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RESEARCH ARTICLE Open Access

Stillbirth as left truncation for early
neonatal death in California, 1989–2015: a
time-series study
Tim A. Bruckner1, Samantha Gailey2* , Abhery Das3, Alison Gemmill4, Joan A. Casey5, Ralph Catalano6,
Gary M. Shaw7 and Jennifer Zeitlin8

Abstract

Background: Some scholars posit that attempts to avert stillbirth among extremely preterm gestations may result
in a live birth but an early neonatal death. The literature, however, reports no empirical test of this potential form of
left truncation. We examine whether annual cohorts delivered at extremely preterm gestational ages show an
inverse correlation between their incidence of stillbirth and early neonatal death.

Methods: We retrieved live birth and infant death information from the California Linked Birth and Infant Death
Cohort Files for years 1989 to 2015. We defined the extremely preterm period as delivery from 22 to < 28 weeks of
gestation and early neonatal death as infant death at less than 7 days of life. We calculated proportions of stillbirth
and early neonatal death separately by cohort year, race/ethnicity, and sex. Our correlational analysis controlled for
well-documented declines in neonatal mortality over time.

Results: California reported 89,276 extremely preterm deliveries (live births and stillbirths) to Hispanic, non-Hispanic
(NH) Black, and NH white mothers from 1989 to 2015. Findings indicate an inverse correlation between stillbirth
and early neonatal death in the same cohort year (coefficient: -0.27, 95% CI of − 0.11; − 0.42). Results remain robust
to alternative specifications and falsification tests.

Conclusions: Findings support the notion that cohorts with an elevated risk of stillbirth also show a reduced risk of
early neonatal death among extremely preterm deliveries. Results add to the evidence base that selection in utero
may influence the survival characteristics of live-born cohorts.

Keywords: Stillbirth, Neonatal death, Live birth, Left truncation Bias

Background
Infants born alive at extremely early gestational ages face
substantial risk of imminent death. Extremely preterm
births (i.e., delivery at less than 28 weeks' gestational age
[GA]), for instance, account for less than 1% of all live
births but over 40% of neonatal mortality [1, 2]. The ma-
jority of these infant deaths occur in the early neonatal

period which extends to less than 7 days after birth. Sub-
stantial advancements in obstetric monitoring, neonatal
care, and medical technology since the 1980s in high-
income countries correspond with reductions over time
in neonatal mortality [2, 3]. However, the incidence of
early neonatal mortality among extremely preterm live
births in the US remains between 15 and 20% [4, 5].
Epidemiologists continue to debate how to best esti-

mate the population at risk in the perinatal period [6–
11]. Some argue that all fetuses which pass through a
particular GA “starting point” (e.g., > 22 weeks) represent
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a risk set, or denominator, of gestations at risk of ending
with a neonatal death. According to this reasoning, those
that die in utero and receive a classification of stillbirth
would also appear in this risk set. This logic appears
reflected in the rationale for the use of a composite out-
come of perinatal death in randomized trials of obstet-
rical interventions in which both stillbirths and early
neonatal deaths represent “cases” [6, 12]. This composite
perinatal death outcome coheres with the argument that
stillbirths near week 22, at the threshold of viability,
would have been at elevated risk for early neonatal death
had they been born live. This “left truncation” argument
[13, 14], if distilled to the realm of clinical decision-
making, assumes that attempts to avert imminent still-
birth among threatened gestations may “convert” a sub-
set of them to a live-born delivery but result in an early
neonatal death.
The literature, however, also includes reports in which

stillbirth and early neonatal death may be considered as
distinct entities [7, 15]. The argument arises from two
strands of evidence. First, in high-income countries that
use consistent definitions and classification schemes, risk
factors differ for stillbirth and early neonatal death. For
instance, in the 1990s in Canada, congenital anomalies
reportedly accounted for over 45% of early neonatal
deaths but only ~ 9% of stillbirths reaching 25 weeks'
GA [15]. Second, the risk of early neonatal death in the
US has fallen, but the risk of stillbirth at GAs in the ex-
tremely preterm period (< 28 weeks' GA) has remained
unchanged [16]. These divergent population-level pat-
terns indicate distinct antecedents of early neonatal
death and stillbirth among extremely preterm gestations.
Taken together, the field continues to debate various cir-
cumstances under which researchers should regard still-
birth and early neonatal death as joint or distinct
outcomes [11, 17].
A recent report using data from California finds that

an abrupt downward shift in stillbirths over time coin-
cides with an upward shift in live births delivered in the
extremely preterm period [18]. This report, while sug-
gestive of left truncation, has no information on infant
death and therefore cannot address whether early neo-
natal death in the extremely preterm period falls in preg-
nancy cohorts in which the risk of stillbirth rises.
Understanding this potential relation would inform the
extent to which intensity of fetal selection shapes the
survival characteristics of live-born cohorts. In this
paper, we contribute to the literature by testing in Cali-
fornia over a 26-year period whether annual cohorts de-
livered at extremely preterm GAs show an inverse
correlation between their proportions of stillbirth and
early neonatal death.
We apply methods that adjust for the secular decline

since 1990 in the risk of early neonatal death before

conducting our correlational test. In addition, given
well-documented differences in risks of stillbirth and
early neonatal death by race/ethnicity and fetal sex, we
stratify pregnancy cohorts by maternal race/ethnicity
and sex of gestation [15, 16, 19–23]. Our analysis fo-
cuses on California because, in addition to accounting
for ~ 15% of all US births, the state uses consistent defi-
nitions and data collection practices for recording still-
births over a long time period (i.e., 1989–2015) [24].
The US file, by contrast, makes available fewer years of
cohort mortality data and reflects a mix of states with
substantial differences in quality and reporting practices
of stillbirth.

Methods
We retrieved live birth and infant death information
from the California Linked Birth and Infant Death Co-
hort File (BCF) from 1989 to 2015. The cohort nature of
the BCF allows for the estimation of incident early neo-
natal death. Our study period began in 1989 and ended
in 2015. This time period uses consistent definitions for
live births and early neonatal deaths. The methodology
of reporting births and infant deaths in California has
not changed over the time period and remains nearly
100% complete [22, 24]. For administrative reasons, the
California Department of Health Services did not create
a BCF for 1998. As a result, we did not include the 1998
birth cohort in our analysis. The institutional review
boards at the California Department of Public Health (#
2018–065) and the University of California, Irvine (#
2013–9716) approved the use of these data for our
study.
We retrieved stillbirth information from the California

Fetal Death file. The State of California defines a still-
birth as a “death prior to the complete expulsion or ex-
traction from its mother of a product of human
conception. The death is indicated by the fact that the
fetus does not breathe or show any other evidence of life
such as beating of the heart, pulsation of the umbilical
cord, or definite movement of voluntary muscles [25].”
California’s Health and Safety Code requires reporting of
all stillbirths after the 20th week of gestation except for
induced abortions [25–28]. The California Department
of Health Services uses a standard protocol to perform
quality control checks and data processing. We, as with
previous research [26], calculated the proportion of still-
births for each year by dividing the count of stillbirths
by the sum of live births and stillbirths among extremely
preterm deliveries.
Consistent with the definition from the World Health

Organization [29], we specified the extremely preterm
period as delivery from 22 weeks 0/7 days to 27 weeks 6/
7 days of gestation. Previous literature uses this span of
gestational ages to define extreme preterm delivery for
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two reasons [2, 30, 31]. First, many clinicians argue that
22 0/7 weeks represents the lowest gestational age cutoff
for a viable delivery [32, 33]. Second, the risk of infant
death among live births beginning at 28 0/7 weeks falls
below 5% [34]. We therefore restricted our analysis to
stillbirths and live births from 22 0/7 to 27 6/7 weeks of
gestation. In addition, we restricted the sample to single-
ton gestations owing to the shorter mean gestational age
of multiple births and the greater risk of perinatal death
among them regardless of gestational age [34].
We used early neonatal death as a key indicator of

perinatal health whose causes likely originate during
pregnancy [35]. Early neonatal death is defined as an in-
fant death at less than 7 days of life [36, 37]. Consistent
with definitions used for surveillance in California and
elsewhere, only live births represent the risk set of pos-
sible early neonatal deaths [35, 38]. We therefore calcu-
lated the proportion of early neonatal deaths by dividing
the number of infant deaths in the first 7 days of life by
the total number of live births.
The risk of stillbirth and early neonatal death vary sub-

stantially by race/ethnicity and by sex [16, 39, 40]. For
this reason, we arrayed all extremely preterm deliveries
by race/ethnicity and sex before conducting the statis-
tical analyses. Given that the notion of left truncation
represents a cohort concept, we did not include
individual-level controls in our aggregate-level test. We
excluded records with missing or unknown race/ethni-
city (0.87%) or sex (<.0001%) as well as live birth records
with implausible birthweight for gestational age informa-
tion (1.2%) [41] and stillbirths with missing values for
GA (10.2%). The welcomed rarity of extremely preterm
deliveries creates an analytic challenge in providing
stable estimates, by race/ethnicity and sex, of the annual
incidence of stillbirth and early neonatal death. To
minimize the role of stochastic variation in our analysis,
we focused only on race/ethnicities with a minimum of
100 extremely preterm deliveries per sex in each study
year. This restriction yielded three race/ethnicities: non-
Hispanic (NH) Black, NH white, and Hispanic.

Statistical analysis
We first plotted, by race/ethnicity and sex, the annual
incidence (1989–2015) of stillbirth and early neonatal
death among extremely preterm deliveries. Second, given
the well-documented declines over time in perinatal
mortality, we removed trend from these series (if de-
tected by a Dickey-Fuller test) by employing ordin-
ary least squares linear regression analysis to fit a year
variable (continuous, from 1 to 26, where 1989 = 1,
1990 = 2, etc.) [42]. We removed trend to minimize con-
founding due to secular improvements in perinatal care
over time that could induce a positive correlation be-
tween the risk of fetal and early neonatal death. Third,

we tested our hypothesized inverse association between
yearly risks of fetal and early neonatal death by calculat-
ing the Pearson correlation coefficient between the de-
trended annual values of the two series. Given the three
race/ethnicities, two sexes, and 26 years studied, the op-
erational sample size for the correlational analysis is 156
(i.e., 3 × 2 × 26 = 156).
We conducted additional sensitivity checks including

autoregressive, integrated, moving average (ARIMA)
time-series analyses if we discovered an inverse correl-
ation. We applied a transfer function within the ARIMA
context [43], which identifies and removes patterns from
the early neonatal death series before inserting the inde-
pendent variable (i.e., residual values of stillbirth) into
the test equation. ARIMA transfer functions provide
more efficient estimation of standard errors than do sim-
ple ordinary least squares correlational analyses since
they remove autocorrelation. Next, we repeated all ana-
lyses but examined the correlation coefficient between
stillbirth and neonatal death (i.e., death within first 28
days after birth), rather than early neonatal death, given
that a small but non-negligible fraction of frail and ex-
tremely preterm infants die between 7 and 28 days of life
[4].

Results
Over the test period, California recorded 89,276 ex-
tremely preterm deliveries (live births and stillbirths) to
Hispanic, NH Black, and NH white mothers. Table 1 de-
scribes the annual mean and range of live births, still-
births, and early neonatal deaths by race/ethnicity. The
crude incidence of early neonatal death is 20.2 per 100

Table 1 Annual mean and range of live births, stillbirths, and
early neonatal deaths delivered extremely preterm (22 to 27
weeks of gestational age), by race/ethnicity, in California, 1989
to 2015

N Annual mean (SD)a Annual rangeb

Non-Hispanic Black

Live births 12,604 485 (89) 377–667

Fetal deaths 2911 112 (18) 82–147

Early neonatal deaths 2525 97 (29) 65–158

Non-Hispanic white

Live births 21,725 836 (148) 632–1172

Fetal deaths 6602 254 (67) 155–409

Early neonatal deaths 4540 175 (60) 102–328

Hispanic

Live births 36,058 1387 (178) 972–1760

Fetal deaths 9376 361 (36) 253–433

Early neonatal deaths 7133 274 (35) 224–341

Abbreviation: SD standard deviation
aData for 1998 not available
bValues rounded to nearest integer
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extremely preterm live births. NH whites show the
greatest incidence of neonatal death (20.9 per 100 ex-
tremely preterm live births). Table 2 describes the socio-
demographic characteristics of the study population.
Figure 1 a through c plot, by race/ethnicity and sex,

the annual stillbirths among extremely preterm deliver-
ies. We caution against comparing mean levels of still-
birth across the panels given that missing GA occurs
disproportionately among racial/ethnic minorities and
therefore underestimates stillbirth especially among NH
Blacks. The plots, rather, are useful in highlighting
(within each race/ethnicity) the substantial variation over
time in stillbirth. For NH whites, stillbirths show a
downward trend over time. For Hispanics, stillbirths also
decline over time, but this decline begins with a down-
ward shift in 2007. By contrast, the mean level of still-
births among NH Blacks is not lower in 2010–2015
relative to 1989–1994. For NH whites and Hispanics
(but not NH Blacks), the proportion of stillbirths among
females is greater than that of males.

The risk of early neonatal death declines over time for
all race/ethnicities (Fig. 2a through c). Most of this re-
duction occurs before 2000. After 2000, NH Blacks show
a leveling off of early neonatal death, but male risk con-
sistently falls below female risk (i.e., for 13 of the 15
years 2001–2015). This sex-specific pattern, after 2000,
in early neonatal death also occurs in Hispanics (i.e.,
male incidence is less than female incidence for 11 of
the 15 years 2001–2015).
The correlation coefficient between the stillbirth and

early neonatal death series, after removal of trend, sup-
ports left truncation in that it is negative and shows a

Table 2 Maternal and pregnancy characteristics among
extremely preterm deliveries (22 to 27 weeks of gestational age)
in California, 1989 to 2015

Na %b

Maternal age

18 or younger 4736 5.3

18 to 24 27,082 30.3

25 to 29 21,444 24.0

30 to 34 19,641 22.0

35 or older 16,114 18.0

Maternal education

Less than high school 30,637 34.3

High school graduate 27,222 30.5

Some college 23,065 25.8

College graduate 4760 5.3

Maternal race/ethnicity

Non-Hispanic Black 16,251 18.2

Non-Hispanic white 25,472 28.5

Hispanic 47,553 53.3

Expected source of payment

Medicaid 43,054 48.2

Private insurance 34,638 38.8

Other 11,575 13.0

Fetal sex

Male 47,090 52.7

Female 42,186 47.3
aValues from 1998 not available
bColumn percentages may not sum to 100 due to missing values for
that variable

Fig. 1 Incidence of stillbirth among extremely preterm deliveries for
females (red) and males (blue), by race/ethnicity, in California,
1989 to 2015. a Non-Hispanic Black; b Non-Hispanic white;
c Hispanic
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confidence interval (CI) that does not contain 0 (coeffi-
cient.: -0.27, 95% CI of − 0.11; − 0.42). This inverse cor-
relation indicates that, among extremely preterm
deliveries, incidence of stillbirth above trend in a par-
ticular year corresponds with fewer early neonatal deaths
among live births in that year. Figure 3 displays the scat-
ter plot and best fitting line of this inverse correlation.
We conducted an additional sensitivity analysis to as-

sess robustness of findings. We used a transfer function
approach within an ARIMA time-series context which
proceeded with the following steps. First, we inserted

binary indicator variables for each race/ethnicity-gender
group to remove mean differences in early neonatal
death. Second, we used autocorrelation and partial auto-
correlation function routines (as outlined by Box and
Jenkins) to identify and remove patterns from the early
neonatal death series (i.e., dependent variable) [44]. Pat-
terns detected by these routines include secular trends,
cycles, oscillations, and the tendency for high or low
values to be “remembered” in subsequent time periods
[44]. The residuals of each of the time series (after
ARIMA routines) show no patterns, have a mean of 0,
and have values statistically independent of one another
(Additional file 1: Tables S1 and S2). Third, we inserted
the unpatterned values of the stillbirth series (i.e., inde-
pendent variable) into the test equation and estimated
its relation with early neonatal death. ARIMA results
show that a 1-unit change in stillbirth varies inversely
with a 0.40-unit change in early neonatal death (coeffi-
cient: -0.40, 95% CI of − 0.16; − 0.63). Note that the scale
of this ARIMA coefficient differs from that of the ori-
ginal test, thus precluding direct comparisons of their
magnitude. In addition, we remind the reader that al-
though ARIMA time-series routines increase the effi-
ciency of estimates and rule out confounding by
autocorrelation, they are conservative in that they re-
move patterns from both series without consideration of
whether one series (e.g., stillbirth) may have induced a
pattern in the other series (e.g., early neonatal death).
As a falsification check we inspected whether the lead

and lag cross-correlation coefficients (i.e., stillbirths in
year t-1 and early neonatal deaths in year t, and still-
births in year t + 1 and early neonatal deaths in year t)
differ from 0 [45]. These lead and lag tests show no de-
tectable difference from 0 (Table 3). Findings indicate
that the discovered inverse association appears specific
to pregnancy cohorts which share the same year of
delivery.

Fig. 2 Incidence of early neonatal death among extremely preterm
live births for females (red) and males (blue), by race/ethnicity, in
California, 1989 to 2015. a Non-Hispanic Black; b Non-Hispanic white;
c Hispanic

Fig. 3 Scatter plot and best fitting line of detrended incidence of
stillbirth and early neonatal death among extremely preterm
deliveries across 156 race/ethnicity-sex-year cohorts, 1989–2015
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Given that some frail extremely preterm live births die
between the 7th and 28th day after birth, we then
assessed whether results appear similar when using the
de-trended incidence of neonatal death (i.e., death within
first 28 days after birth) instead of early neonatal death.
As with the main findings, we observe an inverse correl-
ation between detrended annual values of fetal and neo-
natal death. The result (coefficient: -0.33, 95% CI of
−0.17; − 0.49) is farther from the null than that of the
original test using early neonatal death.

Discussion
The literature reports no tests of whether, at the popula-
tion level, stillbirth represents a form of left truncation
for the risk of early neonatal death among live births.
We used the longest annual time series available to us—
in California, from 1989 to 2015—to test among ex-
tremely preterm births whether the incidence of early
neonatal death varies inversely with the incidence of
stillbirth. Results, which control for well-documented
secular trend, support the hypothesis. Annual cohorts
which experience relatively lower stillbirth in the ex-
treme preterm period also show elevated risk of neonatal
death among live births. This finding builds on recent
work documenting an inverse relation between stillbirth
and live births in the periviable period [18] and further
supports that selection in utero may affect the infant
health profile of live-born cohorts [23].
Strengths of the analysis include the use of a long an-

nual time series in a populous state with a consistent
definition, classification, and reporting protocol for still-
births. Methods also adjust for well-documented secular
declines in early neonatal death, which minimizes the
risk of confounding due to medico-technological im-
provements in perinatal care. In addition, our test rules
out confounding due to the changing racial/ethnic com-
position of cohorts over time since we stratified the
series by race/ethnicity. Lastly, the fact that we observed
an inverse correlation at the synchronous pregnancy co-
hort—but not between asynchronous cohorts—further
minimizes the possibility of results arising due to
chance.
Limitations include that stillbirths remain largely

under-reported, especially earlier in the series and dur-
ing the extreme preterm period when the fetus is smaller
[25–28, 40]. Whereas the extent of this under-reporting
is unknown, this circumstance likely improved substan-
tially over time [46, 47]. Lack of GA reporting for

stillbirth also appears more common among NH Blacks,
which precludes direct comparison of GA-specific inci-
dence of stillbirth across race/ethnicity [1]. For example,
the incidence of all recorded NH Black stillbirths (in-
cluding missing and non-missing GA) in California is
greater than that of NH whites, but exclusion of cases
with missing GA reverses this difference. We, however,
know of no evidence that vigilance of reporting stillbirth
falls in particular race/ethnicities and years when report-
ing of early neonatal death increases.
Reductions over time in missing/unknown GA in the

California Fetal Death File make it challenging to inter-
pret whether any observed reductions in the risk of still-
birth represent true perinatal health improvements. We
note, however, that this circumstance—or other clinical
or cultural shifts in reporting—are unlikely to drive our
results. Findings remain robust to ARIMA time-series
methods which removed such patterns in the series be-
fore testing the synchronous correlation. We, neverthe-
less, note substantial shifts over time in obstetrical
practice. Deliveries by cesarean section among periviable
births, for instance, have increased substantially over our
test period (e.g., from 32% [1989–1997] to over 50%
[2007 to 2015] of deliveries between 24 to 27 weeks oc-
curring by cesarean section; see Additional File, Fig. S1).
The potential influence of these shifts in clinical practice
on stillbirths warrant further investigation.
A recent workshop panel from European countries en-

courages vital statistics agencies to routinely collect clin-
ical data that could classify stillbirths as occurring either
before the initiation of labor (i.e., antepartum) or during
labor (i.e., intrapartum) [48]. Such information may as-
sist with identifying a subset of stillbirths whose selec-
tion in utero affects the risk of early neonatal death [15].
California and other US states do not routinely collect
this information. In addition, unlike other countries
(e.g., France) [49], termination of pregnancies after 22
weeks (due to, for instance, structural anomaly) is rare
and not routinely reported in vital statistics [50, 51]. We
encourage collection of this and other information on
cause of the stillbirth and reason for induction of labor
(taken from medical records) so that researchers can
better understand the components of these losses as well
as their potential influence on neonatal death.
We focused on deliveries in the extremely preterm

period. Excess stillbirths may also induce left truncation
for neonatal mortality among live births greater than 28
weeks’ GA. Although the risk of neonatal mortality

Table 3 Cross-correlation coefficients (standard errors in parentheses) of the detrended incidence of stillbirth and early neonatal
death among extremely preterm deliveries (22 to 27 weeks of gestational age) in California, 1989 to 2015

Stillbirth precedes early neonatal death by 1 year Both series in same year Stillbirth follows early neonatal death by 1 year

−0.07 (0.08) −0.27 (0.08) −0.00 (0.08)
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declines substantially with each advancing week of GA
[4], we encourage replication and extension of our work
beyond the extreme preterm period. We suspect, how-
ever, that any discovered “signal” would appear attenu-
ated relative to the inverse correlation we report for the
extreme preterm period.
A recent analysis in California of over 11 million births

finds a lower-than-expected frequency of spontaneous
preterm live births among NH Black males [52]. The
Authors speculate that elevated selection in utero of NH
Black males in particular may contribute to the “miss-
ing” number of NH Black males born preterm. Intri-
guingly, the discovered outlier in Fig. 3 (bottom right
corner)—exceptionally high stillbirth but low early neo-
natal death—occurs among NH Black males in 2000. In
addition, exploration among NH Black males indicates
that the correlation coefficient for the stillbirth and early
neonatal death series (1989–2015) at the synchronous
lag is −0.40 (vs. -0.27 for the overall coefficient across all
race/ethnicities and sexes). This evidence, albeit post
hoc and exploratory, would appear to warrant further
inquiry on the role of late selection in utero on the risk
of neonatal death especially among NH Black males
born preterm.
We acknowledge the descriptive nature of our investi-

gation in that we do not identify underlying causes of
stillbirth or early neonatal death. We recommend add-
itional work to identify individual-level risk factors pre-
sumed to cause either outcome. In addition, given the
population-based nature of our investigation, we caution
against using findings to infer individual frailty of spe-
cific live births who may have been delivered early in ef-
forts to avoid imminent stillbirth. The annual resolution
of our cohorts, moreover, indicates that we cannot align
pregnancies by estimated month of conception to estab-
lish clear temporal order between stillbirth and early
neonatal death. Our work, rather, complements other re-
search examining the potential role of selection in utero
in shaping the survival characteristics of live-born co-
horts [2, 11, 23, 53]. We encourage subsequent analyses
of cohorts using larger datasets with sufficient counts of
fetal and early neonatal death per month to establish
such temporal order between loss in utero and the risk
of death among extremely preterm live births.

Conclusions
Annual pregnancy cohorts which experience relatively
greater stillbirth in the extremely preterm period also
show lower risk of early neonatal death among live
births. Results, which remain robust to alternative speci-
fications and falsification tests, add to growing evidence
that elevated selection in utero contributes to improved
survival in live-born cohorts.
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