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Abstract: We report the effects of component ratios and mixing time on electrode slurry viscosity.
Three component quantities were varied: active material (graphite), conductive material (carbon
black), and polymer binder (carboxymethyl cellulose, CMC). The slurries demonstrated shear-
thinning behavior, and suspension properties stabilized after a relatively short mixing duration.
However, micrographs of the slurries suggested their internal structures did not stabilize after the
same mixing time. Increasing the content of polymer binder CMC caused the greatest viscosity
increase compared to that of carbon black and graphite.

Keywords: polymer composite; slurry; viscosity; coating; energy storage; lithium-ion rechargeable
battery; composite electrode

1. Introduction

Lithium-ion batteries are state-of-the-art rechargeable batteries that are used in a vari-
ety of demanding energy storage applications. Compared to other rechargeable batteries,
lithium batteries are lightweight, have long cycle lives, and have high energy-to-weight
ratios [1]. Electrode slurries are dispersions that are typically composed of conductive
additives, polymer binders, and electrochemically active material particles that serve as
reservoirs for lithium. They are coated onto conductive substrates and dried to form porous
electrodes. Electrode pairs are assembled into lithium-ion batteries containing an electrolyte
solution that allows the transport of lithium ions between electrodes. The two electrodes
in a lithium-ion battery are of different compositions and provide energetically different
environments for lithium. Lithium ions can travel between the two electrodes through the
solution, while electrons instead travel through an external circuit as an electrical current.

Several factors influence the electrode fabrication process; we have chosen to inves-
tigate slurry viscosity. This is a key property affecting the consistency of the electrode
performance. If slurry viscosity is too high, it can be difficult to produce uniform coatings,
rendering the battery cycling time less predictable [2]. A high viscosity can also allow
materials to clump together. This can cause an uneven reaction distribution on the electrode
surface leading to hot spots during battery operation [2]. Low slurry viscosity, meanwhile,
can cause runniness and pooling [3].

The predominant factor affecting slurry viscosity is composition. There are three key
components to an electrode slurry: active material, conductive additive, and polymer
binder [3,4]. The active material serves as a reservoir for lithium [5], while the conductive
additive enhances electrical conductivity along the active material surfaces [6]. Graphite
and acetylene carbon black are commonly used for active material and conductive additives,
respectively. The polymer binder works to hold components together. Carboxymethyl
cellulose (CMC) is a common polymer binder because it is water-soluble, has a high
temperature resistance, and is electrochemically stable [7,8]. Styrene-butadiene rubber
(SBR) has also been used as a binder. However, its contribution to viscosity is negligible at
the commonly used weight percent [9]. Overall, the compositions of the electrode affect its
conductivity, energy capacity, and stability [10].
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Previous publications found that increasing solid content (active material, conductive
additive, or polymer) will increase viscosity [11]. Studies have also found that CMC can
play a large role in determining slurry viscosity [12]. However, there has been no research
in comparing how the amount of conductive additive or active material affects viscosity.
Furthermore, the effect of processing duration on rheology has not been explored either.
While previous studies have used polyvinyl difluoride (PVDF) as the polymer binder, this
study will be the first to examine the potential impact of CMC on battery slurry viscosity.
It should be noted that the exact values of viscosity found will differ from those in industry.
This is because viscosity is largely dependent on processing and equipment. The goal of
this paper is to observe and quantify the tends of the individual slurry components’ effects
on overall viscosity.

This paper will look specifically into how different preparation methods and com-
ponents can influence slurry viscosity. Additionally, it will provide unique microscope
images of graphite, carbon black, and CMC slurries. There will be four key factors in the
electrode slurry fabrication process that will be analyzed: (1) how slurry viscosity varies
with viscometer spindle speed; (2) how mixing duration affects slurry viscosity; (3) how
the internal arrangement of slurries changes with mixing time; (4) how composition ratios
affect slurry viscosity.

2. Materials and Methods

The active material used in this experiment was Imerys SFG 6 Mag-E graphite powder
(Hitachi, Ltd., Chiyota, Japan) with a particle size of 6 µm diameter. The acetylene carbon
black powder had a mean particle size of 50 nm (Denka, Tokyo, Japan). The polymer binder
used in this experiment was carboxymethyl cellulose sodium salt (CMC) (Sigma-Aldrich, St.
Louis, MO, USA), with weight average molecular mass of 250,000 Dalton and 0.7 degrees
of substitution. Previous publications found that combining active material and conductive
additive first, then polymer and solvent later in the mixing process can improve discharge
capacity retention [13,14]. This will be the mixing order used for this experiment.

A 1% (percentages are expressed by weight) carboxymethyl cellulose (CMC) slurry
was prepared as follows: 0.2 mg of dry CMC powder were added to 20 mL of water in
a small jar. Following a similar process, 0.1 mg of carbon black powder was added to
another 1% CMC slurry to make up a 1% CMC, 0.5% carbon black slurry. A third slurry
was prepared by adding 9 mg of Mag-E graphite powder. Three additional slurries with
the same compositions as the first three except with 2% CMC (0.4 mg of CMC) were
also prepared. In summary, the following slurry compositions were prepared: 1% CMC;
1% CMC and 0.5% carbon black; 1% CMC, 0.5% carbon black, and 45% graphite; 2%
CMC; 2% CMC and 0.5% carbon black; 2% CMC, 0.5% carbon black, and 45% graphite.
Thirty zirconium oxide mixing balls (with 2 mm diameter) were added to accelerate the
mixing process.

The slurries were mixed using a Paul O. Abbe Laboratory Jar Rolling Machine that
ran at approximately 300 RPM for approximately 3 days. From each slurry, a small sample
(approximately 5 mL) was extracted and evaluated in a Brookfield DV-E Viscometer with
an HB-3 spindle. Every experiment described here was conducted at a room temperature
of approximately 23 ◦C. The sample jars were then placed into the rolling machine for
approximately one additional day, after which the viscosity measurements were repeated
to check for consistency. Each test was repeated 3 times.

To test the effect of spindle speed, 1% and 2% CMC slurries with and without carbon
black and graphite were tested. The slurries had been mixed for 3 days. The viscosity
was reported at the highest spindle speed at which a consistent reading was obtained. For
the 1% CMC mixture, spindle speed ranged from 2 to 35 RPM. The 2% CMC mixture was
tested between 0.25 and 2 RPM as the readings were inconsistent at higher speeds.

To examine the influence of mixing duration on viscosity, 1% CMC slurries were
prepared as before, but the samples were extracted after mixing for 30 min, 45 min, 1 h,
2 h, 3 h, 5 h, 18 h, and 3 days. At each time interval, viscosity was measured at a spindle
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speed of 10 RPM, after which micrographs were obtained. It was found that 10 RPM was
the highest spindle speed at which all the 1% solutions gave stable readings.

To prepare the micrographs, a 1 mL sample of the slurry was placed in the middle of
the microscope slide using a pipette. A coverslip was then placed on top. The slide was
placed under an optical microscope and images were taken at various magnifications.

To examine the influence of compositional variation, slurries were prepared as before
with approximately 3 days of mixing and were tested using the viscometer operating at 2
RPM, the highest readable speed for all samples. Above 2 RPM, the most viscous slurries
did not give consistent readings.

3. Results and Discussion

Figure 1 shows the viscosity of the slurries as a function of spindle speed. In each
instance, the data were fit with a linear approximation. The consistency check between
the 3-day sample and the 4-day sample did not show any directional bias. As the speed
of the viscometer increased, the slurry viscosity tended to decrease, demonstrating shear-
thinning behavior. Previous studies also found CMC electrode slurries to have similar
properties [15,16]. In contrast, the viscosity of a Newtonian fluid does not depend on the
shear rate. A possible explanation for the shear-thinning behavior is that as the shear rate
of the viscometer increases, the arrangement of slurry components changes in a way that
reduces mechanical shear resistance, thus lowering viscosity [16]. In addition, there could
be a change in polymer chain alignment resulting in a disentanglement of the polymers in
the slurry [15].
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Figure 1. Viscosity versus spindle speed of (A) 1% carboxymethyl cellulose (CMC) and 1% CMC, carbon black and graphite
slurries; (B) 2% CMC and 2% CMC, carbon black, and graphite slurries.

Figure 2 displays the effect of mixing time on the viscosity of a 1% CMC slurry and a
1% CMC, graphite, and carbon black slurry measured at a spindle speed of 10 RPM. 2%
CMC slurries were also tested, but there was not a single spindle speed where all viscosity
readings were stable. The viscosity at the 18 h and 3 day mixing mark were not shown as
their values were within the ranges of the previously tested samples. Measured viscosity
values appeared to be insensitive to mixing time. Thus, one might suspect the suspension
properties have stabilized and no additional mixing is necessary. These results differed
from those of the experiment conducted by Kim et al. [13], in which the researchers found
a negative correlation in mixing duration and viscosity. This could be explained by the fact
that their experiment involved different materials (PVDF as a polymer binder and LiCoO2
as active material) the viscometer spindle speed was 1000 RPM. The rate of dissolution of
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CMC powder in water depends on molecular weight [17], therefore, this study starts from
a fully dissolved CMC in water solution. It is also possible that the interactions between
the binder and active material of other binders (such as PVDF) were different than in the
CMC slurries, requiring longer mixing times to stabilize.
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These results can be further understood by examining optical microscope images of
the slurry containing 1% CMC, carbon black, and graphite as shown in Figure 3. Images
A, C, and E (left column) represent the slurry mixed for 2 h at magnifications of 50×,
100×, and 200×. Images B, D, and F (right column) represent the slurry that was mixed
for 4 h at 50×, 100×, and 200× magnifications. All images were converted to grayscale.
Dark regions are visible in all of the micrographs and presumably represent the solid
components of the slurry: carbon black and graphite. Carbon black particle diameters
range from 20 to 60 nanometers [18,19], so one would not expect to see individual particles
in these micrographs. However, it is possible that they could be visible as clumps or in
diffuse form, blocking light at sufficiently high local concentrations. Graphite particles,
which are substantially bigger [20], could be inferred to make up most of the larger dense
black spots throughout the images because the slurries are composed of 45% graphite
compared to 0.5% carbon black by weight. Their densities are similar; carbon black has
a density of 1.75 g/cm3 [21], whereas the density of graphite is 2.25 g/cm3 [22], so the
graphite should occupy slightly more than 100 times the amount of volume occupied by
carbon black when accounting for weight percent. However, carbon black could be much
more evenly dispersed due to its smaller particle size.

Due to the difference in particle size, the sharply defined black clumps in all of the
images are presumed to be graphite. We presume that the blurry, “cloudy” black regions in
images C, E, and F are made up of the much smaller carbon black particles. In image A,
the clear spot near the center of the image might be undissolved CMC.

Between images A and B (2 h and 4 h, 50×), the graphite arrangement in image B
appeared more uniform. In image B, there were fewer large clumps and the solid material
appeared to be more homogenous. This suggests that mixing was still incomplete at the 2
h mark. At a higher magnification, the cloudy regions visible in image C (2 h, 100×) were
not visibly apparent in image D (4 h, 100×). The visible changes from E-F (200×) were in
accordance with those from C-D. Once again, the cloudy regions were very apparent in
image E (2 h, 200×), but were barely visible in image F (4 h, 200×). In both of these cases,
the images taken after 4 h of mixing appeared to have more open space. One possibility is
that the carbon black in the previously cloudy regions had been evenly dispersed into the
open spaces. Another possibility is that the cloudy regions condensed into a denser form,
such as surface coatings. Between images F and D, cloudy regions that were not easily seen
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in image D became evident at the higher magnification of image F. This suggests that as
the slurries are mixed for longer periods, the cloudy carbon black regions continued to
disperse, becoming less visible.
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(C) 2 h of mixing (100×); (D) 4 h of mixing (100×); (E) 2 h of mixing (200×); (F) 4 h of mixing (200×).

Drawing from these images and previous experiments, changes in internal arrange-
ments seemed to not necessarily correspond with changes in viscosity measurements. The
experiment in which mixing time was varied showed a viscosity stabilization after around
2 h of mixing, suggesting that no more mixing was necessary. However, while observing
the micrograph images, given the notable differences between the 2 h and 4 h images, it
seems that the slurry had not reached a final internal state after 2 h of mixing.

The final experiment compared the effect of CMC, graphite, and carbon black on
slurry viscosity (Figure 4). Slurries were tested at a spindle speed of 2 RPM and after 72 h
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of mixing. The numbers in the figure are averages of three trials, and error bars (ranging
from 5 to 10%) show the standard deviations. Most notably, the addition of extra CMC
caused a significant increase in viscosity in slurries with 2% CMC over slurries with 1%
CMC. The addition of carbon black and graphite to the slurry had a relatively modest
effect on viscosity, almost ten times less than that of the additional 1% CMC. The polymer
binder clearly has the greatest impact on a per-weight basis. Although conventional PVDF
and N-methyl-2-pyrrolidone (NMP)-based battery slurries might be significantly different
from our CMC and water-based slurries, we note that Malvern Panalytical conducted a
study using PVDF and NMP slurry and obtained a qualitatively similar conclusion. Their
experiment found that a slurry composed of PVDF and NMP had a viscosity 200 times
higher than a solution of just NMP [23]. We speculate the increased viscosity is due
to the innate characteristics of the polymer. It acts as a glue and as the macromolecule
entangles with itself and other slurry components, it creates a large resistant force against
the viscometer [24].
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4. Conclusions

This study examined the consequences of aspects of the battery electrode slurry
preparation process on viscosity. Based on the experiments described here, it is evident
that spindle speed, compositional ratios, and mixing time all influence slurry viscosity. The
electrode slurries exhibited shear-thinning behavior, possibly due to agglomerate evolution
and polymer chain disentanglement. Viscosity was largely unaffected by mixing time.
While this might lead one to suspect that the slurry properties had stabilized within even
the shortest mixing time tested (30 min), micrographs of a sample slurry composition
suggested that internal component arrangement did not stabilize after even two hours
of mixing. This suggests that stable slurry viscosity measurements are not sufficient to
establish that the slurry microstructure has reached a steady state. Finally, CMC was
confirmed to have a significantly larger impact on slurry viscosity than that of carbon black
or graphite. Future experiments could examine the necessary mixing time to reach a steady
state and analyze electrode porosity and electrochemical behavior.
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