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ABSTRACT OF THE THESIS 

 

 

On-board Image Driven View Synthesis and Volume Reconstruction  

by Integrating Neural Representation with Iterative Reconstruction 

 

by 

 

Yun-Han Tsai 

Master of Science in Bioengineering 

University of California, Los Angeles, 2024 

Professor Dan Ruan, Chair 

 

 Onboard imaging (OBI) is widely used in radiotherapy for alignment, delivery verification, 

and adaption. However, its acquisition is subject to configuration constraints and pulsing control, 

compromising view optimality and decision quality. This study combines the complementary 

advantages of inference power from Generative Radiance Fields (GRAF) representation and 

robustness from iterative reconstruction targeting instance; and alleviates their respective 

limitations in volume reconstruction and efficiency. Initialize with a pre-trained GRAF 

representation, an online instance learning module refines the GRAF using the instantaneous 

projection from an arbitrary angle acquired during treatment. A view from an alternative angle is 

generated to provide clinically preferable triggers for real-time setup review or beam adaptation 

decisions. To support offline delivery verification, dense synthesized projections are fed into an 
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iterative reconstruction module to yield the full volumetric rendering. Qualitative and quantitative 

evaluations were performed for 2D projection query-generation and 3D volume reconstruction. 

Vessel bifurcation landmarks were used as surrogates for tumor targets, and their localization 

accuracy was analyzed to reflect motion-tracking efficacy. Detailed characterization of 

dependency on query angle, number of inputs, and operational conditions was reported. Our 

assessment indicates that paired query with instance learning enhances model's adaptation to target 

subjects in reducing nMSE by 17% for synthesized projections and 33% for volumetric rendering, 

and improving localization accuracy by 47% in bifurcation landmark analysis. This study shows 

the promise of using single or pair real-time projection for view toggling and volume tracking, 

demonstrating its utility for onboard monitoring, adaptation, and retrospective reconstruction in 

radiotherapy. We are working on further improving absolute accuracy and reconstruction 

resolution. 
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Chapter 1: Introduction 

1.1 Background 

Advancements in radiation therapy have enabled highly targeted and controlled energy 

delivery to eliminate tumor cells while sparing surrounding healthy tissue. However, the 

complexity of physiological movements makes it challenging for clinicians to guarantee 

accuracy in treatment. Contemporary onboard imaging (OBI) systems and therapeutic apparatus 

are frequently limited by their fixed configuration to the gantry and the risk of collisions, 

restricting their capability to provide the most clinically advantageous viewpoints1, which are 

essential for radiologists to adjust the radiation beam as tumors and organs move during 

treatment. Additionally, volume tracking and motion management remain a critical challenge. 

Hence, we aim to address two high-demand tasks: (1) to virtually toggle viewing angles to align 

with the treatment beam or other specific clinical requirements, and (2) to achieve spatiotemporal 

full-volume reconstruction. 

1.2 Neural Radiance Fields (NeRF) in Radiation Therapy 

Recent innovations in deep learning have demonstrated promising potential in 

radiotherapy applications. Neural Radiance Fields (NeRF) have been instrumental in estimating 

complete three-dimensional volumetric representation with encoded radiance field and density 

of given scenes2. It represents scenes as a continuous function and is optimized to reconstruct 

images from multiple viewpoints. 

NeRF operates by sampling points along the rays passing through the pixels in input 

images. These spatial coordinates and viewing directions query a neural network that outputs the 

color and density for each point, then are differentially accumulated along each ray to produce 
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the final pixel values in the synthesized image. This process allows NeRF to render novel views 

that were unseen in the training data. 

NeRF offers promising potential for improving visualization in the context of radiation 

therapy. It can be used to synthesize alternative views from arbitrary angles, aiding in real-time 

setup review and beam adaptation decisions. Additionally, its ability to query detailed volumetric 

representations can achieve motion management and dose accumulation tracking. These 

capabilities are crucial for addressing the challenges posed by physiological movements during 

treatment. 

Subsequently, Generative Radiance Fields (GRAF) integrated these characteristics 

within the Generative Adversarial Network (GAN) model to accomplish scene reconstructions 

with self-supervision3-5. Nevertheless, GRAF-based models are observed to be insensitive to 

details, and insufficient to capture complex anatomy in medical imaging. The values and 

limitations of these advanced models must be appreciated with well-defined clinical goals. 

1.3 Alternative Solutions and Proposed Method 

There are other possible methods that are commonly used in this field, including 

statistical iterative reconstruction, compressive sensing, and direct deep learning reconstruction6-

12. Iterative algorithms are known for their robustness and ability to produce high-quality images, 

especially in scenarios where data is sparse or noisy; Compressive sensing leverages the sparsity 

of medical images in various transform domains such as wavelet and Fourier to efficiently 

recover high-quality reconstructions from a small set of measurements; On the other hand, direct 

deep learning reconstruction approaches offer potential improvements in speed and accuracy. 

These techniques are beneficial in applications where high-quality reconstructions are essential 

for accurate diagnosis and treatment planning. Despite their promise, these methods also come 
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with their limitations, such as demanding computational complexity and availability in real-time 

scenarios. 

This study positions the proposed method as a complementary approach to these 

alternative solutions. To address the challenges mentioned above within a GRAF-based deep 

network, we explored the practical implications of employing instance learning with a 

quantitative-focused objective. Iterative statistical reconstruction was further implemented to 

obtain a robust volumetric rendering and mitigate the loss of image quality due to downsampling 

in both angle and detector dimensions. This pipeline allows the system to dynamically adapt to 

patient-specific changes and render projections from various angles shortly; and further provide 

a comprehensive solution for onboard monitoring and retrospective reconstruction in radiation 

therapy. Even though it is hard to solve reconstruction problems based on a single or a pair of 

projections with iterative algorithms directly, they offer an effective framework for integrating 

volumetric consistency and prior knowledge. We extensively investigated various aspects of 

synthesizing diverse projections with different query projection numbers and angles to 

comprehend their clinical applicability. 

To assess the contribution of instance learning in different clinical scenarios, we 

conducted thorough quantitative and qualitative assessments of 2D digitally reconstructed 

radiograph (DRR) renderings and 3D computed tomography (CT) reconstruction. In addition, 

vessel bifurcation landmark analysis was used to reflect tumor localization accuracy for 

treatment management. In summary, this study aims to provide a more accurate and dynamic 

visualization to monitor and adapt to target movement during therapeutic procedures. 
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Chapter 2: Method and Materials 

We have developed a complete pipeline to translate information from a single-view X-

ray projection into a prescribed view angle or the underlying volumetric CT. 

 

Figure 2-1: Overall schematic. The DRR Generation module creates ground-truth 

projections from the reference 3D CT for GRAF batch training. In the instance learning 

stage, two setups (1) a single coronal view, and (2) a combination of coronal and sagittal views 

are introduced to refine the generator with objective 𝓛̃. Projections are synthesized at both 

toggle-target angle 𝜼  for online decision-making, or at dense angles for retrospective 

spatiotemporal reconstruction. 

 

Figure 2-1 illustrates the overall schematic of our process. To prepare data for model 

training and systematic evaluation, we forward project the reference CT data to generate DRRs. 

These projections provide benchmarks for quality during the view-toggle inference stage or the 

three-dimensional volume rendering. Structural identity and the implicit neural attenuation field 

representation are learned with a baseline GRAF network. Finally, instance learning is applied 

to adapt the underlying field and to generate projections at alternative angles with single/paired 
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query input; or dense projections that are then used with iterative reconstruction to yield an 

instantaneous estimate of the CT volume. 

2.1 Generative Radiance Fields (GRAF) Overview 

Generative Radiance Fields (GRAF) represents an advancement by integrating the 

strengths of Generative Adversarial Networks (GAN) with Neural Radiance Fields (NeRF), 

promising 3D-aware image synthesis with precise control over shape and appearance. 

In the adapted GRAF framework in our study, the generator 𝐺𝜃 is tasked with predicting 

image patches using inputs such as the projection matrix 𝐾, projection geometry 𝜉 , a beam 

sampling pattern 𝜈, and latent codes for shape 𝑧𝑠 and appearance 𝑧𝑎. These inputs are encoded 

by a multi-layer perceptron (MLP) to create a conditional radiance field. It maps 3D locations 

and viewing directions, conditionally influenced by the latent codes, to radiation attenuation 

response 𝑐 and volume density 𝜎 of the sampled points. The discriminator 𝐷𝜙, serving as the 

adversarial counterpart to the generator, compares the synthesized image 𝑃pred patch against a 

real patch 𝑃real extracted from the training dataset. It is implemented as a convolutional neural 

network that classifies patches as real or synthetic, to provide gradients for updating the 

generator towards more realistic image synthesis. 

2.2 On-query Instance Learning for Quantitative Alignment  

It is important to update the NeRF representation with instantaneous information to reflect 

the inter- or intra-subject changes and dynamics from the static reference representation. We 

perform instance learning of single query to fine-tune part of the generator parameters together 

with the latent vectors for shape 𝑧𝑠 and appearance 𝑧𝑎
13-14. This process is guided by a weighted 

objective of perceptual loss with respect to feature encoding from VGG 16 and mean squared 

error (MSE) from the acquired OBI image15. This form is typically used to improve the trade-
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off between perceptual quality and distortion in GAN models16. The instance learning generator 

objective is illustrated in Equation 2-1. 

Equation 2-1 

ℒgen = 𝜆1ℒperception(G;  VGG16) + 𝜆2ℒMSE(G) , 

Where weights 𝜆1  and 𝜆2  determine the relative importance of perception feasibility and 

goodness of fit. 

 

We investigate the impact of instance learning on the quality of the rendered projection 

images and the resultant volume reconstruction from two scenarios: (1) a single coronal view, 

and (2) paired coronal and sagittal views. Instance learning of various query view angles is also 

systemically evaluated. These assessments are meant to provide insights into the adaptability 

and precision of the model from limited and varied viewpoints across different imaging 

configurations. 

Our application context of both view angle toggling and CT reconstruction strongly focuses 

on quantitative accuracy. Since the instance learning is performed based on one or two query 

view images, it is reasonable to expect the compliance to human visual perception and 

consistency across different views to be inherited from the NeRF training, and won’t be 

compromised much by the proposed refinement. 

2.3 Experiments and Implementation Details 

We utilized the available public TCIA lung CT datasets17-19. Among the comprehensive 

repositories that include a variety of scan types, we selected non-contrast standard CT studies to 

ensure consistency and homogeneity of appearance. We used CT scans of 6 training subjects and 

5 testing subjects. 
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Forward projection was performed according to cone-beam geometry, employing a 50 keV 

mono-energetic X-ray source (based on NIST standards), with Source-to-Axis Distance (SAD) 

and Source-to-Detector Distance (SDD) as specified in the patient DICOM files, to generate 72 

digitally reconstructed radiographs (DRRs) for each subject, at intervals of 5 degrees for 

complete circumferential coverage throughout a full rotation of 360 degrees. Projections were 

recorded with a size of 128×128 pixels. The coordinate system was established using the right-

hand rule, with the coronal view set as the baseline at zero degrees and the Z-axis oriented in the 

superior direction. 

For the main GRAF model, the training was conducted using 432 instances with a batch 

size of 8 over 150,000 iterations. It took approximately 50 hours to train on a single Quadro RTX 

8000 GPU. The module configuration and hyperparameters were closely aligned with the 

original specifications suggested by Schwarz et al5,20. 

For online instance learning, the relative weight of perception and MSE loss 𝜆1 and 𝜆2 was 

explored over various combinations. To assess how a single query from different angles affects 

the synthesized output, we systematically adjusted the query angle in increments of 30 degrees, 

reaching a maximum of 150 degrees. Furthermore, the paired query from two orthogonal angle 

projections (coronal and sagittal views) was introduced to analyze the potential advantages of 

incorporating information from an additional query angle. The instance learning process 

proceeded with 1,500 iterations for a single query and 3,000 iterations for the paired query. 

For volume rendering, a dense set of synthesized projections at 72 distinct angles were 

synthesized and the Order Subsets Adaptive Steepest Descent Projection Onto Convex Set (OS-

ASD-POCS) algorithm21 was used for reconstruction. The configuration was optimized, with the 
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subset size, the number of total variation (TV) steps within each iteration, and the TV weight 

were set to values of 10, 10, and 0.001, respectively. 

We quantitatively and qualitatively evaluated the model’s performance on the 2D 

projection rendering and 3D volumetric reconstruction. For two-dimensional assessment, the 

synthesized outputs were compared against ground-truth DRRs. The normalized mean squared 

error (nMSE) and normalized mean absolute error (nMAE) were calculated to measure the 

quantitative difference, and the peak signal-to-noise ratio (PSNR) and structural similarity index 

(SSIM) were computed to analyze visual similarity and conspicuity. The MSE, nMSE, nMAE, 

PSNR, and SSIM calculations were given in Equation 2-2.  

Equation 2-2 

MSE =
1

N
∑ (𝐼gt,𝑖 − 𝐼recon,𝑖)

2𝑁
𝑖=1  , 

nMSE =
∑ (𝐼gt,𝑖−𝐼recon,𝑖)

2𝑁
𝑖=1

∑ 𝐼gt,𝑖
2𝑁

𝑖=1

 , 

nMAE =
∑ |𝐼gt,𝑖−𝐼recon,𝑖|𝑁

𝑖=1

∑ |𝐼gt,𝑖|𝑖
 , 

PSNR = 10 log10
(

max𝐼𝑔𝑡
2

MSE
) , 

SSIM =
(2𝜇gt𝜇recon+𝑐1)(𝜎gt𝜎recon+𝑐2)(𝜎gt,recon+𝑐3)

(𝜇gt
2+𝜇recon

2+𝑐1)(𝜎gt
2+𝜎recon

2+𝑐2)(𝜎gt𝜎recon+𝑐3)
 , 

Where 𝐼gt,𝑖 represents the intensity value of the ground-truth image at pixel 𝑖, and 𝐼recon,𝑖 denotes 

the pixel values of the reconstructed image; 𝜇gt, 𝜇recon, 𝜎gt, 𝜎recon are the mean  and standard 

deviations of the ground-truth and the reconstructed images, respectively; 𝜎𝑔𝑡,𝑟𝑒𝑐𝑜𝑛 represents the 

covariance of the ground-truth and reconstructed images. The luminance, contrast, and structure 

are equally weighted to unity. All configuration constants are set according to convention: 𝐿 being 
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the dynamic range of the pixel-values; 𝜅1 = 0.01 and 𝜅2 = 0.03, 𝑐1 = (𝜅1𝐿)2, 𝑐2 = (𝜅2𝐿)2, and 

𝑐3 = 𝑐2/2. 

 

For volumetric accuracy, nMSE, nMAE, PSNR, and SSIM were compared between the 

query-driven CT reconstruction and its corresponding benchmark. Moreover, we conducted 

vessel bifurcation landmark identification and compared the displacement accuracy. 
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Chapter 3: Results and Discussion 

3.1 Evaluation of 2D View Toggle Performance 

 To assess the 2D synthesis performance of our model, we investigated the weighting of 

perception (𝜆1) vs MSE (𝜆2) components in the objective for instance learning, with extreme cases 

where instance learning was guided solely by one of them. Table 3-1 shows that a composite with 

𝜆1 = 3, 𝜆2 = 1 was most favorable, and we adopt this setting for subsequent analyses. 

 

Table 3-1: 2D renderings evaluation for the optimal balance of perception and MSE within 

instance learning. 

 

Figure 3-1 provides a visual comparison of 2D renderings for view toggling tasks without 

and with instance learning. Although the original GRAF model represents a reasonable anatomical 

appearance without instance learning, it lacks the capability to adjust to the new instantaneous 

anatomical change. On the other hand, instance learning with a single query improves faithfulness 

to the specific patient across the query angle and the synthesized angles. It demonstrates a 

discernible improvement in accuracy and image quality while preserving 3D consistency. 

The potential value of query input is reported in Figure 3-2 where single query at 0° or 

paired query inputs at 0° or 90° are used to generate projections at a rendering angle of 𝜃 = 45°. 

It shows that on top of the benefit from instance learning with a single query, additional projection 

(orthogonal to the original in our experiment) further enhances the rendering performance. Table 

3-2 reports the various metrics employed to quantitatively compare the renderings from different 

scenarios against the ground-truth projections. Instance learning driven by a single query 

𝝀𝟏 𝝀𝟐 MSE (𝝁 ± 𝝈) MAE (𝝁 ± 𝝈) PSNR (𝝁 ± 𝝈) SSIM (𝝁 ± 𝝈) 

0 

1 

1 

3 

1 

0 

3 

1 

0.977 ± 0.004 

0.969 ± 0.066 

0.943 ± 0.083 

0.938 ± 0.055 

1.511 ± 0.054 

1.454 ± 0.387 

1.294 ± 0.243 

1.275 ± 0.336 

32.06 ± 0.23 

32.15 ± 0.08 

32.62 ± 0.44 

32.71 ± 0.52 

0.74 ± 0.01 

0.76 ± 0.04 

0.81 ± 0.02 

0.81 ± 0.04 
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significantly improves across all the metrics. Additional query input further enhances the overall 

results, leading to a 17% reduction in nMSE. 

         
(a)                                                                         (b) 

 

         
               (c)                                                                         (d) 

 

         
               (e)                                                                         (f) 

 

Figure 3-1: Comparison of view toggling performance w/o and w/ instance learning. Upper 

row displays ground-truth DRR images: (a) input query image at 𝟎°, followed by (b) DRR 

images at 𝟒𝟓°, 𝟗𝟎°, 𝟏𝟑𝟓°, and 𝟏𝟖𝟎°. (c)(d) show the results of direct GRAF queries, while 

(e)(f) present the outcomes of GRAF queries employing instance learning based on (a). 

 

 To illustrate the information content and adaptation contribution depending on query angle, 

Table 3-3 compares the quantitative results of single query instance learning from various query 

angles. Figure 3-3 illustrates nMSE and SSIM as a function of input query angle. The coronal 

view is found to yield the optimal overall performance. Furthermore, it is observed that the quality 

of the generated images decreases as the query angle approaches the sagittal view, and the model 

exhibits similar performance with modules 𝜋  due to symmetry as expected. This observation 
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aligns with expectations, given that the sagittal views are subject to more pronounced obstructions 

from the rig-cage and longer path length, thereby diminishing the intrinsic information content in 

driving evolution in instance learning. Consequently, the transition from the sagittal to the coronal 

view establishes a 13% decrease in nMNE for these synthesized projections. 

Figure 3-4 shows the changes in the synthesized projections as the optimization 

progresses, which offers a reference for expected outcomes from instance learning under various 

conditions. 

 

                      
(a)                                (b)                                 (c)                                (d) 

 

Figure 3-2: Query output results at 𝟒𝟓° for various conditions, where (a) ground truth (b) 

single query w/o instance learning (c) single query w/ instance learning (d) paired query w/ 

instance learning. 

 

Method MSE (𝝁 ± 𝝈) MAE (𝝁 ± 𝝈) PSNR (𝝁 ± 𝝈) SSIM (𝝁 ± 𝝈) 

single query 

single query + IL 

paired query + IL 

1.071 ± 0.055 

0.938 ± 0.055 

0.893 ± 0.043* 

1.385 ± 0.405 

1.275 ± 0.336 

1.205 ± 0.168* 

32.12 ± 0.68 

32.71 ± 0.52 

32.91 ± 0.56* 

0.73 ± 0.06 

0.81 ± 0.04 

0.82 ± 0.03* 

Table 3-2: Comparative evaluation of 2D renderings applying instance learning (IL). (*: 𝒑 <
𝟎. 𝟎𝟎𝟎𝟏, one-tailed paired t-test, compared to single query w/o instance learning) 

 

Query angle MSE (𝝁 ± 𝝈) MAE (𝝁 ± 𝝈) PSNR (𝝁 ± 𝝈) SSIM (𝝁 ± 𝝈) 

0° 

30° 

60° 

90° 

120° 

150° 

0.938 ± 0.055 ↓ 

0.942 ± 0.050 

0.983 ± 0.051 

1.077 ± 0.109 ↑ 

0.974 ± 0.049 

0.945 ± 0.069 

1.275 ± 0.336 ↓ 

1.334 ± 0.256 

1.471 ± 0.098 

1.495 ± 0.330 ↑ 

1.379 ± 0.231 

1.291 ± 0.056 

32.71 ± 0.52 ↑ 

32.69 ± 0.61 

32.50 ± 0.48 

32.12 ± 0.27 ↓ 

32.54 ± 0.84 

32.67 ± 0.39 

0.81 ± 0.04 ↑ 

0.79 ± 0.03 

0.78 ± 0.03 

0.74 ± 0.02 ↓ 

0.78 ± 0.05 

0.79 ± 0.02 

Table 3-3: Comparative evaluation of 2D renderings from various query angles. 
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Figure 3-3: Variation of nMSE and SSIM in 2D renderings with respect to input query 

angles. Optimal quality is achieved at 𝟎° (coronal) with the minimal nMSE and maximal 

SSIM; while the worst quality is observed at 𝟗𝟎° (sagittal) with the maximal nMSE and 

minimal SSIM. 

 

                      
(a)                                (b)                                 (c)                                (d) 

 

Figure 3-4: Evolution of synthetic projections as the number of instance learning iterations 

increases. (a) DRR ground truth. (b) w/o instance learning (c) 750 iterations (d) 1,500 

iterations. 

 

3.2 Evaluation of 3D Reconstruction Accuracy 

Figure 3-5 displays the reconstructed CT scans both without and with instance learning, 

compared against the benchmark reconstruction. Instance learning effectively incorporates the 

instantaneous information of specific targets compared to the initial GRAF model, enabling the 

model to align more closely with the actual 3D anatomical features of the target. 
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The empirical results of applying single and paired instance learning to the reconstructed 

volumes are displayed in Tables 3-4, 3-5, and Figure 3-6. The outcomes are consistent with 

observations for 2D rendering. Instance learning with paired query images lead to an average 33% 

reduction in nMSE. In addition, instance learning employing the coronal view, as opposed to the 

sagittal view, results in reconstruction with a 12% decrease in nMSE. 

            
  (a)                                               (b)                                                (c) 

 

Figure 3-5: 3D ortho-slice view of the volumetric reconstruction. (a) benchmark 

reconstructed from 72 ground-truth projections. CT volume reconstruction from a single 

query (b) without and (c) with instance learning. 

 

Method MSE (𝝁 ± 𝝈) MAE (𝝁 ± 𝝈) PSNR (𝝁 ± 𝝈) SSIM (𝝁 ± 𝝈) 

single query 

single query + IL 

paired query + IL 

0.719 ± 0.118 

0.622 ± 0.049 

0.482 ± 0.029* 

0.848 ± 0.064 

0.785 ± 0.029 

0.697 ± 0.017* 

10.86 ± 0.96 

11.45 ± 0.65 

12.55 ± 0.49* 

0.38 ± 0.02 

0.46 ± 0.01 

0.49 ± 0.01* 

Table 3-4 Comparative evaluation of 3D CT reconstruction applying instance learning. (*: 

𝒑 < 𝟎. 𝟎𝟏, one-tailed paired t-test, compared to the method w/o instance learning) 

 

Query angle MSE (𝝁 ± 𝝈) MAE (𝝁 ± 𝝈) PSNR (𝝁 ± 𝝈) SSIM (𝝁 ± 𝝈) 

0° 

30° 

60° 

90° 

120° 

150° 

0.622 ± 0.049 ↓ 

0.644 ± 0.159 

0.687 ± 0.164 

0.707 ± 0.135 ↑ 

0.705 ± 0.091 

0.655 ± 0.067 

0.785 ± 0.029 ↓ 

0.794 ± 0.102 

0.806 ± 0.104 

0.829 ± 0.100 ↑ 

0.794 ± 0.060 

0.792 ± 0.042 

11.45 ± 0.65 ↑ 

11.32 ± 1.71 

11.23 ± 1.47 

11.08 ± 0.77 ↓ 

11.34 ± 0.43 

11.38 ± 0.66 

0.46 ± 0.01 ↑ 

0.45 ± 0.02 

0.45 ± 0.03 

0.42 ± 0.03 ↓ 

0.43 ± 0.01 

0.44 ± 0.01 

Table 3-5: Comparative evaluation of 3D CT reconstructions from various query angles. 
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Figure 3-6: Variation of nMSE and SSIM in 3D CT reconstruction with respect to input 

query angles. 

 

 

 
 

Method Displacement, mm (𝝁 ± 𝝈) 

single query 

single query + IL 

paired query + IL 

26.50 ± 9.12 

19.42 ± 4.74 

14.00 ± 8.18 

Table 3-6: Bifurcation landmark evaluation of reconstructed volumetric w/o and w/ instance 

learning 
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Table 3-6 illustrates and reports the localization on the reference and displacement 

corresponding to ground truth under various conditions. Paired query instance learning improves 

the localization accuracy by approximately 47%. However, observed errors due to blurriness 

remain above clinical requirements, which is possibly inherited from GRAF. 

Table 3-7 demonstrates an enhancement in 3D volumetric outcomes when applying OS-

ASD-POCS algorithm in conjunction with synthesized projections. Compared to the sampled 

volume rendering from GRAF and its subsequent improvement with instance learning, we observe 

a reduction in nMSE by 14% without instance learning and 7% with instance learning, 

respectively. These metrics are calculated by comparing the volume against the corresponding 

ground-truth CT data, indicating a more accurate and robust estimation of an iterative algorithm. 

At the same time, it is crucial to note that this approach generally incurs a higher time cost relative 

to direct GRAF volume rendering. Illustrative visualizations for each method can be found in 

Figure 3-7. 

 

Method MSE(𝝁 ± 𝝈) MAE(𝝁 ± 𝝈) PSNR(𝝁 ± 𝝈) SSIM(𝝁 ± 𝝈) 

direct GRAF 

GRAF+OS-ASD-POCS 

direct GRAF+IL 

GRAF+IL+OS-ASD-POCS 

0.845±0.133 

0.721±0.117 

0.671±0.002 

0.624±0.049* 

1.046±0.164 

0.853±0.061 

0.827±0.103 

0.788±0.026* 

10.83±0.88 

10.93±1.04 

11.05±0.71 

11.52±0.77 

0.25±0.04 

0.35±0.02 

0.36±0.04 

0.42±0.01* 

Table 3-7: Comparison of 3D volumetric reconstruction or outcome: iterative reconstruction 

using synthetic projections versus GRAF direct volume rendering. (*: 𝒑 < 𝟎. 𝟎𝟓, one-tailed 

paired t-test, compared to the direct GRAF+IL method) 
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 (a) 

 

                       
                                              (b)                                                            (c) 

 

                       
                                              (d)                                                             (e) 

Figure 3-7: Comparative visualization of direct GRAF volume rendering and CT 

reconstruction. (a) Ground-truth CT ortho-slice. (b) direct GRAF volume rendering without 

instance learning. (c) OS-ASD-POCS without instance learning. (d) direct GRAF volume 

rendering with instance learning (e) OS-ASD-POCS with instance learning. 
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Ground truth 
 

                                                
                                                                           (a) 

 

                 
                           (b)                                             (c)                                              (d) 

 

                  
                           (e)                                              (f)                                              (g) 

 

Figure 3-8. Comparative visualization of CT. (a) ground-truth reference data. (b) FDK from 

benchmark configuration of 72 angular projections with 𝟏𝟐𝟖 × 𝟏𝟐𝟖 resolution. (c) FDK 

with increased angular sampling density of 630 angular projections with 𝟏𝟐𝟖 × 𝟏𝟐𝟖 

resolution. (d) FDK with 72 angular projections at 𝟏𝟎𝟎𝟎 × 𝟏𝟎𝟎𝟎  resolution. (e)(f)(g) 

showcase corresponding enhancements using OS-ASD-POCS for the configurations 

described in (b)(c)(d), respectively. 

  

F
D

K
 

O
S

-A
S

D
-P

O
C

S
 



19 
 

Chapter 4: Concluding Remarks and Summary 

 To demonstrate the core functionality of view toggling and reconstruction, we have used 

DRRs to provide training samples and benchmark synthesis performance. While DRRs are known 

to differ from realistic radiographs in scatter and specific patterns, they are similar in 

characteristics to X-ray images enough for clinical alignment and structural depiction, and 

specifically for motion management where the precise integrated attenuation is incidental 

compared to the localization of the tumor target in the context of surrounding tissue.  

It is known that insufficient angular and detector resolution can induce  Gibbs, streaking, 

and Moire artifacts, among others (shown in Figure 3-8). While GRAF based model allows us to 

synthesize at dense angular angles, the intrinsic information is limited. OS-ASD-POCS improves 

robustness and achieves decent performance under basic benchmark configurations, allowing us 

to strike a balance between image quality and time cost trade-offs. 

Given that our process integrates sequential DRR generation and reconstruction 

effectively, we possess the freedom and flexibility to explore alternative reconstruction 

approaches, allowing us to adjust the framework according to different needs and time 

requirements. For example, we could consider utilizing deep network reconstruction22-23, which 

provides both the benefit of enhanced reconstruction quality and time effectiveness, to offer 

clinically acceptable dose calculation accuracy. One needs to take spatial caution against deep-

learning related hallucination for structure tracking, a direction we are actively pursuing.   

In summary, This research develops an end-to-end pipeline for projection synthesis across 

arbitrary viewing angles and renderings of volumetric CT images. Based on our results, instance 

learning facilitates the adaptation to capture inter- and intra-subject dynamic change. Instance 

learning with paired query images demonstrates improvement in 2D rendering and notable 
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enhancement in localization accuracy during bifurcation landmark analysis. The overall 

performance of the model has room for further improvement to meet the demands of clinical 

therapy applications. Our current investigations are dedicated to refining the resolution and 

accuracy of the volumetric reconstructions, to optimize the structure's conspicuity for better 

identification. 
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