
UCLA
UCLA Electronic Theses and Dissertations

Title
A Robust Approach to Lattice Thermal Conductivity

Permalink
https://escholarship.org/uc/item/59s1f8jw

Author
Nielson, Weston Graham

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59s1f8jw
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

A Robust Approach to Lattice Thermal Conductivity

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Materials Science and Engineering

by

Weston Graham Nielson

2015



c© Copyright by

Weston Graham Nielson

2015



Abstract of the Dissertation

A Robust Approach to Lattice Thermal Conductivity

by

Weston Graham Nielson

Doctor of Philosophy in Materials Science and Engineering

University of California, Los Angeles, 2015

Professor Vidvuds Ozoliņš, Chair

Thermal conductivity is a key parameter in designing high performance thermoelectric ma-

terials. A multitude of computational methods have been developed to calculate lattice

thermal conductivity. Molecular dynamics (MD) based techniques, including equilibrium

and non-equilibrium methods, in addition to non MD-based solutions, such as the Boltz-

mann Transport Equation (BTE), are all capable of calculating thermal conductivity, but

each comes with different sets of limitations and difficulties. After extensive use of these

different methods, we have developed a robust set of tools for obtaining high-quality lat-

tice thermal conductivity values of crystalline solids. The crux of our method involves a

novel compressive sensing (CS) based approach for efficiently calculating high quality force

constants for crystalline materials. The result is a technique for building lattice dynamical

models that can treat compounds with large, complex unit cells and strong anharmonicity,

including those with harmonically unstable phonon modes.
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CHAPTER 1

Introduction

Roughly 70 percent of the world’s electricity is generated from the combustion of fossil fuels

[3]. Typically, this processes involves burning the fuel source to heat water, which is then

converted to steam. This steam is then used to power a turbine which generates electricity.

The most efficient turbines are able to achieve an efficiency of roughly 60% [13]–the other

40% is lost as heat. This results in roughly 15 terawatts of energy lost as wasted heat every

year [10].

These inefficiencies are present in more places than just power plants. Many everyday devices

that we rely on treat heat as an unwanted byproduct. Radiators in cars remove heat from

the engine to keep it running cool while the exhaust system vents hot gasses out of the tail

pipe. Fans in computers keep components from overheating by dissipating the undesirable

heat. Air conditioning units keep the temperature inside our homes and buildings at just

the right temperature by venting the heat outside. These are but a few examples of places

in which heat is considered a nuisance.

If this waste heat could be recaptured and turned back into a useful product, we could

not only increase the efficiency of many devices we already rely on, but a path would be

paved for creating exciting new applications. This is where a relatively unknown class of

materials, called thermoelectrics, come in. A thermoelectic material is capable of converting

heat into electricity without any moving parts. While they were originally discovered almost

200 years, low conversion efficiencies have limited their use to niche applications. Within the

last decade or so, a surge of interest in thermoelectrics have brought about the discovery of

1



Figure 1.1: The original device created by Seebeck used to discover what would become
known as thermoelectricity. The device consisted of two different metals (A-B and K),
connected to form a loop. When one junction was heated (B), a magnetic field was induced,
causing the compass (S-N) to orient itself accordingly. This phenomena, originally termed
thermomagnetism, would later become known as thermoelectricity. (Image courtesy FCIT)

much more efficient materials, but the search is still on for even better materials.

1 Thermoelectrics

1.1 History

In 1820 a physicist by the name of Thomas Seebeck created a device that was capable of

generating a magnetic field simply through the application of heat. His contraption was quite

simple, involving just two different metals connected to form a loop (Figure 1.1). When heat

was applied to one of the junctions between the two metals, a magnetic field was created.

He observed this magnetic field by placing a compass in the middle of the loop which, upon

application of heat, would orient the compass needle. Seebeck named this phenomena the

thermomagnetic effect [22].

What Seebeck didn’t fully realize at the time, however, was how the magnetic field was

actually being created. Earlier that same year, a Danish scientist named Hans Christian

2



Ørsted (famous for Oersted’s Law), had shown that an electric current could generate a

magnetic field. Ørsted clarified how Seebeck’s device worked and termed the phenomena

thermoelectricity [22]. Today this effect it is still often referred to simply as the Seebeck

effect.

A related thermoelectric effect, called the Peltier effect, was discovered a few years later by

a Charles Peltier. Instead of applying heat to the junction of two dissimilar metals, Peltier

applied an electric current. He found that, depending on the direction of the current, heat

could be either absorbed or rejected by the junction.

1.2 Fundamentals

While Seebeck and Peltier discovered the occurence of these thermoelectric effects in their

experiments with dissimilar conductors, the effects are also present in single conductors. If

a metal wire, for example, is subjected to a temperature gradient by heating and cooling

opposite ends, a small electric current will develop along the length of the wire. This current

is produced by the flow of hotter electrons in one direction and cooler electrons in the other.

The amount of hot and cold electrons flowing in either direction is not perfectly equal,

resulting in a net flow of charge, and thus a potetial difference across the length of the wire

[7]. This effect also occurs in the case when charge carries are positive (known as ‘holes’).

The ratio of induced potential (voltage) difference to temperature difference is known as the

Seebeck coefficient, S, and is sometimes also referred to as thermopower (although modern

literature typically refers to thermopower as σS2). Mathematically, the Seebeck coefficient

can be represented as

S = −∆V

∆T
, (1.1)

where ∆V is the voltage difference and ∆T is the temperature difference. While the term

thermopower is often used, it is actually a misnomer, as the value S denotes is a difference in

3
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Figure 1.2: Junction between two dissimilar conductors, subjected to a temperature gradi-
ent.

voltage not power. Additionally, S is a function of temperature and thus should technically

be written as S = S(T ). In order to calculate the voltage difference over a temperature

gradient, one must perform the following integral

∆V =

T1∫
T0

S(T )dT. (1.2)

If we now consider an example along the lines of Seebeck’s original experiment, we can see

how the junction between dissimilar materials becomes important. An example junction

between aluminum (Al) and nickel (Ni) is shown in Figure 1.2. Aluminum and nickel have

different Seebeck coefficients, leading to a variation of charge build-up at both junctions. This

means that if we want to calculate the voltage difference we cannot simply use Equation 1.2.

The voltage between the two junctions is given as ∆VAB = ∆VA − ∆VB, which leads to a

modified form of Equation 1.2

∆VAB =

T1∫
T0

(
SA(T )− SB(T )

)
dT =

T1∫
T0

SAB(T )dT. (1.3)

If the junction is instead operated as a Peltier device, with an applied current instead of a

temperature gradient, the rate at which heat can be absorbed or rejected by the junction is

4



given by

Qp =
(
ΠA − ΠB

)
IT, (1.4)

where ΠA and ΠB are the Peltier coefficients for materials A and B, respectively, and I is

the current from A to B. The Peltier coefficient is related to the Seebeck coefficient via

Π = TS.

Material 1 Material 2

Heat Rejected

Heat Absorbed

- + I

Material 1 Material 2

Heat Sink

Heat Source

I

(a)

Material 1 Material 2

Heat Rejected

Heat Absorbed

- + I

Material 1 Material 2

Heat Sink

Heat Source

I

(b)

Figure 1.3: Thermoelectric modules, operating as (a) a generator of electricity and (b) a
Peltier cooling device.

1.3 Applications

Utilizing the Seebeck and Peltier effect in real devices leads to some very interesting and

exciting applications. The simplest application of the Seebeck effect is in measuring tem-

perature using a device known as a thermocouple. The basic design of a thermocouple is

illustrated in Figure 1.4 and is actually very similar to that of the junction from the previous

section (Figure 1.2). In this case TS is the temperature that we wish to measure (or ‘sense’)

5



Conductor A

Conductor B

V

Copper

Copper

TS TR

TR

TM

Figure 1.4: A typical thermocouple. TS is the temperature that we wish to measure (or
‘sense’) and conductors A and B are composed of different types of materials. A specific
combination of A and B will result in a different value of SAB(T ).

and conductors A and B are composed of different types of materials. A specific combination

of A and B will result in a different value of SAB(T ), as we saw in Equation 1.3, the values of

which have been tabulated for the most common combinations of A and B [1]. There are a

variety of common choices for A and B. For example, a ‘J type’ thermocouple is constructed

with A as iron and B as a copper-nickel alloy. Thermocouples are popular for measuring

temperature because they are relatively inexpensive, have good sensitivity and can typically

operate over a wide range of temperatures.

Another exciting application of the Seebeck effect is in solid-state energy generation, whereby

electricity is generated from nothing more than a temperature difference. An example of a

thermoelectric module designed to generate electricity is shown in Figure 1.3a.

This technique has been used in space exploration by NASA for decades in the form of so-

called radioisotope thermoelectric generators (RTGs). RTGs operate by essentially encap-

sulating a radioactive material inside a thermoelectric cylinder. As the radioactive material

decays it outputs heat which the thermoelectric modules convert into electricity. The typ-

ical half-life for many radioactive isotopes is on the order of decades, making it possible to

generate electricity for many years. The RTGs used in the Voyager spacecrafts, launched in

1977, are still operational nearly 40 years later [2].
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Thermoelectrics have also begun to find their way into more accessible applications that

don’t require a trip to space. A company called BioLite has developed a series of portable

cooking stoves that harvest some of the excess heat generated by burning wood to generate

electricity via integrated thermoelectric modules. This electricity is then used to power an

electric fan which acts as a bellows causing the fire to burn hotter. As the fire burns hotter,

it also outputs less smoke, making it far safer to use in enclosed environments. Excess

electricity from the stove can also be used to charge batteries for devices such as lights and

mobile phones. When one considers that over a billion people still rely on wooden stoves for

cooking and do not have access to reliable energy sources, it is clear that devices like this

have the ability to vastly change lives.

Even more recently, Alphabet Energy has begun producing large, shipping-container size

thermoelectric modules capable of producing up to 25 kW of electricity. The material used

is an earth abundant material known as tetrahedrite, which was originally identified as a

promising thermoelectric material via a collaboration with Michigan State University, UCLA

and MSU [14].

The Peltier effect can be put to use in solid-state heating and cooling, offering the potential

of replacing cumbersome mechanical cooling techniques such as condensers and compressors.

It has been used to create a variety of interesting devices such as light-weight, portable re-

frigerators and high-performance CPU heat-sinks. An example of a thermoelectric operating

as a Peltier cooler is illustraed in Figure 1.3b.

1.4 Challenges

Thermoelectric devices are heat engines and they are bound by the laws of thermodynamics.

If we consider a thermoelectric module operating in generation mode without any heat loss

7



(an ideal case), then determining the efficiency is straight forward

η =
energy supplied

heat absorbed
. (1.5)

Another useful metric, the thermoelectric figure of merit, ZT , is a dimensionless parameter

the defines how well a material will operate as a thermoelectric. Since it is directly related

to the efficiency, as we will see later, the larger the value of ZT , the better a material will

perform as a thermoelectric. Mathematically, it is given as

ZT =
S2σT

κ
, (1.6)

where S is the material’s Seebeck coefficient, σ is the electrical conductivity and κ is the

thermal conductivity. While this equation is relatively simple, it highlights one of the most

difficult issues facing the field of thermoelectric materials–conductivity. Many common ma-

terials exhibit either conducting or insulating properties. Most metals, for example, are good

conductors of both electricity and heat, while other materials, such as wood, plastic, glass

and ceramics are typically good insulators. However, what Equation 1.6 tells us is that the

best thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due primarily to

how easily electrons and holes can move through a material. Materials with many free charge

carriers, such as metals and heavily doped semiconductors, have good electrical conductivity.

Materials like ceramics, however, do not have many free electrons and are thus poor electrical

conductors.1 Thermal conductivity is somewhat more complicated though because heat is

transfered through a variety of mechanisms, and typically thermal conductivity occurs via

two mechanisms. The first contribution is from electrons and this is why most metals are so

1The specifics of bonding in materials is discussed in more detail in the following chapter. For now we
keep the discussion relatively high-level.
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good at conducting both heat and electricity. The second contribution comes from the way

that the atoms in a material vibrate.2 Mathematically, thermal conductivity is generally

written as

κ = κe + κL, (1.7)

where κe and κL are the thermal conductivities due to electrons and atomic vibrations,

respectively. We can then rewrite Equation 1.6 as

ZT =
S2σT

κe + κL
. (1.8)

This equation illustrates the key parameters that must be optimized in order to increase ZT

and will be discussed later in more detail.

The maximum efficiency of a thermoelectric can also be written in terms of ZT as

ηmax =
∆T

TH

√
1 + ZT − 1√
1 + ZT + 1

. (1.9)

Equation 1.9 is plotted for a range of temperature differences in Figure 1.5, where TC and TH

are the cold and hot temperatures, respectively, and ∆T/TH is the Carnot efficiency. This

plot highlights a couple of important issues regarding thermoelectrics. The first is that the

efficiency is heavily dictated by the temperature difference across the material, the upper

bound of which is set by the Carnot efficiency. The other is that thermoelectric efficiencies

are typically quite low. The best turbine power plants attain efficiencies in the range of

40-50% [23], which can only be matched by a thermoelectric with a ZT between 10 to 20–an

extremely ambitious value.3 As a result, thermoelectrics are more immediately attractive

2For clarity, we skip mentioning phonons at this point, but will come back to this in more detail later.
3Assuming TC/TH = 0.25
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Figure 1.5: Efficiency versus figure of merit, ZT , for a range of temperature differences. The
best thermoelectrics currently attain ZT ∼ 1, but an economically viable material with ZT
of 3-4 would be breakthrough.

as a means to increase the overall efficiency of other processes, or in applications in which

relatively low conversion efficiencies are acceptable.

1.5 Optimization

As discussed in the previous section, thermoelectrics with high ZT values are extremely

desirable. Over the past decades, a variety of different approaches have been taken in an

attempt to create high-ZT materials. Recall from Equation 1.8 that ZT can be maximized

by increasing the power factor, S2σ, and decreasing the thermal conductivity κ. One of the

most straightforward approaches to optimizing ZT is to start with a low thermal conductivity

material and then increase it’s electrical conductivity, σ, through the addition of charge

carriers (a process known as ‘doping’). There is, however, an interdependence between S, σ

and κ that makes this a somewhat tricky process. For metals and heavily doped (degenerate)

semiconductors, the Seebeck coefficient can be written as [20]

S =
8π2k2

B

3eh2
m∗T

(
π

3n

)2/3

, (1.10)

where n is the carrier concentration and m∗ is the effective mass of the carrier. The carrier
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conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best

thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due

primarily to how easily electrons and holes can move through a material. Materials

with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.
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conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best

thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due

primarily to how easily electrons and holes can move through a material. Materials

with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.

9

conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best

thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due

primarily to how easily electrons and holes can move through a material. Materials

with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.

9

conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best

thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due

primarily to how easily electrons and holes can move through a material. Materials

with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.

9

Carrier Concentration

Insulators Semiconductors Metals

(a)

Th
er

m
al

 C
on

du
ct

iv
ity

 

co
n
d
u
ct

iv
it
y.

M
an

y
co

m
m

on
m

at
er

ia
ls

ex
h
ib

it
ei

th
er

co
n
d
u
ct

iv
it
y

or
in

su
la

ti
ve

p
ro

p
er

ti
es

.
M

os
t

m
et

al
s,

fo
r

ex
am

p
le

,
ar

e
go

o
d

co
n
d
u
ct

or
s

of
b
ot

h
el

ec
tr

ic
it
y

an
d

h
ea

t,
w

h
il
e

ot
h
er

m
at

er
ia

ls
,

su
ch

as
w

o
o
d
,

p
la

st
ic

,
gl

as
s

an
d

ce
ra

m
ic

s
ar

e

ty
p
ic

al
ly

go
o
d

in
su

la
to

rs
.

H
ow

ev
er

,
w

h
at

E
q
u
at

io
n

1.
6

te
ll
s

u
s

is
th

at
th

e
b
es

t

th
er

m
o
el

ec
tr

ic
s

ar
e

go
o
d

el
ec

tr
ic

al
co

n
d
u
ct

or
s

b
u
t

p
o
or

th
er

m
al

co
n
d
u
ct

or
s.

T
h
e

n
at

u
re

b
eh

in
d

el
ec

tr
ic

al
co

n
d
u
ct

iv
it
y

is
re

la
ti

ve
ly

st
ra

ig
h
tf

or
w

ar
d

as
it

is
d
u
e

p
ri

m
ar

il
y

to
h
ow

ea
si

ly
el

ec
tr

on
s
an

d
h
ol

es
ca

n
m

ov
e

th
ro

u
gh

a
m

at
er

ia
l.

M
at

er
ia

ls

w
it

h
m

an
y

fr
ee

ch
ar

ge
ca

rr
ie

s,
su

ch
as

m
et

al
s

an
d

h
ea

v
il
y

d
op

ed
se

m
ic

on
d
u
ct

or
s,

h
av

e
go

o
d

el
ec

tr
ic

al
co

n
d
u
ct

iv
it
y.

M
at

er
ia

ls
li
ke

ce
ra

m
ic

s,
h
ow

ev
er

,
d
o

n
ot

h
av

e

m
an

y
fr

ee
el

ec
tr

on
s

an
d

ar
e

th
u
s

p
o
or

el
ec

tr
ic

al
co

n
d
u
ct

or
s1

.
T

h
er

m
al

co
n
d
u
c-

ti
v
it
y

is
so

m
ew

h
at

m
or

e
co

m
p
li
ca

te
d

th
ou

gh
b
ec

au
se

h
ea

t
is

tr
an

sf
er

ed
th

ro
u
gh

a

va
ri

et
y

of
m

ec
h
an

is
m

s,
an

d
ty

p
ic

al
ly

th
er

m
al

co
n
d
u
ct

iv
it
y

o
cc

u
rs

v
ia

tw
o

m
ec

h
-

an
is

m
s.

T
h
e

fi
rs

t
co

n
tr

ib
u
ti

on
is

fr
om

el
ec

tr
on

s
an

d
th

is
is

w
h
y

m
os

t
m

et
al

s
ar

e

so
go

o
d

at
co

n
d
u
ct

in
g

b
ot

h
h
ea

t
an

d
el

ec
tr

ic
it
y.

T
h
e

se
co

n
d

co
n
tr

ib
u
ti

on
co

m
es

fr
om

th
e

w
ay

th
at

th
e

at
om

s
in

a
m

at
er

ia
l

v
ib

ra
te

2
.

M
at

h
em

at
ic

al
ly

,
th

er
m

al

co
n
d
u
ct

iv
it
y

is
ge

n
er

al
ly

w
ri

tt
en

as


=


e
+


L
(1

.7
)

w
h
er

e


e
an

d


a
ar

e
th

e
th

er
m

al
co

n
d
u
ct

iv
it

ie
s

d
u
e

to
el

ec
tr

on
s

an
d

at
om

ic
v
i-

b
ra

ti
on

s,
re

sp
ec

ti
ve

ly
.

W
e

ca
n

th
en

re
w

ri
te

E
q
u
at

io
n

1.
6

as

Z
T

=
S

2
�
T


e
+


L

(1
.8

)

T
h
is

eq
u
at

io
n

il
lu

st
ra

te
s

th
e

ke
y

p
ar

am
et

er
s

th
at

m
u
st

b
e

op
ti

m
iz

ed
in

or
d
er

to

in
cr

ea
se

Z
T

an
d

w
il
l
b
e

d
is

cu
ss

ed
la

te
r

in
m

or
e

d
et

ai
l.

1
T

h
e

sp
ec

ifi
cs

of
b
on

d
in

g
in

m
at

er
ia

ls
is

d
is

cu
ss

ed
in

m
or

e
d
et

ai
l

in
th

e
fo

ll
ow

in
g

ch
a
p
te

r.
F
or

n
ow

w
e

ke
ep

th
e

d
is

cu
ss

io
n

re
la

ti
v
el

y
h
ig

h
-l
ev

el
.

2
F
or

cl
ar

it
y,

w
e

sk
ip

m
en

ti
on

in
g

p
h
on

on
s

at
th

is
p
oi

n
t,

b
u
t

w
il
l
co

m
e

b
ac

k
to

th
is

in
m

o
re

d
et

ai
l
la

te
r.

9

conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best

thermoelectrics are good electrical conductors but poor thermal conductors.

The nature behind electrical conductivity is relatively straightforward as it is due

primarily to how easily electrons and holes can move through a material. Materials

with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.
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conductivity. Many common materials exhibit either conductivity or insulative

properties. Most metals, for example, are good conductors of both electricity

and heat, while other materials, such as wood, plastic, glass and ceramics are

typically good insulators. However, what Equation 1.6 tells us is that the best
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with many free charge carries, such as metals and heavily doped semiconductors,

have good electrical conductivity. Materials like ceramics, however, do not have

many free electrons and are thus poor electrical conductors1. Thermal conduc-

tivity is somewhat more complicated though because heat is transfered through a

variety of mechanisms, and typically thermal conductivity occurs via two mech-

anisms. The first contribution is from electrons and this is why most metals are

so good at conducting both heat and electricity. The second contribution comes

from the way that the atoms in a material vibrate2. Mathematically, thermal

conductivity is generally written as

 = e + L (1.7)

where e and a are the thermal conductivities due to electrons and atomic vi-

brations, respectively. We can then rewrite Equation 1.6 as

ZT =
S2�T

e + L

(1.8)

This equation illustrates the key parameters that must be optimized in order to

increase ZT and will be discussed later in more detail.

1The specifics of bonding in materials is discussed in more detail in the following chapter.
For now we keep the discussion relatively high-level.

2For clarity, we skip mentioning phonons at this point, but will come back to this in more
detail later.
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Figure 1.5: E�ciency versus figure of merit, ZT, for a range of temperature dif-
ferences. The best thermoelectrics currently attain ZT ⇠ 1, but an economically
viable material with ZT of 3-4 would be breakthrough.

di↵erence across the material, the upper bound of which is set by the Carnot ef-

ficiency. The other is that thermoelectric e�ciencies are typically quite low. The

best turbine power plants attain e�ciencies in the range of 40-50%[10], which can

only be matched by a thermoelectric with a ZT between 10 to 20–an extremely

ambitious value3. As a result, thermoelectrics are more attractive as a means

to increase the overall e�ciency of other processes, or in applications in which

relatively low conversion e�ciencies are acceptable.

1.5 Optimization
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L = 0.8 (1.11)

L = 0.2 (1.12)

Clearly, thermoelectrics with high ZT values are extremely desirable. Over the

past decades, a variety of di↵erent approaches have been taken in an attempt to

create high-ZT materials. Perhaps the most straightforward approach has been

to start with a low thermal conductivity material and then increase it’s electrical
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(b)

Figure 1.6: Optimization of ZT with respect to carrier concentration. (a) Heavily doped
semiconductors typically make good thermoelectric materials. Maximizing ZT requires a
compromise between competing properties. Adapted from [19]. (b) Example of ZT versus
carrier concentration and thermal conductivity in Be2Te3. The electronic thermal conduc-
tivity, κe, (red line) is a function of carrier concentration. For κL = 0.8 the maximum ZT
is at point 1. By decreasing κL, ZT is increased to point 2. Further decreasing the carrier
concentration leads to additional increase in ZT shown at point 3. Adapted from [20].

concentration is related to the electrical conductivity, σ, via

σ = neµ, (1.11)

where µ is the mobility of the carrier. These equations show that a material with low carrier

concentration yields a high Seebeck coefficient but also a low electrical conductivity–S and

σ have an inverse relationship. The interdependence between these properties is plotted

in Figure 1.6. Figure 1.6a highlights the inverse relationship between Seebeck coefficient

S and electrical conductivity σ, giving rise to a maximum power factor, S2σ, somewhere
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in between. Additionally, as the carrier concentration increases, so does the total thermal

conductivity, κ, due to the increase in κe given by the Wiedemann–Franz law [20]

κe = neµLT = σLT, (1.12)

where L is the Lorentz factor.

Figure 1.6b illustrates the interdependence between carrier concentration, thermal conduc-

tivity and ZT . The red curve is the electronic thermal conductivity, κe, which, from Equa-

tion 1.12, is a function of carrier concentration. For a given lattice thermal conductivity

κL = 0.8, the maximum ZT is shown at point 1. Decreasing κL, but maintaining carrier

concentration, leads to an increased ZT shown at point 2. The maximum ZT , point 3, is

reached by further decreasing the carrier concentration. This highlights a fundamental point

surrounding thermoelectrics–large gains in ZT can be realized simply by reducing κL, while

the electrical properties can be fine tuned through adjustment of the carrier concentration.

This understanding has led to much research into ways to reduce κL.

1.5.1 Reducing κL

To begin to understand how to lower κL, we must first briefly look at how heat is transported

through crystalline solids. At the most basic level, heat is transported through crystals by

the vibrations of the atoms that comprise the solid. The degree to which a given atom

vibrates is proportional to the amount of energy it has. As heat is a form of energy, the

heating of an atom will increase the amount by which it vibrates. Additionally, the vibration

of a single atom affects, and is affected by, the vibrations of it’s neighboring atoms. As a

result, if heat is applied to one side of a solid, it will propagate through the material via

the vibrations and interactions between the atoms. These vibrations are often described as

waves, just as waves can be sent along a stretched elastic string by plucking one end [15].

These waves, or lattice vibrations, in solids are typically referred to as phonons.
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The above description is overly simplistic, but is useful as a starting point because it allows

us to discuss heat transport through the context of phonons which, like particles, can be

scattered and deflected. In the absence of any scattering or deflection, a phonon will prop-

agate in the same direction with a constant velocity, v. The amount of time that a phonon

can travel unimpeded is called the phonon lifetime, τ . We can write the lattice thermal

conductivity in terms of the phonon lifetime as [15]

κL =
1

3
Cvv

2τ, (1.13)

where Cv is the specific heat, which is a function of temperature. Equation 1.13 is useful

because it shows that κL is proportional to phonon lifetime. The more phonon scattering

that occurs, the smaller the phonon lifetime, and consequently the lower κL is. Therefore,

many attempts to reduce κL focus on ways to increase phonon scattering.

Disorder One approach to reducing κL is through alloying and the introduction of impu-

rities, such as interstitials (atoms in off-lattice sites) and vacancies (missing atoms in the

lattice), which results in disorder within the lattice. For example, alloys in the binary tel-

lurides, such as Be2Te3, Sb2Te3, PbTe and GeTe, have attracted much interest and in some

cases have resulted in significant reductions of κL [20]. Structures with large void spaces,

such as skutterudites and clathrates, are also interesting as their voids can be filled with

impurity atoms. Cases such as CoSb3 [12] and Sr8Ga16Ge30 [16] have been shown to exhibit

extremely low κL, approaching that of κmin
4.

Complexity Materials with complex atomic compositions are also typically considered

to be good candidates for low κL, while simple crystals tend to have relatively large κL.

Simple systems such as diamond (carbon) and pure silicon, for example, both have room

temperature κL > 100 W m−1K−1, yet materials such as Ag9TlTe5 [11], Yb14MnSb11 [5] and

4The theoretical lower limit to thermal conductivity at room temperature is κmin ∼ 0.2 W m−1K−1 [6]
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Cu12Sb4S13 [14] all exhibit extremely low thermal conductivities of κL < 1 W m−1K−1 at

room temperature. Complexity, in this case, does not necessarily require complex symmetry

either, as Cu12Sb4S13 exhibits cubic symmetry. While complexity does not guarantee low

κL, it is generally a good indicator.

Nanostructuring Some of the most recent research on thermoelectrics has focused on

the possibility of using thin-films and nano-wires for creating low κL, high ZT materi-

als. One proposed topology involves building up a larger material from a series of smaller

layers stacked together, forming what is typically referred to as a ‘superlattice’. For ex-

ample, Bi2Te3-Sb2Te3 thin-film superlattice materials have been shown to exhibit ultralow

κL ∼ 0.3 W m−1K−1, while retaining the electrical properties of the bulk material [21].

Boundary scattering between the thin-film layers, however, can lead to significant reduction

in electrical conductivities resulting in poor ZT [20] and continued research is necessary

to better understand the design, preparation and optimization of nanostructured thermo-

electrics [8].

2 Motivation & Goals

Ultimately, the motivation of this work is to aid in the discovery of promising new thermo-

electric materials. The key parameter in this search, as we’ve seen, is thermal conductivity.

More specifically, materials with low κL are of great interest. Somewhat surprisingly, how-

ever, we know very little about the thermal conductivities of most materials. Consider for

example, that of the roughly 100,000 known inorganic compounds, κL has only been pub-

lished for roughly 1%. Calculating the thermal conductivity of the remaining 99% presents

a formidable challenge, but also provides hope that better thermoelectric materials may lay

yet undiscovered.

Much of the progress made in this field to date has been achieved through experimental
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studies, but there are some inherent limitations to this approach going forward. Most im-

portantly, examining materials on a case-by-case basis in a laboratory is costly, both in terms

of man-hours and economic investment in materials and machinery. Searching for the ideal

thermoelectric this way is a bit like trying to find a needle in a haystack–not something you’d

want to do by hand, especially considering how large the haystack is. Indeed, this seems like

a task ideally suited for a computer.

Fortunately, there has been recent progress in developing computational techniques to help

in the search for low κL materials. Molecular dynamics (MD) based methods have proven

to be extremely popular due to their relative ease of use and widespread availability in the

form of freely available computer codes [18]. The development of mathematically rigorous

methods for calculating κL from MD simulations has also added to the popularity of this

approach. However, the poor predictive capability of empirical MD codes has restricted

this method to studying only the simplest of systems.5 While much higher accuracy (i.e.

non-empirical) MD is possible,6 it is currently far too computationally expensive to use for

the purposes of calculating κL.

An alternative approach to determining κL involves solving the Boltzmann transport equa-

tion (BTE) [17]. Results published recently have shown that the BTE approach is able to

very accurately predict κL for a range of systems, including Si and Ge [4], diamond [24]

and Bi2Te3 [9]. In it’s current form, however, this processes is still quite cumbersome and a

significant amount of manual involvement is typically required, limiting it’s applicability in

the search for new low κL materials.

The goal of this project is to help fill in the voids where current computational techniques

stop. What is presented here is a method for obtaining high quality predictions of κL that

is both efficient and robust, requiring minimal intervention and no emotional involvement7.

5This issue is discussed in more detail in Chapter 2.
6Specifically, density functional (DFT) based ab initio MD (AIMD).
7By this we mean that the methods presented here do not require continual tweaking of parameters in

an attempt to get desirable results. By removing ‘emotion’ from the equation, one can simply use the tools
provided to get consistent, reliable, repeatable results.
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The hope is that these techniques can help accelerate the search and aid in the discovery of

exciting new thermoelectric materials.
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CHAPTER 2

Background

A variety of computational techniques already exist for calculating thermal conductivity.

Before jumping straight into how our approach is different, there are a number of topics that

must be, at least partially, covered. In particular, there are a few questions that must be

answered, namely

1. How are forces between atoms calculated?

2. How can a system of many atoms be evolved through time?

3. How is heat transported through solids?

We will begin answering these questions by looking at various ways in which atomic inter-

actions are typically modeled. By understanding how this is done, we can highlight some of

the strengths and weaknesses of the current techniques, which will provide some insight into

ways in which improvements can be made. From here we will talk about how to simulate

interactions between atoms using a technique called molecular dynamics (MD). Additionally,

we will touch on some of the basic physics and mathematical concepts that are key to the

approaches presented later on.

1 Atomic Interactions

Inorganic solids can generally be classified as either amorphous or crystalline materials. The

difference between these two distinctions lays with the way in which the material’s atoms
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(a) (b)

Figure 2.1: Two types of microstructures found in solids, (a) amorphous and (b) crystalline.
The black box in the crystalline example denotes the unit cell.

are arranged. In amorphous materials, the atoms are arranged in such a way that there is

no discernible repeating pattern, often referred to as a lack of long-range order, and if one

could see the individual atoms they would appear randomly distributed. Typical examples of

amorphous materials include glasses and polymers. Unlike amorphous materials, crystalline

solids contain highly-structured, repeating patterns that extend in all three spatial dimen-

sions. Using the same terminology as before, crystalline solids exhibit long-range order. The

smallest repeating unit in crystalline materials is referred to as the unit cell. Common crys-

talline materials include metals and ceramics. Figure 2.1 illustrates the difference between

the two types of materials.

While amorphous materials can exhibit very interesting properties, their lack of periodic,

ordered structure makes them difficult to study from a theoretical standpoint. Conversely,

the predictable, repeated structure of crystalline materials means that there is a great deal

that can be understood simply by knowing the static positions of the atoms. For exam-

ple, bulk modulus, elastic constants, optical properties and electronic structure are a few

examples of properties that can be determined from static crystal analysis [5]. It is this

predictability that makes crystalline materials particularly attractive and from here on out

we will be concerned solely with crystalline solids.
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While a range of useful material properties can be determined by the static position of

atoms, there are many important properties that cannot be understood without taking into

account the movement of the individual atoms. These dynamic properties include thermal

properties, such as heat capacity and thermal expansion, phase transitions and transport

properties, such as diffusion and thermal conductivity, to name but a few [5]. Therefore,

to be able to determine such properties, it is important to understand how atoms move

and interact with each other. The simplest way to model the movement of an atom is

via a classical approach of Newton’s second law, namely F = ma; force equals mass times

acceleration. If the position of atom i at time t is given by ri(t), then we can write the

atom’s acceleration as

ai(t) =
∂2ri(t)

∂t2
=

Fi

mi

, (2.1)

where mi is the mass of the atom. It is also necessary to determine the force acting on the

atom, which we can write in terms of the atom’s potential energy, φi, thusly

Fi = ∇φi
(
ri (t)

)
. (2.2)

For a system of N atoms, the potential energy can then be written as a function of the

separation between atom i and all other atoms in the system

φi =
N∑
j

φij(rij), (2.3)

where rij is the separation between atoms i and j, and φij is the potential energy between
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the two atoms.1 The question now becomes, what is the form of φij? As it turns out, this is

not a simple question to answer and is one that has been the focus of scientists for the past

century.

The simplest way to begin answering this question is to consider the interaction between

two atoms. If the atoms are sufficiently far away from one another, their interaction is

negligible. However, as they are brought closer together, they will feel two different types of

forces, namely an attractive force and a repulsive force. In ionically bonded materials, this

attraction is due to the positive and negative ions, in covalent solids the attraction is due to

sharing of electrons and in metals the negative “sea of electrons” attracts the positive ion

cores. In addition to these primary types of bonding, there is also the secondary (weaker)

“Van der Waals” interactions which occurs in all materials and is the prevalent bonding

mechanism in atoms with filled shells. Whatever the bonding mechanism, the attractive

force that keeps the material together is also coupled with a repulsive force that stops the

atoms from getting too close to one another. This repulsive force arises from the overlapping

of core electrons as two atoms get closer together. We can write this attractive-repulsive

relationship mathematically as

F = FA + FR, (2.4)

where F is the total force and FA and FR are the attractive and repulsive forces, respectively.

To continue keeping the discussion simple, for now, let us consider the case of electrically

neutral Argon. Here, the attractive bonding will be influenced almost exclusively by “Van

der Waals” interactions. The mathematical form for this interaction, the derivation of which

can be found elsewhere [5], is typically written as Ar−6, where A is a material constant and r

is the atomic separation. The repulsive force is also often modeled as Br−12, where again B

1It should be noted that Equation 2.3 is a simple pair-potential that excludes many-body interactions.
Later on we will discuss the importance of many-body interactions.
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Figure 2.2: Lennard-Jones potential plotted as a function of atomic separation. At large
separations there is an attractive force, while at short separations there is a respulsive force.
The values ε and σ are used to control the equilibrium separation distance.

is a constant. The combination of these two yields the canonical “Lennard-Jones potential”

φij(rij) = −4ε

( σ

rij

)6

−
(
σ

rij

)12
 , (2.5)

where ε is the potential energy when the two atoms are at an equilibrium separation and

σ is the distance between the two when the energy is equal to zero. This relationship is

illustrated graphically in Figure 2.2. The final task to complete before one can actually use

Equation 2.5 is to determine appropriate values for ε and σ. The typical approach is to fit

these parameters with experimental data and it is for this reason that equations of this type

are generally referred to as empirical potentials.

1.1 Empirical Potentials

Lennard-Jones is but one example of an empirical potential and many more have been de-

veloped over the years. For example, one of the most widely used classical MD programs,
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LAMMPS [9], has implemented over 30 different potential functions. By far the most per-

plexing issue for newcomers is how to choose the correct potential. The answer to this ques-

tion is, unfortunately, often not very straightforward as it typically depends on the specific

system being studied and the properties one wishes to calculate. For example, if one wishes

to study NaCl, the embedded-ion method (EIM) potential would likely be a good choice as

it was developed to compute pairwise interactions for ionic compounds. Mathematically, it

is defined as

E =
1

2

N∑
i=1

iN∑
j=i1

φij(rij) +
N∑
i=1

Ei(qi, σi), (2.6)

where the first term is a double pairwise sum over the J neighbors of I atoms, φij is the

pair potential and the second term is a sum over the embedding energy Ei, which itself

is a function of charge qi and electric potential σi. The full expression for Equation 2.6

is not presented here, but when the expressions for qi, σi and Ei have been included, 13

system-specific parameters must be provided. Calculating these parameters is not trivial,

thus LAMMPS ships with values for nine elements. To simulate a system containing an

element that is not included in the nine provided, one must either calculate the values (very

difficult) or choose a different potential.

For metallic systems there is the embedded-atom method (EAM), for Si-based systems (Si,

SiC, SiCGe, SiO) there is the Tersoff potential, for III-V and II-VI systems there is the

bond order potential (BOP), etc. How, though, does one simulate a material that does not

fit nicely into one of these categories and has never been studied experimentally? Without

previous experimental data, it is extremely difficult to choose an empirical potential that

will correctly model the desired system.
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Table 1

Atoms Length 1/Length Kappa

1536 12 0.0833333333333333 2.42 0.413223140495868

3584 28 0.0357142857142857 4.15 0.240963855421687

7168 56 0.0178571428571429 6.87 0.145560407569141

14336 112 0.00892857142857143 11.1 0.0900900900900901
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Figure 2.3: Thermal conductivity vs simulation cell length and extrapolation to infinite size
for (a) NaCl at 298.2 K and (b) Silicon at 500 K. In the case of Silicon, two different empirical
potentials were used; Stillinger-Weber (SW) and Tersoff.

1.1.1 Predictive Capability

Assuming that an empirical potential exists for the system one wishes to study, the next

question is how good is the predictive capability? The results from Leblanc et. al[2], are

shown in Figure 2.3 for both sodium chloride and silicon obtained via LAMMPS. The NaCl

results were obtained with the use of the CFF93 potential[10] and are plotted in Figure 2.3a

as inverse thermal conductivity versus inverse cell length. This is a common technique used

in NEMD simulations and is discussed in further detail in Section 2.2.2 of Chapter 3. The

NaCl results give a value of 14.75 W m−1 K−1, which exceeds the experimental value of

5.854 W m−1 K−1 by almost a factor of three.

In the case of silicon, two potentials were used. The first, Stillinger-Weber, yielded a value of

93.46 W m−1 K−1 while the Tersoff potential gave a value of 149.25 W m−1 K−1. These differ

by 20% and 60% from the experimental value of 80 W m−1 K−1. These results show that,

even for relatively simple systems such as NaCl and silicon, empirical potentials struggle to

provide high-accuracy thermal conductivity results.
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1.2 First Principles

Up to this point we’ve only looked at solids as collections of interacting atoms. This is, in

general, a gross over-simplification. In reality, electrons must be taken into account in order

to get the full picture, and as a result quantum mechanical theory is needed. More specifically,

the development of density functional theory (DFT), in which the many-body energy and

charge density ρ (r) are calculated, has made it possible to achieve unparalleled accuracy in

such simulations, solving much of the issues inherent with empirical potentials. In fact, it

is possible to do MD simulations using DFT, negating the need for empirical potentials,

resulting in parameter-free simulations of very high accuracy. This is often referred to

as ab initio MD (AIMD). However, the increased accuracy from DFT comes at extreme

computational cost.

To give a rough idea of the tremendous cost associated with AIMD, we can compare real-

world results from the classical MD package LAMMPS[9] and the DFT package VASP[7].

Running on a four core processor, the average time per MD step in LAMMPS for a 36000

atoms liquid water system was 9 microseconds. VASP, running on a Cray XT3 supercom-

puter, spread across 320 processors, obtained an average time per MD step for a 192 atom

liquid water system of 252 seconds[1]. The main reason for this tremendous difference in

performance is that empirical MD techniques typically scale O(N), where N is the number

of atoms, while DFT scales as O(M2.5),2 where M is the number of electrons[1]. The steep

computational cost of AIMD makes it impractical to use, on current computing hardware,

for thermal conductivity calculations.

2 Molecular Dynamics

In the previous section we looked at the basics of atomic interactions, or more specifically,

how to calculate the potential energy and forces that act between atoms using an empirical

2For very large systems DFT scales as O(M3) due to orthogonalization.
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potential. Our focus now turns to finding a way to evolve such a system of atoms through

time. This is exactly where molecular dynamics (MD) comes in. What exactly does “evolve

through time” mean? The easiest way to explain this is through an analogy. Consider a

video camera running at 30 frames per second. At this rate it means that the camera is

capturing successive still images every 1/30th of a second, or every 33 milliseconds. When

these images are viewed in the correct order, the video is played back and our eyes perceive

continuous motion–the scene captured by the still images is being “evolved through time”.

In an MD simulation the same technique is employed, but here the images, or snapshots,

are not images but instead they are the current state of the system (velocities, positions,

accelerations, etc. of every atom) at that point in time. Successive snapshots are separated

by a so-called timestep. In the video camera analogy, the timestep is 33 milliseconds, in an

MD simulation the timestep is typically on the order of 1 femtosecond (1 quadrillionth of a

second).

2.1 Steps

The first MD simulations were done back in the 1950s[4], and since then the basic structure

of an MD simulation hasn’t changed dramatically. There are essentially four basic steps that

every MD program employs, which consist of

1. Initialize: initialize the system

2. Evaluate: calculate the forces on all of the atoms

3. Integrate: integrate the equations of motion to advance the time step and determine

new atomic positions

4. Sample: sample the system to calculate properties
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2.1.1 Initialize

The first step is to initialize the system by placing the atoms that comprise the system into

a three-dimensional coordinate system. All this really involves is simply giving each atom an

x, y and z coordinate. These coordinates can then be used to determine one atom’s position

relative to another. Since we are concerned with crystals, this will involve placing atoms

into their respective lattice sites, but in a more general MD simulation there isn’t any strict

requirement for how atoms should be placed. In terms of units, it is common to use Å(10−10

meters), as neighboring atoms are typically separated by at most a few Å.

The discussion of coordinate systems would be incomplete if we didn’t stop to consider what

happens at the edges, or boundaries, of the system; a term called boundary conditions.

There are two types of boundary conditions typically employed in MD simulations. The

first, called “fixed boundary conditions”, is actually the more “physical” of the two methods

in the sense that it is more similar to the behavior of real materials. In a fixed boundary

condition simulation, the atoms at the boundaries interact with fewer atoms than those in

the interior, or bulk, of the material. This is analogous to surface atoms in a real material.

In macroscopic systems, however, the ratio of bulk atoms to surface atoms is usually very

large, and as a result many material properties are dictated by the behavior of the atoms

in the bulk. If one cares mainly about bulk properties, the surface atoms can typically be

neglected. Unfortunately, simulating a bulk material of millions and millions of atoms is, for

the most part, impractical with current computational resources. Therefore, one way to make

the system appear “infinitely” large is by using so-called “periodic boundary conditions”.

Under this condition, there are no surface atoms and instead the Cartesian axes are wrapped

around. So for a system with dimensions L×L×L, an atom at position ri = (0, 0, 0) would

Figure 2.4: Flow chart illustrating the basic steps of an MD program.
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simultaneously exist at position ri = (L, 0, 0).

If we just place atoms on a lattice and start the simulation, nothing will happen and the

atoms will remain stationary because they have no velocity. Choosing initial velocities for

the atoms is not very intuitive, however, and gives rise to the question of how fast do

atoms typically move? A more intuitive approach to answering this question is to consider

a property that we are all familiar with–temperature. Rather than starting a simulation

with each atom having a random velocity vi, it is often more convenient to define an initial

starting temperature and work backwards to figure out what the initial velocities should be.

In order to do so, a relation between temperature and velocity is necessary. Fortunately,

kinetic theory provides us with just that via the following relation

1

2
mv2 =

3

2
kBT, (2.7)

where m is mass, v is velocity, kB is the Boltzmann constant and T is temperature. The

left side of this equation is nothing more than the particle’s kinetic energy which is equal

to the particle’s temperature times a constant. From this it is clear that we can define the

temperature of a particle, with some given mass m, by setting it’s velocity to the correct

value. For a system of N particles we can then use Equation 2.7 to get the temperature of

the entire system as

T =
N∑
i=1

miv
2
i

kBNf

, (2.8)

where Nf is the number of degrees of freedom (Nf = 3N − 3). The näıve approach would

be to simply give every atom in the simulation a single velocity, in turn yielding the desired

temperature. However, this would result in a non-zero momentum for the system,
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ρ =
N∑
i

mivi, (2.9)

which would cause the system to drift through space (the coordinate system). This is non-

ideal for a number of reasons, but in general it is preferred that the system remain stationary

in the coordinate system, therefore a better approach for determining initial velocities is

necessary.

A better approach is to build off the concept of Maxwell–Boltzmann distribution from sta-

tistical mechanics, which describes, in classical physics, the velocity distribution of particles

at a given temperature. The functional form of a Maxwell-Boltzmann distribution is

f(v) =

√(
m

2πkBT

)3

4πv2e
− mv2

2kBT . (2.10)

In practice, the process then involves picking random velocities from the distribution, with

a final scaling of all velocities to ensure that the center of mass of the system is zero.

2.1.2 Evaluate

The evaluation step is responsible for calculating the forces on and the potential energy of

every atom in the system. This is also the most computationally expensive part of any

molecular dynamics simulation. How expensive this step is depends on the form of the

potential being used, or more precisely, how complex φij is in Equation 2.3. In general

though, most MD simulations will spend upwards of 90% of the simulation on this step. As

a result, it is extremely important to make this step as computationally efficient as possible.

Optimization of this step is the entire focus of Chapter 4.
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2.1.3 Integrate

Once the forces acting on each atom have been calculated, the equations of motion must be

integrated, resulting in the advancement of the time from time t to time t + ∆t, where ∆t

is called the timestep. This also has the effect of updating atomic positions and velocities.

There are various ways to achieve this, but the simplest version is the so-called Verlet al-

gorithm, the derivation of which is quite simple. To derive the equations, we start with a

Taylor expansion of a particle’s position, r, at time t+ ∆t and t−∆t

r(t+ ∆t) = r(t) + v(t)∆t+
1

2!
a(t)∆t2 +

1

3!
a′(t)∆t3 +O(∆t4),

r(t−∆t) = r(t)− v(t)∆t+
1

2!
a(t)∆t2 − 1

3!
a′(t)∆t3 +O(∆t4).

(2.11)

Adding these two equations together gives

r(t+ ∆t) + r(t−∆t) = 2r(t) + a(t) +O(∆t4), (2.12)

which can be rearranged to give the next position as a function of the current postition,

previous position and acceleration,

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t). (2.13)

The acceleration is given from the interatomic potential as

a(t) =
1

m
F(t), (2.14)

33



where m is the particle’s mass and F is determined according to Equation 2.2. In Equa-

tion 2.13 we have dropped the fourth order term, which results in an error on the order of

∆t4. As a result of this it is important to choose a very small ∆t so as to minimize the error.

Typically, ∆t is chosen on the order of femtoseconds (10−15 seconds).

The equations in 2.11 can also be subtracted to give the particle’s new velocity, thusly

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
. (2.15)

The main problem with this method is that the velocities and positions are off by a timestep–

that is v at time t is only known once r has been calculated at time t + ∆t. Often it is

convenient to know positions and velocities at the same timestep, thus various other inte-

gration schemes have been developed to solve this problem, some of which will be discussed

later in Section 2.2.

2.1.4 Sample

The final step is to sample the system before the time step is fully advanced to time t+ ∆t.

Quantities such as energy, temperature, velocities and forces can be recorded so that they

may be analyzed later.

2.2 Integration Schemes

The integration scheme presented in Section 2.1.3 is referred to as the Verlet algorithm and

represents one of the simplest ways to evolve a system of particles through time. However,

the algorithm is not very convenient, as it results in positions and velocities that differ by

a whole time step. As a result, numerous other integration schemes have been developed.

The most widely used is called the Velocity Verlet algorithm, which solves the main issue
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with the simple Verlet algorithm. By re-expanding Equation 2.11, but taking velocity into

account explicitly, one gets the following:

r
(
t+ ∆t

)
= r (t) + v (t) ∆t+

1

2
a (t) ∆t2, (2.16)

v
(
t+ ∆t

)
= v (t) +

1

2

[
a
(
t+ ∆t

)
+ a (t)

]
∆t. (2.17)

The typical approach to implement this algorithm is as follows:

1. r(t) and v(t) are used to compute a(t), at time t, using Equation 2.14.

2. Calculate r(t+ ∆t) using Equation 2.16.

3. Calculate v
(
t+ ∆t

2

)
using Equation 2.17.

4. Calculate new forces using r(t+ ∆t) to get a(t+ ∆t).

5. Calculate final velocities v
(
t+ ∆t

)
using Equation 2.17.

There are a number of other integration schemes, but given the simplicity of the Velocity

Verlet algorithm, this one tends to be the most popular. Additionally, as long as a small

enough time step is used, the Velocity Verlet is capable of obtaining the same level of accuracy

as more costly, higher-order integration schemes.

2.3 Ensembles

Applying the steps discussed in Section 2.1 to create an MD program will result in simulations

that contains constant number of particles (N), constant volume (V ) and energy (E)–often

referred to as the NVE, or microcanonical, ensemble. However, it is often desired to perform

MD within different parameters, such as constant temperature or pressure. In particular,

we are concerned with the constant temperature (NVT), or canonical, ensemble.
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Recall from Equation 2.8 that in classical MD, temperature is determined directly from the

kinetic energy of the system, thus in order to control temperature, energy must be added

and removed as necessary. The simplest way to do this is through direct velocity rescaling.

While this approach works it is not the most ideal for a number of reasons, but the main issue

is that simple velocity rescaling techniques result in non-time-reversible, non-deterministic

simulations. Because of this, a number of methods have been developed to solve these issues.

2.3.1 Gaussian Thermostat

The so-called Gaussian Thermostat is one such way of controlling temperature in an MD

simulation. A nonholonomic system is one in which the system’s state depends on the path

taken. In the case of MD simulations, Gauss’ principle of least constraint leads to a constraint

function g
(
ri,vi, t

)
= 0[6]. To find the relation restricting acceleration, one must perform a

single differentiation of the constraint function, resulting in

∂g
(
ri,vi, t

)
∂t

=
∂g

∂ri

∂ri
∂t

+
∂g

∂vi

∂vi
∂t

+
∂g

∂t
(2.18)

=
∂g

∂ri
vi +

∂g

∂vi
ai +

∂g

∂t
= 0. (2.19)

Since temperature is proportional to kinetic energy (Equation 2.8), the constraint function

can be written as

g
(
ri,vi, t

)
=
∑ 1

2
miv

2
i −

1

2
NfkBTset = 0 (2.20)

Applying Equation 2.20 to Equation 2.19 gives
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∑
miviai =

∑
Fivi = 0. (2.21)

In the unconstrained case, the motion of the system is governed by Equation 2.14. However,

this equation of motion can no longer be used directly in the constrained case. Therefore, a

friction coefficient, ξ, is added to constrain the equation of motion

aic = Fi/mi − ξai. (2.22)

Combining Equation 2.22 and Equation 2.21 yields a definition for the friction coefficient,

ξ =

∑
Fi · vi∑
miv2

i

. (2.23)

The Gaussian thermostat can then be easily combined into the Velocity Verlet algorithm as

1. r(t) and v(t) are used to compute a(t), at time t, using Equation 2.14.

2. Calculate thermostat variable ξ(t) using Equation 2.23.

3. Calculate r(t+ ∆t) using Equation 2.16.

4. Calculate v(t+ ∆t
2

) = v(t) + {a(t)− v(t)ξ}∆t
2

.

5. Calculate new forces using r(t+ ∆t) to get a(t+ ∆t).

6. Calculate v(t+ ∆t) = v(t+ ∆t
2

) + {a(t+ ∆t)− v(t+ ∆t)ξ(t+ ∆t)}∆t
2

.

Notice in the last step that v(t + ∆t) is on both sides of the equation. Therefore, the final

velocities, v(t+ ∆t), have to be calculated iteratively. This is done using a Newton-Raphson
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procedure to solve

hi(vi, ξ) = v′i +
(
ai − ξvi

) ∆t

2
− vi = 0, (2.24)

where v′i = vi(t+ ∆t
2

). The Jacobian matrix elements are

Jj = −
{
Fjvj − 2ξv2

jmj∑
v2
jmj

+ ξ

}
∆t

2
− 1. (2.25)

The Newton-Raphson procedure can be done using the following algorithm

1. Compute initial guess for vi(t+ ∆t) =
{

v′i + ai
∆t
2

}
m−1
i .

2. Calculate ξ′ using Equation 2.23 and velocities vi(t+ ∆t).

3. Calculate h using Equation 2.24.

4. Calculate Jacobian using Equation 2.25.

5. Update velocities vj(t+ ∆t)← vj(t+ ∆t)− hj/Jj.

6. If max(abs(h)) < Mthresh stop, otherwise go to step 2.

Where Mthresh is some small number to ensure that values are properly converged.

3 Lattice Dynamics

The largest drawback to empirical potentials is that they are, in fact, inexact. They are

approximate functions and their reliance on a multitude of experimentally-determined pa-

rameters makes them impractical for complex systems and often yield mediocre results even

for simple ones. Assuming, however, that one is only interested in crystalline solids, in
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which atoms reside on a lattice, then the theory of lattice dynamics provides the mathemati-

cal framework to describe, exactly, the interatomic forces. For this reason, lattice dynamical

theory is quite an attractive alternative to traditional empirical potentials.

In its most basic form, lattice dynamics describes the crystal’s potential energy as a function

of separation between the atoms;

V =
1

2

N∑
i,j

φij(rij), (2.26)

where φij(rij) is some function that depends on the distance between atoms i and j, such

as any of the empirical potentials discussed in Section 1.1. For real (large) crystals, this

sum becomes computationally infeasible. Fortunately, many forms of φ(rij) fall off very

rapidly with increasing separation distance (see Figure 2.2), resulting in a more manageable

calculation. Many MD codes take advantage of this fact by implementing so-called ‘nearest-

neighbors’ lists which describe, for a given atom i, only those atoms that should be considered

in the calculation of φij(rij).

If we consider momentarily a simple one dimensional chain of N atoms, in which only

neighboring atoms interact, and that all atoms are separated by a distance r, the total

potential energy can be written as

V = Nφ(r). (2.27)

To simplify things further we have also assumed that the chain is wrapped back onto itself

(just like periodic boundary conditions from Section 2.1.1) and that all atoms have the same

mass. Atoms in a system at a finite temperature will vibrate at any given moment in time

and we represent an atom’s displacement from it’s initial position with ui. By performing a
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Taylor expansion on Equation 2.27 we get[5]

V = Nφ+
∑
s≥1

1

s!

∂sφ

∂u2

∑
n

(
un − un+1

)s
. (2.28)

The variable s determines when to stop the summation. When s = 2 we have what is called

the ‘harmonic approximation’ and only interactions between pairs of atoms are considered.

In the case of s > 2, anharmonic terms are included. Depending on the system and properties

of interest, it can sometimes be acceptable to ignore the higher order anharmonic terms as

this greatly simplifies the problem (and computational cost). However, for certain properties

(such as thermal conductivity), the anharmonic terms play a vital role and therefore cannot

be neglected.

Equation 2.28 can be written in a more general form, taking in to account more than just

nearest-neighbors and also including anharmonic terms as

V = Φ0 +
∑
a

Φaua +
1

2!

∑
a,b

Φabuaub︸ ︷︷ ︸
harmonic

+
1

3!

∑
a,b,c

Φabcuaubuc + · · ·︸ ︷︷ ︸
anharmonic

. (2.29)

The term Φabuaub describes how the atoms in a given cluster interact, atoms a and b in this

case, where Φab is called a force constant and is the strength of interaction between the two

atoms. Once again, we see that the one and two body clusters describe the harmonic terms,

while three body and higher clusters include the anharmonic interactions.

In MD simulations it is necessary to know the forces acting on the atoms, which can simply

be done by taking the derivative of Equation 2.29 to obtain an expression for force
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Fa = − ∂V
∂ua

= −

Φa +
∑
b

Φabub +
1

2

∑
b,c

Φabubuc + · · ·

 . (2.30)

Equation 2.30 is convenient because it describes a way to model the forces between atoms as

a function of only two things–namely displacements and force constants. The final challenge

is determining what the force constants are and is, in fact, no simple task. The solution to

this problem is discussed further in Chapter 3 Section 1.

4 Heat Transport & Phonons

Heat transport through solids can be described as a result of the interactions between elec-

trons and phonons. Thermal conductivity, κ, is the measure of how easily heat can be

conducted though a material. Typically, good conductors, such as metals, possess both very

large thermal and electrical conductivity values. Conversely, strong insulators often have low

values for both types of conductivity.3 Mathematically, we can write thermal conductivity

as the result of two processes

κ = κl + κe, (2.31)

where κl is the contribution from the phonons (lattice vibrations) and κe is due to conduction

via electrons. For now, let us focus on the lattice contribution, κl, due to phonons. If we

imagine a perfectly harmonic system in which a large amount of energy is imparted to a single

phonon, this energy will propagate through the crystal, without any loss. Given enough time

this energy will be transported all the way through the material. Without any energy loss,

3This is not strictly true, however. For example, diamond is an electrical insulator but a fantastic thermal
conductor.
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the thermal conductivity would be infinite. However, we know that this is not the case and

that real materials have finite thermal conductivity. This can be explained by the fact that

real materials are not perfectly harmonic and that phonons actually scatter via a variety of

mechanisms, including

1. phonon-phonon interactions

2. defect scattering

3. surface scattering

4. electron-phonon interactions.

While all of these effects are important, the degree of their impact on the overall thermal

conductivity will vary depending on the particular material in question. For now, let us

make a few assumptions to simplify things. By assuming that the samples we wish to study

are perfect crystals, we can ignore the effects due to defects. Additionally, in bulk materi-

als the ratio of surface to bulk atoms is very small, minimizing the importance of surface

scattering. Electron-phonon interactions are really only dominant in metals, particularly

at higher temperatures. In non-metals, however, this effect can largely be neglected. That

leaves phonon-phonon interactions as the dominant effect in determining heat conduction.

Phonon-phonon interactions can be classified into two distinct type of interactions. The first,

called a normal process (N-process), involves the collision of two phonons, k1 and k2, that

combine to form a third phonon, k3, via the following relation

ω3 = ω1 + ω2. (2.32)

In this type of interaction, crystal momentum is conserved. This is shown graphically in

Figure 2.5a. If this was the only type of phonon interaction, then there would be nothing

impeding the transport of energy, resulting in a very large thermal conductivity. The second
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Figure 2.5: Types of phonon scattering, (a) normal process (N-process) in which crystal mo-
mentum is conserved and (b) Umklammp scattering (U-process) in which crystal momentum
is not conserved.

type of phonon interaction, called Umklapp process (U-process), involves combining two

phonons in such a way that crystal momentum is not conserved. Mathematically, a U-

process is given as

ω1 + ω2 = ω3 + G, (2.33)

and is shown schematically in Figure 2.5b. U-processes lead to finite thermal conductivites

and are described by the anharmonic terms. Therefore, without the anharmonic terms, the

thermal conductivity will be overestimated.

5 Compressive Sensing

Compressive sensing (CS) is a technique recently developed in the field of information science

that is capable of recovering sparse solutions from incomplete data[3]. While CS has found

wide use in many fields, such as signal processing, it has, until recently, gone largely unnoticed

by the physical sciences community. Nelson et. al recently applied CS to the problem of

cluster expansion, a technique popular for alloy modeling, with exceptionally good results[8].
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Here, however, we apply CS to the problem of determining unknown force constants of a

lattice. Before diving into how this is done, it is more instructive to start with a simple

example of how CS works.

We start with the trivial problem of 7x+ 10y = 20, in which there are more unknowns than

knowns, making this an underdetermined problem. Let us first consider the well known least

squares approach to solving this problem. The least squares approach involves minimizing

the `2 norm ||u||2 =

(∑
i

|ui|2
) 1

2

according to the following

min ||f − Au||22 (2.34)

The `2 norm is shown graphically in Figure 2.6a. In two dimensions the `2 norm is a circle.

In Figure 2.6b the `2 norm does not satisfy the constraint f = Au, hence a solution has

not yet been found. By growing the `2 norm, a solution can eventually be found, shown

in Figure 2.6c. The result is a dense vector, since both x and y are non-zero (≈ 0.947 and

≈ 1.336 respectively). If an `1 norm is used in place of the `2 norm, we get Figure 2.7a. As

the `1 norm is grown, we see that eventually we get a solution as well, but this time it is

sparse with only one non-zero value (x = 0 and y = 2).

One of the key concepts central to CS is sparsity. More specifically, CS cannot solve just

any underdetermined problem, but rather it can find the solution in cases where there are

very few nonzero coefficients. In general, CS is well suited for problems where there are S

nonzero coefficients out of a pool of N possible solutions, i.e. when S � N . In fact, Candes

et. al showed that any sparse signal with S nonzero components can be recovered exactly

with M ∼ S lnN measurements.
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Figure 2.6: (a) `2 unit circle, (b) `2 norm is too small and has not yet found a solution, (c)
continuing to grow the `2 norm gives a solution denoted by the blue dot.
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Figure 2.7: (a) `1 unit “circle”, (b) `1 norm is too small and has not yet found a solution,
(c) continuing to grow the `1 norm gives a solution denoted by the blue dot.

Mathematically, CS is represented as

min
{
||u||1 : Au = f

}
, (2.35)

where ||u||1 is the `1 norm of the unknown coefficients. If this problem were altered to use an

`2 norm like in the previous problem, the result would be a dense solution. This is typically

undesirable as the `2 solution will often be over fitted, leading to an inaccurate solution to

the problem.
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The application of CS to lattice dynamics will be discussed in Section 1.2 of Chapter 3.
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CHAPTER 3

Methodology

As the title of this project suggests, the goal is to develop a robust method for obtaining

high-quality lattice thermal conductivity values using computational techniques. What is

presented in this chapter is a novel technique for calculating lattice thermal conductivity for

arbitrary crystals. Figure 3.1 illustrates the basic idea behind this approach. The starting

point is a crystal structure for which the lattice thermal conductivity is desired. This crystal

structure can be obtained from various online databases, such as ICSD[15], or from exper-

imental results. The interatomic force constants (IFCs) for this crystal structure are then

calculated. A number of techniques can be use to determine the IFCs, including density

functional perturbation theory (DFPT) or compressively sensed lattice dynamics (CSLD).

The latter, CSLD, is a technique that we’ve developed which solves many of the shortcomings

of existing approaches to calculating IFCs. This is the focus of Section 1.

Once the IFCs for the given crystal structure have been determined, they can then be used

to calculate the lattice thermal conductivity. There are multiple techniques for doing so as

well, including Boltzmann transport equation (BTE) based methods or through the used of

Crystal 
Structure

Interatomic 
Force 

Constants

Lattice 
Thermal 

Conductivity

DFPT

CSLD

BTE

LMD

Figure 3.1: Overview of our method for calculating lattice thermal conductivity κL. Given
a crystal structure, the IFCs are first computed. Once IFCs have been found, one of two
methods can be used to calculate κL.
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molecular dynamics. In particular, we have developed an MD package for simulating systems

on a lattice, called lattice molecular dynamics (LMD). Both methods have their strengths

and weaknesses, and are the topic of Section 2.

1 Interatomic Force Constants

The first step involves the calculation of interatomic force constants (IFCs). Several ab

initio methods for studying harmonic phonon properties of solids have been proposed, in-

cluding the frozen phonon approach[13, 29], supercell small displacement method[18, 24] and

density-functional perturbation theory (DFPT)[1]. A systematic approach to anharmonicity,

however, has been more difficult and is the focus of the following sections.

1.1 Density Functional Perturbation Theory

Density functional perturbation theory (DFPT), as the name implies, is a combination of

density functional theory (DFT) and perturbation theory (PT). As discussed briefly in Sec-

tion 1.2, DFT is a very popular technique for calculating ground state properties of electronic

systems. More specifically, DFT provides the formalism for calculating ground state den-

sities and total energies. DFT is known, however, to have issues representing systems in

excited states[28]. Nonetheless, assuming that electrons stay in their ground state, PT can

be applied, resulting in DFPT.

Since it’s inception in the 80’s, DPFT has grown in popularity as a tool for analyzing vibra-

tional and spectroscopic properties of materials, capable of determining phonon frequencies

and dielectric properties[28]. Additionally, it has been implemented in a number of popular

electronic structure programs, such as Quantum Espresso[10], ABINIT[11], VASP[16] and

others.

The theory and specifics of DFPT, however, is beyond the scope of this work. For a detailed

review on the current state of the field, the comprehensive review paper by Baroni et al.[2]
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is a good starting point. What we wish to highlight here is that, while the ‘2n + 1’ theorem

of DFPT can be used to calculate the fourth- and higher-order terms, the computations

are cumbersome and require specialized codes which, to the best of our knowledge, are not

available for n > 1. These issues were the primary motivation for the development of CSLD.

1.2 Compressivley Sensed Lattice Dynamics

Compressively sensed lattice dynamics (CSLD), an alternative to DFPT, is a general and

efficient nonperturbative approach that can accurately describe four-phonon and higher-

order interactions. This approach to building lattice dynamical models can treat compounds

with large, complex unit cells and strong anharmonicity, including those with harmonically

unstable phonon modes, and solves many of the issues that currently plague DFPT. CSLD

can determine anharmonic force constants from nothing more than standard DFT total

energy calculations. Compressive sensing (CS), the basics of which are discussed in Section 5

of Chapter 2, is used to determine which anharmonic terms are important and find their

values simultaneously. CSLD does not require any prior physical intuition about a given

material, making it simple to use even for the most complex crystal structures.

The starting point for CSLD is with the Taylor expansion of the potential energy in powers

of atomic displacements (Equation 2.29). This expansion can be carried out to construct a

series of clusters, differing in number of sites and distance between sites. This enumeration

is illustrated in Figure 3.2. Clusters in which every site is unique are called proper clusters,

while those with one or more repeated site are termed improper clusters. Figure 3.2 illustrates

some of these enumerations for up to 4-body clusters.

To see how CS can help solve the problem of determining the unknown IFCs, we start with

the force-displacement relationship for Equation 2.29,

Fa = −Φa − Φabub − Φabcubuc/2− · · · . (3.1)
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These forces can be calculated directly from first-principles using any general-purpose DFT

code for a set of L atomic configurations in a supercell. This establishes the linear problem

we wish to solve

F = AΦ, (3.2)

where Φ are the unknown IFCs and A is referred to as the sensing matrix, which is con-

structed as

A =


1 u1

b u1
bu

1
c · · ·

1 u2
b u2

bu
2
c · · ·

· · · · · · · · · · · ·

 . (3.3)

The elements in A are products of atomic displacements, ui, which correspond to distinct

terms in Equation 3.1. Different training configurations are labeled by superscript ujb. The

rows in A correspond to a specific force component on a single atom, resulting in a total

number of rows M = 2LNat, where Nat is the number of atoms in the supercell. The columns

in A correspond to N IFC tensor components, which are arranged in vector Φ. Since N far

exceeds M , this makes Equation 3.2 a classically underdetermined problem. Combining

�aua,�aau2
a,�aaau3

a, ...

�abuaub,�aabu
2
aub, ...

�abcuaubuc,�aabcu
2
aubuc, ...

�abcduaubucud, ...

Figure 3.2: Example enumeration of clusters, up to 4-site clusters.
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everything, we get


1 u1

b u1
bu

1
c · · ·

1 u2
b u2

bu
2
c · · ·

· · · · · · · · · · · ·




Φa

Φab

Φabc

· · ·


=


−F 1

a

−F 2
a

· · ·

 . (3.4)

CS solves the underdetermined linear problem of Equation 3.2 by minimizing the `1 norm

of the coefficients

||Φ||1 =
∑
I

|ΦI | (3.5)

while requiring a certain level of accuracy in reproducing the data. The `1 norm converts

this into a solvable convex optimization problem. The final result is

ΦCS = arg minΦ||Φ||1 +
µ

2
||F− AΦ||22 (3.6)

= arg minΦ

∑
I

|ΦI |+
µ

2

∑
ai

(
Fai − Aai,JΦJ

)2

. (3.7)

where the second term is the sum-of-squares `2 norm. The `2 norm is the fitting error for the

training data, which in this case are DFT forces. The `1 norm drives the solution towards

one that is sparse, i.e, towards a solution with very few non-zero components, while the

parameter µ is used to control the relative weights of the `1 and `2 terms. By increasing

the value of µ, the system is driven towards a least-squares-like fitting, resulting in a denser

solution. If µ becomes too large, the results will be prone to overfitting, which is undesirable

because this results in decreased predictive accuracy. Conversely, if µ becomes too small,

the results will be very sparse and underfitted, which is also bad for predictive accuracy.

Therefore, the ideal value of µ lies somewhere in between. The optimal value of µ can be
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determined by monitoring the predictive error on a separate set of training data that is not

used in the fitting. The predictive accuracy of the model is verified against a third set of

data referred to as the ‘prediction set’.

One of the key tenets of CS is that near-perfect signal recovery can be realized by using

sensing matrices A with random entries that are independent and identically distributed

(IID)[5]. Therefore, an important aspect of CSLD is the proper construction of the sensing

matrix A. While the arrangement of the terms making up each entry in A is fixed, based on

the system, we are free to choose the values of the displacements however we wish. Initially,

it might appear appealing to use snapshots from AIMD trajectories, since these represent

physically relevant, low-energy configurations. However, the problem with this approach is

that it leads to configurations containing strong cross correlations between the columns of A.

Put another way, there is high mutual coherence of the sensing matrix[8], which decreases

the efficiency of CS due to the difficulty of separating correlated contributions to F from

different IFC tensors. It is difficult, however, to create a truly IID sensing matrix in CSLD

since the Taylor expansion employs nonorthogonal and unnormalized basis functions of a

continuous variable un.

As a solution to this problem, we combine the physically relevant MD trajectories with

random displacements (on the order of ∼ 0.1 Å) of each atom in well-spaced MD snapshots.

Additionally, to ensure that all terms in the `1 term have the same units of force, Equation 3.1

is scaled by Φ → Φun−1
0 and u → u/u0 where n is the order of the IFC tensor and u0 is a

‘maximum’ displacement chosen to be on the order of the amplitude of thermal vibrations.

This procedure significantly decreases cross-correlations between columns of A and leads to

stable fits.

To evaluate the effectiveness of CSLD, we begin by looking at three materials; silicon (Si),

sodium chloride (NaCl) and tetrahedrite (Cu12Sb4S13). These examples are good choices for

evaluating CSLD for a few reasons. First, they each exhibit different levels of anharmonicity

and thermal conductivities. Additionally, they range in structural complexity from simple
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Figure 3.3: Predictive capability of CSLD. (a) shows predictive error versus the maximum
number of included higher-order terms. With the inclusion of 6-order terms, all three systems
exhibit predictive errors below 10%. (b) demonstrates the predictive error with up to 6-order
terms for tetrahedrite compared directly to DFT-derived forces.

silicon to the complex tetrahedrite with 29 atoms in the primitive cell.

DFT calculations were performed using the Perdew-Becke-Ernzerhof functional[26] and projector-

augmented wave potentials[3] as implemented in the VASP code[16]. For all systems, up to

sixth-order IFC tensors were included, resulting in 712 (Si), 1375 (NaCl) and 3188 (tetra-

hedrite) symmetrically distinct elements. Using CS, Equation 3.7, 258, 199 and 2101 nonzero

IFC tensor elements were found for Si, NaCl and tetrahedrite, respectively. Figure 3.3a illus-

trates that predictive errors decrease with the inclusion of higher-order IFC tensor elements.

Si and NaCl are able to attain force predictions that are > 95% of those calculated directly

via DFT. Figure 3.3b shows the overall accuracy of the model for tetrahedrite over a predic-

tion set from ab initio MD snapshots at 300 K. The root-mean-square error of the predicted

force components is 4%.
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2 Lattice Thermal Conductivity

Lattice thermal conductivity is well understood from a physical and mathematical stand-

point. However, a number of factors have impeded the development of a general-purpose,

computational method for calculating κL. Some of the earliest approaches to calculating κL

involved the use of MD simulations, but were typically hindered by relatively low-quality em-

pirical potentials that were incapable of properly describing the interatomic forces between

atoms. More recently, first principles-based methods involving the solution to the Boltz-

mann transport equation (BTE) for phonons have gained in popularity, but have suffered

from the inherent difficulty in calculating anharmonic IFCs. CSLD largely solves the issue

regarding the calculating (an)harmonic IFCs and, as a result, the BTE approach can now

be used with relative ease. While IFCs can also be used to predict interatomic forces, the

primary requirement of any MD simulation, no publicly available MD codes currently exists

that can directly use such IFCs. To fill this void we have implemented a custom MD code,

lattice molecular dynamics (LMD), that requires no other inputs than the calculated IFCs

for a given lattice.

2.1 Boltzmann Transport Equation

In 1929, Peierls formulated a microscopic description of the lattice thermal conductivity of

semiconductors and insulators, resulting in what has become known as the phonon Boltz-

mann equation (PBE) or the Boltzman transport equation(BTE)[25]. Since then, a method

for an exact iterative solution to the equation has been developed[23], and subsequently

implemented as a freely-available code called ShengBTE[19].

In the presence of a temperature gradient, a heat current is induced. In the linear region,
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this heat current is given as

Jα =
∑
β

καβ
(
∇T
)β
, (3.8)

where J can be caluclated as

J =
∑
λ

∫
fλ~ωλvλ

dq

(2π)3 , (3.9)

and λ is a phonon mode, of branch index p and a wave vector q, ωλ is the angular frequency,

vλ is the group velocity of phonon mode λ and fλ is the phonon distribution function[19].

When a thermal gradient is not present, and the material is in thermal equilibrium, the

phonon distribution f0λ is given according to Bose–Einstein statistics. Upon the introduction

of a thermal gradient, the phonon distribution fλ deviates from the equilibrium f0λ and can

be calculated via the BTE. The two factors affecting the phonon distribution are the diffusion

due to the temperature gradient ∇T and the scattering between phonons. At steady state,

however, the rate of change of the phonon distribution must become zero. Mathematically,

this is represented as

dfλ
dt

=

(
∂fλ
∂t

)
diffusion

+

(
∂fλ
∂t

)
scattering

= 0 (3.10)

where the phonon diffusion is given by

(
∂fλ
∂t

)
diffusion

= −∇T · vλ
∂fλ
∂T

(3.11)

When the temperature gradient ∇T is small, we can write the phonon distribution as[4]

fλ = f0λ + f1λ (3.12)
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Figure 3.4: κL calculated using BTE as implemented in ShengBTE using IFCs calculated
from CLSD, for (a) silicon and (b) sodium chloride.

where f0λ ≡ f0(ωλ), the equilibrium phonon distribution, and f1λ is the non-equilibrium

distribution that produces the thermal current and is given as

f1λ = −Fλ · ∇T
df0λ

dT
(3.13)

Under the assumption that scattering occurs solely via three phonon processes, the linearized

BTE is given as

Fλ = τ 0
λ

(
vλ + ∆λ

)
(3.14)

where τ 0
λ is the relaxation time of mode λ and ∆λ is a function of angular frequency ωλ and

Fλ[19]. As both sides of Equation 3.14 include Fλ, it must be solved iteratively. Finally, κL

can be written in terms of Fλ as

καβL =
1

kBT 2V N

∑
λ

f0λ

(
f0λ + 1

) (
~ωλ

)2
vαλF

β
λ (3.15)

where V is the volume of the unit cell and N is the number of k-points used in the dis-

cretization of the Brillouin zone.
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The only inputs necessary are second and third-order IFCs, calculated via either DFPT or

CSLD. The results shown in Figure 3.4 were calculated using IFCs calculated with CSLD

which were then used in ShengBTE to determine κL across a range of temperatures. In

the case of silicon, Figure 3.4a, extremely good agreement is seen between experimental

values and calculated values, with an average error of ≈ 5%. In the case of sodium chloride,

Figure 3.4b, the agreement is not as good, with an average error of ≈ 40%. The difference

in BTE-calculated κL in Si and NaCl can be explained largely by looking at the difference in

anharmonicity between the two materials. From Figure 3.3a we can see that the predictive

error in Si, with the inclusion of up to third-order IFCs, is less than 5%, while for NaCl the

error is much higher at ≈ 10%. To get the same level of predictive capability in NaCl, it is

necessary to include up to fifth-order IFCs. BTE, however, only includes second and third-

order IFCs. For Si, this is adequate, but in the case of NaCl, BTE is missing the inclusion

of higher-order anharmonicity. The result is that NaCl appears as a more harmonic system

than is really is, resulting in an underestimation of anharmonicitiy, which in turn leads to

an overestimation of κL across the entire temperature range. This behavor is observed in

Figure 3.4b.

The takeaway from these results is that the BTE method is well suited for lightly-anharmonic

systems in which a majority of anharmonic effects are captured by third-order IFCs. For

strongly anharmonic systems, in which fourth-order or higher IFCs are important, a different

method is needed in order to obtain more accurate values of κL.

A final note must also be made regarding systems exhibiting unstable phonon modes, such

as tetrahedrite. The dispersion curves of tetrahedrite are plotted in Figure 3.5 in which the

unstable modes are represented as negative frequencies. In actuality, the unstable modes

are complex values which makes their use in the BTE method impossible. As a result, an

alternative to BTE is also necessary for systems exhibiting unstable modes.
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Figure 3.5: Phonon dispersion curves for tetrahedrite which exhibits unstable phonon modes
(represented as negative frequencies).

2.2 Lattice Molecular Dynamics

Molecular dynamics (MD) is a useful tool for calculating a range of material properties

and observing various physical phenomena, including lattice thermal conductivity. As men-

tioned previously, most MD packages model atomic interactions in one of two ways; (i)

through the use of emprical potentials or (ii) via first-principles. Empirical potentials are

computationally favorable, but tend to result in poor estimations of κL due to their relatively

low-accuracy interatomic force predictions. First-principles approaches, on the other hand,

offer very high-quality interatomic forces, but are prohibitively expensive to use in long-time

MD simulations.

Lattice molecular dynamics (LMD) approaches the problem in a different way. In LMD,

atomic interactions are modeled using the Taylor expansion of lattice energy from Equa-

tion 2.29. Taking the derivative, with respect to displacement, allows the direct calculation
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of forces within the system

Fa = − ∂V
∂ua

= −

Φa +
∑
b

Φabub +
1

2

∑
b,c

Φabubuc + · · ·

 . (3.16)

The only input necessary are the calculated IFCs for a given lattice. This removes the

dependency on empirical potentials, while providing predictive capabilities that are on-par

with DFT, but at a fraction of the computational cost. The IFCs calculated via CSLD can

be used directly to run long-time MD simulations using LMD.

To get an idea of where LMD fits in performance-wise with respect to empirical potential

based LAMMPS and the first-principles DFT package VASP, Table 3.1 shows the average

time taken to perform a single MD time-step for a 512-atom NaCl system. Each value was

obtained by running the various packages in parallel on 8 CPU cores. LAMMPS is on the

order of microseconds, LMD milliseconds and VASP thousands of seconds.

Package Iteration Time (seconds)

LAMMPS 7.12e-4

LMD 1.80e-2

VASP 15798.21

Table 3.1: Average MD iteration time for various software packages. Tests were performed
using 512-atom NaCl system running on 8 CPU cores.

A variety of MD-based methods have been developed for calculating lattice thermal conduc-

tivity. The main advantage of using MD is that the anharmonicity of the system is implicitly

included though the interactions between the constituent atoms of the system. The following

sections discuss the theory behind and application of a range of techniques for calculating

κL via MD, including both equilibrium and non-equilibrium methods.
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2.2.1 Equilibrium MD

A material in thermal equilibrium will have an average temperature that is constant through-

out the entire volume. Fourier’s law of heat conduction, Equation 3.17, also shows that in

the absence of a temperature gradient the heat flux, q, will also be zero.

q = −κ∇T (3.17)

This makes sense intuitively because in the absence of a temperature gradient there is no

driving force for thermal diffusion. However, instantaneous atomic vibrations will lead to a

finite heat flux given by

q(t) =
d

dt

1

V

N∑
i

ri(t)ei(t), (3.18)

where ri and ei are the instantaneous position and energy of particle i, respectively, at time

t and V is the volume of the material. According to Equation 3.18 it is possible to have

a non-zero heat flux even when a material is in thermal equilibrium, leading Equation 3.18

and Equation 3.22 to appear slightly contradictory. This discrepancy can be resolved by

considering that it is the average heat flux that is zero for a material in thermal equilibrium,

namely

〈
q(t)

〉
= 0, (3.19)

and the instantaneous heat flux oscillates about zero.

Green [12] and Kubo [17] developed the formalism for determining transport coefficients from
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long-time correlations of such instantaneous fluctuations. In the case of thermal conductivity,

the relationship is given by

καβ =
1

V kBT 2

∞∫
0

〈
Jα(0)Jβ(t)

〉
dt, (3.20)

where α and β are coordinate directions and J is the heat current which is related to the

heat flux via J = V q. This equation allows one to calculate the lattice thermal conductivity,

κL, from nothing more than the fluctuation of the heat flux of Equation 3.18.

The term
〈
Jα(0)Jβ(t)

〉
is referred to as the heat current autocorrelation function. In many

crystals, the current autocorrelation should decay quickly to zero, however in practice this

is rarely observed in a single simulation. What is typically seen instead is the behavior

illustrated in Figure 3.6a in which the current correlation drops off quickly but then continues

to oscillate about zero. As discussed by Esfarjani[9] the time average in Equation 3.20

assumes that the system in question is ergodic, when in fact such finite simulations rarely

are. The solution to this problem is to average not only over time but also over ensembles.

This leads to a modified form of Equation 3.20

καβ =
1

V kBT 2

1

N

N∑
n

∆tn
τn

τn∑
t=0

τn−t−1∑
u=1

Jα,n(u)Jβ,n(u+ t)

 (3.21)

where N is the number of ensembles, τn is the number of timesteps for a given ensemble

and ∆tn is the timestep. Note that this summation scales as O
(
τn(τn−1)

2

)
, which for large

τn becomes extremely computationally expensive. Appendix B discusses this issue in more

detail and presents a solution for reducing the cost of evaluating this expression.

Figure 3.6a shows the typical behavior for the heat current autocorrelation function resulting

63



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

<
J(

0
) �

 J
(t

) �
>

/<
J(

0
) �

 J
(0

) �
>

MD Time [ps]

Autocorrelation

 0

 0.1

 0.2

 0  10  20  30  40  50

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  50  100  150  200  250  300  350

�
 [

W
/(

m
 K

)]

MD Time [ps]

Integrated Autocorrelation
Autocorrelation

 0

 0.5

 1

 0  10  20  30  40  50

(b)

Figure 3.6: Heat current autocorrelation functions for NaCl simulations at 300K for N = 26
and a supercell of 4 × 4 × 4 (512 atoms). (a) Current correlation for a single MD run. (b)
Ensemble averaged integrated current correlation (blue) and associated error (light blue), in
which the current correlation has been scaled by a constant to fit in the plot (red). Inset
shows behavior of the current autocorrelation over the first 50 ps.

from a single simulation. This particular example is of NaCl at 200 K. The current corre-

lation quickly drops to zero and then continues to oscillate around zero. Figure 3.6b shows

Equation 3.21 plotted with the ensemble averaged current correlations. The current corre-

lation (red line) behaves differently than that in Figure 3.6a due to the ensemble averaging,

dropping off to zero after 40ps (see inset).

The question then becomes, how does one calculate κL from such plots? The integrated

autocorrelation function in Figure 3.6b (blue line) tells us what κL is, however, the value

depends on where one reads the curve. Li[14] suggests two methods for interpreting such

plots. The first is to integrate out to the point at which the current correlation first drops

to zero. The second is to fit to an exponential to the current correlation over some time

range. Using the first drop method, we can see that the current correlation first reaches zero

at 40ps in Figure 3.6b giving a value of 7.68 ± 0.5W m−1 K−1. According to Li[14], little

difference is typically observed in the exponential fitting method.

However, these methods are unsuitable for some materials which do not exhibit a monotonic

exponential decay, such as various silica, germanium and carbon systems[6, 7, 21], which

instead exhibit large initial fluctuations. We have observed similar behavior in Cu12Sb4S13,
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Figure 3.7: Heat current autocorrelation function for tetrahedrite simulations at 150 K for
N = 7 and a supercell of 2× 2× 2 (464 atoms). The current correlation (red line) has been
scaled by a constant to fit in the plot.

an earth-abundant natural mineral tetrahedrite, shown in Figure 3.7. It is clear that neither

proposed methods will work for such behavior.

A more general approach to this problem was suggested by McGaughey[22] in which an

average is taken over a time range from the location where oscillations reach a minimum.

In Figure 3.6b this would be between 50 and 100 ps, giving a value for NaCl of κ = 8.51±
0.82W m−1 K−1, which is within roughly 35% of the experimental value of 5.9W m−1 K−1.

For tetrahedrite this would be between 35 and 55 ps, giving a value of κ = 1.71±0.685W m−1 K−1,

which is within about 60% of the experimental value.

Numerous studies have also been performed to understand the effects that system size has on

results obtained via the GK method. Esfarjani[9] studied Si via the GK method and, while

they did not draw a conclusion on size dependence, they did notice a slight increase of κL

when using larger system size. However, in a similar study of Si by Sellan[27] no discernible

size dependence was observed. Our studies also show a lack of system size-dependence, which

will be discussed in Section 3.2.1.
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Figure 3.8: NEMD simulation setup. (a) The simulation cell is elongated along a particular
axis. (b) Heat baths lead to the development of a temperature gradient across the material.

2.2.2 Non-equilibrium MD

Non-equilibrium MD (NEMD) takes a conceptually simpler approach, compared to EMD,

by drawing on the relationship between heat conduction and temperature gradient as defined

by Fourier’s law

J = −κ∇T, (3.22)

where J is the heat flux. If a system in equilibrium at time t = 0 is then placed in contact

with two heat baths, at temperatures T1 and T2, where T1 > T2, then heat will flow from

one side of the material to the other. Once this rate of heat flow reaches steady state, a

linear temperature profile can be observed between two the heat baths along the length of

the material. By measuring the amount of heat that flows between the two heat baths,

and the resulting temperature gradient, one can use Equation 3.22 to calculate the thermal

conductivity.

In practice, this is often done by elongating the system along a particular axis, for example

the z-axis, and then applying the heat baths at positions z = 0 and z = L as shown in

Figure 3.8a. There are a number of issues that arise from this setup however. The first is

that periodic boundary conditions can no longer be employed in the elongated axis. This
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can give rise to finite size effects and, as a result, one must determine through a series

of simulations at increasing cell lengths what simulation cell size gives converged results.

Another consequence of this is that, typically, very large cell sizes are required, resulting in

increased computational cost. Perhaps the most serious issue with this method, however, is

that the resulting temperature difference between the two ends of the simulation cell often

tends to be quite large. This issue is more significant in low TC materials due to the fact

that the material is unable to efficiently transport heat away from the hot side, resulting in

rather large thermal gradients across the material. As κ is a function of temperature, this

also results in fundamentally different values of thermal conductivity in either end of the

material, which in turn can lead to large uncertainty in the calculated value of κ.

2.2.3 Reverse Non-equilibrium MD

Reverse non-equilibrium MD (RNEMD) was developed to solve some of the issues involved

with NEMD. In particular, RNEMD does away with the need for heat baths while also

allowing periodic boundary conditions to be applied to all axes. The dependency on heat

baths is removed by artificially inducing a heat flux in the material. The setup of the system

is similar to NEMD in which one axis is elongated. The system is then logically divided

into N equal volume ‘slabs’. Slab N is then designated as the ‘hot slab’ and slab N/2 as

the ‘cold slab’. A simple microcanonical (NVE) MD simulation is then carried out. At a

fixed frequency, every ts steps, the velocity of the hottest atom in the cold slab is swapped

with the velocity of the coldest atom in the hot slab. It is this swapping of velocities that

generates the heat flux according to the equation

J =

Nswaps∑
i

1
2
mi(v

2
ih
− v2

ic)

2tA
, (3.23)
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Figure 3.9: (a) Typical RNEMD topology where T1 > T2. (b) Example temperature profile
resulting from an RNEMD simulation. Temperature gradient should be taken away from
the hot and cold bins to ensure better sampling.

where vih and vic are the velocities of the hot and cold atoms, respectively, per swap event, A

is the cross sectional area perpendicular to the elongated axis, t is the total simulation time

and Nswaps is the total number of velocity swap events. The temperature difference between

the hot and cold slabs, ∆T , can then also be measured and combined with the calculated

heat flux to give the thermal conductivity as

κ = −J
(
dT

dz

)−1

(3.24)

where dz is the distance between the hot and cold slabs.

While this method does solve some of the issues present in NEMD, it still suffers from many

of the same drawbacks and in some cases the issues become even more severe. For example,

consider in NEMD two heat baths at temperatures T1 = 325K and T2 = 275K. After

enough time has passed the system will be in steady state and the difference between the

hot and cold sides will be ∆T = T1 − T2 = 50K. In the case of RNEMD, however, we

have no direct control over the temperature of the hot and cold bins. Instead, we can only

control the heat flux by adjusting the velocity swapping rate. For a material with unknown

thermal conductivity, it is impossible to choose a swapping rate that results in a specific
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∆T . This can be problematic, especially in low thermal conductivity materials where heat

cannot be transported away from the hot slab very quickly. In this case, if the swapping

rate is too high, the hot slab will continue to get hotter and hotter, which can ultimately

lead to melting–an obviously undesirable side effect. Even if melting doesn’t occur, it is still

possible to end up with a ∆T that is on the order of hundreds of Kelvin, which can make

determining κL rather tricky. Finally, RNEMD also suffers from the need to use relatively

large simulation cells.

2.2.4 Homogenous Non-equlibrium MD

A major drawback of the (R)NEMD approach is the spatial inhomogeneity resulting from the

temperature gradient. This is undesirable as it leads to a variation in thermal conductivity

throughout the sample. For small temperature gradients this issue is mitigated somewhat,

but still results in some ambiguity as to what the true value is for κL. Homogeneous non-

equilibrium MD (HNEMD) is an attempt to solve this issue by removing the temperature

gradient all together.

HNEMD starts by modifying the equations of motion, such that the force on atom a is given

by

Fa = Fa −
∑
b

Fab

(
rab · Fe

)
+

1

N

∑
b,c

Fbc

(
rbc · Fe

)
, (3.25)

where Fa is the unmodified force calculated from Eq. (3.16) and Fab is the force on atom a

due to b 1. The external field Fe has the effect of driving higher energy (hotter) particles

with the field and lower energy (colder) particles against the field. A Gaussian thermostat is

also employed to remove the heat generated by Fe. Using linear response, the average heat

1Contributions from third- and higher-order interactions to Fab were obtained by partitioning the energy
evenly among all interacting atoms, including repeated sites.
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flux is given by

〈
J(t)

〉
= −βV

t∫
0

ds
〈
J(t− s)⊗ J(0)

〉
· Fe. (3.26)

As Fe → 0 and t → ∞, one recovers the Green-Kubo formula Equation 3.20. For cubic

systems the external field can be set to Fe = (0, 0, Fz), and we get

κL =
V

kBT 2

∞∫
0

dt
〈
Jz(t)Jz(0)

〉
= lim

Fz→0

−
〈
Jz(∞)

〉
TFz

. (3.27)

As this method is rooted in linear response theory, the above equations are only valid within

the linear regime.

The process then involves a series of simulations at varying external fields Fe and constant

T , with a simple linear extrapolation to zero field resulting in the true κL. Figure 3.10a

shows the heat flux for NaCl plotted at different external fields. Each point represents the

average heat flux over a minimum of five simulations. For each point, the associated reduced

κL, κ∗L, is then calculated as

κ∗L =

〈
Jz
〉

TFz
(3.28)

As is the case for GK, multiple ensembles must also be used to sufficiently sample the phase

space. Therefore, Equation 3.28 can be rewritten as

κ∗L =
1

N

N∑
n

〈
Jz
〉
n

TFz
(3.29)

Figure 3.10b shows the extrapolated κL for a sample system of NaCl at 200 K. The fitted

line (red) gives the true κL where Fz = 0, yielding a value of 11.69 W m−1 K−1.

The most difficult part of this method is choosing an appropriate external field Fz, since
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Figure 3.10: HNEMD results for NaCl at 200 K and a supercell of 4×4×4 (512 atoms). (a)
Average heat flux and (b) reduced kappa κ∗L over a range of external fields. Extrapolation
to zero field plotted as red line.

that is the only free variable in Equation 3.28 (not including temperature). The matter is

further complicated by the rather odd units of the field (Å
−1

), which makes it difficult to

apply any physical significance to the chosen value. To gain a better idea of how to choose

Fz, it is instructive to understand how the heat flux behaves with respect to different fields.

When there is no external field, the heat flux will oscillate about zero, giving an average

that is zero. When an external field is applied, the average heat flux will begin to deviate,

as predicted by Equation 3.28. Figure 3.11a shows the running average heat flux, at varying

external fields, for NaCl. As expected, the average increases with increasing field.

What Equation 3.28 doesn’t tell us, however, is how the heat flux distribution will change

with respect to the external field. Figure 3.11b shows the heat flux distribution for a range

of external fields. At modest external fields, the average
〈
Jz
〉

increases, but the distribution

is unaffected. In Figure 3.11b the standard deviations of all curves are within 1% of the

equilibrium value σe.

At larger external fields the story is different. As shown in Figure 3.12a, increasing large

external fields give way to a divergent average heat flux. Additionally, the distribution of the

heat flux begins to increase from σe. This behavior is illustrated in Figure 3.12b. At a field

strength of 4.6e-4 (light blue curve), σ is still equal to σe. However, at the slightly larger
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Figure 3.11: HNEMD results for NaCl at 200 K and a supercell of 4 × 4 × 4 (512 atoms).
(a) Running average of
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Figure 3.12: Behavior of HNEMD simulations when subjected to large external fields. (a)
The heat flux diverges when the external field is too large. (b) The distribution of the heat
flux is no longer equal to the equilibrium value at large fields.

72



 4

 6

 8

 10

 12

 14

 16

 18

 20

 500
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

�
 [

W
/(

m
 K

)]

System Size [atoms]

200K
300K
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dence is observed.

fields of 6.6e-4 and 8.6e-4, the standard deviation increases to 1.4σe and 2.8σe, respectively.

It is important to note that when the system exhibits this behavior it is no longer within the

linear regime, rendering Equation 3.27 invalid. Therefore, caution must be employed when

choosing a value for the external field. As a solution to this problem, Section 1 in Chapter 5

discusses a possible algorithm for automating the choice of Fe.

One of the main advantages of the HNEMD method is that it doesn’t suffer from undesirable

system-size effects. Figure 3.13 shows how the calculated κL for NaCl changes with respect to

system-size. At both temperatures there are no discernible system-size effects. This is a huge

improvement over (R)NEMD methods. The other benefit to this approach is that HNEMD

requires significantly less simulation time than the Green-Kubo EMD method, resulting in

reduced computational cost. Specifics are proivided in Section 3.2.2.

3 Example Systems

In order to evaluate the efficacy and broad applicability of a new method, it is instructive to

study a selection of systems that exhibit a wide range of behavior in the properties that one
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wishes to calculate. Thermal conductivity is a rather tricky property due to the fact that

values differ heavily between systems and across temperatures within systems. Therefore,

one must test systems that exhibit very different κL while also testing each system across a

broad range of temperatures. To this end, we have selected three systems which we believe

highlight the strengths and weaknesses of the this approach to calculating lattice thermal

conductivity. These systems include silicon (Si), sodium chloride (NaCl) and tetrahedrite

(Cu12Sb4S13). Each of these systems posses increasing levels of anharmonicity, resulting in

orders-of-magnitude differences in κL. Additionally, the complexity of the units cell range

from the simple, single species, diamond-cubic structure of silicon, to the 29 atom primitive

cell of tetrahedrite.

3.1 Si

Silicon is a relatively low anharmonicity system with only two atoms in the primitive cell.

It is a well studied system, both experimentally and computationally, with previous studies

showing excellent agreement between calculated and experimental values for κL. Therefore,

silicon can be seen as a sort of ‘litmus test’.

Force constants for Si were calculated using CSLD. We included pair and up to 6-th order

IFC tensors, giving a total of 712 symmetry-distinct elements and 258 non-zero elements

from compressive sensing. Lattice thermal conductivity was calculated using the ShengBTE

package, including pair and third order IFCs. The results are plotted in Figure 3.14 and

show great agreement across the entire temperature range tested.

74



 0

 100

 200

 300

 400

 500

 600

 700

 200  300  400  500  600  700  800

T
h
er

m
al

 C
on

d
u
ct

iv
it
y 

[W
/(

m
 K

)]

Temperature [K]

Glassbrenner and Slack (1964)
Current Study

Figure 3.14: Lattice thermal conductivity versus temperature for silicon. Calculated values
were obtained using CSLD and BTE.

3.2 NaCl

Sodium chloride is a relatively high anharmonicity system and a good test system because

there is a plethora of experimental data on it’s thermal conductivity. It is a simple enough

system that a ‘robust’ method should be able to calculate κL relatively easily, yet this

is something that, as mentioned in Section 1.1.1 of Chapter 2, even specialized empirical

potentials fail to accomplish. Additionally, Figure 3.4b highlights how BTE overestimates

κL across the entire temperature range tested. Since the BTE approach only includes up

to third-order IFCs, it is likely that the omission of higher-order interactions leads to an

underestimation of the anharmonicity in NaCl. The results shown in Figure 3.3a further

reinforce this, as predictive error is quite large (∼ 20%) when only pair and thee-body terms

are included. Therefore, we used CSLD to include higher-order ICFs and LMD to calculate

κL for NaCl.

Force constants for NaCl were calculated using CSLD. We included pair and up to 6-th order

IFC tensors, giving a total of 1375 symmetry-distinct elements and 199 non-zero elements

from compressive sensing. Figure 3.15a shows the distribution of IFCs calculated via CSLD.
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Figure 3.15: Results for NaCl. (a) Distribution of IFCs calculated via CSLD. (b) Thermal
conductivity versus temperature calculated using CSLD, LMD and the HNEMD method.

A majority of IFCs belong to 2- and 3-body clusters, with a few higher-order terms. To

calculate lattice thermal conductivity, LMD simulations were performed for NaCl between

100 and 300 K.

3.2.1 Equilibrium MD

LMD was used to run a series of equilibrium (NVE) simulations, which were subsequently

analyzed using the Green-Kubo method (Equation 3.21) to determine κL. For the 4× 4× 4

system, 50 ensembles were used, while for other system sizes a minimum of 25 ensembles

were used. All simulations were run for 500 ps with 1 fs timesteps. The results are shown

in Table 3.2. While there is moderate variation between κL and system size, there is no

discernible pattern, and in general all values of κL are in good agreement with experimental

values.

One of the major drawbacks to this approach, however, is that a large amount of simulation

time is needed to get the converged results shown in Table 3.2. In the case of the 4× 4× 4

system, a total of 25 nanoseconds worth of simulation time was required. Even for the

highly-optimized LMD package, this represents a significant amount of computation time.

Additionally, as discussed in Section 2.2.1, there are a number of different ways to interpret
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Temperature Simulation Size κFD
L κAvg

L κExp
L

150 K

4× 4× 4 17.09± 1.21 17.54± 1.68

15.676× 6× 6 14.71± 1.22 14.47± 2.13

8× 8× 8 13.43± 0.62 15.16± 1.53

300 K

4× 4× 4 7.68± 0.50 6.86± 0.73

5.856× 6× 6 6.06± 0.32 5.47± 0.79

8× 8× 8 6.80± 0.30 6.46± 0.68

Table 3.2: Thermal conductivity for NaCl from GK simulations and experimental values. All
κL values are in units of W/(m K). κFD

L values were calculated using the first-drop method
while the κAvg

L values were calculated by averaging over the stable section of the integrated
correlation function (see Section 2.2.1 for description of different methods).

the results of Equation 3.21. The results in Table 3.2 were determined using two methods;

(i) first-drop (FD) method and (ii) the averaging method. For the most part, the values

calculated using the averaging method are better than those calculated using the FD method.

The fact that one must choose how to interpret the results, however, leaves a little to be

desired.

3.2.2 HNEMD

To calculate κL via the HNEMD method, at least four different values for Fz (Equation 3.29)

were used at a given T with a minimum of five ensembles, with system sizes ranging from

512 to 4096 atoms. The lengths of the simulations ranged from 100 ps to 1 ns and all

used a timestep of 1 fs. The results obtained are shown for NaCl in Figure 3.15b. Very

good agreement is seen between the calculated and experimental values across the entire

temperature range tested. Figure 3.13 and Table 3.3 compare κL calculated across a range

of system sizes and temperatures. No discernible system-size dependence is seen at the

temperatures tested.

The HNEMD method also addresses the two main issues present in the Green-Kubo method.
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Temperature Simulation Size κHNEMD
L κExp

L

200 K

4× 4× 4 11.69± 2.51

11.296× 6× 6 12.32± 2.43

8× 8× 8 11.29± 3.94

300 K

4× 4× 4 6.39± 1.33

5.856× 6× 6 7.41± 1.58

8× 8× 8 7.27± 0.64

Table 3.3: Thermal conductivity for NaCl from HNEMD simulations and experimental val-
ues. All κL values are in units of W/(m K).

The first is that less total simulation time is needed. The 4× 4× 4 results here were calcu-

lated in roughly half the simulation time needed for the Green-Kubo method. Additionally,

Equation 3.29 can be used directly to calculate κL. This results in the HNEMD method

requiring absolutely no emotional involvement. This is a huge advantage because (i) it lends

itself to use in a fully-automated manner and (ii) results in a consistent, repeatable process

that does not require any subjective interpretation of the data.

3.3 Cu12Sb4S13

The final material is Cu12Sb4S13, a parent compound for the earth-abundant natural mineral

tetrahedrite, which was recently shown to be a high-performance thermoelectric[20]. An

interesting property of this material is that it exhibits an extremely low κL, experimentally

found to be . 1 W/(m K) in phase and compositionally pure samples[20]. Additionally,

previous studies found several harmonically unstable phonon modes, pointing to very strong

anharmonicity. Cu12Sb4S13 has body-centered cubic (space group I 4̄3m) structure with

29 atoms in the primitive cell, a large number that complicates the computation of FCTs

using existing methods. For example, there are 188 distinct atomic pairs within a radius of

a = 10.4 Å, 116 triplets within a/2, etc. Taking into account the 3n elements of each tensor,

the number of unknown coefficients is very large (55584 in our setting including up to 6th-
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Figure 3.16: CSLD and LMD results for tetrahedrite. (a) Relative energy per formula unit
of an unstable optical mode involving out-of-plane displacements of trigonally coordinated
copper atoms (blue) bonded to sulfur (yellow sphere). DFT and CSLD are shown as solid and
dashed lines, respectively. (b) Calculated κL for tetrahedrite across a range of temperatures.
Experimental results from Lu et al. [20].

order terms). After symmetrization, this is reduced to N = 3188, which still represents a

formidable numerical challenge.

A large number of non-zero FCT elements (2101) were obtained by CSLD. Figure 3.3b shows

the overall accuracy of the model over a prediction set from ab initio MD snapshots at 300

K. The root-mean-square error of the predicted force components is 0.02 eV/Å, or 4%.

Figure 3.16a shows the DFT potential energy surface (solid line) along an unstable Γ point

mode involving displacement of trigonally coordinated Cu atoms (inset). The double-well

behavior points to strong 4th-order anharmonicity. Our CSLD model (dashed line) is able

to reproduce the potential energy to an absolute accuracy of 2 meV per atom.

The HNEMD method was used to calculate κL of Cu12Sb4S13, employing the same approach

as described for NaCl above. All simulations were done with a supercell of 464 atoms

and a minimum of 4 separate external fields at each temperature. The HNEMD results

are compared with the experimental κL from Lu et al. [20] with electronic contributions

subtracted in Figure 3.16b. Once again, very good agreement is seen across the entire

temperature range tested. This example shows that CSLD, coupled with LMD, extends the
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accuracy of DFT to treat lattice dynamics of compounds with large, complex unit cells and

strong anharmonic effects previously beyond the reach of non-empirical studies.
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CHAPTER 4

Performance

The most computationally expensive portion of any MD code is the calculation of interatomic

forces. Just how expensive this is depends on how complicated Equation 2.3 actually is. As

discussed in Section 2.2 of Chapter 3, this can range rather wildly. In this chapter, we focus

on the particular case of optimizing Equation 2.28 and Equation 2.30 within the context of

LMD.

Ultimately, the goal of this work is to devise an efficient method for solving the crystal po-

tential so that it can be used as the Hamiltonian in a classical MD program. The solution

should make it possible to simulate thousands of atoms on nanosecond timescales with run-

times on the order of hours, not days. Additionally, we look to exploit the massively parallel

nature of GPU devices in an effort to get more performance per dollar, while also increasing

performance per Watt.

1 Strategies & Hardware

When it comes to increasing the performance of a computationally expensive problem, there

are two primary techniques that can be employed; (i) do work more efficiently and (ii) do

more work simultaneously. The first technique is rather nebulous as it involves tuning an

algorithm to be more efficient, and there are many ways to accomplish this. One way to

make an algorithm more efficient is by reducing the number of floating point (mathematical)

operations required to calculate the desired result. A trite example of this is the distributive

property, which can be used to reduce the number of operations in the following example
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(5× 3) + (5× 2) + (5× 4) = 45 (4.1)

5× (3 + 2 + 4) = 45 (4.2)

in which Equation 4.1 requires five operations while Equation 4.2 only requires three, but

both produce identical results. Real problems will, of course, typically be far more compli-

cated, but identifying ways like this to reduce the number of floating point operations can

often yield significant performance improvements.

Another approach to increasing efficiency is through redesigning the algorithm such that

the hardware is used more effectively. This can also be difficult to achieve, especially in a

cross-platform manner, as hardware differences can range tremendously. Nonetheless, one

of the most effective methods for increasing the performance of an algorithm, on current

hardware, is by designing for memory locality. This is best understood by taking a brief

detour to discuss the basic hardware layout and memory hierarchy of modern computers.

A modern computer can be boiled down to essentially three main components; (i) the pro-

cessor (CPU), (ii) memory (RAM) and (iii) the hard drive (HDD). The CPU does all of

the work that we request of the computer, the RAM holds temporary information needed

by programs that are running and the HDD stores long term data that persists indefinitely.

When a program is launched, the CPU loads the program from the HDD into RAM and

begins executing it. When the program requests a piece of data it has to flow through the

following stages of memory (these numbers are rough estimates based on current hardware)

1. HDD: > 1000 cycles

2. RAM: 100 cycles

3. Cache

(a) Level 3 (L3): 50 cycles
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(b) Level 2 (L2): 10 cycles

(c) Level 1 (L1): 5 cycles

4. Processor registers - 1 cycle

The number of ‘cycles’ refers to how many CPU cycles the CPU must wait for that memory

operation to be complete, and the number of cycles a CPU can perform per second depends

on the clock speed of a given CPU. Each level of caching also involves a reduction in storage

capacity, with RAM on the order of gigabytes while caches (L1, L2, etc) are usually only a

few megabytes or less. Without getting too caught up in the details, the closer the memory is

to the processor registers, the faster it can be loaded, because the CPU doesn’t have to wait

as long for the data to be loaded. When memory is requested that is not in the cache–called

a cache miss–the CPU must wait until the data is loaded. Forcing the CPU to wait while

data is loaded is a large bottleneck that should be avoided for high-performance algorithms.

Caching mechanisms are typically quite simple. When data is requested, rather than just

loading the desired value the CPU will load the desired value in addition to a block of data

that is in the same region of memory. This whole block of data is then cached. Therefore,

optimizing the algorithm to operate on data that is stored close together will result in a

decreased number of cache misses, thereby increasing the performance of the algorithm.

The other way to increase performance is by doing more than one thing simultaneously, or

in parallel. Most CPUs today contain at least two cores–each core can perform its own work

independent of the others–while high-end CPUs can contain ten or more cores. Additionally,

mutiple computers can be networked together to create a pool of thousands of cores. There

are a variety of software libraries available to make developing such parallel applications

easier. In general, these parallelization techniques can be broken down into two categories;

(i) shared-memory and (ii) distributed-memory.

The shared-memory approach involves the use of so-called threads, each of which is capable of

running independent operations. All threads belonging to a single process, however, are able
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Figure 4.1: Basic parallelization techniques (a) shared-memory and (b) distributed-memory.
Combining the two techniques (c) is also possible.

to access the same memory space–if one thread changes a variable in memory, all threads will

able to see the modified variable instantly. This is convenient because memory doesn’t need

to be kept in sync, but it must be accessed carefully to avoid two or more threads writing to

the same memory location at the same time–an occurrence known as a ‘race condition’. This

sort of behavior is undesirable and caution must be used to avoid such conflicts. ‘OpenMP’ is

one example of a very popular shared-memory parallelization library. Figure 4.1a illustrates

the basic layout of a shared-memory application, in which T independent threads belong to

a single process and share the same memory space.

Distributed-memory applications differ quite substantially from shared-memory ones. In-
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should be employed.

stead of a single process containing multiple threads, a distributed-memory application will

contain a group of multiple processes, each with their own (private) memory space. Like

threads, each process can do its own work independent of the others, but in order to share

memory from one process to another the memory must be explicitly copied between pro-

cesses. ‘MPI’ is one of the most widely used methods for distributed-memory applications.

Figure 4.1b illustrates the basic layout of a distributed-memory application, where P inde-

pendent processes contain their own private memory space.

Distributed-memory applications have the added benefit of being able to run across multiple,

physically distinct computers whereas shared-memory applications are limited to the number

of CPU cores on a single computer. However, the two techniques can also be combined as

illustrated in Figure 4.1c. In this mode of operation, processes running on physically distinct

machines must communicate to each other through the use of a common connection, or bus.

This bus can be a common network connection, or a specialized high-speed link, such as

InfiniBand. The faster the interconnect, the quicker data can be shared between processes.

Recently, there has been growing interest in utilizing the massive computing capability
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present in graphics processing units (GPU). Optimizing an algorithm for a GPU is quite

different than the approaches just listed for the CPU-based parallelization techniques. To

understand why, it is important to understand the basics of how a GPU works. Figure 4.2

depicts a typical GPU-based setup. In this setup, the host is where the program runs and

where the main application memory resides–this includes the CPU and RAM. The device

is the GPU and internally it is very different from a CPU. As mentioned, a CPU typically

contains any where from two up to about 10 cores while a GPU can contain thousands of

cores, which we’ll refer to as threads. However, the threads on a GPU are very different from

the cores on a CPU. The CPU cores run at much higher frequencies (meaning they can do

more work per unit time) and each core contains all the hardware necessary for processing

numerical and logic operations. The GPU threads, however, are grouped into blocks, where

each block only has a single logic unit. The logic unit can only process one thread at a time

which means that if two threads in a block try to do a different operation, one thread will

have to wait for the other to finish. Therefore, in order to obtain maximum utilization on a

GPU, it is necessary to have each thread doing the same operation (or ‘instruction’) but on

different data. This technique is referred to as same-instruction multiple-data (SIMD) and

is the key to unlocking the full performance of GPUs.

2 Notation

Before diving in, it is necessary first to define the problem and the associated notation that

will be used to describe the various solutions. Much of the notation used throughout the

remainder of this section relies on familiarity with sets and lists. A brief primer is provided

in Appendix C.

Ultimately, the goal is to devise an efficient method for solving Equation 2.29 and Equa-

tion 2.30 for a system of N atoms. In an MD simulation we are concerned primarily with

the interactions between atoms, and we do so by keeping track of various properties such as
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displacements, forces and energies. For a system with N atoms, we will need to keep track

of N energies, but for displacements and forces we need to keep track of three values per

atom (for the x-, y-, and z-components). Therefore, atomic displacements are stored as an

array of 3N elements. To make accessing values in a 3N array easier, we define an indexing

function, Ω, that maps the displacement of atom a in direction α to a single value as

Ω(a, α) = 3a+ α = ω3a+α (4.3)

where α is one of the three Cartesian axes (x = 0, y = 1, z = 2) and 0 ≤ ωi < 3N .

Under this notation, a given displacement-index, ωi, corresponds to atom a = floor(ωi/3)

and direction α = ω mod (3), with the value of a certain displacement given by u[ωi], where

u is a list of displacements of length 3N . For convenience, ωi will sometimes be referred to

as an ‘atom-direction’.

We then also define a function that returns an atom-number given an atom-direction, Γ (ωi),

as

Γ (ωi) =

⌊
ωi
3

⌋
(4.4)

Additionally, given a set (or list) of atom-directions as an input, this function returns a set

(or list) of atom-numbers. More specifically

Γ

({
ωi, ωj

})
=

{
Γ (ωi) ,Γ

(
ωj

)}
(4.5)

Γ
([
ωi, ωi

])
=
[
Γ (ωi) ,Γ (ωi)

]
(4.6)
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The next step is to expand the first few terms of Equation 2.29, which gives

V = Φ0x0xu0xu0x + Φ0x0yu0xu0y + Φ0x0zu0xu0z + ... (4.7)

which can more compactly be written as

V = v0 + v1 + v2 + ...+ vT−1 where, (4.8)

v0 = Φ0x0xu0xu0x , v1 = Φ0x0yu0xu0y , ... (4.9)

We then define the list v as the collection of all vi

v =
[
v0, v1, ..., vT−1

]
(4.10)

where the number of items in v is |v| = T . Note that we define this as a list and not a set

because the values vi are not guaranteed to be unique.

Next, we define the set of distinct, non-zero force constants, Φ, for a given system as

Φ =
(
Φ0,Φ1, ...,ΦP−1

)
(4.11)

where the total number of distinct, non-zero force constants is given by |Φ| = P , and in

general 0 < P ≤ T . We also define the function φ (i) that maps from an index i in the range

0 ≤ i < T to the unique force constant in Φ. Equation 4.9 can now be rewritten as
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v0 = φ (0)u[ω0]u[ω0], v1 = φ (1)u[ω0]u[ω1], ... (4.12)

With this notation it is now possible to convert the terms in Equation 4.10 and Equation 4.12

into a series of lists consisting of unique indexing values needed to calculate a specific product

Equation 4.10

v0 = [ω0, ω0], v1 = [ω0, ω1], ... (4.13)

where 0 ≤ ωi < 3N . Note that vi is defined as list and not a set because improper clusters

will contain duplicate ωi. Also, the number of sites in cluster i is given by |vi|. For a given i

in the range 0 ≤ i < T , vi can be used to directly calculate the corresponding value of vi as

vi = φ (i)

|vi|−1∏
j=0

u
[
vi[j]

]
(4.14)

and the distinct set of all vi is

V =
(
v0,v1, ...,vT−1

)
(4.15)

Sometimes it will be necessary to know how many times a specific atom, a, or atom-direction,

aα, appears in a list of atom-directions s. The two forms are defined as
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Λ
(
s, a
)

= count a in Γ (s) (4.16)

Λ
(
s, a, α

)
= count Ω

(
a, α
)

in s (4.17)

(4.18)

The following examples illustrate the behavior in more detail

s =
[
0, 3
]

Λ
(
s, 0
)
→ 1

Λ
(
s, 2
)
→ 0

Λ
(
s, 0, 0

)
→ 1

Λ
(
s, 0, 1

)
→ 0

Finally, we will represent the total number of atoms in the system as N , where a given atom

a is in the range 0 ≤ a < N . We can then define all of the atoms as a set of integers, N, as

N =
{
a : a ∈ Z ∧ 0 ≤ a < N

}
(4.19)

where Z is the set of all integers.
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3 Implementations

Previously, a variety of different techniques and hardware that can be used to increase the

performance of a demanding computational problem was discussed. The following sections

cover different approaches taken in optimizing the force-energy problem in LMD.

3.1 Atom Decomposition

Perhaps the simplest form of parallelization in classical MD codes is the so-called ‘atom

decomposition’ (AD) method [1]. This method is a type of “divide and conquer” approach,

as it involves dividing the system into smaller groups, each of which can be processed in-

dependently. Since each group is independent, all groups can be worked on simultaneously.

For a system of N atoms divided into G groups, each group g, in the range 0 ≤ g < G, is

tasked with calculating the forces and energies of N/G atoms. Parallelization is achieved

when G > 1 and the maximum amount of parallelization possible is reached when G = N .

The first step requires partitioning the atoms in the system into groups. There are actually

many ways to go about doing this. In a non-heterogeneous environment, for example, it

may be beneficial for certain groups to contain more atoms than others due to differences

in computing power. Additionally, when N is not perfectly divisible by G, some groups will

contain fewer atoms than others. For simplicity, however, we will consider the case where

N is perfectly divisible by G, such that every group has exactly N/G atoms for which it is

responsible. We can then define the groups as subsets of all atoms, a ∈ N, where each group

g is defined as a set of atoms Ng

Ng =
{
P
(
a, g
)

: a ∈ N
}

where, (4.20)

P
(
a, g
)

= a mod

(
N

G

)
+ g

(
N

G

)
(4.21)
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and

N0 ∪ N1 ∪ ... ∪ NG−1 = N (4.22)

The terms in Equation 4.15 can then be partitioned into these groups as well, denoted as

Vg, where

Vg =
{
vi : 0 ≤ i < T ∧ Γ (vi) ∩ Ng 6= ∅

}
(4.23)

Each set Vg will contain at most T elements, but in practice |Vg| < T .

The potential energy of a given atom a in group g, can then be calculated as

V g
a =

|Vg |−1∑
i=0

Λ
(
Vg
i , a
)

|Vg
i |

φg (i)

|Vgi |−1∏
j=0

u
[
Vg
i [j]
]

(4.24)

where Vg
i = Vg[i] and φg maps to the correct force constant in Φ. If atom a does not appear

in the list Vg
i then Λ = 0. Otherwise, for proper clusters, Λ = 1, which will result in the

potential energy being partitioned evenly to all sites. In the case of an improper cluster,

Λ > 1 and the fraction Λ/|Vg
i | will ensure that the energy is partitioned correctly.

Finally, we must derive an expression for the force. To do so, we start with Equation 2.30.

The result is actually quite similar to Equation 4.24, with the exception that we must divide

the cluster energy by the atom’s displacement and we do not want to partition the energy.

Additionally, to calculate the force on atom a in direction α, we need to filter the terms in

Vg such that only those that contain atom-direction ωi = Ω
(
a, α
)

are included.
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F g
aα = − 1

u
[
Ω
(
a, α
)] |Vg |−1∑

i=0

Λ
(
Vg
i , a, α

)
φg(i)

|Vgi |−1∏
j=0

u
[
Vg
i [j]
]

(4.25)

This method is ideally suited for use with MPI because each process can be assigned a single

group g. Additionally, the sums in Equation 4.24 and Equation 4.25 can all, with a little

work, be done in parallel as well, lending themselves to parallelization with OpenMP. This

MPI-OpenMP approach has been implemented in LMD and the results are discussed later

in Section 4.

3.1.1 Decomposed Forces

For thermal conductivity calculations utilizing the Green-Kubo or HNEMD method, it is

necessary to calculate the so-called decomposed force, or Fab, which is the force on atom a

due to atom b. Mathematically, it is given by

Fab = − ∂eb
∂ua

(4.26)

In simulations, this is stored as a list with 3N2 elements1, because it is really the force on

atom a in direction α due to atom b, Faα,b. In order to calculate this value, we must modify

Equation 4.25.

F g
aα,b

= − 1

u
[
Ω
(
a, α
)] |Vg |−1∑

i=0

Λ
(
Vg
i , b
)

|Vg
i |

φg(i)

|Vgi |−1∏
j=0

u
[
Vg
i [j]
]

(4.27)

Additionally, |Vg [i] | has reappeared in the denominator because the energy needs to be

partitioned evenly among sites.

Finally, the total force on atom a in direction α can be calculated directly from the decom-

1There are ways around this, as will be discussed later
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posed forces as

Faα =
N−1∑
i=0

Faα,i (4.28)

3.2 Potential Decomposition

The task-parallel approach of the atom-decomposition method is well suited for the MPI/OpenMP

models of parallelization, however, this approach does not translate well to the GPU. The

reason for this is due primarily to the hardware design of current GPUs. As discussed pre-

viously in Section 1, GPUs are designed for crunching numbers. Excessive branching and

constant memory requests can lead to tremendous performance penalties, which is why many

CPU-based algorithms do not translate directly to GPUs. Another reason that typical al-

gorithms do not directly translate to a GPU is because they are not parallel enough. In

the case of the AD method, the maximum level of parallelization is equal to the number of

atoms. A system with hundreds of atoms would be unable to meet the level of parallelization

possible on current GPU hardware2.

A common technique used to exploit the massively-parallel capabilities of a GPU is to convert

the problem from one that is task-parallel to one that is data-parallel. In a data-parallel

environment, parallelism in the data must be exploited, which can sometimes be difficult to

identify. In the case of the force-energy problem in LMD, this is best done by breaking the

problem down into smaller chunks. In each ‘chunk’ the goal is to decrease the complexity

(same instruction) while simultaneously increasing the parallelism (multiple data)–this is

how to achieve SIMD. The result is a two-stage process for solving the force-energy problem

in LMD, where each step is completed sequentially but each step is as SIMD as possible.

Since this data-parallel approach involves decomposing the potential into smaller, bite-size

chunks, this method is referred to as potential decomposition (PD).

2Current high-end GPUs contain thousands of threads.
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In the first step, the individual elements of Equation 4.8 are calculated. This involves each

thread performing a single product as shown in Equation 4.14, with threads ranging from

0 ≤ i < T . The total number of energy terms is T , therefore this stage is parallel up to T .

SIMD is achieved in this stage because, in general T � N , which increases parallelism, and

the operations (instructions) are all the same. Ignoring individual forces and energies, the

total potential energy can simply be calculated as as sum over Equation 4.10

V =

|v|−1∑
i=0

v[i] (4.29)

However, per-atom forces are necessary for MD, therefore we need a second step. To make

this second step as simple as possible, we need to construct a list that holds the terms

Equation 4.10 for a given atom-direction, like so

vaα =
{
vi : vi ∈ v ∧ Λ

(
vi, a, α

)
≥ 1
}

(4.30)

In words we can say that vaα contains all of the products in Equation 4.10 for which the

displacement of atom a in direction α contributes at least once. The equation for calculating

the force on atom a in direction α then becomes

Faα = − 1

u
[
Ω(a, α)

] |vaα |−1∑
i=0

Λ
(
vaα , a

)
vaα [i] (4.31)

which is simply a sum of the terms in vaα , with Λ adding adding a multiplicity. Since this

step requires the terms in vaα , the two two steps must be done sequentially.

Without doing anything fancy, this step is 3N parallel. However, in practice it is quite easy

to parallelize over the summation in Equation 4.31 and then do a quick parallel reduction

to get the final value of the force. This increases the parallelization to 3NW , where W
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is a device-dependent parameter that typically yields optimal performance when chosen

somewhere between 32 and 256.

The whole process is illustrated in Figure 4.3 and can be summarized thusly. Stage 1 involves

calculating all of the products in Equation 4.7 by evaluating Equation 4.14 and storing the

results into the list v (Equation 4.10). All T products can be worked on by independent

work items, giving this stage a huge level of parallelization. Once the products have been

calculated, we move to Stage 2. In Stage 2, the problem is divided into N groups, which

are then subdivided into 3 groups of W work items. Each group of W work items computes

the sum of Equation 4.31, for a given atom a and direction α, operating on only a subset of

the total items in vaα . The partial sums are then reduced to a final value for Faα . This final

reduction takes a total of log2(W ) operations to complete. As the parallelization relating to

W is essentially an “unrolling” of the summation in Equation 4.31, it follows that W < |vaα|.

3.2.1 Decomposed Forces

To calculate Fab we must define a few new subsets. First, we must define the subset of v

(Equation 4.10) that contains terms contributing to a given Faα,b. This involves including

terms that (i) contain at least one contribution from the displacement of atom a in direction

α and (ii) have a contribution from the displacement of atom b in any direction. To satisfy

(i), we need to identify all vi in V containing at least one occurrence of index ωaα = Ω(a, α).

The following set contains all indicies i corresponding to elements, vi, in V that contain ωaα

A =
(
i : 0 ≤ i < T ∧ Λ

(
vi, a, α

)
≥ 1
)

(4.32)

To satisfy (ii), we identify all vi in V containing at least one contribution from atom b. The

following set contains the indicies containing clusters with atom b

B =
(
i : 0 ≤ i < T ∧ Λ

(
vi, b

)
≥ 1
)

(4.33)
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Figure 4.3: Overview of the potential decomposition method. Stage 1 involves calculating
every product in the potential. Once complete, Stage 2 involves calculating the per-atom
forces and energies. To increase parallelization, each work group can be increased to include
W work items. When W > 1, a final reduction step is needed to calculate the final values.
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The intersection of these two sets, Iaα,b, gives the indicies needed to calculate Faα,b

Iaα,b = A ∩ B (4.34)

Now we have everything necessary to calculate Faα,b

Faα,b = − 1

u
[
Ω
(
a, α
)] Iaα,b∑

i

Λ
(
V [i] , b

)
|V [i] | v [i] (4.35)

The potential energy can also be calculated easily

Vaα,b =

Iaα,b∑
i

Λ
(
V [i] , b

)
|V [i] | v [i] (4.36)

To implement this, each work group calculates a single force component as illustrated in

Figure 4.3. Work items within a single group compute the sum shown in Equation 4.35.

Once all values of Faα,b, for a fixed aα, have been computed in a single work group, the final

force, Faα , is computed using Equation 4.28. The total potential energy of atom a is then

calculated as

Va =
2∑

α=0

N−1∑
b=0

Vaα,b (4.37)

A final comment must be made regarding the memory requirements of Fab. The straightfor-

ward way to store these values is by allocating 3N2 memory locations. With this approach,

however, systems with more than a few thousand atoms begin to require vast amounts of

memory–pushing what is available on all but the highest-end GPUs. Fortunately, we can

take advantage of the fact that Fab is generally quite sparse, even for systems with complex

unit cells. This property makes it possible to use a compressed representation of Fab. To

make accessing accessing elements of Fab relatively easy, we have employed a fixed-width,

compressed Fab that only requires 3NM memory locations, where M < N .
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Figure 4.4: Visual representation of Fab, where (a) is the full (uncompressed) matrix with
N columns and (b) the compressed form with M columns, where M ≤ N .

Figure 4.4a demonstrates the matrix-like layout of the uncompressed Fab, for a fictitious

system where the colored squares indicate non-zero values. M is computed as the number

of non-zero columns in the row with the maximum number of non-zero columns. This is not

the most memory efficient storage method due to the fact that rows shorter than M will be

zero-padded to length M . The advantage to this design, however, is that rows can easily be

accessed in a random manner.

4 Results

The AD methods was implemented using MPI as the method of parallelization. All per-

formance data for the AD method was collected by running across multiple threads (CPU

cores) as well as physical nodes (multiple CPUs). Two versions of the PD algorithm were

implemented; one as a CPU-only version that was parallelized using OpenMP, the other as

a GPU-only implementation parallelized with OpenCL.

Figure 4.5 shows how well the two different CPU-based implementations scale with the

level of parallelization. The AD method sees near perfect, one-to-one scaling, while the PD
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Figure 4.5: Speedup of the two CPU-based implementations. The AD method achieves
near perfect, one-to-one speedup, while the PD method does not.
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Figure 4.6: Relative speed of the three implementations on a 1440 atom NaCl system. The
GPU-based PD on a single GPU outperforms both CPU-based methods. The GPU used
was an NVIDIA Tesla C2050 and the CPU was a 4-core Intel Xeon E5520 (2.27GHz).

method does not. The deviation of the PD from the ideal behavior is likely due to the fact

that the two stages scale differently. Figure 4.6, however, illustrates just how much more

efficient the PD method is compared to the AD method. On a single CPU (4 cores), the CPU-

based PD implementation is nearly 10 times faster than the CPU-based AD implementation,

while the GPU-based PD implementation is just over 8 times faster than the CPU-based

PD. Assuming linear scaling, extrapolating the CPU-based implementation in Figure 4.6,

36 cores (9 CPUs) for the CPU-based PD implementation and 313 cores (79 CPUs) for the

CPU-base AD method would be required to match the performance of the single GPU-based

PD implementation.
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Figure 4.7: Performance of the PD on a variety of CPUs and GPUs for a 1440 atom NaCl
system. All GPUs tested outperformed the CPUs by a large margin.
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Figure 4.8: Performance per dollar for a 1440 atom NaCl system. Pricing data for each
device based on current retail price retrieved from the internet.
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Figure 4.9: Performance per Watt for a 1440 atom NaCl system. All power ratings are
based off manufacturers maximum listed TDP.

We tested the performance of the PD method on a variety of other CPUs and GPUs as well.

The results are shown in Figure 4.7. Once again both GPUs outperformed all CPUs tested.

The Tesla C2050 outperformed the best CPU by a factor of more than 4. Additionally, the

performance per dollar is shown in Figure 4.8. The consumer-level, gaming GPU is the big

winner here, beating out the best CPU by a factor of more than 8. It is also important

to note that we only use the price of the CPU, which does not include the cost of the

memory, whereas the cost of the GPU does include memory. Factoring in the cost of current

generation DDR3 memory, for example, would further increase the separation between the

CPU and GPU results here. Finally, Figure 4.9 highlights the performance per Watt. The

GPU gains here are less significant over the CPU, with the best GPU coming in just under

2 times that of the best CPU.
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CHAPTER 5

Future Work

1 Automatic HNEMD

The key parameter in the HNEMD method is the external field, Fe that is applied to the

system. As mentioned in Section 2.2.4, this field has the effect of driving higher energy

(hotter) particles with the field and lower energy (colder) particles against it. This in turn

results in a non-zero average heat flux. For small external fields, the system will remain

within the linear response regime. However, large fields will drive the system into the non-

linear regime in which Equation 3.26 is no longer valid. Therefore, one must choose Fe

judiciously such that the system remains in the linear regime. Determining an appropriate

field, however, can be a somewhat tedious task, involving lots of trial and error.

The non-linear behavior can be identified in a number of ways. Figure 5.1 illustrates the

behavior observed when plotting κ∗L against applied external field. In this case, the rightmost

points falls well outside the linear fit (red line) of the other, smaller fields, indicating a

departure from the linear regime. Therefore, the values of κ∗L corresponding to these high-

field points must be excluded from the fitting procedure. While it is easy to identify the

non-linear behavior using this technique, it has a number of draw backs. First, it doesn’t lend

itself very well to automation, because it takes manual intervention to identify the outliers.

Second, and more importantly, the non-linear points correspond to wasted computation.

Therefore, an ideal solution would be one in which the system could automatically determine

appropriate Fe values.
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Figure 5.1: (a) Reduced kappa κ∗L versus external field Fz. The two right-most points lay
outside the linear regime. (b) Behavior of the average heat flux and heat flux standard
deviation for large fields. The blue dashed line is 1.1σe.

In order to automate the process though, there needs to be some value that can be used to

identify when the system has entered into the non-linear region. The most obvious value, the

heat flux (more specifically the average heat flux), is not the best choice because it is difficult

to know when the average begins to deviate from its expected value. Consider Figure 5.1b in

which the heat flux running average is plotted over the course of the simulation for various

values of external field Fz (dashed yellow and orange lines). Both of these values exhibit

a slow upward slope, when in the linear regime they would be straight flat lines, as seen

in Figure 3.10a. In practice one could implement a scheme to identify the case when the

running average does not converge, but it turns out that there is a better way to approach

the problem which includes using the standard deviation of the heat flux.

In order to determine when an HNEMD simulation is in the non-linear regime, we first need

to know some details about how the system behaves during equilibrium. In an equilibrium

(NVE) simulation, the average heat flux will be zero and the heat flux distribution will

be roughly Gaussian in shape (see Figure 3.11b), with a standard deviation σeq. When

subjected to an external field Fz, the average heat flux will deviate away from zero, but

in the linear-regime the standard deviation will remain (approximately) constant. When
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its expected value. Consider Figure 5.1b in which the heat flux running average

is plotted over the course of the simulation for various values of external field Fz

(dashed yellow and orange lines). These values both exhibit a slow upward slope,

when in the linear regime they would be straight flat lines, as seen in Figure 3.10a.

In practice one could implement a scheme to identify the case when the running

average do not converge, but it turns out that there is a better way to approach

the problem which includes the standard deviation of the heat flux.

In order to determine when an HNEMD simulation is in the non-linear regime, we

first need to know some details about how the system behaves during equilibrium.

In an equilibirum (NVE) simulation, the average heat flux will be zero and the

heat flux distribution will be roughly Gaussian in shape (see Figure 3.11b), with a

standard deviation �eq. When subjected to an external field Fz, the average heat

flux will deviate away from zero, but in the linear-regime the standard deviation

will remain constant. When Fz becomes too large, and the system leaves the

linear-regime, then the standard deviation increases. Figure 5.1 illustrates this

behavior in NaCl. The solid blue line in the standard deviation of the heat flux

for the equilibrium case, �eq. The solid yellow and orange lines are the standard

deviation for system will large external fields Fz. The dashed blue line is 1.1�eq,

which both systems surpass after enough time has elapsed, indicating a departure
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Figure 5.2: Proposed flow for automatic HNEMD. Only three parameters must be defined;
initial external field Fi, external field increment ∆Fz and maximum deviation ∆σ.

Fz becomes too large, and the system leaves the linear-regime, then the standard deviation

increases. Figure 5.1b illustrates this behavior in NaCl. The solid blue line in the standard

deviation of the heat flux for the equilibrium case, σeq. The solid yellow and orange lines

are the standard deviation for systems with large external fields Fz. The dashed blue line is

simply a visual guide drawn arbitrarily at 1.1σeq (a 10% increase in σeq).

The proposed algorithm for automatic HNEMD proceeds like so

1. Perform NVE simulation to determine σeq.

2. Set the initial external field Fz to Fi.

3. Run HNEMD and calculate σ.

4. If σ
σeq

< ∆σ, increment Fz = Fz + ∆Fz and go to 3, otherwise.

5. Done.

There are then three user-defined variables that control the process. The first, Fi defines the

starting value for the external field and the second, ∆Fz controls how much to increment Fz

by from one HNEMD simulation to the next. The last variable, ∆σ, defines the stopping
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value for σ/σeq. More specifically, ∆σ defines when the calculated σ at a given Fz deviates

enough from σeq to be considered outside of the linear-regime. A value of ∆σ = 1.1 appears

to be a relatively good default value. Choosing an appropriate Fi and ∆Fz, however, is more

complicated. To begin to understand how to choose Fi, we start be rearranging Equation 3.28

to get

Fi =

〈
Jz
〉

κ∗LT
(5.1)

Here we have two unknown quantities, κ∗L and
〈
Jz
〉
. A good way to choose

〈
Jz
〉

is by taking

some fraction, say 10%, of σeq. This gives

Fi =
0.1σeq

κ∗LT
(5.2)

The justification for taking a small percent of σeq is that we want to ‘gently’ perturb the

system. In practice we’ve found that pushing Fz to greater than ∼ 0.7σeq typically results

in a departure from the linear regime, so choosing a target
〈
Jz
〉

that is relatively small

(compared to σeq) is a good place to start.

Finally, the quantity that we ultimately desire from the HNEMD simulations is κ∗L, but in

order to choose an appropriate Fi according to Equation 5.2 we need to know κ∗L, which is

somewhat of a ‘chicken or the egg’ dilemma. This apparent impasse can be circumvented

by replacing κ∗L with an order-of-magnitude estimate κML . Now our starting value for Fi

becomes

Fi =
0.1σeq

κML T
(5.3)

The suggested approach to determine κML is to use the initial NVE simulation (used to

calculate σeq) and the Green-Kubo formalism (see Section 2.2.1).
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CHAPTER 6

Conclusion

The main goal of this project was to devise a robust computational approach, capable of

obtaining high quality lattice thermal conductivity, κL, values for crystalline materials. In

order to accomplish this, a number of entireley new computational tools were developed.

First, a novel compressive sensing approach, CSLD, was developed for solving the force

constant problem of lattice dynamics. CSLD was show to be a powerful tool for highly

anharmonic lattice dynamics in complex materials based on the robust and mathematically

rigorous framework of compressive sensing and compressive sampling. The main advantage

of CSLD over the current methods is that it is widely applicable, computationally efficient,

systematically improvable, and straightforward to implement. Importantly, it works with

general-purpose DFT codes and can be used in an automated manner, with minimal human

intervention. Additionally, with the solid, mathematical foundation of lattice dynamics, we

were able to do away with the lower quality emperical potentials and develop an entirely

new MD package, LMD. LMD is capable of achiving near-DFT quality forces at a fraction

of the computational cost, paving the way for exceptionally efficient simulation of crystalline

materials. Not only is LMD capable of performing very high quality calcuations of κL, but it

has also been highly optimized to take advantage of a wide range of high-performance com-

puting hardware. We expect the CSLD and LMD approach to be extrememly useful for large

scale, systematic studies of κL, with an eye towards finding new, promising thermoelectric

materials.
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APPENDIX A

LMD Package

1 Overview

Lattice Molecular Dynamics (LMD) is the name of the molecular dynamics code developed,

from scratch, and used throughout this project. It is written in C++ and has no required

dependencies other than the C++98 standard library1 and a POSIX-compliant operating

system2. Throughout development this code has been heavily tested on Mac OS X and

a range of Linux-based operating systems, and on hardware ranging from laptops to huge

national super computers.

The behavior of LMD is controlled largely by two main concepts– commands and plugins.

Commands control what mode the program will be in when it is launched. This can range

from running an MD simulation (see Section 3.1.1) to processing output data to calculate

thermal conductivity (see Section 3.1.2). Plugins can be used to modify the behavior of a

specific command.

2 Installation

To ease the process of compiling across a range of different systems, LMD comes with

Autotools support. Any system with Autotools installed can simply follow the usual process

of ./configure followed by make lmd. By default, the build system will attempt to find

1There are, however, optional dependencies for higher-performance features.
2Technically, the only feature that is explicitly operating-system specific is the dependency on dlopen.
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and include the optional libraries listed in the following section. Should that not be desired,

there are a number of flags accepted by configure to manually control the inclusion of

such libraries. Specifics are discussed in Section 2.1.

Additionally, there are a few flags that can be used during configuration to inform Autotools

where to look for certain things such as compilers, libraries and headers. These include

1. CC - Used to set the desired compiler.

2. CXXFLAGS - Used to set flags to be passed to the compiler

3. CPPFLAGS - Use to set flags to the pre-processor

Here is an example that uses a specific version of g++ with certain compiler flags and

alternate paths for libraries and headers

./configure CC=/usr/local/bin/g++ \
CXXFLAGS="-O3" \
CPPFLAGS="-I/home/myuser/include -L/home/myuser/lib"

2.1 Optional Libraries

There are a variety of optional libraries that LMD can take advantage of to increase perfor-

mance. They are discussed in more detail below.

2.1.1 FFTW3

FFTW3 (http://www.fftw.org/) is a library for performing fast Fourier transforms. It is

required in order to perform thermal conductivity analysis using the tc command (see

Section 3.1.2). There are a number of other libraries that provide a compatible interface

(such as Intel’s Math Kernel Library) and these can be used provided that you supply the

correct paths during configuration.

FFTW3 support can explicitly be disabled by passing --disable-fftw3 to configure.
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2.1.2 OpenMP

OpenMP is a shared-memory parallelization library. It is implemented as compiler directives,

which means that in order to use OpenMP you must use an OpenMP-compatible compiler.

If you with to use OpenMP, LMD requires version 2.0 or better. Compilers such as GCC

and Intel have had support for OpenMP 2.0 for a number of years, so any relatively recent

version should work. One major caveat, however, is OS X. Newer versions of OS X (since

10.9), have moved away from GCC as the default compiler to Clang/LLVM. As of LLVM

version 6.0 (the default in OS X 10.9 and 10.10) OpenMP support is unavailable. As a

result, if one wishes to use OpenMP on OS X, it is necessary to use a difference compiler.

GCC 4.9 obtained from http://hpc.sourceforge.net/ has been used successfully on OS X with

OpenMP.

OpenMP support can explicitly be disabled by passing --disable-openmp to configure.

2.1.3 MPI

The Message Passing Interface, MPI, specification defines a common interface for distributed-

memory parallelization. This is an extremely efficient method for parallelizing a single sim-

ulation over many different networked computers. There are a number of different MPI

implementations including OpenMP, Intel and MPICH, to name a few. Like OpenMP, MPI

is a compiler-dependent library. There can be rather large difference between the different

MPI implementations and how they compile code, therefore configuring and compiling LMD

with a specific MPI implementation is beyond the scope of this thesis.

MPI support can explicitly be disabled by passing --disable-mpi to configure.

2.1.4 OpenCL

The final type of parallelization available in LMD is via OpenCL. It is targeted at using

the massively parallel, floating point processing capabilities available in graphics processing
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units (GPUs). Not all GPUs are compatible with OpenCL, so you must verify that OpenCL

is even supported by the GPU you intend to use. Additionally, OpenCL support is typically

provided by vendor-specific GPU drivers. For example, AMD, Nvidia and Intel each provide

their own implementation of OpenCL for their specific hardware, so in order to compile

LMD with OpenCL support you should consult the various vendors’ documentation on how

to compile OpenCL for their devices. The one major exception to this rule is Mac OS X.

As of OS X 10.7, Apple has provided built-in support for OpenCL on it’s hardware. As a

result, it is extremely easy to compile LMD with OpenCL support on OS X and nothing

additional needs to be installed–configure will automatically find and include OpenCL

on newer versions of OS X.

OpenCL support can explicitly be disabled by passing --disable-opencl to configure.

3 Usage

LMD has different modes of operations depending on how the application is launched, the

format of which is

lmd [command] [arguments...]

Without any command or arguments (simply running lmd), the program will output a

detailed overview of compilation settings, available commands and discovered plugins.

Under the ‘Enabled acceleration extensions’ section, one can see which parallelization li-

braries LMD has been built with. Possible options include openmp, mpi, and opencl. If

a desired parallelization library is missing, refer to Section 2.1 and try recompiling. The

‘Commands’ section displays all available commands that can be passed to the program

at run time (see Section 3.1), while the ‘Plugins’ section shows all discovered plugins (see

Section 3.2).
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3.1 Commands

LMD ships with a number of built-in commands. Some commands will only be available when

certain optional libraries are included during configuration and building of LMD. Detailed

information about each command is given below. Additionally, users can easily create their

own custom commands to further extend the functionality of LMD. To learn more about

extending LMD with custom commands see Section 4.1.

3.1.1 run - Run MD

The run command is used for running an MD simulation and requires three separate input

files–in.sim, in.lat and in.pot. These files should be located within the same directory

that the lmd binary is executed. If any of these files cannot be found, or any of them are

invalid, the program will issue and error and exit.

Following the INI-file syntax, there are two main sections that should be defined in in.sim.

Simulation

The ‘Simulation’ section defines the basic settings for the MD simulation. This includes

parameters such as starting temperature, simulation length, size of the timestep, etc. Ta-

ble A.1 describes the available settings.

Potential

The ‘Potential’ section is used to control how to evaluate the potential energy and calculate

forces. This is typically the most time-consuming part of any MD code and as a result it has

been highly optimized. There is quite a bit of flexibility on how to perform such operations

in LMD, depending on what hardware is available. The simple takeaway here is that if

LMD has not been compiled with OpenCL support, the BACKEND option should be set to

‘default’. If OpenCL support is available, then Table A.2 can be used to determine how to

use the available OpenCL hardware. The IDs in this table can be determined using the dev
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TBEG Beginning temperature, in Kelvin.
NSTEPS Number of time steps to run the simulation for. Total simulation

duration will be equal to NSTEPS× TSTEP.
TSTEP Length of timestep, in femtoseconds.
TSTAT Enable a thermostat. Currently the only available option is ‘Gaus-

sian’. Default if no thermostat.
WALLTIME Maximum CPU seconds to use. This is useful in environments will

hard limits on how long a program can run before being forcibly
stopped. If WALLTIME is reached before the desired NSTEPS have
been completed, the program will gracefully exit and can be re-
sumed again (see Section 3.1.1). If no value if given the program
will run until NSTEPS is reached.

PLUGINDIR Defines a specific location to look for plugins (see Section 4).

Table A.1: Available LMD simulation settings. Required settings are in bold.

BACKEND Which backend to use. Available options are ‘default’ or ‘opencl’.
PLATFORM-ID Platform selection. Default: 0.
DEVICE-TYPE Device type to use during selection. Available options are ‘all’

(default), ‘cpu’, ‘gpu’, ‘accelerator’, ‘custom’.
DEVICE-ID Which device to use. Default 0.
WG-SIZE Size of the workgroup. Must be a multiple of 2. Default is 64,

but depending on the hardware 32 or 128 might be better choices.
PROFILE Enable OpenCL debugging, set to ‘true’. Default is ‘false’.

Table A.2: Available LMD potential settings. Required settings are in bold.

command (see Section 3.1.4).

Resuming a Run

Resuming a run is simply a matter of copying the file out.res to in.res. This can be

useful in resuming a simulation that was ended abruptly or simply to run for a longer period

of time. Another way to use this is equilibrate the system before running a canonical (NVT)

simulation. First, perform a short, equilibrium (NVE) simulation by leaving the thermostat

disabled. Then, copy out.res to in.res, enable the thermostat and start the simulation.
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Parallelization

As mentioned earlier in Section 3.1.1, OpenCL parameters can be tuned using the input

file. In the event that OpenCL is not available, LMD can still take advantage of OpenMP

and/or MPI for parallelization. If LMD has been compiled with OpenMP, nothing specific

must be done at run time to take advantage of these parallelization options. However, the

number of threads used by OpenMP can be controlled via the OMP NUM THREADS envi-

ronmental variable. On POSIX systems under a Bash prompt, this can be set using the

command export OMP NUM THREADS=4, in which case a maximum of 4 threads will be

used. If OpenMP is an option, it’s use should seriously be considered. Many parts of the

code have been tuned to take advantage of the parallelization provided by OpenMP.

3.1.2 tc - Thermal Conductivity

The thermal conductivity command is available only if LMD has been built with FFTW3

support. This command calculates the thermal conductivity using the Green-Kubo formal-

ism. For more details on the theory behind this method, see Section 2.2.1. The real-space

integration of the heat flux correlation function scales with simulation length T as O(T 2).

Therefore, Fourier transforms are used to reduce this to O(T log T ), hence the requirement

for the FFTW3 library. For details on how the FFT is used in evaluating correlation func-

tions, see Appendix B.

3.1.3 help - Help

The help command is useful for understanding how a command or plugin can be used. It’s

usage is as simple as

lmd help [command or plugin]

Some plugins have names with spaces in them, such as the heat flux (see Section 3.2.4).

In that case, the plugin name must be surrounded by quotation marks. For example, the
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following will output the help information for the heat flux plugin.

lmd help "Heat Flux"

3.1.4 dev - OpenCL Device List

The dev command is only available when LMD has been compiled with OpenCL support.

It is useful for determining what devices and platforms are available and also their IDs for

use in defining the potential settings (Section 3.1.1). As an example of how to use the output

to select an OpenCL device, consider the following output of running lmd dev

Found 1 OpenCL Platform
Platform 0 [1/1]: Apple [OpenCL 1.2 (Jul 29 2014 21:24:39)]
Device 0 [1/2]: Intel(R) Core(TM)2 Duo CPU L9600 @ 2.13GHz
Device 1 [2/2]: GeForce 320M

In this example one platform, with ID 0, has been found–OpenCL 1.2 provided by Apple.

Additionally, two devices have been found. The first device, with ID 0, is the Intel CPU and

the second, with ID 1, is the NVidia GeForce GPU.

3.2 Plugins

The default behavior of LMD, when runinng MD, is to perform a simple microcanonical

(NVE) simulation. The only output file is out.res, which can be used for resuming a

simulation (see Section 3.1.1), while temperatures and energies are printed to the standard

output each timestep. This behavior, however, can be modified by using plugins. LMD ships

with a number of built-in plugins for performing different types of MD and for writing out

various system properties to file, but it is also possible to develop custom plugins as well

(see Section 4.2). The built-in plugins are discussed in more detail below.
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NSLAB Number of slabs (or bins) to partition the system into. Default: 0.
NSWAP Number of atoms to swap during a swap event. Default: 1.
FREQ Number of time steps in between swapping events. Default: 100.
DIR Axis to swap velocities. Available options are 0, 1 or 2 (for x, y

and x, respectively). Default 0.
TFREQ Number of time steps between writing slab temperatures to file.

Default: FREQ
NEQ Number of time steps to run before the first swap event.

Table A.3: Available LMD settings for the RNEMD plugin.

3.2.1 RNEMD - Reverse Non-equilibrium MD

The Reverse Non-equilibrium MD technique, discussed in Section 2.2.3, can be enabled in

LMD by defining the RNEMD section in in.sim. There are a number of settings that can

be defined to modify how this method is used which are listed in ??.

In order to obtain the best results with this method, one should ensure that the system is

elongated along a particular axis and the define the appropriate value for the DIR setting.

If NSLAB is zero or not evenly divisible by two, then this plugin will be disabled. It is also

important to choose NSLAB such that there are enough atoms in each slab for sufficient

temperature averaging—a few hundred atoms is usually sufficient.

In addition to the settings listed in Table A.3, there are a few experimental options. The

first, TDIFF, can be used to define the target temperature difference between the hot and

cold slabs, in Kelvin. When this setting is defined, it will override whatever value is set

for FREQ, as the system will attempt to swap at the appropriate rate to obtain the desired

temperature profile. The other, slightly less useful option HFLUX, can be used to fix the

desired heat flux. When this value is set, whatever value is defined for FREQ is ignored and

will be replaced with a value calculated automatically by the system. Additionally, NSWAP

will be reset to NSWAP = 1.

An example configuration to enable RNEMD is shown in Listing 1.
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[RNEMD]
NSLAB = 8 # Divide system into 8 slabs...
DIR = 2 # ...along z-axis
NSWAP = 1 # Swap 1 atom...
FREQ = 50 # ...every 50 time steps
NEQ = 1000 # Do 1000 steps before first swap event

Listing 1: Example settings to enable RNEMD.

Output Files

When enabled, this plugin will output a number of files. The first, out.tbin, will contain

a list of slab temperatures. The format of this file is quite simple, but is in binary format,

with triplets of numbers representing the MD step, slab ID and it’s associated temperature.

The MD step and slab ID are both 4-byte unsigned integers and the temperature is an 8-byte

double. A simple Python program to print out this file is shown in Listing 2.

import functools
import struct

with open("out.tbin", "rb") as fh:
for chunk in iter(functools.partial(fh.read, 16), ""):
step, slab, temp = struct.unpack("<IId", chunk)
print step, slab, temp

Listing 2: Example Python script to read binary formatted out.tbin.

The second file generated by this plugin is named out.vs. It is also a binary encoded

file that is written in groups of four values, totaling 28 bytes. The first 4-byte integer

is the time step, the next 8-byte double is the total heat flux, followed by 8-byte double

representing the calculate thermal conductivity (in W/mK) and the last 8-bytes represents

the fit quality. The thermal conductivity and fit quality shouldn’t really be used directly, as

they are really only meant to be used internally. To calculate the true thermal conductivity,

one should determine the average temperatures of each slab in out.tbin. Then, calculate

the temperature difference dT between slabs 1 and (N/2) − 1. Using Equation 3.24 and

the final value of the heat flux J from out.vs, one can then get the calculated thermal
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conductivity. However, the units of heat flux are

electron volts

Angstrom× femtosecond×Kelvin
(A.1)

Thus, the conversion factor of 1602176.46 should be used to convert to W/mK.

3.2.2 HNEMD - Homogeneous Non-equilibrium MD

Homogeneous Non-equilibrium MD is a very efficient method for calculating thermal con-

ductivity. This method is best used to study isotropic systems as it is only able to determine

the thermal conductivity along a given direction. This is in contrast to the Green-Kubo

method, which is technically able to calculate the entire thermal conductivity tensor simul-

taneously. Nevertheless, HNEMD is an extremely efficient technique, capable of yielding

very high thermal conductivity results. For specifics on the theory behind HNEMD, see

Section 2.2.4.

Enabling this plugin is very easy as there is only one setting needed under the HNEMD

section in in.sim. To turn on HNEMD, simply define a setting named FIELD as a comma-

separated list of three numbers. Each number represents the strength of the external field,

in inverse Ångtroms, along the x, y and z axes. For example the following will enable a field

along the z-axis

[HNEMD]
FIELD = 0.0,0.0,1e-4

Additionally, the Gaussian thermostat should be enabled. See Section 3.2.3 for details on

the Gaussian thermostat.

Output Files

The HNEMD plugin creates a single output file, named dat.jq, that contains four values
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per line. The first value is the integer time step, followed by the three values of the heat flux

(Jx, Jy, Jz).

Calculating Thermal Conductivity

In order to calculate the thermal conductivity using HNEMD, a number of steps must be

taken. First, at least three different values for FIELD should be used. For each value of

FIELD a few simulations should be done with different initial conditions. For each simula-

tion, the average heat flux should be calculated. The simple Python script shown in Listing 3

demonstrates how to calculate the average heat flux for a given run.

with open("dat.jq", "r") as fh:
count, J = 0, [0,0,0]
for line in fh:

for i, v in enumerate([float(v) for v in line.split()[1:]]):
J[i] = J[i] + v

count = count + 1
print "<J> = %g,%g,%g" % (J[0]/count, J[1]/count, J[2]/count)

Listing 3: Python script for calculating the average heat flux for an HNEMD run.

Once the average heat flux has been calculated for every run, the reduced thermal conduc-

tivity, κ∗(Fext), can be determined using Equation 3.28. There should be a single κ∗ for

each external field value used. Simple linear regression can then be applied to get the true

thermal conductivity at zero field.

3.2.3 Gaussian - Gaussian Thermostat

Currently the only thermostat included in LMD is the Gaussian thermostat. For details

on how this thermostat works, refer to Section 2.3.1. By enabling the thermostat, one can

perform a canonical (NVT) ensemble. To enable the thermostat, the TSTAT = gaussian

setting should be defined in the input file under the Simulation section. Internally, the

Gaussian thermostat is implemented as a plugin, so it is entirely possible to implement

other types of thermostats using the plugin system as well. For more details on how to write
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plugins, see Section 4.2.

3.2.4 Heat Flux - EMD Green-Kubo

To enable LMD to calculate the heat flux in an a simulation, the HeatFlux section should

be defined with a single setting ENABLE = true. When enabled, heat fluxes will be written,

every time step, into a file named dat.jq. Each line in this file will contain the step number

followed by the three heat fluxes divided by the system volume (Jx/V, Jy/V, Jz/V ). This file

can be used by the tc command (Section 3.1.2) to calculate thermal conductivity using the

Green-Kubo formalism (Section 2.2.1).

Calculating Thermal Conductivity

To calculate thermal conductivity using this method, it is typically necessary to do en-

semble averaging over quite a large number of initial conditions. The required number of

simulations will vary from system to system, so one must analyze the results to ensure the

results are converged.

3.2.5 Trajectories

To enable LMD to write out atomic displacements, velocities and forces, one can define a

setting under the Simulation section of the input file named LOGTRAJ. The value should

be an integer representing how frequently (in time steps) the trajectories should be written

to disk. Keep in mind that for every write there will be N ∗ 10 values written. For a large

system and/or a long simulation, setting LOGTRAJ to a small number can result in a very

large file.
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4 Extending

To make LMD more robust and flexible, it has been designed to be easily extended and

modified without having to modify the main source code and, in many cases, without having

to recompile the program. In order to accomplish this, a light-weight plugin system was

designed. Additionally, LMD employs a flexible event-based system that can easily be used

to modify the default behavior.

There are two distinct concepts used throughout this section–‘command’ and ‘plugin’. From

a technical standpoint, a plugin is used to describe something that add additional func-

tionality using the event-based system, while a command adds an entirely new user-facing

command to the LMD program. As an example, the Gaussian plugin implements a Gaussian

thermostat to the MD simulation, but it does not provide a user-facing command–this is a

pure plugin. The Thermal Conductivity plugin does not add any additional functionality to

the MD simulation and instead simply provides the tc command to the LMD program–this

is a pure command. It is entirely possible to create a plugin that is both a plugin and a

command.

4.1 Commands

In order to create a custom command or plugin that can be loaded dynamically at runtime,

a subclass of Plugin must be implemented. As an example, let’s create a simple command,

called HelloWorld, that will create a new command that will print out ‘Hello World’ when

called by the user. To start, we define a basic header for the new plugin, shown in Listing 4.

The header file simply includes the Plugin header, and then defines a subclass called

HelloWorld with a public constructor, a static function name create plugin and a

single member function named command. The names of these functions are important.

create plugin is called automatically by the plugin framework when lmd is executed.

command is called automatically to execute the command features provided by our plu-

128



1 #include <lattice/Plugin.h>
2

3 class HelloWorld : public Plugin {
4 public:
5 HelloWorld();
6

7 int command(int argc, char* const argv[]);
8

9 inline static Plugin* create_plugin() {
10 return new HelloWorld;
11 };
12 };

Listing 4: HelloWorld.h - Header file for HelloWorld command.

gin. The real magic happens in the implementation of our HelloWorld plugin, shown in

Listing 5.

1 #include "HelloWorld.h"
2

3 #include <lattice/Plugins.h>
4 #include <cstdio>
5

6 REGISTER_PLUGIN(HelloWorld, "HelloWorld");
7

8 HelloWorld::HelloWorld()
9 : Plugin("HelloWorld") {

10 command_name = "hello";
11 command_desc = "Prints ’Hello World’ and exits";
12 };
13

14 int HelloWorld::command(int argc, char* const argv[]) {
15 printf("Hello World!\n");
16 return 0;
17 };

Listing 5: HelloWorld.cpp - Implementation of HelloWorld command.

Let’s go through Listing 5 to see what’s going on. Line 1 we simply include the header

file for the HelloWorld class. Lines 3-4 include additional necessary headers–notice the

include of Plugins.h as this is required. Line 6 we register our plugin with the plugin

system. The first argument, HelloWorld, is the class we are registering and the second
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argument, ”HelloWorld”, should be a unique string representing the new plugin. Lines 8 is

the definition of the class constructor and line 9 calls the parent class, Plugin, constructor

passing a single argument that is the human-readable name of the new plugin. Line 10 tells

the plugin system that our plugin provides a command that is called hello (this will make

it possible to call lmd hello). When a plugin defines the command name variable, the

plugin system expects that a command member function also be implemented (which we

have on line 14). Line 11 describes the basic function of our command. Lines 15-16 are the

implementation of our command. Notice that the command function returns an int–this

is used as the return code when LMD is run using this command.

CXX=g++
FLAGS=-O3
LIBS=-lliblattice

PLATFORM := $(shell uname -s)

ifeq ($(PLATFORM),Darwin)
FLAGS += -dynamiclib -flat_namespace

endif
ifeq ($(PLATFORM),Linux)

FLAGS += -fPIC -shared
endif

all:
$(CXX) $(LIBS) $(FLAGS) -o hello_world.plugin HelloWorld.cpp

Listing 6: Makefile - A simple makefile for an LMD plugin.

The last step is to compile our new plugin. This procedure will vary from platform to

platform, but a simple makefile is shown in Listing 6. The main requirement is to compile

the plugin as a shared library. On most Linux-based machines, this can be accomplished

with gcc’s -shared option, while on Mac OS X this can be done with the -dynamiclib

option.
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Evented Events/Actions

simulation

init
beforeintegrate1
afterintegrate1
beforeforce
afterforce
beforeintegrate2
afterintegrate2
beforesample
aftersample

integrator
evolvevelocity1
evolvevelocity2

force
beforeinit
init

Table A.4: Available LMD Evented objects and their associated events. Items in bold are
actions.

4.2 Plugins

Creating a new plugin is very similar to creating a command. The main difference is that

a pure plugin will not implement a command function, nor define the command name and

command desc variables. Instead, a plugin will implement a listen function. This func-

tion will get called once by each Evented object and, if desired, the plugin can notify the

Evented object that it wishes to listen to one or more events or actions provided by the

Evented. Table A.4 lists the available Evented objects and their associated events and

actions. The difference between and event and an action will be discussed later.

The best way to describe how to use events to modify the behavior of LMD is by example.

The header for a simple plugin that will write the system temperature to a file every step

is shown in Listing 7. The basic structure of the plugin is very similar to that of our

custom command in Listing 4, except here we define the listen function, which is called
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automatically by the plugin system. The name of the simulationAfterSample function

is arbitrary, but it’s signature is important. The first argument, event, will be one of the

events listed in the second column of Table A.4. The second argument, caller, will be the

instance of the calling Evented class. The third argument, packet, will vary depending

on the specific event being called.

1 #include <lattice/Plugin.h>
2

3 class Temperature : public Plugin {
4 public:
5 Temperature();
6

7 bool listen(Evented* evented);
8

9 bool simulationAfterSample(const char* event,
10 Evented* caller,
11 Evented::Packet* packet=NULL);
12

13 inline static Plugin* create_plugin() {
14 return new Temperature;
15 };
16 };

Listing 7: Temperature.h - Basic plugin header for LMD.

The implmentation of the plugin is shown in Listing 8. This is slightly more complicated

than in the case of a command, so let’s walk through line by line. The first nine lines simply

include the necessary header files. Note that on line 7 we include Simulation.h, which we

need because later we will need access to the Simulation class. Line 11 registers our new

plugin with the plugin system, with the first argument as the plugin class and the second

argument as a unique string name for the plugin. Lines 13-14 are the basic constructor for

our class. Note that on line 14 we need to call the parent Plugin class constructor, passing

in our plugin’s name as the only argument. On line 16, we define the listen method

which will get called automatically by the plugin system. This is where we can specify where

our plugin should ‘attach’ itself to listen to events in the future. On line 17, we check to

see if the calling evented instance is that of the ‘simulation’ class. If it is, then on lines
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18-20 we bind our simulationAfterSample method to the ‘aftersample’ event of the

Simulation class. Line 23 we simply return true–currently the return code is not used by

the plugin system. On line 26 we begin the implmentation of simulationAfterSample

that we want bound to the ‘aftersample’ event. On line 30 we cast the caller to an

instance of Simulation. We known that caller will by of type Simulation because

we checked on line 17. Lines 32-47 we calculate the temperature of the system and print it

out. On line 42 we access the member function getMass of the lattice instance. This

is available here because we included the Lattice.h header. Additionally, on line 47, the

constant KB IN EV PER K is defined in constants.h.

To compile the plugin we can use a makefile similar to that in Listing 6.
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1 #include "Temperature.h"
2

3 #include <lattice/Plugins.h>
4 #include <lattice/Lattice.h>
5 #include <lattice/constants.h>
6

7 #include <lmd/simulation/Simulation.h>
8

9 #include <cstdio>
10

11 REGISTER_PLUGIN(Temperature, "Temperature");
12

13 Temperature::Temperature()
14 : Plugin("Temperature") {};
15

16 bool Temperature::listen(Evented* evented) {
17 if (evented->isNamed("simulation")) {
18 evented->addListener("aftersample",
19 this,
20 (Evented::Callback)&Temperature::simulationAfterSample);
21 }
22

23 return true;
24 };
25

26 bool Temperature::simulationAfterSample(const char* event,
27 Evented* caller,
28 Evented::Packet* packet=NULL) {
29

30 Simulation* sim = static_cast<Simulation*>(caller);
31

32 double mv2 = 0,
33 mass,
34 v_mag;
35

36 float* v = sim->data.v;
37 int idx;
38

39 for (int i = 0; i < sim->data.nat; i++) {
40 idx = i*3;
41 v_mag = sqrt(v[idx+0]*v[idx+0] + v[idx+1]*v[idx+1]+ v[idx+2]*v[idx+2]);
42 mass = lattice->getMass(i, true); // eV/(A/fs)ˆ2
43

44 mv2 += (mass * v_mag*v_mag);
45 }
46

47 return mv2/(KB_IN_EV_PER_K * (3*data.nat-3));
48 };

Listing 8: Temperature.cpp - Basic plugin implementation for LMD.
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5 Input Files

5.1 in.sim

Most commands utilize a common input file named in.sim, which should be in INI format.

An example INI file looks like

[Section 1]
key1 = value1

[Section 2]
key2 = value2

Each command will interpret the input file in a different way, so consult Section 3.1 for a

list of commands and available input configuration options.

#
# Example LMD input file.
#
# Section names are case insensitive.
#

#################################################
# Global Simulation Settings
#################################################
[Simulation]

# Starting temperature, in Kelvin.
#
TBEG = 300

# Number of MD steps to run.
#
NSTEPS = 5000

# Length of each MD step, in femtoseconds.
#
TSTEP = 1

# Maximum length, in seconds, that this simulation
# should run for. When the simulation has run
# for this long, it will stop gracefully. This
# is useful when running on a system with a hard
# limit on CPU run time.
#
#WALLTIME = 15
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# Enable a specific thermostat.
#
#TSTAT = gaussian

# Enable a specific debugging mode. Any value
# greater than 0 enables debugging.
#
#DEBUG = 1

# Define a custom plugin directory.
#
#PLUGINDIR = /some/path/to/plugins

#################################################
# Potential Settings
#################################################
[Potential]

# Select the potential backend to use. Possible
# options include:
# default - Reference, CPU-based implementation
# opencl - OpenCL implmentation
#
# The default behavior is to use the best
# implementation available.
#
BACKEND = default

###########################
# OpenCL Options
#

# Define the OpenCL platform to use, zero indexed.
# Defaults to 0.
#
#PLATFORM-ID = 0

# Define the type of OpenCL device to use.
# Possible options are:
# all
# cpu
# gpu
# accelerator
# custom
#
#DEVICE-TYPE = all

# Select a specific OpenCL device, zero indexed.
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# Defaults to 0.
#
#DEVICE-ID = 0

# Define the work group size of the OpenCL
# kernels. The default is 64. Note, this must be
# a factor of two. For CPU devices, this usually
# needs to be set to 1.
#
#WG-SIZE = 1

# Enable OpenCL performance profiling. Profiling
# data will be written to a file named "profile.log"
#
#PROFILE = true

5.2 in.lat

The in.lat file describes the lattice to be simulated. The first three lines should be the

primitive lattice vectors, in Ångstroms. The next three lines define the supercell lattice

vectors. The next line defines the number of different atomic species in the primitive cell.

This should be followed by the same number of lines, with each line containing four values.

The first three values describe the atom’s position in the primitive cell and the last number

is the atomic number of the element. The next line should be the total number of atoms in

the supercell. This line should be followed a number of lines equal to the number of atoms

in the supercell. Each line defines the position of an atom in the super cell as a series of 8

numbers. The first number is the unique ID of that atom, the next three numbers define the

unit cell to which this atom belongs. The next number maps the atom to the atomic species

defined on the sixth line. The last three numbers are the fractional coodinates of the atom

within the supercell. As an example, the following in an input for a 4x4x4 NaCl lattice

2.82 2.82 0.0
-4 4 4
4 -4 4
4 4 -4
2
0 0 0 11
0.5 0.5 0.5 17
512
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1 -3 3 3 1 0.75 0.0 0.0
2 -3 3 3 2 0.875 0.125 0.125
3 -3 3 4 1 0.875 0.125 0.0
4 -3 3 4 2 1.0 0.25 0.125
5 -3 4 3 1 0.875 0.0 0.125
6 -3 4 3 2 1.0 0.125 0.25
...

5.3 in.pot

The in.pot file describes the potential of the system. It describes, for the entire supercell,

clusters and their associated interatomic force constants. An example entry for a pair-cluster

looks like:

2
0 0 0
0 0 0
1
1 1
3
1 1 1.031973137
2 2 1.031973137
3 3 1.031973137

The first line defines the size of the cluster, which in this case is a pair cluster. The next

two lines define the location of the sites involved in the cluster (these values are currently

ignored). The fourth line states how many clusters there are of this type, which also defines

how many lines will immediatley follow. The following lines, in this case just a single line,

define the atomic indicies (1-indexed) of the atoms involved in this cluster. Line 6 defined

the number of ICFs for this cluster, which also defined the number of lines that follow. Lines

7-9 define the directions of the atoms (integers) followed by the value of the force constant

(float), where the x-, y- and z- direction are denoted as 1, 2, 3, respectively. Each entry

should be separated by a blank new line.

If CSLD is used, the in.pot can be automatically generated for a given supercell.
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APPENDIX B

Time Correlation Functions

A number of interesting physical properties can be calculated through the use of time correla-

tion functions. In Section 2.2.1 (Equation 3.20 specifically), we showed how the Green-Kubo

relations can be used to calculate thermal conductivity by using the time correlation function

of the heat flux. However, this technique can be used to calculate other properties such as

diffusion coefficients and viscosity. Therefore, a computationally efficient method for evalu-

ating such equations can be extremely useful and is the focus of this chapter. Let’s start by

considering some property that is a function of time, A(t). We can write it’s autocorrelation

function as

C(τ) =< A(τ)A(0) >=
1

τn

τn∫
0

A(τ0)A(τ0 + τ)dτ0 (B.1)

where τ is a specific time origin and τn is the total number of time origins. In the discrete

case, this becomes

C(τ) =< A(τ)A(0) >=
∆t

τn

τn∑
τ0=0

A(τ0)A(τ0 + τ) (B.2)

where ∆t is the timestep used in the simulation. The Green-Kubo relation can then be used

to relate the microscopic property, A(t), to some macroscopic transport property, D, via

D = β

∞∫
0

〈
A(t)A(0)

〉
dt (B.3)
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Combining Equation B.1 and Equation B.3, leads to

D = β

∞∫
0

 1

τn

τn∫
0

A(τ0)A(τ0 + t)dτ0

 dt (B.4)

which in the discrete case becomes

D = β

∞∑
t=0

∆t

τn

τn∑
τ0=0

A(τ0)A(τ0 + t) (B.5)

Obviously in simulations we cannot evaluate such expressions to infinity, thus one must

perform simulations that are long enough to give converged results. If we assume that the

simulation length, T , is long enough to satisfy this criteria, then we can write this expression

as

D = β
T∑
t=0

∆t

τn − t− 1

τn−t−1∑
τ0=1

A(τ0)A(τ0 + t) (B.6)

The main problem that arises here is that Equation B.6 scales as O
(
T (T−1)

2

)
. It is not

uncommon for T to be on the order of 105 or 106, making this a very expensive operation.

There are two routes we could take to decrease the amount to time needed to evaluate

Equation B.6. The first is relativity straightforward and involves parallelizing over the first

sum. The degree of parallelization is limited only by the number of physical processing cores

present in a given machine.

However, there is a better method which involves a clever mathematical trick. This ‘trick’

comes from realizing that Equation B.6 is what is known as convolution and that convolution

in the time domain is equivalent to multiplication in the frequency domain. All that is then

needed is a fast way to convert between the time and frequency domains, which is a common

task known as the Fast Fourier Transform (FFT). The technique looks something like
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1. A(f) = FFT{A(t)}

2. M(f) = A(f)A∗(f)

3. N(t) = IFFT{M(f)}

4. D = β
T∑
t=0

N(t)

In the first step, we convert the time-domain value A(t) into the frequency domain using a

forward FFT. Then in the next step we multiple the frequency-domain value, A(f), by its

complex conjugate, which gives is the intermediary product M(f). An inverse FFT of M(f)

gives back the time-domain equivalent N(t). N(t) represent the second sum in Equation B.6,

thus all that is left in the final step is to sum up all the values of N(t).

At first, the FFT based method may seem more expensive than the straight forward ap-

proach. However, this isn’t the case because even with the two FFT transforms (forward

and reverse), we can reduce the whole process to one that scales as O(T lnT )[1].
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APPENDIX C

Sets & Lists

It is useful to be able to represent collections of items using consistent notation. Here we

discuss the notation used in this paper to work with two similar types of collections; sets

and lists. Both sets and lists can hold items that, most of the time, will be numbers.

1 Sets

To start, we define a set

{1, 2, 3, 4} (C.1)

which is identical to

{1, 1, 1, 2, 2, 3, 4} (C.2)

because sets contain unique items. A set that contains no items is called an empty set and

is denoted as ∅ or {}.

We can define sets without explicitly enumerating the items like so

143



{x | x is an even prime} (C.3)

where the character |, pronounced “such that”, denotes some criteria for creating the set. In

this case, the criteria is that all items in this set are even primes, or more specifically that

this set contains all even primes. Multiple conditions can be defined by separating them

with ∧, pronounced “and”. We can also define functions that determine what items belong

to the set.

{P (x) | x ∈ Z} where, (C.4)

P (x) = 2x (C.5)

where Z is the set of all integers and ∈ means “in”. This will result in a set containing all

positive, even integers, because the function P (x) multiplies every integer by 2.

The number of elements in, or cardinality of, a set A is denoted |A|. The following set

contains three items

|{5, 6, 7}| = 3 (C.6)

Two or more sets can be combined via a “union” (∪)

{1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5} (C.7)

Note that |A| + |B| does not necessarily equal |C|. The difference between sets can also be
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found via an “intersection” (∩)

{1, 2, 3} ∩ {3, 4, 5} = {3} (C.8)

Sets are, by definition, unordered, however, we define the ordered set using parentheses. The

following is an ordered set

A = (a, b, c) (C.9)

Ordered sets are useful because individual items can be accessed using the index operator.

The first element (zero indexed) in ordered set A can be accessed like so

a← A [0] (C.10)

2 Lists

Lists are very similar to sets, with the main exception being that lists hold an ordered

collection of items that are not necessarily unique. To differentiate between lists and sets,

we use the following notation

{1, 2, 3} a set

(1, 2, 3) an ordered set

[1, 2, 3] a list
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