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ABSTRACT OF THE DISSERTATION

Gene-based Dominance and Stabilizing Selection on Human Complex Traits
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Associate Professor Kevin R. Thornton, Chair

Most physical traits of agricultural and medical importance are complex, meaning that they

are determined by multiple genetic and environmental factors. For decades it has a been a

major goal in biology to be able to understand and predict complex phenotypes based on an

individuals genomic sequence. Modern genotyping technologies have enabled the collection of

massive samples of paired genotype-phenotype data. Despite this deluge of data, the genetic

basis of complex traits remains unclear. Here I attempt to address this problem through a

detailed simulation study based on explicit population genetic models for the maintenance

of heritable phenotypic variation for a complex disease trait. The main conclusion of this

study is that gene-based recessivity, under which compound heterozygotes can have excess

disease risk, should be a leading candidate to explain some otherwise perplexing statistical

properties of complex diseases. I complement this simulation study with an implementation

of a statistical method found to be more powerful under a gene-based recessive genetic ar-

chitecture. I then further support the assumed fitness model utilized in the simulation study

through an empirical analysis of selection in a contemporary human population. Through

studying the relationships between phenotypes and lifetime reproductive success, I showed

that weak stabilizing selection is common on human traits and that many traits of clinical

significance are under directional selection.
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Chapter 1

Introduction

1.1 Chapter description

Introduction

1.2 The genetic architecture of human complex traits

and disease

Natural phenotypic variation amongst individuals of a species is both striking and ubiquitous.

Darwin showed us that these patterns of variation could be explained by the process of

natural selection acting on stochastically generated biological variations. Mendel elucidated

the beautiful laws of genetic inheritance through the study of simple traits in peas. Yet not

all variation is genetic and very few traits of practical importance in medicine or agriculture

follow the simple patterns found in Mendel’s peas. Rather, as Fisher and Wright initially

stated, most traits of practical importance follow complex patterns of inheritance and are

1



likely determined by several genetic and environmental factors[63, 257, 261, 260, 259]. So to

what extent is this natural variation attributable to genetic causes? And what can we say

about the specific nature of those genetic causes? These are the fundamental questions that

motivate the study of quantitative genetics[60, 146].

After the sequencing of the human genome[128, 243] it became a major goal in biology find

the genetic variants underlying common complex diseases. In an influential study, Risch

and Merikangas suggested that genome wide association studies (GWAS) amongst unre-

lated individuals would be the best way to uncover the genetic basis of complex disease[201].

Specifically, they proposed the collection of a few thousand disease cases and healthy controls,

and genotyping them at known common genetic markers. With enough markers throughout

the genome it might be possible to tag disease risk alleles through linkage. This approach

differed considerable from the previous paradigm in statistical genetics which involved the

collection of closely related family members[129, 127]. The GWAS approach would enable

easy collection of large study samples. And Risch and Merikangas further argued that vari-

ants effecting common disease were likely to be at intermediate frequency in the population

and of smaller effect; GWAS is well suited to deal with genetic architectures of this sort.

With the goal of enabling GWAS[202], major consortium including the International HapMap

project[76, 99] and the 1000 Genomes project[159] began to catalog common natural genetic

variation in humans. The success of these population sequencing projects meant that geno-

typing population samples at known common variants became feasible. For the first time

it would be possible to perform a GWAS along the lines of that proposed by Risch and

Merikangas.

The Wellcome Trust Case Control Consortium (WTCCC) was the first to publish a ground

breaking GWAS, which used thousands of cases and controls for each of seven common

disorders and genotyping micro-arrays with around 500,000 common genetic variants[252].

The WTCCC results were generally striking for two reasons. Firstly, genome-wide inflations
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of the association test statistics were observed for all seven diseases. Specifically the median

of test statistics were far higher than expected under the null hypothesis of no association

between genotype and phenotype. This was partially attributed to population structure, but

that alone could not explain the extent of genome-wide inflation[197, 152, 268]. Secondly,

in contrast to the inflation of the median test statistic, there were very few genome-wide

significant associations. And those genome-wide significant associated variants explained

very little genetic variance for disease risk. The field continued to publish GWAS for hundreds

of diseases and established thousands of replicated associations[253]. Yet the fraction of

genetic variance explained by disease associated variants remained extremely small[151];

this gap between explained variance and known heritability was aptly named the missing

heritability problem.

Many hypotheses were proposed to explain why large GWAS failed to fully elucidate the

genetic basis of disease risk[151]. An important class of hypotheses focused on the distri-

bution of risk allele frequencies and their statistical effect sizes, i.e. the population genetic

architecture of complex disease. A particularly spirited debate ensued surrounding whether

common or rare variants were most relevant to complex disease risk[211, 77]. There was a

popular belief that common large effect variants were likely to explain a large portion of

the genetic variance underlying common diseases[198], the common disease common variant

hypothesis(CDCV). The CDCV hypothesis specifically predicts that there are a few major

important common variants. This stands in contrast to the infinitesimal model[64, 246],

under which disease risk is determined by a very large number of causal variants each with

extremely small effect sizes[246]. The CDVC hypothesis and the infinitesimal model dif-

fer quite substantially in their predictions on the power of GWAS as a function of sample

size. In particular, the infinitesimal model requires that GWAS be performed with ex-

tremely large samples sizes to obtain statistically significant associations at single genetic

variants[221]. While both hypothesis posit the importance of common genetic variation,

the CDCV hypothesis has been largely discredited strictly on the basis of first-generation

3



GWAS results[151, 77]. However, the virtues of the infinitesimal model have been expounded

from theoretical[10] and biological[19] perspectives and it remains firmly in contention as an

explanation for the missing heritability problem.

A third, population genetics based hypothesis supposes that rare alleles of large effect

(RALE) could drive the heritability of complex disease and produce associations in a com-

mon variant GWAS[39, 48]. The arguments in favor of the RALE hypothesis were predicated

on arguments first put forward by Pritchard[187] prior to the publication of any large GWAS.

Pritchard argued that if disease risk alleles were under negative selection, which might be a

reasonable assumption for many diseases, then they would likely be rare in the population.

A second line of argument in favor of the RALE hypothesis is based on the concept of allelic

heterogeneity[158]. The allelic heterogeneity argument supposes that the relevant genomic

loci are likely to harbor a variety of possible causal sites. This implies that any particu-

lar individual with elevated disease risk could have any one of a large number of possible

multi-variant risk alleles. This model of allelic heterogeneity is supported by observations

from studies of human Mendelian disease[158] and model organisms[115, 32]. However, most

models of RALE predict the appearance of many low-frequency disease associated variants

in a GWAS[255, 77], which has not typically been observed.

In addition to negative selection and allelic heterogeneity, recent human demographic history

may have increased the relevance of rare variants. Early theoretical work used coalescent

theory to characterize the relationship between a deterministically changing population size

and expected genetic variation[81, 81, 206]. This theoretical work was quickly followed by

the development of statistical methods for differentiating population expansion and neutral

evolution[72, 14, 5], as well as for the inference of demographic history[83, 136]. Empirical

study of human genomic data from European populations has revealed evidence consistent

with a bottleneck corresponding to the Out-of-Africa(OOA) event and a recent exponential

population expansion[196, 80, 229]. Evidence of an excess of rare variants in humans is
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strongly supported by population genomic data[42, 109, 73, 75].

Yet the question of whether this excess of rare variants corresponds to a increased contribu-

tion of RALE to heritability of complex traits and disease remains an open question. Several

authors have tried to address the relationship between human demography and the genetic

basis of complex traits[74, 217, 141, 278, 242, 209, 8]. These studies showed that it is possible

for the recent population expansion to have increased the role of rare variants in complex

disease risk. However, no strong empirical conclusion has been reached to date because the

predictions from theoretical models are very sensitive to modeling assumptions. Importantly,

there is a balance between the effects of the OOA bottleneck[217, 141], the dominance of

risk alleles[8, 209] and intensity of selection[278, 242].

Did the failure of the first generation of GWAS to elucidate the genetic basis of complex

disease[151] have a silver lining? The development of theoretical models of complex disease

might be viewed in that light. Prior to the WTCCC studies, attempts at modeling complex

disease were fairly rudimentary[201, 198, 187]. After the missing heritability problem was

posed[151] there were a wide range of attempts to model the genetic architecture of complex

traits with both analytical[59] and computational approaches.

There is considerable diversity amongst the computational approaches. Some early work

modeled risk allele frequencies as independent random variables and related those allele fre-

quencies to power of GWAS[135, 147, 12]. Another class of simulation based approaches

chose to generate individual level genetic data from a coalescent model and apply trait ef-

fects in a post-hoc manor[48, 145, 262]. Others chose to perform forward-in-time simulations

so that genetic variation can be sampled from populations evolving under mutation-selection

balance. A major benefit of forward simulation is the ability to simulate selection on vari-

ants arising in a large recombining region; in contrast, coalescent methods are incapable

of simulating multiple linked selected variants. One popular way to perform forward sim-

ulations is to draw the fitness effects of risk alleles from a empirically motivated distribu-
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tion and then leverage explicit models of the relationship between fitness effects and trait

effects[114, 183, 21, 1, 217, 141, 278, 240, 173, 31, 242]. Another way to do forward sim-

ulation relies on drawing trait effects from empirically motivated distributions and making

explicit assumptions about how selection acts directly of traits[232, 209].

Despite considerable effort to model complex diseases for the purposes of understanding

their genetic architecture, no clear picture has emerged regarding best practices and what

models are most consistent with empirical data. The only real agreement is that any such

model should be based on evolutionary principles. And it is this fundamental supposition

that motivates the studies presented later in this document. Given the centrality of the

evolutionary process in understanding the genetic architecture of human complex disease,

it is important to take a step back and consider the literature on how genetic variation for

complex traits is generally maintained in populations.

1.3 The maintenance of heritability in populations

Those familiar with population genetics are aware of one of the most longstanding questions

referred to as Lewontin’s paradox of variation. It asks why should there be so much genetic

variation when simple models of selection predict there to be much less[134]? An analogous,

but not identical, question exists in quantitative genetics which is why are quantitative traits

heritable despite being apparently subjected to strong stabilizing selection[64, 203, 237]?

The paradox of quantitative genetic variation can be more generally stated as a question

regarding what evolutionary forces maintain heritable variation in populations. The most

simple, and thus popular, class of models for the maintenance of heritability focus on the

potential balance between mutation, recombination and stabilizing selection[28].

It is helpful to lay out the central mathematical model of a phenotype in quantitative genetics
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before delving into how phenotypes evolve. The simplest model says that individuals in a

population have phenotypes which are composed of independent genetic and environmental

effects, which combine additively.

P = G+ E

The environmental component is typically treated as a normal random variable.

E ∼ N(0, σ2
e)

The genetic component, G, is the genotype to phenotype map and it maps a discrete genome-

wide genotype to a real valued number. Under this model the total phenotypic variance, σ2
p,

can be decomposed into the sum of genetic variance, σ2
g , and environmental variance, σ2

e .

σ2
p = σ2

g + σ2
e

The genetic variance can be further decomposed into additive and non-additive components

following the same principles that underlie the statistical analysis of variance (ANOVA)

[60, 146]. For example, if a trait is determined by loci with some degree of dominance or

recessivity then Fisher[63] showed that the genetic variance is separable into additive, σ2
a,

and dominance, σ2
d, components .

σ2
p = σ2

a + σ2
d + σ2

e

Another important concept in the study of genetic variance is heritability, which can be

defined in a broad and narrow sense. Broad sense heritability, H2, is the percent of total

variance which is due to genetic variation, while heritability in the narrow sense, h2, only

considers the additive genetic variance. Heritability is a linear function of genetic variance

and can also be decomposed into additive, dominance and interaction components. Although
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the latter is rarely useful.

H2 =
σ2
g

σ2
p

h2 =
σ2
a

σ2
p

δ2 =
σ2
d

σ2
p

Fisher[63] and Wright[256, 261, 260, 259, 258] also pointed out that the contribution of

non-additive genetic effects such as dominance and epistasis to total genetic variance would

depend variant frequencies. Under a neutral site-frequency spectrum, non-additive functional

effects would typically contribute to additive genetic variance[44, 93]. This implies that one

can not determine the genotype to phenotype map based on estimates of genetic variance

components. But, variance components can still be very informative when combined with

other forms of statistical genetic information.

With these basic concepts at hand, we can turn to the question of how heritability is main-

tained. Fisher was the first to point out that stabilizing selection for an intermediate op-

timum should reduce genetic variance and thus proposed that fitness related traits should

have low heritabilities[64]. Empirically, traits with strong correlation to fitness do have

slightly lower heritability then traits uncorrelated to fitness[95]. Yet, when fitness traits

are scaled appropriately it has been shown that the reduced heritability is primarily due to

relatively large environmental variance rather then an absence of genetic variance[95]. Fur-

ther, empirical evidence for the prevalence of stabilizing selection has been observed in many

species[103, 117]. These two observations motivate the study of a possible balance between

mutation and stabilizing selection.

Haldane first proposed using a Gaussian function as a mathematical model for a stabilizing

selection fitness function[85]. Soon after Haldane’s work, several authors pursued math-

ematical analysis of polygenic traits evolving under Haldane’s fitness function subject to
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mutation at many biallelic loci[130, 25, 26] or at a few loci each with an infinite number of

alleles[43, 112, 125, 237]. The two most influential analyses of mutation-stabilizing selection

balance come from Lande[125] and Turelli[237], who explored equilibrium approximations

to the continuum of alleles model[43, 112], introduced first for a single locus by Crow and

Kimura [43, 112], in the small and large mutation effect size limits respectively.

These standard mutation-stabilizing selection models typically assume an additive genetic

model, under which an individuals genetic value is a simple sum of the effects of its con-

stituent alleles.

G =
n∑
i=1

(xi + x′i)

The allelic effect values are determined by a random-walk mutation model. The random-

walk mutation model assumes that when a mutation occurs on an allele with value x, the

allele will take on a new effect value of x + ξ. On a more fine-grained level, this type of

mutational model corresponds to assuming that when mutations occur at a locus they do not

erase the presence of prior mutations, but instead could be considered as new variable sites.

The effects of the mutant alleles at new variable sites is determined by the distribution of ξ.

The distribution of mutational effect sizes, pξ(ξ), can be treated as a Gaussian distribution,

exponential or gamma distribution. The variance of the distribution of mutations effect

sizes is often written as γ2 and tends to play a pivotal role determining the properties of

mutation-stabilizing selection balance models.

As previously mentioned, in the standard stabilizing selection model a Gaussian function

is used[85]. Under this model fitness will decrease quadratically upon phenotypic deviation

from the optimum Po. The inverse selection intensity,Vs, is the critical parameter of this

Gaussian fitness function.

WP (P ) = e−
(P−Po)2

2∗Vs

Whenever Vs is a positive value then this Gaussian fitness function results in what is called
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Gaussian stabilizing selection. If Vs takes on negative value then this model results in

disruptive selection. Empirically, stabilizing selection has been shown to be more common

in many species, but disruptive selection is not entirely rare[117]. The models of phenotype,

mutation process, recombination and selection can be combined to form a cohesive theory of

how polygenic quantitative traits might evolve within a population[28]. Therefore this body

of mathematical theory can provide a powerful platform for understanding empirical data

relating to the genetic architecture of complex traits.

1.4 The following documents

The goal of my graduate research was to make a contribution to how we understand the

genetic architecture of complex traits in humans. I tried to combine theoretical, computa-

tional and empirical approaches to simultaneously interpret the empirical data in light of

theory and inform the theory in light of the data. The following documents discuss my con-

tributions to the study of genetic architecture of complex traits in significant detail. Three

of my research chapters have been published in peer-reviewed journals. All of this work was

completed during my time as a graduate student at the University of California, Irvine.

In chapter 2, I explore the effects of recent human population expansion and the genotype-

phenotype map on the statistical properties of quantitative genetic variation. As mentioned

earlier, forward in time evolutionary simulation has become the standard approach to gen-

erating samples of genetic variation for testing hypothesis regarding the genetic architec-

ture of complex traits and disease. Using the fwdpp template library, developed by Kevin

Thornton[231], I simulated a 100 kilobase region of the human genome evolving in a large

population subject to mutations that affect a quantitative trait subject to Gaussian stabiliz-

ing selection. I utilize three different demographic models: a constant population size, recent

exponential growth and a model inferred directly from human genomic data[229]. With this
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I showed, in agreement with previous literature, that RALE can be critical to the genetic ar-

chitecture of a complex trait when the population has recently expanded. Further, I explored

the effect of dominance in the genotype-phenotype map. I explored two different concep-

tions of how dominance presents itself with respect to the function of a genetic element.

One concept of dominance treats it as a property of the function of a gene[232], implying

that the haplotype upon which a mutation arises is relevant for determining its effect, and

the other concept treats dominance as a property of the mutation itself. Through several

comparisons of these two models of dominance and a purely additive model with empirical

results from human statistical genetics, including variance component analyses and GWAS,

I showed that the gene-based conception of dominance is much more realistic. Importantly,

under gene-based dominance, population expansion and stabilizing selection I showed that

rare variants can be important without creating a statistical excess of low-frequency disease

associated markers.

In addition to the contribution regarding interpretation of recent data from statistical ge-

netics, chapter 2 also explores the statistical power of several genetic association methods.

As was found in Thornton, et al 2013[232], the Excess of Significant Markers (ESM) test

showed more power than standard methods[169, 131]. Chapter 3 showcases an efficient im-

plementation and empirical validation of the ESM test. I implemented the ESM test as a

C++ command-line tool and packaged it into a robust computational pipeline. The test

was empirically validated on the WTCCC dataset within which associations were discovered

that were only previously discovered in much larger datasets.

Throughout the simulation work in chapter 2, I used values for intensity of selection, Vs,

based on assumptions from observations in model organisms and natural populations of

non-human species[103, 117]. Specifically, I had assumed that selection on common complex

human disease traits was not very strong compared to that found on traits of obvious eco-

logical relevance in natural populations, as is typically studied in the literature. This was
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a valid approach, but given the scale of human genetic datasets being collected it became

a apparent that we could do better[222]. Thus chapter 4 provides an empirical analysis of

contemporary selection in humans. Using data from the UK Biobank[228] I estimate the

the strength of stabilizing selection, Vs, in a wide range of human traits. Through a series

of phenotypic regressions, based on the work of Lande and Arnold[126], I observed wide-

spread stabilizing selection that was much weaker than that found in natural populations of

non-human species[103, 117]. These observations largely validate the assumptions used in

chapter 2 and further bolster the conclusions found therein. Further, through analyses of

genetic data, I observed directional selection on several interesting biometric and life-history

traits.

Finally, chapter 5 presents a simulation study of methods to estimate the number of alleles

at a causal locus. At the core of the RALE hypothesis is the suggestion that causal loci

will harbor many different causal variants. Each haplotype with a unique causal variant

has the potential to be a different functional allele. Recently, empirical evidence has been

presented in Drosophila melanogaster that supports the presence of multiple functional alleles

at expression QTL[115]. Therefore, in chapter 5 I explore statistical approaches[18, 110] to

estimating the number of functional alleles at a QTL under several mapping panel designs

All together, my contributions have deepened the specificity with which the genetic architec-

tures of human complex traits are studied from evolutionary perspectives. I have explored the

effect genotype-phenotype map theoretically and empirically estimated key fitness function

parameters. I carried these insights through to characterize how evolutionary parameters

affect important statistical properties of GWAS. The future of this field lies in continuing

along the path set out here. We need to understand how all the aspects of our model relate

the observed data and eventually build inferential frameworks that tie together theory and

experiment.
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Chapter 2

A model of compound heterozygous,

loss-of-function alleles is broadly

consistent with observations from

complex-disease GWAS datasets

2.1 Article

A model of compound heterozygous, loss-of-function alleles is broadly consistent with obser-

vations from complex-disease GWAS datasets

Jaleal S. Sanjak, Anthony D. Long, Kevin R. Thornton

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697

Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697,

USA
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2.2 Preface

This chapter was originally published in PLoS Genetics under the title “A model of com-

pound heterozygous, loss-of-function alleles is broadly consistent with observations from

complex-disease GWAS datasets” [209]. It is reprinted here in its original form. The sim-

ulation machinery used to generate the dataset was written by Kevin Thornton with input

from myself. I performed the bulk of the simulations, the statistical analysis of the dataset,

drew the primary conclusions, and wrote the text of the paper.

2.3 Abstract

The genetic component of complex disease risk in humans remains largely unexplained. A

corollary is that the allelic spectrum of genetic variants contributing to complex disease risk

is unknown. Theoretical models that relate population genetic processes to the maintenance

of genetic variation for quantitative traits may suggest profitable avenues for future experi-

mental design. Here we use forward simulation to model a genomic region evolving under a

balance between recurrent deleterious mutation and Gaussian stabilizing selection. We con-

sider multiple genetic and demographic models, and several different methods for identifying

genomic regions harboring variants associated with complex disease risk. We demonstrate

that the model of gene action, relating genotype to phenotype, has a qualitative effect on

several relevant aspects of the population genetic architecture of a complex trait. In par-

ticular, the genetic model impacts genetic variance component partitioning across the allele
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frequency spectrum and the power of statistical tests. Models with partial recessivity closely

match the minor allele frequency distribution of significant hits from empirical genome-wide

association studies without requiring homozygous effect-sizes to be small. We highlight a

particular gene-based model of incomplete recessivity that is appealing from first principles.

Under that model, deleterious mutations in a genomic region partially fail to complement

one another. This model of gene-based recessivity predicts the empirically observed incon-

sistency between twin and SNP based estimated of dominance heritability. Furthermore,

this model predicts considerable levels of unexplained variance associated with intralocus

epistasis. Our results suggest a need for improved statistical tools for region based genetic

association and heritability estimation.

2.4 Author Summary

Gene action determines how mutations affect phenotype. When placed in an evolutionary

context, the details of the genotype-to-phenotype model can impact the maintenance of

genetic variation for complex traits. Likewise, non-equilibrium demographic history may

affect patterns of genetic variation. Here, we explore the impact of genetic model and

population growth on distribution of genetic variance across the allele frequency spectrum

underlying risk for a complex disease. Using forward-in-time population genetic simulations,

we show that the genetic model has important impacts on the composition of variation

for complex disease risk in a population. We explicitly simulate genome-wide association

studies (GWAS) and perform heritability estimation on population samples. A particular

model of gene-based partial recessivity, based on allelic non-complementation, aligns well

with empirical results. This model is congruent with the dominance variance estimates from

both SNPs and twins, and the minor allele frequency distribution of GWAS hits.
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2.5 Introduction

Risk for complex diseases in humans, such as diabetes and hypertension, is highly heritable

yet the causal DNA sequence variants responsible for that risk remain largely unknown.

Genome-wide association studies (GWAS) have found many genetic markers associated with

disease risk[253]. However, follow-up studies have shown that these markers explain only a

small portion of the total heritability for most traits [151, 244].

There are many hypotheses which attempt to explain the ‘missing heritability’ problem

[151, 244, 77, 205]. Genetic variance due to epistatic or gene-by-environment interactions is

difficult to identify statistically because of, among other reasons, increased multiple hypothe-

sis testing burden [56, 251], and could artificially inflate estimates of broad-sense heritability

[277]. Well-tagged intermediate frequency variants may not reach genome-wide significance

in an association study if they have smaller effect sizes [64, 246]. One appealing verbal hy-

pothesis for this ‘missing heritability’ is that there are rare causal alleles of large effect that

are difficult to detect [158, 39, 77]. These hypotheses are not mutually exclusive, and it is

probable that a combination of models will be needed to explain all heritable disease risk

[245].

The standard GWAS attempts to identify genetic polymorphisms that differ in frequency

between cases and controls. A complementary approach is to estimate the heritability ex-

plained by genotyped (and imputed) markers (SNPs) under different population sampling

schemes [264, 78]. Stratifying markers by minor allele frequency (MAF) prior to performing

SNP-based heritability estimation allows the partitioning of genetic variation across the al-

lele frequency spectrum to be estimated [263], which is an important summary of the genetic

architecture of a complex trait [187, 59, 177, 1, 217, 141, 263, 242]. This approach has in-

ferred a contribution of rare alleles to genetic variance in both human height and body mass

index (BMI) [263], consistent with theoretical work showing that rare alleles will have large
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effect sizes if fitness effects and trait effects are correlated [59, 1, 278, 217, 141, 31, 242]. Yet,

simulations of causal loci harboring multiple rare variants with large additive effects predict

an excess of low-frequency significant markers relative to empirical findings[255, 77].

SNP-based heritability estimates have concluded that there is little missing heritability for

height and BMI, and that the causal loci simply have effect sizes that are too small to reach

genome-wide significance under current GWAS sample sizes[264, 263]. Further, extensions

to these methods decompose genetic variance into additive and dominance components and

find that dominance variance is approximately one fifth of the additive genetic variance

on average across seventy-nine complex traits [275]. When taken into account together

with results from GWAS, these observations can be interpreted as evidence that the genetic

architecture of human traits is best-explained by a model of small additive effects. However,

a recent large twin study found a substantial contribution of dominance variance for fourteen

out of eighteen traits [35]. The reason for this discrepancy in results remains unclear. One

possibility is a statistical artifact; for example, twin studies may be prone to mistakenly infer

non-additive effects when none exist. Another possibility, which we return to later, is that

this apparently contradictory results are expected under a different model of gene action.

The design, analysis, and interpretation of GWAS are heavily influenced by the “standard

model” of quantitative genetics[60]. This model assigns an effect size to a mutant allele,

but formally makes no concrete statement regarding the molecular nature of the allele.

Early applications of this model to the problem of human complex traits include Risch’s

work on the power to detect causal mutations [200, 199] and Pritchard’s work showing that

rare alleles under purifying selection may contribute to heritable variation in complex traits

[187]. When applied to molecular data, such as SNP genotypes in a GWAS, these models

treat the SNPs themselves as the loci of interest. For example, influential power studies

informing the design of GWAS assign effect sizes directly to SNPs and assume Risch’s model

of multiplicative epistasis [221]. Similarly, the single-marker logistic regression used as the
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primary analysis of GWAS data typically assumes an additive or recessive model at the level

of individual SNPs [252]. Finally, recent methods designed to estimate the heritability of

a trait explained by genotyped markers assigns additive and dominance effects directly to

SNPs [264, 265, 263, 275]. Naturally, the results of such analyses are interpreted in light of

assumed model of gene action.

A weakness of the multiplicative epistasis model [200, 199] when applied to SNPs is that

the concept of a gene, defined as a physical region where loss-of-function mutations have the

same phenotype [15], is lost. Specifically, under the standard model, the genetic concept

of a failure to complement is a property of SNPs and not “gene regions” (see [232] for a

detailed discussion of this issue). We have recently introduced an alternative model of gene

action, one in which risk mutations are unconditionally deleterious and fail to complement

at the level of a “gene region” [232]. This model, influenced by the standard operational

definition of a gene [15], gives rise to the sort of allelic heterogeneity typically observed for

human Mendelian diseases [225], and to a distribution of GWAS “hit” minor allele frequencies

[255, 77] consistent with empirical results [232]. In this article, we explore this “gene-based”

model under more complex demographic scenarios as well as its properties with respect to

the estimation of variance components using SNP-based approaches [265] and twin studies.

We also compare this model to the standard models of strictly additive co-dominant effects,

and multiplicative epistasis with dominance.

We further explore the power of several association tests to detect a causal gene region under

each genetic and demographic model. We find significant heterogeneity in the performance

of burden tests [169, 262, 232] across models of the trait and demographic history. We

find that population expansion reduces the power to detect causal gene-regions due to an

increase in rare variation, in agreement with work by [141, 242]. The behavior of the tests

under different models provides us with insight as to the circumstances in which each test is

best suited.
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In total, our results show that modeling gene action is key to modeling GWAS, and thus

plays an important role in both the design and interpretation of such studies. Further, the

model of gene-based recessivity best explains the differences between estimates of additive

and dominance variance components from SNP-based methods [275] and from twin studies

[35] and is consistent with the distribution of frequencies of significant associations in GWAS

[255, 77]. Further, the genetic model plays a much more important role than the demographic

model, which is expected based on previous work on additive models showing that the

genetic load is approximately unaffected by changes in population size over time, [217, 141].

Consistent with recent work by [242], we find that rapid population growth in the recent past

increases the contribution of rare variants to total genetic variance. However, we show here

that different models of gene action are qualitatively different with respect to the partitioning

of genetic variance across the allele frequency spectrum. We also show that these conclusions

hold under the more complex demographic models that have been proposed for human

populations [229, 217].

2.6 Results and Discussion

2.6.1 The Models

As in [232],we simulate a 100 kilobase region of human genome, contributing to a complex

disease phenotype and fitness. The region evolves forward in time subject to neutral and

deleterious mutation, recombination, selection, and drift. To perform genetic association and

heritability estimation studies in silico, we need to impose a trait onto simulated individuals.

In doing so, we introduce strong assumptions about the molecular underpinnings of a trait

and its evolutionary context.

How does the molecular genetic basis of a trait under natural selection influence population
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genetic signatures in the genome? This question is very broad, and therefore it was necessary

to restrict ourselves to a small subset of molecular and evolutionary scenarios. We analyzed

a set of approaches to modeling a single gene region experiencing recurrent unconditionally-

deleterious mutation contributing to a quantitative trait subject to Gaussian stabilizing

selection. The expected fitness effect of a mutation is always deleterious because trait effects

are sampled from an exponential distribution. Therefore, we do not allow for compensatory

mutations that may occur in more general models of stabilizing selection. Specifically, we

studied three different genetic models and two different demographic models, holding the

fitness model as a constant. Parameters are briefly described in Table 2.1.

We implemented three disease-trait models of the phenotypic form P = G + E. G is the

genetic component, and E = N(0, σ2
e) is the environmental noise expressed as a Gaussian

random variable with mean 0 and standard deviation σ2
e . In this context, σ2

e should be

thought of as both the contribution from the environment and from the remaining genetic

variance at loci in linkage equilibrium with the simulated 100kb region. The genetic models

are named the additive co-dominant (AC) model, multiplicative recessive (Mult. recessive;

MR) model and the gene-based recessive (GBR) model. The MR model has a parameter,

h, that controls the degree of recessivity; we call this model the complete MR (cMR) when

h = 0 and the incomplete MR (iMR) when 0 ≤ h ≤ 1. Here, h = 1 corresponds to co-

dominance, which is different from the typical formulation used when modeling the fitness

effects of mutations directly. It is also important to note that here recessivity is being defined

in terms of phenotypic effects; this may be unusual for those more accustomed to dealing

directly with recessivity for fitness effects. An idealized relationship between dominance for

fitness effects and trait effects of a mutation on an unaffected genetic background is shown

in Fig A.15.

The critical conceptual difference between recessive models is whether dominance is a prop-

erty of a locus (nucleotide/SNP) in a gene or the gene overall. Mathematically, this amounts
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to whether one first determines diploid genotypes at sites (and then multiplies across sites to

get a total genetic effect) or calculates a score for each haplotype (the maternal and paternal

alleles). For completely co-dominant models, this distinction is irrelevant, however for a

model with arbitrary dominance one needs to be more specific. As an example, imagine a

compound heterozygote for two biallelic loci, i.e. genotype Ab/aB. In the case of traditional

multiplicative recessivity the compound heterozygote is wild type for both loci and therefore

wild-type over all; this implies that these loci are in different genes (or independent func-

tional units of the same gene) because the mutations are complementary. However, in the

case of gene-based recessivity [232], neither haplotype is wild-type and so the individual is

not wild-type; the failure of mutant alleles to complement defines these loci as being in the

same gene [15].

For a diploid with mi causative mutations on the ith haplotype, we may define the additive

model as

GAC =
2∑
i=1

mi∑
j=1

ci,j, (2.1)

where ci,j is the effect size of the jth mutation on the ith haplotype. Each ci,j is sampled

from an exponential distribution with mean of λ, to reflect unconditionally deleterious mu-

tation. In other words, when a new mutation arises its effect c is drawn from an exponential

distribution, and remains constant throughout it’s entire sojourn in the population.

The GBR model is the geometric mean of the sum of effect sizes on each haplotype [232]. We

sum the causal mutation effects on each allele (paternal and maternal) to obtain a haplotype

score. We then take the square root of the product of the haplotype scores to determine the
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total genetic value of the diploid.

GGBR =

√√√√ m1∑
j=1

c1,j ×
m2∑
j=1

c2,j (2.2)

Finally, the MR model depends on the number of positions for which a diploid is heterozygous

(mAa) or homozygous (maa) for causative mutations,

GMR =

(
mAa∏
j=1

(1 + hcj)

)(
maa∏
j=1

(1 + 2cj)

)
− 1. (2.3)

Thus, h = 0 is a model of multiplicative epistasis with complete recessivity (cMR), and h = 1

closely approximates the additive model when effect sizes are small.

Here, phenotypes are subject to Gaussian stabilizing selection with an optimum at zero

and standard deviation of σs = 1 such that the fitness, w, of a diploid is proportional to a

Gaussian function[28].

w = e
− P2

2σ2s (2.4)

The AC and MR models draw no distinction between a “mutation” and a “gene” (as discussed

in [232]). The GBR is also a recessive model, but recessivity is at the level of a haplotype

(or allele) and is not an inherent property of individual mutations (see [232] for motivation

of this model). Viewed in light of the traditional AC and MR models, the recessivity of a
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site in the GBR model is a function of the local genetic background on which it is found.

Based on several qualitative comparisons we find that the GBR model is approximated by

iMR models with 0.1 ≤ h ≤ 0.25. However, no specific iMR model seems to match well in

all aspects. The demographic models are that of a constant sized population (no growth)

and rapid population expansion (growth).

The use of the MR model is inspired by Risch’s work[200, 199], linking a classic evolution-

ary model of multiple loci interacting multiplicatively[86, 34] to the the genetic epidemi-

ological parameter relative risk. Risch and Merikangas [201] used this model to calculate

the power to detect causal risk variants as a function of their frequency and effect size.

Pritchard extended Risch’s model to consider a trait explicitly as a product of the evolution-

ary process[187]. Pritchard’s work demonstrated that the equilibrium frequency distribution

suggested an important role for rare deleterious mutations when a trait evolves in a con-

stant sized, randomly mating population with recurrent mutation and constant effect sizes.

However, multiplicative epistasis is only one model of gene action. Exploring the effect of dif-

ferent genotype-to-phenotype models on the population and quantitative genetic properites

of complex traits is the focus of the current work.

2.6.2 Additive and dominance genetic variance in the population

The amount of narrow sense heritability, h2 = (VA)/(VP ), explained by variants across the

frequency spectrum is directly related to the effect sizes of those variants [60]. Thus, this

measure is an important predictor of statistical power of GWAS and should inform decisions

about study design and analysis [215]. Empirically, SNP-based estimates of heritability have

inferred negligible dominance variance underlying most quantitative traits [275]. We have

a particular interest in the amount of additive variance, VA, that is due to rare alleles and

how much of genetic variance, VG, is attributable to VA under different recessive models.
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We follow the approach of[217], by calculating the cumulative percent of VG explained by

the additive effects of variants less than or equal to frequency x, (VA;q≤x)/(VG). The product

of this ratio and broad-sense heritability is an estimate of the narrow-sense heritability, h2.

This calculation is a population-wide equivalent to a SNP-based estimate of heritability in

a population sample. In addition we calculate the same distribution for dominance effects

(VD;q≤x)/(VG) using the orthogonal model of [275]. Methods based on summing effect sizes

[60] or the site frequency spectrum [217] would not apply to the GBR model, because the

effect of a variant is not independent of other variants (e.g., there is intralocus epistasis).

Therefore, we resort to a regression-based approach, where we regress the genotypes of the

population onto the total genetic value as defined in our disease trait models (see Material and

Methods). In the limit of Hardy-Weinberg and linkage equilibrium, the regression estimates

are equivalent to standard quantitative genetic estimates [60] (Fig A.14). For consistency, we

applied the regression approach to all models. Overall, these distributions are substantially

different across genetic models, demographic scenarios and model parameters (Fig 2.1).

Under the AC model, all of VG is explained by additive effects if all variants are included

in the calculation; in Fig 2.1 the solid variance curves reach unity in the AC panel. Low

frequency and rare variants (q < 0.01) explain a large portion of narrow sense heritability

(26% - 95%) even in models without rapid population expansion. Further, the variance

explained at any given frequency threshold increases asymptotically to unity as a function of

increasing λ (Fig A.4). While the total heritability of a trait in the population is generally

insensitive to population size changes (Fig A.1, see also [141, 217, 241]), rapid population

growth increases the fraction of additive genetic variation due to rare alleles (Fig 2.1).

Here, increasing λ corresponds to stronger selection against causative mutations, due to their

increased average effect size. Recent work by Zuk et al. [278], takes a similar approach and

relates the allele frequency distribution directly to design of studies for detecting the role of

rare variants. However, our findings contrast with those of Zuk[278] and agree with those of
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Lohmueller [141], in that we predict that population expansion will substantially increase the

heritability, or portion of genetic variance, that is due to rare variants. Our results under the

AC model agree with those of Simons et al. [217], in that we find that increasing strength of

selection, increasing λ in our work, increases the contribution to heritability of rare variants.

However, under the GBR model and the cMR model the distribution of genetic variance

over risk allele frequency as function λ is non-monotonic (Fig 2.1 and Fig A.4).

For all recessive models, we find that total VA is less than VG (Fig 2.1). For the MR models,

all additional genetic variation is explained by the dominance variance component; in Fig

2.1 the dotted variance curves reach unity in the MR panels. As expected, genetic variation

under the MR model with partial recessivity (h = 0.25) is primarily additive [60, 93], whereas

VG under the cMR model (h = 0) is primarily due to dominance. The GBR model shows little

dominance variance and is the only model considered here for which the total VG explained

by VA + VD is less than the true VG for all λ. This can be clearly seen in Fig 2.1 where

the dotted curves do not reach unity in the GBR panel. These observations concerning the

GBR model are consistent with the finding of [275] that dominance effects of SNPs do not

contribute significantly to the heritability for complex traits.

Under the GBR model, large trait values are usually due to compound heterozygote geno-

types (e.g., Ab/aB, where A and B represent different sites in the same gene) [232]. There-

fore, the recessivity is at the level of the gene region while the typical approach to estimating

VA and VD assigns effect sizes and dominance to individual mutations. Thus, compound het-

erozygosity, which is commonly observed for Mendelian diseases (see [232] and references

therein) would be interpreted as variation due to interactions (epistasis) between risk vari-

ants. Importantly, the GBR model assumes that such interactions should be local, occurring

amongst causal mutations in the same locus. While the GBR model is reflective of the orig-

inal definition of a gene in which recessive mutations fail to complement, we emphasize that

this does not imply that mutations are necessarily exomic. The GBR model is of a general
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genomic region in which mutations act locally in cis to disrupt the function of that region

with respect to a phenotype.

The increase in the number of rare alleles due to population growth is a well established

theoretical and empirical result [82, 81, 206, 72, 14, 5, 42, 73, 74, 75, 80, 109, 111, 196]. The

exact relationship between rare alleles[187, 77, 255, 48, 148], and the demographic and/or

selective scenarios from which they arose[198, 217, 141], and the genetic architecture of

common complex diseases in humans is an active area of research. An important parameter

dictating the relationships between demography, natural selection, and complex disease risk

is the degree of correlation between a variant’s effect on disease trait and its effect on fitness

[59, 141, 217, 1]. In our simulations, we do not impose an explicit degree of correlation

between the phenotypic and fitness effects of a variant. Rather, this correlation is context

dependent, varying according to the current genetic burden of the population, the genetic

background in which the variant is present and random environmental noise. However, if we

re-parameterized our model in terms of [59], then we would have τ ≤ 0.5 (Gaussian function

is greater than or equal to its quadratic approximation), which is consistent with recent

attempts at estimating that parameter [1, 150]. Our approach is reflective of weak selection

acting directly on the complex disease phenotype, but the degree to which selection acts on

genotype is an outcome of the model. While the recent demographic history has little effect

on key mean values such as broad-sense heritability of a trait or population genetic burden

(Fig A.1 and Fig A.3), the structure of the individual components in the population which

add up to those mean values varies considerably. The specific predictions with respect to

the composition of the populations varies drastically across different modeling approaches.

It is therefore necessary to carefully consider the structure of a genetic model in a simulation

study.

The conclusions reached here also hold when we consider more complex demographic scenar-

ios relevant to human populations. Under the demographic model for European populations
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from [229], the additive and GBR models show the same behavior as in Fig 2.1 (Fig A.17).

At all key time points where population size changes, VA = VG for the additive model, and

the variance explained by rare mutations depends primarily on λ (Fig A.17). For the GBR

model, VA < VG (as in Fig 2.1), and plateaus at the same ratio VA/VG for all time points

except immediately after the bottleneck, which results in a short-lived increase in VA/VG that

is undetectable by the time growth begins (Fig A.17). All recessive models (GBR, iMR and

cMR) may show a transient increase in total VG after the bottleneck, depending on the value

of λ (A.18). However, the GBR and iMR models with h > 0.25 showed a return to constant

population size levels by the final time point. The changes in VA and VG under recessive

models is likely due to the transfer of non-additive variation into VA during a bottleneck,

which has been studied thoroughly in the theoretical literature[167, 9]. As in Fig 2.1, the

genetic model, and not the demographic details, drive the relationship between mutation

frequency and additive genetic variance. In agreement with existing literature, site based

recessive models show complex dynamics during bottlenecks and population expansion (Fig

A.18 and Fig A.19). However, with respect to load, the GBR model behaves more like a

codominant model and is largely insensitive to changes in population size(Fig A.18 and Fig

A.19). Thus, complex traits evolving under the GBR model are not expected to show large

differences in load between extant human populations.

2.6.3 Estimating additive and dominance variance from popula-

tion samples

The previous section shows that the relationship between genetic variance and allele fre-

quency in the entire population strongly depends on the genetic model. Recent estimates of

variance components from large population samples of unrelated individuals have inferred

that dominance variance (VD) is negligible for most traits [275]. However, a recent study of

more than 104 Swedish twins and 18 traits obtained a contradictory result, inferring signifi-
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cant non-additive variance for most traits, which was interpreted as VD [37]. In this section,

we show that this apparent inconsistency is expected under certain models of gene action.

We applied GREMLd, MAF-stratified GREMLd (MS-GREMLd), and MAF-stratified Haseman-

Elston regression (see Methods for details). We found MS-GREMLd to be numerically un-

stable on our simulated data, and thus we present results for non-MS-stratified GREMLd.

The numerical stability issues likely resulted from some combination of small number of

SNPs per region (O(1000)), low total VG in a region, or high variance in effect sizes across

causal mutations [131]. Further, for large λ, where VG is primarily due to rare alleles (Fig

2.1), heritability in a sample may not reflect heritability in the entire population (Fig A.13).

Fig 2.2 shows the GREMLd additive and dominance heritability estimates, as compared to

the respective population value, over λ. Under the cMR model (h = 0), the dominance

component is much larger than the additive component as predicted from Fig 2.1. When

GREMLd is performed on cMR model data after removing variants with MAF ≤ 0.01, as

done in [275], the total heritability estimate (AD) is quite accurate until λ ≥ 0.25 where a

downward bias is observed. As anticipated, GREMLd using unfiltered data yields results

with a slight upward bias [132]. However, for the iMR (h = 0.25) model the filtered GREMLd

estimates are only accurate for λ < 0.1 reflecting the preponderance of rare causal variants

for larger values of λ. Unfiltered GREMLd estimates under the iMR (h = 0.25) model show

a slight upward bias for small values of λ, but are otherwise accurate. This shows that

GREMLd is performing as expected under the site-based model for which it is designed.

The MS-HE regression results are generally consistent with the GREMLd results.

The GREMLd and MS-HE estimates are accurate under the GBR model when λ is small,

because most heritability is additive in that case(Fig 2.1). However, under the GBR model,

both filtered and unfiltered GREMLd heritability estimates show downward bias when λ is

large (Fig 2.2). The MS-HE regression results reveal a similar pattern, which indicates that

the downward bias for large values of λ is not strictly due to removal of rare variants in the
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filtered GREMLd analysis. Instead, the bias shown for large values of λ is likely due to the

presence of substantial non-additive heritability, which is not captured by the dominance

effects of SNPs.

In contrast to the variance component methods, our simulated large twin studies provide

approximately unbiased estimates of total heritability for large values of λ, but were biased

upward for small effect sizes under the AC and GBR models (Fig 2.2). The variance in

twin-study estimates was quite large, possibly because only a sinlge locus was simulated

rather than the whole genome. Formally, twin studies estimate an additive and a non-

additive component of variance and interpreting the non-additive component as epistatic

or dominance variance is a matter of perspective. However, the GBR model is inspired by

the definition of a gene as a physical region in which recessive mutations leading to the

same phenotypic outcome fail to complement [15], consistent with the allelic heterogeneity

observed for human Mendelian disorders (see [232] for further discussion). Thus, the model

of recessivity at the level of the gene region is picked up as non-additive variance in twin

studies, but missed by variance component methods (GREML and HE regression) because

the dominance in the GBR model is due to Ab/aB (compound heterozygotes) genotypes

rather than a/a genotypes (heterozygotes for a specific loss of function variant) assumed by

variance component methods. Thus the contradictory results of applying variance component

methods [275] and analysis of large twin studies [37] in order to estimate VA and VD may be

interpreted as evidence for a model of gene action such as the GBR, which may be viewed as

either recessivity at the haplotype/gene level or intralocus epistasis at the level of causative

mutations in a single gene region. Both interpretations are valid. The alternative explanation

is that we must assert that one of the study designs is generating artifacts.
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2.6.4 The genetic model affects the outcomes of GWAS

Both demography and the model of gene action affect the degree to which rare variants

contribute to the genetic architecture of a trait (Fig 2.1). However, the different mappings

of genotype to phenotype from model to model make it difficult to predict a priori the

outcomes of GWAS under each model. Therefore, we sought to explicitly examine the

performance of statistical methods for GWAS under each genetic and demographic model.

We assessed the power of a single marker logistic regression to detect the gene region by

calculating the proportion of model replicates in which at least one variant reached genome

wide significance at α ≤ 10−8 (Fig 2.3A). The basic logistic regression is equivalent to testing

for association under the AC model. We simulated both a perfect “genotyping chip” (all

markers with MAF ≥ 0.05) and complete re-sequencing including all markers (Fig 2.3B).

One of the most promiment feature of Fig 2.3 is the curvature of power as a function of λ.

This reflects the competing forces of increasing average genetic effect and decreasing average

allele frequency which occurs as λ increases (Fig A.5). As λ increases, the total genetic

variance explained by the locus increases until the model enters the House-of-cards [237]

regime. At which point, the genetic variance is much less dependent on λ (Fig A.1). When

λ is large, however, the average allele frequency does continue to decrease (Fig A.5) which

drives power down.

Across all genetic models, the single marker logistic regression has less power under pop-

ulation expansion (Fig 2.3A). The loss of power is attributable to a combination of rapid

growth resulting in an excess of rare variants overall [82, 81, 206, 72, 14, 5, 42, 73, 74, 75,

80, 109, 111, 196], and the increasing efficacy of selection against causal variants in growing

populations [217]. While complete resequencing is more powerful than a gene-chip design,

the relative power gained is modest under growth (Fig 2.3A). Region-based rare variant

association tests behave similarly with respect to population growth (Fig 2.3B).
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There are important differences in the behavior of the examined statistical methods across

genetic models. We focus first on the single marker tests (Fig 2.3A). For gene-chip strategies,

power increases for “site-based” models as recessivity of risk variants increases (compare

power for AC, iMR, and cMR models in Fig 2.3B). This increase in power is due to the

well-known fact that recessive risk mutations are shielded from selection when rare (due to

being mostly present as heterozyogtes), thus reaching higher frequencies on average (Fig

A.5), and that the single-marker test is most powerful when risk variants are common [221].

Further, for the complete multiplicative-recessive model (cMR), the majority of VG is due

to common variants (Fig 2.1), explaining why resequencing does not increase power for this

model (Fig 2.3A).

For single-marker tests, the GBR model predicts large gains in power under re-sequencing

for intermediate λ (the mean trait-effect size of newly arising causal mutations), similar to

the AC or iMR model. But, when λ is larger power may actually be less under the GBR

model than under AC or iMR. For all models, causal mutations are more rare with increasing

λ (Fig A.7). However, as a function of frequency, all VG may be attributed to VA or VD in

the site-specific models whereas there is increasing intralocus epistasis in the GBR model as

a function of λ (Fig 2.1). It is well-known that the single marker test has lower power when

causal mutations have low frequencies, are poorly tagged by more common SNPs, or have

small main effects [221, 33].

Region-based rare variant association tests show many of the same patterns across genetic

model and effect size distribution as single marker tests, but there are some interesting

differences. The ESM test[232, 208] is the most powerful method tested for the AC, iMR,

and GBR models (Fig 2.3b), with the c-Alpha test as a close second in some cases. For

those models, the power of naive SKAT, linear kernel SKAT and SKAT-O, is always lower

than the ESM and c-Alpha tests. This is peculiar since the c-Alpha test statistic is the

same as the linear kernel SKAT test. The major difference between SKAT and ESM/c-
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Alpha is in the evaluation of statistical significance. SKAT uses an analytical approach

to determine p-values while the ESM/c-Alpha tests use an explicit permutation approach.

This implies that using permutation based p-values results in greater power. Yet, under the

cMR model the linear kernel SKAT is the most powerful, followed by c-alpha. The cMR

model does not predict a significant burden of rare alleles and so the default beta weights of

SKAT are not appropriate, and the linear kernel is superior. The ESM test does poorly on

this model because there are not many marginally significant low-frequency markers. It is

logical to think that these tests would all perform better if all variants were included. The

massive heterogeneity in the performance of region-based rare variant tests across models

strongly suggests that multiple methods should be used when prior knowledge of underlying

parameters is not available. In agreement with [141, 240], we predict that population growth

reduces the power to associate variants in a causal gene region with disease status (Fig 2.3)

when the disease also impacts evolutionary fitness. We have recently released software to

apply the ESM test to case control data [208] in order to facilitate applying this test to real

data.

2.6.5 The distribution of minor allele frequencies of GWAS hits

It was noted by[255, 77], that an excess of rare significant hits, relative to empirical data,

is predicted by AC models where large effect mutations contribute directly to fitness and

the disease trait. We confirm that AC models are inconsistent with the empirical data (Fig

2.4), except when λ ≤ 0.01. The empirical data in Fig 2.4 represent a pooled data set

with the same diseases and quality filters as in [255], but updated to include more recent

data. The data are described in A.1, and can be visualized alone more clearly in A.16.

Close to half of the data comes from GWAS studies uploaded to the NHGRI database after

2011, yet the same qualitative pattern is observed. This contradicts the hypothesis that the

initial observation of an excess of common significant hits relative to the prediction under
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an AC model was simply due to small sample sizes and low marker density in early GWAS

previously analyzed in [77, 255]. Yet the initial observation is in fact robust and the meta-

pattern provides an appropriate point of comparison when considering the compatibility of

explicit population-genetic models with existing GWAS data.

The GBR model predicts few rare significant hits and an approximately uniform distribution

across the remainder of MAF domain (Fig 2.4), even for intermediate and large values of λ.

For smaller values of λ, the GBR predicts an excess of common significant hits. The more

uniform distribution of significant single markers seen under the GBR is consistent with the

flatter distribution of genetic variance (Fig 2.1). If one considers trying to determine an

approximate dominance coefficient in the GBR model, it would be found that there is a

distribution of coefficients across sites. Yet, when simulating iMR model, we find that an

intermediate degree of dominance, h = 0.25, results in distribution of significant hits which

is similar to the GBR results (Fig 2.4).

Most of the models fail a KS test comparing the simulated and empirical distribution of sig-

nificant hits(A.21).The cMR (h = 0) model shows a visual excess of intermediate frequency

variants(Fig 2.4), but this does not result in rejection under the KS test (A.21) which is

largely insensitive to deviations in the tails. According to the KS test, the remaining mod-

els(AC, GBR, iMR) perform best when there are fewer data points in the simulated data

due to low GWAS power. This suggests that all models would be rejected with enough repli-

cates. We note that there is no compelling reason to expect any specific value of λ to be a

particularly good fit to the empirical data. The empirical data are composed of genome-wide

data for multiple traits. We feel that the mutational parameters, λ and mutation rate to

causal variants, are likely to vary across the genome and across traits. Thus, the empirical

data reflect a mixture of different underlying models and ascertainment schemes. The reason

we emphasize this feature of the data is to demonstrate that models with rare alleles of large

effect do not necessarily imply a visual excess of rare significant GWAS hits.
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In consideration of the rare allele of large effect hypothesis, [48] proposed a model where

multiple rare alleles dominate disease risk and create synthetic associations with common

SNPs. However, later it was shown that this particular model was inconsistent with GWAS

theoretically and empirically [176, 255, 77]. Here, we have shown that there exist models

in which rare alleles explain a substantial portion of heritability that are not inconsistent

with findings from GWAS. We find that the MAF distribution of significant hits in a GWAS

varies widely with choice of genetic model. In particular, we confirm the results of Wray et al.

[255], that AC evolutionary models predict an excess of low frequency significant hits unless

trait effect sizes are quite small. Also, the cMR model predicts an excess of intermediate

and common significant hits. Utilizing a GBR model or an iMR model with h = 0.25− 0.5,

reconciles this inconsistency by simultaneously predicting the importance of rare alleles of

large effect and the correct allele frequency distribution among statistically significant single

markers.

2.6.6 Conclusion

Several empirical observations provide support for the presence of gene-based recessivity

underlying variation for some complex traits in humans. The minor allele frequency distri-

bution of significant GWAS hits is relatively flat[255, 77], which our results show is consistent

with either the presence of small additive effect loci or gene-/site-based partially-recessive

loci with intermediate to large effects (Fig 2.4). Models with loci of large additive effects

predict an excess of rare significant hits. Oppositely, models with complete site-based re-

cessivity predict an excess of common significant hits for all simulated mutation effect size

distributions.

SNP based estimates of dominance heritability are much lower than estimates of domi-

nance from twins [275, 37]. Of the models we explored, only the gene-based recessive model
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with intermediate to large effects is consistent with difference between twin and SNP based

estimates of dominance variance (Fig 2.2). Under a site-based recessive model of partial

recessivity (e.g. h =0.25), there should be no significant difference between estimates of

dominance variance from SNP and twin studies, provided that the statistical assumptions

are met for both approaches (Fig 2.2). These results are complementary to the work by Zuk

et. al [278], who show that twin studies can over estimate heritability under a model with

gene interactions. It now appears clear that the underlying genetic model does not have the

same impact on SNP-based and family based study designs; an issue which should be further

explored. Our findings also support a more thorough investigation into the importance of

compound heterozygosity in the genetics of complex traits. However, it may be difficult to

directly observe non-additive gene-level effects through analysis of individual SNP markers.

Additionally, the genetic model appears to be important in the design and analysis of asso-

ciation studies. While changes in population size do affect the relationship between effect

size and mutation frequency [82, 81, 206, 72, 14, 5, 42, 73, 74, 75, 80, 109, 111, 196] (Fig 2.1

and A.5), different mappings of genotype to trait value do this in radically different ways

for the same demographic history (Fig 2.1). From an empirical perspective, our findings

suggest that re-sequencing in large samples is likely the best way forward in the face of the

allelic heterogeneity imposed by the presence of rare alleles of large effect. Re-sequencing

of candidate genes [101, 123, 153, 207] and exomes [98, 254, 189, 229, 171, 143, 40] in case-

control panels have observed an abundance of rare variants associated with case status.

Here we show that under a model of mutation-selection balance on the genic level, neither

current single-marker nor popular multi-marker tests are especially powerful at detecting

large genomic regions harboring multiple risk variants (Fig 2.3). However, we show that

using permutations to derive p-values improves the power of SKAT[131] with a linear kernel

(equivalent test statistic to c-Alpha [169]). Similarly, another permutation based test, the

ESM test [208], has more robust power across demographic and genetic models (Fig 2.3).
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Conceptually, cis-effects arise naturally from the original definition of a gene in which mutant

recessive alleles fail to complement [15]. We show that cis-effects within a locus, represented

by the GBR model, can have an important impact on the population level architecture

of a complex trait. This conclusion is important for future simulation studies as well as

the interpretation of empirical data. It is important to note that despite our use of the

term “gene-based” this model may apply to any functional genomic element in which there

are multiple mutable sites affecting a trait in cis, not just to genes. From a theoretical

perspective, our work motivates the development of a more generalized gene-based model

to include arbitrary dominance and arbitrary locus size. Empirically, we find that the GBR

model is broadly consistent with a variety of observations from the human statistical genetics

literature. Thus, there is an evident need for improved region-based association tests and

the development of genetic variance component methods for haplotypes.

2.7 Materials and Methods

2.7.1 Forward simulation

Using the fwdpp template library v0.2.8 [231], we implemented a forward in time individual-

based simulation of a Wright-Fisher population with mutation under the infinitely many sites

model[113], recombination, and selection occurring each generation. We simulated popula-

tions of size N = 2e4 individuals for a time of 8N generations with a neutral mutation rate

of µ = 0.00125 per gamete per generation and a per diploid per generation recombination

rate of r = 0.00125. Deleterious mutations occurred at a rate of µd = 0.1µ per gamete

per generation. These parameters correspond to θ = 4Nµ = ρ = 4Nr = 100 and thus

our simulation approximates a 100Kb region of the human genome. For simulations with

growth, we simulated an additional 500 generations of exponential growth from Ni = 2e4

36



to Nfinal = 1e6. This demographic model is much simpler than current models fit to em-

pirical data[80]. However, this simple model allows us to more easily get a sense of the

impact of population expansion[141, 217]. 250 simulation trials were performed for each

parameter/model combination unless specified otherwise.

2.7.2 Exploring the gene region’s contribution to heritability

Broad-sense heritability can be calculated directly from our simulated data as H2 = VG
VP

. We

explored broad-sense heritability as a function of mean causative effect size λ under each

model; λ ∈ {0.01, 0.025, 0.05, 0.1, 0.125, 0.25, 0.5}. We compare our simulation results to

VG ∼ 4µdσ
2
s for additive models and VG ∼ 2µdσ

2
s for recessive models [237, 219]. In our

simulations, σ2
s = 1, and we tuned the environmental standard deviation σe to generate

simulations for which E[H2] ∼ 0.04 or ∼ 0.08. For E[H2] ∼ 0.04, we set σe = 0.11 for

the additive codominant model, σe = 0.075 for the gene based and complete multiplicative

recessive models and σe = 0.098 for the incomplete mutliplicative recessive model (h = 0.25).

For E[H2] ∼ 0.08, we set σe = 0.075 for the additive codominant model, σe = 0.053 for the

gene based and complete multiplicative recessive models and σe = 0.068 for the incomplete

mutliplicative recessive model (h = 0.25).

2.7.3 Determining the genetic load of the population

Genetic load is defined as the relative deviation in a populations fitness from the fitness

optimum, L = (wmax − w̄)/(wmax). We set the phenotypic optimum to be zero; Popt = 0.

When determining fitness for the SBR models, we subtract one from all phenotypes. This

implies that wmax = e
−
P2
opt

2σ2s = 1 and that load is a simple function of the phenotypes of the

population, L = 1− e−
P2

2σ2s . We also used the mean number of mutations per individual, and

the mean frequency and effect sizes of segregating risk variants as proxies for the genetic
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load [217, 79]. Lastly, we calculated Burden Ratios (Br) [8] as the ratio of load between an

equilibrium and non-equilibrium population. We calculated Br using both the true load and

the number of mutations per individual.

2.7.4 Additive and dominance genetic variance over allele fre-

quency

We used an approach based sequential (type-1) regression sums of squares to estimate the

contribution of the additive and dominance effects of variants to the total genetic variation

due to a locus. Given a genotype matrix (rows are individuals and columns are risk variants)

of (0,1, or 2) copies of a risk allele (e.g. all mutations affecting phenotype), we sort the

columns by decreasing risk mutation frequency. Then, within frequency classes, columns

were sorted by decreasing effect sizes. For each variant a dominance component was also

coded as 0, 2q, or 4q-2 according to the orthogonal model of [275], where q is the frequency

of the variant in the population. We then used the R package biglm [144] to regress the

individual genetic values (G in the previous section) onto this matrix. The variance explained

by the additive and dominance effects of the m markers with q ≤ x is then approximately

r2 = (
∑m

i=1 ΣSSreg,i)/(SStot). Averaging results across replicates, this procedure results in a

Monte-Carlo estimate of the fraction of VG that is due to additive and dominance effects of

variants with population frequency less than or equal to x is (VA;q≤x+VD;q≤x)/(VG;q≤1) [217].

This fraction can be easily partitioned into strictly additive and dominance components.
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2.7.5 Additive and dominance heritability in random population

samples

We employed three different SNP-based approaches to estimating heritability from popu-

lation samples: GREMLd, minor allele frequency stratified GREMLd (MS-GREMLd)[275],

and MS-Haseman-Elston (HE) regression [88, 214]. For comparison, we calculated the true

total heritability in the sample as H2
sample = (VG;sample)/(VP ;sample). Unfortunately, due to

the nature of our simulated data MS-GREMLd did not result in sufficiently reliable results.

Under MS-GREMLd, many replicates resulted in numerical errors in GCTA. These prob-

lems were present at a rate of less than 1/100 replicates using non-MS GREMLd, but were

increased by splitting the data into multiple GRMs.

Using raw individual phenotypic values as quantitative trait values, random samples from

simulated populations (n=6000) were converted to .bed format using PLINK 1.90a[188].

PLINK was also used to test for HWE (p < 1e − 6) and filter on minor allele frequency.

GCTA 1.24.4 [265] was used to make genetic relatedness matrices (GRM) for both additive

and dominance components with the flags –autosome and –make-grm(-d).

For non-MS runs, we tested the effect of filtering on MAF by performing the analysis on

unfiltered datasets and with markers with MAF < 0.01 removed. For MS estimates we

stratified the additive and dominance GRM’s into two bins MAF ≤ 0.01 and MAF > 0.01.

GREMLd analysis was performed in GCTA with Fisher scoring, no variance component

constraint and a max of 200 iterations. MS-HE regression was carried out by regressing

the off diagonal elements of each GRM onto the cross product of the scaled and centered

phenotypes in a multiple linear regression setting in R [193].
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2.7.6 Twin studies

To simulate twin studies we sampled 2000 monozygotic (MZ) and 2000 dizygotic (DZ) twins

pairs from the final generation of the simulations. Parents were sampled randomly without

replacement. MZ twin pairs were formed by sampling a single gamete pair, one recombinant

from each parent, and two environmental random deviates. DZ twin pairs were formed by

sampling two gamete pairs, two recombinant gametes from each parent, and two environ-

mental random deviates. Our simulated studies are ideal in that there are no correlated

environmental effects, but potentially problematic due to low total heritability. We explored

the use of structural equation modeling (SEM) using the package OpenMx [170], but chose

to rely strictly on estimates of twin correlation obtained directly from the data. For monozy-

gotic (MZ) twins, we used only a single child gamete pair with two unique environmental

deviates. For dizygotic (DZ) twins we used two child gamete pairs, each with a unique

environmental deviate. Broad sense heritability is the correlation between MZ twin pairs;

H2 = rMZ . Under a purely additive model, the DZ twin correlation should be half of the

MZ twin correlation. Non-additive genetic components of phenotypic variance reduce the

DZ twin correlation. If all non-additive heritability is due to dominance, then the dominance

heritability can be calculated as twice the difference between the MZ twin correlation and

two-times the DZ twin correlation: δ2 = 2 ∗ (rMZ − 2 ∗ rDZ). The additive heritability can

then be calculated as the difference between the broad-sense and non-additive component:

h2 = H2 − δ2 = 4 ∗ rDZ − rMZ [60].

These direct estimates of MZ and DZ twin correlations in our simulations are reliable as we

have no measurement error, shared environmental effects, gene-by-environment effects, or

gene-by-gene interactions. Additionally, we only simulate a single genomic region contribut-

ing H2 ∼ 0.04, which made use of SEM difficult numerically. This creates a limitation in

that we can not discuss when a model with dominance is a better fit to the data than the

additive only model. But, the benefit of using direct estimates is that we can clearly see
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what signals are present in the data. To further clarify the data visualization, we pooled

our 512 twin-study replicates into groups of 8, creating 64 sets of MZ-DZ twin phenotypes.

This did not have an effect on the central tendencies of our estimates, but it reduced the

variance. The twin study error bars in Fig 2.2 are based on 64 sets of 64,000 individuals,

which is larger than a typical twin study. However, one reason our results have high variance

is because we only simulate a single locus, rather than a whole trait.

2.7.7 Case-control studies

Following [232], we sampled 3000 cases and 3000 controls from each simulated population.

Cases were randomly sampled from the upper 15% of phenotypic values in the population,

and controls were randomly sampled from within 0.5 standard deviations of the population

mean(as in [232]). This is the liability scale model (see [60]). We define a ”GWAS” to be

a study including all markers with MAF ≥ 5% and a re-sequencing study to include all

markers. In all cases we used a minor allele count logistic regression as the single marker

test. For single marker tests, the p-value cut off for significance is p ≤ 1e − 08 which is

common in current GWAS [48, 157]. Power is determined by the percentage of simulation

replicates in which at least one marker reaches genome wide significance.

2.7.8 Region-based tests of association due to rare alleles

We applied multiple region-based tests to our simulated data, ESMK [232], several vari-

ations of SKAT [262] and c-Alpha[169]. We used the R package from the SKAT authors

to implement their test (http://cran.r-project.org/web/packages/SKAT/index.html).

The remaining tests were implemented in a custom R package (see Software availability

below). For the ESMK and c-Alpha we performed up to 2e6 permutations of case-control

labels to determine empirical p-values. Common variants (q ≥ 0.05) were removed prior to
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performing region-based rare variant association tests.

2.7.9 Distribution of Significant GWAS Hits

Following[255, 77], we calculated the distribution of the minor allele frequency (MAF) of

the most significant SNPs in a GWAS in empirical and simulated data. The empirical data

was obtained from the NHGRI-EBI GWAS database (http://www.ebi.ac.uk/gwas/) on

02/05/2015. We considered the same diseases and applied the same filters as in Table 3 of

[255]. Specific information regarding the empirical data can be obtained in Table A.1.

In order to mimic ascertained SNP data, we sampled markers from our case/control panels

according to their minor allele frequencies [154], as done in [232]. Additionally, we removed all

markers with MAF < 0.01 to reflect common quality controls used in GWAS. The simulated

data were grouped by genetic model, demographic scenario, heritability level, and mutation

effect distribution. We then plotted the minor allele frequency of the most significant marker

with a single-marker score −log10(p) ≥ 8, for all replicates where significant markers were

present.Finally, we performed a two-sample KS test in R between each group of simulated

GWAS hit allele frequencies and the empirical data.

2.7.10 Human demography

We simulated a demographic model for Europeans based on [229] as described in [217]. For

simplicity, we ignored migration between the European (EA) and African American (AA)

populations. The model was implemented using the Python package fwdpy version 0.0.4,

which uses fwdpp [231] version 0.5.1 as a C++ back-end. During the evolution of the EA

population, we recorded the genetic variance in the population, VG, and the number of dele-

terious mutations per diploid (a measure of genetic load [217]) every 50 generations. In a
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separate set of simulations, we applied the regression method described above to calculate

cumulative additive genetic variance as a function of allele frequency. Because the regres-

sions are computationally demanding, we applied the method in the generation immediately

before, and at the start of, any changes in population size.

These simulations were run with no neutral mutations, and the recombination rate and

mutation rate to causative mutations were the same as in the simulations described above.

The Python scripts for these simulations and iPython/Jupyter notebooks used for generating

figures are available online (see Software availability section below).

2.7.11 Software availability

Our simulation code and code for downstream analyses are freely available at

• http://github.com/ThorntonLab/disease_sims

• http://github.com/molpopgen/buRden

• http://github.com/molpopgen/fwdpy

• http://github.com/molpopgen/TennessenEAonly
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2.9 Chapter 2 Tables

Table 2.1: Description of parameters used in the models
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2.10 Chapter 2 Figures

Figure 2.1: Variance explained over allele frequency. The cumulative additive and dominance
genetic variance which can be explained by markers whose frequencies, q, are ≤ x. Each
color represents a different value of λ: the mean effects size of a new deleterious mutation.
Shown here are the gene-based (GBR), additive co-dominant (AC), incomplete multiplicative
recessive (Mult. recessive (h = 0.25); iMR) and complete multiplicative recessive (Mult.
recessive (h = 0);cMR) models. Solid lines show the additive variance alone and dotted lines
show the combined additive and dominance variance. All data shown are for models where
H2 ∼ 0.08. These particular results are robust to changes H2 when VG is not changed, as is
the case here. The additive and dominance genetic variance is estimated by the adjusted r2

of the regression of all markers (and their corresponding dominance encoding ) with q ≤ x
onto total genotypic value (see methods for details); data are displayed as the mean of 250
simulation replicates. The vertical dotted and dashed lines correspond to the q = 0.001 and
q = 0.05, respectively. The curves under no growth appear to be truncated with respect to
rapid growth because the range of the x-axis differs between growth and no growth (minimum
q = 1/2N).
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Figure 2.2: Heritability estimates compared to population heritability. Heritability estimates
and population heritability as a function of λ: the mean effect size of a new deleterious
mutation. Additive (A; orange) component of true heritability is calculated by multiplying
the end point(q = 1) of the variance curves in Fig 2.1 by the broad-sense heritability values
summarized in Fig A.1. HE-regression and GREMLd estimates were obtained from random
population samples (n = 6000). GREMLd analysis was performed in GCTA using genotype
data that was either unfiltered or filtered to remove variants with MAF<0.01. Twin study
estimates are directly calculated using MZ and DZ twin correlations from 64 sets of twin
studies. Each study consisted of pooling 2000 MZ twin pairs and 2000 DZ twin pairs from
each of 8 model replicates for a total of 64,000 individual phenotypes. Data are plotted
as the median across replicate sets ± half the interquartile range. Shown are the additive
co-dominant (AC), gene-based (GBR) incomplete multiplicative recessive (Mult. recessive
(h = 0.25); iMR) and complete multiplicative recessive (Mult. recessive (h = 0); cMR)
models.
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Figure 2.3: Power of association tests. (A) The power of a single marker logistic regression,
at significance threshold of α ≤ 10−8, as a function of λ: the mean effect size of a new
deleterious mutation. For single marker tests we define power as the number of simulation
replicates in which any single marker reaches genome wide significance. Two study designs
were emulated. For the gene chip design only markers with MAF > 0.05 were considered and
all markers were considered for the resequencing design. Genetic models shown here are the
additive co-dominant (AC), gene-based (GBR), complete multiplicative site-based recessive
(Mult. recessive (h = 0); cMR) and incomplete multiplicative site-based recessive models
(Mult. recessive (h = 0.25); iMR) (B) The power of region-based rare variant association
tests to detect association with the simulated causal gene region at significance threshold
of α ≤ 10−6. For region-based tests, we define power as the percent of simulation replicates
in which the p-value of the test was less than α. The p-values for the ESM, c-Alpha were
evaluated using 2 × 106 permutations. SKAT p-values were determined by the SKAT R
package and represent numerical approximations to the presumed analytical p-value.
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Figure 2.4: Distribution of significant GWAS hits. Horizontal violin plots depict the distri-
bution of minor allele frequencies (MAF) of the most strongly associated single marker in
a GWAS. Individual hits are plotted as translucent points and jittered to provide a sense
of the total number and density of hits. Each panel contains simulated data pooled across
model replicates for each value of λ with empirical data for comparison. Empirical data
are described in Materials and Methods. In cases where more than one marker was tied for
the lowest p-value, one was chosen at random. Shown here are the additive co-dominant
(AC), gene-based (GBR), incomplete multiplicative recessive (Mult. recessive (h = 0.25);
iMR) and complete multiplicative recessive (Mult. recessive (h = 0);cMR) models. All data
shown are for models where H2 ∼ 0.08, because single marker test power was too low under
H2 ∼ 0.04 to make informative density plots. To further increase the number simulated data
points, we perfromed n=1,250 replicates at each level for this figure. Simulated data were
subjected to ascertainment sampling such that the MAF distribution of all markers on the
simulated genotyping chip was uniform. Specific information regarding the empirical data
can be obtained in Table A.1.
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Chapter 3

Efficient software for multi-marker,

region-based analysis of GWAS data
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3.2 Preface

This chapter was originally published in G3: Genes, Genomes, Genetics under the title

“Efficient software for multi-marker, region-based analysis of GWAS Data ” [208]. It is

reprinted here in its original form. The software was written by myself and Kevin Thornton

with input from Anthony Long. I performed the statistical analysis of the dataset, drew the

primary conclusions, and wrote the text of the paper.

3.3 Abstract

Genome-wide association studies (GWAS) have associated many single variants with complex

disease, yet the better part heritable complex disease risk remains unexplained. Analytical

tools designed to work under specific population genetic models are needed. Rare variants

are increasingly shown to be important in human complex disease, but most existing GWAS

data do not cover rare variants. Explicit population genetic models predict that genes con-

tributing to complex traits and experiencing recurrent, unconditionally-deleterious mutation

will harbor multiple rare, causative mutations of subtle effect. It is difficult to identify genes

harboring rare variants of large effect that contribute to complex disease risk via the single

marker association tests typically used in GWAS. Gene/region-based association tests may

have the power detect associations by combining information from multiple markers, but

have yielded limited success in practice. This is partially because many methods have not

been widely applied. Here we empirically demonstrate the utility of a procedure based on

the rank truncated product (RTP) method, filtered to reduce the effects of LD. We apply

the procedure to the Wellcome Trust Case Control Consortium (WTCCC) data set and

uncover previously-unidentified associations, some of which have been replicated in much

larger studies. We show that, in the absence of significant rare variant coverage, RTP based
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methods still have the power to detect associated genes. We recommend that the RTP based

methods be applied to all existing GWAS data to maximize the usefulness of those data.

For this, we provide efficient software implementing our procedure.

3.4 Introduction

Revealing the genetic basis of common human diseases, such as diabetes and heart disease,

remains a central challenge in human genetics. Family-based and twin-based studies estimate

that the genetic component of disease risk is typically large. Genome-wide association studies

(GWAS) have identified many genetic variants associated with complex human diseases [253],

yet the heritability explained by specific statistically significant variants remains small in

comparison to the total heritability estimates [151, 244]. Various hypotheses explaining the

”missing heritability problem” exist [151, 244, 77, 205]. Gene-by-gene, gene-by-environment,

and other complex epistatic interactions might create statistical challenges for the detection

of causal variants [56, 251] or might inflate total heritability estimates [277]. The missing

heritability could be attributable to many common well-tagged variants which do not reach

statistical significance because of their miniscule effect sizes [64, 246]. Rare variants with

large effects (RALE) might drive heritability and escape detection because they are not well-

tagged by current genotyping methods [158, 39]. Quantifying the roles of these non-mutually-

exclusive hypotheses is important for the design of future studies and the development of new

analytical tools [245]. We still do not know exactly how mutational effect sizes underlying

specific diseases map onto the human site-frequency spectrum. However, it is becoming

increasingly clear that rare variants are an important contributor to the genetic basis of

complex diseases [6, 182, 254, 189, 45, 98, 171, 100].

The RALE hypothesis is particularly appealing to some because it is a prediction that arises

naturally from population-genetic models of mutation-selection balance [84]. Specifically,
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it arises from a model in which equilibrium allele frequencies and phenotypic effect sizes

both reflect a balance between two things: recurrent unconditionally deleterious mutations

occurring in a disease gene, and their elimination by natural selection [187]. A previous

simulation study [232] investigated a novel model where standing quantitative genetic vari-

ation in complex disease genes of large effect is maintained via partially non-complementing

mutations. An important prediction of this model is that a gene region can harbor several,

individually rare, variants which all contribute to a complex disease phenotype. Such allelic

heterogeneity is predicted to pose complications for genome wide association studies [158].

In particular, we know that single-marker association tests do not have sufficient statistical

power in these cases [104, 215, 221]. Further, associations under this model are a mixture of

two different types [232]. First, associations may be due to tagging a causal marker whose

effect size is small, implying a sufficiently small effect on fitness, allowing the mutation to

reach intermediate frequency (> 5% in the population). The second class of association is

due to non-causative mutations in linkage disequilibrium (LD) with causal markers. These

”tagged” associations tend to be rare, and of relatively large effect [232]. Under this model,

”missing heritability” arises from a combination of allelic heterogeneity and a lack of power

to identify risk variants.

Under the model of non-complementing mutations, regions harboring risk alleles show a sta-

tistical signature of a large number of markers with single-marker p-values approaching, but

still below, a genome-wide significance threshold [232]. They further showed that, under this

model, the excess of significant markers (ESM) test, a permutation-based regional associa-

tion test, had more power to detect a causal gene region in typical GWAS data than single

marker methods and many popular region-based tests [232], even for GWAS containing only

common markers (MAF > 0.05). Although the test statistic of the ESM test is inspired by

order statistics, under the permutation procedure for evaluating statistical significance it is

equivalent to the rank truncated product (RTP) of p-values [51]. This equivalence was not

initially recognized by [232]. Multiple variations on the RTP exist to address issues related
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to correlation between p-values [47] and the need to specify a truncation threshold [269].

Although the RTP test has been used recently to obtain pathway- or gene-level associations

in GWAS and other genomic applications [162, 20, 2, 137, 131, 4, 124], it is not widely-

used. Here we demonstrate the utility of mining existing data sets with an RTP approach,

which we call the ESM test from here on, and provide an efficient implementation which can

perform genome-wide scans without the need to restrict only to coding regions.

GWAS data do not have sufficient coverage of rare variants for direct analysis, but the ESM

test is a powerful tool for extracting useful information despite this fact. Here we perform

an empirical analysis of the performance of the ESM test on the Wellcome Trust Case

Control Consortium (WTCCC) GWAS data set [252]. We chose this dataset to determine

the empirical efficacy of the ESM test because the dataset is well-characterized and easy to

obtain. In addition, the choice of a dataset without substantial rare variant coverage, allows

us to show that the ESM test has the power to detect the slight differences in allele frequencies

between cases and control at common neutral markers, which is predicted by RALE models.

We discover four novel gene regions that contribute to complex disease variation not detected

in the original study, and propose that the ESM test is even better-suited to data sets that

employ more modern denser SNP chips.

3.5 Materials and Methods

3.5.1 Dataset

Data were obtained from the Wellcome Trust Case Control Consortium and are as decribed

in [252]. Briefly, we obtained ∼ 2000 cases for each of 7 diseases and a set of ∼ 3000

shared controls typed on an Affymetrix 500K SNP chip. Diseases included in the dataset

are Bipolar Disorder (BD), Coronary Artery Disease (CAD), Hypertension (HT), Chron’s
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disease (IBD), Rheumatoid Arthritis (RA), Type 1 Diabetes(T1D), and Type 2 Diabetes

(T2D). Case and control samples are obtained from across Great Britain. Control samples

contain two subgroups; ∼ 1500 individuals come from the 1958 British Birth Cohort(1958BC)

and ∼ 1500 belong to the national UK Blood Services donor pool (NBS).

3.5.2 Data Preprocessing

The raw WTCCC data were formatted for use in PLINK 1.90a[188]. SNP’s listed in the

WTCCC genotype file by their Affymetrix identification were translated into RefSNP (rsID)

with the Affymetrix chip annotations. The SNP identifications and chromosome positions

were updated to the most recent dbSNP Build 144. The SNP and individual exclusions lists

provided were applied and only genotyping calls with quality score over 0.9 were included.

3.5.3 Basic Association and Permutation

The basic single marker association test is executed with the PLINK 1.90a command –assoc.

A total of N permuted single marker p-values are obtained from PLINK!1.90a by specifying

–mperm=N. We take N = 2× 106 permutations such that the resolution of our permutation

p-value is 1
N

= 0.5×10−6, which can allow us to establish a region as genome-wide significant

below a marginal p-value threshold of α ≤ 1e − 6. We stored the observed association p-

values, the permuted association p-values, and the R2 between each marker ( from plink –ld

command) into HDF5 file format for use in the ESM test.
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3.5.4 Excess of Significant Markers Test

We implement the ESM test as described in [232]. The test is a permutation based variation

of rank truncated Fisher’s combined p-value method using a null hypothesis based on order

statistics. The test statistic is the sum of the differences between the observed and expected

−log10(p). However the expected value under the null is the same for each permutation and

thus the statistic is equivalent to the sum of observed −log10(p), i.e. the RTP. For a set

of m markers the expected p-value, under the null model of no association, of the ith most

significant marker is i
m

. Let Y be a vector of length m containing the observed −log10(p) ,

sorted in order of decreasing significance, from the single marker association test. Then the

ESM test statistic is defined to be:

ESM =
m∑
i=1

(Yi + log10(
i

m
))

For each region, we calculate the ESM test statistic based for the observed data and for

each permutation of the data. For a given region, let the set of ESM test statistics be

ESMj : j = 0, ..., N , such that ESM0 is the observed value and the rest are calculated from

permuted data. Then the p-value for that region is:

p =

∑N
j=1 I(j)

N
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where,

I(j) =


1 ESMj ≥ ESM0

0 ESMj < ESM0

We performed the ESM test using a two stage sliding window approach. Using 100 kilobase

windows we performed a genome scan with a jump size of 50 kilobases, with m =25. The

effect of changing m was explored in [232] and the choice of 25 was based on average SNP

density in the WTCCC data. Within each region we filtered markers based on LD, taking

only SNPs whose R2 was less than 0.2; always removing the SNP with the greater chromo-

somal position. While choosing this particular LD pruning rule is arbitrary, it prevents the

introduction of bias due to selecting SNPs based on association significance. Regions which

contained a marginally significant hit, ESM p-value less than 1e-04, were re-scanned using

a finer (1 kilobase) jump size. The code for implementing the test can obtained at from

github: https://github.com/ThorntonLab/ESMtest. Contiguous genomic regions which

contain windows reaching genome-wide significance at α ≤1e-6 were taken and explored

for functional annotations. This significance threshold results in a predicted genome-wide

Type-1 error rate of approximately 0.06; the mean (across diseases)number of total windows

analyzed is 58,724 and thus the idealized type-1 error rate is 58, 724 ∗ 1e− 6 = 0.0587. How-

ever, this estimate is quite conservative because the windows are spatially auto-correlated

across the genome, making the effective number of tests performed much lower than the

number of windows analyzed.

3.5.5 Intersection with other GWAS data

Significant regions were initially queried against the NHGRI GWAS database. Regions were

classified as being potentially novel if there were no significant SNPs in the NHGRI GWAS
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database for the specific disease whose genomic position fell within the boundaries of the

region. Regions which contained significant SNPs in the NHGRI GWAS database that were

not contributed by the Wellcome Trust were also taken for further analysis. The regions

were queried against gene and transcript annotations in human reference genome GRCh38

using the R package biomaRt [54, 55]. The resulting gene and transcript annotations were

manually curated for novelty and functional relevance.

3.6 Results and Discussion

We implement the ESM test as a sliding-window genome-wide scan for significant regions;

we use 100Kb windows and 2 million permutations to reach genome-wide significance at

an empirical p ≤1e-6. Region-/set-based methods result in far fewer tests than single-

marker methods. By analyzing 60,000 windows with a marginal α ≤1e-6, our genome-

wide type 1 error rate is roughly 0.06; this estimate is conservative because the windows

are not independent, and thus we effectively perform fewer tests than is suggested by the

number of windows analyzed. Permutation procedures on genomic datasets are notoriously

computationally expensive and are thus typically avoided despite their appealing statistical

properties. With this in mind, we developed an efficient and freely-available computational

pipeline to implement the ESM test which relies on new software and PLINK 1.90a [188] (see

Methods). The pipeline leverages PLINK’s fast permutation procedures for single marker

association tests, stores the data in I/O optimized HDF5 file format, and performs the test.

Our analysis recapitulates most, but not all, of the associations established in the standard

analysis of [252] and finds new associations demonstrating that the ESM test is an excellent

candidate for application in addition to standard methods.
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3.6.1 Overlap between the ESM test and standard analysis

The majority of the regions found in [252] that show strong associations with case-control

status are also significant under the ESM test. In [252], the standard 1-df χ2 test resulted

in 21 regions showing strong association signals (p ≤5e-7). Table A.2 shows that 18 of these

regions also have an ESM test p ≤1e-6. Of the three regions which do not reach genome-

wide significance under the ESM test, two have p-values between 1e-4 and 1e-6 (Table A.3).

In particular, multiple windows containing rs2542151, the main SNP reported for region

chr18:12.77-12.92(Mb) in association with inflammatory bowel disease, reach ESM p =9e-6.

A third SNP, rs420259, in region chr16:23.38-23.7(Mb) reported in association with bipolar

disorder by [252] did not replicate in other studies [236] and the region does not show strong

association via the ESM test. Applying the SKAT [262, 133] test to the same genomic

windows results in less overlap with the WTCCC results (Tables A.5 and A.6). Some of

the regions not deemed significant by SKAT have been validated in other studies and can

be viewed as false negatives. The ESM test has fewer false negatives. Because SKAT is

not a permutation based test, it is orders of magnitude faster computationally. However,

our concern should primarily be on getting better answers within the constraints of what

is tractable. The ESM test is computationally feasible (Figure A.25) and is shown here to

give useful results. When we look at the overlaps and differences between the results of the

ESM test and single marker test, we make two important observations. First, the ESM test

has the power to detect genomic regions in association with disease status. Second, because

there are regions which are only identified by either the ESM test or the single marker test we

should view these methods as complementary. The second point is conceptually important,

but computationally trivial because one has to do a single marker test to serve as the input

to the ESM test. The suggested workflow is essentially: run the single marker test, run the

ESM test, analyze both results separately and then observe their union and intersection.
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3.6.2 Strong associations replicated in independent datasets

Table 3.1 shows that the ESM test identifies four genomic regions that were not significant

in the original WTCCC single-marker based analysis. Three out of four of these regions

have since been associated with disease statuses in independent studies published in the

years following the introduction of the WTCCC analysis (Table 3.1). These subsequent

independent studies all leveraged datasets employing larger case/control panels and/or more

densely genotyped SNPs than were originally used in [252]. Published simulations suggest

that the ESM test should accrue additional benefits when used on datasets with improved

genotyping (See Figure 3 in [232]). In contrast, applying SKAT [262, 133] to these same data

and genomic windows was less promising. Although SKAT finds three significant regions

which are not significant with a single marker test (Table A.4), only two have support in

studies and it finds no completely novel candidate genes. The number of new results is

not significantly different between the ESM test and SKAT, but there does appear to be a

qualitative difference in the level of plausibility. However, at present we can not rule out

differences in optimal approach to partitioning the genome or differences in the type of signal

detected in explaining the observed differences in ESM and SKAT results. Overall three of

the four novel associations identified using the ESM test are replicated, providing empirical

support that the ESM test can detect novel true positive associations, even in relatively

small data sets. We briefly describe the known biological significance of these three genomic

regions below.

The region chr7:129.99-130.12(Mb) is strongly associated with coronary artery disease (CAD)

(Figure 3.1 and Table 3.1). This region overlaps two genes: ZC3HC1 and KLHDC10. A

missense mutation in ZC3HC1, which is also an cis-eQTL for KLHDC10 has been previously

associated with CAD [58]. Neither gene currently has a clearly understood role in the

etiology of CAD. The region chr22:37.09-37.21(Mb), containing IL2RB, is associated with

type-1 diabetes (T1D) (Figure 3.1 and Table 3.1). This region was nominally associated with
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rheumatoid arthritis (RA) by the WTCCC, but not with T1D. IL2RB has been associated

with both diseases in multiple studies [179, 57, 174, 38]. Epidemiological associations with

immune related genes like IL2RB have motivated many important basic and clinical research

studies [180]. Finally, we find an intergenic region, chr1:172.87-172.99(Mb), which contains

SNPs previously associated with inflammatory bowel disease (IBD) [66, 105] and Celiac

Disease [50], to be associated with IBD (Figure 3.1 and Table 3.1). Both nearby genes,

TNFSF18 and FASLG, are part of the immunologically important TNF superfamily. The

presence of putatively active regulatory elements within this associated region (Figure A.24),

supports the association between variation in regulatory sequences and common diseases

[156, 155].

3.6.3 Novel association: SEMA3C

The ESM test finds one additional novel region, not shown to be genome-wide significant

in any study to date, showing strong association with CAD: chr7:8.08-8.09(Mb) (Table 3.1

and Figure 3.1). The only known protein-coding gene in this region is SEMA3C (Figure

3.2). A single SNP (rs4236644) in SEMA3C reached marginal significance (p =2e-6) in

a meta-analysis of GWAS for total serum bilirubin levels [102]. SEMA3C is a secreted

neurovascular guiding molecule which has a number of developmental functions and plays a

role in cardiovascular development during embyrogenesis [190, 61]. Certain congenital heart

diseases are attributed to disregulation of SEMA3C and its associated receptor PLXNA2

[120]. SEMA3C is also an adipokine indicated in extracellular changes during white adipose

tissue hypertrophy in human obesity [160]. In total, SEMA3C is a plausible candidate gene

driving the observed ESM signal. However, we should note that the nearby ( 0.5Mb away)

gene CD36 is associated with heart-disease-related traits including response to blood lipid

drugs [68], platelet count, and HDL cholesterol in African Americans [191, 41]. Although

Figure 3.2 demonstrates lower support for CD36, its presence could be driving the association
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with SEMA3C through long range linkage disequilibrium. Alternatively, the presence of

CD36 might reflect the typical spatial clustering of functionally related genes found in many

organisms [97]. Overall, the association of SEMA3C with CAD is consistent with its known

physiological function in the development of the heart, and thus makes it an intriguing

candidate for future studies.

3.6.4 Discussion

The power of the ESM test is highlighted by the fact that it can identify novel, biologically

plausible associations in an approximately 10 year old data set that has been highly studied.

We provide open-source software implementing the test which can be applied to GWAS data

in PLINK .ped/.bed file format. As a caveat, although the test is simple, performing the

millions of permutations on GWAS data sets is computationally intensive. Individual-level

genotype data is a requirement of the ESM test. The test cannot be applied to summary

statistics from case/control studies. If it is applied to data with greater SNP coverage across

the genome, a finer-scale sliding window may be desirable, requiring more permutations to

keep Type-1 errors low. Nevertheless, simulations suggest that the power of ESM test will

increase significantly when the test is applied to data sets that have employed more modern

higher density SNP chips [232]. False positives due to LD between markers is often a concern

for region based analysis. While it has been shown that using permutation does adequately

address the impact of LD on variations of Fisher’s combined p-value [164, 3]. However, when

SNP pruning is applied , as it is here, to reduce the maximum pairwise correlation to 0.2 the

effect is predicted to be quite insignificant [3]. This agrees with the observation from [232],

that the ESM test did not result in any false positives under neutral simulations.

We find that using rank truncated product methods in conjunction with single-marker anal-

ysis yields an approximately twenty percent gain in power over single-marker analysis alone,
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as illustrated by the finding of 4 new results on top of the pre-existing 21 results from the

standard method. It is clear to see the potential benefit of applying the ESM test in this way

to all of the existing GWAS data. Given the extent of GWAS data currently in existence,

it is conceivable that a broad application of the ESM test would establish thousands of new

associations. An additional benefit of a broad application the ESM test is the opportunity

to validate hits in new datasets with older ones, as we demonstrated here.

A key limitation of region/SNP-set based tests in general, including rank truncated product

methods, is that one cannot simply validate a single or small set of markers in a second

panel. It is instead necessary to do deep genotyping of a candidate region in an independent

panel in order to gain a perspective on the genetic variation present in the associated region.

A corollary is that the lack of simple single SNP markers makes the estimation of effect

sizes and variance explained by a detected gene region difficult; this problem should be a

focus of future studies. Using existing data, rank truncated product methods have power

to detect new associations between genomic regions and disease. Notably, the development

of more powerful region-based tests seems likely. The ESM test was designed to detect an

association signal in case/control panels under a particular gene action model and a small

range of population genetic scenarios. Recent work [166] demonstrates that predictions from

simulation studies regarding performance of region based tests are impacted by various model

details. Thus, future research should focus on the behavior of association tests under various

models of gene action and demography.
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3.7 Chapter 3 Tables

Disease Chr Position(Mb) Gene Region Source

CAD 7 80.78-80.88 SEMA3C This analysis

CAD 7 129.993-130.123 ZC3HC1/KLHDC10 [58]

T1D, RA 22 37.096-37.203 IL2RB [179, 57, 174, 38]

IBD 1 172.872-172.983 FASLG/TNFSF18 [66, 105, 50]

Table 3.1: New Associations. Regions with ESM test p ≤1e-6 with no corresponding hit from
[252] are reported below. Three out of four regions contain corresponding hits in NHGRI
GWAS database not due to [252] or were otherwise previously indicated in the particular
disease as cited in the source column below. One region is novel based on our analysis and
overlaps with a biologically plausible gene SEMA3C.
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3.8 Chapter 3 Figures

Figure 3.1: Manhattan plots with ESM significant regions highlighted. Single marker
−log10(p)p-values versus chromosomal position (BP) for all seven diseases analyzed, with
SNPs in ESM significant (ESM p ≤ 1e-6 ) regions highlighted in green. Horizontal lines
are placed at −log10(p) = 8 to illustrate the typical single marker genome-wide significance
threshold. SNP clusters which are highlighted in green, but do not contain a single genome-
wide significant SNP are reported as novel.
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Figure 3.2: Region plot for SEMA3C hit. The top panel contains single marker (black
points) and ESM test (red triangles) −log10(p)-values for coronary artery disease versus
chromosomal position in the region chr7:80-82 (Mb). Each ESM test point is plotted at
the midpoint of a genomic window to which that −log10(p)-values corresponds. The single
100Kb ESM significant (ESM p ≤1e-6 ) region chr7:80.78-80.88 (Mb) is demarcated by
vertical dashed lines, and the horizontal lines are placed at −log10(p) = 6 to indicate the
ESM test significance threshold. The middle panel contains the recombination rate in cM/Mb
obtained from HapMap througout the same region. The lower panel shows the refseq gene
UCSC genome browser track for the region.
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4.2 Preface

This chapter was originally published in Proceedings of the National Academy of Sciences

of the United States of America under the title “Evidence of directional and stabilizing

selection in contemporary humans ” . It is reprinted here in its original form. I permformed

the initial statistical analysis of the data, which lead to the key observations in the paper. In

the writing of the paper, small corrections were applied to all analyses and they were redone

by Julia Sidorenko. I wrote the text of the paper with the help of Peter Visscher and the

advice of Matt Robinsion and Kevin Thornton.

4.3 Significance statement

Combining high throughput molecular genetic data with extensive phenotyping enables the

direct study of natural selection in humans. We see first hand how and at what rates con-

temporary human populations are evolving. Here we demonstrate that the genetic variants

associated with several traits including age at first birth in females and body-mass index in

males are also associated with reproductive success. In addition, for several traits, we demon-

strate that individuals at either extreme of the phenotypic range have reduced fitness–the

hallmark of stabilizing selection. Overall, the data are indicative of a moving optimum model

for contemporary evolution of human quantitative traits.
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4.4 Abstract

Modern molecular genetic datasets, primarily collected to study the biology of human health

and disease, can be used to directly measure the action of natural selection and reveal impor-

tant features of contemporary human evolution. Here we leverage the UK Biobank data to

test for the presence of linear and non-linear natural selection in a contemporary population

of United Kingdom. We obtain phenotypic and genetic evidence consistent with the action

of linear/directional selection. Phenotypic evidence suggests that stabilizing selection, which

acts to reduce variance in the population without necessarily modifying the population mean,

is widespread and relatively weak in comparison to estimates from other species.

4.5 Introduction

Natural selection can strongly affect patterns of phenotypic variation. This fact has lead to

considerable interest in understanding how natural selection and other evolutionary forces

combined to shape the alellic spectrum underlying variation within and between populations.

Most of this work has focused on searching the genome for signatures of past selective

events [192]. Yet selection fundamentally acts on phenotypes, not genotypes. Therefore, the

relationships between phenotypes and fitness must be studied in contemporary populations

to observe natural selection directly. In doing so, we can gain insights about the direction

and magnitude of phenotypic evolution. Theoretically, such observations allow one to predict

future evolutionary change, and they can serve as points of comparison with inferences of

selection obtained from other sources of data. Here we report observational evidence that is

consistent with the action of natural selection in a contemporary human population.

Directional selection results in a covariance between the trait and fitness, and can lead to

changes in the mean value of a trait in a population [204, 185, 186]. Further, if phenotypic

68



variation for the trait is caused by genetic factors, then directional selection can result in

changes in the genetic composition of a population. Phenotypes may also be subject to

stabilizing or disruptive selection, which are both non-linear forms of selection. The key

distinction between stabilizing and disruptive selection is whether the relationship between

fitness and a phenotype is concave down or up, respectively. Stabilizing selection, which is

commonly invoked in theoretical studies of quantitative traits [85, 203, 112, 125, 237], will

tend to reduce phenotypic variation while disruptive selection will tend to increase it. In a

seminal paper on the direct study of natural selection, Lande and Arnold [126] put forth a

statistical framework by which the magnitude of both directional and non-linear selection

could be estimated from observational data via regression of fitness onto phenotypes and

their squared values.

Application of the Lande and Arnold framework to human populations has yielded evidence

consistent with the action of directional selection on physiology, life-history and body-size

traits in both pre- and post-industrial societies [222]. While important differences between

the studied populations exist [212, 226], a few interesting trends have emerged. Multiple

studies have suggested that directional selection has acted to lower the age at first birth in

females [118, 90, 249, 30, 223, 234], increase the age at menopause [118, 30], increase weight

in females [7, 30, 223], and decrease height in females [7, 172, 30, 223, 226] in contemporary

post-industrial populations.

Direct evidence for the action of stabilizing selection in humans is more scarce. Birth weight

is one reported example of a human trait under stabilizing selection [107], although the

intensity of selection has decreased in post-industrial societies [239]. A twin study of fe-

male reproductive life history traits showed evidence for a phenotypic optimum for age at

menarche [118]. Additionally, phenotypic evidence has been presented that is indicative

of the simultaneous action of directional and stabilizing selection on height in the Dutch

[227]. However, a recent study in the contemporary United States found no evidence for any

69



non-linear selection [13]–although sample size may have limited the power to detect such ef-

fects. While selection acts on phenotypes, evolution requires genetic variation. The genetic

covariance between a phenotype and fitness determines the expected evolutionary change

[204, 185, 186] of that phenotype in a population. Genetic covariances between traits can be

estimated from pedigree information or directly from molecular genetic data [133].

The use of molecular genetic data has multiple advantages over traditional sources of data

for the study contemporary selection [234, 13, 122]. The most obvious advantage is the

availability of data; genetic data from large samples of unrelated individuals are increasingly

accessible to many researchers. Another advantage comes in the ability to control for possible

cultural transmission of traits, which is generally confounded with genetics in observational

studies because parents pass both on to their offspring [222]. This issue can be partially

mitigated by accounting for population structure [184] and geography in samples of unrelated

individuals.

In the first attempt to use SNP-array data to study contemporary natural selection on

complex traits, Tropf, et al. [234] found a negative genetic correlation between relative

lifetime reproductive success (rLRS)–the individual life time reproductive success divided by

the mean–and age at first birth using a bivariate linear mixed modeling approach [230, 133].

However, Beauchamp [13] noted that the bivariate analyses are under-powered with modest

sample sizes, and chose to analyze genetic predictors derived from the results of independent

large genome-wide association studies (GWAS). Significant negative correlations between

polygenic prediction scores for female educational attainment and rLRS have been found

in the populations of the contemporary United States [13] and Iceland [122]. But, reliance

on external GWAS summary statistics limits analyses to traits which have already been

thoroughly characterized at the genetic level.

Here, we analyze the phenotypic and genetic correlates of rLRS in the UK Biobank (UKB).

The UKB is a large population-based prospective study of the genetic and environmental
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determinants of aging related disease [228]. The dataset consists of over 500,000 individuals

from the United Kingdom who have been genotyped at common SNPs and clinically pheno-

typed for many different traits. These data provide paired genotype and phenotype samples

large enough to accurately measure additive genetic correlation between many heritable

complex traits [248].

First, we apply the Lande and Arnold framework through regression analyses of the rela-

tionship between a suite of phenotypes and a proxy for fitness, rLRS, in 217,728 females

and 158,638 males. Then, the genetic data available from 157,807 female and 115,902 male

unrelated samples is used to estimate genetic correlations between the phenotypes and rLRS

through LD-score regression analysis [22, 23]. This analysis was supported by the obser-

vation that rLRS had a low, but measurable heritability. Our analyses replicate the main

results of other recent studies [234, 13, 122], and uncover a host of other significant genetic

correlations with rLRS. We also report estimates of quadratic relationships with rLRS, which

may be interpreted as evidence consistent with stabilizing or disruptive selection, informing

efforts to model the processes that maintain heritable variation in human complex traits

[187, 59, 1, 217, 141, 278, 173, 166, 242, 209]. Our observations are consistent with the

action of weak directional and stabilizing selection, and limited disruptive selection the UK

Biobank population.

4.6 Phenotypic observations

We estimate linear (β) and quadratic (γ) selection gradients by regressing rLRS onto pheno-

types and squared phenotypes [126]. Because of possible heterogeneity in selection pressures

and rLRS measurement precision–documented number of live births in females versus self-

reported number of children fathered in males–all analyses were performed on a sex-specific

basis. In total, we analyzed 37 traits in females and 33 traits in males; the traits and results
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are listed in SI Appendix, Dataset A.10. The histogram of β̂ (SI Appendix, Fig. A.26A)

shows that the observed signals of directional selection are weaker than what has been found

in other species [117]. Such weak selection gradients are unlikely to lead to large changes

in phenotypic distributions over clinically or socially relevant timescales [13, 122]. Yet, it

is important to note that the measured rLRS may be biased because it is conditional on

survival to post-reproductive age and may not be completed rLRS for males. Despite the

weak signal, we find that 23 female traits and 21 male traits have significant non-zero direc-

tional selection gradients (β̂) at a family-wise error rate (FWER) ≤ 0.05. However, many

of these traits are highly correlated (SI Appendix, Fig. A.29 and Fig. A.30) and should not

be viewed as separable axes of selection.

The β̂ estimates for traits with a significant estimate in at least one sex are shown in Fig.

4.1A. Overall, the β̂ estimates were not highly correlated between sexes. This implies that

there is some sex-specific selection acting on these phenotypes, consistent with recent work

on the genetic and phenotypic correlates of viability [165]. In many instances, the difference

between sexes is driven by a large difference in the magnitude, not the sign, of β̂. For example,

the estimate for educational attainment in females is β̂EA,F = −0.0612±0.0022 (p < 10−172)

while the estimate in males is β̂EA,M = −0.0086 ± 0.003 (p ≈ 10−2.3). Conversely, the

estimate for birth weight in males, β̂BW,M = 0.021 ± 0.0038 (p < 10−7), is much larger

than the estimate in females of β̂BW,F = 0.0047 ± 0.0027 (p = 0.084). Height is the only

trait we studied for which the data indicate sexually antagonistic selection. In females

β̂HT,F = −0.028 ± 0.0021 (p < 10−39), while in males β̂HT,M = 0.022 ± 0.0025 (p < 10−18).

Fig. 4.2 further illustrates that the predicted phenotypic optimum is above and below the

population mean height for males and females respectively, consistent with multiple previous

studies showing a difference in contemporary selection pressures on height between males and

females [226]. Further, the empirical relationships between LRS and height, as illustrated in

SI Appendix, Fig. A.27, is very similar to that which is predicted by a Gaussian stabilizing

selection model (SI Appendix, Fig. A.28).
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In contrast to a recent study [13], 12 traits in females and 14 traits in males have a significant

non-linear selection gradient estimate (γ̂). It is important to note that the sample size

available in [13] was nearly two orders of magnitude smaller than that of the present study.

The histogram of γ̂ values in SI Appendix, Fig. A.26B shows a skew towards negative

values. Specifically, 47 of the 64 sex-trait combinations examined show a negative quadratic

selection gradient (median γ̂ = −0.0059), of which 26 were significant. 24 sex-trait pairs had

a non-zero β̂ and a significant negative γ̂, which is indicative of the simultaneous action of

directional and stabilizing selection.

Fig. 4.1B shows that, unlike many of the β̂ estimates, the estimates of γ̂ were quite similar in

both sexes. For example, the estimates for height are γ̂HT,F = −0.0189± 0.0014 (p < 10−37)

in females and γ̂HT,M = −0.015± 0.0017 (p < 10−17) in males respectively. Fig. 4.1B shows

that among traits with significant γ̂ in both sexes the male estimate tends to be further from

zero (with height being an exception). We find no traits with significant γ̂ in both sexes

with opposite signs.

Fig. 4.1B shows that age at menopause, fluid intelligence score and age at first birth (AFB)

all have a positive γ̂ in females. In addition, the γ̂ for educational attainment is positive

in both sexes. A positive value of γ can be interpreted as evidence of disruptive selection.

However, our results for AFB are more indicative of a plateauing of directional selection

towards the upper phenotypic extreme rather than true disruptive selection (SI Appendix,

Fig. A.31). The situation is somewhat less clear for the other phenotypes with a significant

positive γ̂ (SI Appendix, Fig. A.32, Fig. A.35 and Fig. A.34) and these results should be

followed up more closely in future work.

A multiple regression analysis provided a more conservative perspective on the pheno-

typic correlates of rLRS. Due to multi-collinearity (SI Appendix, A.29 and A.30) and non-

overlapping missing data we had to choose only a subset of traits for the multiple regression.

The full multiple regression results are included in SI Appendix, Dataset A.10 and are sum-
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marized in SI Appendix, Table A.7. In males, the estimates of β for hand grip strength,

pulse rate, BMI, and systolic blood pressure are significant in the multiple regression and

retain their direction of association from the single-trait regression models. In females, the

estimates of β for educational attainment (EA), AFB, age at menarche, bone mineral den-

sity, systolic blood pressure, and waist-to-hip ratio are significant in the multiple regression

model. However, the direction of the association between EA and rLRS in females is positive

in the multiple regression setting. This stands in sharp contrast to the separate regression

results and strongly points against a simple linear relationship between EA and increased

rLRS. Rather, it appears that correlated factors, such as AFB, drive the apparent selection

[103] on EA.

To further explore the relationship between AFB, EA and rLRS we fit a reduced multiple

regression model with EA, AFB and their interaction. In the reduced model, all three

terms (two linear and one interaction) were highly significant (SI Appendix, Table A.7).

As in the initial multiple regression, the direction of association for EA is positive in the

reduced model. In addition, the interaction term between EA and AFB is strongly positive

( ˆβAFB:EA = 0.03 ± 0.0016(p < 10−112)). One hypothesis consistent with this observation

is that the effect of EA on rLRS becomes more positive as AFB increases and that the

negative regression coefficient in the EA alone model can be fully explained by the strong

negative association between AFB and rLRS. In simpler terms these results suggest that

among females who have children later in life, those individuals with higher EA will tend to

have more children. This is despite the fact that people with higher EA tend to have fewer

children overall and is consistent with prior work in the Icelandic population [122].

The estimates of γ were much less significant in the multiple regression compared to the

separate regressions. For females, the estimates of γ for age at first live birth and BMI were

significant–with the BMI estimate reversing direction to be positive. In males, the estimates

of γ for EA and BMI were significant–with both retaining their direction of association.
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4.7 Genetic correlations with rLRS

The phenotypic results are consistent with the action of natural selection, but for adaptation

to occur there must be effects on the genetic level. To this end, we analyzed genetic data from

157,807 female and 115,902 male unrelated samples. Estimates of the genetic correlations

between several traits and rLRS, rg,rLRS, were obtained from the data using LD-score re-

gression [22, 23]. LD-score regression uses the regression of the cross-products of z-statistics

onto a measure of linkage disequilibrium in a genomic window (the LD-score), assuming a

polygenic architecture, to estimate genetic covariance components from GWAS results. We

also analyzed the UKB interim data release using a linear mixed modeling (LMM) approach.

This approach was not computationally feasible on the full dataset; we report the results on

the full dataset using LD-score regression in the main text, but see the SI Appendix for a

discussion of the LMM results. All genetic variance and covariance estimates are contained

in SI Appendix, Dataset A.11.

Theory predicts that traits highly correlated with fitness will have low heritability [161].

As expected, rLRS has a low but significant SNP heritability in the UKB dataset, which

means that we have power to detect strong genetic correlations. Specifically, the LD-score

regression estimates of h2
SNP,rLRS were 0.056 and 0.033 in females and males respectively

with respective standard errors of 0.0046 and 0.0054. Fig. 4.3 shows r̂g,rLRS for the subset

of traits for which an estimate was marginally significant (p≤ 10−3) in at least one sex.

The estimated genetic correlation with rLRS was significant for several anthropometric traits.

For example, the estimates of r̂g,rLRS for Height are −0.1278± 0.0274(p < 10−5) in females

and −0.0074 ± 0.0412(p = 0.18) in males. Recall that we estimated a significant negative

selection gradient in females with a small but significant positive selection gradient in males.

The phenotypic results are in agreement with prior studies in western populations [226]

suggesting that selection on reproductive success favors shorter females and taller males.
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However, because we see no evidence for a genetic correlation between height and rLRS in

males we do not predict that the observed phenotypic selection in males would induce a

response to selection (in a single generation).

BMI provides another important example of evidence for directional selection on an an-

thropometric trait. We estimate that the r̂g,rLRS for BMI is 0.104 ± 0.0344(p = 10−2.6) in

females and 0.31± 0.046(p < 10−10) in males. These results are qualitatively similar to our

phenotypic results which indicated positive directional selection in both sexes with a larger

estimate in males. Although the genetic result for females did not pass our study-wise signif-

icance threshold, the results are consistent with the hypothesis that contemporary selection

on reproduction favors higher BMI in males and support exploration of the same hypothesis

in females.

The genetic correlation estimate for age at first birth (AFB) in females was the strongest

observed in our study. We estimate that the r̂g,rLRS for AFB is −0.593± 0.035(p < 10−16).

This result is consistent both with our phenotypic observations and prior pedigree based

results [30]. Educational attainment (EA) is also strongly negatively correlated with rLRS;

we estimate the r̂g,rLRS for EA to be −0.316 ± 0.037(p < 10−16) in females and −0.2539 ±

0.052(p < 10−5) in males. However, the most likely explanation for these genetic results

is something very similar to what we observed on the phenotypic level for these two traits,

which would agree with work on contemporary selection in an Icelandic population [122].

Another interesting aspect of the observed negative directional selection on AFB is that it

would suggest selection for increased female reproductive lifespan. However, the evidence

is less clear when we compare the results on AFB to other female reproductive life-history

traits such as the ages at menarche (AAM) and menopause (AMP). In fact, we estimate that

the genetic correlation with rLRS is positive for AAM (r̂g,rLRS = 0.133± 0.032(p < 10−4.4))

and negative for AMP (r̂g,rLRS = −0.168± 0.045(p < 10−3.7)). The genetic result for AMP

is particularly unexpected because it is inconsistent with both our phenotypic result (even
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though the phenotypic correlation is very small, 0.02) and a prior result obtained in a

pedigree study [30]. Further, we estimate that the genetic correlation between AAM and

AFB is strongly positive despite the fact that signs of the the r̂g,rLRS estimates for the two

traits are opposite. We intuitively expect a positive relationship between AAM and AFB

because the latter requires the former. However, the positive genetic correlation between

rLRS and AAM is less explicable.

Estimation of the genetic evidence of non-linear selection was not performed because of lack of

statistical power. Theory predicts that the additive genetic variance for a squared phenotype

is likely to be very small and, when present, is confounded with genetic control of phenotypic

variability. In addition, the empirical heritability estimates for squared phenotypes are small

(SI Appendix, Fig. A.44). Despite the lack of power, a polygenic predictor for height,

constructed from a meta analysis of the GIANT-UKB joint dataset, did show a marginally

significant negative quadratic regression coefficient in females (see SI Appendix for details).

4.8 Discussion

Estimates of linear and quadratic selection gradients were obtained via simple linear regres-

sion of a broad set of phenotypes onto a proxy for fitness. The results suggest that many

traits measured in the UKB are under the influence of directional and stabilizing selection.

However, many of the selection gradient estimates were not significant in a multiple regres-

sion setting, implicating apparent selection [103]. Yet, the population genetic architecture

of a trait may still be modified by apparent selection.

For example, the direction of association between female educational attainment and rLRS

is positive in the multiple regression, which opposes results from our single trait regressions,

genetic correlation analyses and multiple other published results [249, 62, 96, 218, 13, 122].

77



Our findings lead to the prediction that variants with a positive effect on female educational

attainment would decrease in frequency over time even if variance in educational attainment

itself does not directly cause variance in reproductive success. Consistent with this predic-

tion, recent work demonstrated that the mean polygenic score for educational attainment

has declined over time in the Icelandic population [122], but also suggest that this trend may

be explained by factors like female age at first birth.

Consistent with previous studies, our results support a hypothesis of strong negative se-

lection on female age at first birth [106, 118, 91, 90, 249, 30, 163, 223, 16, 234]. We also

observed a small but positive relationship between age at menopause in females and rLRS

on the phenotypic level, which agrees with previous results [118, 30, 222, 16]. But, we find

support for a negative genetic relationship between rLRS and age at menopause. Further,

both genetic and phenotypic data suggest a positive correlation between age at menarche

and rLRS. Thus, it is unclear whether the total reproductive lifespan is positively or nega-

tively correlated with rLRS in our data. As larger samples from diverse populations become

available, we may gain a more clear view of the selective forces acting on reproductive traits

in contemporary humans.

There is clear evidence for correlation between rLRS and several anthropometric traits. Our

findings are consistent with previous reports of selection for increased BMI [30, 13]. Addi-

tionally, the data suggest that the relationship between rLRS and height is more negative in

females than in males, which agrees with other results in the literature [223, 227, 13].

Our estimates are conditional on survival to post-reproductive ages, so the intensity of se-

lection could be different for traits that strictly influence survival. Birth weight is a classic

example of a trait under strong stabilizing selection, where high and low birth weights are

correlated with reduced survival in both males an females [107]. Yet we find no evidence for

stabilizing selection on Birth weight in males and only a marginally significant estimate of

γ̂ = −0.0057± 0.0019 (p < 10−2) in females.
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There are a few other important caveats and limitations to our present analyses. All of

our results are conditional on the suite of phenotypes that we have measured; there is a

real possibility that there are unmeasured phenotypes that drive or confound some of our

results. This issue is related to the phenomenon of apparent selection and should always be

kept in mind when studying phenotypic selection [103]. In addition, the genetic correlations

are estimated using common SNP markers (MAF>0.01), which may be a source of bias

because the genetic variants with deleterious effects on fitness are likely to be rare and thus

absent from our analyses. Yet, this should simply reduce the power of our analyses. Further,

there is evidence that the population of the UKB may not be perfectly representative of

the whole population of United Kingdom [70]. The potential ascertainment bias (heathy

particpant bias) in the UKB is important to consider and may have a quantitative effect on

our estimates, but the bias is not likely to be large enough [70] to disrupt the conclusions of

our work in a qualitative way.

The distributions of β̂ and γ̂ provide useful context for considering the types and strengths

of selective forces at play in contemporary human populations [117]. These insights support

ongoing efforts to use theoretical evolutionary models to understand the maintenance of

heritable variation for complex traits in humans [85, 203, 112, 125, 237, 187, 59, 1, 217,

141, 278, 173, 166, 242, 209]. The estimates of β and γ are qualitatively consistent with

estimates from other species [117], but the quantitative range is an order of magnitude

smaller. However, the selection gradients from our study are estimated with much more

precision that those in other species, where the sampling variance may have inflated the range

of estimated coefficients. So, while the signal of selection appears to be statistically significant

we do not expect that selection can explain observed secular trends in the phenotypes we

studied.

Stabilizing selection appears to be more common form of non-linear selection. The most com-

mon model of stabilizing selection used in evolutionary quantitative genetics is the Gaussian
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stabilizing selection model [28]. One of the most important parameters of the Gaussian

stabilizing selection model is the inverse selection intensity normalized by the phenotypic

variance, VS
VP

. This ratio quantifies how fast fitness, modeled by a Gaussian function, de-

creases as a function of distance to the theoretical fitness optimum. VS
VP

can be estimated

by the negative reciprocal of the quadratic selection gradient [103]. Based on the first and

third quartile values of γ̂, we estimate that a reasonable range for human phenotypes is

VS
VP
∼ 28 − 173 with a median of 65, which would be considered weak, but non-trivial in a

theoretical context[237]. Theoretical arguments suggest that a thorough characterization of

the effects of stabilizing at the genetic level will require larger sample sizes and/or methods

of interrogating non-additive genetic variance to directly observe stabilizing selection acting

on genetic variation in a population sample like the UKB.

We have shown the power of combining high throughput molecular genetic data with ex-

tensive phenotyping to study the ongoing dynamics of human evolution [222]. Our work

supports further study of a dynamic moving-optimum model for the evolution of complex

traits in humans. Presently, we do not know if the genetic architectures of complex traits

are commensurate with equilibrium models parameterized by their contemporary selection

gradients. If they are not, further research is needed to better understand how contemporary

evolutionary forces differ from the ones that shaped the genetic architecture of the trait.

4.9 Materials and methods

Phenotypic and Genetic data were obtained from the UK Biobank and may be accessed

by all bonafide researchers from the UK Biobank Access Management System. Only data

from samples of self-reported white-british ancestry over the ages of 45 years for females

and 50 years for men were used in all analyses, unless otherwise noted. Phenotypic analyses

were performed using linear regression in R [193]. Genetic correlations were calculated
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using LD-score regression software according to the protocol developed in [22]. Statistical

significance was determined using bonferroni corrected p-values at family wise error rate

of 0.05. The Northwest Multicentre Research Ethics Committee (MREC) approved the

study and all participants in the UK Biobank study provided written informed consent. For

detailed descriptions of the data preparation and analyses, see the SI Appendix, Supporting

Materials and Methods.
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Figure 4.1: Scatter plot showing the magnitude of (A) linear selection gradients β̂ and (B)
quadratic selection gradients γ̂ for a selection of traits in Females and Males. Traits were
selected on the basis of being significant (FWER≤ 0.05) in at least one sex. Estimates
are on the z-score scale for theoretical interpretation and consistency across traits. Points
are labeled with the following abbreviated trait descriptions: age at first birth (AFB), age
at menarche (AAM), age at menopause (AMP), basal metabolic rate (BMR), birth weight
(BW), body-fat percentage (BFP), body-mass index (BMI), systolic blood pressure (SBP),
diastolic blood pressure (SBP), educational attainment (EA), fluid intelligence score (FIS),
forced expiratory volume (FEV), forced vital capacity (FVC), hand grip strength (HGS),
height (HT), hip circumference (HC), mean time to correctly identify matches (MTM),
neuroticism score (NS), peak expiratory flow (PEF), pulse rate (PR), pulse-wave arterial
stiffness index (PWA), pulse-wave peak-to-peak time (PWP), pulse-wave reflection index
(PWRI), SRT vision estimate (SRT), bone mineral density (BMD), waist circumference
(WC), waist-to-hip ratio (WHR) and weight (WT). Note that data on AFB, AMP and
AAM are not available for males and their regression values were set to zero.
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Figure 4.2: Predicted relative fitness as a function of Height. Predicted relative fitness as a
function of Height. Linear and quadratic selection gradients were converted into parameters
of a Gaussian fitness function. Using the parameterized Gaussian fitness function, relative
fitness values across the observed phenotypic range were predicted and shown by solid red
(female) and dashed black (male) lines. The population means are indicated by vertical
solid red (female) and dashed black (male) lines. Histograms of female (red) and male
(gray) phenotypes are overlaid with an axis on the right hand side. The horizontal dashed
line indicates a relative predicted fitness of 1.
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Figure 4.3: Bar plots showing genetic correlations between a selection of traits and rLRS
for Females (red) and Males (blue). Traits were selected on the basis of being marginally
significant (p≤ 0.001) in at least one sex, and were sorted in ascending order of the estimate
for each sex. Data are displayed as the correlation estimate plus or minus the standard
error (∼ p ≤ 0.001, *FWER≤ 0.05). Bars are labeled with the following abbreviated trait
descriptions: age at first birth (AFB), educational attainment (EA), age at menarche (AAM),
age at menopause (AMP), fluid intelligence score (FIS), height (HT), basal metabolic rate
(BMR), weight (WT), hip circumference (HC), waist circumference (WC), waist-to-hip ratio
(WHR), body-fat percentage (BFP) and body-mass index (BMI).
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Chapter 5

Estimating the number of effective

alleles at a QTL

5.1 Chapter description

Estimating the number of effective alleles at a QTL

5.2 Preface

This chapter will not be published in its current form outside of this dissertation. I per-

formed all data generation and analysis steps presented here. R Code for implementing

the CaSANOVA method were obtained from Bondell et al.(2009)[18]. Additional R code for

replicating simulations from King et al.(2014)[115] were provided to me directly by Elizabeth

King.
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5.3 Abstract

Standard methods of QTL mapping assume that causal loci are biallelic. However, there

are both theoretical and empirical reasons to believe that there are several segregating al-

leles at many QTL. How much functional allelic diversity is typically present at a QTL?

Can we obtain reliable estimates of the number of alleles present at a specific QTL? Few

methods exist for estimating the true number of segregating alleles at a detected QTL.

CaSANOVA/GFLasso is one promising method that penalizes a linear regression model

based on the pairwise differences between estimated haplotype effects. Here I apply the

CaSANOVA/GFLasso method to several different QTL mapping panel designs. I assess

both the power to detect a QTL and the efficacy of CaSANOVA/GFLasso to estimate the

number of effective alleles. I find that CaSANOVA/GFLasso can provide unbiased estimates

of the number of effective alleles at large effect QTL in very large random population sam-

ples. Further, I show that performing an intercross of phased outbred lines (POLs) does not

increase the ability to estimate the number of alleles, but does provide very good power to

detect QTL.

5.4 Introduction

Most analyses of genetic association assume the presence of a biallelic quantitative trait

locus (QTL) in linkage with available genetic markers[60, 146]. However, King et al.(2014)

showed evidence that it is more typical to find multiple segregating alleles at expression

QTL[115]. They posed the following question: is it possible to directly estimate the number

of segregating alleles at QTL?

King et al.(2014) addressed this question by comparing the goodness-of-fit of a series of

linear models with haplotypes split into allelic groupings. They presented a simulation study
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and found that their model selection method was accurate when the number of true alleles

present was low. King et al.(2014) also showed that their method was biased downward in

the presence of many alleles. This left the door open for the development of new approaches

to the multiple alleles problem.

The creation of large multi-parent populations[29] from which samples can be taken for use

in quantitative trait mapping experiments [87] presents an opportunity to develop and test

new methods for estimating the number of alleles at a QTL. It might be possible to sequence

samples of diverse of haploid yeast strains derived from known founder populations[29, 87].

Haploid strains can be crossed to create diploids allowing for the estimation of both additive

and dominance effects in a multi-allelic context. Such an experimental design could eluci-

date more complex aspects of the genetic architecture of quantitative traits such as allelic

heterogeneity[115] and gene-based dominance[209].

The problem of multiple alleles has already been considered in the statistical genetics lit-

erature. Bondell et al.(2009)[18, 238] and Kim et al.(2009)[110] both proposed similar

penalized linear regression approaches to deal with multiple alleles. The methods are

called Collapsing and Shrinkage in ANOVA (CaSANOVA)[18] and the Graph Guided Fused

Lasso(GFLasso)[110] respectively. In the context of the multiple alleles problem, both meth-

ods estimate haplotype effects while shrinking the effect estimates toward one another. The

shrinkage is achieved by placing a penalty on the pairwise differences between haplotype

effects.

Here I explore several simulated multi-parental diploid QTL mapping panels. I estimate

the power to detect additive and dominance QTL under each design and then apply the

CaSANOVA/GFLasso method to estimate the number of segregating alleles. Three types of

panels are explored. First, I explore a simple random sample of diploid individuals that is

amenable to analysis with a standard genetic association test. Second, I simulate a blocked

phased outbred line (POL) design[87] that requires the use linear mixed modeling[213]. In
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the proposed POL designs, several small full POL intercrosses, e.g. Hallin et al.(2016)[87],

are constructed and analyzed jointly. Lastly, I test CaSANOVA/GFLasso method on the

design used in King et al.(2014) with the simulation approach developed therein.

I show that the CaSANOVA/GFLasso method can provide unbiased estimates of the number

of alleles in random population sample, provided the sample sizes are quite large compared

to the effect size of the QTL. Under POL designs, the CaSANOVA/GFLasso method fails to

effectively collapse haplotype effects. This failure is potentially an algorithmic one, as I em-

ployed a FaST-LMM approximation[138, 194] due to computational limitations. Alternative

direct optimization methods, such as those based on proximal gradients[270], might provide

superior performance. Despite the poor performance on the multiple alleles problem, POL

designs represent a powerful class of experiments for detecting additive and dominance QTL.

Finally, I show that the CaSANOVA/GFLasso method behaves very similarly to the model

selection method employed in King et al.(2014), when applied to the same simulations. This

suggests that perhaps the study design, not the statistical method, is the main factor limiting

our ability to estimate the number of segregating alleles at a QTL.

5.5 Results and Discussion

5.5.1 The GWAS design

I assume the existence of an outcrossing population founded from 18 inbred lines that has

been freely recombining for many generations with no selection. From this population, pairs

of haploid individuals can be sampled and crossed to create diploids. In the simplest exper-

imental design, one could randomly generate a panel of diploid individuals whose genotype

at a particular locus will correspond to one of the 18 founder haplotypes at that locus.
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This type of random sample is amenable to single locus analysis, i.e. GWAS, and I call this

approach the GWAS design. I simulated multi-haplotype single locus genotypes under the

GWAS design, performed ordinary least squares linear regression to estimate the haplotype

effects[115] and then applied the CaSANOVA/GFLasso method to estimate the number of

effective alleles present. Figure 5.1 shows an example of how the haplotype effect estimates

go from being scattered (Figure 5.1a) to aligned in clear groups after (Figure 5.1b) the

application of the CaSANOVA/GFLasso method.

As expected, the GWAS design provides good power to detect additive QTL (Figure 5.2).

Figure 5.2 shows that with multiple replicate experiments and the sample size of N=2000,

there is nearly complete power to detect a QTL that explains 1% of phenotypic variance. I

explored several genetic models of dominance, ranging from pure dominance (max) through

co-dominance (add) to pure recessivity (min). Figure 5.3 shows that the GWAS design

has good power to detect a dominance QTL under the purely recessive (min) model, while

showing no indication of false positives under co-dominance (add). One explanation for the

difference in power under the min and max models (Figure 5.3) is that I included a putative

“wild-type” allele in all my simulations. The “wild-type” allele was given a value of zero,

while all other alleles were given positive effects; this modeling approach means that the min

function creates a more pronounced deviation from additivity.

The CaSANOVA/GFLasso can shrink and collapse the haplotype effect estimates in an

unbiased way under the GWAS design (Figure 5.4). Yet, Figure 5.4 also shows that there

is a large amount of variance around the true value, even for large sample sizes. While

the variance does decrease as sample size increases, it may still be prohibitively expensive to

sequence sample sizes large enough to reliably estimate the number of alleles at any particular

QTL.

89



5.5.2 POL designs

The POL design can be powerful method for mapping QTL[87]. In a complete POL cross,

two distinct sets of haploid lines from an out crossing population are intercrossed in an all by

all fashion. Here I tried to strike a balance between the number of unique haploid genomes

sequenced and the total number of phenotypic measurements made. Therefore, I constructed

many small complete POL intercrosses and analyzed them jointly; Figure 5.5 illustrates the

POL designs used here.

The POL design has more power than the GWAS design to detect additive QTL, when

the number of individuals sequenced is similar. Figure 5.2 shows that with N=750 under a

GWAS design, power is quite low, but under the POL design with N=768 Figure 5.6 shows

that power is high. The POL design similarly shows more power to detect dominance QTL

than the GWAS design, as shown by Figure 5.7. However, the POL design also shows a

tendency to produce false positives. Figure 5.7 shows that when the heritability explained

by the focal locus is low, the LMM will sometimes find a significant dominance QTL under

an additive model. The false positives disappear when there is more power, either with

increased repetition or QTL effect size (Figure 5.7).

It appears extremely difficult to correctly estimate the number of effective alleles in the

POL design. The CaSANOVA/GFLasso method regularly fails to shrink and collapse any

haplotype effects under the FaST-LMM framework (Figure 5.8). I next considered whether

it was possible to ignore the correlation structure in the POL design and simply perform

single marker GWAS.

I found that the average linkage disequilibrium (LD) in the panel decayed extremely rapidly

as a function of lines used (Figure 5.9). The lack of LD suggested that a single marker

analysis might not be heavily biased by the structure of the cross. However, using the

standard regression approach (used in the previous GWAS section) did not improve the
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ability to estimate the number of alleles (Figure 5.12).

5.5.3 Comparison to King et al.(2014)

King et al.(2014) proposed a model selection method to determine the best grouping of

haplotypes. They then used the number of groups as an estimate of the number of effective

alleles at a QTL. In a simulation based on real genotypes from their RIL crosses, they showed

that the model selection method was accurate when the number of alleles was low, but was

conservative when the number of alleles was high.

I used scripts provided by King et al.(2014) to generate similar simulated data. Then I

applied the basic linear model version of CaSANOVA/GFLasso method to those data. Figure

5.13 shows that the CaSANOVA/GFLasso method produces a very similar behavior on the

King et al.(2014) simulated data as the model selection method. I tested whether expanding

the size of the RIL cross would improve the behavior, but Figure 5.13 showed that the

conservative behavior persists even with 10,000 RIL crosses.

5.5.4 Discussion

Estimating the number of alleles at a locus remains an open problem. It appears that it is

much easier to estimate this number when the true number of alleles is much smaller than

the number of known founder haplotypes (Figures 5.4 and 5.13). This could be because it is

necessary to have an allele represented several times in the linear model coefficient vector in

order to properly assign it to a new allele group. Of course, with increasing sample size the

standard error of the coefficients become small and the model will converge on the truth.

The POL design deserves serious consideration as an approach to mapping QTL. It has high

power to detect both additive and dominance QTL, with lower sequencing cost as compared
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to the GWAS design. However, it performed extremely poorly on the allele estimation

problem.

I believe that there are potentially several problems with how the POL design was analyzed

in this work. First, the FaST-LMM approach only approximately solves the model and is a

source of error. Direct methods to optimize the LMM with CaSANOVA/GFLasso penalty,

such as proximal gradient methods[270], might provide superior performance on this problem.

In addition, I did not explicitly account for the polygenic background in my analysis of the

POL design. Therefore, including a genome wide empirical kinship matrix[87] is an obvious

next step.

Interestingly, the CaSANOVA/GFLasso method performed conservatively on the King et

al.(2014) simulated data. This behavior was qualitatively similar to the model selection

method employed in King et al.(2014). This indicates that the major limitation to estimating

the number of alleles is the study design, not the statistical method. I would argue that the

CaSANOVA/GFLasso method has received more attention in the statistical literature [18,

238, 110, 270] and is possibly more well understood. This makes the CaSANOVA/GFLasso

method a good candidate for further exploration.

5.6 Methods

5.6.1 Genetic association test in a random sample

Single locus genotypes were simulated based on a randomly mating population at linkage

equilibrium which was constructed from a set of 18 founder lines. Each founder haplotype

was assumed to be present at equal frequency in the population. The founder haplotype

effect sizes were assigned based on the number of assumed effective alleles, which ranged
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from 2 to 16.

In all cases, a base allele was assumed to have an effect of zero. The remaining alleles were

assigned effects based on a draw from a gamma distribution with shape=1 and scale=0.1.

The effect size distribution was chosen to mimic the simulations from Thornton et al.(2013)

[232, 209], in which gamete effects were based on a sum of point mutations each with an

effect drawn from an exponential distribution. Therefore, the distribution used in these

simulations reflects the assumption of approximately one causal variant per effective allele

and an average effect size of 0.1 with variance 0.01.

Founder haplotypes were then randomly assigned to an effective allele. Population sam-

ples of size N = 750, 1,000, 1,500, 2,000, or 2,500 were taken at random. Phenotypes for

each diploid individual were determined by the standard quantitative genetic model, which

assumes independent genetic and environmental contributions[60, 146].

P = G+ E

The environmental contribution was drawn from a Gaussian distribution with mean zero and

variance σ2
e . The environmental variance used was tuned to make the heritability due to the

focal locus equal to H2=0.25%-50%; tuning was done in each replicate by first determining

the actual variance of G and then back calculating the necessary σ2
e .

Genetic values were determined by one of five distinct genetic models. All of the models can

be described by a single power mean function

Gp = (
1

2
(gp1 + gp2))

1
p

The parameter p is set to either negative infinity, -1, 0,1, or positive infinity. These values of

p correspond to the minimum, harmonic mean, geometric mean, arithmetic mean (additive),

93



and maximum functions. From a biological perspective the minimum, harmonic mean, and

geometric mean all reflect recessive models of decreasing completeness, the arithmetic mean is

an additive co-dominant model and the maximum function is a model of complete dominance.

Importantly, the geometric mean function (p=0) is equivalent to the gene-based recessive

model from Thornton et al.(2013) and chapter 2 of this document.

To simulate replicate experiments, several environmental effects (E) are drawn for each

individual in the sample. These environmental effects are averaged and added to the the

genetic effect to determine a line/individual mean value(y). The line/individual means are

regressed against genotype to estimate haplotype effects.

Finally a penalized linear regression model was fit based on the CaSANOVA/GFLasso

methods[18, 110]. We regress phenotype (y) onto the model matrix (X) of haplotype encod-

ings. Specifically, the basic model matrix (X) contains no intercept column and 18 columns

corresponding to count (0,1 or 2) of the corresponding founder haplotype. To estimate the

founder effects vector β, we minimize the sum of squared error subject to penalty on the

sum of pairwise differences between haplotype coefficients.

β̂ = argminβ(||y −Xβ||2 + λ
∑
i

∑
i<j

|βi − βj|)

Subject to ∑
i

βi = 0

The parameter λ determines the strength of the penalty applied to the pairwise differences

and is tuned by Bayesian Information Criterion (BIC). Code to implement this method

was adapted from [18, 238]. The final haplotype coefficient vector values were rounded to

the parameter ε = 1e-6, which was used as the convergence criteria CaSANOVA algorithm.

The number of unique values in the haplotype coefficient vector was used to determine the
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number of effective alleles in the population.

In addition to the number of effective alleles, it was also possible to calculate the power to

detect QTL under this study design. To do so, an unpenalized linear regression model is fit

and significance is evaluated with an F-test. The F-test is performed with α = 0.05
1200

, because

there can be assumed to be approximately 1,200 10kb loci in a yeast genome(Anthony Long,

personal communication). The unpenalized linear regression model is fit with the basic

model matrix(X), as outlined above, as well as a dominance effect model matrix(D) that is

encoded according to the multi-allelic haplotype model of Da et al. 2015 [46]. With these

two matrices it is possible to evaluate the power to detect additive and dominance QTL.

5.6.2 Phased outbred line intercross (POL)

In the genetic association procedure described above, each individual represented a cross

between two randomly chosen haploid lines. Therefore, to perform a GWAS with N diploids

one must sample and sequence 2*N haploid lines, to be crossed at random without replace-

ment. An alternative approach which reduces the number of sequenced lines and increases

the number of phenotypic measurements is an intercross of haploid lines. The diploids con-

structed from the cross of haploid lines are called phased outbred lines (POLs)[87].

In a POL intercross, two distinct sets of lines are fully crossed to each line in the other set.

This is distinct from a diallel because in a diallel there is only one set of lines. Haploid lines

extracted from a randomly mating population constructed from inbred founders are similar

to recombinant inbred lines. Therefore a haploid line intercross is very similar conceptually

to the recombinant inbred line cross design[115].

To simulate a POL design, two sets of N=768 haploid genomes were generated with 1,200

loci per genome. A founder haplotype is assigned to each locus in each haploid genome at
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random, assuming equal founder frequencies in the population. Both the total heritability

of the trait and heritability explained a focal major effect QTL are varied in the simulations.

Remaining heritability not explained by the focal major effect QTL is distributed across a

polygenic background, assumed to be composed of 50% of the genome, i.e. 600 loci.

Three POL designs were simulated. All three are highly sparse POL designs in that a full

intercross is only performed within small blocks of the total 768 by 768 design matrix. Design

1 consisted of 96 sets of complete 8 by 8 POL blocks, Design 2 was 64 sets of 12 by 12 POL

blocks and Design 3 alternates between 8 by 8 and 12 by 12 POL blocks. Within each

POL block, all haploids in set a are crossed to all haploids in set α. Single locus haplotype

effects are drawn in the same manner as described in the previous section. The polygenic

background is assumed to be purely additive.

In these POL designs the diploid individuals within row/column of a POL block share an

entire genome-wide haplotype. Therefore phenotypic measurements within a POL block are

far from independent and a linear mixed effect model (LMM) must be used to properly

account for the study design[87]. Specifically, the fixed effect additive X and dominance

D matrices, as described above, are fit along with a random effect matrix Z corresponding

to each haploid line. The Z matrix has length equal to the total number of phenotypic

measurements and width 2N = 1536. The full LMM is outlined below:

y = Xβ +Dδ + Zu+ ε

In order to estimate the number of effective alleles, we first remove the dominance matrix, as

was done in the previous section. Then the same CaSANOVA/GFLasso penalty is applied

to the fixed effects vector (β). Previous authors have described how to apply penalization

terms to fixed effects in an LMM setting [17, 210, 194]. We modify the approach outlined

in Schelldorfer(2011)[210], by applying the CaSANOVA/GFLasso penalty to the objective
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function of the LMM; this function is the standard negative log-likelihood function of the

LMM[213] without the constant term.

Q =
1

2
log|V |+ 1

2
(y −Xβ)V −1(y −Xβ) + λ

∑
i

∑
i<j

|βi − βj|

Where V is the covariance matrix of the random effects. Because this function is neither con-

vex nor separable in terms of the parameters(β), most optimization procedures such as gra-

dient descent will fail[210, 235]. Therefore, the factored spectral transformation(FaST)[138]

is applied to the LMM, to reduce it to the standard penalized regression problem[194]. The

FaST-LMM transformation is outlined in both Lippert et al.(2011)[138] and Rakitsch et

el.(2013)[194]. It essentially involves fitting the LMM without fixed effects, then perform-

ing an eigendecomposition on V , rotating the model matrix(X) and scaling the phenotypic

observations(y) to turn remove the random effects from the model equation. The transformed

model matrix and phenotype vector can then be used in the standard CaSANOVA/GFLasso

method.

5.6.3 Testing CaSANOVA/GFLasso on the King et al simulations

In addition to the random population sample and the RIX design, CaSANOVA/GFLasso

was applied to the simulations from King et al 2014[115]. King et al 2014 [115] analyzed a

set of over 596 RILs of Drosophila melanogaster. They simulated genetic data by sampling

from their empirical RIL genotype calls. Allele effects were sampled from a Gaussian dis-

tribution or took on fixed values from 1 to the number of simulated effective alleles. Here,

genotype data was generated with scripts from King et al.(2014). These data were fed into

the CaSANOVA/GFLasso method described above. In addition, genotype data of the same

structure was generated for a much larger hypothetical RIL panel of 10,000 RILs.
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5.7 Chapter 5 Figures

a b

Figure 5.1: Example of CaSANOVA/GFLasso method. Estimates of founder haplotype ef-
fects are shown based on the (a) original linear model and (b) the CaSANOVA/GFLasso
method. In this example, a sample of N=1,500 diploid individual is analyzed under
the GWAS design. There are 3 functional alleles at an additive QTL that explains
10% of phenotypic variance. Three replicate experiments were performed and the the
CaSANOVA/GFLasso method was applied to the line means.
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Figure 5.2: Power of to detect an additive effect QTL with GWAS design. These panels
show power at α = 0.05

1200
as function of the heritability explained by the QTL. The horizontal

facet shows the results when there are h=2 to h=16 functional alleles at the QTL. The color
of the lines represent the genetic model and the line shape corresponds to the number of
replicate experiments simulated
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Figure 5.3: Power of to detect a dominance effect QTL with GWAS design. These panels
show power at α = 0.05

1200
as function of the heritability explained by the QTL. The horizontal

facet shows the results when there are h=2 to h=16 functional alleles at the QTL. The
vertical facet shows how the results change as a function of sample size. The color of the
lines represent the genetic model and the line shape corresponds to the number of replicate
experiments simulated
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Figure 5.4: Estimated number of effective alleles using CaSANOVA/GFLasso with GWAS
design. These panels show the relationship between the true number of alleles and the
estimated number of alleles at an additive QTL. These data reflect 4 replicate simulations.
The horizontal facet shows how the results change as a function of heritability explained
by the QTL. The vertical facet shows how the results change as a function of sample size.
The size of the gray circles correspond to the number of simulation replicates taking on that
value. The line y = x is illustrated in black.
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Figure 5.5: POL study designs. I tested three different mapping panel designs based on
phased outbred lines (POLs). All three designs involved two sets of 768 haploids (RIL), with
either (a) 96 sets of 8 by 8, (b) 64 sets of 12 by 12, or (c) 38 sets of 12 by 12 and 39 sets of
8 by 8 alternating. This figure only shows up to 52 of the 768 haploids (RIL) used in each
cross.
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Figure 5.6: Power of LMM detect an additive effect QTL with POL design. These panels
show power at α = 0.05

1200
as function of the number of alleles segregating at a QTL. The

horizontal facet shows how the results change as a function of experimental design. The
vertical facet shows how the results change as a function of heritability explained by the
QTL. The color of the lines represent the genetic model and the line shape corresponds to
the number of replicate experiments simulated.
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Figure 5.7: Power of LMM to detect a dominance effect QTL with POL design. These
panels show power at α = 0.05

1200
as function of the number of alleles segregating at a QTL.

The horizontal facet shows how the results change as a function of experimental design. The
vertical facet shows how the results change as a function of heritability explained by the
QTL. represent the genetic model and the line shape corresponds to the number of replicate
experiments simulated.
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Figure 5.8: Estimated number of effective alleles using LMM-CaSANOVA with POL design.
These panels show the relationship between the true number of alleles and the estimated
number of alleles at an additive QTL that explains 50% of phenotypic variance. The hori-
zontal facet shows how the results change as a function of experimental design. The vertical
facet shows how the results change as a function of experimental replicates. The size of the
gray circles correspond to the number of simulation replicates taking on that value. The line
y = x is illustrated in black.
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Figure 5.9: Decay of overall LD[271] between neighboring loci in a POL design as a function
of number of haploid lines used in the POL cross.

106



●● ●● ●● ●●

●

●

●● ●● ●●●● ●● ●● ●●

●● ●

● ●● ●●

●● ●● ●● ●●●

●

●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●

●● ●● ●● ●●

●●

●● ●● ●●●● ●● ●● ●●

●

●

●● ●● ●●

●● ●● ●● ●●
●●

●● ●● ●●●● ●● ●● ●●●
●

●● ●● ●●

●● ●● ●● ●●

●

● ●● ●● ●●●● ●● ●● ●●

●

●

●● ●● ●●

●● ●● ●● ●●
●
●

●● ●● ●●●● ●● ●● ●●●
● ●

● ●● ●●

design: 1 design: 2 design: 3

H
2_locus: 0.04

H
2_locus: 0.1

4 8 12 16 4 8 12 16 4 8 12 16

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Number of segregating alleles

P
ow

er
 to

 d
et

ec
t a

dd
iti

ve
 Q

T
L

Reps
4

12

Model
●

●

●

●

add

geom

max

min

Figure 5.10: Power of linear regression to detect an additive effect QTL with POL design.
These panels show power at α = 0.05

1200
as function of the number of alleles segregating at a

QTL. The horizontal facet shows how the results change as a function of experimental design.
The vertical facet shows how the results change as a function of heritability explained by
the QTL. The color of the lines represent the genetic model and the line shape corresponds
to the number of replicate experiments simulated.
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Figure 5.11: Power of linear regression to detect a dominance effect QTL with POL design.
These panels show power at α = 0.05

1200
as function of the number of alleles segregating at a

QTL. The horizontal facet shows how the results change as a function of experimental design.
The vertical facet shows how the results change as a function of heritability explained by
the QTL. The color of the lines represent the genetic model and the line shape corresponds
to the number of replicate experiments simulated.
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Figure 5.12: Estimated number of effective alleles using CaSANOVA with POL design. These
panels show the relationship between the true number of alleles and the estimated number
of alleles at an additive QTL that explains 50% of phenotypic variance. The horizontal facet
shows how the results change as a function of experimental design. The vertical facet shows
how the results change as a function of experimental replicates. The size of the gray circles
correspond to the number of simulation replicates taking on that value. The line y = x is
illustrated in black.
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Figure 5.13: Estimated number of effective alleles using CaSANOVA with King et al., 2014
design.
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Chapter 6

Conclusion

6.1 Chapter description

Conclusion

6.2 Understanding the evolution of human complex

traits and its implications in statistical genetics

Throughout this document I have considered several issues in understanding the genetic

architecture of complex traits. First, I performed a detailed simulation study using realistic

models of human demography and explored different concepts of dominance. This work

contributed to the missing heritability problem by providing a solution to one major weakness

of the RALE hypothesis. Specifically I showed that with gene-based dominance it is possible

to have a RALE model without the existence of many low-frequency statistical significant

markers. I also showed that molecular genetic methods for estimating dominance variance
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would fail under gene-based dominance in such a way that is predictable and consistent with

empirical results. Using these simulation studies as a goal, Kevin R. Thornton and I were

forced to push the boundary on what was possible to simulate explicitly forward in time. The

bulk of the software engineering was done by Kevin. R. Thornton and I am tremendously

grateful for that.

There are several ways in which this type of simulation study could be expanded upon. First,

it would be useful to simulate larger populations in order to maintain pace with the sample

sizes being collected today in human genetics. Understanding how our observations change

as a function of sample size could be a very powerful statistical signature from which to

draw inferences. Another potentially profitable avenue of research includes the expansion to

genome-wide simulation. My work to date focused on simulating single 100 kilobase regions,

but it might be possible soon to perform multi-locus simulations. Multi-locus simulations

would enable a more general discussion of the structure of polygenic genetic architectures

and their statistical properties. Lastly, I would encourage the development of multivariate

trait simulations, as the study of genetic covariance in human complex traits has expanded

considerably in recent years[23, 139, 140].

In the second chapter of this document I described an efficient implementation of the ESM

test. I demonstrated empirically that it had more power to detect trait associated genomic

regions than existing methods. This test is fundamentally based on order statistics and thus

may present a profitable avenue for further development of new statistical tests. There are

currently very few order statistic based tests in the genetics literature[52]. The implementa-

tion itself could be made more efficient by using an adaptive permutation approach rather

than the current brute force method. Further, the software could be made more flexible

by allowing for tests of arbitrary sets of markers, as opposed to the current sliding window

approach. Testing on arbitrary sets of markers could enable genetic or biochemical pathway

based analysis, potentially broadening the scope of the test.

112



Chapter 3 focused on an empirical analysis of contemporary selection in a population sam-

ple from the United Kingdom. This work was important for two major reasons. First it

represented the first inference of widespread stabilizing selection in humans. This allowed

me to estimate a reasonable range for Vs, which is critical in theoretical models of mutation

selection balance on quantitative traits. Second, I demonstrated genetic evidence of direc-

tion selection for several traits contributing to growing body of evidence[30, 234, 13, 122]

supporting a dynamic model of contemporary human evolution.

Several interesting questions are brought up by the work presented in chapter 3. Are the

genetic architectures of specific complex traits commensurate with the relevant parameter

estimates obtained in contemporary populations? Answering this question will give us a clue

as to how contemporary evolutionary forces might differ from those which have shaped the

genetic basis of a complex trait. I argue that we can turn to simulation studies such as those

presented in chapter 1 to begin addressing this issue. Another question is whether we can

provide genetic evidence of stabilizing selection. Theoretical analyses presented in chapter 3

suggest that doing so will be very difficult statistically and that having 500,000 samples is

still not enough. However, finding this genetic evidence is very important it has been shown

both in my own work and by[195] that phenotypic evidence alone is not completely reliable.

Thus, while the work presented in chapter 3 is very promising, it awaits validation at the

genetic level.

In conclusion, we are still a very long way from fully understanding the genetic architecture

of complex traits. And perhaps even further from understanding how these architectures

came to exist and how they will evolve over time. However, the scientific community seems

committed to collecting the type of population scale genome sequencing data necessary to

continue advancing in this area. More attention needs to be paid to large scale population

sequencing in model organisms, where statistical results can be more easily followed up with

experimental manipulations. In fact, both the RALE and infinitesimal models of genetic
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architecture will require that we sequence extremely large samples before we can see all the

variation. The difference is that under the RALE we expect to see more and more associated

variants within the same loci, while the infinitesimal model we expect to find more and more

loci. The advances in the scale of data collection will be met with continuous development

of theory[216]. There will not be a single unified model for all traits[28], but we can make

it our goal to know what the key measurements are and how to properly make them. Then

we will be well on our way to understanding the genetics of complex traits.
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G. Harrison, R. Bukowski, G. G. Smith, F. Malone, R. Ball, D. Nyberg, C. Com-
stock, f. t. F. R. Consortium, et Al., K. Burnham, D. Anderson, M. Devi, J. Ku-
mari, C. Srikumari, P. Ellison, A. Frisancho, J. Sanchez, D. Pallardel, L. Yanez,
E. Georgiadis, D. Gigante, B. Horta, R. Lima, F. Barros, C. Victora, D. Gigante,
K. Rasmussen, C. Victora, S. Helle, V. Lummaa, J. Jokela, P. Hindmarsh, M. Geary,
C. Rodeck, J. Kingdom, T. Cole, L. Hurt, C. Ronsmans, S. Thomas, B. Jacobsen,
I. Heuch, G. Kv̊ale, G. Jasienska, A. Kemkes-Grottenthaler, E. Ketterson, V. Nolan,
K. Kirk, S. Blomberg, D. Duffy, A. Heath, I. Owens, N. Martin, E. L. Bourg, J. Liljes-
trand, S. Bergström, S. Westman, R. Loos, C. Derom, R. Eeckels, R. Derom, R. Vli-
etinck, V. Lummaa, K. Marsál, P. Persson, T. Larsen, H. Lilja, A. Selbing, B. Sultan,
R. Martorell, H. Delgado, V. Valverde, R. Klein, W. Mueller, A. Must, S. Phillips,
E. Naumova, M. Blum, S. Harris, B. Dawson-Hughes, et Al., D. Nettle, M. Okasha,
P. McCarron, J. McEwen, G. G. Smith, N. Onland-Moret, P. Peeters, C. van Gils,
F. Clavel-Chapelon, T. Key, A. Tjønneland, et Al., G. Parker, N. Royle, I. Hartley,
J. Pettay, S. Helle, J. Jokela, V. Lummaa, M. Ritamies, D. Roff, D. Roff, D. Fairbairn,
T. Scholl, M. Hediger, R. Sear, R. Sear, N. Allal, R. Mace, I. McGregor, R. Sear,
R. Mace, I. McGregor, K. Silventoinen, A. Vetta, and T. Williams. A tradeoff between
reproduction and growth in contemporary Finnish women. Evolution and Human Be-
havior, 29(3):189–195, may 2008.

[91] S. Helle, V. Lummaa, and J. Jokela. Are reproductive and somatic senescence coupled
in humans? Late, but not early, reproduction correlated with longevity in histori-
cal Sami women. Proceedings of the Royal Society of London B: Biological Sciences,
272(1558), 2005.
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L. Arlestig, H. K. Choi, Y. Kamatani, P. Galan, M. Lathrop, S. Eyre, J. Bowes,
A. Barton, N. de Vries, L. W. Moreland, L. A. Criswell, E. W. Karlson, A. Taniguchi,
R. Yamada, M. Kubo, J. S. Liu, S.-C. Bae, J. Worthington, L. Padyukov, L. Klareskog,
P. K. Gregersen, S. Raychaudhuri, B. E. Stranger, P. L. De Jager, L. Franke, P. M.
Visscher, M. A. Brown, H. Yamanaka, T. Mimori, A. Takahashi, H. Xu, T. W. Behrens,
K. A. Siminovitch, S. Momohara, F. Matsuda, K. Yamamoto, and R. M. Plenge.
Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature,
506(7488):376–81, feb 2014.

[175] A. Okbay, J. P. Beauchamp, M. A. Fontana, J. J. Lee, T. H. Pers, C. A. Rietveld,
P. Turley, G.-B. Chen, V. Emilsson, S. F. W. Meddens, S. Oskarsson, J. K. Pickrell,
K. Thom, P. Timshel, R. de Vlaming, A. Abdellaoui, T. S. Ahluwalia, J. Bacelis,
C. Baumbach, G. Bjornsdottir, J. H. Brandsma, M. Pina Concas, J. Derringer, N. A.
Furlotte, T. E. Galesloot, G. Girotto, R. Gupta, L. M. Hall, S. E. Harris, E. Hofer,
M. Horikoshi, J. E. Huffman, K. Kaasik, I. P. Kalafati, R. Karlsson, A. Kong, J. Lahti,
S. J. van der Lee, C. DeLeeuw, P. A. Lind, K.-O. Lindgren, T. Liu, M. Mangino,
J. Marten, E. Mihailov, M. B. Miller, P. J. van der Most, C. Oldmeadow, A. Payton,
N. Pervjakova, W. J. Peyrot, Y. Qian, O. Raitakari, R. Rueedi, E. Salvi, B. Schmidt,

141



K. E. Schraut, J. Shi, A. V. Smith, R. A. Poot, B. St Pourcain, A. Teumer, G. Thorleif-
sson, N. Verweij, D. Vuckovic, J. Wellmann, H.-J. Westra, J. Yang, W. Zhao, Z. Zhu,
B. Z. Alizadeh, N. Amin, A. Bakshi, S. E. Baumeister, G. Biino, K. Bønnelykke,
P. A. Boyle, H. Campbell, F. P. Cappuccio, G. Davies, J.-E. De Neve, P. Deloukas,
I. Demuth, J. Ding, P. Eibich, L. Eisele, N. Eklund, D. M. Evans, J. D. Faul, M. F.
Feitosa, A. J. Forstner, I. Gandin, B. Gunnarsson, B. V. Halldórsson, T. B. Har-
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Appendix A

Supplementary information for all

chapters

A.1 Chapter 2 supplementary texts

A.1.1 Population genetic modeling of complex traits

Forward-in-time simulations, as in [1, 141, 240, 31] and [183, 114, 21, 173] , explicitly model

the allele frequencies and effect sizes of mutations in a genomic region with neutral sites,

selected sites and recombination. Within the forward simulation framework, methods differ

in their approach to assigning phenotypes to particular genotypes. One approach, based on

the work of [59], models a mutation’s effect on fitness as a pleiotropic consequence of its

effect on trait values. In that model, by specifying a parameter τ , the user establishes the

shape of relationship between the fitness effects and expected trait effects of variants [1, 141]

and [166, 173]. There is another term, ε, which adds noise to the fitness-trait relationship;

together τ and ε determine the correlation between fitness effects and trait effects. A related
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approach that builds off of much earlier work by [108], models trait and fitness effects as

coming from a bivariate gamma distribution with a specified correlation parameter ρ [31].

In both approaches the disease-trait itself is not a component of fitness and thus standing

variation may be dominated by occasional large trait effect mutations with small fitness

effects that can reach intermediate frequency. The extent to which this occurs is dependent

on the degree of correlation between fitness and trait effects. Furthermore, both approaches

indicate that an intermediate degree of correlation between complex disease traits and fitness

is most plausible [1, 31, 150](although [150] is not a population genetic simulation based

implementation of [59], a similar conclusion was reached.)

The approach in [232] is similar to typical models [85, 130, 43, 116, 65] and [237] of selection

on quantitative traits where phenotype is the sum of genetic and environmental components

and is subjected to Gaussian stabilizing selection. A key difference between [232] and the

typical quantitative trait models is that all causal mutations are unconditionally deleterious

and the gene action model exhibits gene-based recessivity, i.e, allelic non-complementation.

While the work in [232] presented a new genetic model, it was limited because only that

model was explored under a single demographic scenario (constant sized population). To our

knowledge, there has not been a joint analysis of the effect of genetic model and demography

on the predicted outcomes of GWAS. Thus, we extend the approach of [232] by including a

model of recent population expansion and a set of genetic models.

A.1.2 Heritability and genetic load under population growth

Before deeply exploring the predicted genetic architecture of a trait under each model, we

looked at two key mean values: total genetic variance and load. The genetic variance

underlying a trait is, in part, determined by the outcome of mutation-selection balance.

Approximations for the expected genetic variance under models of stabilizing selection with
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Gaussian mutational effect sizes and additive gene action have been derived previously[112]

and [237].

According to the house-of-cards(HOC) approximation, when the variance in mutational effect

sizes is large compared to total genetic variance, the genetic variance will be dependent only

on the mutation rate, µ, and the intensity of stabilizing selection, 1/σ2
s . Here, µ refers to the

total mutation rate in the “gene region” (per gamete, per generation), with mutations arising

according to an infinitely-many sites scheme [113]. In a diploid species, VG ≈ 4µσ2
s for an

additive trait, and VG ≈ 2µσ2
s for a recessive trait [237, 219]. By keeping σ2

s and µ constant,

we can modulate the broad sense heritability (H2 = (VG)/(VG + VE)) by changing the

environmental variance, VE = σ2
e . These approximations are expected to hold for arbitrary

probability distributions of mutational effect sizes [27]; however all distributions discussed

in [27] are reflected about zero. Here, as in [232], we draw the effect sizes of causal mutation

from a standard exponential distribution, modeling unconditionally deleterious mutations.

As previously shown in [232], heritability approaches the value expected under the HOC

approximation when the variance in effect sizes (λ2) is large (A.1).

Previous work, under additive genetic models, on the impact of population growth on the

genetic architecture of complex traits suggests that mean heritability is constant under

growth [141, 217]. We confirm this in A.1, showing that mean broad-sense heritability,

H2 = (VG)/(VP ), initially increases as λ, the mean effect of a new deleterious mutation,

increases and then approximately reaches the same level as models with constant popula-

tion size. This general trend is observed under each genetic model, but the MR model is

qualitatively different in its behavior under population growth. The MR model predicts a

broad sense heritability under growth of about 90% of constant sized population levels when

λ = 0.01, and 50% when λ = 0.5 (A.2).

The degree to which recent demographic history has impacted the distribution of genetic

variance over risk allele frequency in human populations is still unclear. One line of evidence
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may come from the study of genetic load in humans. If fitness effects and trait effects of

variants are correlated, then the composition of the genetic load of deleterious mutations

in the population is highly relevant to the genetic architecture of that trait. Comparisons

between populations with different demographic histories provide insight into the impact of

demography on genetic load. The influential study of [142] found there to be both more

non-synonymous relative to synonymous variants and a higher average number of homozy-

gous non-synonymous sites in European Americans than African Americans. Later studies

showed empirically and through simulations that the mean allele frequency of deleterious

mutations is not impacted by recent demographic history [217, 71, 49]. Simulations pre-

sented by [178] suggest that load is expected to increase during a range expansion, without

an increase in mean frequency of deleterious alleles, due to an increase in homozygosity at

deleterious recessive sites. By invoking expansion load theory and empirical data from mul-

tiple human populations, [92] argue that load is increased in non-African populations due

to serial bottlenecks during range expansion after the out of Africa event. While arguments

about genetic load are sensitive to choice of metric [79], and the empirical evidence support-

ing one view or another is still lacking, it does appear that any differences between current

human populations due to past population bottlenecks is likely to be small.

Our results show that genetic burden (load), as measured by the average relative deviation

from optimum fitness, of the population is also unaffected by recent population history under

the AC model (A.3), as shown in [217, 141, 8]. We find this same behavior under the GBR

model, but not under the MR model. Under rapid population expansion, the load decreases

slightly (at most 2%). As λ increases the load increases under the additive model in both

demographic scenarios. Load is effectively constant over the range of λ under the GBR

model. Increasing the heritability of the trait decreased the magnitude of the genetic load,

but had no interaction with the effects of demography or increasing mean effect size.

We also find that the dynamics of load under more complex demographic models involving
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multiple bottlenecks and recent growths behaves as expected from previous literature[119]

and [217, 8]. The Tennessen[229] demographic model is characterized by an ancient expan-

sion, two recent bottlenecks and subsequent rapid population expansion. In models with

strong recessive selection the load should increase immediately after the bottleneck, then

decay due to the purging of deleterious alleles in homozygotes [119]. Upon population rex-

pansion, in models with strong recessive selection, we expect the load to further drop below

equilibrium levels [217, 8]. We observe this pattern most clearly in the multiplicative reces-

sive models (cMR or iMR(h = 0.1)) when λ is large A.18. In A.19 we also show the Burden

Ratio (Br) [8] calculated relative to a model with no bottleneck or growth, which provides

a clear visualization of the aformentioned dynamics. Further, in agreement with Simons et

al [217], the number of deleterious alleles per individual decreases following the bottleneck

under strong recessive selection. This results in an increase in the Br calculated using the

number of alleles A.20 following the bottleneck. We note that because Br is calculated by

comparing two sets of simulations, it may not be exactly equal to one when comparing time

points at which the two simulations share identical demographic histories. This is especially

the case for the Br calculated using fixed load which, being small, has high relative variance.

From these results we can conclude that the AC and GBR models are fairly comparable

with respect to total genetic variance and genetic load. Therefore, the remaining differences,

which we highlight in the main text, between the AC and GBR model can be attributed

to the fine scale composition of the genetic variance in the population. In other words,

the AC and GBR model differ in how the genetic variance and load are accounted for,

despite the total amounts being roughly equivalent. However, the MR model is qualitatively

different in its behavior under population growth. This makes comparison to the MR model

somewhat difficult. However, there are important reasons to explore it further. Based on

first principles, the application of the MR model in simulation of a single gene region is

inappropriate. However, it would be appropriate for simulating each mutation as a variant

of a distinct functional genomic unit. It is also the most analytically tractable model of
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recessivity in population genetics, and as such it is our best reference point for comparison

to the GBR model.

A.1.3 The approximate distribution of fitness effects

Here, fitness is a function of phenotype and so the distribution of fitness effects of newly

arising mutations is dependent on the state of the population. However, we can achieve

an approximate result by assuming that large effect mutations are rare and considering the

effect of a new mutation on an unaffected genetic background [273]. This approximation is

likely to be most accurate for large values of λ. In this case, we can find the exact distribution

of fitness effects given the distribution of trait effects by a simple change of variables. We

will assume a fitness model where fitness is 1, 1 − sh and 1 − s for 0,1, or 2 copies of the

deleterious mutation. Although, excepting complete recessive selection, the expected allele

frequency trajectories are determined by sh we focus on the distribution of s and emphasize

that selection is still recessive (h < 0.5) under the additive phenotypic model(A.15).

Let fz(z) describe the density of mutant phenotypic effects and s(z) describe the fitness

of a homozygote for a deleterious allele. We can find the density (fs(s)) and cumulative

distribution (Fs(s)) of s by change of variables.

fz(z) ∼ Exp(
1

λ
)

s(z) = 1− e− (2∗z)2
2

fs(s) = fz(s
−1(s))

d

ds
s−1(s)
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s−1(s) =

√
−2 log(1− s)

2

fs(s) =
e
−
√
− log(1−s)√

2λ

λ

2
√

2(1− s)
√
− log(1− s)

Fs(s) = 1− e
√
−log(1−s)√

(2)λ

We checked this result via simple sampling in R [193] (A.22), using the population size

scaled parameter 2Ns. Across the range of λ simulated the distribution of fitness effects

spans multiple selective regimes. In all cases there will be some weakly and strongly selected

mutations. When λ < 0.1 there will also be a considerable proportion of nearly neutral

mutations. Again, we emphasize that the degree of recessivity can have an important effect

here, as the distribution of 2Nsh will be shifted to the left in A.22. It is also important to

observe the appearance of a mass of lethal mutations s ≈ 1 as λ gets larger in A.23. These

approximate distributions of fitness effects reveal the relative impact of mutations in different

selective regimes in each model. In general, the simulated frequency spectra (see A.7, A.8,

and A.9) and genetic loads (see A.3 and A.18) are in agreement with the expecations under

the approximate distribution of fitness effects.
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A.1.4 Choice of genetic model effects key population genetic sig-

natures

In this section, we explore how the choice of genetic model impacts the site frequency

spectrum for risk variants. Mean genetic load decreases with degree of dominance (A.3).

Recessive deleterious mutations segregate to higher frequencies in the population without

increasing genetic load (A.5). The MR model demonstrates a slight decrease in load under

growth (A.3). Similarly, the additive model has greater skew and kurtosis for both the num-

ber of mutations and the genetic value of a gamete over the range of λ and demographic

models (A.11 and A.12).The increase skew and kurtosis implies that total genetic load in

the additive models is dominated by rare large excursions from the population mean.

Population expansion has been shown to impact the site frequency spectrum[109, 154, 42,

73]. In general, we expect to find an increase in rare private mutations under a rapid

population expansion scenario. We find all of our models showcase the expected pattern

(A.7), but there are consistent and important differences between models. In A.7, the site

frequency spectrum of risk variants from a population sample (n=100) shows a dependency

on population growth, mean effect size λ, and genetic model. Population growth increases

the proportion of singletons for all genetic models and values of λ. Increasing the value λ

increases the proportion of singletons in each genetic model and demographic scenario, but

the increase is qualitatively dependent on genetic model and independent of demography.

The recessive models show the strongest dependence on λ. When λ is small the recessive

models show fewer singletons as compared to the additive model, but as λ increases the

relative proportion of singletons between recessive and additive genetic model increases.

When the value of λ is large, the recessive models show more singletons than the additive

model. The GBR model shows more singletons than the MR model in all cases. A.8 shows

the site frequency spectrum for non-risk variants, which demonstrates a dependence on

population growth, shifting towards low-frequency sites, but shows no dependence on genetic
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model or λ. Since the neutral variant site frequency spectrum is consistent across models

we determine that the difference in linked selection between models is not important in the

relevant recombination rate regime.

A.1.5 Regression based estimates of genetic variance

For Fig 2.1 and A.4, we performed linear regression of the genetic component of phenotype

onto genotypes. This provided an estimate of distribution of genetic variance over risk allele

frequency. Under an additive model and Hardy-Weinberg linkage equilibrium (HWLE),

these estimates are identical to the classic result VG = 2pqα2[64]. To demonstrate this

we simulated genotype data at 1000 independent markers for 5000 individuals in R[193].

Population frequencies were drawn from the constant population size neutral allele frequency

distribution. Allele counts for individuals were binomial samples of size two with probability

of success equal to the population frequency of the minor allele. Effects sizes were sampled

randomly from an exponential distribution with mean λ = 0.1, to mimic our simulations

in the main text. Regressions were performed only on markers which were not fixed in

the sample. A.14 shows the regression estimate as a function of its expected value 2pqα2.

There is some noise for markers with low total variance explained, which is due to random

deviations from HWLE.

A.2 Chapter 2 supplementary figures
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Figure A.1: Broad-sense heritability, H2 = (VG)/(VP ), as a function of λ: the mean effect
size of a new deleterious mutation, as calculated explicitly from our simulated populations.
Data are plotted as the mean across model replicates ± the standard error of the mean.
The solid black horizontal line shows the predicted H2 under the respective house of cards
approximation. The data is grouped by expected level of heritability and demographic
scenario. For the additive model model, H2 ∼ 8% and H2 ∼ 4% imply environmental
standard deviations of σe = 0.075 and σe = 0.011 respectively. For recessive models, H2 ∼
8% and H2 ∼ 4% imply environmental standard deviations of σe = 0.053 and σe = 0.075
respectively. Shown are the additive co-dominant (AC), gene-based (GBR) and complete
multiplicative recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.2: The y-axis is the ratio of mean broad-sense heritability under recent
rapid growth to mean broad sense heritability for a constant-sized population, e.g.
Mean[H2]growth/Mean[H2]constant. This ratio is plotted as a function of the mean effect size
of causative mutations (λ). For co-dominant models, H2 ∼ 8% and H2 ∼ 4% imply en-
vironmental standard deviations of σe = 0.075 and σe = 0.011 respectively. For recessive
models, H2 ∼ 8% and H2 ∼ 4% imply environmental standard deviations of σe = 0.053 and
σe = 0.075 respectively. Shown are the additive co-dominant (AC), gene-based (GBR) and
complete multiplicative recessive (Mult. recessive (h = 0); cMR) models.

166



Figure A.3: Genetic load(burden), L = wopt−w̄
wopt

, as a function of λ: the mean effect size

of a new deleterious mutation. Data are plotted as the mean across model replicates ±
the standard error of the mean. Solid curves show values for constant sized population
simulations and dashed curves show values for rapid population expansion simulations. The
data is grouped by expected level of heritability and genetic model. For the additive model,
H2 ∼ 8% and H2 ∼ 4% imply environmental standard deviations of σe = 0.075 and σe =
0.011 respectively. For recessive models, H2 ∼ 8% and H2 ∼ 4% imply environmental
standard deviations of σe = 0.053 and σe = 0.075 respectively. Note the scales of y-axis
for each plot. Shown are the additive co-dominant (AC), gene-based (GBR) and complete
multiplicative recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.4: The percent of cumulative genetic variance explained by additive and dominance
effects of variants with frequency less than or equal to a series of frequency values over λ.
Shown here are the gene-based (GBR), additive co-dominant (AC), incomplete multiplicative
recessive (Mult. recessive (h = 0.25); iMR) and complete multiplicative recessive (Mult.
recessive (h = 0);cMR) models. Solid lines show the additive variance alone and dotted lines
show the combined additive and dominance variance. All data shown are for models where
H2 ∼ 0.08. These particular results are robust to changes H2 when VG is not changed, as is
the case here. The additive and dominance genetic variance is estimated by the adjusted r2 of
the regression of all markers (and their corresponding dominance encoding ) with MAF ≤ x
onto total genotypic value (see methods for details); data are displayed as the mean of 250
simulation replicates. For each frequency level we calculated the r2 of a linear regression of
genotypes of markers with frequency below that level on to total genetic value and plot it
against λ: the mean effects size of a new deleterious mutation. The data are displayed as a
mean across model replicates.

168



Figure A.5: The mean frequency and B) mean effect size of a segregating risk variant over
λ. Note they log10 y-axis scale in A. The mean effect size is the value pulled from the
exponential distribution with mean λ, not the fitness effect or the quantitative genetic effect
size. The data are calculated for all risk mutations segregating in the simulated populations.
Data are plotted as the mean across model replicates. For visual clarity, standard errors are
not shown. In panel A, the standard error bars overlap zero under rapid population growth.
The data for mean frequency are grouped by demographic scenario; the left panel shows
values for constant sized population, the right panel shows values for the rapidly expanded
populations. For mean effect size plots the solid curves show the constant sized population
data and the dashed curves show the data for the rapidly expanded populations. Shown
are the additive co-dominant (AC), gene-based (GBR) and complete multiplicative recessive
(Mult. recessive (h = 0); cMR) models.
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Figure A.6: A) The mean number of deleterious mutations per gamete in the population as
a function of λ: the mean effect size of new causative mutation. The data plotted as mean
over simulation replicates ±se. The data are calculated for the entire simulated population.
B) The mean genetic value of a gamete, i.e. the average sum of mutational effect sizes on
a gamete as a function of λ. Data are plotted as the mean across model replicates ± the
standard error of the mean. In the case the gene-based recessive model, this value is also
the expected value of the mean phenotype and is accurate within the sampling variance of
the mean environmental variate and random pairing of gametes in diploid. Shown are the
additive co-dominant (AC), gene-based (GBR) and complete multiplicative recessive (Mult.
recessive (h = 0); cMR) models.
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Figure A.7: For a sample n = 100 individuals, the relative site frequency spectrum is calcu-
lated as the proportion (y-axis) of all polymorphic sites which belong to each frequency class
(x-axis). Sites with frequency was above 18 were grouped, into one category to improve vi-
sualization. The data are grouped by λ, the mean effect size of a new risk mutation, and the
demographic scenario. Data shown are for simulations in which the predicted broad sense
heritability is H2 ∼ 8%. Plotted values are the mean proportion across simulation replicates.
Shown are the additive co-dominant (AC), gene-based (GBR) and complete multiplicative
recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.8: For a sample n = 100 individuals, the relative site frequency spectrum is cal-
culated as the proportion (y-axis) of all polymorphic sites which belong to each frequency
class (x-axis). Sites with frequency was above 18 were grouped into one category to improve
visualization. The data are grouped by λ, the mean effect size of a new risk mutation, and
the demographic scenario. Data shown are for simulations in which the predicted broad sense
heritability is H2 ∼ 8%. Plotted values are the mean proportion across simulation replicates.
Shown are the additive co-dominant (AC), gene-based (GBR) and complete multiplicative
recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.9: For a sample n = 100 individuals, the relative site frequency spectrum is cal-
culated as the proportion (y-axis) of all polymorphic sites which belong to each frequency
class (x-axis). Neutral variants are in orange and risk variants are shown in green. Y-axis is
on a square-root scale and X-axis is on a log10 scale to improve visualization. The data are
grouped by λ, the mean effect size of a new risk mutation, the demographic scenario and ge-
netic model. Data shown are for simulations in which the predicted broad sense heritability
is H2 ∼ 8%. Plotted values are the mean proportion across simulation replicates. Shown
are the additive co-dominant (AC), gene-based (GBR) and complete multiplicative recessive
(Mult. recessive (h = 0); cMR) models.
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Figure A.10: Horizontal violin plots depict the distribution of minor allele frequencies (MAF)
of the most strongly associated single marker in a GWAS. Individual hits are plotted as
translucent points and jittered to provide a sense of the total number and density of hits.
Each panel contains simulated data pooled across model replicates for each value of λ, with
empirical data for comparison. The degree of dominance h was varied from 0.1 to 0.75; perfect
co-dominance here is h=1. Empirical data were downloaded from the NHGRI-EBI GWAS
database (http://www.ebi.ac.uk/gwas/) on 02/03/2015, diseases and inclusion criteria are
as in [255]. In cases where more than one marker was tied for the lowest p-value, one was
chosen at random. Simulated data were subjected to ascertainment sampling such that the
MAF distribution of all markers on the simulated genotyping chip was uniform. Specific
information regarding the empirical data can be obtained in A.1.
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Figure A.11: The skewness A) the number of mutations per gamete and B) the genetic value
(sum of mutational effects) of a gamete over λ. The data are calculated for all risk mutations
segregating in the simulated populations. Moments were calculated using the boost C++
statistical accumulators library. Data are plotted as the mean across model replicates ± the
standard error of the mean. Shown are the additive co-dominant (AC), gene-based (GBR)
and complete multiplicative recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.12: The kurtosis A) the number of mutations per gamete and B) the genetic value
(sum of mutational effects) of a gamete over λ. The data are calculated for all risk mutations
segregating in the simulated populations. Moments were calculated using the boost C++
statistical accumulators library. Data are plotted as the mean across model replicates ± the
standard error of the mean. Shown are the additive co-dominant (AC), gene-based (GBR)
and complete multiplicative recessive (Mult. recessive (h = 0); cMR) models.
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Figure A.13: Broad-sense heritability in a population sample of 6000 as a proportion of
population wide broad-sense heritability. Data are grouped by demographic scenario, model
and λ. The arbitrary dominance coefficient is parameterized such that h = 0 is complete
recessivity, h = 1 would be exact co-dominance and h = 2 would be complete dominance.
Multiplicative recessive (MR) models shown are only for h = 0.25.
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Figure A.14: (A) Regression estimates of variance explained by markers versus the classical
formula 2pqα2. (B) Cumulative percent of variance explained across the risk allele frequency,
based on regression estimates and classical formula. 1000 unlinked markers were simulated
with effects drawn from an exponential distribution with mean 0.1 and population frequencies
drawn from the neutral Wright-Fisher allele frequency distribution. Sample data for 5000
individuals were then generated by sampling genotypes at each marker based on its allele
frequency. We plot the regression estimate of variance explained by each marker against
Fisher’s classic result [64]: VG = 2pqα2.
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Figure A.15: The dominance of fitness effects, shet
shom

, as a function of the dominance for
trait effects, h. Values are based on idealized fitness effects of a mutation on a previously
unaffected genetic background. The the relationship between fitness and trait dominance is
influenced by the trait effect size. We varied trait effect sizes from 0.01 to 1, and values are
colored based on the trait effect.
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Figure A.16: Histogram GWAS hits (n=1208) obtained from the NHGRI-EBI GWAS
database for disease discussed in [255]. Data are described in A.1.
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Figure A.17: (A) Population size change over time. Colored numbers represent population
sizes at different times where we estimated the cumulative additive genetic variance (VA)
as a function of allele frequency using regression (see Materials and Methods). These time
points represent key changes in population size in this model. (B-D) Estimated cumulative
VA as a function of frequency for three different mean effect sizes (λ ∈ 0.1, 0.25, 0.5). Solid
lines are the standard additive model. Dashed lines are the GBR model of [232]. For all time
points, the same total percent of variance is explained, with the exception of the line labelled
“bottleneck”. For larger effect sizes under the GBR model, the bottleneck increases the total
VA explained by all mutations. This effect is, however, short lived, and disappears by the
end of the epoch defined by N = 1, 861. This result is consistent with transient increases in
variation under recessive models reported by [217].
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Figure A.18: The left column of panels shows how VG changes over time under this model.
The right column shows how the mean number of deleterious mutations per individual
changes. The models shown are: a = additive, g = GBR, and m = multiplicative with
varying degrees of dominance (h). The main difference is between additive models (a or m
with h = 1.0) and recessive models (g or m with small h). The former models are largely
insensitive to changes in N , while the recessive models show transient increases in VG and
“load” immediately following a bottleneck (consistent with [217]). However, at the final
time point representing the “modern European population”, all mean VG is ≈ 4µ for addi-
tive models and ≈ 2µ for recessive models [237, 219], and recessive models show larger loads
as expected [217].
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Figure A.19: The burden ratio [8] is calculated as the ratio of genetic load between simula-
tions with only ancient growth and those with an additional recent bottleneck and growth.
Here load is calculated as the average deviation from optimum fitness due to (left) fixed
mutations, (middle) segregating mutations and (right) all mutations. Because of the use
of the Gaussian fitness function, the total load is not the sum of the fixed and segregating
load. The models shown are: a = additive, g = GBR, and m = multiplicative with varying
degrees of dominance (h). For large effect size models, under which there are relatively more
mutations that experience strong selection, we see the characteristic drop in the burden ratio
following the bottleneck and rebound following re-expansion [8].
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Figure A.20: The burden ratio [8] is calculated as the ratio of genetic load between simula-
tions with only ancient growth and those with an additional recent bottleneck and growth.
Here load is calculated as the average number of (left) fixed mutations, (middle) segregating
mutations and (right) all mutations. The models shown are: a = additive, g = GBR, and
m = multiplicative with varying degrees of dominance (h).
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Figure A.21: A non-parametric comparison between distribution of allele frequencies between
simulated and empirical GWAS hits. Shown are the -log10(p) values from the two-sample
Kolmogorov-Smirnov test between the simulated and empirical allele frequencies. The lower
and upper horizontal lines show where p=0.05 and p=0.001 respectively. Empirical data
were downloaded from the NHGRI-EBI GWAS database (http://www.ebi.ac.uk/gwas/) on
02/03/2015, diseases and inclusion criteria are as in [255]. In cases where more than one
marker was tied for the lowest p-value, one was chosen at random. Simulated data were
subjected to ascertainment sampling such that the MAF distribution of all markers on the
simulated genotyping chip was uniform. Specific information regarding the empirical data
can be obtained in A.1.
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Figure A.22: The probability of a new mutation with 2Ns ≤ x on a log scale for various
values of λ. The dashed lines show the analytical result and the solid curves are empirical
cumulative distribution functions based on a sample of 500 mutation effects from an expo-
nential distribution. The analytical result is an approximation obtained by assuming there
is only a single deleterious mutation.
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Figure A.23: The probability of a new mutation with s = x on a log scale for various values
of λ. The analytical result is an approximation obtained by assuming there is only a single
deleterious mutation. For λ of 0.25 and 0.5 there is a large mass of lethals near s = 1.
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A.3 Chapter 2 supplementary tables

Table A.1: This table contains information specifying the empirical studies used in the
manuscript. The data were obtained from the NHGRI-EBI catalog of published genome-
wide association studies.

PMID First Author Date Journal Disease/Trait

20385826 Neale BM 4/12/10 Proc Natl Acad Sci U S

A

Age-related macular

degeneration

21665990 Yu Y 6/10/11 Hum Mol Genet Age-related macular

degeneration

21909106 Arakawa S 9/11/11 Nat Genet Age-related macular

degeneration

22694956 Cipriani V 6/13/12 Hum Mol Genet Age-related macular

degeneration

23326517 Holliday EG 1/11/13 PLoS One Age-related macular

degeneration

23536807 Scheetz TE 3/11/13 PLoS One Age-related macular

degeneration

23455636 Fritsche LG 3/3/13 Nat Genet Age-related macular

degeneration

23577725 Naj AC 5/1/13 Ann Hum Genet Age-related macular

degeneration

20385819 Chen W 4/12/10 Proc Natl Acad Sci U S

A

Age-related macular

degeneration

20062062 Reveille JD 1/10/10 Nat Genet Ankylosing spondylitis

21743469 Evans DM 7/10/11 Nat Genet Ankylosing spondylitis

22138694 Lin Z 12/4/11 Nat Genet Ankylosing spondylitis
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17611496 Moffatt MF 7/26/07 Nature Asthma

19426955 Himes BE 5/7/09 Am J Hum Genet Asthma

20032318 Sleiman PM 12/23/09 N Engl J Med Asthma

20159242 Li X 2/1/10 J Allergy Clin Immunol Asthma

20860503 Moffatt MF 9/23/10 N Engl J Med Asthma

21150878 Ferreira MA 12/8/10 Eur J Hum Genet Asthma

21804548 Hirota T 7/31/11 Nat Genet Asthma

21814517 Noguchi E 7/21/11 PLoS Genet Asthma

21907864 Ferreira MA 9/10/11 Lancet Asthma

23028483 Ramasamy A 9/28/12 PLoS One Asthma

18711365 Ferreira MA 8/17/08 Nat Genet Bipolar disorder

17554300 WTCCC 6/7/07 Nature Bipolar disorder

17486107 Baum AE 5/8/07 Mol Psychiatry Bipolar disorder

19416921 Scott LJ 5/5/09 Proc Natl Acad Sci U S

A

Bipolar disorder

19488044 Smith EN 6/2/09 Mol Psychiatry Bipolar disorder

21353194 Cichon S 2/23/11 Am J Hum Genet Bipolar disorder

21771265 Yosifova A 7/19/11 Genes Brain Behav Bipolar disorder

22925353 Lee HJ 8/25/12 J Affect Disord Bipolar disorder

20386566 Lee MT 4/13/10 Mol Psychiatry Bipolar I disorder

18463975 Kibriya MG 5/8/08 Breast Cancer Res

Treat

Breast cancer

18326623 Gold B 3/11/08 Proc Natl Acad Sci U S

A

Breast cancer

17529967 Easton DF 5/27/07 Nature Breast cancer

17529973 Hunter DJ 5/27/07 Nat Genet Breast cancer

17529974 Stacey SN 5/27/07 Nat Genet Breast cancer
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19219042 Zheng W 2/15/09 Nat Genet Breast cancer

19330030 Thomas G 3/29/09 Nat Genet Breast cancer

20453838 Turnbull C 5/9/10 Nat Genet Breast cancer

20585626 Long J 6/24/10 PLoS Genet Breast cancer

20852631 Antoniou AC 9/19/10 Nat Genet Breast cancer

20872241 Li J 9/26/10 Breast Cancer Res

Treat

Breast cancer

21263130 Fletcher O 1/24/11 J Natl Cancer Inst Breast cancer

21424380 Sehrawat B 3/19/11 Hum Genet Breast cancer

21908515 Cai Q 9/9/11 Hum Mol Genet Breast cancer

22037553 Haiman CA 10/30/11 Nat Genet Breast cancer

22383897 Long J 2/23/12 PLoS Genet Breast cancer

22452962 Kim HC 3/27/12 Breast Cancer Res Breast cancer

22923054 Chen F 8/25/12 Hum Genet Breast cancer

22951594 Elgazzar S 9/6/12 J Hum Genet Breast cancer

22976474 Siddiq A 9/13/12 Hum Mol Genet Breast cancer

23354978 Rinella ES 1/25/13 Hum Genet Breast cancer

23468962 Song C 2/28/13 PLoS One Breast cancer

23535733 Garcia-Closas

M

4/1/13 Nat Genet Breast cancer

23535729 Michailidou

K

4/1/13 Nat Genet Breast cancer

24143190 Low SK 10/15/13 PLoS One Breast cancer

18311140 Hunt KA 3/2/08 Nat Genet Celiac disease

17558408 van Heel DA 6/10/07 Nat Genet Celiac disease

20190752 Dubois PC 2/28/10 Nat Genet Celiac disease

20383146 Kottgen A 4/11/10 Nat Genet Chronic kidney disease

190



24351856 Nanayakkara

S

12/18/13 J Occup Health Chronic kidney disease

17634449 Samani NJ 7/18/07 N Engl J Med Coronary heart disease

17554300 WTCCC 6/7/07 Nature Coronary heart disease

19198612 Erdmann J 2/8/09 Nat Genet Coronary heart disease

19198611 Tregouet DA 2/8/09 Nat Genet Coronary heart disease

21088011 Erdmann J 11/18/10 Eur Heart J Coronary heart disease

21239051 Reilly MP 1/14/11 Lancet Coronary heart disease

21347282 Lettre G 2/10/11 PLoS Genet Coronary heart disease

21378990 Schunkert H 3/6/11 Nat Genet Coronary heart disease

21378988 The Coronary

Artery Dis-

ease (C4D)

Genetics

Consortium

3/6/11 Nat Genet Coronary heart disease

21606135 Wild PS 5/23/11 Circ Cardiovasc Genet Coronary heart disease

21971053 Takeuchi F 10/5/11 Eur J Hum Genet Coronary heart disease

22745674 Hager J 6/20/12 PLoS One Coronary heart disease

22751097 Lu X 7/1/12 Nat Genet Coronary heart disease

23364394 Lee JY 1/31/13 J Hum Genet Coronary heart disease

18587394 Barrett JC 6/29/08 Nat Genet Crohn’s disease

17804789 Raelson JV 9/5/07 Proc Natl Acad Sci U S

A

Crohn’s disease

17684544 Franke A 8/8/07 PLoS One Crohn’s disease

17554300 WTCCC 6/7/07 Nature Crohn’s disease

17554261 Parkes M 6/6/07 Nat Genet Crohn’s disease

17435756 Rioux JD 4/15/07 Nat Genet Crohn’s disease

191



17447842 Libioulle C 3/5/07 PLoS Genet Crohn’s disease

20570966 McGovern

DP

6/22/10 Hum Mol Genet Crohn’s disease

22412388 Kenny EE 3/8/12 PLoS Genet Crohn’s disease

21102463 Franke A 11/21/10 Nat Genet Crohn’s disease

22936669 Julia A 8/30/12 Gut Crohn’s disease

23128233 Jostins L 11/1/12 Nature Crohn’s disease

23266558 Yamazaki K 12/21/12 Gastroenterology Crohn’s disease

23850713 Yang SK 7/14/13 Gut Crohn’s disease

17660530 Hafler DA 7/29/07 N Engl J Med Multiple sclerosis

18997785 Aulchenko

YS

11/9/08 Nat Genet Multiple sclerosis

19010793 Baranzini SE 11/14/08 Hum Mol Genet Multiple sclerosis

19525953 De Jager PL 6/14/09 Nat Genet Multiple sclerosis

19525955 Bahlo 6/14/09 Nat Genet Multiple sclerosis

20159113 Jakkula E 2/12/10 Am J Hum Genet Multiple sclerosis

20453840 Sanna S 5/9/10 Nat Genet Multiple sclerosis

21654844 Briggs FB 6/9/11 Genes Immun Multiple sclerosis

22190364 Patsopoulos

NA

12/1/11 Ann Neurol Multiple sclerosis

22457343 Martinelli-

Boneschi

F

3/28/12 Mult Scler Multiple sclerosis

19648918 Amundadottir

L

8/2/09 Nat Genet Pancreatic cancer

20101243 Petersen GM 1/24/10 Nat Genet Pancreatic cancer

20686608 Low SK 7/29/10 PLoS One Pancreatic cancer
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22158540 Wu C 12/11/11 Nat Genet Pancreatic cancer

23180869 Wu C 11/24/12 Gut Pancreatic cancer

19915575 Simon-

Sanchez J

11/15/09 Nat Genet Parkinson’s disease

20711177 Hamza TH 8/15/10 Nat Genet Parkinson’s disease

21044948 Spencer CC 11/2/10 Hum Mol Genet Parkinson’s disease

21084426 Saad M 11/17/10 Hum Mol Genet Parkinson’s disease

21292315 Nalls MA 2/1/11 Lancet Parkinson’s disease

21738487 Do CB 6/23/11 PLoS Genet Parkinson’s disease

21812969 Liu X 8/3/11 BMC Med Genet Parkinson’s disease

22438815 Lill CM 3/15/12 PLoS Genet Parkinson’s disease

23793441 Davis MF 6/21/13 Hum Genet Parkinson’s disease

24511991 Hill-Burns

EM

2/10/14 BMC Genomics Parkinson’s disease

24842889 Vacic V 5/19/14 Hum Mol Genet Parkinson’s disease

18264097 Eeles RA 2/10/08 Nat Genet Prostate cancer

18264098 Gudmundsson

J

2/10/08 Nat Genet Prostate cancer

18264096 Thomas G 2/10/08 Nat Genet Prostate cancer

17603485 Gudmundsson

J

7/1/07 Nat Genet Prostate cancer

17401366 Gudmundsson

J

4/1/07 Nat Genet Prostate cancer

17401363 Yeager M 4/1/07 Nat Genet Prostate cancer

19117981 Sun J 1/1/09 Cancer Res Prostate cancer

19767754 Gudmundsson

J

9/20/09 Nat Genet Prostate cancer
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19767753 Eeles RA 9/20/09 Nat Genet Prostate cancer

20676098 Takata R 8/1/10 Nat Genet Prostate cancer

21602798 Haiman CA 5/22/11 Nat Genet Prostate cancer

21743057 Schumacher

FR

7/8/11 Hum Mol Genet Prostate cancer

21743467 Kote-Jarai Z 7/10/11 Nat Genet Prostate cancer

22923026 Cheng I 8/24/12 Cancer Epidemiol

Biomarkers Prev

Prostate cancer

23023329 Xu J 9/30/12 Nat Genet Prostate cancer

23535732 Eeles RA 4/1/13 Nat Genet Prostate cancer

18677311 O’Donovan

MC

7/30/08 Nat Genet Schizophrenia

18347602 Sullivan PF 3/18/08 Mol Psychiatry Schizophrenia

18332876 Kirov G 3/11/08 Mol Psychiatry Schizophrenia

18282107 Shifman S 2/15/08 PLoS Genet Schizophrenia

19571809 Shi J 7/1/09 Nature Schizophrenia

19571808 Stefansson H 7/1/09 Nature Schizophrenia

19571811 Purcell SM 7/1/09 Nature Schizophrenia

21682944 Alkelai A 6/20/11 Int J Neuropsychophar-

macol

Schizophrenia

21679298 Ma X 6/16/11 Genes Brain Behav Schizophrenia

21926974 Ripke S 9/18/11 Nat Genet Schizophrenia

22037555 Shi Y 10/30/11 Nat Genet Schizophrenia
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22883433 Irish

Schizophrenia

Genomics

Consortium

& the Well-

come Trust

Case Control

Consortium 2

8/7/12 Biol Psychiatry Schizophrenia

23358160 Borglum AD 1/29/13 Mol Psychiatry Schizophrenia

23894747 Aberg KA 2/1/13 JAMA Psychiatry Schizophrenia

23974872 Ripke S 8/25/13 Nat Genet Schizophrenia

19165918 Graham RR 8/1/08 Nat Genet Systemic lupus erythe-

matosus

18204446 Harley JB 1/20/08 Nat Genet Systemic lupus erythe-

matosus

18204098 Hom G 1/20/08 N Engl J Med Systemic lupus erythe-

matosus

18204447 Kozyrev SV 1/20/08 Nat Genet Systemic lupus erythe-

matosus

19838193 Han JW 10/18/09 Nat Genet Systemic lupus erythe-

matosus

20169177 Yang W 2/12/10 PLoS Genet Systemic lupus erythe-

matosus

21044949 Yang J 11/2/10 Hum Mol Genet Systemic lupus erythe-

matosus

21408207 Chung SA 3/3/11 PLoS Genet Systemic lupus erythe-

matosus
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22291604 Okada Y 1/26/12 PLoS Genet Systemic lupus erythe-

matosus

23273568 Yang W 12/27/12 Am J Hum Genet Systemic lupus erythe-

matosus

24871463 Armstrong

DL

5/29/14 Genes Immun Systemic lupus erythe-

matosus
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A.4 Chapter 3 supplementary figures
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Figure A.24: The top panel contains single marker (black points) and ESM test (red tri-
angles) −log10(p)-values for inflammatory bowel disease versus chromosomal position in the
region chr1:172.5-173.5 (Mb). Each ESM test point is plotted at the midpoint of a genomic
window to which that −log10(p)-values corresponds. The overlapping set of 100Kb ESM
significant (ESM p ≤1e-6 ) regions which together span chr1:172.872-172.983 (Mb) are de-
marcated by vertical dashed lines, and the horizontal lines are placed at −log10(p) = 6 to
indicate the ESM test significance threshold. The middle panel contains the recombination
rate in cM/Mb obtained from HapMap througout the same region. The lower panel shows
UCSC genome browser tracks for the region; tracks shown include refseq genes, GENCODE
psuedogene and retroposed gene annotations and ENCODE regulation.
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A.5 Chapter 3 supplementary tables

Disease Chromosome Region(Mb) SNP

CAD 9p21 21.93-22.13 rs1333049

IBD 1p31 67.06-67.24 rs11805303

IBD 2q37 233.35-233.43 rs10210302

IBD 3p21 49.29-49.86 rs9858542

IBD 5p13 40.28-40.62 rs17234657

IBD 5q33 150.79-150.95 rs1000113

IBD 10q21 62.63-62.881 rs10761659

IBD 10q24 99.51-99.57 rs10883365

IBD 16q12 50.43-50.814 rs17221417

RA 1p13 113.2-113.82 rs6679677

RA 6 MHC rs6457617

T1D 1p13 113.2-113.82 rs6679677

T1D 6 MHC rs9272346

T1D 12q13 55.96-56.41 rs11171739

T1D 12q24 110.9-112.57 rs17696736

T1D 16p13 10.93-11.37 rs12708716

T2D 6p22 20.52-20.73 rs9465871

T2D 10q25 112.96-113.06 rs4506565

Table A.2: Associations established in [252] which we find significant with the ESM test.
Replicated associations are regions reported as showing strong associations under the stan-
dard analyis of [252] which are within regions with ESM test p ≤1e-6. Out of a total 21 SNP
associations under the standard analysis of [252] we find that 18 replicate under the ESM
test. Note that the exact coordinates do not match Table 3 of [252] because of the liftover
to GRCh/hg38 coordinates.
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Disease Chromosome Region(Mb) SNP Notes

BD 16p12 23.38-23.7 rs420259 Association not replicated in [236]

IBD 18p11 12.77-12.92 rs2542151 ESM p =9e-06,Association replicated

in [233]

T2D 16q12 53.77-53.82 rs9939609 ESM p =5.2e-05, Replicated in the

context of FTO gene effect on T2D

[69]

Table A.3: Associations established in [252] which we do not find significant with the ESM
test. Non-replicated associations are significant SNPs under the standard analyis of [252]
which are within regions without genome-wide signficant ESM p-values. Out of a total 21
SNP associations under the standard analysis of [252] we find that 3 do not replicate under
the ESM test. However, do note that two SNP, rs12708716 and rs2542151, are very close
to being significant with ESM p =1.5e-06 and p =9e-06 respectively. Note that the exact
coordinates do not match Table 3 of [252] because of the liftover to GRCh/hg38 coordinates.

Disease Chr Position(Mb) Gene Region Notes

CAD 3 193.6-193.8 OPA1 Plays role in heart disease, but not found

through GWAS [36]. Not found via ESM

test.

CAD 5 44.78-44.93 MRPS30 Reported for breast cancer and chronic kid-

ney disease. May interact with SLC25A3

[89] which is indicated in diabetic car-

diomyopathy [11]. ESM P = 2e-06.

IBD 19 45.73-45.85 SYMPK Did not replicate in [67]

Table A.4: Three regions with SKAT test p ≤1e-6 with no corresponding hit from [252] are
reported below. The SKAT test was implemented on the same windows as the ESM test,
and using default parameters.
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Disease Chromosome Region(Mb) SNP

IBD 3p21 49.29-49.86 rs9858542

IBD 18p11 12.77-12.92 rs2542151

RA 1p13 113.2-113.82 rs6679677

RA 6 MHC rs6457617

T1D 1p13 113.2-113.82 rs6679677

T1D 6 MHC rs9272346

T2D 10q25 112.96-113.06 rs4506565

Table A.5: Associations established in [252] which we find significant with the SKAT test.
Replicated associations are regions reported as showing strong associations under the stan-
dard analyis of [252] which are within regions with SKAT test p ≤1e-6. Out of a total 21
SNP associations under the standard analysis of [252] we find that 7 replicate under the
SKAT test. The SKAT test was implemented on the same windows as the ESM test, and
using default parameters. Note that the exact coordinates do not match Table 3 of [252]
because of the liftover to GRCh/hg38 coordinates.
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Disease Chromosome Region(Mb) SNP Notes

BD 16p12 23.38-23.7 rs420259 Association not replicated in

[236],SKAT P¿0.2

CAD 9p21 21.93-22.13 rs1333049 Multiple studies show validation in

GWAS catalog, SKAT P¿0.2

IBD 1p31 67.06-67.24 rs11805303 Validated, reviewed by [168], SKAT

P¿0.2

IBD 2q37 233.35-233.43 rs10210302 Validated, reviewed by [168], SKAT

P=1.6e-4

IBD 5p13 40.28-40.62 rs17234657 Validated in [250], SKAT P = 3.6e-

5

IBD 5q33 150.79-150.95 rs1000113 Validated in [181], SKAT P = 1.5e-

6

IBD 10q21 62.63-62.881 rs10761659 Validated in [66], SKAT P = 5.17

e-6

IBD 10q24 99.51-99.57 rs10883365 Validated in [250], SKAT P = 0.034

IBD 16q12 50.43-50.814 rs17221417 Validated, reviewed by [168], SKAT

P¿0.2

T1D 12q13 55.96-56.41 rs11171739 Nearby SNP rs2292239 showed

more robust signal in [233], SKAT

P¿0.2

T1D 12q24 110.9-112.57 rs17696736 Validated in [233], SKAT P = 6e-5

T1D 16p13 10.93-11.37 rs12708716 Validated in [233], SKAT P = 0.005

T2D 10q25 112.96-113.06 rs4506565 Validated in [53], SKAT P =

0.00912

T2D 16q12 53.77-53.82 rs9939609 SKAT P ¿0.2,ESM p =5.2e-05,

Replicated in the context of FTO

gene effect on T2D [69]

Table A.6: Associations established in [252] which we do not find significant with the SKAT
test. Non-replicated associations are significant SNPs under the standard analyis of [252]
which are only within regions without genome-wide signficant SKAT p-values. Out of a total
21 SNP associations under the standard analysis of [252] we find that 14 do not replicate
under the SKAT test. However, many do show marginally significant association signal.
Note that the exact coordinates do not match Table 3 of [252] because of the liftover to
GRCh/hg38 coordinates.
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A.6 Chapter 4 supplementary texts

Supporting Materials and Methods

Study samples

The UK Biobank is a large prospective study of over 500,000 individuals in the United

Kingdom(UK)[228]. Participants were 40-69 years of age during the recruitment phase

(2006-2011). To avoid issues related to population structure, we studied only the 376,366

individuals of self-reported white-British ancestry. Unless otherwise notes we restricted our

analysis to males over 50y old at assessment and females over 45y old, to ensure that num-

ber of children born to date is a good proxy for lifetime reproductive success. These filters

resulted in 217,728 Female and 158,638 Male samples with phenotypic data. Of these in-

dividuals, there were 157,807 Female and 115,902 Male samples with genetic data available

that were genetically unrelated (relatedness < 0.05).

Phenotypic data

The UKB contains data on the number of live births for females and the children fathered

for males. These two variables were treated as life time reproductive success(LRS). To

calculate relative lifetime reproductive success (rLRS) we followed the approach of [13].

Briefly, the samples were split into birth cohorts and LRS values were divided by the cohort

specific mean value. We calculated rLRS within 4 non-overlapping birth cohorts, based on

birth year. Specifically, the birth cohorts are: Cohort 1 (1934-1942), Cohort 2 (1943-1948),

Cohort 3 (1949-1955) and Cohort 4 (1956-1965). In all subsequent regression analyses age,

birth cohort and data collection assessment center were treated as covariates. All phenotypes,

except LRS, measured in the set of 376,366 post-reproductive white-British ancestry samples
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were split by sex and then scaled to mean zero and variance one. If a sample was measured

on multiple visits to the assessment center then we used the mean value across measurements

except in the case of educational attainment for which the maximum value was used. Unless

otherwise noted, individuals more than 6 standard deviations from the mean were removed

as outliers.

Genetic data

The UKB genetic data were collected using two similar genotyping arrays. Nearly 450,000

participants were genotyped on the custom Affymetrix UK Biobank Axiom (UKBA) array,

while an additional 50,000 participants were genotyped using the UK BiLEVE (UKBL)

array. The two arrays have over 95% common marker content, with the UKBA array having

a small number of additional markers for genome-wide coverage. The genetic data was

imputed using two different reference panels, by the UK Biobank team. The Haplotype

Reference Consortium (HRC) panel was used as first choice option, but for SNPs not in

that reference panel the UK10K + 1000 Genomes panel was used. A problem arose in the

second set of imputed data from the UK10K + 1000 Genomes panel. The genotypes at

these SNPs are imputed correctly, but have not been recorded as having the correct genome

position in the files. We have established that the imputed data from the HRC panel is

not affected and has the correct positions. This is about 40M sites and will include the

majority of the common SNPs i.e. sites most likely to show genetic associations. These sites

are readily identified since the HRC site list is public. The sample of White British ancestry

individuals was derived using principal component analysis and the self-reported ancestry

information. For our further genetic analyses, we selected 1,162,900 HapMap3 SNPs with

info score ¿0.3, minor allele frequency ¿=0.01 and Hardy-Weinberg Equilibrium test p-value

¿=1e-6. We further constructed genetic relatedness matrices in GCTA [266] and removed

one of each pair of individuals with estimated SNP marker relatedness greater than 0.05 or
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if a genetically inferred gender of the sample did not match the self-reported gender. For

some analyses only the UKB interim release was used which consisted of 108,402 unrelated

White British individuals.

Phenotypic regression analyses

To estimate linear and quadratic selection gradients, we performed simple linear regressions

of each phenotype and its square onto rLRS independently and through a multiple linear re-

gression. In both cases, the phenotypes and their squared values were included and statistical

significance was assessed by the Wald test.

The resulting regression coefficients are used to estimate the linear (β) and quadratic (γ)

selection gradients [126, 224]. The value of β is simply equal to the regression coefficient on

the phenotype itself. However, the value of γ is twice the regression coefficient on the square

of the phenotype [224].

The particular subset of phenotypes used in the multiple linear regression was chosen to

reduce the variance of the regression estimates. We observed the phenotypic correlations

between traits (Fig. A.29 and A.30) and noticed some sets of highly correlated traits. Within

each set we prioritized inclusion in the final model by (1) significance of genetic correlation

with rLRS, (2) significance of phenotypic regression on rLRS and (3) sample size. The UKB

has very large sample sizes, but the missing data is non-overlapping for each trait. As such,

the data matrix became singular upon inclusion of all trait interaction terms. Therefore,

we only include the traits interaction with itself (the quadratic term). To further address

multi-collinearity in the data we calculated the variance inflation factor (VIF) for each trait.

Individual traits were removed from the model, starting with the trait with the highest VIF,

and the VIFs were recalculated. This process was repeated until all VIF values were below

2 for all included traits.
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Genetic correlation analyses

Summary statistic based LD-score regression[22, 23] was performed on the full UKB dataset

to calculate genetic correlations between various traits and rLRS. GWAS summary statistics

were generated using a simple linear association test in plink[188]. Then, LD-score regres-

sion was performed using pre-computed LD-scores which are provided with the LD-score

regression software.

In addition, a bivariate genetic variance component analysis was performed in the interim

data release to establish genetic relationships between various traits and rLRS. The bivari-

ate variance component model allows us to jointly estimate the genetic variance of each

trait and their genetic covariance. Because of the large sample sizes of the UKB, BOLT-

REML[139] was chosen for computational efficiency. Briefly, BOLT-REML estimates the

genetic variance-covariance matrix via a Monte-Carlo Average Information REML approach.

The genetic variance parameters are initially estimated using the related BOLT-LMM[139],

which is a Bayesian linear mixed model methods. BOLT-LMM assumes a mixture-of-normals

prior on the SNP effects such that most SNPs have small effects and others may have large

effects. Given the BOLT-LMM initial estimates, BOLT-REML then applies a rejection sam-

pling technique to obtain final estimates of the genetic variance-covariance matrices. We

assessed the statistical significance of the BOLT-REML genetic correlations via the Wald

test.

SI Text

BOLT-REML analysis of the interim UKB data release

We obtained genetic correlation estimates from a linear mixed modeling approach in addi-

tion to LD-score regression. Specifically, we used BOLT-REML, which gives very similar
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estimates to the standard gREML procedure in GCTA [267] but scales more efficiently with

large sample sizes. Following [234] a REML estimate of the genetic correlation between

traits and rLRS, rg,rLRS, was directly estimated using common (MAF> 0.01) SNP markers

in a bivariate linear mixed model (LMM) approach [230, 133] using BOLT-LMM [139]. The

estimate of SNP heritability for rLRS varied across analyses and by sex. Due to the action of

natural selection against deleterious mutations, the heritability of fitness components, such

has reproductive success, is expected to be low and largely dominated by low frequency vari-

ants. Thus, our estimates of the common-SNP heritability of rLRS are most likely biased

downward, which reduces the power of our genetic correlation analyses. Here we provide an

overview of BOLT-REML results and a brief comparison to the LD-score regressions.

The BOLT-REML estimates of genetic correlation are summarized in Fig. A.37. Many

traits in females show a r̂g,rLRS in the same direction as the phenotypic regression estimate

β̂. Overall, there was a strong positive correlation between the β̂ and r̂g,rLRS in females

only (Fig. A.40). Further, the total phenotypic correlation estimated from the mixed model

is consistent with results from the regression analysis (Fig. A.39 and table A.9);see the

following section for a more detailed discussion on the consistency between the phenotypic

and genetic results.

In females, the median BOLT-REML estimate of h2
SNP,rLRS was 0.076, which on a relative

scale is considerably larger than the value 0.0564 estimated from LD-score regression. While

in males, the estimates of h2
SNP,rLRS from the two methods were quite close, with the BOLT-

REML estimate being equal to 0.035 and the LD-score regression estimate being equal to

0.033. It is also known that, all else equal, LD-score regression estimates of genetic variance

components will have larger standard errors than estimates obtained from mixed modeling

approach. This means that there are multiple competing factors affecting power to detect

non-zero genetic correlations including the sample size, the heritability explained by the

model, and the precision of the estimate.
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Four body-size related traits have a significant r̂g,rLRS in females: WHR, WC, BFP and BMI.

An additional two body-size traits, WT and HC were marginally significant in females.

No traits show a significant r̂g,rLRS at the FWER≤ 0.05 level in males, but r̂g,rLRS for

male BMI is marginally significant and in the same direction as the phenotypic result (β̂).

Again consistent with the phenotypic results, r̂g,rLRS values for EA and AFB in females are

significant and negative.

The BOLT-REML and LD-score regression estimates of r̂g,rLRS were highly correlated. How-

ever, the specific traits which passed the study-wise significance threshold varied consider-

ably. More male traits were significant in the LD-score regression analysis while the opposite

was true for females and the BOLT-REML analysis. However, it is important to emphasize

that significance thresholds are somewhat arbitrary and we draw attention to the overwhelm-

ing consistency of the estimates obtained from the two approaches as demonstrated by Fig.

A.38.

Consistency of phenotypic and genetic correlations

In the main text of this manuscript we present results from a phenotypic analyses in a large

section of the UKB data and above we presented a genetic analysis from a reduced subset of

that data. Specifically, we perform a linear regression for phenotypic analyses and bivariate

linear mixed modeling for the genetic analyses. Here in this section we would like to provide a

joint interpretation and discuss the issue of consistency between results of these two analyses.

Below we provide calculations for various correlation coefficients obtained from our analyses;

the empirical estimates of these coefficients are presented in table A.9.

The β̂ estimates from a linear regression can be expressed in terms of phenotypic covariances

and correlations. In the model
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rLRS = βP + ε

we have

β̂ =
cov(P, rLRS)

V (rLRS)

= rp
σrLRS
σP

Where rp is the phenotypic correlation coefficient in the sample. Therefore, we obtain by

simple algebra the first expression for the phenotypic correlation coefficient directly from our

phenotypic analyses, which we call rp,1.

rp,1 = β̂
σP

σrLRS

Given some assumptions we can obtain a similar expression for phenotypic correlation from

the genetic results. We assume an additive polygenic model for both traits (P and rLRS)

analyzed in the bivariate model such that the traits are expressed as additive genetic and

environmental components.

rLRS = ArLRS + ErLRS

P = AP + EP
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We can then further decompose the additive genetic component into a portion explained by

genotyped SNPs and a remainder.

ArLRS = As,rLRS + Ar,rLRS

AP = As,P + Ar,P

The covariance between rLRS and P is

cov(rLRS, P ) =cov(ArLRS, AP ) + cov(ErLRS, EP )

cov(rLRS, P ) =cov(As,rLRS, As,P )+

cov(Ar,rLRS, Ar,P ) + cov(ErLRS, EP )

From the bivariate linear mixed model we obtain estimates of the correlation between the

additive genetic components of both traits explained by SNPs and the covariance between

the residual components.

rs,g =
cov(As,rLRS, As,P )√
V (As,rLRS)V (As,P )

rs,e =
cov(Ar,rLRS + ErLRS, Ar,P + EP )√
V (Ar,rLRS + ErLRS)V (Ar,P + EP )
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We cannot assume that the environmental components of the two phenotypes is zero (cov(ErLRS, EP ) =

0) because this is a strong untested assumption and it is one that would not be true under a

causal relationship between P and rLRS. Therefore, it is not possible to extrapolate from

the mixed model results to the true full genetic correlation (rg). However, we can provide a

second calculation of the full phenotypic correlation from the genetic results which we call

rp,2.

rp,2 =
cov(rLRS, P )√
V (rLRS)V (P )

=
cov(As,rLRS, As,P ) + cov(Ar,rLRS + ErLRS, Ar,P + EP )√

V (rLRS)V (P )

=
rs,g
√
V (As,rLRS)V (As,P )√
V (rLRS)V (P )

+
rs,e
√
V (Ar,rLRS + ErLRS)V (Ar,P + EP )√

V (rLRS)V (P )

The two calculations of phenotypic correlation should be closely related as one is obtained

using a subset of the data used from the other. Indeed in a regression of rp,1 on rp,2 the

R2 = 0.94 (Fig. A.39). The residual variance-covariance estimates from the bivariate model

contain both untagged genetic and non-genetic effects. Therefore we can not definitively

demonstrate consistency between the pure phenotypic and genetic results. However, we

can ask how well the phenotypic correlations predict the genetic correlations. To do so we

regressed the mixed model genetic correlation estimates rs,g onto the phenotypic correlation

estimates from the phenotypic regressions rp,1. The regression coefficient in that model was

2.96 with an adjusted R2 = 0.27. In other words the phenotypic correlation values explain

27 percent of the variance in genetic correlation estimates.
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Correlation between rLRS and a polygenic predictor for height

As an alternative approach to finding genetic evidence for a relationship between rLRS

and height we constructed a polygenic predictor for height based on a meta-analysis of

published height GWAS and the interim UKB data. This meta-analysis has an effective

sample size of 390,000. From the meta-analysis there were 1,371 SNPs that passed a clumped

p-value threshold hold of 10−6. We predicted height in the UKB samples using the sample

genotypes and estimated effect sizes at these 1,371 SNPs. Our predictor explains 25 percent

of phenotypic for height( Fig. A.47).

The rLRS values were regressed onto the predicted height and squared height values for

males and females separately. In males neither the linear nor quadratic predictor were

significantly associated with rLRS. However, in females both the linear and the quadratic

predictor showed marginal significance. In females, the estimated effect size of the height

predictor on rLRS was −0.0081 ± 0.004(p = 0.0624) and effect size of the squared height

predictor on rLRS was −0.007919±0.003(p = 0.0097). This result is qualitatively consistent

with our phenotypic observations of a weak directional and quadratic relationship between

rLRS and height.

We performed a simulation to better understand the behavior of the polygenic predictors

for height and their relationship to rLRS. We simulated fitness values under a model of

multivariate stabilizing selection[28] where three phenotypes contribute to fitness. One of

the three underlying phenotypes was treated as being under directional selection by setting

the phenotypic optimum to be different from 0 for that phenotype only.

We simulated genotypes at 20,000 unlinked biallelic variants. 10,000 of these variants were

causal for the phenotype under directional selection. Variant effect sizes were estimated in

a panel of 300,000 individuals using a simple linear association test. Using the estimated

variant effects we created polygenic predictors for the phenotype and squared phenotype in
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an independent validation panel of 50,000 individuals. The predictors were regressed against

the simulated fitness values in the independent validation panel.

The simulations recapitulate an important qualitative signature of our empirical polygenic

predictors. As the number of SNPs in the predictor is increased the p-value of a predictor

goes down and then eventually goes back up(Fig. A.48. When the number of SNPs is too

low, there is no statistical power to predict in a new panel. However, if too many SNPs are

included then we are adding noise to the predictor and power is reduced. This effectively

reflects a transition from a model that under-fits to one that has over-fit the data; both

under and over fitting reduce prediction accuracy in an independent dataset.

According to our simulations, the transition from under-fitting to over-fitting as a function

of number of variants happens much faster for the quadratic predictor than for the linear

predictor. This is likely due to the propagation of measurement error through a quadratic

function. By predicting the variant effects on the phenotype and then predicting its square

we have propagated the error of the variant effect size estimates.

Mendelian randomization using summary statistics for Educational Attainment

We use Mendelian randomization based on summary statistics (GSMR) [276] to assess the

evidence for a possible causal relationship between educational attainment and reproductive

phenotypes. In the main text of this manuscript we show that there is a strong phenotypic

and genetic correlation between educational attainment and relative lifetime reproductive

success. Briefly, a Mendelian randomization (MR) analysis estimates and tests a causal

relationship of trait X on trait Y by using known SNP associations for trait X as instruments.

The rationale is that if trait X causes Y then any perturbation that affects X will have the

same proportional effect on Y.

Using summary statistics from GWAS for educational attainment [175] and the UKB data on

212



rLRS used in the main text, we tested the hypothesis that educational attainment, or a trait

genetically highly correlated with it, is causal for rLRS. Using 50 instruments (genome wide

significant SNPs for educational attainment) we estimate that ˆβEA,rLRS = −0.2(p < 10−5.8).

This instrument variable analysis implies that an increase of one standard deviation in educa-

tional attainment leads to a 0.2 decrease in rLRS. While this limited analysis is insufficient

to fully demonstrate causality, the results are clearly consistent with the hypothesis that

educational attainment, or a trait such as cognitive ability (which is genetically correlated

with EA and might itself be causal for EA), has a negative causal relationship with lifetime

reproductive success.

We also performed a similar GSMR analysis between educational attainment and age at first

birth. Using the same educational attainment summary statistics, we had 51 instruments and

estimated that ˆβEA,AFB = 0.653(p < 10−21). The results are consistent with the hypothesis

that educational attainment (or a highly correlated trait) causally increases age at first birth.

Linear regression sensitivity analysis

The phenotypic results presented in the main text followed the default data filter and QC

pipeline. In the defaults pipeline we used age cutoff of 50 and 45 for males and females

respectively, did not perform inverse noram transformation on the data, used 6 standard

deviations to define outliers for removal and did not remove known related individuals. We

were concerned that, while rare, it is possible for males and females to have children above

the ages of 50 and 45 respectively. When the age inclusion thresholds were increased to 55

and 50 for males and females respectively, we did not see many major changes to the results

although the specific magnitudes of the selection gradient estimates did change. Similarly,

we increased stringency of the outlier inclusion criteria by removing individuals outside of 4

standard deviations from the mean. The increased outlier stringency had little qualitative
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effect on the our results.

We found that our results were also robust to normalization via inverse-normal transfor-

mation and the removal of known related individuals (Fig. A.45 and A.46). Additionally,

a logistic regression analysis was performed using a binary encoding of LRS in which zero

indicates no children and one indicates one or more children. Many of the phenotypes appear

to be associated with this binary phenotype. This indicates that some of the our phenotypic

regression results can be explained by whether people end up having children or not. These

results are contained in Dataset A.10 along with all other regression results.

The broad sense heritability of a squared phenotype

In the main text, we argue that the narrow sense heritability for a squared trait will nec-

essarily be much lower than the heritability for the trait itself. This stems from a few

fundamental features of the squared phenotype including gene-by-environment interactions,

over-dominance and epistasis. We will not derive the general case here, but instead will

illustrate a couple of informative special cases. First, we will demonstrate the reduction

in broad-sense heritability for a general trait with independent genetic and environmental

components. Second, we will derive the dominance and epistatic variance components under

purely additive single-locus and two-locus trait models. We finally appeal to our empirical

results to support our claim (Fig. A.44).

We begin with the simple phenotypic model with independent genetic and environmental
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components.

P = G+ E

H2 =
V (G)

V (P )
= V (G)

Where P ∼ N (0, 1) , G ∼ N (0, V (G)), and E ∼ N (0, V (E)). Assume that G and E are

independent. Therefore when we take the squared phenotype we get:

P 2 = G2 + 2GE + E2

I want to find expressions for V (P 2), V (G2), V (E2), and V (2GE). Because G and E both

have mean zero and are independent:

V (2GE) = 4V (G)V (E)

From the definition of variance:

V (X2) = E(X4)− E(X2)2

This is the difference between the fourth central moment and the square of the second central

moment. For a normal random variable the fourth central moment is 3 times the squared

variance
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µ4 = 3σ4
X

V (X2) = 3σ4
X − (σ2

X)2

V (X2) = 2(σ2
X)2

The remaining expressions clearly follow.

σ2
P = 1

σ2
G = V (G) = H2

σ2
E = V (E) = 1−H2

Therefore:

V (P 2) = 2

V (G2) = 2(H2)2

V (E2) = 2(1−H2)2

V (GE) = 4 ∗H2(1−H2)

If we decompose the squared phenotype, we can get expressions for the proportions of vari-
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ance due to each component:

V (G2)

V (P 2)
= (H2)2

V (E2)

V (P 2)
= (1−H2)2

V (2GE)

V (P 2)
= 2 ∗H2(1−H2)

Thus the broad sense heritability of squared phenotype will be the square of broad sense

heritability of the phenotype.

Finite locus models for a squared phenotype

Next, we will show how the genetic variance for the squared trait decomposes under single

and two locus models of a trait. Consider a single biallelic locus contributing to purely

additive trait P with alleles and at frequencies p and q respectively.

A1A1 A1A2 A2A2

G a 0 −a

G2 a2 0 a2

G2∗ 0 −a2 0

The additive variance in P is given by the classic formula.

VG2(A) = 2pqa2
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In the case of the P 2 there is no additive effect, but there is a dominance deviation (d = −a2)

such that:

VG2(A) = 2pq(−a2(q − p))2

VG2(D) = (−2pqa2)2

VG2(A)

VG2(A) + VG2(D)
=

2pq(−a2(q − p))2

2pq(−a2(q − p))2 + (−2pqa2)2

=
a2(q − p)2

a2(q − p)2 + 2pqa2

=
1

1 + 2pq
(q−p)2

The expression for the percent of total genetic variance which is due to additive effects only

depends on the allele frequencies .The absolute magnitude of the additive variance for the

squared genetic component is maximized for p = 0.5± 1
2
√

2
. However, the relative magnitude

of the of the additive component is maximized as p goes to zero. This composition of the

genetic variance across the range of allele frequencies is shown in Fig. A.41. Thus, for a given

trait architecture the additive component of squared trait will be more highly influenced by

rare variants. This fact further reduced the power of present study, in which we use common

SNPs to estimate genetic relatedness.

To illustrate the inclusion of epistasis, we derive the variance components under a two-locus
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model with equal additive effects. The loci have equal effects, a, and allele frequencies p1

and p2.

The genetic values for the trait and the squared trait are

G =


2a a 0

a 0 −a

0 −a −2a



G2 =


4a2 a2 0

a2 0 a2

0 a2 4a2


For this model, we follow the approach of Kojima [121] for the derivation of genetic vari-

ance components based on partial derivatives of the population mean with respect to allele

frequencies. Given the population mean genetic value µ, the (L-additive X Q-dominance)

variance due to a particular locus of set of loci can be defined as:

aLQ =
1

2L+Q

δL+2Qµ∏L
i δpi

∏Q
j p

2
j

σ2
LQ = 2L

L∏
i

pi(1− pi)
Q∏
j

(pj(1− pj))2a2
LQ

For example, the additive variance for a trait with M loci would be found by setting L=1

and Q = 0, such that:
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a10,i =
1

2

δµ

δpi

σ2
10 =

M∑
i

2pi(1− pi)a2
10,i

In the case of our two locus squared trait model, we will have additive, dominance and

additive by additive epistatic terms. It can be shown that dominance interactions go to

zero, i.e DxA and DxD epistasis.

µG2 =4a2 (1− p2) 2 (1− p1) 2 + 2a2 (1− p2) p2 (1− p1) 2+

2a2p1 (1− p2) 2 (1− p1) + 2a2p1p
2
2 (1− p1) +

4a2p2
1p

2
2 + 2a2p2

1 + (1− p2) p2

VG2(A) =
2∑
i=1

2pi(1− pi)
δµG2

δpi

VG2(D) =
2∑
i=1

(pi(1− pi))2 δ
2µG2

δp2
i

VG2(AA) =4p1(1− p1)p2(1− p2)
δµG2

δp1δp2

In Fig. A.42, we illustrate how much of the total genetic variance is attributable to the

additive component across the allele frequencies at each locus. The conclusions are similar

to the single locus model: at intermediate allele frequencies there is a substantial reduction

in the relative contribution of additive variance to total genetic variance for a squared phe-
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notype. This implies that, even if the additive variance is preserved at some loci, our study

using common variants will be severely under powered. However, as the number of loci in

the model increase, the importance of the additive variance component should also increase

[149]. Regardless, our empirical results show that narrow-sense heritability of a squared trait

is severely reduced compared to that of the trait itself.

Additive heritability of a squared trait under a polygenic model

In the previous section, we derived estimates of genetic variance under one and two locus

model. However, the traits studied in this work are highly polygenic and we sought an

alternative approximation based on the infinitesimal model. Under the infinitesimal model,

we can approximate the additive heritability of a trait as the limit of the correlation between

relatives as the correlation goes to zero(unrelated). This approximation should remain valid

for functions a traits.

Let there be a phenotype Y which is purely additive and another phenotype Z = Y 2. We

then consider both phenotypes Y and Z in a set of relatives with relatedness r for

Y = A+ E

E[Y ] = 0

var[Y ] = 1

Z1 = Y 2
1 = (A1 + E2)2

Z2 = Y 2
2 = (rA1 + E2)2

var[Z] = 2
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First, we need to derive a statement for the covariance between Z1 and Z2. Given that we

E[Y ] = 0, this derivation is relatively straightforward. The results follow below.

cov(Z1, Z2) = 2r2V (A)2

cov(Z1, Z2)

V (Z)
= corr(Z1, Z2) = r2(h2

Y )2

lim
r→0

corr(Z1, Z2)

r
= h2

Z

h2
Z = lim

r→0

corr(Z1, Z2)

r
= lim

r→0
r(h2

Y )2 = 0

Therefore, under a highly polygenic model we expect there to be no additive genetic variance

for a squared phenotype. To check this result we performed simple simulations in R. We

sampled genotypes at M markers for N individuals (N>>M), assuming equal allele frequen-

cies as allelic effects at each marker. Then we estimated the additive genetic variance using

the R2 from simple linear regression. We performed the regression on either the raw pheno-

types or the phenotypes scaled to mean zero and variance one. Fig. A.43 shows that the two

locus analytical expression for additive variance is accurate when M=2 in a regression on

the raw phenotypes. Fig. A.43 also shows that when the phenotypes is scaled, the additive

variance decreases rapidly as M (the number of markers) increases. From this we infer that,

in accordance with our derivation under a polygenic model, as M gets very large there is no

additive genetic variance for a squared phenotype.

222



Genetic control of variability

We first considered the behavior of the broad sense heritability of the square of a trait and

found that it is the square of the broad-sense heritability of the trait. Next we derived

expressions for genetic variance components under finite locus models following the classic

approach of Kojima [121] (revisited in [149]). Our single locus derivations here are equivalent

to those done by Yang, et al. [267]. The finite locus models suggested that for a purely

additive trait, the additive genetic variance of the square of trait will be less than genetic

variance by an amount which depends on allele frequencies and number of loci. Under an

infinitesimal model, based on the correlation between relatives, we expect there to be zero

additive genetic variance for the square of a trait. Using simple simulations we validate our

finite locus expressions and show that as the number of loci increases the additive genetic

variance approaches zero, in agreement with the derivations under the infinitesimal model

(Fig. A.43).

Further, without making assumptions about the genetic architecture of the trait, any ob-

served additive genetic variance for a squared phenotype can not be easily disentangled from

the effects of loci that explicitly control phenotypic variability. In other words, when geno-

typic classes differ in phenotypic variability there will additive genetic variance for the square

of the phenotype–a fact that has been previously appreciated in the literature[220, 24, 274,

272, 94, 247].Yang et al [267] showed that it is possible to determine whether the additive

effect of a SNP on the square of the trait is too large to be induced by that SNPs direct effect

on the trait. However, this approach does not easily allow us to interpret variance compo-

nents of the square of the trait, because of the confounding effect of the number of loci–we

cannot say exactly what the heritability of the square of a purely additive trait should be

without knowing both the heritability of the trait and the number of loci involved.
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Converting from scaled phenotype to real phenotype estimates

For us to interpret out regression estimates in term of theoretical parameters, we scaled

all phenotypes to mean zero and unit variance. However, for visualization of the predicted

relationship between real phenotypes and rLRS, we must convert our regression estimates

back to the real scale. While this is relatively straight forward algebra, the presence of the

squared term add some minor additional complexity, which we illustrate here.

Given a sample of paired rLRS and trait values y and x, we convert x to z-scores:

z =
x− x0

σx

We have the multiple linear regression model:

y = β0 + β1z + β2z
2 + ε

y = β0 + β1(
x− x0

σx
) + β2(

x− x0

σx
)2 + ε

y = (β0 −
x0β1

σx
+
β2x

2
0

σ2
x

) + (
β1

σx
− 2β2x0

σ2
x

)x+
β2

σ2
x

x2 + ε

y = β∗0 + β∗1x+ β∗2x
2 + ε
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A.7 Chapter 4 supplementary figures
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Figure A.26: Histograms showing the distributions of (A) linear and (B) quadratic selection
gradients estimated from single trait regressions. Results are not split by sex, i.e. each
data point is a result for a specific sex-trait pair. Linear selection gradients are equal to the
regression coefficients estimates. Quadratic selection gradients are equal to twice the value
of the regression coefficient estimates. A significance cut-off of FWER≤ 0.05 (Bonferroni
correction) was chosen for visualization. Vertical lines show the values for Female (solid)
and Male (dashed) height.
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Figure A.27: Empirical relationships between LRS and Height. (Top row) Raw LRS values
plotted against raw height values with a quadratic regression line fit to the data for (A)
Females and (B) Males with a dashed horizontal line at the sex-specific population mean.
(Bottom row) rLRS adjusted for age, birth cohort and assessment center values plotted
against centered and scaled height values with a quadratic regression line fit to the data for
(C) Females and (D) Males.
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Figure A.28: Simulated relationship between LRS and a trait under stabilizing selection.
Trait values for 150,000 individuals were drawn from a unit normal distribution. Fitness
values were calculated with a Gaussian stabilizing selection fitness model with an optimum
at zopt = 1 and Vs = 40. Then LRS values were drawn from a poisson distribution with a
mean equal to twice the relative fitness of each individual. We use twice the relative fitness
so that the mean number of offspring per individual is 2, reflecting a constant population
size in a sexual system. This poisson model for LRS will closely approximate the results of
a Wright-Fisher model.
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Figure A.29: Phenotypic correlation matrix for Females. Shows the correlation coefficient for
the measured phenotypes in females. The color legend is shown on the right hand side, with
dark blue and dark red representing strong positive and negative correlations, respectively.

228



? ? ?

?

?
?

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E
du

ca
tio

na
l_

qu
al

ifi
ca

tio
n

H
an

d_
gr

ip
_s

tr
en

gt
h_

le
ft

H
an

d_
gr

ip
_s

tr
en

gt
h_

rig
ht

W
ai

st
_c

irc
um

fe
re

nc
e

H
ip

_c
irc

um
fe

re
nc

e
H

ei
gh

t
H

ee
l_

B
M

D
_T

_s
co

re
P

ul
se

_r
at

e
Fa

th
er

s_
ag

e
F

or
ce

d_
vi

ta
l_

ca
pa

ci
ty

_F
V

C
F

or
ce

d_
ex

pi
ra

to
ry

_v
ol

um
e_

F
E

V
1

P
ea

k_
ex

pi
ra

to
ry

_f
lo

w
_P

E
F

H
ee

l_
Q

U
I

H
ee

l_
B

M
D

D
ia

st
ol

ic
_b

lo
od

_p
re

ss
ur

e
S

ys
to

lic
_b

lo
od

_p
re

ss
ur

e
P

ul
se

_w
av

e_
re

fle
ct

io
n_

in
de

x
P

ul
se

_w
av

e_
pe

ak
_t

o_
pe

ak
_t

im
e

M
ax

im
um

_d
ig

its
_r

em
em

be
re

d
lo

gM
A

R
_f

in
al

_r
ig

ht
lo

gM
A

R
_f

in
al

_l
ef

t
F

lu
id

_i
nt

el
lig

en
ce

_s
co

re
S

R
T

_e
st

im
at

e_
le

ft
S

R
T

_e
st

im
at

e_
rig

ht
B

ir
th

_w
ei

gh
t

M
ea

n_
tim

e_
to

_c
or

re
ct

ly
_i

de
nt

ify
_m

at
ch

es
N

eu
ro

tic
is

m
_s

co
re

B
M

I
W

ei
gh

t
P

ul
se

_w
av

e_
A

rt
er

ia
l_

S
tif

fn
es

s_
in

de
x

B
od

y_
fa

t_
pe

rc
en

ta
ge

B
as

al
_m

et
ab

ol
ic

_r
at

e
W

H
R

Educational_qualification
Hand_grip_strength_left

Hand_grip_strength_right
Waist_circumference

Hip_circumference
Height

Heel_BMD_T_score
Pulse_rate

Fathers_age
Forced_vital_capacity_FVC

Forced_expiratory_volume_FEV1
Peak_expiratory_flow_PEF

Heel_QUI
Heel_BMD

Diastolic_blood_pressure
Systolic_blood_pressure

Pulse_wave_reflection_index
Pulse_wave_peak_to_peak_time

Maximum_digits_remembered
logMAR_final_right

logMAR_final_left
Fluid_intelligence_score

SRT_estimate_left
SRT_estimate_right

Birth_weight
Mean_time_to_correctly_identify_matches

Neuroticism_score
BMI

Weight
Pulse_wave_Arterial_Stiffness_index

Body_fat_percentage
Basal_metabolic_rate

WHR

Figure A.30: Phenotypic correlation matrix for Males. Shows the correlation coefficient for
the measured phenotypes in males. The color legend is shown on the right hand side, with
dark blue and dark red representing strong positive and negative correlations, respectively.

229



Figure A.31: Predicted relative fitness as a function of age at first live birth. Linear and
quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed
phenotypic range were predicted and shown by solid red (female) line. The population
means are indicated by vertical solid red (female). Histograms of female (red) phenotypes
are overlaid with an axis on the right hand side. The horizontal dashed line indicates a
relative predicte fitness of 1.
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Figure A.32: Predicted relative fitness as a function of age at menopause. Linear and
quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed
phenotypic range were predicted and shown by solid red (female) line. The population
means are indicated by vertical solid red (female). Histograms of female (red) phenotypes
are overlaid with an axis on the right hand side. The horizontal dashed line indicates a
relative predicted fitness of 1.
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Figure A.33: Predicted relative fitness as a function of age at menarche. Linear and quadratic
selection gradients were converted into parameters of a Gaussian fitness function. Using the
parameterized Gaussian fitness function, relative fitness values across the observed pheno-
typic range were predicted and shown by solid red (female) line. The population means are
indicated by vertical solid red (female). Histograms of female (red) phenotypes are overlaid
with an axis on the right hand side. The horizontal dashed line indicates a relative predicted
fitness of 1.
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Figure A.34: Predicted relative fitness as a function of educational attainment. Linear and
quadratic selection gradients were converted into parameters of a Gaussian fitness function.
Using the parameterized Gaussian fitness function, relative fitness values across the observed
phenotypic range were predicted and shown by solid red (female) and dashed black (male)
lines. The population means are indicated by vertical solid red (female) and dashed black
(male) lines. Histograms of female (red) and male (gray) phenotypes are overlaid with an
axis on the right hand side. The horizontal dashed line indicates a relative predicted fitness
of 1.
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Figure A.35: Predicted relative fitness as a function of Fluid intelligence. Linear and
quadratic selection gradients were converted into parameters of a Gaussian fitness func-
tion. Using the parameterized Gaussian fitness function, relative fitness values across the
observed phenotypic range were predicted and shown by solid red (female) and dashed black
(male) lines. The population means are indicated by vertical solid red (female) and dashed
black (male) lines. Histograms of female (red) and male (gray) phenotypes are overlaid with
an axis on the right hand side. The horizontal dashed line indicates a relative predicted
fitness of 1.
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Figure A.36: Predicted relative fitness as a function of BMI. Linear and quadratic selection
gradients were converted into parameters of a Gaussian fitness function. Using the parame-
terized Gaussian fitness function, relative fitness values across the observed phenotypic range
were predicted and shown by solid red (female) and dashed black (male) lines. The pop-
ulation means are indicated by vertical solid red (female) and dashed black (male) lines.
Histograms of female (red) and male (gray) phenotypes are overlaid with an axis on the
right hand side. The horizontal dashed line indicates a relative predicted fitness of 1.
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Figure A.42: The percentage of genetic variance for a squared trait which is purely additive.
Under a purely additive two locus model with equal effects (a = 1), the squared trait contains
additive, dominance and additive by additive epistatic variance components. The relative
magnitudes of each component, depends on the allele frequencies. The axes represent allele
frequencies at each locus and the color shows the relative magnitude of the additive variance
component. Lighter colors show a large additive component.

240



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Raw

Allele frequency

V
(A

)/
V

(G
)

M=2
M=5
M=10
M=20
Analytical(M=2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Scaled and Centered

Allele frequency

V
(A

)/
V

(G
)

Figure A.43: Regression based estimates of the percentage of genetic variance for a squared
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(a = 1). The regression was performed on the raw unscaled trait values (left) and the
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Figure A.45: Sensitivity analysis of linear selection gradients. Each set of β estimates is
compared to a baseline analysis described in the the text. For each data QC pipeline we
display the log fold-change in the value of β compared to and whether the estimate changed
significance status. Red coloration implies that β increased in absolute magnitude and thus
became more significant and vice versa for blue coloration.
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Figure A.46: Sensitivity analysis of quadratic selection gradients. Each set of γ estimates
is compared to a baseline analysis described in the the text. For each data QC pipeline we
display the log fold-change in the value of γ compared to and whether the estimate changed
significance status. Red coloration implies that γ increased in absolute magnitude and thus
became more significant and vice versa for blue coloration.
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Figure A.47: Performance of polygenic predictor for height. Polygenic predictors for height
and squared height were constructed based on genetic association statistics obtained from a
meta-analysis of the UKB and GIANT data. The R2 score and p-values for each predictor
are plotted against the number of SNPs included in the model.
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Figure A.48: Performance of simulated polygenic predictors. A phenotype was simulated
under a polygenic model with 20,000 causal markers. SNP effects were estimate in a discovery
panel of 300,000 individuals. Polygenic predictors for the phenotype and squared phenotype
were constructed in a test panel of 50,000 individuals. The R2 score and p-values for each
predictor are plotted against the number of SNPs included in the model.
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A.8 Chapter 4 supplementary tables

Trait Sex Order Estimate �log10(p)
Educational attainment Female 1 0.04 23
Age at menarche Female 1 0.02 4
Age at first live birth Female 1 -0.18 >220
Bone mineral density (ultrasound) Female 1 -0.02 5
Systolic blood pressure Female 1 -0.03 8
Waist-hip ratio Female 1 0.04 14
Hand grip strength(right) Male 1 0.05 15
Pulse rate Male 1 -0.04 7
Systolic blood pressure Male 1 -0.03 4
Body mass index (BMI) Male 1 0.08 17
Age at first live birth Female 2 0.04 43
Body mass index (BMI) Female 2 0.01 5
Educational attainment Male 2 0.05 6
Body mass index (BMI) Male 2 -0.03 13

Table A.7: Summary of multiple regression of traits onto rLRS. Traits which were marginally
significant in a multiple regression model are displayed below. The multiple regression was
carried out separately for each sex. The full results of multiple regression are contained in
the Dataset A.10.

Predictor Estimate �log10(p)
Educational Attainment (EA) 0.032 75
Age at First Birth (AFB) 0.167 > 220
Interaction (EA:AFB) 0.038 112

Table A.8: Summary of multiple regression of educational attainment and age at first birth
onto rLRS. The linear model rLRA EA+AFB+EA∗AFB+ε was fit to the female samples.
Both predictors as well as their interaction term were found to be statistically significant.
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Figure A.25: This shows the peak memory use (top) and time per window (bottom) as
a function of window size for a panel of ESM test runs with 2,000,000 permutations of
chromosome 15 for bipolar disorder. The permutations are done in PLINK 1.90a and takes
approximately 12 CPU-hours per million permutations to perform and write to disk; typically
we performed analysis on an HPC cluster. We varied the size of the genomic window, the
jump size (related to window overlap), and K (the number of markers used per window).
Each point is the mean over only three replicates, but each replicate involves thousands
of windows. In general, the window size is the primary contributor to time per window.
Benchmark runs were performed were performed as 4-core jobs as was done in the full scale
analysis. Peak memory use is quite low and the multithreading was primarily used to save
user time. A larger jump size between windows is less efficient per window because of the
HDF5 chunking strategy. When windows have significant overlap, data from an HDF5 chunk
may be read once and used in analyzing multiple windows, thus driving down average time
per window. Additionally, when using multiple cores, a larger jump size means more data is
needed per set of windows and peak memory use is also higher.
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Figure A.37: Bar plots showing BOLT-REML estimates of genetic correlations between a
selection of traits and rLRS for Females (red) and Males (blue) . Traits were selected on
the basis of being marginally significant (p≤ 0.001) in at least one sex, and were sorted in
ascending order of the estimate for each sex. Data are displayed as the correlation estimate
plus or minus the standard error.(∼ p ≤ 0.001, *FWER≤ 0.05) Bars are labeled with
abbreviated trait descriptions described in the text.

249



Predictor Sex rg,LDSC rp,full rp,BOLT rg,BOLT re,BOLT

Age at first live birth Female -0.593 -0.175 -0.269 -0.492 -0.254
Age at menopause Female -0.168 0.028 0.020 -0.238 0.052
Age at menarche Female 0.133 0.013 0.024 0.120 0.008
Basal metabolic rate Female -0.015 0.025 0.028 0.094 0.016
Birth weight Female -0.073 0.003 0.001 -0.018 0.003
Body mass index (BMI) Female 0.104 0.038 0.036 0.205 0.009
Body fat percentage Female 0.108 0.012 0.027 0.170 0.004
Diastolic blood pressure Female -0.022 -0.003 -0.004 0.058 -0.013
Fluid intelligence score Female -0.313 -0.030 -0.057 -0.239 -0.032
Forced expiratory volume Female -0.075 0.008 -0.001 -0.094 0.015
Forced vital capacity Female -0.092 0.010 0.002 -0.097 0.020
Hand grip strength(right) Female -0.097 0.003 0.006 -0.102 0.019
Bone mineral density (ultrasound) Female -0.010 -0.007 -0.015 0.068 -0.035
Height Female -0.128 -0.018 -0.031 -0.089 -0.019
Hip circumference Female 0.045 0.022 0.026 0.146 0.008
Maximum digits remembered Female -0.028 -0.016 -0.018 0.027 -0.022
Mean time to correctly identify matches Female 0.014 -0.006 -0.009 -0.044 -0.007
Peak expiratory flow Female -0.041 0.009 0.002 -0.070 0.011
Pulse rate Female -0.020 -0.009 -0.010 -0.037 -0.006
Pulse wave Arterial Sti↵ness index Female -0.186 0.007 0.014 -0.154 0.026
Pulse wave peak to peak time Female 0.159 -0.010 -0.009 0.411 -0.039
SRT hearing score Female 0.139 0.010 0.026 0.335 0.015
Systolic blood pressure Female -0.040 -0.008 -0.004 0.009 -0.005
Waist circumference Female 0.089 0.041 0.043 0.201 0.019
Weight Female 0.032 0.028 0.029 0.133 0.012
Waist-hip ratio Female 0.105 0.037 0.054 0.160 0.038
Basal metabolic rate Male 0.233 0.050 0.049 0.098 0.048
Birth weight Male 0.071 0.014 0.020 -0.013 0.023
Body mass index (BMI) Male 0.310 0.048 0.042 0.253 0.020
Body fat percentage Male 0.224 0.013 0.024 0.157 0.010
Diastolic blood pressure Male 0.137 0.004 0.007 0.065 0.003
Forced expiratory volume Male -0.086 0.022 0.022 0.007 0.025
Forced vital capacity Male -0.066 0.021 0.020 -0.045 0.028
Hand grip strength(right) Male 0.060 0.044 0.057 -0.072 0.069
Bone mineral density (ultrasound) Male 0.126 0.021 0.017 0.193 0.003
Height Male -0.007 0.015 0.009 -0.117 0.038
Hip circumference Male 0.228 0.034 0.022 0.120 0.013
Mean time to correctly identify matches Male -0.131 -0.029 -0.034 -0.053 -0.033
Neuroticism score Male -0.067 -0.021 -0.033 -0.086 -0.031
Peak expiratory flow Male 0.009 0.041 0.046 0.092 0.043
Pulse rate Male 0.084 -0.021 -0.027 -0.018 -0.029
Pulse wave Arterial Sti↵ness index Male 0.137 0.020 0.042 0.093 0.038
Pulse wave peak to peak time Male -0.267 -0.022 -0.035 -0.215 -0.024
Systolic blood pressure Male 0.039 -0.003 -0.002 0.048 -0.006
Waist circumference Male 0.273 0.030 0.026 0.182 0.010
Weight Male 0.278 0.050 0.043 0.126 0.036
Waist-hip ratio Male 0.246 0.016 0.023 0.216 0.005

Table A.9: Summary of correlation coefficients. This table contains the calculated phe-
notypic, genetic, and residual correlations from the analyses presented in the main text.
Columns correspond to the genetic correlation from LD score regression rg,LDSC , phenotypic
correlation from regression analyses rp,full, the phenotypic correlation from mixed model
analyses rp,BOLT , the genetic correlation from mixed model analyses rg,BOLT , and the resid-
ual correlation from the mixed model re,BOLT . Note that these are correlation coefficients
not covariances and are thus normalized by total variance components. This means that the
residual correlation can be smaller than the genetic correlation but still have a greater con-
tribution to the phenotypic correlation if the residual variances are larger than the genetic
variance explained by genotyped SNPs.

Table A.10: Supplemental excel file containing simple and multiple regression results.
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Table A.11: Supplemental text file containing genetic correlation results.
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