input.

procedure BUILDX(G )
F = /0 and I = /0
for G← G do

(M,S)← SAMPLEFULL(G,LG,C)
F ←F ∪S
I ←I ⊎M

for G ∈ {randomly sample max(0,min(|G |, Em−|G |
Es

)) trees from G } do
I ←I⊎ SAMPLEEXTRA(G, LG)

X ← run all ASTRAL-III methods for building X with I as input (i.e., -i I )
X ← X ∪

(
all bipartitions of {G completed via the ASTRAL-III tree-completion method ∀G ∈F}

)
procedure SAMPLEFULL(G, A, c)

if |αG(A)|= |A| then
return (multiset: [Ω(G ↾ A) repeated 2c times], set: {Ω(G ↾ A)})

else
Al ← /0 and Ar ← /0
GA← G ↾ A (degree-2 nodes removed)
for a ∈ A do

p← the highest ancestor of a in GA tagged as a duplication node (or /0 if it doesn’t exist)
if (p = /0)∨ (a is to the left of p) then

Al ← Al ∪{a}
if (p = /0)∨ (a is to the right of p) then

Ar ← Ar ∪{a}
(L.m,L.s)← SAMPLEFULL(G,Al ,max(c−1,0))
(R.m,R.s)← SAMPLEFULL(G,Ar,max(c−1,0))
if c = 0 then

return (multiset: randomly select L.m or R.m with equal probabilities, set: L.s∪R.s)
else

return (multiset: L.m⊎R.m, set: L.s∪R.s)
procedure SAMPLEEXTRA(G, A)

if |αG(A)|= |A| then
return multiset [Ω(G) repeated once]

else
Al ← /0 and Ar ← /0
GA← G ↾ A (degree-2 nodes removed)
for a ∈ A do

p← the highest ancestor of a in GA tagged as a duplication node (or /0 if it doesn’t exist)
if (p ̸= /0)∧ (a is to the left of p) then

Al ← Al ∪{a}
if (p ̸= /0)∧ (a is to the right of p) then

Ar ← Ar ∪{a}
Bl ←{x : x ∈ Al ,αG(x) ∈ αG(Al)\αG(Ar)}
Br ←{x : x ∈ Ar,αG(x) ∈ αG(Ar)\αG(Al)}
GL← G ↾ ((LG \Ar)∪Br) (degree-2 nodes removed)
GR← G ↾ ((LG \Al)∪Bl) (degree-2 nodes removed)
for internal node u of GL where LG(u)⊂ Br do

Bu←{one leaf node arbitrarily chosen from {x : αG(x) = s,x ∈LG(u)} : s ∈ αG(u)}
replace u with a star tree consisting of leaves from the set Bu

for internal node u of GR where LG(u)⊂ Bl do
Bu←{one leaf node arbitrarily chosen from {x : αG(x) = s,x ∈LG(u)} : s ∈ αG(u)}
replace u with a star tree consisting of leaves from the set Bu

R = SAMPLEEXTRA(GL,Al ) ⊎ SAMPLEEXTRA(GR,Ar)
return R
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4.C Simulation details

Simphy command for default parameters:

simphy − s l f : 2 5 − r s 50 − r l f :1000 − rg 1 −sb f : 0 . 0 0 0 0 0 0 0 0 5 −sd f : 0

− s t l n : 2 1 . 2 5 , 0 . 2 −so f : 1 − s i f : 1 −sp f :470000000 −su l n : − 2 1 . 9 , 0 . 1

−hh f : 1 −hs l n : 1 . 5 , 1 − h l l n : 1 . 5 5 1 5 3 3 , 0 . 6 9 3 1 4 7 2 −hg l n : 1 . 5 , 1 − cs 9644

−v 3 −o d e f a u l t − o t 0 −op 1 − l b f :0 .00000000049 − l d f :0 .00000000049

− l t f : 0

Other settings use a similar command with parameters changed according to the table

below.
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Table S4.1. Simphy parameters for all experiments

Parameter name Parameter value
Default Parameters

Speciation rate 5e-9
Extinction rate 0
Locus trees 1000
Gene trees 1
Number of leaves 25 + an outgroup
Ingroup divergence to the ingroup ratio 1.0
Generations LogN(21.25,0.2)
Haploid effective population size 4.7e+8
Global substitution rate LogN(-21.9,0.1)
Lineage specific rate gamma shape LogN(1.5,1)
Gene family specific rate gamma shape LogN(1.551533,0.6931472)
Gene tree branch specific rate gamma shape LogN(1.5,1)
Duplication rate 4.9e-10
Loss rate to duplication rate ratio 1
Seed 9644
Sequence length 500, 100
Sequence base frequencies Dirichlet(A=36,C=26,G=28,T=32)
Sequence transition rates Dirichlet(TC=16,TA=3,TG=5,CA=5,CG=6,AG=15)

Controlling Duplication and Loss Rates (5×4 conditions)
Duplication rate 4.9e-10, 2.7e-10, 1.9e-10, 5.2e-11, 0
Loss rate to duplication rate ratio 1, 0.5, 0.1, 0

Controlling Duplicatoin and ILS Rate (3×4 conditions)
Duplication rate 4.9e-10, 1.9e-10, 0
Haploid effective population size 4.7e+8, 1.9e+8, 4.8e+7, 1e+4

Controlling n
Number of leaves 10, 25, 100, 250, 500 + an outgroup

Controlling k
Locus trees 25, 100, 250, 1000, 2500, 10000
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4.D Supplementary Figures and Tables

1st 2nd 3rd 4th
MulRF 42 67 10 1

DupTree 28 8 15 69
A-Pro 105 14 1 0

ASTRAL-multi 12 14 71 23
Table S4.2. Rank of methods on S100 dataset over all 120 test conditions. Ranks are obtained
using mean species tree error, rounded to two significant digits to create tie for cases where error
values are extremely close.
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Figure S4.1. Distribution of the number of duplication events, loss events and sizes of leaf set
for gene trees in the default condition by replicates. The figure on the top is sorted by the mean
number of duplication events, and the figure on the bottom is sorted by mean leaf set size.
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Figure S4.2. Distribution of gene tree ILS, as measured by the normalized RF distance between
true gene trees and the true species, in the condition with all default parameters but λ+ = λ− = 0.
Results are divided by replicates, sorted by mean ILS level.
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Figure S4.3. Distribution of the gene tree errors (normalized RF distance between true gene
trees and the estimated gene tree) for inferred trees with at least 14 leaves in the default condition.
Results are divided by sequence length (100bps or 500bps) and by replicates, sorted by mean
gene tree error of the 100bps condition.
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Figure S4.4. Distribution of the number of duplication events, loss events and sizes of leaf set
for gene trees of each replicate sorted by duplication and loss rate.
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Figure S4.5. Distribution of gene tree ILS levels by replicates and expected ILS level, sorted by
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Figure S4.6. Distribution of gene tree errors by the number of in-group species n.

243



●

●

●
● ●

● ●

● ● ●

●

●

● ●
●

●

● ●
●

●

●

●
● ●

●

●
● ● ●

●

● ●
●

●

●
●

● ●

● ●
●

●

●
●

● ●

●
● ●

●

●
●

● ●

●

●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●●
●

●

● ● ●● ● ●

●

●
●

● ●
●

●
●

●
● ● ●

● ● ●
●

● ●

●

●

●

●

●
●

● ●

●

●
● ●

●
● ●

●
● ●

●
●

●
●

●

●

●

●

● ●

●
● ●

●

●

●
●

●
● ●

●

● ● ●

●

●
●

● ● ●

Loss/Dup: 0

ILS: 70

Loss/Dup: 0.1

ILS: 70

Loss/Dup: 0.5

ILS: 70

Loss/Dup: 1

ILS: 0

Loss/Dup: 1

ILS: 20

Loss/Dup: 1

ILS: 50

Loss/Dup: 1

ILS: 70

Input: E
st. (100bp)

Input: E
st. (500bp)

Input: true

0 0.2 1 2 5 0 0.2 1 2 5 0 0.2 1 2 5 0 0.2 1 2 5 0 0.2 1 2 5 0 0.2 1 2 5 0 0.2 1 2 5

0%

5%

10%

15%

20%

0%

5%

10%

15%

20%

0%

5%

10%

15%

20%

Dup (C)

S
pe

ci
es

 tr
ee

 e
rr

or
 (

N
R

F
)

● ●DupTree iGTP−Losses

Figure S4.7. Comparison of DupTree and iGTP-DupLoss methods on all the datasets with
n = 25 and k = 1000. DupTree dominates iGTP-DupLoss in most conditions.
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Figure S4.8. Comparing running times, measured on the default model condition, with
estimated gene trees (100bp). All methods are run in the single-threaded mode, on the same
machine with Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.
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Figure S4.9. The running time of A-Pro versus k (a) and n (b). We fit a line to the log-log plot
of the running time only for k ≥ 1000 and n≥ 25 as smaller runs are too fast to be reliable. We
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Figure S4.10. DupTree on biological plant dataset. DupTree is run on 9683 multi-copy
gene trees available online (Matasci et al., 2014) for the plant dataset. Red: Branches that
are obviously wrong, because these branches contradict basic biological categorization. Blue:
Branches that contradict ASTRAL on single-copy genes that are not so obviously wrong.
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Figure S4.11. Species tree error on S100 dataset. We compare the species tree error of the
STAG method to A-Pro, showing mean and standard error over 10 replicates for each model
condition, with varying numbers of genes (k) and sequence lengths (with Inf signifying true
gene trees). Model conditions are labeled as a/b where a is the level of ILS (1 or 5) and b is the
duplication/loss rate (1, 2, or 5). Cases with missing STAG results are due to STAG failing to
run on those model conditions. Note that STAG infers a species tree from the input gene trees
that have at least one leaf representing each species of interest; if none of the input gene trees
satisfy this requirement, then STAG fails to return a tree.
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Chapter 5

ASTERISK: Species Tree Inference from
Site Patterns under the Multispecies Coa-
lescent Despite Molecular Clock
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5.1 Introduction

Species tree inference is difficult because the evolutionary histories of different parts of

the genome may not be the same (Maddison, 1997). One cause of the discordance is incomplete

lineage sorting (ILS), often modelled by the multi-species coalescent (MSC) process (Kingman,

1982). The standard approach for species tree inference used to be concatenation – concatenating

the multiple sequence alignments (MSA) from different parts of the genome and estimating a

tree from the concatenated MSA, ignoring ILS. However, concatenation can return incorrect

trees with high confidence under MSC model, which is demonstrated by Kubatko and Degnan

(2007) and proven by Roch and Steel (2015). Since then, many ILS-aware species tree inference

methods have been developed, and they generally follow one of two approaches – the two-step

approach and the direct approach.

The two-step approach first infers a gene tree from each part of the genome and uses

a summary method – such as MP-EST (Liu et al., 2010), ASTRAL (Mirarab et al., 2014),

and ASTRID (Vachaspati and Warnow, 2015) – to obtain a species tree from inferred gene

trees. The two-step approach has a major shortcoming: error in inferred gene trees can be

carried over to the output species tree (Degiorgio and Degnan, 2014; Molloy and Warnow, 2018;

Lanier and Knowles, 2015). Roch et al. (2019) prove that, in theory, the two-step approach

returns incorrect trees with high confidence under pathological examples even in the absence of

much true gene tree discordance; Jarvis et al. (2014) demonstrate that, in practice, the two-step

approach produces species trees contradicting the well-established relationships on an order-level

avian phylogenomic dataset. Recently, we proposed weighted ASTRAL (Zhang and Mirarab,

2022), a summary method utilizing the branch lengths and supports from input gene trees, to

reduce the impact of gene tree errors. However, there is still a gap in accuracy between weighted

ASTRAL and concatenation under low levels of ILS and high levels of gene tree errors.

Alternatively, the direct approach – including BEST (Liu, 2008), *BEAST (Heled and

Drummond, 2010), SNAPP (Bryant et al., 2012), SVDQuartet (Chifman and Kubatko, 2014),
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QuCo (Rabiee and Mirarab, 2022) – directly infers the species tree from MSA, either sidestepping

gene trees or co-estimating species tree and gene trees at the same time. However, these direct

methods have not been scalable enough to handle the quickly growing data sizes, despite some

more recent efforts in improving their scalability (Ogilvie et al., 2017; Vachaspati and Warnow,

2018; Zhang et al., 2020). Some of these methods are slow because they rely on MCMC sampling

under complex models with many parameters. However, others, such as SVDQuartets and QuCo

depend on statistics at the quartet level. For these quartet-based site-based methods, a main

reason for their lack of scalability is that they rely on first optimizing each quartet and then

summarizing quartets to get the final tree. Even though they can sub-sample quartets, such

subsampling can create trade-offs between accuracy and running time.

A quartet-based method, however, does not have to examine quartets separately. Each

site in an alignment partitions taxa into multiple groups based on what letter they include. We

can count all the quartet topologies implied that by partition at the same time using simple

combinatorics instead of iterating through all quartets. With this simple technique (which

underlines the algorithms such as ASTRAL), an optimization problem defined over all quartets

can be solved very efficiently without iterating over all quartets.

Here, we introduce Accurate Species Tree EstimatoR from Individual Site Kernels

(ASTERISK) for direction species tree estimation from multiple sequence alignment. The

present work has several new contributions: i) We introduce a new optimization objective

computed based on DNA site patterns for a quartet of species; we show that optimizing this

objective is a statistically consistent estimator under the MSC+GTR model, even allowing for

changes in rate across sites (with some limitations) and no assumption about species tree branch

lengths (including no assumption of ultrametricity). We call this optimization function for each

quartet a site kernel. ii) We design a scalable algorithm to optimize the total quartet site kernels for

all quartets across all sites. iii) We propose various modifications to the definition of the quartet

site kernel suitable for different models of evolution. The simplest We tested ASTERISK on a

simulated dataset. It shows that ASTERISK is on average significantly better than concatenation,
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and in all experimental conditions ASTERISK is no worse than concatenation. With abundant

genes, the performance of ASTERISK on average levels that of weighted ASTRAL, and which

method is more accurate depends highly on experimental conditions.

5.2 Method

We start with describing the model we assume for generating sequence data. We then

describe the objective function used in ASTERISK and prove it consistent under the generator

model described. We then briefly discuss how the optimization score is optimized in ASTERISK.

We end by describing the settings used in our experimental analyses.

5.2.1 Models

We assume a model that generates gene trees under the MSC model and generates

sequences under the general time-reversible (GTR) model. We use MSC in the standard fashion.

However, our use of the sequence evolution model has an uncommon feature: we allow most of

the GTR parameters to change across sites of the same gene, requiring only that pairs of sites

share the same parameter.

Coalescent Model

Let T denote the set of species and n = |T |.

Definition 5.1. The true species tree is a binary tree S = (VS,ES,φS,τS), where VS is the vertex

set of S, ES is the edge set of S, φS maps T to leaf vertices of S, and τS maps ES to their branch

lengths in coalescent units (CU).

We assume the root branch has branch length +∞. For each species a ∈ T , for simplicity,

we may use a to refer to the leaf node φS (a).

Definition 5.2. A gene tree is a binary tree G = (VG,EG,φG,τG), where VG is the vertex set of

G, EG is the edge set of S, φS maps T to leaf vertices of G, and τG maps EG to their branch

lengths in CU.
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Let G be the set of gene trees and |G | = k. Each gene tree Gi ∈ G is generated from

the true species tree S under the multi-species coalescent (MSC) process. Let Σi = {(e,τ) :

τ ∈ [0,τS (e)],e ∈ ES} denote a set of |T | − 1 coalescent events generated under MSC. Each

(e,τ) denotes a coalescent event happening at τ CU above the child node (target vertex) of e.

Coalescence events among any two out of i lineages happen with a rate of
( i

2

)
per CU. Given

that a coalescent event (e,τ) happens, every one of
( i

2

)
pairs of lineages coalesces with an equal

probability 1
( i

2)
independent of (e,τ). Since (S,Gi) uniquely determines Σi (but not the other

way around), the probability density function (PDF) of Gi is

f (Gi) = P(Gi|Σi) f (Σi) . (5.1)

Sequence Evolution Model

In our model, pairs of sites evolve on the gene tree. Let us assume the number of site

pairs Li in each gene Gi is a known parameter. All sites follow the GTR substitution model

and all sites in each gene share the same equilibrium frequencies (π i
A,π

i
C,π

i
G,π

i
T ). However,

substitution rates can vary among pairs. Each site pair ζ i
j in Gi maps from T to {A,C,G,T}2.

The two sites in ζ i
j evolve independently but share the same GTR transition rate matrix Mi

j and

mutation rate function µ i
j. The function µ i

j translates each edge e on S from CU to SU and thus

captures the combined effects of the effective population size and mutation rates; nevertheless,

we refer to µ i
j as the mutation rate for simplicity. All lineages of Gi passing through branch

e of the species tree share the same mutation rate µ i
j(e) for their length overlapping with e.

For example, a branch segment from (e,τ0) to (e,τ1), where τ0 < τ1, has SU branch length

(τ1− τ0)µ
i
j(e).

5.2.2 Objective Function

We assume that we are given data generated according to the model described before and

we assume that it is known what sites belong to what genes and what pairs of sites in each gene
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follow the same substitution model. In practice, determining pair of sites will need a heuristics

algorithm, which we will return to later. We assume π i
A,π

i
C,π

i
G,π

i
T are given. Since the stationary

base frequencies are fixed across the gene and across species, it is trivial to estimate them by

simply counting the occurrences of letters across each gene.

Let N = {A,C,G,T}, X = {A,G}, and Y = {C,T}. For a gene tree Gi, let π i
X = π i

A+π i
G

and π i
Y = π i

C +π i
T . Let 1S(s) be the 0-1 indicator function indicating whether s ∈ S. For example,

1X×Y
(
ζ 5

2 (a)
)

is 1 if and only if the site pair indexed 2 of gene 5 of species a ∈ T is either A or

G in the first site and either T or C in the second site. We define the weight of a quartet tree

topology ab|cd according to a site pair ζ i
j in gene tree G as

wi
j(ab|cd) =

1
8 ∑
(p,q)∈{(a,b),(b,a)}

∑
(r,s)∈{(c,d),(d,c)}

wi
j(p,q,r,s)+wi

j(r,s, p,q) , (5.2)

where

wi
j(p,q,r,s) =

(
π

i
X π

i
Y −1X×N

(
ζ

i
j (p)

)
1Y×N

(
ζ

i
j (q)

))(
π

i
X π

i
Y −1N×X

(
ζ

i
j (r)
)
1N×Y

(
ζ

i
j (s)
))

.

(5.3)

Let a quartet Q be a subset of T where |Q|= 4. Let Q = {Q : |Q|= 4,Q⊆ T} denote

the set of all quartets. For any tree (or topology) S∗ with taxon set T , let S∗ ↾ Q denote the tree

(or topology) S∗ restrict to quartet Q. We define the score of S∗ as

W (S∗) = ∑
Q∈Q

k

∑
i=1

Li

∑
j=1

wi
j(S
∗ ↾ Q) . (5.4)

Theorem 5.1. The function argmaxS∗W (S∗) is a statistically consistent estimator for the un-

rooted topology of the true species tree S.

The proof is provided in the Proof section of the appendix.
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5.2.3 Remarks

Remark. Theorem 5.1 is still correct when SU/CU ratio varies along a species tree branch.

We can redefine the mutation rate model as the following: The function µ i
j translates

each point (e,τ) on S to substitution-per-site units (SU). All lineages of G at (e,τ) share the

same mutation rate µ i
j(e,τ) SU per CU. For example, a branch segment from (e,τ0) to (e,τ1),

where τ0 < τ1, has SU branch length

∫
τ1

τ0

µ
i
j(e,τ)dτ .

Remark. Theorem 5.1 can be adopted to not rely on equilibrium frequencies using a modified

definition of wi
j(ab|cd).

In (5.2) and (5.3), wi
j(ab|cd) relies on a known π i

X π i
Y . If equilibrium frequencies are

unknown, we need to redefine each ζ i
j as a quadruple of sites in Gi which maps T to {A,C,G,T}4,

and modify (5.2) as

wi
j(ab|cd) =1X×N×N×N

(
ζ

i
j (a)

)
1N×Y×N×N

(
ζ

i
j (a)

)
1N×N×X×N

(
ζ

i
j (a)

)
1N×N×N×Y

(
ζ

i
j (a)

)
−1X×N×N×N

(
ζ

i
j (a)

)
1Y×N×N×N

(
ζ

i
j (b)

)
1N×N×X×N

(
ζ

i
j (a)

)
1N×N×N×Y

(
ζ

i
j (a)

)
−1N×X×N×N

(
ζ

i
j (c)

)
1N×Y×N×N

(
ζ

i
j (d)

)
1N×N×X×N

(
ζ

i
j (a)

)
1N×N×N×Y

(
ζ

i
j (a)

)
+1X×N×N×N

(
ζ

i
j (a)

)
1Y×N×N×N

(
ζ

i
j (b)

)
1N×X×N×N

(
ζ

i
j (c)

)
1N×Y×N×N

(
ζ

i
j (d)

)
.

In general, equilibrium frequencies can be calculated by simply counting them. However, this

new equation is useful when it is difficult to estimate equilibrium frequencies, for example, when

the length of genes is very short.

Remark. Theorem 5.1 can be adopted to a more general case when each site has its own

mutation rate and transition matrix, but only under HKY85 model (Hasegawa et al., 1985).

In this case, each ζ i
j represents one site in Gi which maps T to {A,C,G,T}. We redefine
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wi
j(ab|cd)

=
(

1X
(
ζ

i
j (a)

)
1X
(
ζ

i
j (b)

)
1Y
(
ζ

i
j (c)

)
1Y
(
ζ

i
j (d)

)
+1Y

(
ζ

i
j (a)

)
1Y
(
ζ

i
j (b)

)
1X
(
ζ

i
j (c)

)
1X
(
ζ

i
j (d)

))
(π i

Aπ
i
C)

2

+
(

1A
(
ζ

i
j (a)

)
1A
(
ζ

i
j (b)

)
1C
(
ζ

i
j (c)

)
1C
(
ζ

i
j (d)

)
+1C

(
ζ

i
j (a)

)
1C
(
ζ

i
j (b)

)
1A
(
ζ

i
j (c)

)
1A
(
ζ

i
j (d)

))
(π i

X π
i
Y )

2

−
(

1A
(
ζ

i
j (a)

)
1A
(
ζ

i
j (b)

)
1Y
(
ζ

i
j (c)

)
1Y
(
ζ

i
j (d)

)
+1Y

(
ζ

i
j (a)

)
1Y
(
ζ

i
j (b)

)
1A
(
ζ

i
j (c)

)
1A
(
ζ

i
j (d)

))
(π i

X π
i
C)

2

−
(

1X
(
ζ

i
j (a)

)
1X
(
ζ

i
j (b)

)
1C
(
ζ

i
j (c)

)
1C
(
ζ

i
j (d)

)
+1C

(
ζ

i
j (a)

)
1C
(
ζ

i
j (b)

)
1X
(
ζ

i
j (c)

)
1X
(
ζ

i
j (d)

))
(π i

Aπ
i
Y )

2
.

(5.5)

Note that the same equation can be used for all models embedded withing HKY85, including

JC69 (Jukes and Cantor, 1969), K80 (Kimura, 1980), and F81 (Felsenstein, 1981).

Remark. Theorem 5.1 is still correct when X |Y does not correspond to purines vs. pyrimidines.

We can let X |Y be any non-trivial bipartition of N (e.g., X = {A},Y = {C,G,T}). For a

gene tree Gi, let π i
X = ∑c∈X π i

c and π i
Y = 1−π i

X . In fact, we can define the score of S∗ as

W (S∗) = ∑
X |Y

∑
Q∈Q

k

∑
i=1

Li

∑
j=1

wi
j(S
∗ ↾ Q;X |Y ) ,

where wi
j(S
∗ ↾ Q;X |Y ) is wi

j(S
∗ ↾ Q) given a specific X |Y , and X |Y is summed over all seven

non-trivial bipartitions of N.

In fact, this objective function can also be applied to amino acid alignments under amino

acid GTR model. In such case, X |Y can be any non-trivial bipartition of the 20 amino acids, and

(5.4) only sums over a few bipartitions X |Y .

5.2.4 Optimization algorithm

ASTERISK adopts the optimization algorithm from weighted ASTRAL (Zhang and

Mirarab, 2022). In its simplest “naive” form, the algorithm works as follows: i) Starting from an

empty tree, add species consecutively in a random order, each at a place maximizing a pre-defined
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objective function, to obtain a full tree. ii) Perform several rounds of NNI moves to improve the

full tree from step (i). iii) Repeat the previous step for r rounds to obtain a set of tripartitions,

each corresponding to an internal node of some tree from step (ii). iv) Using a final dynamic

programming (DP) to find an optimal output tree where each internal node of the output tree is

constrained to be corresponding to elements of tripartition in step (iii).

For the placement algorithm we have previously presented (Zhang and Mirarab, 2022)

for step (i) to work correctly, the objective function W (S∗) of a species tree topology S∗ needs

to satisfy

W (S∗) =
1
2 ∑

A|B|C∈T (S∗)
W (A|B|C) ,

where T (S∗) denote the set of all tripartitions of T corresponding to internal nodes of S∗. In

ASTERISK, from (5.4), for a tripartition A|B|C corresponding to an internal node of S∗,

W (A|B|C)

=
1
2

k

∑
i=1

Li

∑
j=1

∑
a∈A

∑
b∈B

∑
c∈C

(
∑

d∈A−{a}
wi

j(ad|bd)+ ∑
d∈B−{b}

wi
j(ac|bd)+ ∑

d∈C−{c}
wi

j(ab|cd)
)

=
1
2

k

∑
i=1

Li

∑
j=1

(
wi

j(A,B,C)+wi
j(B,C,A)+wi

j(C,A,B)
)

, where

wi
j(A,B,C) = ∑

a∈A
∑
b∈B

∑
c∈C

∑
d∈A−{a}

wi
j(ad|bd) .

For each site, ASTERISK defines four counters for partition A:

Ai, j
X×N = ∑

a∈A
1X×N

(
ζ

i
j (a)

)
,Ai, j

Y×N = ∑
a∈A

1Y×N
(
ζ

i
j (a)

)
,

Ai, j
N×X = ∑

a∈A
1N×X

(
ζ

i
j (a)

)
,Ai, j

N×Y = ∑
a∈A

1N×Y
(
ζ

i
j (s)
)
,

and similarly, Bi, j
X×N , Bi, j

Y×N , Bi, j
N×X , Bi, j

N×Y , Ci, j
X×N , Ci, j

Y×N , Ci, j
N×X , Ci, j

N×Y for partition B and C. With
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these twelve counters computed, wi
j(A,B,C) can be computed in constant time:

wi
j(A,B,C)

=
1
8

(
π

i
X π

i
Y
(
Ai, j

N×N
)2−Ai, j

X×NAi, j
Y×N

)(
2π

i
X π

i
Y Bi, j

N×NCi, j
N×N−Bi, j

N×XCi, j
N×Y −Bi, j

N×YCi, j
N×X

)
+

1
8

(
π

i
X π

i
Y
(
Ai, j

N×N
)2−Ai, j

N×X Ai, j
N×Y

)(
2π

i
X π

i
Y Bi, j

N×NCi, j
N×N−Bi, j

X×NCi, j
Y×N−Bi, j

Y×NCi, j
X×N

)
,

where Ai, j
N×N = Ai, j

X×N +Ai, j
Y×N , Bi, j

N×N = Bi, j
X×N +Bi, j

Y×N , and Ci, j
N×N =Ci, j

X×N +Ci, j
Y×N .

The counters are kept and updated during successive steps of the greedy algorithm.

During the placement of each species onto the species tree in step (i), each counter is updated

O(n logn) times, and each takes a constant time (see Zhang and Mirarab, 2022, for details) .

Thus, the total running time of the optimization algorithm is O(n2L logn) where L = ∑
k
i=1 Li. In

comparison, for wASTRAL, this was O(n2kH log(n)), where H is the average height of the gene

tree. Zhang and Mirarab (2022) also proposed a two-step optimization algorithm which reduces

the time complexity of the ASTERISK optimization algorithm to O(n1.5L log2(n)) under some

additional conditions (which are automatically satisfied with high probability as k −→ ∞).

5.2.5 Experimental setup

We use the S200 dataset simulated by Mirarab and Warnow (2015) for benchmarking

ASTERISK. This dataset has 201 species (200 in-group + 1 out group). The species trees are

generated under two different birth rates (10−6,10−7) and three different tree heights (107,2×

106,5×105 generations), corresponding to low ILS (≈ 10%), medium ILS (≈ 35%), and high

ILS (≈ 70%), respectively. For each species tree, 1000 genes are simulated with gene lengths

uniformly drawn between 300 and 1500 bps replicates. 50 replicates are simulated per each

condition, but in the results presented here, we use 10 replicates.

The following species tree reconstruction methods are benchmarked: ASTRAL-III

(v5.7.4) takes as input estimated gene trees provided by Mirarab and Warnow (2015), which are

reconstructed from genes using Fasttree-2. Weighted ASTRAL by hybrid weighting (v1.8.2.3),
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wASTRAL-h for short, takes as input estimated gene trees with branch lengths and supports

computed using IQ-TREE (v1.6.12) aBayes option (--abayes) under GTR+Γ model. CA-ML

trees are provided by Mirarab and Warnow (2015), inferred using Fasttree-2 from concatenated

genes. ASTERISK-HKY, a variant of ASTERISK using (5.5) as the quartet site kernel, is directly

applied to concatenated genes. ASTERISK also uses estimated mutation rates of all sites to pair

sites with similar mutation rates to form site-pairs. The estimated mutation rates for sites of

each gene are estimated using IqTree -wsr option under GTR+Γ model with inferred species

tree from ASTERISK-HKY as the topological constraint. All the sites within a gene are sorted

according to the rate and each two consecutive sites are paired in that order, leaving the last site

out when an odd number of sites are available.

5.3 Results

In this section, we compare the accuracy of ASTERISK against various species tree

inference methods on S200 dataset (Figure 5.1). ASTERISK has lower species tree error rates

than ASTERISK-HKY in all conditions. The species tree error rate on average is 7.8% RF

for ASTERISK and 10.1% RF for ASTERISK-HKY. This difference is statistically significant

(p < 10−5 according to an ANOVA test with the method, number of genes, and ILS level

as independent variables) but likely shrinks with more genes (p = 0.08). When focusing on

conditions with 1000 genes, on average ASTERISK and ASTERISK-HKY have species tree

error rate 3.2% and 4.1%, respectively, and the difference is still significant (p = 0.02). Thus,

the advantage of using a more complex model does not disappear due to increased dataset size.

ASTERISK, on average, has a lower species tree error rate (7.8% RF) than CA-ML (9.1%

RF) does. The difference is significant with p = 0.02 and depends on ILS levels (p = 0.01) but

not on the birth rates (p = 0.72), which control whether speciations are closer to the base or

tips of the tree. The improvements of ASTERISK over CA-ML are the most pronounced for

conditions with 200 genes and high ILS, where the RF error goes down from 16% with CA-ML
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to 10% with ASTERISK). In contrast, CA-ML is in no condition better than ASTERISK for

more than 1.3%. When focusing on conditions with 1000 genes, on average ASTERISK and

CA-ML have species tree error rate 3.2% and 4.5%, respectively. The difference is significant

(p = 0.006) and probably depends on ILS levels (p = 0.06). With low level of ILS, the difference

in species tree error rate between ASTERISK (4.5% RF) and CA-ML (4.1% RF) is not significant

(p = 0.50) and does not depend on the number of genes (p = 0.52) or the birth rate (p = 0.58).

ASTERISK on average has a higher species tree error rate (7.8% RF) than wASTRAL-h

(6.7% RF) does. The difference is significant with p = 0.01 but varies significantly with the

number of genes (p = 0.03), ILS levels (p = 0.007), and birth rates (p = 0.05). Particularly, with

low level of ILS and birth rate= 10−7, ASTERISK on average has a lower species tree error rate

(4.4% RF) than wASTRAL-h (6.8% RF) does and the difference is significant (p = 0.05). When

limited to conditions with 1000 genes, ASTERISK and wASTRAL-h have very similar accuracy

(3.2% RF vs. 3.3% RF). The performance seems to differ with birth rate (p = 0.06). Note that

with birth rate= 10−7 and 1000 genes, the gene tree error rate of wASTRAL-h decreases with

increasing ILS but due to high variance across replicates; however, the pattern is not statistically

significant (p = 0.21) and may be an artifact of having fewer replicates. ASTRAL-III in general

exhibits a similar pattern to wASTRAL-h but with a higher species tree error rate (8.1% RF).

5.4 Discussion

Our simulation result in S200 dataset shows that the accuracy of ASTERISK dominates

ASTERISK-HKY in all conditions. Therefore, there is no incentive to prefer ASTERISK-HKY

when resources allow the use of ASTERISK, at least under the conditions we simulated. However,

we note that the kernel used for ASTERISK-HKY, unlike the ASTERISK kernel, relies on one

site, and thus, less strong assumptions. When the boundaries between genes or regions where

GTR parameters can be assumed mostly unchanged are hard to predict, the use of the simpler

ASTERISK-HKY method may prove to be more robust as it makes fewer assumptions.
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Recently, it has become a common practice to infer species tree using both CA-ML and

coalescent method (e.g., ASTRAL) and compare the inferred species trees from the two methods,

as neither method can dominate the other in all conditions (e.g., population size, mutation rate,

and species tree shape) and the inferred trees from the two methods usually contradict to each

other in many branches. We suggest replacing CA-ML with ASTERISK – to infer species tree

using both ASTERISK and wASTRAL-h and compare the inferred species tree, because the

accuracy of ASTERISK is better than CA-ML on average, and in its worst case (low ILS), there

is no significant evidence showing ASTERISK has lower accuracy compared to CA-ML. Future

work should run ASTERISK vs. CA-ML on more dataset and more replicates to confirm that

ASTERISK is no worse than CA-ML in all conditions. Although ASTERISK and wASTRAL-h

have very similar accuracy with abundant genes, we do not recommend replacing wASTRAL-h

universally because it is not dominated by ASTERISK. We observe that wASTRAL tends to have

a better accuracy as ILS level increases with 1000 genes and deep speciation; this unexpected

pattern (not shared by other conditions) is not significant due to high variance across 10 replicates

tested here. Future work should investigate this condition using more replicates to reduce the

artifact of high variance among replicates.
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Figure 5.1. A comparison of species tree error (FN) of various reconstruction methods on S200
dataset with k = {50,200,1000}, rates of speciation 1E-6 and 1E-7, and three levels of ILS (Low:
10% RF, Medium, 35% RF, High: 70% RF). Gene trees (for ASTRAL-III and wASTRAL-h)
and CA-ML trees are both inferred using FastTree-2. Gene tree branch lengths and supports (for
wASTRAL-h) are inferred using IqTree.
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Appendices

5.A Proof

Theorem 5.1. The function argmaxS∗W (S∗) is a statistically consistent estimator for the un-

rooted topology of the true species tree S.

Proof. We start with introducing a lemma:

Lemma 5.1. If the SU distance between species a and b on site ζ i
j of gene tree Gi is t, and
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Proof. Recall X = {A,G}, and Y = {C,T}. Notice that we can reduce Mi
j to a two-by-two
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matrix of X and Y , and thus
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A corollary follows:

Corollary 5.1. Let Q = {a,b,c,d} and Gi ↾ Q has topology ab|cd. Let t i
j be the SU length of the

internal branch of Gi ↾ Q on site ζ i
j and T i

j be the total SU length of the terminal branches of

Gi ↾ Q on site ζ i
j, then
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Proof. Let ta, tb, tc, td be the lengths of terminal branches leading to leaves a,b,c,d, respectively.

From Lemma 5.1,
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i
j (c)

)
1N×Y

(
ζ

i
j (d)

)∣∣∣Gi

]
= π

i
X π

i
Y e−Ci

j(tc+td) .
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Recall that

wi
j(p,q,r,s) =

(
π

i
X π

i
Y −1X×N

(
ζ

i
j (p)

)
1Y×N

(
ζ

i
j (q)

))(
π

i
X π

i
Y −1N×X

(
ζ

i
j (r)
)
1N×Y

(
ζ

i
j (s)
))

.

(5.6)

Since conditional on Gi, the two sites of ζ i
j are independent, from (5.6), we get

E
[
wi

j(a,b,c,d)
∣∣Gi
]
= (π i

X π
i
Y e−Ci

j(ta+tb))(π i
X π

i
Y e−Ci

j(tc+td)) = (π i
X π

i
Y )

2
e−Ci

jT
i
j ,

and similarly,

E
[
wi

j(a,c,b,d)
∣∣Gi
]
= (π i

X π
i
Y e−Ci

j(ta+t i
j+tc))(π i

X π
i
Y e−Ci

j(tb+t i
j+td)) = (π i

X π
i
Y )

2
e−Ci

j(T
i
j+2t i

j) .

Recall now that

wi
j(ab|cd) =

1
8 ∑
(p,q)∈{(a,b),(b,a)}

∑
(r,s)∈{(c,d),(d,c)}

wi
j(p,q,r,s)+wi

j(r,s, p,q) , (5.7)

By symmetry in this equation, we have

E
[
wi

j(ab|cd)
∣∣Gi
]
= (π i

X π
i
Y )

2
e−Ci

jT
i
j and E

[
wi

j(ac|bd)
∣∣Gi
]
= (π i

X π
i
Y )

2
e−Ci

j(T
i
j+2t i

j) .

The corollary above leads to the following lemma:

Lemma 5.2. Let Q = {a,b,c,d}, S ↾ Q has topology ab|cd, and let Σ∗i =

{(e1,τ1),(e2,τ2),(e3,τ3)} be the three coalescent events among a,b,c,d in gene tree

Gi; then, for each site pair ζ i
j,

E
[
wi

j(ab|cd)
∣∣Σ∗i ]≥ E

[
wi

j(ac|bd)
∣∣Σ∗i ]= E

[
wi

j(ad|bc)
∣∣Σ∗i ] .

268



Proof sketch. Let p1 = (e1,τ1), p2 = (e2,τ2), p3 = (e3,τ3) and w.o.l.g. assume p1 is above p2

and p3. Let δa,δb,δc,δd,δ2,δ3 be the SU distance of a,b,c,d, p2, p3 to p1 in Gi under µ i
j,

respectively. W.o.l.g., assume δ2 < δ3. Let E∗ denote the event that p1 is on the internal branch

of the unrooted version of Gi ↾ Q, and let E1,E2,E3 denote the event that Gi ↾ Q has topology

ab|cd,ac|bc,ad|bc, respectively.

Case 1: The event E∗ happens.

It is easy to verify that T i
j = δa +δb +δc +δd−2δ2−2δ3 and t i

j = δ2 +δ3, regardless of

the topology of Gi. It is easy to confirm that for some p3 that avoid deep coalescence, we have

P(E1|Σ∗i ,E∗) = 1 and P(E2|Σ∗i ,E∗) = P(E3|Σ∗i ,E∗) = 0; for each of these Σ∗i ,

(π i
X π

i
Y )

2
e−Ci

jT
i
j = E

[
wi

j(ab|cd)
∣∣Σ∗i ,E∗]

> E
[
wi

j(ac|bd)
∣∣Σ∗i ,E∗]= E

[
wi

j(ad|bc)
∣∣Σ∗i ,E∗]= (π i

X π
i
Y )

2
e−Ci

j(T
i
j+2t i

j) .

For all other p3 that have deep coalescence, P(E1|Σ∗i ,E∗) = P(E2|Σ∗i ,E∗) = P(E3|Σ∗i ,E∗) = 1
3 ,

and thus

E
[
wi

j(ab|cd)
∣∣Σ∗i ,E∗]= E

[
wi

j(ac|bd)
∣∣Σ∗i ,E∗]= E

[
wi

j(ad|bc)
∣∣Σ∗i ,E∗]

=
1
3
(π i

X π
i
Y )

2
e−Ci

jT
i
j +

2
3
(π i

X π
i
Y )

2
e−Ci

j(T
i
j+2t i

j) .

Therefore, for all Σ∗i ,

E
[
wi

j(ab|cd)
∣∣Σ∗i ,E∗]≥ E

[
wi

j(ac|bd)
∣∣Σ∗i ,E∗]= E

[
wi

j(ad|bc)
∣∣Σ∗i ,E∗] .

Case 2: The event Ē∗ happens.

It is easy to verify that T i
j = δa +δb +δc +δd−2δ3 and t i

j = δ3−δ2, regardless of the

topology of Gi. It is easy to confirm that for some p3 that avoid deep coalescence, P(E1|Σ∗i , Ē∗) =
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1, and thus for these Σ∗i ,

(π i
X π

i
Y )

2
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j) .

For all other p3, P(E1|Σ∗i , Ē∗) = P(E2|Σ∗i , Ē∗) = P(E3|Σ∗i , Ē∗) = 1
3 , and thus

E
[
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j(ab|cd)
∣∣Σ∗i , Ē∗]= E
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j(ac|bd)
∣∣Σ∗i , Ē∗]= E
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=
1
3
(π i

X π
i
Y )

2
e−Ci

jT
i
j +

2
3
(π i

X π
i
Y )

2
e−Ci

j(T
i
j+2t i

j) .

Therefore, for all Σ∗i ,

E
[
wi

j(ab|cd)
∣∣Σ∗i , Ē∗]≥ E

[
wi

j(ac|bd)
∣∣Σ∗i , Ē∗]= E

[
wi

j(ad|bc)
∣∣Σ∗i , Ē∗] .

Finally, by combining the two cases, we have

E
[
wi

j(ab|cd)
∣∣Σ∗i ]≥ E

[
wi

j(ac|bd)
∣∣Σ∗i ]= E

[
wi

j(ad|bc)
∣∣Σ∗i ] .

The lemma above leads to the following proposition:

Proposition 5.1. Let Q = {a,b,c,d} and S ↾ Q has topology ab|cd, then for each site pair ζ i
j,

E
[
wi

j(ab|cd)
]
> E

[
wi

j(ac|bd)
]
= E

[
wi

j(ad|bc)
]
.

Proof. From Equation 5.1, we have

E
[
wi

j(ab|cd)
]
=
∫

E
[
wi

j(ab|cd)
∣∣Σ∗i ] f (Σ∗i )dΣ

∗
i ,
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From Lemma 5.2, we have

E
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]
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[
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j(ad|bc)
]
.

Notice that E
[
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̸= E

[
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]

as when there is no deep coalescence,

E
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∣∣Σ∗i ]= E

[
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Recall that

W (S∗) = ∑
Q∈Q

k

∑
i=1

Li

∑
j=1

wi
j(S
∗ ↾ Q) . (5.8)

Then, for any species tree topology S∗ different from S, for each gene Gi, let

∆i = ∑
Q∈Q

Li

∑
j=1

(
wi

j(S ↾ Q)−wi
j(S
∗ ↾ Q)

)
, and thus W (S)−W (S∗) =

k

∑
i=1

∆i .

Since −4Li|Q| ≤ ∆i ≤ 4Li|Q|, by Hoeffding’s inequality,

P
(
W (S∗)≥W (S)

)
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( k
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∆i−
k
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k
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i=1 (8Li|Q|)2 .

From Proposition 5.1, we get E
[
∆i
]
> 0 for all i, and thus E

[
∆i
]
= Θk(1).

Let L̄ be the mean of the series {Li} and assume L̄ = Θk(1), then

P
(
W (S∗)≥W (S)

)
≤ e
−

2
(

∑
k
i=1E[∆i]

)2

∑
k
i=1 (8Li|Q|)2 ≤ e

−
2
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∑
k
i=1E[∆i]

)2

(8|Q|)2kL̄2 = e−Θ

(
k2
k

)
= e−Θ(k) .

Thus, we obtain the true species tree with arbitrary high probability as k→ ∞.

271



Chapter 6

TAPER: Pinpointing Errors in Multiple
Sequence Alignments Despite Varying
Rates of Evolution
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1. Erroneous data can creep into sequence datasets for reasons ranging from contamination to

annotation and alignment mistakes and reduce the accuracy of downstream analyses. As datasets

keep getting larger, it has become difficult to check multiple sequence alignments visually for

errors, and thus, automatic error detection methods are needed more than ever before. Alignment

masking methods, which are widely used, remove entire aligned sites and may reduce signal as

much as or more than they reduce the noise.

2. The alternative we propose here is a surprisingly under-explored approach: looking for

errors in small species-specific stretches of the multiple sequence alignments. We introduce a

method called TAPER that uses a novel two-dimensional outlier detection algorithm. Importantly,

TAPER adjusts its null expectations per site and species, and in doing so, it attempts to distinguish

the real heterogeneity (signal) from errors (noise).

3. Our results show that TAPER removes very little data yet finds much of the error. The

effectiveness of TAPER depends on several properties of the alignment (e.g., evolutionary

divergence levels) and the errors (e.g., their length).

4. By enabling data clean up with minimal loss of signal, TAPER can improve downstream

analyses such as phylogenetic reconstruction and selection detection. Data errors, small or large,

can reduce confidence in the downstream results, and thus, eliminating them can be beneficial

even when downstream analyses are not impacted.

6.1 Introduction

Multiple sequence alignments used in phylogenetics and other evolutionary analyses

are susceptible to errors. The input to phylogenetic inference is often prepared through a long

pipeline of several error-prone steps (Fig. 6.1). Together, these steps can leave datasets riddled

with many types of errors, called data pipeline errors here. For example, contaminating DNA

(Simion et al., 2018; Laurin-Lemay et al., 2012; Olson and Hassanin, 2003) and sequencing

errors can persist even after the assembly of sequences (Francois et al., 2020; Breitwieser
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Figure 6.1. Data pipeline errors. Top: Many error-prone steps are needed to produce gene
multiple sequence alignments (MSAs) used as input to phylogenomic reconstruction methods.
Bottom left: an example data pipeline error in the avian dataset of Jarvis et al. (2014), identified by
Springer and Gatesy (2018), where in gene CEPT1, for three species (Phoenicopterus, Mesitornis,
Leptosomus) Intron 3 is aligned with exon 4 of other taxa. Bottom right: The result of running
TAPER in its default mode. TAPER detects and masks (greyed out and marked by X) most but
not all of the mis-aligned parts for these sequences.

et al., 2019). The process for establishing homology using genome annotations, whole genome

alignment, or sequence matching involves complex computational problems (Lunter et al., 2008),

and thus, errors in homology are not just possible but rampant (Springer and Gatesy, 2018).

Most commonly used methods further assume orthology, and errors in orthology detection are

common (Laurin-Lemay et al., 2012; Salichos and Rokas, 2011). Alignment errors are also

ubiquitous and can impact tree accuracy (Li-San Wang et al., 2011; Liu et al., 2009; Ogdenw

and Rosenberg, 2006; Fletcher and Yang, 2010; Smirnov and Warnow, 2020). The prevalence of

these errors in phylogenomic datasets has been appreciated (Springer and Gatesy, 2018, 2016;

Hosner et al., 2016; Sayyari et al., 2017; Philippe et al., 2017; Laurin-Lemay et al., 2012), and

several phylogenomics studies have now been criticized (Springer and Gatesy, 2018, 2016;

Gatesy and Springer, 2014; Jeffroy et al., 2006; Salichos and Rokas, 2013; Shen et al., 2017).

Data pipeline errors represent a major source of that criticism.
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Despite the widespread recognition of the challenges associated with data pipeline errors,

there are no truly satisfactory ways to address those errors. Researches can not afford to visually

curate their phylogenomic datasets. Many authors have mentioned the need for better methods

for detecting errors in data (e.g., Philippe et al., 2017). However, detecting and eliminating error

comes with its own caveats and issues, and caution is warranted. Aggressive filtering of data

upon any suspicion of error can add bias (e.g., by eliminating highly-divergent but genuinely

homologous site patterns that should be considered in analyses). Thus, excessive filtering has

the potential to eliminate signal. Consistent with this explanation, studies have found that

commonly used alignment masking algorithms often have limited impact on accuracy (Portik

and Wiens, 2020) and can even reduce the accuracy of phylogeny inference (Tan et al., 2015).

Regardless of whether small errors actually impact the tree inference, a question on which there

is disagreement, the existence of data pipeline errors has the potential to impact the results,

which can diminish confidence in analyses. Thus, even when errors do not impact the analyses,

researchers benefit from detecting and removing them as long as removing the errors does not

remove signal. Achieving this objective requires error detection methods that are targeted and

find minimal portions of the data with putative errors.

The existing methods for data filtering mostly focus on finding entire genes or entire

species that should be eliminated (e.g., Hosner et al., 2016; Molloy and Warnow, 2018; Huang

et al., 2016). Somewhat more targeted are alignment masking methods that eliminate entire

sites from a sequence alignment in order to avoid mis-alignment (e.g., Castresana, 2000; Dress

et al., 2008; Capella-Gutiérrez et al., 2009; Rajan, 2012; Steenwyk et al., 2020; Sela et al., 2015).

Another form of filtering is to keep all genes and all species but to remove genes from specific

species from some gene families because of fragmentation (Sayyari et al., 2017), evidence of

unexpected patterns of tree topology and branch length (de Vienne et al., 2012; Wickett et al.,

2014; Mai and Mirarab, 2018), or detection of rogue taxa (Westover et al., 2013).

These existing trimming methods operate at coarse levels. Many forms of pipeline

errors can be limited to a small stretch of a sequence in a particular species (not all species)
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and in a particular set of positions (not an entire gene). For example, the dominant form of

error that Springer and Gatesy (2018) found in the avian data of Jarvis et al. (2014) relates to

small pieces of introns being annotated as exons (e.g., Fig.6.1b). Such errors are limited to a

handful of sequence in a small stretch of sites. Eliminating entire genes, entire sites, or entire

species because a small stretch includes errors wastes data. We need methods to find specific

stretches of a specific species in a specific gene that appear erroneous. More recently, several

authors have started to address the need for finding such small stretches of errors. Whelan et al.

(2018) formulated detection of such errors as an step before the multiple sequence alignment

(MSA) is obtained; their tool, PREQUAL, examines per-position scores in pairwise alignments

of sequences to detect non-homologous stretches.

Instead of finding errors before alignment, we can formulate error filtering as outlier

detection in a given MSA. Imagine an MSA that is almost fully conserved for all species across

all sites except that a small stretch from a single species is close to random with respect to other

sequences aligned to it. Such outliers can be detected. One would hope alignment methods

would leave such sequences unaligned, but most commonly used alignment methods are known

to over-align (Löytynoja and Goldman, 2008; Loytynoja and Goldman, 2005). Thus, these

stretches are suspect and likely to be erroneous. Avoiding such stretches has motivated some

alignment methods to be less aggressive (Loytynoja and Goldman, 2005; Löytynoja et al., 2012;

Katoh and Standley, 2016).

Several methods have been recently developed to look for errors in small stretches of

MSAs. An early method, DivA (Zepeda Mendoza et al., 2014), used sliding windows and a

scoring scheme based on amino acid alignment probabilities. More recently, Spruceup was

developed to use pairwise distances in small windows to detect outliers (Borowiec, 2019). Other

methods use Hidden Markov Models (HMM) to approach filtering in a probabilistic framework.

Divvier (Ali et al., 2019) uses pair-HMMs to quantify the probability of homology between pairs

of sequences and Di Franco et al. (2019) use profile HMMs to detect areas of low homology in

the entire MSA. Most of these methods tend to be slow and their ability to avoid over-filtering
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needs further study. Moreover, these methods are mostly or exclusively designed for amino acids

not DNA or RNA data.

Alignment trimming using the outlier detection paradigm needs to contend with two

related issues. On the one hand, sequence divergence among species is a function of their phylo-

genetic relationships and evolutionary rates, and simply being divergent from other sequences

cannot be viewed as evidence of error. If one naively looks for species that look unusually diver-

gent compared to the remaining sequences, an outgroup or an ingroup with a highly accelerated

rate of evolution would be mistakenly taken as erroneous (a false positive error detection). On

the other hand, rates of evolution change across sites, and thus, how much divergence is “normal”

depends on the sequence context.

We advocate for two-dimensional (2D) error detection: finding stretches in a sequence

that are unusually divergent compared to other sequences, calibrating the normal level of

divergence based on both genomic positions (columns) and the species (rows). An outlier should

be detected only if a sequence is unusually divergent along both axes. For tree-based trimming,

de Vienne et al. (2012) has pioneered such a two-dimensional approach in their mathematically

elegant method Phylo-MCOA, and TreeShrink (Mai and Mirarab, 2018) and TreSpEx (Struck,

2014) follow a similar philosophy.

In this paper, we introduce the Two-dimensional Algorithm for Pinpointing ERrors

(TAPER) that takes a multiple sequence alignment as input and outputs outlier sequence positions.

Using both simulated and real data, we show that TAPER is able to pinpoint errors in multiple

sequence alignments without removing large parts of the alignment.
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6.2 Materials and Methods

6.2.1 The TAPER Algorithm

2D Outlier Detection Algorithm

We first describe our general-purpose 2D outlier detection algorithm (Alg. 6.1). The

input is a set of n aligned sequences with length L on any arbitrary alphabet Γ (e.g., nucleotide)

plus missing data (e.g., gaps). The output is a delineation of each sequence into alternating

normal and outlier regions. We use letter to refer to a position in a sequence, not counting gaps

(or ambiguous letters like X for amino acid) as letters.

Step 1.

Compute a divergence score for each letter x in each column i of the alignment. Small

scores should indicate agreement with a strong consensus in that site and the largest values

should indicate disagreement from an otherwise strong consensus. High scoring letters are

candidate outliers. Thus, the drop from large values to small values should be not be gradual;

instead, it should have a fast drop as deviation from the consensus weaken. While several such

functions can be imagined, here, we use a scoring method that Henikoff and Henikoff (1992)

used for sequence weighting. We score a letter x in column i as 1
ui×pi,x

where ui is the number of

unique letters in the column, and pi,x is the fraction of the letters in the column that are x. It can

be checked that this score satisfies our criteria (Fig. S6.1).

Step 2.

Since per-column scores are noisy, we combine them along small windows per each

sequence. We first remove gaps from each sequence. Then, selecting an odd constant value k

(e.g., 11), for each overlapping window of size k of each sequence, we assign the median score

of the letters in that window as the score of that window. This step produces a distribution of

scores for each sequence.
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Algorithm 6.1. TAPER algorithm. A: Input alignment on n sequences of length L on alphabet Γ

and gap letter -. k, p,q,c: user-provided parameters. [X ] denotes 1 . . .X .

procedure TAPER(A, k, p, q, c)
M← DIVERGENCESCORES(A)
for each row mi ∈M do

vi←WINDOWSCORES(mi, k)
ci← JENKSBREAKPOINT(vi)

(t1, . . . , tn)←ADJ((v1, . . . ,vn), (c1, . . . ,cn), p, q, c)
for each row ai ∈ A do

si← REMOVEOUTLIER(ai, vi, ti, k)
return (s1, . . . ,sn)

procedure DIVERGENCESCORES(A) ▷ Step 1
for i ∈ [L] do

for x ∈ Γ do
px← relative frequency of x in column i

ui← number of letters x in Γ with px ̸= 0.
for j ∈ [n] do

M j,i←

{
/0 if A j,i =−
1/(ui× pA j,i ) else

return M
procedure WINDOWSCORES(m, k) ▷ Step 2

m′← remove /0 from m
l← length of m′

for i ∈ [l− k+1] do
vi←Median(m′i, . . . ,m

′
i+k−1)

return v
procedure JENKSBREAKPOINT(v) ▷ Step 3

l← length of v
v′← sorted v
s0← 0
for i ∈ [l] do

si← si−1 +v′i
j← argmaxi∈[l−1]

s2
i
i + (sl−si)

2

l−i
return v′j

▷ Step 4
procedure ADJ((v1, . . . ,vn), (c1, . . . ,cn), p, q, c)

a← ⌊p×n⌋-th largest value in c1, ...,cn
for i ∈ [n] do

l← length of vi
bi← ⌊q× l⌋-th largest value in vi
ti←max{a,bi,ci,c}

return (t1, . . . , tn)

procedure REMOVEOUTLIER(a, v, t, k) ▷ Step 5
l← length of v
s← remove gaps from a
N0← 0
O0← 0
for i ∈ [k−1] do

Ni← Ni−1 +

{
1, if vi ≤ t
0, else

Oi← Oi−1 +

{
0, if vi ≤ t
1, else

BN
i ← (N, i−1)

BO
i ← (O, i−1)

for i ∈ {k, . . . , l} do
if Ni−1 > Oi−k then

Ni← Ni−1 +

{
1, if vi ≤ t
0, else

,BN
i ← (N, i−1)

else

Ni← Oi−k +

{
1, if vi ≤ t
0, else

,BN
i ← (O, i− k)

if Oi−1 > Ni−k then

Oi← Oi−1 +

{
0, if vi ≤ t
1, else

,BO
i ← (O, i−1)

else

Oi← Ni−k +

{
0, if vi ≤ t
1, else

,BO
i ← (N, i− k)

if Nl > Ol then
(S, i)← (O, l)

else
(S, i)← (N, l)

while i ̸= 0 do
if S = O then

for j ∈ {i, . . . , i+ k−1} do
s j ← /0 ▷ Mark position j as outlier

(S, i)← BS
i

s′← add gaps of a back to s
return s′

Step 3.

For each sequence, we seek to find which of the windows have abnormally high scores;

these are considered candidate outliers. To do so, we divide windows of each sequence into a

low scoring and a high scoring group. We find a cutoff point, t, such that the squared deviations

from the mean of the scores below t plus the squared deviations from the mean of points above t

is minimized. This approach is the Jenks (1967) natural breaks optimization and is equivalent to
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the 2-means clustering.

Step 4.

The initial cutoffs from Step 3 include high-scoring windows for all sequences, regardless

of whether any outlier exists. To allow sequences with no outliers, we use three parameters

0 < p,q < 1 and c > 1 to adjust cutoffs. We set the final cutoff of a sequence to the maximum

of four quantities: the highest p-quantile of all cutoff values across all sequences, the highest

q-quantile of all window scores for that sequence, the threshold value c, and the initial cutoff t.

Thus, the adjusted cutoff will include no high-scoring windows for sequences where the windows

have homogeneous scores (controlled by q) or all scores are within the normal range compared

to other sequences (controlled by p). User can adjust p, q, and c to control the aggressiveness of

the method; p controls how many species can have error while q controls error length; c controls

overall aggressiveness. Windows with scores greater than the final cutoff are called red and the

rest are called green.

Step 5.

We divide the original sequence without gaps into alternating normal and outlier sections.

Note that a window can span both sections. The sections boundaries are set using dynamic

programming, seeking to maximize the number of red windows fully contained in outlier sections

and green windows fully contained in normal sections. The point of this step is smoothing of red

and green assignments. Since windows that fall on the section boundaries do not count towards

the optimization score, frequent switches between normal and outlier regions are eliminated in

this step.

The 5-step procedure we described above is called two-dimensional because scores are

computed along the columns (step 1), but outliers are detected (Step 2 and 3) and smoothed (Step

4) along the rows. Thus, for a letter to be marked as an outlier, it must be in several windows, all

of which have abnormally high scores compared to the rest of their respective columns, when

compared to other windows of the same sequence.
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TAPER Details

2D outlier detection is expected to be more effective at catching smaller errors with

smaller values of k and longer errors with larger values of k (our results confirm this notion; see

Fig. S6.2). To be able to catch a wider range of error lengths, we have devised a strategy to

combine several k values, each with a different p,q setting. We run the 2D outlier algorithm on

multiple k values and report their union. However, to ensure that a specific k value only catches

errors of its intended length, we define an upper limit to the length of the detected error, such

that only detected errors with lengths less than the upper limit are flagged. In our preliminary

analyses, we confirmed that using two or more values of k dramatically improves recall for short

errors of length 22 (Fig. S6.3–S6.4). In our default setting, we use k values 5, 9, and 17, with p

set respectively to 0.25,0.25,0.1, and q set to 0.1,0.25,0.5; we only keep errors of length up to

6× k for k = 5 or 9. These settings were set based on our understanding of their meaning and

are not tuned on any of our data; in fact, they do not seem optimal on a preliminary dataset we

have tested (Fig. S6.5). For c, which can be used to control the aggressiveness of the method, we

set c = 3 by default; this setting is motivated by preliminary analyses on a handful of datasets

(Fig. S6.6) but is kept fixed as we study various datasets.

6.2.2 Experiment setup

Datasets

To benchmark TAPER, we inserted random errors into MSAs of three real datasets

with different properties (Table6.1) and studied whether TAPER can detect them. The 16S.B

dataset is an RNA dataset of 16S, with gold-standard alignments built by Cannone et al. (2002)

and used for benchmarking alignment methods (e.g., Liu et al., 2009; Mirarab et al., 2015;

Nguyen et al., 2015). Because this dataset includes 27643 sequences, it enables us to sub-sample

the alignment to create subsets with controlled divergence levels. We selected subtrees with

a range of diameters (i.e., maximum distance between species) from a phylogeny built from
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Table 6.1. Datasets used in simulations.

Dataset Type # sequences Alignment Length Alignment
16S.B (371 sub-clades) RNA 23–1958 (mean: 544) 854–2940 (mean: 1362) structure-based+curated
Early-bird (19 genes) DNA 72–171 (mean: 158) 461–2335 (1168) Mafft + curated

Small-AA (RV100-BBA0039) Protein 807 375 Gold-standard

the original MSA. We first find all clades in small diameter ranges in increments of 0.025

([0,0.025], [0.025,0.05], . . . , [0.975,1]) and then select up to 10 largest clades in each diameter

range, requiring at least 20 species. This procedure gave us 371 sub-datasets of the 16S.B

dataset, ranging in tree diameter from 0.043 to 0.990. The avian early-bird dataset consists of

DNA sequences from 19 genes, aligned automatically but also curated manually by Hackett

et al. (2008). The RV100-BBA0039 is one of the largest AA alignments available as part of

the BAliBASE datasets of gold-standard curated alignments used for benchmarking (Thompson

et al., 2005).

Simulating errors

Errors are added to a predefined number of sequences in the alignment (m) and for a

predefined length (l). Sequences with errors are selected uniformly at random. For each of the

m erroneous sequences, a position to start the error is selected uniformly at random, and l of

the original non-gap letters are replaced with a randomly chosen letter. For DNA, we choose

randomly among the four possible nucleotides. For proteins, we draw the replaced letter from

the set of all amino acids such that the chance of selecting each amino acid is proportional to the

number of codons that encode to it (e.g., the chance of flipping to Leucine is six times higher

than that of Methionine).

Our experiments explore several error profiles (m and l). First, we fix m to be 5% of the

total number of sequences, and vary l between (2,3,5,8,16,32,64)×11, including 64×11 only

for 16S.B as the length is long enough to accommodate such long errors, and excluding 32×11

from early-bird genes with mean sequence length below 704 as the error would be more than half

of the length. We then fix l to 8×11 and set m to 1 or to 2%,5%,10%, or 20% of the number
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of sequences. To ensure these discrete choices do not impact results, on 16S.B, we also draw

l and m from a normal distribution. We determine m by first drawing a value x from a normal

distribution centered at 20 and a standard deviation of 2 and set m = N
x +1, where N is the total

number of sequences in the alignment (so around 5% of sequences are erroneous). We set the

length of the error by drawing from another normal distribution centered at 50 with a standard

deviation of 10.

Methods compared

We were able to compare TAPER to two methods: DivA and Divvier. While both

methods are mostly designed for AA, Divvier can also be run on DNA and RNA data. We test

both methods on the AA data, but also include comparisons to Divvier on RNASim dataset,

noting that its design is not optimized for such data. Moreover, while Divvier is mostly focused

on dividing columns of an alignment into multiple columns, the same technique can also be used

for filtering alignments by simply retaining the largest of the columns obtained from dividing a

column (-partial mode). In this mode, for every column divided into smaller ones, the most

complete column after division is kept and others are removed.

Evaluation criteria

We define a False Positive (FP) as any letter that is not an error, but is marked erroneous;

a False Negative (FN) as any letter that is erroneous, but is not marked; a True Positive (TP)

as any letter that is erroneous, and is marked erroneous; and, a True Negative (TN) as any a

letter that is not erroneous, and is not marked. Each letter in the MSA, excluding gap letters,

is categorized into one of the four groups, allowing us to compute recall ( T P
T P+FN ) and FPR

( FP
T N+FP ). We also report the percentage of the alignment made of errors before ( FN+T P

FN+FP+T P+T N )

and after ( FN
FN+T N ) filtering, as well as the percentage of alignment retained ( FN+T N

FN+FP+T P+T N ).

On a subset of datasets, we evaluate the impact of errors on the accuracy of trees inferred

using FastTree-II (Price et al., 2010), measured using unweighted and weighted Robinson and
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Foulds (1981) (RF) distance. Let Rb be the distance between the tree inferred from the alignment

with no added errors (i.e., reference tree) and the tree inferred from the alignment with errors

added; let Ra be the distance between the reference tree and the tree inferred from alignment

with automatically masked errors. We define relative reduction in error as Rb−Ra
Rb

and set 0
0 = 0.

6.3 Results

6.3.1 Simulation Results

16S.B and impact of parameters

On the 16S.B dataset, TAPER effectively finds erroneous sequences (Fig. 6.2a-c) and

improves tree accuracy (Fig. 6.2d-e). The FPR is low, never exceeding 0.16% on average across

model conditions, and is even lower before adding errors. Note that we assume that the starting

alignment is fully correct, but some FPs may in fact be undetected errors. TAPER retains more

than 99% in most cases and never less than 97% of alignment letters (Fig. S6.7); thus, the

method does not overzealously remove data. Depending on the model condition, 70% to 98% of

erroneous letters are detected (Fig. 6.2a). The remaining error is never more than 0.47% of the

alignment after filtering, compared to 2.5% before (Fig. 6.2b).

Impact of diameter.

Tree diameter, which is an indicator of the divergence level, has a substantial impact on

the effectiveness of TAPER (Fig. 6.2 and S6.8). Over all conditions and using a simple linear

model, diameter explains a statistically significant 12% of the variance in the recall (p-value

according to an ANOVA test: ≪ 10−5; see Table S6.1). As the diameter increases, recall

reduces gradually, but the largest reductions happen when errors are relatively short (Fig. S6.8).

Increasing the diameter also increase FPR, especially when diameter is >0.5. The number of

sequences in each alignment has a small impact on the recall (0.5% of total variance) and FPR

values (Fig. S6.9).
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Figure 6.2. (a) ROC (Recall vs FPR) on subclades of 16S.B with varying error length, error
frequency, grouped into five diameter categories (colors). Left: Percent erroneous sequences
= 5%; the error length varies from 2× – 64× 11nt. We also have normally distributed error
length (centered around 50nt) and frequency (around 5%) shown as cross. Right: Error length
= 8×11nt, the number of erroneous sequence varies (1, 2%, 5%, 10%, or 20% of the size of the
subtree). Vertical lines on top show the FPR before adding error (Fig. S6.8). (b) Reduction in the
portion of the alignment nucleotides that are in error. Arrows show percent error before and after
filtering (log-scale; see also S6.7b). (c) ROC for comparing TAPER and Divvier with normally-
distributed length and frequency (subset of 239 cases). Inset: running time comparison. (d) The
relative reduction in tree error after filtering. y-axis: the relative reduction in the RF distance
of trees inferred from error-prone alignments to the tree inferred from error-free alignment
after filtering. Not shown: one case that increased error by 1300% for TAPER and 3500% for
Divver, and two (one) cases where Divvier (TAPER) had no error before filtering but some error
after. Large dots show mean. Since Divvier is run on a subset of 239 cases, we show TAPER
distribution both on all points (780) and the subset. (e) Same as (d) but showing weighted RF
(WRF). One Divvier run that increased error by 360% is removed from the figure.
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Impact of error profile.

FPR is not substantially impacted by the error length but the recall is. Error length

explains 32% of variance in the recall (Table S6.1), which is the lowest with small errors of

length 22nt, quickly increases as errors become longer, peaks somewhere between 88 and 352nt,

and degrades slightly after that (Fig. 6.2a). The low recall for short errors should be compared

with the amount of error left in the alignment after filtering (Fig. 6.2b), which is less than 0.03%

on average even for high diameters. The amount of remaining error is the highest (0.47% on

average) when inserted errors are long, but even then, error has reduced dramatically (2.7% before

filtering). When we vary error frequency, we observe small and inconsistent changes in the recall,

decreasing for low diameter and increasing for high diameters. FPR increases substantially as the

error frequency goes up but remains below 0.16% even when 20% of sequences are erroneous.

Finally, when error length and frequency are drawn from a normal distribution, we see consistent

results (Fig. 6.2).

Comparison to Divvier.

We next compare TAPER with Divvier on a subset of 239 sub-clades with error profile

drawn from the normal distribution (a subset chosen because of the prohibitive running time of

Divvier). Overall, TAPER has far better FPR with a recall that is comparable and can be better or

worse depending on the diameter (Fig. 6.2c). As diameter increases, TAPER has only a modest

increase in FPR, never exceeding 0.1% on average, and a gradual decrease in recall from 96%

to 85%. In contrast, Divvier has a sharp increase in FPR with higher diameter, reaching 1.7%

at the highest level, with recall that stays stable around 90%. Thus, when the diameter is less

than 0.5, TAPER has higher recall and lower FPR than Divvier, but with higher diameter, it has

much lower FPR and a somewhat lower recall. Overall, Divvier is more aggressive in filtering,

especially for higher diameter trees. Beyond accuracy, Divvier is much slower. While TAPER

takes between 11 to 63 seconds on these data, Divvier takes between 9 minutes to 17 hours.
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Impact on tree accuracy.

The improvements in alignment quality lead to substantial improvements in the trees

inferred from those alignments (Fig. 6.2de). When considering only topological accuracy,

TAPER reduces error in 640 cases, increases it in 79 cases, and leaves it unchanged in the

remaining 61 cases among all 780 sub-clades with normally-distributed error profiles. Overall,

there is a 10% relative reduction in RF distance. The improvements are much more pronounced

when weighted RF distance is used to account for branch lengths: WRF improves in 769 cases,

stays the same in five cases, and reduces only in six cases. On average, WRF error is reduced

by 50% using TAPER compared to unfiltered alignments, and the improvements are negatively

correlated with Diameter (r = −0.37). These improvements are despite the fact that TAPER

removes no more than 3% (often less than 1%) of the data (Fig. S6.7).

It is tempting to think that a more aggressive filtering would result in even more reduction

in accuracy by eliminating more of the error. However, more aggressive filtering runs the risk

of also removing signal and increasing error. Such an over-filtering is observed for Divvier,

especially for trees with high diameter (Fig. 6.2de). When diameter is 0.1 or higher, the mean

topological error increases as a result of Divvier filtering, not because errors are not found, but

because signal is also removed. The decrease in accuracy becomes more pronounced for larger

diameters where FPR of Divvier is high. Thus, for high diameter cases where Divvier has a

higher recall and FPR than TAPER, the loss in signal does not seem worth the extra reduction in

error.

Early-bird dataset

On the early-bird dataset, which includes 19 genes, TAPER in most cases has FPR below

0.1% and recall above 60% (Fig. 6.3a) and reduces the error to less than 1% of the alignment in

all cases (Fig. 6.3b). However, the effectiveness of TAPER varies across genes (Fig. S6.10a).

At one end of the spectrum, on EEF and HMG genes, which have high diameter (1.1 ad 0.97),

TAPER has FPR close to 0.1% and relatively low recall (as low as 33% when errors are long and
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Figure 6.3. (a,d) ROC results with various error profiles for all genes of the early bird (a)
and for the AA (d) datasets. (b,e) Reduction in percentage of the nucleotide positions in the
alignment that consists of errors for early bird (b) and AA (e) datasets. Arrows show percent error
before and after filtering. Note the log-scale. For each gene, below it, we indicate the diameter,
mean sequence length, and the number of species present in that gene. See also Fig. S6.10. (c)
Reduction in WRF and normalized RF error before and after filtering shown as arrows for each
gene. Error profile is fixed to 8×11,5%. (f) Relative reduction in RF and WRF error for TAPER
and DivA as a result of filtering for the 8×11,5% error profile.

no more than 78% under other conditions). In addition to high diameter, the HMG gene includes

72 out of the 171 species. The other extreme is the BDNF gene (diameter: 0.40) where the mean

recall is between 74% and 94% and FPR is below 0.2% across all conditions and below 0.05%

in most. While BDNF is known to have patterns of branch length variation that differ from the

other genes in the early-bird dataset (cf., Fig. 8 of Braun et al., 2019), several other genes such
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as NT3 and IRF2 also have high accuracy (Fig. S6.10). Overall, diameter has modest negative

impact on the recall of TAPER and the impact is most noticeable for longer errors (Fig. S6.10b).

According to a linear model only 9% of variation in recall is explained by diameter (p-value:

≪ 10−5; see Table S6.2). For example, the IRF2 gene with a moderately high diameter (0.8)

has very high recall (ranging from 71% to 93%). The impact of sequence length and number of

sequences on the recall was significant (p-values: 0. < 10−5, 0.003) but modest (1.3% and 1%

of total variance).

TAPER does not seem biased towards more divergent species (Fig S6.11). We saw no

strong correlation between closeness of a species to the outgroup and the propensity of TAPER

to filter it; in fact, there is a weak tendency for reduced (not increased) filtering of species that

are closer to the outgroup. Also, TAPER does not remove outgroups more often than ingroup

species (in fact, it tends to remove them slightly less often).

The error profile matters. The error frequency has small impacts on the recall (Table S6.2),

but error length has a large impact (20% of variance; p-value: ≪ 10−5). In particular, short

errors are difficult for all genes, while long errors are difficult for many but not all genes (e.g.,

EGR1). Overall, the five factors examined and their interactions explain only 42% of the total

variance (Table S6.2).

Focusing on the error profile of 5% error and 8× 11nt length, we also measured the

improvement in tree accuracy (Fig. 6.3c). The topological accuracy increases for all but three

genes (HMG, FIB, aca) where it slightly degrades. Improvements in normalized RF can be as

high 5%. The WRF metric that considers branch length shows improvements in accuracy for

every gene, and the improvements can be dramatic. For example, for BDNF, the error reduces to

less than a third of the value before filtering (from 0.79 to 0.26). On average, the WRF before

filtering was 2.4 times higher compared to after filtering.
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Small-AA dataset

On the AA dataset, where the original alignment includes a set of sequences that are

substantially divergent from the rest (Fig. S6.13), TAPER has higher FPR (mean: 1.34%) than

the previous datasets (Fig. 6.3d). We attribute the higher FPR to the uncertainty in the alignment,

consistent with the observation that even before adding errors, TAPER removes 1.30% of the

alignment. This uncertainty makes it harder for TAPER to find inserted errors. Depending on the

model condition, the median recall ranges between 54% and 90%. Increasing the frequency of

error and the length of the error both improve the recall. A relatively small portion of alignments,

typically less than 3%, is removed (Fig. S6.14) and the remaining error after filtering is never

more than 0.5% (Fig. 6.3e). This small portion removed leads to a substantial decrease in the

tree error reducing the RF and WRF substantially in most cases (Fig. 6.3f).

Compared to TAPER, DivA and Divvier show opposing patterns when tested on the

default error profile. DivA is more conservative than TAPER; it has a much lower recall

than TAPER (43% vs 80%) but also a lower FPR (0.4% 1.3% ). On average, DivA improves

phylogenetic accuracy. However, it fails to improve the phylogenetic accuracy in many cases

and is far less effective than TAPER in reducing both topological and branch length errors

(Fig. 6.3f). In contrast to DivA, Divvier is more aggressive than TAPER and removes more than

11% of the alignment (Fig. S6.14). As a result, it has close to perfect recall but also 10% FPR

(Fig. 6.3d). This aggressive filtering results in lowered phylogenetic accuracy, a pattern that is

most pronounced for branch lengths (Fig. 6.3f). Beyond accuracy, DivA is the slowest method,

taking on average 7.5 hours on these data, followed by Divvier, which takes 58 minutes, and

TAPER, which takes only 11 seconds.

6.3.2 Real biological data

To test the effectiveness of TAPER on real data, we revisited 56 genes from the avian

dataset of Jarvis et al. (2014) analyzed manually by Springer and Gatesy (2018). Springer and
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Gatesy (2018) found errors in all 56 of these genes (some small and others relatively large).

Since the ground truth of where all errors lie is not known, to evaluate results of TAPER, we rely

on a likelihood-based metric. If the nucleotides removed are in fact erroneous, we expect the

likelihood of the maximum likelihood gene tree to increase, more than it would if we remove the

same number of nucleotides from random positions. Further, since gene trees for this dataset

are notoriously difficult to estimate accurately (Mirarab et al., 2014), we also compute the

likelihood on the best-estimate of the species tree from Zhang et al. (2018) (we present this tree

as Fig. S6.15a) after estimating branch lengths for each specific gene; despite a potential for

true gene tree discordance, we expect that removing errors would increase the likelihood of the

species tree. However, it must be noted that simply removing the most divergent sequences is

also expected to increase the likelihood. Thus, we also test a control method that removes the

same number of letters from the alignment as TAPER but simply picks those positions with the

highest letter score produced in Step 1 of TAPER. These would be the most divergent positions

in otherwise conserved columns but are not necessarily 2D outliers as defined by TAPER.

TAPER marked between 0% and 1.2% (mean: 0.2%) of nucleotides in these genes as

erroneous (Fig. 6.4). For both gene trees and the species tree, we see dramatic improvements in

the log likelihood (measured using RAxML, Stamatakis, 2014), far exceeding small increases

in the likelihood we get by random removal of the same amount of data (Fig. 6.4a). The more

data is removed, the more the likelihood increases. Removing as little as 1% of the data can

result in 10% improvements in the log likelihood. The control method of removing the most

divergent letters increases likelihood even more (roughly twice as much as TAPER). This result

is expected as sequences diverging from the consensus decrease the likelihood (whether the

difference is real or not). However, simply removing divergent sequences leads to removal of

some bases from most species in most genes (Fig. 6.4b), which cannot correspond to removal of

errors. In contrast, TAPER removes sequences from only a few species for each gene, which

is consistent with removal of actual errors. Reassuringly, the two outgroups were not removed

more often than other species using TAPER (Fig S6.15b). In contrast, removing high-scoring
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Figure 6.4. (a) Increase in the log likelihood after filtering computed both for the ML gene tree
(GT) and the species tree (ST) versus the portion of the nucleotides in an alignment that are
removed. For control, we show the results of removing the same amount of data from each gene
as TAPER removes but selected either randomly or taking the highest scoring positions in Step 1
of TAPER corresponding to the most divergent letters in their respective columns. y-axis: change
in log-likelihood normalized by likelihood before filtering. (b) For each gene (columns), we
show the percentage of total sequences removed from a particular species (rows) using TAPER
or the control method of filtering the highest scores. Species are sorted from top to the bottom
by their average distance to the two outgroups, shown at the bottom. The top seven species are
passerines, which are highly divergent from others.

positions removes outgroups and highly divergent passerines frequently.

Visual inspection of genes shows that out of 68 cases of error identified by Springer and

Gatesy (2018), 24 of them are fully or mostly found by TAPER, and in eight cases, a minority

of erroneous positions are found (Table S6.3). Among the remaining 36 cases (Table S6.4), 21

are errors that are too short (≤ 10bp) or too frequent (≥ 10 out of 48 species) for TAPER to

be effective, and in 7 cases, they are somewhat frequent (≥ 5). In another three cases, only a

handful of species are present in those sites, making the errors to be a high portion of non-gapped

species, which TAPER cannot detect (Table S6.4). Overall, TAPER marked 21 out of 29 cases

that were not too short or too frequent.

292



6.4 Discussion

We introduced TAPER, a method for detecting errors in individual species in an alignment.

TAPER was able to reduce error dramatically under varied conditions that we studied in this

paper while removing relatively little data. By design, TAPER is more conservative than

alternative error filtering methods that tend to remove large numbers of sites, species, or both.

This conservative design is based on the philosophy that we should strive to eliminate errors

without also removing signal. We achieve this goal using the 2D outlier detection algorithm and

step 4, which makes sure we remove sequences only if they stand out both compared to other

sites of the same sequence and other sequences of the same site. As expected, turning off step 4

would result in increased FP rates (Fig. S6.16).

Like TAPER, Divvier tries to spot false homologies while refraining from excessively

removing true homologies. However, TAPER and Divvier use very different algorithmic strate-

gies. Instead of looking for erroneous sequence stretches, Divvier looks for mis-alignments

(i.e., aligned columns that should be divided into multiple columns). It first uses pair-HMMs to

compute the posterior probability of any two residues in the same column being homologous and

then clusters all residues in that column according to these probabilities. By using per-column

posteriors, Divvier hopes to avoid splitting a column into multiple clusters simply because it has

high divergence levels. In our analyses, Divvier used in the filtering mode was more aggressive

than TAPER, leading to higher recall but also much higher FP rates (especially for high diameter

datasets). This more aggressive filtering was not beneficial because compared to TAPER, Divvier

had less positive impact on the accuracy of inferred trees (and often reduced the accuracy). We

suspect the simpler design of TAPER is responsible for its higher accuracy and much reduced

running time. While TAPER directly looks for outliers based on thresholds adjusted per columns

and rows of the alignment (p and q parameters), Divvier’s more complex approach relies on

the ability to compute homology probabilities using pair-HMMs. Moreover, TAPER works

on windows while Divvier works on individual columns. However, we should also note that

293



while Divvier supports error detection (the feature we tested here), its design seems motivated by

splitting alignment columns, which is a sligthly different goal.

The immediate impact of TAPER would be in improving phylogenetic analyses that

rely on the accuracy of alignments. However, other analyses can also benefit from improved

alignments. For example, detection of selection and functional annotation of genes both rely

on accurate alignments, and removing errors may improve their accuracy. Many studies in

microbiome and ecology also rely on aligning sequences to detect levels of divergence and

to characterize diversity of samples; errors in the data can lead to over-estimates of diversity,

which may be reduced using filtering methods such as TAPER. Finally, note that inaccuracies in

alignments can propagate when they are used as training data for machine learning methods; for

example, many research build hidden Markov models (e.g., Pfam) that are then used to recruit

and align new sequences. Thus, TAPER has the potential to improve a wide range of downstream

analyses.

The limitations of TAPER should also be kept in mind. TAPER is not very effective in

finding very short errors. For example, for errors below a length 20nt, it will not be very effective.

On the other extreme, since TAPER is looking for outlier regions, it cannot detect very large

errors. In the extreme case, if the error is more than half the sequence length or if error appears

in many of the sequences, it will not show up as an outlier; instead, it will be taken by the 2D

outlier algorithm as natural variation. In between these extremes of short and long is the sweet

spot for the error detection by TAPER where there is enough signal to detect oddity of the pattern

but the error is not so large that it looks like a real phylogenetic divergence. For shorter errors,

changing settings of TAPER (e.g., reducing k) could perhaps make the method more sensitive,

but that sensitivity would come at the expense of more FP filtering, which we tried hard to avoid.

For longer errors, methods like TreeShrink that look for unexpected patterns in branch lengths

provide viable alternatives.

The limitations of TAPER in terms of very short or very long errors do not negate its value

on real data. On the Springer and Gatesy (2018) empirical dataset we examined, about one third
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of sequences were shorter than 20nt (Fig. S6.17), showing that the range of errors TAPER can

detect still covers a substantial portion of errors. More broadly, there are many sources of error in

phylogenomic datasets and the expected length distribution of erroneously aligned segments in

phylogenomic datasets is likely to be sensitive to many different steps in the assembly, annotation,

and alignment pipelines. Although many studies focused on genome assembly have highlighted

the challenges associated with the assembly of repeats (Pop, 2009), we do not expect this issue

to be a major problem in phylogenomics because failure to assemble individual sequence reads

would lead to missing regions that simply cannot be used for phylogenetic estimation. Problems

associated with identification of homologous regions in correctly assembled genome sequences

are likely to be more common. Indeed, a major source of error that has been noted in previous

studies is the alignment of non-homologous exons or the alignment of exons to intronic sequence

that has incorrectly been annotated as exonic (e.g., Springer and Gatesy, 2018). Another source

of error might be the failure to identify alternatively spliced exons in transcriptome assemblies.

Both of these phenomena will lead to errors with a length distribution that resembles the length

distribution of exons as a whole (likely with a bias toward the short exons that are more difficult

to identify). While some of the shorter exons will fall outside the range detected by TAPER, we

expect that a fairly large proportions of the alignment errors will fall in the range of lengths that

can be identified using TAPER. Finally, we note that the shorter errors, on average, are expected

to have less impact on downstream analyses than longer errors. Thus, we expect TAPER to be a

useful addition to the phylogenomics pipeline.
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Figure S6.1. Score function. Left: DNA, Right: Protein.
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Figure S6.2. Accuracy of TAPER as we change the parameter k (fixing p = 0.1 and q = 0.5).
Smaller k is effective for finding shorter errors (e.g., 2×11) but less so for finding longer errors
(e.g., ≥ 8×11). The false positive rate can increase substantially if k is small and errors are long,
and the recall is not ideal in those situations. In contrast, larger k (e.g. k ≥ 9) is not effective for
small errors but can be very effective for longer ones; note how FPR reduces for longer errors
when k reaches 9.
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Figure S6.3. A comparison of various strategies for selecting k as the length of error changes
(boxes). We either use a single value of k = 11 or the union of 2, 3, or 4 values of k. When using
unions of multiple ks, we take results for each k only at a certain range of error lengths; for 2k
setting: k = 5 for error length [0,30], and k = 9 for other lengths; For 3k setting: k = 5 for error
length [0,30] k = 9 for error length [0,54] k = 19 for other lengths; For 4k setting: k = 5 for error
length [0,20] k = 7 for error length [0,35] k = 11 for error length [0,66] k = 17 for other lengths.
Using one k has very low recall in the case with short error length. The other three settings do
not universally dominate each other (there is tradeoff between FPR and recall). Overall, the 2k
setting seems to have substantially less recall than 4k, with small advantages in FPR. 3k setting
generally has better FPR than the other two methods, but also slightly lower recall. Overall, to
protect against FP error filtering, we chose the 3k setting that provides a balance between high
recall and low FPR. See Figure S6.4 for more details.
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Figure S6.4. A comparison of various strategies for selecting k as the length of error changes
(boxes). We either use a single value of k = 11 or the union of 2, 3, or 4 values of k. When using
unions of multiple ks, we take results for each k only at a certain range of error lengths; for 2k
setting: k = 5 for error length [0,30], and k = 9 for other lengths; For 3k setting: k = 5 for error
length [0,30] k = 9 for error length [0,54] k = 17 for other lengths; For 4k setting: k = 5 for error
length [0,20] k = 7 for error length [0,35] k = 11 for error length [0,66] k = 17 for other lengths.
Using one k has very low recall in the case with short error length. The other three settings do
not universally dominate each other (there is tradeoff between FPR and recall). Overall, the 2k
setting seems to have substantially less recall than 4k, with small advantages in FPR. 3k setting
generally has better FPR than the other two methods, but also slightly lower recall. Overall, to
protect against FP error filtering, we chose the 3k setting that provides a balance between high
recall and low FPR.
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Figure S6.5. On the one AA dataset used in this paper, for only one of the replicates, we
tested the impact of changing p and q for each of the three settings of k. Each column of plots
corresponds to keeping p and q fixed to the default versions for all but one of the k values, given
in the box header. Then, for error of length 2, 3, 4, 8, or 16 ×11, we change values of p and
q and compute FPR and Recall. The default setting for each k is shown using large symbols
and others using smaller symbols. For k = 17, it is clear that we need q = 0.5 to get good recall
with longest errors. With k = 5, the default setting is not the best but is not far from having the
lowest FPR and all recall values are very close. With k = 9, neither recall nor FPR are affected
much, but marginally better settings do seem to be available. Note that these settings are not
optimized for this dataset (or, in fact, any dataset) since profiles of the error are expected to be
very different across datasets.
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Figure S6.6. On the one AA dataset as well as two genes from the early-bird dataset, for only
one of the replicates, we tested the impact of changing c. The default setting c = 3 is shown
using solid dots and others using hallow symbols. For DNA datasets, using higher c dramatically
reduces recall but further decreasing c only increases FPR without increasing recall. Thus, c = 3
is a clearly preferred setting. For AA dataset, setting c < 3 has no benefits but increases recall.
However, values of c > 3 do reduce FPR, at some expense to recall. The best choice depends on
the level of tolerance for FPR. We believe the default presents a reasonable trade-off. The x-axis
is in square root scale.
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Figure S6.7. (a) Percentage of the alignment remaining after filtering (the total number of
non-gap nucleotide positions in the alignment after divided by before filtering) across model
conditions as the error length and frequency changes on the 16S.B dataset. (b) Similar to
Figure 6.2b, we show change in percent error but without log scale.
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Figure S6.8. Impact of diameter on Recall and FPR on the 16S dataset.
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Figure S6.9. Impact of sequence count on the Recall and FPR on the 16S dataset.
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Figure S6.10. a) Recall and FPR of all genes as we change sequence error or error length. Genes
are sorted by their average recall. We show diameter, mean sequence length,and the number of
species for each gene under its name. b) Impact of Diameter, sequence count (top left), sequence
length (top right), and sequence count (bottom) on the recall. For Sequence count, we show
results with and without the outlier gene HMG.
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Figure S6.11. Removal of species from the dataset. x-axis: the distance of a species to the
outgroup (Alligator) according to the published concatenation species tree. y-axis: the mean
number of nucelotides removed from each species across different genes for each of the error
profiles (boxes). No discernible impact is observed between the distance to the outgroup and
what species are removed. There may be a slight reduction in the propensity to remove species
that are more divergent from the rest.
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Figure S6.13. The AA alignment RV100 BBA0039 from the BALIBASE benchmarking dataset.
The alignment includes a minority of sites that look very different from the rest.
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Figure S6.14. The AA alignment RV100 BBA0039 from the BALIBASE benchmarking dataset.
The alignment includes a minority of sites that look very different from the rest.
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Figure S6.15. The number of nucleotides removed from species (bottom) does not correspond to
phylogenetic relationships (top); in particular, the two outgroups, ostrich (STRCA) and tinamu
(TINMA) are not removed more often than others. The species tree shown is obtained using
ASTRAL-III run on all > 14,000 input gene trees after contracting branches with support no
more than 10%; the tree was reported by Zhang et al. (2018).
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substantially.
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Supplementary Tables

Table S6.1. ANOVA test on the 16S dataset, showing impact of four factors and their interactions:
Error Length (ErrLen), Error Frequency (n), Diameter, and Sequence Count (N). X:Y corresponds
to interactions of variables X and Y.

Df Sum Sq Mean Sq F value Pvalue PctExp
ErrLen 6 21.17 3.53 991.32 0.000000 31.9
n 4 0.01 0.00 0.99 0.410483 0.0
Diameter 1 7.73 7.73 2171.08 0.000000 11.6
N 1 0.32 0.32 90.54 0.000000 0.5
ErrLen:Diameter 6 4.94 0.82 231.22 0.000000 7.4
n:Diameter 4 0.13 0.03 9.04 0.000000 0.2
ErrLen:N 6 0.13 0.02 6.15 0.000002 0.2
n:N 4 0.11 0.03 7.75 0.000003 0.2
Diameter:N 1 0.03 0.03 9.44 0.002130 0.1
ErrLen:Diameter:N 6 0.24 0.04 11.10 0.000000 0.4
n:Diameter:N 4 0.00 0.00 0.17 0.951870 0.0
Residuals 8860 31.53 0.00 47.5
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Table S6.2. ANOVA test on the early-bird dataset, showing impact of five factors and their
interactions: Error Length (ErrLen), Error Frequency (n), Diameter, Sequence Length (SL), and
Sequence Count (N). X:Y corresponds to interactions of variables X and Y.

Df Sum Sq Mean Sq F value p-value % Var Exp
ErrLen 5 4.65 0.93 66.21 0.000000 20.3
n 4 0.23 0.06 4.11 0.002645 1.0
Diameter 1 2.13 2.13 151.73 0.000000 9.3
SL 1 0.29 0.29 20.62 0.000006 1.3
N 1 0.29 0.29 20.77 0.000006 1.3
ErrLen:Diameter 5 0.28 0.06 3.96 0.001478 1.2
n:Diameter 4 0.08 0.02 1.49 0.202735 0.4
ErrLen:SL 5 0.16 0.03 2.23 0.049866 0.7
n:SL 4 0.04 0.01 0.78 0.538640 0.2
Diameter:SL 1 0.17 0.17 12.38 0.000455 0.8
ErrLen:N 5 0.27 0.05 3.81 0.002017 1.2
n:N 4 0.03 0.01 0.51 0.729552 0.1
Diameter:N 1 0.04 0.04 3.14 0.076594 0.2
SL:N 1 0.18 0.18 12.99 0.000330 0.8
ErrLen:Diameter:SL 5 0.08 0.02 1.16 0.327340 0.4
n:Diameter:SL 4 0.02 0.00 0.31 0.868535 0.1
ErrLen:Diameter:N 5 0.09 0.02 1.30 0.260338 0.4
n:Diameter:N 4 0.06 0.01 1.07 0.371634 0.3
ErrLen:SL:N 5 0.15 0.03 2.19 0.052842 0.7
n:SL:N 4 0.14 0.04 2.50 0.041228 0.6
Diameter:SL:N 1 0.03 0.03 2.31 0.128471 0.1
ErrLen:Diameter:SL:N 5 0.14 0.03 2.06 0.067832 0.6
n:Diameter:SL:N 4 0.08 0.02 1.40 0.230659 0.3
Residuals 940 13.20 0.01 57.8
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Table S6.3. Errors identified by Springer and Gatesy (2018) that TAPER is able to detect
fully (Found), mostly (Majority), or to a lesser degree (Minority). Red: Error is either too
short (length ≤ 10) or involves too many sequences (≥ 10). Orange: Error involves somewhat
high numbers of sequences (between 5 and 10). †: erroneous homology is restricted to a
subset of the region identified by Springer and Gatesy (2018). See the supplementary file
zhang-taper-supplementary-error-pictures.xlsx for pictures of errors found.

Gene Positions L n Description of error by Springer and Gatesy (2018) Found
1066 859-1212 353 2 Partial intron 8 (Pterocles, Podiceps) is aligned with different region of intron 8 in Balearica (no

homology with other sequences) and exons 9-11 in remaining taxa
Full

82 413-498 85 2 Manacus and Acanthisitta exon 6 is combination of intron 5 (5’) and exon 6 (3’) Full
1087 673-753 80 2 Intron 8 (Columba, Anas) aligned against exon 8 in other taxa Full
1077 1150-1206 56 2 Intron 11 (Melopsittacus, Colius) aligned with exon 10 in other taxa Full
1028 334-386 53 2 Gavia and Struthio (intron 3) aligned with exon 3 in other taxa Full
1054 577-707 30 2 Part of intron 5 (Merops, Nestor) is aligned against exons 6 and 7 in others Full
1079 184-201 17 2 3’ end of intron 2 (Eurypyga, Haliaeetus leucocephalus) aligned against exon 2 in other taxa Full
82 136-146 11 2 Intron 2 (Cathartes, Tauraco) is aligned with exon 2 in other taxa Full
16 2212-2213 2 2 5 end of intron 21 in Geospiza and Acanthisitta is aligned against 5 end of exon 22 in other taxa Full
1039 1784-1999 210 3 Exon 14 sequences in Gavia, Phalacrocorax, and Opisthocomus are poorly aligned with other

sequences and show different splice site boundaries
Full

1016 82-126 44 3 Part of intron 1 and exon 2 (Struthio, Tinamus, Pelecanus) aligned with exon 1 in others Full
44 634-737 103 4 Exon 9 in Colius, Acanthisitta, Cariama, and Pterocles is a combination of the 5’ region of intron

8 and the 3’ region of intron 9
Full

1042 289-310 21 5 Exon 1 (Gallus, Haliaeetus leucocephalus, Melopsittacus, Tauraco, Columba) aligned against
intron 1 in other taxa

Full

1098 161-309 140 2 Intron 1 (Opisthocomus, Phalacrocorax) aligned with exon 1 in other taxa Majority
90 733-915 80 2 Intron 8 (Charadrius, Tauraco) aligned with exon 9 in other taxa Majority
1014 705-768 64 2 Part of intron 7 (Eurypyga and Columba) aligned against exon 8 in others Majority
1013 250-273 24 2 Gallus and Tinamus not homologous with other sequences that are present (which are intron 1);

problems with Meleagris exon 5
Majority

93 124-139 15 2 3’ end of intron 1 (Tyto, Pelecanus, Melopsittacus, Meleagris) is aligned with 3’ end of exon 1 in
others

Majority

30 691-762 71 3 Intron 3 (Phoenicopterus, Mesitornis, Leptosomus) aligned with exon 4 of other taxa Majority
1044 342-441 99 4 Intron 5 (Opisthocomus, Eurypyga, Balearica, Cathartes) aligned against exon 5 in other taxa Majority
1039 1307-1368 61 4 Intron 12 (Corvus, Columba, Pelecanus, Pygoscelis) aligned against exon 12 in others Majority
89 740-796 54 4 Four taxa (Gallus, Eurypyga, Fulmarus, Manacus) have partial intron 6 sequence instead of partial

exon 6
Majority

1087 1006-1019 13 5 5’ end of intron 10 (Cuculus, Apaloderma, Columba, Colius, Anas) aligned against 5’ end of exon
10 in others

Majority

1039 1360-1524 164 5? Exon 11 sequences are poorly aligned across avian tree and have different intron-exon boundaries.
The numbers of exons in different taxa also varies.

Majority

1077 448-583 120 2 Regions of intron 5 (?) and 6 (Melopsittacus, Colius) are aligned with exon 7 in others Minority
1028 1158-1232 80 2 Sequences are not homologous in Merops and Nipponia versus other taxa Minority
1089 367-421 50 2 Two taxa (Eurypyga, Pygoscelis) have intron 4 aligned against exon 4 in other taxa Minority
99 401-506 100 7 Intron 3 (Columba, Pycoides, Chlamydotis, Tauraco, Pygoscelis, Cathartes, Tinamus) aligned

against exon 3 in other taxa
Minority

1083 127-144 17 7 Seven taxa (Chlamydotis, Anas, Tinamus, Cariama, Tauraco, Acanthisitta, Opisthocomus) with
intron 2 aligned against exon 2 in others

Minority

1097 912-1120 200 10 Intron 6 in some taxa (e.g., Tinamus) aligned with exon 6 in other taxa (e.g., Struthio) Minority
28 1-81† (48-80) 32 13 Intron 2 in 13 taxa (e.g., Haliaeetus albicilla) is aligned with exon 1 and exon 2 in others (e.g., H.

leucocephalus)
Minority

20 754-842 88 14 5’ region of intron 1 (Gallus and others) aligned against 3’ region of intron 1 (e.g., Falco and
others); middle portion of intron 1 (Gallus group) aligned against 5’ end of exon 2 (Falco group).
Also some taxa in Gallus group (palaeognaths, Cathartes, Podiceps, Charadrius) are misaligned
with others in group

Minority
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Table S6.4. Errors identified by Springer and Gatesy (2018) and missed by TAPER. Notations
same as Table S6.3. †: real error boundary. Red: Error is short (≤ 10bp) or frequent (≥ 10);
Orange: Error is somewhat frequent (≥ 5,≤ 10).

Gene Positions L n Description of error by Springer and Gatesy (2018)
1040 106-138† (-129) 24 2 Intron 1 (Opisthocomus, Apaloderma) aligned against exon sequences in others
10851 73-97 24 2 Two taxa (Anas, Nipponia) have intron 1 aligned against exon 1
62 93-129† (-105) 12 2 3’ end of intron 1 in Cathartes and Cariama is aligned with 3’ end of exon 1 in other taxa
51 478-489† (-487) 10 2 3’ end of intron 2 in Balearica and Eurypyga is aligned with 5’ end of exon 3 in other taxa
1045 415-425 10 2 Intron 3 in Colius and Pelecanus aligned with exon 3 in other taxa
10502 1372-1395 23 3 Intron 12 (Chaetura, Melopsittacus, Acanthisitta) versus exon 13 (Cuculus, Tinamus, Gallus, Nestor, Taeniopygia, Geospiza)
12 1-324† (300-) 20 3 Intron 1 (Eurypyga, Fulmarus, Columba) aligned against exon 1 in other taxa
1078 98-128† (-117) 10 4 3’ end of exon 1 in some taxa (Tauraco, Taeniopygia, Eurypyga, Apaloderma) in some taxa aligned against 5’ end of exon 2 in various others
10383 230-252 22 4 Part of intron 2 (Fulmarus, Melopsittacus, Nestor, Tyto) is aligned with exon 2 in other taxa
10014 1596-1617 21 4 Intron 14 (Merops, Tauraco, Charadrius, Mesitornis) aligned with exon 14
645 1-147† (133-) 14 4 Exon 1 (Pycoides, Melopsittacus, Gallus, Manacus) is aligned with part of intron 1 (Nestor, Chlamydotis, Mesitornis, Buceros, Merops, Falco,

Corvus)
88 1114-1122 8 4 Four taxa (Taeniopygia, Caprimulgus, Eurypyga, Chlamydotis) have intron sequence
1036 838-921 84 5 Sequences in Aptenodytes, Gavia, Phoenicopterus, Chlamydotis, and Phaethon are not homologous to other sequences (exon versus intron

sequences are unclear)
1044 25-52 27 5 Intron 1 (Fulmarus, Gavia, Opisthocomus, Colius, Eurypyga) aligned against exon 1 in others
1094 1069-1095 26 5 Five taxa (Gavia, Apaloderma, Chaetura, Pterocles, Pycoides) with intron 7 and five others with exon 7 (Gallus, Meleagris, Pelecanus, Podiceps,

Merops)
1062 58-70 12 5 Exon 1 (Cariama, Meleagris, Manacus, Gallus, Colius) versus intron 1 in other taxa
56 106-115 10 5 3’ end of exon 1 in Taeniopygia, Columba, Corvus, Geospiza, and Gallus is aligned with 3’ end of intron 1 in other taxa
1056 157-180 23 6 Exon 1 (Charadrius, Melopsittacus, Gallus, Cuculus, Taeniopygia, Columba) versus intron 1 in other taxa
1085 187-191 4 6 Six taxa with intron 2 (Charadrius, Buceros, Opisthocomus, Merops, Haliaeetus albicilla, Egreta) aligned against exon 2
1038 76-115 41 7 Part of intron 1 (Egreta, Apaloderma, Podiceps, Balearica, Eurypyga, Phalacrocorax, Caprimulgus) aligned against exon 1 in other taxa (region

also missing for many taxa)
84 124-129 5 7 Seven taxa with different intron 1 boundaries (Fulmarus, Anas, Phoenicopterus, Balearica, Gavia, Charadrius, Struthio) versus other taxa
1020 84-174 90 8 Part of intron 2 (Phaethon, Nipponia, Aptenodytes, Phoenicopterus, Cariama, Columba, Mesitornis, Falco) aligned with exon 2 (Pycoides,

Calypte, Meleagris, Charadrius, Egreta, Gallus, Haliaeetus leucocephalus, Cuculus)
37 262-312† (-273) 9 8 3’ region of exon 1 (or 5’ region of intron 1?) in eight taxa (Gallus, Falco, Columba, Balearica, Buceros, Taeniopygia, Geospiza, Cuculus)

aligned with 5’ region of exon 2 (or 3’ region of exon 1?) in other taxa
1083 43-45 2 9 Nine taxa (Leptosomus, Chaetura, Corvus, Taeniopygia, Cuculus, Phaethon, Eurypyga, Balearica, Egreta) share 3 bp from 3’ end of intron 1,

which is aligned with last 3 bp of exon 1 in many other taxa (also some with missing data)
1089 25-69 44 10 Seventeen taxa with intron 1 sequences aligned against 10 taxa with exon 1 sequences
5 147-161 14 10 Exon 1 (Meleagris, Gallus, Fulmarus, Cariama, Pygoscelis, Taeniopygia, Aptenodytes, Haliaeetus leucocephalus, Colius) aligned against intron 1

(other taxa with sequence)
1029 58-85 28 11 Intron 1 (Opisthocomus, Anas, Podiceps, Eurypyga, Cariama, Aptenodytes, Tauraco, Caprimulgus, Leptosomus, Tinamus, Merops) aligned

against exon 1 (Struthio, Falco, Haliaeetus leucocephalus, Gavia, Phaethon, Pygoscelis, Gallus, Meleagris)
74 241-252 3 11 5’ end of intron 2 in Eurypyga, Corvus, and Taeniopygia is aligned with 5’ end of exon 3 in other taxa
1005 121-124 3 11 Exon 1 (Fulmarus, Podiceps, Melopsittacus, Cathartes, Meleagris, Falco, Tinamus, Gallus, Haliaeetus leucocephalus, Cariama) aligned with

intron 1 in other taxa
1014 787-849 75 14 Part of intron 7 (Acanthisitta, Balearica, Colius, Meleagris, Pterocles, Apaloderma, Eurypyga, Columba, Pygoscelis, Falco, Opisthocomus,

Caprimulgus, Nipponia, Leptosomus) aligned against exon 8 in others.
1027 1055-1153 99 16 Part of intron 8 in 16 taxa (e.g., Struthio, Pygascelis, Galga) aligned against non-homologous region in other taxa (e.g., Tinamus, Aptenodytes,

Meleagris)
1025 412-518 106 16 Part of intron 4 (Calypte, Leptosomus, Phalacrocorax, Balearica, Chlamydotis, Pelecanus, Fulmarus, Cariama, Tyto, Anas, Aptenodytes,

Columba, Apaloderma, Tauraco, Corvus, Acanthisitta) aligned with part of exon 5(?) in Haliaeetus leucocephalus, Nipponia, Gallus, Geospiza,
Taeniopygia, and Tinamus (and to a lesser extent with other taxa that are largely missing in this region)

1035 58-64 6 17 Intron 1 (Tauraco, Phaethon, Caprimulgus, Fulmarus, Tyto, Pelecanus, Gavia, Apaloderma, Haliaeetus albicilla, Leptosomus, Balearica, Podiceps,
Charadrius, Pygoscelis, Struthio, Phoenicopterus, Egreta) aligned against exon 1 in other taxa

1067 529-532 4 20 First four bp of intron 5 in 20 taxa (e.g., Gallus, Pelecanus) aligned against first four bp of exon 6 in 28 taxa (e.g., Meleagris, Egretta)
1037 361-408 45 20? 5’ and 3’ ends of intron 2 are included for some taxa are are misaligned across avian alignment, including misalignment with last 3 bp of exon 2
1049 2725-2762 37 20? Mix-up of intron 8 and exon 9 sequences

1 2 out of 6 aligned have the error; thus, high frequency.

2 3 out of 9 aligned have the error; thus, high frequency.

3 Starts at 247 for 3 of the four species; thus, short for most sequences.

4 6 columns in the middle are all gaps, others are not visually clear errors.

5 4 out of 11 aligned have the error; thus, high frequency.
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Chapter 7

Scalable Models of Antibody Evolution
and Benchmarking of Clonal Tree Recon-
struction Methods
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Affinity maturation (AM) of antibodies through somatic hypermutations (SHMs) enables

the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs

leads to the formation of clonal lineages of antibodies produced by B cells that have evolved

from a common naive B cell. Advances in high-throughput sequencing have enabled deep

scans of antibody repertoires, paving the way for reconstructing clonal trees. However, it is not

clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using

traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal

tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic

methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these

methods, partially because evaluation is challenging. Benchmarking the performance of existing

methods and developing better methods would both benefit from realistic models of clonal

lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose

a model for modeling B cell clonal lineage evolution and use this model to benchmark several

existing clonal tree reconstruction methods. Our model, designed to be extensible, has several

features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective

pressure due to changes in affinity binding; it enables scalable simulations of large numbers of

cells; it enables several rounds of infection by an evolving pathogen; and, it models building

of memory. In addition, we also suggest a set of metrics for comparing clonal trees and for

measuring their properties. Our benchmarking results show that while maximum likelihood

phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if

applied naively, a very simple post-processing of their results, where super short branches are

contracted, leads to inferences that are better than alternative methods.

7.1 Introduction

Immune response to new pathogens relies heavily on the Affinity maturation (AM)

process. AM follows the binding of immunoglobulin (IG) molecules to antigens and improves
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the affinity (i.e., binding ability) of B cells to the antigen (Tonegawa, 1983; Neuberger and

Milstein, 1995). The AM process involves many aspects, including the activation of naive B

cells that have not been exposed to an antigen, clonal expansion of cells that increases the

pool of antibodies, somatic hypermutations (SHMs) (Muramatsu et al., 2000) that alter the

structure of antibodies and their ability to bind, and a regulatory mechanism that plays the role

of natural selection. The AM process creates memory and plasma B cells; memory B cells can

be reactivated and can undergo the AM process again (Mesin et al., 2020), while plasma B cells

can secrete massive levels of neutralizing antibodies. Over time, the AM process leads to the

formation of clonal lineages within a given antibody repertoire, where each clonal lineage is

formed by descendants of a single naive B cell. The evolutionary history of each of these clonal

lineages can be represented by a clonal tree, where each vertex corresponds to a B cell, and a

directed edge connects each B cell to all its immediate descendants.

New sequencing technologies have enabled high-throughput scanning of antibody reper-

toires (Rep-Seq) and have opened up new avenues for studying adaptive immune systems

(Georgiou et al., 2014; Robinson, 2015; Yaari et al., 2015; Watson et al., 2017; Miho et al., 2018).

Rep-Seq technologies enabled AM analysis of antibody repertoires responding to antigens of

various diseases, such as flu (Laserson et al., 2014; Horns et al., 2019), HIV (Haynes et al., 2012;

Sok et al., 2013b), hepatitis (Galson et al., 2016; Eliyahu et al., 2018), multiple sclerosis (Stern

et al., 2014; Lossius et al., 2016), rheumatoid arthritis (Elliott et al., 2018). Such analyses allow

biologists to identify broadly neutralizing antibodies and reveal antigen-specific and general

mutation patterns (Horns et al., 2019; Hsiao et al., 2019).

Due to the short time frame of clonal expansion, inferred clonal trees have unique

properties. Some sequenced nodes may belong to the internal nodes of the tree instead of the

tips. Also, inferred clonal trees are often not even close to bifurcating. Thus, unlike traditional

phylogenetics, perhaps Steiner trees (which can put observations at some of the internal nodes) or

spanning trees (that put an observation at all internal nodes) should be preferred for reconstructing

antibody sequences (Fig. 7.1a). Various reconstruction methods have been developed attempting
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to recover clonal trees from antibody sequences (e.g., Jiang et al., 2013; Sok et al., 2013a; Lee

et al., 2017; Hoehn et al., 2017; Horns et al., 2016; Lees and Shepherd, 2015; DeWitt et al.,

2018). Some of these methods use simple clustering methods (e.g., Jiang et al., 2013), while

others formulate the problem as a Steiner tree problem (Sok et al., 2013a; Lee et al., 2017; Horns

et al., 2016; DeWitt et al., 2018) or maximum-likelihood (ML) phylogenetic tree reconstruction

under models of sequence evolution (Hoehn et al., 2017; Lees and Shepherd, 2015).

In order to evaluate methods proposed for reconstructing clonal trees, we need models

for antibody sequence evolution and clonal tree expansion that can be used for simulation.

This modeling step is challenging for several reasons. (i) Selection, which is an integral part

of AM, needs to be modeled directly; otherwise, the shape of the resulting trees will not be

realistic. Traditional phylogenetics simulations first simulate a tree of sampled taxa and then

evolve sequences down the tree. This two-step approach simplifies simulations but misses the

dependency between the clonal tree shape and the antibody sequences. A better approach is to

co-evolve the tree and sequences. The challenge in co-evolving is to design a principled model

for how sequences impact evolution and to develop a scalable simulation algorithm that can

generate large numbers of cells. (ii) Literature suggests that there are hotspots and cold spots of

SHMs (e.g., Rogozin and Kolchanov, 1992; Pham et al., 2003). However, traditional models of

sequence evolution assume each site evolves independently and will miss the context dependence.

(iii) Different antibody cell types(e.g., activated and memory cells) have very different mutational

and selection behaviors, and these distinctions need to be modeled.

There have been several attempts at designing statistical models of AM clonal expansion

(e.g., Childs et al., 2015; Amitai et al., 2017; Reshetova et al., 2017; Davidsen and Matsen,

2018; Yermanos et al., 2018). As the AM process is complex, these models have taken different

routes. For example, determining affinities of sequences to hypothetical antigens is difficult, as

affinity binding is a complicated chemical process, and each method models affinity differently.

Nevertheless, all these methods have limitations, which we will return to in our discussion

section. Two factors worth pointing out are that they do not scale to very large numbers of cells,
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and they allow for simulating one round of infection (as opposed to an evolving pathogen and

recurring infections); some also avoid differentiating different types of B cells.

In this paper, we propose a scalable and flexible simulation framework that can be

instantiated in many ways. We introduce a general birth, death, and transformation (BDT)

model and describe how BDT can be instantiated to create a model of AM that simultaneously

co-evolves the clonal tree and antibody sequences. We then introduce a scalable sampling

algorithm for our model that enables generating large trees. With the simulator (called DimSim)

at hand, we note that comparing clonal trees and characterizing their properties require care.

We refine existing metrics and define new ones for characterizing properties (e.g., balance) of

clonal trees and for comparing them. Finally, we perform extensive simulation studies (Fig. 7.1b)

under various parameters using DimSim. We study how the parameters of the AM model impact

properties of clonal trees and benchmark the performance of several reconstruction methods.

7.2 Methods

7.2.1 Statistical Models

We first define a general Birth/Death/Transformation (BDT) model and give an efficient

algorithm for sampling trees from the BDT model. We then instantiate the general model for

simulating AM processes and move on to describe specific choices we made in our simulations.

BDT Model

Forward-time birth-death models are used extensively in macro-evolutionary modeling

(Nee, 2006), whereas microevolution simulations often use coalescent models that are easier to

sample. We propose a general forward-time model that can allow realistic microevolutionary

simulations by ensuring that birth and death rates are not constant and instead change with the

properties of evolving units (e.g., cells).

In the BDT model, a set of entities continuously undergo birth (B), death (D), and

transformation (T) events. Each entity i has a list of properties xi ∈ RN
+. At each point in time,
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the system contains a set S of n active entities, and each active entity i ∈ S undergoes birth, death,

and transformation events according to independent Poisson point processes. In the birth event,

a entity i is removed from S and new entities j and k, with properties x j and xk, are added to S;

properties x j and xk are drawn from a distribution determined by xi and model parameters. In

the event of the death of an entity i, it is removed from S. In the transformation event, a entity i

is removed from S and a new entity j with properties x j, drawn from a distribution determined

by xi, is added to S. Starting from a single node and continuously applied, this process defines a

rooted tree where nodes are all entities that ever existed (including those that died); birth events

create bifurcations, transformation events create nodes with one child, and death events create

leaves. The tree can be subsampled subsequently.

For each entity i ∈ S, the birth, rate, and transformation rates are thoroughly determined

by its properties xi and the sum of properties over all entities S = ∑ j∈S x j. We let ΛB(xi,S),

ΛD(xi,S), and ΛT (xi,S) denote the birth, death, and transformation rates, respectively. In the

time interval between two events for any two entities in the system, we assume a memoryless

process. Thus, these rates remain constant between any two events but can change when an event

happens. The ratio between the birth rate and the death rate, both of which are functions of the

entity properties, can be thought of as the factor controlling the selective pressure, which can be

time-variant.

Because of the memoryless property, the time until the next BDT event always follows the

exponential distribution with rates ΛB(xi,S),ΛD(xi,S), and ΛT (xi,S) for each event type. The

time until any event for any entity follows an exponential distribution with λ = ∑i∈S(ΛB(xi,S)+

ΛD(xi,S)+ΛT (xi,S)). The probability of the next event being a specific event E ∈ {B,D,T} for

a particular entity i is ΛE(xi,S)/λ . Specifying the rate functions and the distribution of properties at

the initial state fully specifies the model.

The BDT model can be efficiently sampled if rate functions have certain (very general)

properties. We leave all the mathematical details for Appendix 7.B.1. In short, the memoryless

properties of the model makes it possible perform efficient sampling despite the fact that rates
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change with the tree. The main innovations of the sampling algorithm are: 1) rewriting rate

functions as polynomial functions of other parameters, which enable finding the time to the next

event in constant time, and 2) using an interval tree data structure to store partial sums needed

for normalization. With the algorithm we propose (Algorithm S7.1 in Appendix 7.D), a tree on k

nodes drawn from the distribution defined by the BDT process can be sampled in O(k log(k))

time. Thus, the BDT model can be efficiently sampled to create trees with millions of nodes.

Antibody Affinity Maturation (AM) model

We now define a specific instance of the BDT model designed for AM. Simulations

according to this AM model are implemented in a C++ tool called Dynamic IMmuno-SIMulator

(DIMSIM). The model has many parameters reflecting immune system properties (Table 7.1),

which we define as we progress. The readers are referred to Appendix 7.A for our particular

usage of terms commonly used in immunology. The use of birth death models for AM is not

new (e.g., Davidsen and Matsen, 2018) but particular choices of our model are different from

prior work.

Rounds and stages

We model the evolution of antibody-coding sequences in response to r rounds of infec-

tions by an evolving antigen (e.g., flu). Each round consists of two stages, an infected stage,

where a set of new antigens initiate a response that activates the B cells being modeled, and a

dormant stage, where the B cells being modeled are not actively involved in an immune response.

Both stages used the same BDT model but are parameterized differently. The switch between

the two stages happens through user-defined rules (e.g., rules that reflect infection progression

as described below). During the infected stage of round i, we assume the existence of a given

target amino-acid sequence ζi = (ζ
(1)
i , . . . ,ζ

(L)
i ) of length L without any stop codon, defined as

the best possible antibody-coding sequence that can bind to the present antigen. The target can

change across rounds, reflecting the evolution of the antigens, a point we will come back to later.
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Cell Properties

Since only memory B cells can be repeatedly activated by the encounter with an antigen,

we will simulate memory B cells only. Plasma B cells do not undergo SHMs and represent

terminal states of the clonal lineage development and thus can be sampled from the leaves of

the simulated tree. We will refer to a B cell that has just encountered an antigen and moved to a

germinal center (GC) as an activated B cell (or “activated cell” for short) (Fig. 7.2a).

In the AM model, each entity i represents a B cell with the property vector xi =

(gi,si, ti, gi/ai,giai) with five values, among which the last three are derived from the first two. We

keep derived properties as part of xi because they allow us to define ΛE(xi,S) as polynomials of

saved properties (Table 7.2); this, in turns, enables the use of our fast sampling algorithm. To

fit with the BDT model, we assume properties of each cell are fixed in between B/D/T events,

ignoring possible temporal changes (Weisel et al., 2016).

• The binary property gi indicates whether a cell i is an activated B cell (1) or is a memory

B cell outside lymph nodes, which we call a “memory cell” for simplicity (0).

• The si property stores the DNA sequence of B cell i coding for the variable region of the

heavy chain with a fixed length 3L. We focus on simulating the heavy chain sequences

only because most existing Rep-Seq studies focus on sequencing heavy chains only (e.g.,

Stern et al., 2014; Ellebedy et al., 2016; Magri et al., 2017; Horns et al., 2019). For the

sake of simplicity, we assume the fate of the cell depends only on the variable region of the

heavy chain. Each cell has a fixed sequence, and mutations occur at the time of a cell birth,

which happens only for activated cells in the infected stage. After a birth event for cell

i, sequences s j and sk of child cells j and k are chosen independently and identically at

random (ignoring the G1 origin of mutations Sharbeen et al. (2012).) While any sequence

evolution model could be incorporated in the DIMSIM framework, we will later describe

a 5-mer-based model used in our analyses.

• Property ti denotes the rate of transformation, which means the activation of a memory cell
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gi : 1→ 0 in response to an antigen, or the maturation of an activated cell into a memory

cell gi : 0→ 1. Transformations, which only happen during the infected stage, flip g but

keep the sequence s intact.

• Property ai denotes the strength of affinity binding of the Ig receptor of the cell i to the

antigen. We let σ denote the total affinity of activated cells and note σ = ∑i∈S giai is the

last element of the vector S. Then, ai/σ is the fraction of total affinity assigned to a cell.

Both ti and ai are derived and are set based on the sequence of i and the target.

Sequence affinity and birth, death, and transformation rates

Affinity ai is only defined and used during the infected stage where the target is available

and is function of the cell sequence si and the target sequence ζ . The closer the sequence to

the target, the higher its affinity should be, a fact that other simulators have also incorporated

Davidsen and Matsen (2018). The exact relationships between the sequences and affinity are not

known. For the purpose of benchmarking methods, we propose a simple formula. Let fζ (si) be a

measure of closeness of the sequence to the target in the affinity space, we set

ai
.
= eA fζ (si) , (7.1)

where A is a constant factor used to calibrate the selective pressure (see below). Note that in this

scheme, as sequences get closer to the target, the affinity grows gradually with a speed controlled

by A (Fig. 7.2b). We will describe our particular choice of function fζ (si) using BLOSUM

similarity below.

The event rates are functions of cell properties and the stage (Table 7.2). During the

dormant stage, there are no births or transformations; cells only die with a very high uniform

rate λd for activated cells and a low uniform rate λ ′d for memory cells.

During the infected stage, we adjust the death rates of cells based on their affinities but

keep the birth rates constant; this interplay is used to simulate the selective pressure. Note that
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we do not claim that a fixed birth rate and changing death rate is biologically realistic (e.g., see

Gitlin et al., 2014). However, in terms of dynamics of our model, what matters is the ratio of the

birth and death rates, which enable us to make this simplifying choice. In our model, an activated

cell can undergo cell division at a uniform rate λb, differentiate into a memory cell at a uniform

rate ti = ρmλb or a plasma-like cell at a uniform rate ρpλb, and undergo apoptosis (i.e., die). We

do not model plasma-like cells; instead, both differentiation into plasma-like cells and apoptosis

are treated as death events (Figure 7.2a). The rate of apoptosis of an activated cell i is modelled

as inversely proportional to the amount of resources (antigens and FDCs) to which the cell i has

access when competing against other activated cells. Thus, the proportion of resources available

to the cell i is modeled by the affinity proportion ai/σ (i.e., the affinity of the cell to the antigen

normalized by the current sum of the affinity of all activated cells). This affinity proportion is

impacted by the choice of parameter A. The lower the A, the more uniform these proportions

become, as expected with low selective pressure; conversely, as A increases, ai/σ values further

diverge between low affinity and high-affinity cells (Fig. 7.2b). Thus, A can be used to control

the strength of the selective pressure.

The memory cells undergo apoptosis at a uniform rate λ ′d . They can also be activated by

helper T cells to enter the germinal center with the transformation rate

ti
.
= λteρaA( fζ (si)−∆0) = λte−ρaA∆0aρa

i . (7.2)

Note that the activation rate of memory cells increases monotonically with their affinity to the

target, according to aρa
i where ρa, set by default to 1/2, is the sensitivity of B cell activation to

affinity. This dependency on affinity models the increased propensity of the memory cells to

activate when presented by helper T cells with familiar antigen. The default choice ρa = 1/2 is

motivated by the fact that although memory cells with higher binding strengths to the antigen

are more likely to be activated, the interaction between a helper T cell and a memory B cell is a

one-time event and thus less sensitive to binding strength.
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Illustration. As an example, consider a system with two cell types: L and H, each type

with its own unique sequence (Fig. 7.2b-d). Assume all cells are activated cells, the number of

L and H are the same at one point in time, and H cells have a higher affinity than L cells by a

factor of ρ . For ease of exposition, here, we include the mutation rate as part of the death rate

because mutation events also decrease cell count. Let’s assume the total number of cells equals

the carrying capacity C. If L and H have the same affinity (i.e., ρ = 1), then the birth and death

rates are identical for all cells. As the affinity of H cells is increased (i.e., ρ > 1), the death rate

of L cells increases linearly whereas the death rate of H cells decreases (Fig. 7.2b). Thus, H cells

will have higher birth rates than death, will be selected for, and will expand. If we fix ρ = 2 and

increase the population size, the death rates of both L and H cells increase, but at different rates

(Fig. 7.2d). When the population size is small compared to C, both types of cells have more birth

than death. After a threshold (C/3 in this example), the death rate of L type surpasses its birth rate

(thus, its population starts to shrink) while the population of H cells continues to grow. However,

as the population size increases (2C/3 here), both sets of cells start to shrink (i.e., higher death

rates than birth), because the population size is by definition bounded by C.

Specific (Default) Modeling Choices

Several steps of our simulations are flexible and can be changed by the user. We next

describe a particular set of choices we have implemented and used in our experiments below.

Switching between stages. The system enters dormant stage when antigens are neutral-

ized by the antibodies. A simple way to define neutralization is to switch the stage when the total

affinity of antibodies produced by plasma-like cells reaches a certain threshold; here, we switch

when the sum of affinities of activated cells (σ ) reaches a predefined constant M.

Sequence evolution. In our experiments, we use an empirical 5-mer-based model

inspired by Yaari et al. (2013). Let s(p)
i be the nucleotide on the p-th position of the nucleotide

sequence of the cell i. Each s(p)
j or s(p)

k is independently set to s ∈ {A,C,G,T} with probability:

Pr(s(p)
j = s) = Pr(s(p)

k = s) = f (s,s(p−2)
i ,s(p−1)

i ,s(p)
i ,s(p+1)

i ,s(p+2)
i ) where f : {A,C,G,T}6 −→
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[0,1] denotes an empirically determined 5-mer frequency model based on the model of Yaari

et al. (2013) and recomputed based on newer datasets including non-synonymous mutations (see

Appendix 7.B).

Sequence affinity function. While various methods can be imagined for measuring the

closeness of the sequence to the target, we used a simple approach: measuring sequence similarity

according to the BLOSUM matrix and appropriate scaling of numbers. We assume each amino-

acid position contributes to the binding strength to the target and the stability of the structure of

the Ig-receptor independently. We model affinity proportionally to the product of the effect of

each amino-acid position. This simple model ignores the 3D structure of proteins for the most

part but should be sufficient for creating benchmarking datasets as none of the reconstruction

methods consider 3D structure either. However, because complementarity-determining regions

(CDRs), which include the binding sites, tend to accumulate more SHMs compared to framework

regions (FRs) (Tanaka and Nei, 1989; Hsiao et al., 2019), we do differentiate those. When si

includes a stop codon, we simply set ai = 0. Otherwise, we define the BLOSUM score of an

amino acid sequence ξ = (ξ (1), . . . .,ξ (L)) with respect to target ζ as

∆ζ (ξ )= ∑
p∈CDR

(
δ (ξ (p),ζ (p))−δ (ζ (p),ζ (p))

)
+w f ∑

p∈{1...L}\CDR

(
δ (ξ (p),ζ (p))−δ (ζ (p),ζ (p))

)
(7.3)

where δ (., .) gives the BLOSUM score between two amino acids (Table S7.2), and w f is a

constant used to calibrate the importance of CDRs versus FRs in the affinity and transformation

processes. We then simply set fζ (si) = ∆ζ (ξ (si)) where ξ (.) translates from DNA to AA.

Choosing targets. One target sequence per round needs to be selected. The extent of

the change in targets across rounds impacts the patterns of the immune response and hence the

shape of the clonal trees that result. In our experiments, to define targets across rounds, we seek

a set of sequences with an evolutionary trajectory that reflects the evolutionary history of a set of

real antigen (e.g., influenza virus). Let the known amino-acid sequences of an antigen sampled

through time (flu sequence over seasons) be denoted by η1, . . . ,ηr, and let each sequence have
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the fixed length Lη . To choose the targets, we first select an arbitrary naive B cell, here chosen

from datasets of Ellebedy et al. (2016), and set Ψ̂ to the nucleotide sequence of the variable

region of its heavy chain. Then, we simply set ζ 1 to the amino-acid translation of Ψ̂. In other

words, in the first round, we use the naive cell as the target, and therefore, the first couple of

rounds of the simulation should be treated as dummy rounds and should be discarded. Let κ be a

positive constant that controls the rate of change in the target relative to the rate of change in the

antigen sequences. To define the remaining targets, we seek to find the set of r−1 sequences

that minimize:

∑
i, j∈[r]

∣∣∣κ ∑
p∈CDR

δ (ζ
(p)
i ,ζ

(p)
i )−δ (ζ

(p)
i ,ζ

(p)
j )−

Lη

∑
q=1

(
δ (η

(q)
i ,η

(q)
i )−δ (η

(q)
i ,η

(q)
j )
)∣∣∣ . (7.4)

Thus, a set of target sequences across r rounds are preferred if their pairwise distance matrix

maximally matches the pairwise distance matrix of all antigen sequences over the same rounds

(with a scaling). To account for conserved regions, we arbitrarily chose to keep all the non-CDR

regions invariable in all target sequences (this choice can be easily changed). Thus, we seek to

make the distance between two target sequences from two rounds similar to the distances of

antigen sequences, scaled by a factor of κ . We approach this NP-hard problem using a greedy

search heuristic (Algorithm S7.3). The heuristic starts with arbitrary ζ 2, . . . ,ζ r and replaces one

symbol of one sequence at a time to reduce the objective function; it repeats until reaching a

local minimum where no such replacement is possible.

7.2.2 Benchmarking Setup

Flu simulations

We performed several simulations of a series of r = 56 seasons of flu, using sequences of

hemagglutinin (HA) protein. HA found on the surface of the influenza viruses is the primary

target of neutralizing antibodies. High mutation rates of influenza genome changes the sequence

of HA and allows the virus to escape from the immune pressure, thus making flu a recurring
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seasonal infection. The NCBI Influenza Virus Resource (Bao et al., 2008) contains 961 HA

sequences from influenza B virus collected around the world. Each HA sequence is labeled with

a year and a location. For simulation purposes, we extracted 59 HA sequences corresponding

to flu infections in Hong Kong and selected 56 out of 59 HA sequences that have the same

length (584 aa). The selected HA sequences were detected in Hong Kong from 1999 to 2010.

Notice that HA sequences could be replaced with other widely available antigen sequences (e.g.,

Coronavirus).

We used the default settings for the various parameters of Table 7.1, and used the approach

described earlier to choose the target amino-acid sequences. Each round corresponds to one

season, starts at the infected stage with a given target sequence ζ l , which ends when σ = M.

At that point, we assume the infection is overcome, and the system switches to dormant, where

we stay until the next round starts (times of flu outbreaks are known in our dataset). When

the r = 56 rounds of infections end, we sample ς = 200 antibody-coding nucleotide sequences

Ψ1, . . . ,Ψς from cells in the system (i.e., from the round r) and built their clonal tree. While it

may be unrealistic to assume a person gets exposed to flu every season, it is possible, and this

procedure allows us to test the impacts of a large number of infections.

To benchmark reconstruction tools, we set up four experiments, varying one or two

parameters in each experiment (Table 7.3) and setting the remaining ones to default values

(Table 7.1). The central experiment contains 19 conditions, changing the selective pressure (A)

and the rate of hypermutation (µ). We vary A from 1/8× of default value (0.1) to 2× and vary µ

s from 1.25×10−4 to 2×10−3 per base-pair per generation. In six combinations, the selective

pressure is not high enough to overcome random mutations; in these cases, the affinity values

do not increase and as a result, the carrying capacity is never reached. Thus, we exclude these

conditions. We also study three other parameters. We vary the weight multiplier of FRs (w f )

from 1/5 to 2. We vary the carrying capacity (C), which is the germinal center size or the amount

of antigens FDCs hold in the context of B cell maturation, from 12500 to 400000. The value of

this parameter can impact the speed of novel mutations arising and may change the properties of
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simulated trees. We also vary the mean life-time of memory cells from 0.5 year to 16 years, to

study the impact of the extent of memory cell activation during recurrent infections.

Compared methods of Clonal Lineage Reconstruction

We compare seven tools: minimum spanning tree, BRILIA (Lee et al., 2017), IgPhyML

(Hoehn et al., 2017), RAxML (Stamatakis, 2014), Immunitree (Sok et al., 2013a), and a post-

processed version of ML phylogenetic trees (IgPhyML* and RAxML*) with low support

branches contracted. We note this is not an exhaustive list, as many other tools also exist (e.g.,

SAMM, Davidsen and Matsen, 2018, GCtree, DeWitt et al., 2018, IgTree, Barak et al., 2008)

that we did not include.

MST(-like) methods. We implemented a simple minimum spanning tree method contain-

ing Ψ1, . . . ,Ψς as well as Ψ̂, which is forced to be the root. We compute the nucleotide Hamming

distance between all pairs of sequences and construct the minimum spanning tree (MST) using

those distances. Besides the simple MST, we also test Immunitree Sok et al. (2013a), a tool that

clusters antibody-coding sequences into lineages and builds clonal trees at the same time by

optimizing a minimum spanning tree and Steiner tree-like problem. We took as input Ψ1, . . . ,Ψς

and used Immunitree to build a set of clonal trees. We then added vertex Ψ̂ as the root and let

the roots of the clonal trees to be immediate children of Ψ̂.

Brilia clusters antibody-coding sequences into lineages and builds clonal trees at the

same time. We took as input Ψ1, . . . ,Ψς and used Brilia v3.5.4 to build a set of clonal trees. We

then added vertex Ψ̂ as the root and added roots of the clonal trees as children of Ψ̂.

Phylogenetic methods. We tested ML phylogenetic reconstruction tool RAxML v8.2.10

under GTR model and IgPhyML v0.99, a ML method tuned specifically for immune cells. For

RAxML, we took as input Ψ1, . . . ,Ψς and Ψ̂ to obtain an unrooted phylogenetic tree and rerooted

at Ψ̂. For IgPhyML, we took as input Ψ1, . . . ,Ψς and provided Ψ̂ as root to obtain a rooted

phylogenetic tree. Both methods produce fully binary trees.
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Zero-aware phylogenetic methods. As previously suggested DeWitt et al. (2018);

Davidsen and Matsen (2018), contracting short or low support branches is one way of addressing

limitations of ML methods. Since the length of each antibody-coding nucleotide sequence < 400,

we can assume that both ends of any branch with length less than 10−4 would correspond to the

same sequence (if it was sampled). Therefore, we contracted branches of length less than 10−4

and call the resulting methods RAxML* and IgPhyML*.

Evaluation metrics

The simulated and reconstructed histories of samples Ψ1, . . . ,Ψς are represented as trees,

where samples are uniquely labeled on some nodes and the remaining nodes are left unlabeled.

Labeled nodes represent sequences in the samples and unlabeled nodes denote the ancestral

sequences not present in the samples. We evaluate results in two ways, described in detail in

Appendix 7.B.4. We use a set of metrics for characterizing properties of simulated trees in terms

of their topology, branch length, and distribution of labeled nodes (Table 7.4). We also compare

the simulated trees to those inferred using each method (Table 7.5).

While metrics for comparing phylogenies exist, these metrics need to be amended for

clonal trees that can have sampled ancestral nodes Davidsen and Matsen (2018); DiNardo

et al. (2020). Many of the existing metrics can be generalized to compare a simulated tree R

and a reconstructed tree E (Table 7.5), both induced down to include all labeled nodes (i.e.,

removing unlabeled nodes if less than two of their children have any labeled descendants).

Unlike traditional phylogenies, here, internal nodes can be labeled, and we define metrics based

on rooted trees instead of unrooted trees. We refer to the set of labeled nodes under a node

as a cluster – a concept that many of the metrics use. Note that singleton clusters are trivial

when all labeled nodes are leaves; however, when there are labeled internal nodes, including

or excluding singletons can make a difference. Thus, we also define many of the distances

both with and without singleton clusters. Some distances (i.e., FNR and FDR metrics) are

already normalized. To normalize other distances, for each experimental condition, we create
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a control tree by randomly permuting labels of the true tree. We then normalize distances of a

reconstruction method by dividing it by the average score of replicates of the control method.

7.3 Results

7.3.1 Demonstration of the simulation process

Visualizing one replicate of simulation under default condition, we see patterns of average

affinity and the number of activated and memory cells that rise and fall as time progress during

the infected stage (Fig. 7.3a). During each round of infection, the affinity first decreases and

then increases as long as the duration of the infection is long enough. Thus, when the number of

activated cells is low and the selective pressure is low, a mutation is likely to lead to reduced

affinity, whereas, when the number of activated cells increases, the selective pressure begins

to increase and select for higher affinity; these patterns are in concordance with the literature

Nakagawa and Calado (2021). The duration of infections, the mean affinity at the end, and the

total number of cells also varies widely across different seasons. When the affinity at the start of

a season is low, the duration of infection is longer and more activated cells and memory cells are

generated (Figs. 7.3a and S7.1a). This pattern is also consistent with the biological expectation:

when the immune system already has high affinity to the antigen, it can eradicate the antigen

quickly and without much need for further evolution. To further quantify the pattern, we define

the novelty of each target ζi as the negation of the maximum BLOSUM score between that target

and any previous target: −max j<i{∆ζi(ζ j)}. We observe that as novelty of the target increases,

the average affinity of activated cells at the end of the infection tends to decrease (R2 = 0.242,

p = 2.5×10−4), whereas, the number of activated cells at the end of the infection (R2 = 0.248,

p = 2.0×10−4) and the duration of infection (R2 = 0.288, p = 4.8×10−5) both tend to increase

(Fig. 7.3b).

Memory cell counts fluctuate. Each season leads to a buildup in memory cells from the

start to the end of the infection, and the amount of buildup depends on the duration and correlates
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with novelty (R2 = 0.264, p = 1.2×10−4). However, the total number of memory cells reduces

between seasons due to cell deaths (Fig. S7.1c) and changes across seasons. In particular, a

string of short-lived infections and large time spans between the flu seasons between 2002 and

2008 gradually lead to a depletion of the memory cells, which are then built up again in the

subsequent seasons (Fig. S7.1c).

7.3.2 Benchmarking reconstruction methods

Default Parameters

Under default parameters, over all evaluation metrics, zero-aware phylogenetic methods

(IgPhyML* and RAxML*) clearly have the best accuracy in reconstructing the lineage history

(Fig. 7.4). Normal phylogenetic methods (IgPhyML and RAxML), which produce fully binary

trees with no samples at leaves, have the lowest FNR error, retrieving more than 90% of the

correct clusters. However, their precision is predictably low: close to 35% of their clusters are

incorrect. Interestingly, zero-aware phylogenetic methods have only a slight increase in FN

rate (< 2% on average) but enjoy a dramatic improvement in precision. By simply contracting

super-short branches, the FDR error reduces to less than 15%, which is better than all other

methods. Similarly, normal phylogenetic methods perform poorly according to RF, PD, and MD

metrics, which emphasize false positives, but perform well (but not as well as the zero-aware

versions) according to triplet-based metrics (TED and TD), which penalize false negatives more

than false positives. Among the two phylogenetic reconstruction methods, RAxML is slightly

more accurate than IgPhyML.

The MST-like methods have low FDR, coming close to zero-aware phylogeny-aware

methods, but also have much higher FNR (25% or more). Immunitree (which uses Steiner trees)

is substantially better than a simple MST in terms of FNR, but not in terms of FDR or triplet-

based measures. These patterns largely follow the expectations: more resolved trees have lower

FNRs whereas less resolved trees have lower FDRs. However, zero-aware phylogeny methods

are able to obtain the best FDR and FNR and dominate other methods. BRILIA consistently
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has high error in our analyses. These patterns remain largely similar (but are magnified) when

singletons are removed from the consideration (Fig. S7.2). The main exception is that when

singletons are excluded, Immunitree is no longer the second-best method according to the RF

distance.

We next compare properties of the inferred trees and true trees (Figure 7.4c). BRILIA and

MST put far too many labels at internal nodes (≈35% instead of ≈8%), while Immunitree and

zero-aware phylogenetic trees are very close to the true tree in terms of percent internal samples.

BRILIA and Immunitree over-estimate the tree balance, while phylogenetic trees under-estimate

balance, especially before contracting low support branches. Conversely, phylogenetic methods

over-estimate depth of samples while BRILIA, MST, and Immunitree underestimate the depth;

zero-aware phylogenetic methods, however, produce trees that are very close to the true tree in

sample depth. Phylogenetic methods, by definition, overestimate bifurcation index as 1; this

overestimation is dramatically reduced but not fully eliminated by zero-aware phylogenetic

methods and Immunitree. MST is quite close to the correct levels of bifurcation.

Varying selective pressure

The reconstructions methods are all impacted as selective pressure (A) changes, but

some methods are more sensitive than others, and they are affected differently (Figs. 7.5ab).

Zero-aware phylogenetic methods have the best accuracy across values of A. The ranking among

other methods depends on the selective pressure, such that phylogenetic methods become the

worst when A is high and become the best when A is low. As A increases, error tends to increase

for phylogenetic methods under all evaluation metrics except for the FNR; for example, the

FDR of RAxML increases from 27% at the 1/4x selective pressure to 42% at the 2x level. In

contrast, the error of Immunitree, MST, and BRILIA reduces with increased A according to

FNR and RF. Zero-aware phylogenetic methods are relatively robust to the A and their error

rates change only slightly across conditions. When singletons are removed from the metrics

of comparison, patterns remain similar, though the impact of selective pressure becomes less
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pronounced (Fig. S7.3a).

The reason behind these patterns becomes more apparent once we consider changes in

tree properties (Fig. 7.5c). As A increases, the fraction of internal samples tends to increase.

This pattern can be explained: when selective pressure is high, cells with low affinity die off

quickly, which results in shorter branch lengths. Since phylogenetic methods put all sequences at

leaves, they have reduced accuracy. In contrast, IgPhyML*, RAxML*, and Immunitree are able

to successfully assign sequences to internal branches; as a result, their percentage of internal

samples match those of the true trees (Figs. 7.5c). Similarly, with increased A, the bifurcation

index of the simulated tree tends to decrease, a pattern that is observed also in reconstructed trees

from IgPhyML*, RAxML*, Immunitree, MST, and BRILIA. Again, phylogenetic trees, which

produce binary trees, are unable to capture these patterns. As A increases, depth of sampled

nodes of the simulated tree tends to decrease, a pattern matched by IgPhyML* and RAxML* but

not other methods. Finally, when A is high, trees are shorter (i.e., accumulate fewer mutations)

and more branches are single mutation (Fig. S7.4), both of which make phylogenetic inference

more difficult. The reduced levels of depth, total change, and bifurcation make sense: higher

pressure should result in fewer mutations needed to reach M because cells with unfavorable

mutations are less likely to survive; this would produce shorter trees.

Varying rate of hypermutation

As the hypermutation rate (µ) increases, error decreases for normal phylogenetic methods

(IgPhyML and RAxML) according to most metrics but stays relatively stable for zero-aware

methods (Fig. 7.5de). Increasing µ results in simulated trees that are marginally less balanced,

are more bifurcating, have fewer internal node samples, and have a higher depth for sampled

nodes (Fig. 7.5f). Thus, increasing µ generates trees more similar to what traditional phyloge-

netic methods assume. Zero-aware phylogenetic methods and Immunitree designate the right

percentage of nodes as internal, but both are slightly more bifurcating than true trees (Fig. 7.5f).

Overall, zero-aware phylogenetic methods are the most accurate across all values of µ .
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Interplay between selective pressure and mutation rate

When we vary both A and µ , we observe that increasing mutation rate has similar effects

on the error and tree properties as decreasing the selective pressure (Fig. 7.6). Reassuringly,

error patterns observed when fixing one variable and changing the other are consistent with

patterns when both variables are changed (Figs. 7.6 and S7.5). The most difficult condition

for phylogenetic methods is low mutation rate and high selective pressure, where close to 70%

of the branches include only a single mutation and bifurcation index is only 43%. However,

zero-aware methods are impacted less in these conditions, and are in fact improved according

to the RF metric (Fig. S7.5). In addition, we observe that antibody clonal trees become more

phylogenetic-like – that is, more bifurcating (max: 0.74) and fewer internal samples (min: 20%)

– with µ = 10−3 and A = 1/4x. Increasing the mutation rate or decreasing the selective pressure

beyond these values leads to combinations where the infection could not be overcome.

Other parameters

Beyond the main two parameters, we also studied changing six secondary parameters,

most of which had relatively little impact on the results (Fig 7.7). As the weight of FRs regions

in computing affinity (w f ) increases, error tends to slightly increase for all methods under many

evaluation metrics (Fig. S7.6). This pattern can be related to the slight increase in the number of

single branch mutations and the reduction in the total number of substitutions across the tree.

As germinal center capacity (C) increases, error increases or decreases slightly, depending on

what measure is examined (Fig. S7.7). Increasing C tends to reduce the number of internal

samples and single mutation branches in the simulated tree, and tends to increase mutations

per branch. As memory cell life-time (1/λ ′d) increases, error tends to increase for phylogenetic

methods (Fig. S7.8), including IgPhyML* and RAxML*, which nevertheless continue to be the

best methods. Plasma cells conversion rate (ρp) (Fig. S7.9), rate of change in antibody target

compared to antigen change (κ) (Fig. S7.10), and the threshold of total affinity for neutralization

and stage change (M) (Fig. S7.11) have small and inconsistent impacts on tree inference error.
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In all conditions examined, IgPhyML* and RAxML* have the best accuracy (Fig 7.7).

7.4 Discussion

7.4.1 Implications for reconstructing antibody evolution

Our study partially confirms that phylogenetic methods need to change for inferring

antibody clonal trees with high accuracy. Depending on the simulation condition, 1% to 20% of

sampled sequences belonged to internal nodes, and the true trees are only 60% to 70% bifurcating.

We observed that results of phylogenetic inference using ML, taken at face value, can have

low accuracy. However, ML phylogenetic methods with the simple adjustment of contracting

short branches can outperform the alternative methods based on Steiner trees and spanning

trees. In contrast to earlier work Davidson et al. (2018); DeWitt et al. (2018) that used ancestral

reconstruction, we used a fixed constant for contraction using a rule-of-thumb based on the length

of the sequences. Alternatively, statistical tests of whether a zero branch length null hypothesis

can be rejected exist (Jackman et al., 1999; Walsh et al., 1999; Goldman et al., 2000) and are fast

(Anisimova et al., 2006) and could be used in lieu of our simple heuristic. Moreover, our work

implies that phylogenetic methods that try to naturally model zero branch length (e.g., Lewis

et al., 2005) are also promising. In particular, the adaptive LASSO method of Zhang et al. (2020)

seems suitable for inferring antibody evolution.

Despite the higher accuracy of zero-aware phylogenetic methods compared to the avail-

able alternatives, we note that there is still substantial error. Under the default condition, 90% of

clusters of the true tree were recovered, but about 15% of the recovered clusters were incorrect.

In particular, the discrepancy between FNR and FDR is due to the fact that the inferred trees

are somewhat more bifurcating than true trees (e.g., ≈70% versus 60% in the default condition).

Thus, while contracting some super-short branches has been helpful in increasing accuracy, our

zero-aware phylogenetic trees are still biased towards too much resolution. It is possible that

better Steiner-based methods that incorporate more advanced models of sequence evolution can
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solve this shortcoming.

7.4.2 Implications for evaluation criteria

The ranking of reconstruction methods can change based on which of the ten evaluation

criteria we choose, and these rankings only partially correlate (Fig. S7.12). FDR and FNR

are weakly anti-correlated only when including singletons (mean Spearman’s rank correlation

coefficient across all tests ρ =−0.12). RF distance, which combines both aspects, correlates

moderately with both FDR (ρ = 0.5) and FNR (ρ = 0.57). The triplet-based metrics strongly

agree with each other (ρ = 0.97) and are mostly compatible with the RF distance (ρ ≈ 0.75), but

are less similar to MD and PD metrics (ρ ≤ 0.52). Consistent with the observation that triplet

metrics penalize false negatives more than false positives, they agree more strongly with FNR

than FDR (ρ = 0.65 vs 0.26). MD and PD are very similar to each other (ρ = 0.96), have no

correlation to FNR (ρ ≤ 0.05), but have moderately high correlation to FDR (ρ = 0.71). Finally,

we notice that singletons can matter: while FNR and FNR* are highly correlated (ρ = 0.94), RF

correlates with RF* less strongly (ρ = 0.71), and FDR correlates with FDR* only moderately

(ρ = 0.61).

The choice of the metric should depend on downstream application of the clonal tree.

While zero-aware phylogenetic methods are dramatically better than normal phylogenetic meth-

ods based on most criteria, they are only slightly better according to the triplet-based criteria.

The triplet metrics do not penalize trees heavily if they are more resolved than the true tree or if

they move internal nodes to leaves. Thus, when downstream usage is robust to extra resolution

and extra terminal edges, triplet metrics offer a good way to measure topological accuracy. On

the other extreme, PD and MD are very sensitive to the tree resolution and internal placement,

so much so that they often evaluate inferred phylogenetic trees to be much worse than random

trees (Fig. S7.5) because these trees generate fully resolved trees and put samples at leaves.

Thus, we don’t find PD and MD to be reliable metrics of topological accuracy. RF distance is in

between: it penalizes extra resolution more than triplet metrics but less than path-based metrics.
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It does distinguish zero-aware and phylogenetic methods, but rarely evaluates any methods to

be worse than random (Fig. S7.5). Overall, dividing the observed error along two (potentially

contradictory) axes such as FNR and FDR is recommended because this evaluation provides

more insight into reasons behind error.

7.4.3 Comparison to other simulation models

Several simulation tools capable of benchmarking reconstruction methods have been

developed. Some of these tools are not comparable to our effort because of various limitations.

ImmuneSIM Weber et al. (2020) generates mutations but does not model the clonal tree or the

selection process. Methods of Amitai et al. (2017) and Reshetova et al. (2017) are based on the

two-step simulation paradigm and only generate clonal trees under selection, leaving sequence

generation to other methods. The most relevant method to ours are bcr-phylo Davidsen and

Matsen (2018) and gcdynamics Childs et al. (2015), which simulate clonal trees of antibody-

coding sequences under AM. Both bcr-phylo and gcdynamics have similarities and differences

to our method (Table 7.6). For example, they both support multiple targets but only one round of

simulations. Although our model is capable of multiple targets, for simplicity, DIMSIM uses

one target per round of infection. However, unlike the two other methods that only simulate

activated cells, DIMSIM also simulates memory cells; as a result, it can simulate multiple rounds

of infection by an evolving pathogen with changing targets while considering memory built

from previous infections. Moreover, DIMSIM simulates in continuous time, whereas the other

tools simulate under discrete generations. All three methods use sequences to define affinity,

albeit differently: DIMSIM using BLOSUM distance, brc-phylo using hamming distance, and

gcdynamics using random energy landscape. A main feature of DIMSIM is that its rates are

polynomial fractions of individual and total affinity; this choice enables it to speed up the

simulation, allowing it to scale up to large numbers of cells, which makes DIMSIM capable of

simulating many lineages at a time.
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7.4.4 Limitations of the study

Our study has limitations that should be kept in mind.

In our simulations, we did not add errors to sequence data used as input to clonal tree

reconstruction methods. Real Rep-Seq samples undergo extensive PCR and thus might contain

both sequencing and amplification errors. We assumed that error elimination is already performed

(to perfection) prior to reconstruction using existing methods (e.g., Vander Heiden et al., 2014;

Safonova et al., 2015; Bolotin et al., 2015; Shlemov et al., 2017). The efficacy of methods that

simultaneously filter errors and build clonal trees (e.g., Safonova and Pevzner, 2019; Lee et al.,

2017) should be the subject of future research. We also simulated only substitution SHMs but no

insertions and deletions, leaving the latter to future work.

In our AM model, we made several simplifying assumptions. For example, absent of a

good model of receptor binding, we assumed the affinity grows gradually as the AA sequence

becomes more similar to the target sequence. The idea that AM occurs by mutational diffusion

along one or more preferred paths in the genotype space has been supported by Kepler et al.

(2014). Nevertheless, our i.i.d model is certainly a simplification without a clear empirical

support. Moreover, we assumed the existence of a target antibody sequence. The literature

has increasingly documented highly convergent immune responses to the same epitope across

individuals and conditions (Henry Dunand and Wilson, 2015; Robbiani et al., 2020). This

observation gives us reason to think the existence of target sequences is not a bad assumption;

nevertheless, the choice of a single target may not be realistic. To model the change in the target

as the viruses evolve across seasons, we chose targets with evolutionary divergence levels that

mimic the divergence levels of the antigen, albeit with some scaling factor. While we believe

this choice is sensible, again, we have no evidence to back up this model on empirical grounds.

It is conceivable that two antigens with high evolutionary distance are neutralized by similar

antibodies, or that, antigens that are very similar require very distant antibodies. We modelled

SHMs as affecting daughter cells independently, but it is arguably more realistic to make both
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daughter cells carry the same mutation due to the G1 origin of SHMs Sharbeen et al. (2012) (a

simple change to the model). Finally, our 5-mer mutation model, while based on the empirical

model of Yaari et al. (2013), still fails to capture some complexities of the real antibody evolution.

For example, we concentrated substitutions on the CDR region, but other regions are known

to also accumulate mutations (Safonova and Pevzner, 2019; Kirik et al., 2017; Ovchinnikov

et al., 2018). Other B cell specific models (e.g., Elhanati et al., 2015) including those that seek

to tease out the effects of selection from background mutations (e.g., McCoy et al., 2015) and

per-position mutability models (Kepler et al., 2014) can be incorporated in the future.

For all these shortcomings, we offer several responses. Due to challenges in modelling

antibody repertoire (e.g., Luo and Perelson, 2015), the framework is designed to be flexible

and can easily incorporate more complex models. Thus, our work should be considered a first

step that will enable better modeling in the future. Also, our objective in simulations was to

benchmark reconstruction tools; as long as our modeling choices did not distort the comparison

of methods, some model misspecification can be tolerated. We observed that the choice of the

best method was not sensitive to many parameter choices.

Beyond model simplifications, we also chose to simulate parts of the complex immune

system response, but not others. For example, we simulated one clonal lineage involved in an

immune response. As such, we ignored the important V(D)J recombination of IG loci (Kurosawa

and Tonegawa, 1982) and sought to simply simulate a VDJ recombinant that is effective in

fighting a specific antigen. Even then, we simulated only one clonal lineage at a time, a limitation

that can be easily lifted in the future by starting from multiple root sequences with different

VDJ settings and assigning to each a different target sequence. Note that our tool can be easily

combined with methods of simulating VDJ recombination, such as IGoR (Marcou et al., 2018).

Neither did we simulate light chains, which are often not captured in Rep-Seq sequencing data.

Finally, we did not simulate processes such as epitope focusing that produce broadly neutralizing

antibodies Bonsignori et al. (2016).
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7.4.5 Applications of the framework

Our framework for simulating clonal trees can be extended to other forms of microevo-

lutionary scenarios. While the current implementation is geared towards AM simulations, our

proposed algorithm enables forward-time simulation of very large numbers of entities under

models that allow dependence between sequences and rates of birth, death, or transformation.

The ability to simulate a very large number of entities combined with rates that change with

properties of entities give use the necessary ingredients to simulate under complex models of

evolution that consider selective pressure. Thus, our framework can be adopted for other forms

of microevolutionary simulation, such as the evolution of a virus within a host and accumulation

of SHMs in tumor evolution. Such a possibility would become most intriguing if it can also

model co-evolution of different types of entities (e.g., antibodies and viruses). While we did not

simulate co-evolution here, we believe the framework is capable of performing such simulations

by simply creating entity types (just like we had cell types) and making the BDT rates a function

of properties across different cell types. Another promising direction for extensions of this

work is to integrate the sequence evolutionary models with network-based disease transmissions

models (e.g., Ratmann et al., 2017; Moshiri et al., 2019) to enable more accurate simulations of

disease spread and evolution.
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Figure 7.1. (a) Examples of a phylogenetic tree, a Steiner tree, and a spanning tree. Letters
indicate sequenced data. Phylogenetic trees put all data points at leaves, and none at internal
nodes, spanning trees put data at every node (whether internal or leaf), and Steiner trees are in
between (some but not all internal nodes correspond to data). (b) The evaluation framework. The
BDT model, parameterized by several values (Table 7.1) is first sampled using the fast algorithm
implemented in DIMSIM to create the simulated (i.e., “true”) sequence data and clonal trees.
These trees are then reconstructed from the simulated sequence data using various methods. The
reconstructed clonal tree is compared to the simulated tree using several metrics adopted here to
account for internal node sampling and multifurcation. Properties of true and inferred trees are
measured using metrics such as balance and resolution.
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Figure 7.2. a) States of cells and transitions during infected stage. Only states colored black
are modeled. Transitions to states colored grey are treated as death events. b-d) Consider a
population of activated B cells where all cells have one of two sequences: L (low) or H (high).
Let ρ be the ratio of affinity of H-type cells to L-type cells, and let the affinity proportion be
the total affinity of a cell type over the total affinity (i.e., ρ/1+ρ for H and 1/1+ρ for L). b) The
affinity proportion as a function of the selective pressure A when the sequence closeness to the
target fζ (.) is kept fixed for L and varies for H. c) the ratio of death rate to birth rate as a function
of affinity proportion of H cells, fixing the population size to the carrying capacity. d) ratio of
death rate to birth rate as a function of the population size normalized by the carrying capacity,
fixing ρ = 2. All other parameters set to defaults (Table 7.1). The selective pressure A and the
level of binding control the portion of affinity taken up by better sequences (b), which controls
the growth of the cell type (c), which is also a function of the total population size (d).
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Figure 7.3. a) Average affinity of activated cells to current infection target (log scale), the number
of activated cells, and the number of memory cells by total time in infected stage across the last
51 stages of infection (colors) each corresponding to one flu season (discarding the first 5 rounds
and dormant stages). b) Impact of the novelty of the antigen on the outcome of the infection
across the 56 seasons simulated. The novelty of seasons is measured by−max j<i{∆ζi(ζ j)} and is
ranked from less novel to more novel on the x axis. The y-axis shows ranking (from low to high)
of average affinity of activated cells to the current infection target (R2 = 0.242, p = 2.5×10−4)
at the end of the infection, the number of activated cells (R2 = 0.248, p = 2.0× 10−4) at the
end of the infection, the duration of infection (R2 = 0.288, p = 4.8× 10−5), and the change
in memory cell count (R2 = 0.264, p = 1.2× 10−4) from the start to the end of the infection.
c) Clonal tree of memory cells sampled from one simulation under default condition after all
56 seasons. Nodes are colored by seasons when the memory cells emerge (gray for season 1
through 46; as part (a) for others). Here, 17 internal nodes are sampled and are indicated as
circles. Edge weights denote the number of mutations of sequences denoted by adjacent nodes.
See Figure S7.1 for more.
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Figure 7.4. (a) False Discovery Rate (FDR) and False Negative Rate (FNR) of various re-
construction methods on simulations under default conditions (30 replicates); (b) Normalized
Robinson-Foulds cluster distance (RF), MRCA discordance (MD), triplet edit distance (TED),
and triplet discordance (TD). (c) Properties of the estimated and true trees. For results excluding
singletons and the PD metric, see Fig. S7.2.
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Figure 7.5. Impact of selective pressure A (a-c) and mutation rate µ (d-f) on tree inference
error (a,b,d,e) and tree properties (c,f). We measure tree error by FDR and FNR (a,d), Robinson-
Foulds cluster distance (RF), MRCA discordance (MD), triplet edit distance (TED), and triplet
discordance (TD) (b,e). Tree errors and tree properties are averaged over 30 replicates. We show
properties of true (black) and reconstructed trees (c,f). µ = 5× 10−5 in (a-c) and A = 0.1 in
(d-f), which are all default values.
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Figure 7.6. For varying levels of selective pressure (A), rate of hypermutation (µ), and all
reconstruction methods except BRILIA, we show tree error measured by the triplet edit distance
TED (left) and properties of the true tree (right). When the mutation rate is too high and the
selective pressure is too low, the simulation never ends, meaning that the total affinity needed to
overcome the antigen is never reached; these conditions are missing from the figure. For other
evaluation criteria see S7.5.
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Figure 7.7. a) Triplet edit distances and b) RF cluster distances by selective pressure on
framework region, carrying capacity, mean-life of memory cells, plasma cell conversion rate,
antibody-flu BLOSUM ratio (MARatio), stage change threshold (M).
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Table 7.1. Parameters of the AM model

Param. Default Parameter description
λ ′d

1⁄402 Rate (inverse life time) of cell death for memory cells (days−1)
λb 6 Rate of cell division for activated B cells (days−1)
λd 104 Rate of cell death during dormant stage (day−1).
λt 0.01 Rate of activation of a typical responsive memory cell
ρp 1/100 Portion of activated B cells that turn into plasma cells per cell division
ρm 1/4 Portion of activated B cells that turn into memory B cells per cell division
µ 5×10−4 Rate of SHMs per base pair per generation

K5 Appendix 7.B Empirical 5-mer mutation frequencies per generation
L 125 Length of the amino acid antibody-coding sequence (assuming the length is fixed)

CDR 31–35,50–65, Positions of the three CDR regions (amino acid coordinates)
98–114

δ (i, j) Table S7.2 BLOSUM matrix defined on a pair of amino-acids i and j
∆0 -120 BLOSUM score of a typical memory B cell antibody-coding sequence to target
∆′0 -75 BLOSUM score of activated B cell antibody-coding sequences that leads to cure
w f 1/3 BLOSUM score multiplier of non-CDR positions (i.e., FRs)
κ 2 BLOSUM score ratio of antibody-coding sequences to antigen sequences
A 0.1 Selective pressure: factor connecting sequence similarity and log binding affinity
ρa 1/2 Factor connecting log affinity and B cell activation (sensitivity to affinity level A)
C 105 Carrying capacity limited by total resources (see text for meaning)
M CeA∆′0 The threshold of the sum of affinity for a stage change
r 56 Rounds of viral infections
Ψ̂ Appendix 7.B Nucleotide sequence of the initial B cell

ζ 1 . . .ζ r Appendix 7.B Target amino acid sequences for viral infections in each round
η1 . . .ηr Appendix 7.B Flu sequences assumed as antigens in the simulation
t1 . . . tr Appendix 7.B Starting time of each infected stage (day)

Table 7.2. Birth, death, and transformation rates. See Table S7.1 for polynomial forms.

Rate functions Infected stage Dormant stage
ΛB(xi,S) giλb + (1−gi)×0 0
ΛD(xi,S) gi(

λb(1−ρp−ρm)
C

σ

ai
+ρpλb)+(1−gi)λ

′
d giλd +(1−gi)λ

′
d

ΛT (xi,S) ti = giρmλb + e−ρaA∆0aρa
i (1−gi) 0

Table 7.3. Experiment setup

Experiment Parameters Parameter values Parameter units
Selective A×µ (2,2),(2,1),(2, 1/2),(2, 1/4),(2, 1/8),(1,2), A : 10−1,

pressure vs. (1,1),(1, 1/2),(1, 1/4),(1, 1/8),(1/2,1),(1/2, 1/2), µ : 10−3

rate of (1/2, 1/4),(1/2, 1/8),(1/4,1),(1/4, 1/2),
hypermutation (1/4, 1/4),(1/4, 1/8),(1/8, 1/4),(1/8, 1/8)

Framework weight w f 2,1, 1/2, 1/3, 1/5 1
Germinal center size C 4,2,1, 1/2, 1/4, 1/8 105

Memory cell life 1/λ ′d 16,8,4,2,1, 1/2 year (365 days)
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Table 7.4. Properties of a clonal tree

Property Definition
Internal sample (%) The percentage of labeled nodes that are internal nodes.
Bifurcation index Ratio of the number of internal nodes to one less than leaf nodes;

equals to 1 for bifurcating trees and ≈ 0 for a star tree.
Sample depth The average depth of labeled nodes.
Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are also leaves.
Single mutation branches (%) The percentage of branches with length one.
Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes .
Accumulated mutations (sum) The summation of branch lengths of all branches.
Mutations per branch The average branch length.

Table 7.5. Metrics for comparing the reference tree R to estimated tree E. See Table S7.5

Metric (abrv.) Definition
False Discovery Rate (FDR) the percentage of clusters in E that are not in R
False Negative Rate (FNR) the percentage of clusters in R that are not in E
RF cluster distance (RF) the number of clusters in either but not both trees
FDR* , FNR*, and RF∗ similar to the previous metrics but with singletons excluded
Triplet discordance (TD) the number of trees induced by triples of labeled nodes (leaf or internal) where

the topology in the simulated tree and the reconstructed tree differ
Triplet edit distance TED the sum of the cluster RF distance induced to each triplet of labeled nodes =

the number of branch contractions/resolutions that make every triplet of R match E
MRCA Discordance MD the summation of MRCA discordance† over all ordered pairs of labeled nodes.
Patristic Distance PD the summation of the patristic discordance‡ over all pairs of labeled nodes.
† MRCA discordance of two labeled nodes is the difference between the number of branches in
the path between each of them and their MRCA.
‡ Patristic discordance for a pair of labeled nodes is the difference between the number of
branches in the path between the two nodes on the two trees R and E.

Table 7.6. A comparison of Most relevant tools for AM simulation.

DIMSIM bcr-phylo gcdynamics
this paper Davidsen and Matsen (2018) Childs et al. (2015)

Targets Single-target (per round) Multi-target (1 round) Multi-target (1 round)
Rounds Yes No No
Affinity BLOSUM distance Hamming distance Random energy landscape
Mutation Updated Yaari et al. (2013) Yaari et al. (2013) i.i.d
Scalability Up to millions of cells Thousands of cells Thousands of cells
Cell type Activated & Memory Activated Activated
Germinal Centers Combined (single) Combined (single) Multiple (in competition)
Time Continuous Discrete generations Discrete generations
Isotype No Yes No
Birth/Death rate Polynomial fraction of Neutral: independent of total affinity A function of affinity

individual and total affinity Kinetic: function of affinities
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Appendices

7.A Brief introduction of relevant concepts

Antibodies.

Antibodies are produced by B cells and are used by the immune system to recognize, bind,

and neutralize pathogens. Antibodies are proteins consisting of immunoglobulin (IG) molecules

of identical heavy chains and identical light chains. Immunoglobulins are encoded by B-cell

receptor (BCR) sequences. Unlike other proteins, IGs are not encoded in the genome directly

but present results of somatic V(D)J recombination of IG loci (Kurosawa and Tonegawa, 1982).

Each chain of each IG is encoded by a concatenation of one of V, D (only for heavy chain), and J

genes, known as an IG gene. An IG gene contains three complementarity-determining regions

(CDRs) representing antigen binding sites. CDRs are separated by four framework regions (FRs)

that form a stable structure displaying CDRs on the antibody surface.

AM process.

After successful binding of an IG to a given pathogen, the corresponding B cell undergoes

the affinity maturation (AM) process aiming to improve its affinity (i.e., binding ability) to the

antibody (Tonegawa, 1983; Neuberger and Milstein, 1995). First, the targeting B cell moves to a

germinal center (GC) of a lymph node, where it undergoes clonal expansion: cell divisions that

increase the pool of antibodies that bind to the antigen. Then, certain enzymes in the B cell and

its clones are activated and introduce somatic hypermutations (SHMs) in the utilized IG genes

as a means to improve affinity (Muramatsu et al., 2000). SHMs change the three-dimensional

structure of an antibody (and thus its ability to bind to an antigen) stochastically. The regulatory
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mechanisms of the immune system play the role of natural selection by expanding B cells with

high affinity for antigen and killing self-reactive B cells with potentially harmful mutations. The

AM process activates naive B cells (i.e., those that have not been exposed to an antigen) and

differentiates them into memory and plasma B cells. Memory B cells can be repeatedly activated

and subjected to the AM Mesin et al. (2020), while plasma B cells can secrete massive levels of

neutralizing antibodies. Studies show that CDRs, which include the binding sites, accumulate

more SHMs compared to FRs (Hsiao et al., 2019; Safonova and Pevzner, 2019).

Clonal expansion.

The AM process leads to the formation of clonal lineages within a given antibody

repertoire, where each clonal lineage is formed by descendants of a single naive B cell. The

expressed IG transcripts within the same clonal lineage share a common combination of V,

D, and J genes and differ by SHMs only. The evolutionary history of each clonal lineage can

be represented by a clonal tree, where each vertex corresponds to a B cell and each B cell is

connected by a directed edge with all its immediate descendants.
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7.B Supplementary methods

7.B.1 Efficient sampling from the BDT model

Recall that because of the memoryless property, the time until the next BDT event always

follows the exponential distribution with rates ΛB(xi,S),ΛD(xi,S), and ΛT (xi,S) for each event

type. The time until any event for any entity follows an exponential distribution with rate

λ = ∑
i∈S

(ΛB(xi,S)+ΛD(xi,S)+ΛT (xi,S)) .

The probability of the next event being a specific event E ∈ {B,D,T} for a particular entity i is

ΛE(xi,S)
λ

.

We assume that we are able to write

ΛE(xi,S) =
PE(xi,S)

Q(S)

where PE : RN
≥0×RN

≥0 −→ R≥0 and Q : RN
≥0 −→ R>0 are polynomial functions with a constant

degree, where coefficients of PE are non-negative. With this assumption, for any entity i ∈ S, the

birth rate can be written as

ΛB(xi,S) =
∑α,β∈Γ Bα,β Sβ xα

i

∑β∈Γ Qβ Sβ

where Γ = [0 . . .γ]N for some integer γ , Bα,β and Qβ are coefficients of the polynomials, and ab

denotes ∏i abi
i for vectors a and b. We can write ΛD(xi,S) and ΛT (xi,S) similarly by replacing

Bα,β with Dα,β and Tα,β . Note that in our specific AM model, rates shown in Table S7.1 follow

this assumption.
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With this assumption, we can write

λ =
∑α,β∈Γ Pα,β Sβ θα

∑β∈Γ Qβ Sβ

where Pα,β = Bα,β +Dα,β +Tα,β and θα = ∑i∈S xα
i for all α values (note that S = θ1). Thus,

to efficiently sample the time till the next event, we only need θα values which we can simply

store and update in constant time after each event. This fast storing and updating allows for a

constant time sampling of the next event time (in terms of n) for constants N and γ . Once we

sample the time till the next event, we need to sample one of the three possible events. The

probability of the next event being birth for an entity i is

ΛB(xi,S)
λ

=
ΛB(xi,S)

∑ j∈S(ΛB(x j,S)+ΛD(x j,S)+ΛT (x j,S))

=
∑α,β∈Γ Bα,β Sβ xα

i

∑α,β∈Γ Pα,β Sβ θα

= ∑
α,β∈Γ

(
Bα,β Sβ xα

i
1

∑ᾱ,β̄∈Γ
P

ᾱ,β̄ Sβ̄ θᾱ

)
= ∑

α,β∈Γ

(
(
Bα,β Sβ xα

i

Pα,β Sβ θα

)(
Pα,β Sβ θα

∑ᾱ,β̄∈Γ
P

ᾱ,β̄ Sβ̄ θᾱ

)
)

= ∑
α,β∈Γ

(
(
Bα,β

Pα,β
)(

xα
i

θα

)(
Pα,β Sβ θα

∑ᾱ,β̄∈Γ
P

ᾱ,β̄ Sβ̄ θᾱ

)
)
.

(7.5)

Also note that probability of each death and transformation event can be written sim-

ilarly. This equation enables an efficient sampling procedure detailed in Algorithm S7.1 of

Appendix 7.D:

1. Sample (α,β ) pair (representing one term of the polynomial) from a multinomial distribu-

Table S7.1. Birth, death, and transformation rate functions as polynomials.

Rate functions Infected stage Dormant stage
ΛB(xi,S) λbgi 0
ΛD(xi,S)

λb(1−ρp−ρm)
C (gi

ai
)σ +(ρpλb−λ ′d)gi +λ ′d (λd−λ ′d)gi +λ ′d

ΛT (xi,S) ti 0
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tion on Γ×Γ where each pair has probability
Pα,β Sβ θα

∑ᾱ,β̄∈Γ
P

ᾱ,β̄ Sβ̄ θᾱ

.

2. Sample entity i from a distribution on S where each i has probability xα
i /θα .

3. Sample birth, death, or transformation with probabilities
Bα,β

Pα,β
,

Dα,β

Pα,β
, and

Tα,β

Pα,β
.

In this procedure, the probability of selecting the birth event for an entity i is simply

∑α,β
Bα,β

Pα,β

xα
i

θα

Pα,β Sβ θα

∑ᾱ,β̄∈Γ
P

ᾱ,β̄ Sβ̄ θᾱ

, which matches Equation (7.5) (ditto for death and transformation

events). In terms of running time:

1. Step 1 takes constant time (in terms of n) given that θα values (and thus S) are pre-computed

for all α .

2. Step 2 can be achieved in O(logn) time using an interval tree data structure to store partial

sums of xα
j ’s (see Algorithm S7.1).

3. Step 3 takes constant time.

Thus, a tree on k nodes drawn from the distribution defined by the BDT process can be sampled

in O(k log(k)) time by repeated applications of Algorithm S7.1.
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7.B.2 Somatic hypermutagenesis frequency models

We next show the model for K5 and f . Our model is based on an empirical frequency

K5(s,s1,s2,s3,s4,s5) matrix that counts the number of times 5-mer (s1,s2,s3,s4,s5) converts to

(s1,s2,s,s4,s5) in one cycle of cell division during hypermutation. Given the matrix, we define

f (s,s1,s2,s3,s4,s5) =


K5(s,s1,s2,s3,s4,s5)

µ

RateEmp s ̸= s3

1−∑s′∈{A,C,G,T}−{s}K5(s′,s1,s2,s3,s4,s5) s = s3

(7.6)

where

RateEmp = 1−
∑s1,s2,s3,s4,s5∈{A,C,G,T}K5(s3,s1,s2,s3,s4,s5)

∑s,s1,s2,s3,s4,s5∈{A,C,G,T}K5(s,s1,s2,s3,s4,s5)
. (7.7)

Somatic hypermutagenesis of antibodies is the result of activation-induced deaminase

(AID) enzyme activity that changes a random C:G base into a U:G base in B cell DNA. U:G

mismatch can be repaired using UDG (uracil-DNA glycosylase) or MMR (DNA mismatch

repair) machinery that forms diversity of hypermutations (Peled et al., 2008). Certain biolog-

ical mechanisms of SHM occurrences were studied extensively. For example, Rogozin and

Kolchanov (1992) observed specific hot/cold-spot DNA motifs for SHMs in immunoglobulin

genes. Particularly, WRCY/RGYW where W = {A, T}, Y = {C, T}, R = {G, A} and later

predicted more general WRCH/DGYW with H = {A, C, T} and D = {A, G, T} motifs are

hot-spots for SHMs caused by weak hydrogen-bounds (Rogozin and Diaz, 2004). SYC/GRS (S

= C, G) is a cold-spot motif caused by strong hydrogen-bounds (Bransteitter et al., 2004). The

locality of AID enzyme activity has been emphasized. (Smith et al., 1996; Shapiro et al., 2003).

To simulate SHM, we modified a model proposed by Yaari et al. (2013). The model

extends the notion of hot/cold-spots and suggests that a certain hierarchy of mutabilities exists

following Smith et al. (1996) and Shapiro et al. (2003). The model is based on the mutability of

a central base in each 5-mer of an antibody heavy chain and consists of two parts: a targeting

model identifying if a mutation occurs in the variable part of an antibody and a substitution
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model providing an insight into what is this mutation. In order to avoid selection bias, the authors

considered 5-mers where only synonymous substitutions of the central base are possible and

inferred probabilities for other 5-mers. Unfortunately, synonymous substitutions constitute only

a fraction of possible mutations. To overcome this issue, Yaari et al. (2013) proposed a special

inference method to estimate parameters for the rest of 5-mers. Parameters for targeting and

substitution models were inferred for 468 and 740 5-mers, respectively. However, the accuracy

of this procedure was shown to be suboptimal (Yaari et al., 2013, Table 2). Additionally, some

of the datasets that were used to estimate the parameters are derived from an error-prone 454

sequencing technology.

We re-estimated the parameters of this model and considered all 5-mers without limiting

our scope to synonymous mutations. We also utilized three up-to-date repertoire sequencing

datasets (all data were produced using the Illumina MiSeq platform):

• PRJNA349143. Time series of three individuals during influenza vaccination, both before

and after vaccination.

• PRJNA395083. Bulk unsorted PBMC from peripheral blood of several healthy donors.

• A dataset of paired end sequences, added to increase power.

While the last dataset we used is not publicly available, we make the resulting k-mer model

available publicly at https://github.com/chaoszhang/immunosimulator/blob/master/kmerFreq.txt.

From each dataset, we obtained a matrix of the size 1024×4, where each row corresponds

to a distinct 5-mer and contains # non-mutated occurrences of this 5-mer and three possible

# nucleotide substitution occurrences. To calculate this matrix for a given dataset, we found

the closest V gene for every read and record the number of observed 5-mers in the gene and

their corresponding mutated copies across the read. For any 5-mer K, the corresponding row

of a constructed matrix can be viewed simultaneously as a value of Binomial and Multinomial

distributions. Binomial distribution represents the number of occurred mutations among all
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occurrences of the 5-mer K, while Multinomial distribution indicates the number of mutations to

specific bases among all occurred mutations. The parameters of these distributions indicate the

mutability and substitution profiles for each 5-mer K. The 5-mer frequencies were combined

across all these datasets to obtain the final matrix, available at https://github.com/chaoszhang/

immunosimulator/blob/master/kmerFreq.txt.

7.B.3 Default parameters

Here we provide the actual default values used for several parameters that did not fit in

Table 1 of the main paper.
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BLOSUM.

The BLOSUM matrix table (Table S7.2) is obtained from ftp://ftp.ncbi.nih.gov/blast/

matrices/BLOSUM100.

Table S7.2. BLOSUM table

A R N D C Q E G H I L K M F P S T W Y V
A 8 -3 -4 -5 -2 -2 -3 -1 -4 -4 -4 -2 -3 -5 -2 1 -1 -6 -5 -2
R -3 10 -2 -5 -8 0 -2 -6 -1 -7 -6 3 -4 -6 -5 -3 -3 -7 -5 -6
N -4 -2 11 1 -5 -1 -2 -2 0 -7 -7 -1 -5 -7 -5 0 -1 -8 -5 -7
D -5 -5 1 10 -8 -2 2 -4 -3 -8 -8 -3 -8 -8 -5 -2 -4 -10 -7 -8
C -2 -8 -5 -8 14 -7 -9 -7 -8 -3 -5 -8 -4 -4 -8 -3 -3 -7 -6 -3
Q -2 0 -1 -2 -7 11 2 -5 1 -6 -5 2 -2 -6 -4 -2 -3 -5 -4 -5
E -3 -2 -2 2 -9 2 10 -6 -2 -7 -7 0 -5 -8 -4 -2 -3 -8 -7 -5
G -1 -6 -2 -4 -7 -5 -6 9 -6 -9 -8 -5 -7 -8 -6 -2 -5 -7 -8 -8
H -4 -1 0 -3 -8 1 -2 -6 13 -7 -6 -3 -5 -4 -5 -3 -4 -5 1 -7
I -4 -7 -7 -8 -3 -6 -7 -9 -7 8 2 -6 1 -2 -7 -5 -3 -6 -4 4
L -4 -6 -7 -8 -5 -5 -7 -8 -6 2 8 -6 3 0 -7 -6 -4 -5 -4 0
K -2 3 -1 -3 -8 2 0 -5 -3 -6 -6 10 -4 -6 -3 -2 -3 -8 -5 -5
M -3 -4 -5 -8 -4 -2 -5 -7 -5 1 3 -4 12 -1 -5 -4 -2 -4 -5 0
F -5 -6 -7 -8 -4 -6 -8 -8 -4 -2 0 -6 -1 11 -7 -5 -5 0 4 -3
P -2 -5 -5 -5 -8 -4 -4 -6 -5 -7 -7 -3 -5 -7 12 -3 -4 -8 -7 -6
S 1 -3 0 -2 -3 -2 -2 -2 -3 -5 -6 -2 -4 -5 -3 9 2 -7 -5 -4
T -1 -3 -1 -4 -3 -3 -3 -5 -4 -3 -4 -3 -2 -5 -4 2 9 -7 -5 -1
W -6 -7 -8 -10 -7 -5 -8 -7 -5 -6 -5 -8 -4 0 -8 -7 -7 17 2 -5
Y -5 -5 -5 -7 -6 -4 -7 -8 1 -4 -4 -5 -5 4 -7 -5 -5 2 12 -5
V -2 -6 -7 -8 -3 -5 -5 -8 -7 4 0 -5 0 -3 -6 -4 -1 -5 -5 8

Starting and target sequences.

The starting sequence Ψ̂ is set to:

CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA

CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCT

GGAGTGGATTGGGTACATCTATTACAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTTACCATA

TCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCCGCGGACACGGCCGTGTATT

ACTGTGCGAGAGCGCGCGTCAATAGGGATATTGCGTACGGCAACTGGTTCGACCCCTGGGGCCAGGGGACCCT

GGTCACCGTCTCCTCA

and thus ζ0 is

QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS
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RVTISVDTSKNQFSLKLSSVTAADTAVYYCARARVNRDIAYGNWFDPWGQGTLVTVSS.

η i, ζ i, and ti are given in Table S7.3.

379



Table S7.3. Flu accession number, CDRs of target sequences, and starting day of infection

i Accession Target CDR1 Target CDR2 Target CDR3 Day
1 AAK70482.1 SGGYY IGYIYYSGSTYYNPSL ARARVNRDIAYGNWFDP 0
2 AAK70478.1 CWWVP WWCHCGWCNVXXNIXF ARARVNREXAYGNWFZA 182
3 ABL76892.1 WWWXX XGYVYYSGSDYYDPSL VKVKVNKEVVYGNWFEA 365
4 AFP83103.2 WWWAB TBYVYYSGSDYYDXSL VKVKINKEVVYGNWFEA 398
5 AFP83094.2 WWWGX TGYVYYSGSDYYDXSL VKVKVNKEVVYGNWFEQ 431
6 AFP83095.2 WWCPP WWCHCAWXBTXXBISL ARARVNRELAYGNWFEA 464
7 AFP83197.2 WWCPP WWCHCZWYZVXXBISF ARARVNRELAYGNXFEA 497
8 AFP83098.2 WWWAX AGYVYYSGTDYYDBSL VKVKINKEVVYGBWFEZ 530
9 AFP83100.2 WWWPK SXHVYYSGSDYYDXSL VKVKVNKEVVYGNWFEA 564

10 AAO38870.2 WWCPP WWCHCCWXBVXYBXSY ARARVNRELAYGNWFZA 597
11 AFP83199.2 WWLPP WWCHCEWLHVXXXIXY ARARVNRELAYGNWFZA 630
12 ABL76881.1 WLWCG KXYVYYSGSQFYDASL VKVKLNKEVVYGNWFZL 663
13 AFP83097.2 WCWCG CRWVYYXXSDYYDIXL VKVKINKEVVYGDWFEQ 696
14 AFP83202.2 WXYXY TGYVYYSGSDYYDPSL VKVKMNKEVVYGNWFEA 730
15 AFP83201.2 WWVPP WWCNCCWFBTXXXLSF ARARVNRELAYGNWFEA 763
16 AFP83118.2 WYYXD TGYVYYSGSDYYBPSL VKVKLNKEVVYGNWFZK 796
17 AFP83200.2 WWCPP WWCHCCYIBVXXBXSY ARARVNRELAYGNWFZA 829
18 AFP83107.2 WWCPP WWCHCCYVBTXXBXSF ARARVNRELAYGNWYZA 862
19 AFP83112.2 WFWDG XKWVYYSGSDYYDXSL VKVKINKZVVYGNWFEQ 895
20 AFP83115.2 WWCPP WWCHCCQIBTXXBXSF ARARVNRELAYGNWFZG 929
21 AFP83114.2 WPWGD XGYVHYSRSDYYDPSL VKVKXNKZVVYRNWFEP 962
22 AFP83110.2 WWCPD WWCHCCWIDWXXBXXY ARARVNRZLAYRNWFEA 995
23 AFP83105.2 WYWGN GCXLYYSGSDYYDPSL IKVKIDKELVYGDWFZV 1028
24 AFP83106.2 WWCPP WWCHCCWVWWNEGLXB GXXRXXRDLAYGNWYXA 1061
25 AFP83127.2 WFWBG TGYLYYSGSDYYDASL IKVKXNKELVYGNWFET 1095
26 AFP83124.2 WCWCG BGYLYYSGSDYYBFSL IKVCIBKEMVYGBWFET 1216
27 AFP83130.2 WWHPP WWCHCCWRBCXXXXSF ARARVNRSLAYGNWFEA 1338
28 AFP83134.2 WBYXY TGYVYYSGSDYYBPSL VKVKMNKEVVYGNWFEA 1460
29 AFP83131.2 WWHPP WWCHCCWRBLXXXXSF ARARVNRZLAYGNWFEA 1581
30 AFP83135.2 PPYGD PGKVYYSRSDYYDDSL IKVKXNKYVVYRNWFEK 1703
31 AFP83150.2 HPYGD PGBVYYSRSDYYDBSL VKVKINKZVVYRNWFEK 1825
32 AFP83206.2 HPYGD PPHCYYSRSDYYDBSL VKVKXNKFVVYRNWFEZ 1946
33 AFP83147.2 HPYGD PGHVYYSRSDYYDPSL IKVKINBXVVYRNWFEK 2068
34 AFP83154.2 WXXAY PGYVYYSGSDYYDPSL VKVKMNKEVVYGNWFEP 2190
35 AFP83155.2 LPYGD PGHVYYSRSDYYDDSL VKVKLBKIVVYRNWFEK 2281
36 AFP83160.2 HPYGD PGHVYYSRSDYFDDSL VKVKXNKZVVYRNWFEK 2372
37 AFP83159.2 HPYGD PGHVYYSHSDYYDDSL IKVKXNKZVVYRNWFEK 2463
38 AFP83166.2 WEHGY XGYVYYSGSDYYDPSC VKVKMNKEVVYGNWFEP 2555
39 AFP83173.2 WBIMY LGFVYYSGSDYYBPSL VKVKMNKZVVYGNWFZA 2920
40 AFP83163.2 WPIFY LGYVYYSGSBYYBPSL VKVKMNKZIVYGNWFZA 3011
41 AFP83170.2 YZIMY LGYVYYSASDYYBPSL VKVKMNKEIVYGNWFEA 3102
42 AFP83174.2 YPIMY SGYVYYSGSDYYBPSL VKVKMNKEVVYGBWFEA 3193
43 AFP83184.2 ZSZYY TDYVYYSGIDYYTPSL VKVKMNKEVVYDYWFEP 3285
44 AFP83185.2 BBGYY TDYVYYSGIDYYYPSL VKVKMTKEVVYDYWFZP 3345
45 AFP83181.2 EBAYY TDYVYYSGVDYYEPSL VKVKMNKEVVYDYWFEP 3406
46 AFP83208.2 WDIPY LGYVYYSASDYYBPSL VKVKMNKZVVYGNWFZA 3467
47 AFP83178.2 FKIMY LGYVYYSGSDYYDPSL VKWKMBKZVYYGNWFZA 3528
48 AFP83177.2 YEIMW LGFVYYSGSDYYBPSL VKVKMNKZAVYGNWFZA 3589
49 AJK04689.1 DDGYY TDYVYYSGIDYYEPSL VKMKMAKZTVYDYWFZP 3650
50 AJK04818.1 EBFYY TDYVYYSGVDYYCPSI VKVKMBKEVVYDYWLEP 3832
51 AJK04119.1 ZDPYY TDYVYYSGIDYYBPSL VKVKMRKEVVYDHWFEP 4015
52 AFP83190.2 DDDYF TDYVYYSGIDYYWPSL VKVKMTKZVVYDYWFZP 4075
53 AJK05467.1 DDRYY TDYIYYSGIDYYKPSL VKVKMSKZVVYDYWFZP 4136
54 AJK05084.1 DDGYY TDYIFYSGITYYVPXL VKVKMSKEVIYDHWFZP 4197
55 AJK04964.1 DDGYY CDYXFYSGIDYYSPSC VKVKMSKEVVYDYWFEP 4258
56 AJK05278.1 EDFYY TDYVWYTGIDYYXPXL VKVKMVKXVVXDYWFZP 4319
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7.B.4 Evaluation metrics

Notations.

For a rooted tree T , we let LT be the set of leaves and IT be the set of internal nodes. For

each node v of T , let C (v) be the set of its children. We define φ(v) as the set of node labels of

labeled nodes below v. Also, for any set of nodes V , we define φ(V ) = {φ(v) : φ(v) ̸= /0,v ∈V}

and φ(T ) = φ(IT ∪LT ). For a set of nodes V and a set of labels Φ, φ(V ) ↾ Φ = {Φ′ ∩Φ :

Φ′ ∩Φ ̸= /0,Φ′ ∈ φ(V )}. For labeled nodes Ψi and Ψ j, let UT (i, j) be the number of edges

between the node Ψi in T and the MRCA of Ψi and Ψ j in T .

Characterizing a clonal tree

We define a set of metrics for characterizing properties of simulated trees in terms of their

topology, branch length, and distribution of labeled nodes (Table S7.4). Some of these metrics

are motivated by similar ones on phylogenetic trees, but are adjusted to allow sampled internal

nodes and multifurcations. For example, to measure tree balance, we extend the definition of the

number of cherries but allow modifications (our definition reduces to the traditional definition

when the tree is binary). Other metrics (e.g., percent internal samples) are only meaningful for

clonal trees and are meant to quantify the deviation of a clonal tree from phylogenetic trees.

Table S7.4. Properties of a clonal tree T .

Property Definition
Internal sample (%) The percentage of labeled nodes in set IT .
Bifurcation index Defined as |IT |

|LT |−1 equals 1 for bifurcating trees and ≈ 0 for the star tree.
Sample depth The average depth of labeled nodes in T .
Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are leaves.

∑v∈IT

(|C (v)∩LT |
2

)
/(|C (v)|−1) where 0/0

.
= 1/2

Single mutation branches (%) The percentage of branches with length one.
Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes of tree T .
Accumulated mutations (sum) The summation of branch lengths of all branches of tree T .
Mutations per branch The average branch length of tree T .

The last four metrics require branch length (in mutation unit) on the tree.
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Comparing trees

Many metrics exist for comparing phylogenetic trees. However, in the presence of

polytomies and sampled ancestral nodes, the classic metrics need to be amended. Here, we

generalize several existing metrics and introduce new ones. All metrics are defined over a

simulated tree R and a reconstructed tree E, both induced down to include all labeled nodes (i.e.,

removing unlabeled nodes if less than two of their children have any labeled descendants). See

Table S7.5 for precise definitions of metrics.

Table S7.5. Metrics for comparing the reference simulated tree R to estimated tree E.

Metric AB Definition
False discovery rate FDR |φ(E)\φ(R)|/|φ(E)|
FDR no singletons FDR* |φ(IE )\φ(IR)|/|φ(IE )|
False negative rate FNR |φ(R)\φ(E)|/|φ(R)|
FNR no singletons FNR* |φ(IR)\φ(IE )|/|φ(IR)|
RF cluster distance RF |φ(R)∪φ(E)|− |φ(R)∩φ(E)|
RF cluster distance RF∗ |φ(IR)∪φ(IE )|− |φ(IR)∩φ(IE )|
no singletons
Triplet discordance TD |{Φ : φ(R) ↾ Φ ̸= φ(E) ↾ Φ,Φ⊂ {Ψ1, . . . ,Ψς}, |Φ|= 3}|
Triplet edit distance TED ∑Φ⊂{Ψ1 ,...,Ψς },|Φ|=3 |(φ(R) ↾ Φ)∪ (φ(E) ↾ Φ)|− |(φ(R) ↾ Φ)∩ (φ(E) ↾ Φ)|
MRCA discordance MD ∑i, j∈[ς ] |UR(i, j)−UE (i, j)|
Patristic distance PD 1/2 ∑i, j∈[ς ] |UR(i, j)+UR( j, i)−UE (i, j)−UE ( j, i)|

RF-related.

We refer to the set of labeled nodes under some subtree as a cluster. We define False

Discovery Rate (FDR) as the percentage of clusters in E that are not in R, False Negative Rate

(FNR) as the percentage of clusters in R that are not in E, and Robinson-Foulds cluster distance

(RF) as the number of clusters in either but not both trees. Note that unlike traditional Robinson

and Foulds (1981) distance, here, internal nodes can also have labels, and we define the metric

based on clusters in a rooted tree instead of bipartitions in an unrooted tree. Moreover, the

singleton clusters are trivial when all labeled nodes are leaves; however, when there are labeled

internal nodes, including or excluding singletons can make a difference. Thus, we also define

FPR FNR, and RF distance when excluding singleton clusters.
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Triplet-based.

We define triplet discordance (TD) as the number of trees induced by triples of labeled

nodes (leaf or internal) where the topology in the simulated tree and the reconstructed tree differ.

We define the triplet edit distance (TED) as the summation over all triplets of the labeled nodes

of cluster RF distance between the two trees induced to the triplet. Intuitively, it is the sum of the

minimum number of branch contractions and resolutions required to covert a triplet in R to a

triplet in E, summed over all triplet.

Path discordance.

Patristic discordance for a pair of labeled nodes Ψi and Ψ j is defined as the difference

between the number of branches in the path between Ψi and Ψ j on two trees R and E. The

patristic discordance (PD) between R and E is the summation of the Patristic discordance over all

pairs of labeled nodes (internal or leaf). We define the MRCA discordance for an ordered pair of

labeled nodes Ψi and Ψ j as the difference between the number of branches in the path between

Ψi and its MRCA with Ψ j when computed from trees R and E. The MRCA discordance (MD)

between the two trees is the summation of MRCA discordance over all ordered pairs of labeled

nodes.

The FNR and FDR metrics are already normalized. To normalize other metrics, for each

experimental condition, we create a control tree by randomly permuting labels of the true tree.

We then normalize scores (other than FNR and FDR) of a reconstruction method by dividing it

by the average score of replicates of the control method.

Computing FNR, FDR, and RF metrics takes O(ς) time with hashing and randomization

(algorithm S7.4). Triplet-based metric can be easily computed in O(ς3) time with simple

preprocessing and iterating over all triplets. Both PD and MD take O(ς2) time with preprocessing

that computes distances to MRCAs.
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7.C Supplementary Figures
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Figure S7.1. a) Log average affinity of activated cells to the current infection target at the end
of the infection, the number of activated cells at the end of the infection, and the duration of
infection by novelty of the target of one simulation under default conditions, showing the last
five rounds as examples. b) Average affinity of activated cells to current infection target, the
number of activated cells, and the number of memory cells by time after infection starts for
the last five infections of one simulation under default conditions. Lines are fitted using the
LOWESS (locally weighted scatter plot smoothing) algorithm. c) Number of memory cells and
novelty of infections by time. Dormant stages are indicated by dotted lines.
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Figure S7.2. Top: FNR* and FPR* rates excluding singletons by reconstruction methods on
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with and without singletons (RF and RF *), MD and PD.
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Figure S7.5. For varying levels of selective pressure (A), rate of hypermutation (µ), and
reconstruction methods, we show MD error (left), and RF error (right). Under some conditions,
reconstructed trees from phylogenetic methods are worse than random permuting labels of true
tree because both MD and RF (to a lesser degree) severely penalizes resolution of multifurcated
nodes.
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Figure S7.6. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discor-
dance (MD), triplet edit distance (TED), and triplet discordance (TD) by BLOSUM weight
multiplier of framework region (w f ) and reconstruction methods. c) Properties of true (black)
and reconstructed trees by BLOSUM weight multiplier of framework region (FR). d) Properties
of true trees.
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Figure S7.7. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
(MD), triplet edit distance (TED), and triplet discordance (TD) by germinal center capacity (C)
and reconstruction methods. c) Properties of true (black) and reconstructed trees by carrying
capacity of germinal center of FR. d) Properties of true trees.

390



0.1 0.2 0.3 0.4 0.5 0.6
False Discovery Rate

0.1

0.2

0.3

0.4

0.5

0.6

Fa
lse

 N
eg

at
iv

e 
Ra

te

Mean-life of Memory Cells
IgPhyML
IgPhyML*
RAxML
RAxmL*
Immunitree
MST
BRILIA
control
0.5 year
1 year
2 years
4 years
8 years
16 years

0.4

0.6

0.8

RF Cluster Distance

0.5

1.0

MRCA Discordance

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.25

0.50

0.75

1.00
Triplet Edit Distance

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.5

1.0

Triplet Discordance

0.30

0.35

Balance (cherry)

0.0

0.2

0.4
Internal Samples (%)

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.6

0.8

1.0
Bifurcation Index

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

10

20
Depth of Samples (mean)

60

80
Accumulated Mutations (avg)

6.5

7.0

Mutations per Branch

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.13

0.14

Single Mutation (%)

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

2000

2200

2400
Accumulated Mutations (sum)

Figure S7.8. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
(MD), triplet edit distance (TED), and triplet discordance (TD) by mean memory cell life-time
(1/λ ′d) and reconstruction methods. c) Properties of true (black) and reconstructed trees by memory
cell life (mean). d) Properties of true trees.
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Figure S7.9. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
(MD), triplet edit distance (TED), and triplet discordance (TD) by fraction of activated cells
turning into plasma cell per cell division (ρp).
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Figure S7.10. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discor-
dance (MD), triplet edit distance (TED), and triplet discordance (TD) by BLOSUM score ratio
of antibody-coding sequences to antigen sequences (κ)
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Figure S7.11. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discor-
dance (MD), triplet edit distance (TED), and triplet discordance (TD) by BLOSUM score of
activated cell antibody-coding sequences that leads to cure (∆′0).
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of evaluation metrics. Here, we show the average coefficient over all replicates of all simulation
conditions.
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7.D Supplementary Algorithms

Recall:

∑
i, j∈[r]

∣∣∣κ ∑
p∈CDR

δ (ζ
(p)
i ,ζ

(p)
i )−δ (ζ

(p)
i ,ζ

(p)
j )−

Lη

∑
q=1

(
δ (η

(q)
i ,η

(q)
i )−δ (η

(q)
i ,η

(q)
j )
)∣∣∣ . (7.8)
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Algorithm S7.1. Simulating the next event and update time and S accordingly. Before running
this procedure, we have computed S and θα = ∑i∈S xα

i for all α from the previous calls to this
function (i.e., previous time steps). For each α , we have also built an interval tree Tα on leafset S
and each node v storing the summation of xα

i for each leaf i under v.
procedure SAMPLETREE(α , v)

if v is a leaf node then
return v

else
L← the sum of xα

i for each leaf i under left child of v
R← the sum of xα

i for each leaf i under right child of v
O← the outcome of a flip of a biased coin with probability of being head L

L+R
if O = Head then

return SAMPLETREE(α , the left child of v)
else

return SAMPLETREE(α , the right child of v)
procedure SIMULATINGONEEVENT

time← time + a random sample from exponential distribution where λ =
∑α,β∈Γ(Pα,β Sβ θα )

∑β∈Γ Qβ Sβ

(α,β )← a random sample from distribution Pr(α,β ) =
Pα,β Sβ θα

∑ᾱ,β̄∈Γ
(P

ᾱ,β̄ Sβ̄ θᾱ )

i← SAMPLETREE(α , the root of T α)
E← a sample from Pr(E = Birth) = Bα,β

Pα,β
,Pr(E = Death) = Dα,β

Pα,β
,Pr(E = Transformation) = Tα,β

Pα,β

if E = Birth then
( j,k)← a sample from distribution of outcomes of birth event of i
S← S+x j +xk
S← S∪{ j,k}
for α ∈ Γ do

θα ← θα +xα
j +xα

k
add leaves j and k to Tα while keeping the tree balanced using Algorithm S7.2

if E = Transformation then
j← a sample from distribution of outcomes of transformation event of i
S← S+x j

S← S∪{ j}
for α ∈ Γ do

θα ← θα +xα
j

add leaf j to Tα while keeping the tree balanced using Algorithm S7.2
S← S−xi

S← S−{i}
for α ∈ Γ do

θα ← θα −xα
i

remove leaf i from Tα , making the leaf ready for future additions using Algorithm S7.2
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Algorithm S7.2. Exact algorithm for inserting or removing a leaf from tree Tα keeping it
balanced. Tα is represented by a full binary tree where each leaf is labeled with either one entity
or /0 and each node v has weight wv equal to the sum of xα

i for all leaves under v with label (i)
not being /0. Assuming a stack Sα keeps all leaves with label /0.

procedure ADDWEIGHT(Tα , i, v, u)
wu← wu +xα

i
if v is under left subtree of u then

ADDWEIGHT(Tα , i, v, the left child of u)
if v is under right subtree of u then

ADDWEIGHT(Tα , i, v, the right child of u)
procedure INSERTLEAF(Tα , i)

if Sα is empty then
H← the height of Tα

T ′← Tα

Tα ← a full binary tree of height H +1, all leaves labeled /0, and all nodes having weight 0
replace the left subtree of the root of Tα with T ′

the weight the root of Tα ← the weight of the left child of the root of Tα

push all leaves under right child of the root of Tα into Sα

v← pop one element from Sα

label of v← i
ADDWEIGHT(Tα , i, v, the root of Tα )

procedure REDUCEWEIGHT(Tα , i, v, u)
wu← wu +xα

i
if v is under left subtree of u then

REDUCEWEIGHT(Tα , i, v, the left child of u)
if v is under right subtree of u then

REDUCEWEIGHT(Tα , i, v, the right child of u)
procedure REMOVELEAF(Tα , i)

v← leaf of Tα with label i
label of v← /0
push v onto Sα

REDUCEWEIGHT(Tα , i, v, the root of Tα )

398



Algorithm S7.3. Heuristics for choosing target sequences to minimize the objective func-
tion (7.8).

for i← 2 to r do
for q ∈ CDR do

C(q)
i ← 0

ζ
(q)
i ← ζ

(q)
1

for p← 1 to Lη do
t← Poisson(κ)
for u← 1 to t do

q← a uniform random element of CDR where η
(p)
1 = ζ

(q)
1

for i← 2 to r do
if η

(p)
i ̸= η

(p)
1 then

C(q)
i ←C(q)

i +1
ζ
(q)
i ← η

(p)
i with probability 1/C(q)

i

b← True
while b = True do

b← False
for i← 2 to r do

for q ∈ CDR do
for s ∈ nucleotide alphabet do

if replacing ζ
(q)
i with s reduces the objective function then

b← True
ζ
(q)
i ← s

Algorithm S7.4. The compute set algorithm
Let each label be uniformly randomly assigned to an element in a finite Abelian group with
large enough order (e.g., 64-bit integers). To compute FNR, FDR, and RF, we just need to
compute |φ(R)| = |SR|, |φ(E)| = |SE |, and |φ(R)∩φ(E)| = |SR∩SE |, where set ST for tree T
can be computed by calling COMPUTESET(T , the root of T ).

procedure COMPUTESET(T,v)
w← the element assigned to the label of v, if v has label; otherwise, w← 0.
for u in the children of v do

w← w+ COMPUTESET(T,u)
add element w to set ST

return w
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