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Abstract

Large-scale untargeted lipidomics experiments involve the measurement of hundreds to thousands 

of samples. Such data sets are usually acquired on one instrument over days or weeks of analysis 

time. Such extensive data acquisition processes introduce a variety of systematic errors, including 

batch differences, longitudinal drifts, or even instrument-to-instrument variation. Technical data 

variance can obscure the true biological signal and hinder biological discoveries. To combat 

this issue, we present a novel normalization approach based on using quality control pool 
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samples (QC). This method is called systematic error removal using random forest (SERRF) for 

eliminating the unwanted systematic variations in large sample sets. We compared SERRF with 15 

other commonly used normalization methods using six lipidomics data sets from three large cohort 

studies (832, 1162, and 2696 samples). SERRF reduced the average technical errors for these 

data sets to 5% relative standard deviation. We conclude that SERRF outperforms other existing 

methods and can significantly reduce the unwanted systematic variation, revealing biological 

variance of interest.

Graphical Abstract

Untargeted lipidomics is widely used in clinical, epidemiological, and genetics studies.1–4 

Such studies often involve hundreds to thousands of samples.5–7 The sequence of 

experimental runs is often divided into several batches, e.g., to allow for instrument 

maintenance, exchanging columns and solvents, or due to instrument availability. The time 

period for data acquisition may span weeks to months, causing systematic errors such as 

temporal drift (e.g., due to decrease in instrument sensitivity), batch effects (e.g., due to 

different tuning parameters or due to maintenance work), or due to smaller technical issues 

such as slight differences in solvent pH or temperature variation. If unwanted variance 

(i.e., technical error) is not treated properly, the statistical power of detecting metabolites 

associated with the phenotype of interest will be markedly reduced.8 For a case-control 

study, a 5% standard deviation increment for a metabolite with a small effect size (Cohen’s 

d = 0.2) would need 41 more samples to achieve 80% statistical power (Supporting 

Information).

Multiple sample normalization strategies have been attempted to combat technical 

errors9,10 that can be classified into three categories: (i) data-driven normalizations, (ii) 

internal standards (IS)-based normalizations, and (iii) quality control samples (QC)-based 

normalizations. Data-driven normalizations, such as mass spectrum total useful signal 

(MSTUS),11 median, sum normalization with all the annotated metabolites (mTIC),12 and 

L2 normalizations,13 are based on the assumption of the self-averaging property, i.e., the 

increase in the concentration of one group of compounds is balanced by the decrease in the 

concentration of another group of compounds in each sample.13 This assumption may not 

always be valid in lipidomics because a specific systematic error may affect some lipids 

differently than others.13,14 The IS-based normalizations, including single IS,15 global IS,16 

best-matched internal standard normalization (BMIS),17 cross-contribution compensating 

multiple IS normalization (CCMN),14 and normalization using optimal selection of multiple 

Fan et al. Page 2

Anal Chem. Author manuscript; available in PMC 2022 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IS (NOMIS),13 utilize internal and/or external standard compounds added to the subject 

samples to normalize the intensity of each metabolite. The IS-based methods suffer from the 

fact that (i) the peak heights of IS may not be descriptive of all matrix effects, (ii) the IS 

are sensitive to their own obscuring variation,17 (iii) the IS can be influenced by coelution 

of other compounds,18 and (iv) the structural properties of the IS may not cover all chemical 

species found in a lipidomics data set.17 In comparison, QC-based normalization approaches 

are becoming more popular.6,9,18–20 Ideally, QC samples have a matrix composition that is 

highly similar to that of the biological samples to be studied, normally achieved by pooling 

aliquots of the study samples. The QC samples are then injected regularly within batches to 

evaluate the data pretreatment performance, followed by QC-based normalization methods 

aiming to reduce the unwanted variations in signal intensity.

The aim of QC-based normalization approaches is to utilize the intensity of QCs to 

regress the unwanted systematic error for each metabolite21 so that the error can be 

normalized accordingly. A key advantage of doing so is that it allows for unwanted 

technical variation to be accommodated while retaining the essential biological variation 

of interest.18 A reliable QC-based normalization should (i) accurately fit intensity drifts 

caused by instrument use over time, (ii) robustly respond to outliers within the QC 

samples themselves, and (iii) show resilience against overfitting to the training QCs. Some 

QC-based normalization methods, such as batch-ratio19 and LOESS (local polynomial 

regression),9,10,22 support vector machine based normalization;23 eigenMS24 can reduce 

inter-and intrabatch variation. However, all these normalization methods are limited by their 

underlying assumption that the systematic error in each variable is only associated with 

the batch effect and the injection order (or processing sequence). None of these methods 

consider the possibility of correlations of errors between compounds. Here, we propose 

a novel QC-based normalization method, systematic error removal using random forest 

(SERRF) to address technical errors such as drifts and jumps as well as intercorrelation of 

errors. Our fundamental assumption is that the systematic variation for each variable can be 

better predicted by the systematic variation of other compounds, in addition to batch effects 

and injection order numbers. We chose random forest (RF) as our predicting model taking 

its following advantages: (1) RF can be applied when there are more variables than samples 

(p ≫ n), which fits the data structure of high-throughput untargeted lipidomics data, while 

other methods, e.g., LOESS, can only be applied to cases where p ≪ n. Thus, RF is an ideal 

model of utilizing the correlation information from the other metabolites when correcting for 

each metabolite. (2) RF can fit nonlinear trends that are frequently observed in lipidomics.25 

(3) RF does not suffer from multicollinearity (i.e., high correlation among variables).26 (4) 

RF tolerates missing values and outliers.27 (5) RF is proven not to be overfitting when the 

number of trees increases.28

Here, we compare SERRF with 15 other commonly used normalization approaches using six 

large-scale plasma lipidomics data sets that were collected from three human cohort studies 

(Table 1). We found that SERRF outperformed other methods, reducing systematic errors 

significantly and thereby improving the statistical power to discover biologically interesting 

findings. We provide a free web-based toolbox to implement SERRF-based normalizations 

(http://serrf.fiehnlab.ucdavis.edu).
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MATERIALS AND METHODS

Human Plasma Samples.

We utilized data from three large cohorts, specifically the P20 study (Functional Cardio-

Metabolomics), the GOLDN cohort (Genetics of Lipid Lowering Drugs and Diet Network), 

and the ADNI cohort29 (Alzheimer’s Disease Neuroimaging Initiative) (Table 1).

Sample Preparation and LC–MS Analysis.

P20 study and GOLDN study were based on EDTA plasma samples, while the ADNI 

study was based on serum samples. All three studies were acquired using a validated 

lipidomics assay.30–33 Briefly, plasma lipids were extracted using methyl tert-butyl ether 

(MTBE), methanol, and water followed by separation and data acquisition of isolated lipids 

using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass 

spectrometry (RPLC–QTOFMS). Data were acquired in positive and negative electrospray 

ionization mode [ESI(+), ESI(−)]. All cohort samples were run with odd-chain and 

deuterated lipid internal standards and external QC samples.

SERRF Implementation.

Random forest, a machine learning algorithm originally proposed by Breiman,34 is a 

combination of decision trees. A single decision tree is an unstable classification model, 

i.e., the tree structure can change dramatically if input data differ even slightly during 

model building. Conversely, RF yields a more robust classifier because it uses an ensemble 

of classification trees. The RF algorithm is nonparametric, nonlinear, and less prone to 

overfitting. RF tolerates data multicollinearity, and it is robust against outliers and fast 

to train.35 These attributes are desired for high-throughput data normalizations such as in 

untargeted lipidomics or metabolomics. Most importantly, RF models utilize correlations of 

variables by automatically selecting the most correlated compounds when fitting systematic 

error trends for each variable (Figure 1).

Here, we assume that the systematic error trend of the ith metabolite, si, is related to 

the batch effect B, the sample acquisition time t (or injection order), and the intensity of 

the pooled QCs from the other metabolites I–i,QC. To construct the SERRF algorithm we 

applied RF analysis as follows: (i) autoscale all variables of QCs and samples; (ii) for all 

variables, train the RF model using the corresponding variable’s QC intensity as response 

and the injection order, batch effect, and the intensity of the QCs of the other metabolites 

as predictors to fit systematic variations; (iii) normalize each compound by the predicted 

systematic error to the average variable intensity across all samples.

The systematic error si can be summarized using eq 1:

si Φi t, B, I−i, QC (1)

where the Φi is the random forest classifier. To remove the signal drift and unwanted 

technical variations, the intensity of each compound was normalized by dividing the 

predicted systematic error si:
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Ii′ = Ii
si

Ii (2)

where the Ii′ is the normalized value of the ith compound and Ii is the median average of the 

raw value of the ith compound Ii. Ii is multiplied to ensure that the normalized data stays as 

the same level of the raw data for each compound.

RESULTS AND DISCUSSION

Initial Evaluation of Data Sets.

We used two human EDTA plasma studies and one serum cohort study with a combined 

number of 4688 samples and more than 490 QC samples (Table 1). Samples were injected in 

both ESI(+) and ESI(−) modes. On average we detected 398 variables per injection, yielding 

a data set of more than 4 000 000 data points.

First, we investigated example patterns for individual compounds in the P20 study. Figure 

1i illustrates unwanted variation for plasmenyl-PC (34:2) [observed as an [M + HCOO]− 

adduct in ESI(−)]. Lipid intensity data for pool QC samples showed systematic variation 

for both between-batch and within-batch analysis. Interestingly, several other lipids (Figure 

1a–h) showed very similar patterns in systematic drifts. We tested 15 data normalization 

methods, including four QC-based normalization methods, but none of them utilized this 

evident correlation among variables. We therefore developed a machine learning method 

based on RF that utilizes correlations among input variables for model building, and that is 

less sensitive to model overfitting than most other machine learning tools. An underlying 

assumption within SERRF is that the intensity drift in one compound can be summarized 

and predicted by batch effects, injection orders, and intensity drifts of other compounds. 

It systematically uses all variables of all QC samples for model building to remove batch 

effects as well as within-batch drifts to remove data variance due to technical errors. We call 

this method SERRF, systematic error removal using random forest.

When we applied SERRF to the example lipid plasmenyl-PC (34:2), we found largely 

reduced technical variance for the QC samples. Interestingly, we also found improved 

homogeneity of data distributions of the actual P20 human cohort samples (Figure 1k), 

reflecting the randomized injection sequence of all human cohort samples. In comparison, 

applying the classic QC-based normalization method “locally estimated scatter plot 

smoothing” (LOESS), we did not reduce technical variance in QC samples for this lipid 

as much as by the SERRF method (Figure 1j). More importantly, LOESS also did not fully 

correct the data, as shown by the larger heterogeneity in the human cohort samples (Figure 

1j).

The inaptitude of LOESS to largely correct technical variance is shown for all samples 

using principal component analysis (PCA, Figure S2A) in comparison to SERRF (Figure 

S2B). Next, we used PCA to survey overall data variance with respect to QC samples for 

all samples in all cohorts (Figure 2, left). PCA has frequently been applied to evaluate the 

similarity between samples and can be used to check the analytical repeatability. Identical 
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samples (e.g., QC samples) should cluster together in a PCA score plot. Hence, the effect of 

normalization methods should tighten clustering of QC samples.

We observed distinct clusters within and between data acquisition batches for QC samples 

in the raw data sets. Specifically, clusters were apparent in the PCA score plots for four data 

sets [all three ESI(−) cohort data and one ESI(+) data set] in addition to other unexplained 

variance for two other ESI(+) data sets (Figure 2, left). After SERRF normalization, all QC 

samples in the six data sets were aggregated to one tight cluster, with largely tightened QC 

distribution and no relationship to run orders or acquisition batches. This result indicates that 

batch effects and data drifts were effectively reduced by SERRF normalization.

Evaluating SERRF Performance for Univariate Lipids.

We further evaluated the performance of systematic error elimination in a univariate way, 

using the distribution of cross-validated relative standard deviations (cvRSD). RSDs are a 

commonly adopted criterion to assess the reproducibility of bioanalytical methods is the 

relative standard deviation (RSD) of QC samples.36 The RSD for each lipid in the QC 

samples is calculated by dividing the sample standard deviation by the sample mean using 

eq 3:

RSDi = SDi/Avgi (3)

where SDi and Avgi are the standard deviation and the average of the QC intensity of the 

ith compound, respectively. Proposed thresholds in metabolomics range from 20% to 30% 

RSD, but may be flexible depending on the size of sample sets.37 However, multivariate 

statistics, including machine learning tools, are prone to overfitting. Hence, a normalization 

method might perfectly correct intensity drifts on QC samples but could perform poorly 

when applied to human cohort samples.

To avoid this problem, instead of calculating the QC sample RSD for each compound 

directly, we calculated the fivefold Monte Carlo cross-validated QC RSD (cvRSD). The 

detailed cross-validation procedure is summarized as follows: (1) For each compound, 

randomly select 80% of QC samples as training QCs to build the normalization model. 

(2) Apply the model on the rest of the QC samples and calculate the RSD on these QC 

samples to validate the method. (3) Repeat 1 and 2 for five times with different sampling 

of model-building QC samples. (4) Calculate the mean average of the five validating QC 

RSDs as the cross-validated QC RSD to assess the performance of normalization on each 

compound. (5) Calculate the median of the cross-validated QC RSDs for all the compounds 

as the final performance measurement of the normalization method.

Because the validating QCs were not being used while training the models, we can use 

them to access the model performance with little risk of overfitting. An ideal sample 

normalization procedure should yield a low cvRSD. Here we compared SERRF with 15 

commonly used normalization methods including nine data-driven normalization methods, 

two IS-based methods, and four QC-based normalization methods (Table S1).
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SERRF-normalized data showed a consistent lower cvRSD (Table 2) and a large increase of 

the number of compounds with <20% of cvRSD compared to the raw data and batchwise 

LOESS-normalized data (Table 3). These results show that SERRF-normalized data sets 

become much more valid for subsequent univariate statistical analysis and biomarker 

discovery. When comparing SERRF to the 15 commonly used normalization methods 

for all six data sets, we observed that most normalization methods indeed achieved large 

improvements in cvRSD in comparison to the raw input data (Figure 3). We used Wilcoxon 

signed-rank tests to test the significance of performance improvement. SERRF was found 

to perform significantly better (p = 0.008) than the second-best method, batchwise LOESS 

normalization. Therefore, SERRF normalization significantly reduced systematic errors (in 

terms of cvRSD) compared to all other methods. We further confirmed that the improvement 

in cvRSD by SERRF was largely independent of the absolute signal intensity (Figure S1). 

SERRF almost uniformly outperformed all other methods across average lipid intensities. 

Last, we showed SERRF normalization yielded an average of 5% cvRSD across all six data 

sets and across all lipids, ranging from 3.4% to 7.3% cvRSD in all three cohort studies 

(Table 2). In comparison, batchwise LOESS normalization yielded a 2-fold higher residual 

error with an average of 9.8% cvRSD (ranging from 8.2% to 12.3% cvRSD) compared to 

SERRF. Raw data showed an average of 23.7% cvRSD across all six data sets, implying that 

the raw data acquisition was already at an acceptable quality but showed much improvement 

during data normalization.

Performance of Biomarker Selection and Classification Accuracy.

The aim of data normalization is to reveal true biological signals by removing systematic 

errors and to enable biomarker discovery38 through feature selection.39,40 Each study 

presented here investigated different biological questions which will be published elsewhere. 

To validate that SERRF indeed unmasks known true biological differences, we used the 

two P20 data sets to distinguish sex discriminants before and after batchwise LOESS and 

SERRF normalization. To evaluate the performance, we conducted (i) power analysis and 

(ii) modeling prediction accuracy.

Statistical power is a key aspect of the experimental study.41 By removing the systematic 

errors, a valid sample normalization procedure should be able to increase the statistical 

power of detecting compounds that are associated with the factor of study interests. We used 

the R package SSPA42,43 to calculate the statistical power of detecting compounds that are 

associated with sex. Figure 4A shows that, after SERRF normalization, a higher power is 

achieved than by either batchwise LOESS normalization or by using raw data. When using 

the Mann–Whitney U test, the number of significant lipid differences between men and 

women increased by 10–20% from raw data to LOESS and SERRF normalization. More 

than half of all detected lipids were found to be significant between men and women, despite 

the huge variance in lipid abundances due to the range of differences in body mass index, 

levels of physical activity, age, or nutritional factors that is always present in large human 

cohort studies. Commonly, 80% power thresholds are used when designing human cohort 

studies. For distinguishing lipid profiles between the sexes, this threshold was achieved at 

88 and 102 samples for raw data but was reduced to only 76 and 92 samples when using 

SERRF normalization for ESI(−) and ESI(+), respectively.
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The diagnostic ability of discriminating biomarkers is evaluated by classification accuracy, 

measured by receiver–operator characteristic curves (ROC). We selected a set of best-

performing lipid biomarkers based on Mann–Whitney U test p < 0.05 and partial least-

squares discriminant analysis with variable importance in projection (PLS-DA VIP) score 

>1, to distinguish factor gender using a supervised machine learning classifier, gradient 

boosting machine (GBM). These biomarkers were used in GBM with 5-fold cross-validated 

ROCs (Figure 4B). SERRF-normalized data sets achieved the highest diagnostic ability 

using the area under the ROC curves (AUC), indicating SERRF was most effective in 

removing unwanted systematic variations for biomarker-based classifications.

CONCLUSIONS

We developed a novel QC sample based data normalization algorithm, systematic error 

removal using random forest, SERRF. SERRF corrects batch effects and time-dependent 

drifts in large-scale plasma lipidomics human cohort studies, but it can also be used for 

other metabolomic platforms. The main advantage of SERRF over other commonly used 

normalization approaches is that it can effectively utilize information from all correlating 

compounds when normalizing each individual metabolite. When tested with six data 

sets from three large-scale cohort studies, SERRF has been demonstrated to significantly 

improve the reproducibility of peak abundance of QC samples and increase the statistical 

power of detected compounds associated with the phenotype of interest. We provide a free 

Web site-based (http://serrf.fiehnlab.ucdavis.edu) toolbox to implement SERRF to benefit 

the lipidomics and metabolomics community.

In this study, we used a ratio of cohort samples to QC samples of approximately 10:1. 

We have not tested how altering this ratio might influence the performance of the SERRF 

normalization. All six data sets used here included at least 800 cohort samples and 80 QC 

samples. Using SERRF for cohorts with fewer than 500 samples has not been tested. SERRF 

performance may vary or not be necessary for very small data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Raw data of eight compounds (a–h) were selected by RF analysis when normalizing (i) 

plasmenyl-PC (34:2) [M + HCOO]−. Results of data normalization are given by the LOESS 

(j) and SERRF (k) algorithms. QC samples are represented as red dots, while human cohort 

samples are black dots. For each graph, the x-axis represents the injection order and the 

y-axis represents the compound intensity. The lipid in panel h is an unknown compound.
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Figure 2. 
Principal component analysis score plots obtained before (left) and after (right) SERRF 

normalization for three human plasma lipidomics data sets acquired in (−) and (+) 

electrospray mode. QC samples are represented as red dots, while human cohort samples 

are black dots. The x-axes represent PC1, and y-axes are PC2.
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Figure 3. 
Box-and-whisker plots of median cross-validated relative standard deviations (cvRSD) of 

the ESI(+) and ESI(−) lipidomic data sets for each normalization method.
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Figure 4. 
(A) Power analysis of the raw data, batchwise LOESS, and SERRF-normalized data set 

with the P20 study. SERRF achieved the highest statistical power. The bottom-right panel 

shows the number of significant compounds identified by the Mann–Whitney U test. More 

significant compounds were detected using the SERRF-normalized data set. (B) ROC of the 

GBM classifier using the raw data, batchwise LOESS, and SERRF-normalized data sets. 

Input variables are chosen based on a Mann–Whitney U test p-value <0.05 and PLS-DA 

VIP score >1. SERRF outperformed batchwise LOESS achieving the highest 5-fold cross-

validated AUC (as shown at bottom-right).
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Table 1.

Overview of Lipidomics Studies Used for Development and Validation of the SERRF Algorithm

study title, year disease ESI mode no. samples: cohort/QC samples no. of lipids

P20, 2016 cardiovascular (+) 1162/125 401

(−) 1162/126 268

GOLDN, 2018 cardiovascular (+) 2696/288 418

(−) 2692/280 366

ADNI, 2014 Alzheimer’s (+) 832/83 501

(−) 833/85 435
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Table 2.

Median Cross-Validated Relative Standard Deviations (cvRSD) in Three Lipidomic Human Cohorts

data set raw data (%) LOESS (%) SERRF (%)

ADNI LC–ESI(−)-MS 23.2 12.3 7.3

ADNI LC–ESI(+)-MS 17.5 11.3 4.4

GOLDN LC–ESI(−)-MS 34.1 8.4 4.7

GOLDN LC–ESI(+)-MS 21.6 8.9 3.4

P20 LC–ESI(−)-MS 26.5 8.2 6.3

P20 LC–ESI(+)-MS 19.7 9.8 3.9
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Table 3.

Percentage of Lipids with cvRSD < 20% in Three Lipidomic Human Cohorts

data set raw data (%) LOESS (%) SERRF (%)

ADNI LC–ESI(−)-MS 31.9 84.6 88.7

ADNI LC–ESI(+)-MS 58.3 69.9 96.0

GOLDN LC–ESI(−)-MS 1.3 9.0 86.9

GOLDN LC–ESI(+)-MS 38.8 72.0 95.5

P20 LC–ESI(−)-MS 7.5 91.8 93.7

P20 LC–ESI(+)-MS 52.1.7 94.8 98.5
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