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Abstract

In this paper we present a finite element algorithm for the static solution of
two-dimensional frictionless contact problems involving bodies undergoing
arbitrarily large motions and deformations. A mixed penalty formulation is
employed in approximating the resulting variational inequalities. The algo-
rithm is applied to quadratic elements along with a rational scheme for
determining the contacting regions. Several numerical simulations illustrate
the applicability and accuracy of the proposed solution procedure.



1. Introduction

Mechanical contact is of considerable importance in a wide range of engineering
applications. The interaction of contacting bodies introduces ’unilateral’ constraints
on their relative displacements. Indeed, the above constraints are enforced only on
parts of their boundaries where contact actually occurs and become inactive where
the bodies are apart from one another. Analytical methods have provided solutions
only for restricted classes of problems, [1,2], owing largely to lack of a priori
knowledge of the exact contact surfaces.

The unilateral nature of the boundary conditions gives rise to variational princi-
ples realized in the form of inequalities, [3]. In treating inequality constraints
emanating from mechanical contact, several numerical algorithms have been pro-
posed, primarily in conjunction with the finite element method. There appear to
exist two main directions in attacking the discrete contact problem; the one uses spe-
cial optimization techniques for the resulting non-linear mathematical programming
problem, [4-6], while the other directly transforms the inequalities to equalities by
enforcing the constraint conditions through penalty, [7], or augmented Lagrangian
formulations, [8]. Even though one can reasonably argue that penalty and aug-
mented Lagrangian schemes are optimization techniques in their own right, they are
viewed here separately from other special techniques, because of their simplicity,
generality and capability for direct and efficient computer implementation.

In this paper, we use a penalty formulation. A pivotal issue in this approach is
the choice of pressure approximation. Typically, the contact pressure is approxi-
mated with reference to its value at the nodal points of the discretized bodies. Con-
tact problems involving small deformations are adequately treated by an assumption
of node-to-node contact, [9]. For bodies undergoing large motions the above
assumption is too restrictive and one has to allow for node-on-surface contact, [10].
The main drawback of nodal contact is that it only enforces the non-penetration con-
dition in a discrete number of points on the boundary, while, at the same time, vari-
ationally consistent pressures are not assumed at the outset along the contact surface;
instead, nodal forces are computed and, subsequently, tributary area methods are
used to transform them into equivalent pressures. An alternative approach based on
a perturbed Lagrangian functional, makes an explicit assumption for the approxima-
tion of the pressure field and enforces the non-penetration condition in an average
sense over a well-defined segment of the boundary, [11].
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The formulation proposed here is developed for the fully non-linear two-
dimensional kinematics and, therefore, is automatically applicable to contact prob-
lems involving large deformations, as well as non-linear interface material constitu-
tions. The cornerstone of the approximation is a three field mixed principle accord-
ing to which displacements, pressures and gaps (penetrations) are independently
approximated along the contact slideline. Quadratic elements are used throughout
the analysis and an elaborate scheme of uniquely defining the contact elements is
presented.

2. The continuum problem

Consider two deformable bodies with reference configurations B!, B? and
smooth boundaries 8B, 8B2, respectively, with reference to a fixed Cartesian coor-
dinate system x(x ,y), see Fig. 2.1 . The boundary of each body is uniquely
decomposed into three mutually disjoint subregions according to

aB* = aBX¥ YaBF U C, k=12,

where boundary displacements @ are specified on an, surface tractions t* are

specified on 8BY, while on C the two bodies come into contact. On C the two

bodies possess a common normal denoted by n! = —n?, where n* is the outer unit
normal to B¥. Moreover, consider the displacement fields and body forces
ut = uk(x) ,

fr=f*(x) ; x € B¥ |, k=12.
The non-penetration condition along C requires that
h=[x*+u®)—xl+u))nl=0, (2.1)

where h represents the gap (penetration) in the current configuration. Equation
(2.1) poses a constraint on the relative motion of the two bodies. A contact pressure
p acts on C so that the contact boundary conditions may be written in a Kuhn-
Tucker form as

ph=0, p=0 , h=0. (2.2)

We independently define the space of trial functions for the displacements as V and
the pressure as P according to

V=vixyZ ; vk = {v € HIBM)? |vx) =0 , xéaB,f} , k=12,
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P={q EHO(C)IqsO}.

It can be easily inferred that any solution (u!,u?,p) of the contact boundary value
problem extremizes the total potential energy functional IT given by

M(u!,u?,p) = (2.3)

2
> | fwkav - [fFukav — f?‘-u"dr]—fp h(ul,u?) dT
k=1|B* B aB! G

where W¥ stands for the stored (elastic) energy of body k. Note that equation (2.1)
is incorporated into the functional form of the total potential energy in (2.3), allow-
ing the unconstrained variation of the trial displacements.

For the purpose of the forthcoming finite element approximation, we define a
mixed penalty functional Il as

M (u!,u,p,g) = H(ul,uz)+£%€g2d1" + {p (h(ul,u®) —g)dl , (2.4)

where € > 0 is a preset penalty parameter and g is an independently assumed vari-
able defining the penetration along C, whose space of admissible variations G is
given by

G={g GHO(C)lgSO}

The value of the penalty parameter is generally proportional to the stiffness of the
contacting bodies. Variation of the functional in (2.4) with respect to p and g gives
rise to the Euler equations

{8}7 (h(ul,u?) —g)dTC =0 (2.5)

and

,Cfﬁg (eg —p)dT' =0, (2.6)

respectively. Equation (2.5) maintains that the displacement-based penetration h
must be equal to the independently assumed penetration g in a weak sense over the
contact boundary C. Equation (2.6) will be used in recovering variationally con-
sistent pressures from g.
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Assuming the choice of finite element subspaces leads to an approximation of g
that weakly converges to the ’real’ penetration h under successive mesh refinement,
the penalty functional in (2.4) will enforce weak satisfaction of (2.1). Clearly, the
larger the penalty parameter €, the more accurate the satisfaction of (2.1).

MAarks

e The continuum problem, as well as its numerical solution, can be trivially gen-
eralized for the case of multiple bodies in contact.

e An augmented Lagrangian formulation can be easily established by considering
the functional I1,; defined according to

I, (u!,u?,p ,g,\) = O(!,u?,p,g) + [Ak(u!,u?)dl
C

where \ is a Lagrange multiplier, [8,12].

3. Slideline considerations
3.1 A discretization of the contact slideline

A well-defined approximation of the kinematics of the contact slideline is criti-
cal in rendering the algorithm robust and reliable. Ideally, a discretization of C
should preserve the basic geometric characteristics of the contacting regions and
allow for computationally efficient, unbiased treatment of all cases of potential ele-
ment contact. Departing from the concept of nodal contact, it is apparent that "con-
tact elements’ must be directly related to continuous parts of the element boundaries.
Following [11], these elements will be referred to as segments. Appropriate identifi-
cation of the contact segments can significantly facilitate satisfaction of the discrete
counterparts of the constraint equations (2.5) and (2.6). The proposed slideline
logic is applicable to both one- and two-dimensional finite elements. In what follows,
attention is focused to the case of quadratic elements. Naturally, a similar approach
can be easily obtained for linear elements.

Initially, we specify for each body the part of its boundary which is candidate
for contact. These surfaces consist of element edges from each body. The next step
involves projecting the outer two nodes of element edges from one body onto the
boundary of the other, see Fig. 3.1 . This procedure can be carried out by means of
an elementary Newton scheme or by solution of a closed-form cubic equation. Sub-
sequently, a search strategy is initiated in order to decide what are the actual contact
segments to be further considered in the analysis. Figure 3.2 illustrates all the basic
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cases that are potentially encountered in determining segmental acceptance or rejec-
tion (all other cases are reducible to these by either symmetry or by exchanging the
roles of the two bodies). A summary of the implementation of the above search
algorithm is given in Box 1.

Box 1 : Summary of search algorithm for contact segments

1. Input nodes of potential contact surfaces.
2. Loop over element edges of body 1.
3. Loop over element edges of body 2.
4. Compute projections of element edges of body 2 onto body 1.
5. Compute projections of element edges of body 1 onto body 2.
6. Check resulting segment for acceptance/rejection.
7. If edge from body 2 fully projected, go to 3
Else goto 2
8. When element edges are exhausted, stop.

Interestingly, this process leads to an unbiased definition of segments, in the
sense that the actual direction of the search scheme (left-to-right or vice-versa) is
immaterial, since, in either case, the same segments will be eventually determined.
In addition, each segment contains, by construction, information pertaining to only
one element from each of the contacting bodies. This simplifies programming sub-
stantially.

In order to compute the surface integrals obtained by invoking stationarity of
the discrete counterpart of (2.4), a precise definition of the finite element approxi-
mation of C is required. The boundary of either one of the contacting bodies (or
even a linear interpolation between their surfaces) can be used for this purpose.
Therefore, we define C;, such that

where N is the total number of segments accepted according to the previously
described strategy. Our computational experience suggests that, given the segments,
the specific choice of contact surface does not substantially affect the numerical
results. For convenience, we identify C, with one of the surfaces, so that the local
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coordinate system used for each segment coincides with an appropriate element
natural coordinate system. Therefore, we obtain a unique set of segmental end
points P and segments dC} determined by P.

For each segment, necessary information is retained for later use in computing
the finite element matrices. This includes values of the local coordinate for the seg-
mental end points and integration points, as well as cartesian coordinates of the nor-
mals to the segmental surface at the above points.

Finally, for consistency with the finite element fields to be specified, a unique
normal to the contact boundary must be determined at each of the outer two nodes
of the elements participating in the contact calculations. This is because finite ele-
ments guarantee only C 0 continuity of the displacements at these nodes, as illus-
trated in Fig. 3.3 . A unique normal can be computed by averaging the normals
obtained at a shared node between two adjacent element edges.

4.2 Contactlrelease condition

Contact/release conditions are monitored for each contact segment at every
iteration (i+ 1) within a global step of the solution as follows;

Box 2 : Contact/release conditions

At local iteration (i+1)

Loop over integration points

compute trial penetration g(i)
g =0 - g = @
ifg®>0 - g=0

End loop

Note that contact/release checks are conducted at every integration point
separately, i.e. partial contact within a single segment is permissible. This is a desir-
able feature, since it allows the decision of contact/release to be made at discrete
points rather than at the segmental level.

Remark

e Element local coordinate systems are used in computing projections of nodes to
element edges, as well as in deciding for the acceptance/rejection of potential
segments according to Fig. 3.2 .



4. The discrete problem

The proposed finite element approximation of contact boundary value problems
is based on the functional in (2.4). The sequence of steps to be followed in the pro-
posed formulation begins with the solution of (2.5) for g in terms of the displace-
ments of the two bodies. Subsequently, extremization of (2.4) with respect to the
same displacements gives rise to a system of (generally non-linear) equations with
ul,u? as the only unknowns to be determined. Finally, variationally consistent
pressures are recovered from (2.6).

We define finite element subspaces V;,, P, and G, for the independent fields
that appear in the variational statement as follows;

V, = Vixv2 ; Vf= {v € PE(B*) |v(x)=10 , xéaBu} , k=12 ,

e et =0)
and

Gh={g EP&(Ch)IgSO},

where P/ denotes a polynomial of degree n with derivatives up to order k. Note that
all three fields are piecewise quadratic. Moreover, displacements and penetration are
continuous in a natural coordinate system along the contact boundary C,, while
pressure is allowed to be discontinuous. The constraint equations (2.5) and (2.6)
will be satisfied for each contact segment separately.

We now introduce a restriction G, to G, by collocating g and h at the seg-
mental end points,

Gy = {g €P§(Cy) g =0, 8="h(xv), xéP} :
where
T
v=| e
In addition to the above finite element approximation, equations (2.5) and (2.6) will

be satisfied by way of a reduced integration scheme, and, particularly, Simpson’s
rule. Therefore, from (2.5) it is deduced that for each segment
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g = BEE-Dh + BEE+DR, + (1-E)hc (4.1)
where £ is a local natural coordinate system defined in the previous section and #,
h, and h, are the ordinates of the displacement-based penetration h at the left, right
and center of the segment, respectively.

Furthermore, equation (2.6) will be satisfied exactly under the assumption that

p = WE(E-1p, + YE(E+Dp, + (1-Epc (4.2)
where, again, p,, p, and p, denote the pressures at the left, right and center of the
segment, respectively. Finally, variation of the functional in (2.4) with respect to v

yields a residual R due to the total potential energy of the two bodies together with a
contact residual R, given by

R, bv = [pdh dl , (4.3)
C

A contact stiffness K, is computed from (4.3) by means of linearization of R.. The
non-linear problem takes the form

u(i+1) = u(i) + Au(i) R

where Au(?) is computed from
SED + KOy au® = RO + R (4.4)

and is solved incrementally by a full Newton scheme. In (4.4) K results from the
linearization of R() with respect to v and the summation symbol is understood in
the sense of the direct stiffness method. Simpson’s rule is used for the integration of
all contact element matrices.

For the special case of the Signiorini problem, a similar approximation has been
proposed in [13].
Remarks
e An important feature of the above solution strategy is that all contact calcula-

tions can be conducted at the local segmental level, therefore substructuring or
other computationally expensive global procedures along the slideline are not

necessary.
® From (2.6) it follows that
P = €8

pointwise. The variable that enters the formulation as a Lagrange multiplier is
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the assumed penetration g, rather than the pressure p. Continuity of g isa
highly desirable property, because together with the definition of the contact
segments guarantees that the total number of constraints involved in the satis-
faction of the non-penetration condition never exceeds the number of available
displacement equations. The above statement is valid even if one of the two
contacting bodies is rigid (i.e., it possesses no active degrees of freedom). In
that sense, the algorithm passes the mixed patch test proposed in [14]. At this
point, a crucial distinction has to be made between mechanical contact and
other frequently encountered constrained problems, such as incompressibility.
Contact imposes constraints on a part of the boundary displacement unknown
before the solution, while incompressibility and all the other constitutive con-
straints pose restrictions to the deformation that hold ab initio throughout the
body. Application of the mixed patch test to contact problems presupposes that
the contacting surfaces are known in advance and this, of course, is not, in gen-
eral, true.

e In the case where actual pressure distribution must be discontinuous (e.g. con-
tact of a body composed of two different materials with a rigid surface), the
computed pressure will be also discontinuous, since the penalty parameter e will
account for the change in the material properties.

e Classical nodal contact can be easily recovered from the functional in (2.4) and
the previously assumed fields by simply redefining the gap g according to

g = 2815("1) ’

where 8(-) denotes the Dirac delta function and x; are the nodal coordinates
along the contact slideline. The one-pass (resp. two-pass) algorithm is obtained
by considering the nodes of one (resp. both) bodies in the definition of x;.

5. Numerical simulations

A series of numerical simulations have been performed to evaluate the robust-
ness, accuracy and applicability of the proposed formulation. Computations have
been performed within the environment of the Finite Element Analysis Program
(FEAP), see Chap. 15 of [15].
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5.1 A patch test

A flexible punch comes in contact with a deformable foundation as in Fig.
5.1.1 . Uniform loading q=1.0 is applied on the free upper surface of both the
punch and the foundation. Plane strain conditions and linear elasticity are assumed.
The elastic constants in the computations are

Epun = Eppun = 10° Voun = Vjoun = 0.3

and the penalty parameter is set to € = 108. This problem tests the capability of the
formulation to allow transmission of constant pressure through the contact surface.
The patch test is passed for the symmetric, unsymmetric and distorted meshes of
Fig. 5.1.2.

5.2 Rigid punch on an elastic foundation

A rigid punch is indented into an elastic foundation in plane strain by means of
a forced vertical displacement v=0.05, see Fig. 5.2.1 . Meshes used are shown in
Fig. 5.2.2 . This problem has a closed form solution for the case of a semi-infinite
elastic domain, see, e.g., [2]. Note that the pressure field derived from the elasticity
solution is singular at the end points of the punch.

The elastic parameters used in the computations are
Efoun = 100 o Vfoun =023

and the penalty parameter is € = 108. Pressures computed by the finite element
approximations are plotted in Fig. 5.2.3 . Due to the finite discretization of the
semi-infinite domain and the point singularity exhibited by the exact pressure field,
the variationally consistent pressure is expected to converge slowly and non-
uniformly. However, with mesh refinement we obtain fairly smooth pressures within
the contact region, and also, as expected, steeper pressure gradients near the singu-
larity.

Figure 5.2.4 underlines the importance and sensitivity of meshing in tackling
singular problems as the one at hand. In MC2 the corner nodes of the punch contact
a generic point of the foundation, while in MC3 they meet a nodal point. Clearly,
MC3 produces a much smoother pressure field than MC2. Finally, the deformed
shape for mesh MCA4 is illustrated in Fig. 5.2.5 .

5.3 Elastic punch on elasto-plastic foundation

The elastic punch of problem 5.1 bearing a uniform load on its top, comes in
contact with an elastoplastic foundation, see Fig. 5.3.1 . Plane strain conditions are
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enforced along with J, constitutive assumption with linear isotropic hardening for
the foundation. Furthermore, both bodies are assumed nearly incompressible, so that
a B-bar formulation is employed to bypass volumetric locking. The material con-
stants are for the foundation

Epun =10° | v, =049 , o,=5,

and the coefficient of hardening is H = 50. For the punch we use

E,, =10* , v, =0.499.

The penalty parameter is taken to be e = 107.

The mesh used in the analysis and the final deformation of the two bodies are
displayed in Fig. 5.3.2 and Fig. 5.3.3, respectively, while the areas of yielding for
several steps during the analysis are presented in Fig. 5.3.4 .

5.4 Cylinder on rigid foundation

A long cylinder is pressed against a rigid foundation, as in Fig. 5.4.1 . This is
a classical problem for which there exists an approximate theoretical solution for the
pressure distribution due to Hertz, see e.g. [1]. One quarter of the mesh is discre-
tized and subjected to a uniform load, as shown in Fig. 5.4.2 . Plane strain condi-
tions are maintained and the material constants used are

Ey =500 , v =03

with a penalty parameter of € = 10°. Despite the coarseness of the mesh, the pres-
sure distribution and the length of contact are in good agreement with the theoretical
results, as demonstrated in Fig. 5.4.3 . Furthermore, the deformed shape of the
cylinder corresponding to the final loading step is given in Fig. 5.4.4 .

5.5 Ring on elastic foundation

A cylindrical ring shown in Fig. 5.5.1 is squeezed between two elastic sheets in
plain strain. Due to symmetry, one quarter of the mesh is discretized and a uniform
displacement v is applied on the horizontal symmetry line of the ring, see Fig. 5.5.2.
In this problem we test the behavior of the algorithm in the presence of large defor-
mations. The material is assumed elastic compressible Neo-Hookean with properties

E. =10 , E, . =10° , v

ring sheet = Vsheet = 0.3.

ring
Pressure distributions, Fig. 5.5.3, and corresponding deformed bodies, Fig. 5.5.4,
are reported.
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Remarks

e For all plots of pressure fields above, we report the computed pressures at the
integration points only. However, it is understood from (4.2) that the pressure
varies quadratically within each segment.

® The finite element approximations obtained for the above problems are in gen-
eral satisfactory. The formulation allows for the use of fairly high penalty
parameters (e = 102E to 10°E, where E is an average value of Young’s
modulus for the deformable bodies in contact) without a significant reduction in
the convergence rate. However, in order to speed up convergence, it is at times

necessary to progressively increase the penalty parameter from € = E up to its
final value.

Conclusion

A finite element formulation for the solution of frictionless contact problems
involving arbitrary motions of the contacting bodies is presented. The formulation
consists of a geometrically consistent and directionally unbiased scheme for determi-
nation of the potential contact segments and a mixed penalty interpolation involving
displacements, pressures and gaps along the contact slideline. Reduced integration is
employed for the contact matrices in order to achieve stable and converging approxi-
mations. Numerical experimentation indicates that the above desirable properties are
attained.
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Fig. 2.1 Two-body contact problem



Fig. 3.1 Projection of element edge onto opposite body
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Fig. 3.2 Segmental acceptance/rejection
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Fig. 3.3 Uniqueness problem for normal to the contact boundary
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Fig. 5.1.2 Meshes and deformed shapes for patch test
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Fig. 5.2.2 Rigid punch on elastic foundation; discretizations
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scale 1:40

Fig. 5.2.5 Rigid punch on elastic foundation;
deformed shape (mesh MC4)
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Fig. 5.3.1 Elastic punch on elasto-plastic foundation



Fig. 5.3.2 Elastic punch on elasto-plastic foundation; discretization
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Fig. 5.3.3 Elastic punch on elasto-plastic foundation;
deformed shape (q=25)



Fig. 5.3.4 Elastic punch on elasto-plastic foundation;
evolution of plastic deformation
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Fig. 5.4.1 Cylinder on rigid foundation



Fig. 5.4.2 Cylinder on rigid foundation; discretization
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scale 1:1

Fig. 5.4.4 Cylinder on rigid foundation; deformed shape (F=100)
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Fig. 5.5.2 Ring on elastic foundation; discretization
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Fig. 5.5.4 Ring on elastic foundation; deformed shapes





