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Abstract

Cognitive control is critical for accomplishing daily tasks and
yet we experience it as effortful or costly. Researchers have
been increasingly interested in estimating how costly cognitive
control is for a given individual, to better understand underly-
ing mechanisms and predict motivational impairments outside
the lab. Here we leverage a computational model of control
allocation to (a) demonstrate a procedure for estimating indi-
vidual’s control costs from task performance and (b) highlight
the conditions under which estimated costs will be confounded
with other motivational variables. We show that costs of cog-
nitive control can be reliably estimated under perfect assump-
tions about other motivational variables. However, our simu-
lation results indicate that poorly calibrated estimates of those
other variables can lead to potentially drastic misestimations of
subjects’ control costs, compromising the validity of empirical
observations. We conclude by discussing the implications of
these analyses for assessing individual differences in the costs
of cognitive control.

Keywords: mental effort; individual differences; cognitive
control; expected value of control

Introduction
Everyday we are confronted with tasks that require us to flex-
ibly bias the processing of stimuli in accordance with relevant
task goals, engaging mechanisms that are referred to as cog-
nitive control. Despite its benefits, people seem to avoid ex-
erting cognitive control, suggesting that it is associated with
a cost (Botvinick & Braver, 2015; Shenhav et al., 2017).

The general observation that participants can increase the
amount of cognitive control allocated to a task if worth the in-
centive, but generally hold back from doing so, has lead to the
assumption that cognitive control is associated with an intrin-
sic subjective cost (Botvinick & Braver, 2015). For instance,
participants respond faster and more accurately on a cogni-
tive control task (e.g. name the ink of a color word instead of
reading the word) when offered a greater reward for their per-
formance (Krebs, Boehler, & Woldorff, 2010). Similarly, task
switching performance (Umemoto & Holroyd, 2015) and se-
lective attention (Padmala & Pessoa, 2011) seem to improve
if higher incentives are offered. The costs of control are also
reflected in participant’s preferences for tasks. Individuals
choose to avoid task switching sequences with a higher de-
mand for task switches (Kool, McGuire, Rosen, & Botvinick,
2010) and are willing to forgo rewards to avoid tasks that
impose a higher working memory load (Westbrook, Kester,
& Braver, 2013). These and other findings have led to the

development of theories that suggest that control allocation
follows from a cost-benefit analysis (Shenhav, Botvinick, &
Cohen, 2013; Kurzban, Duckworth, Kable, & Myers, 2013).

Researchers have grown increasing interest in measuring
the cost of control across individuals in order to predict be-
havior outside of the lab. Proxies of control costs, such as
demand avoidance, have been reported to correlate with IQ
(Gold et al., 2015), need for cognition (Westbrook & Braver,
2015), as well as measures of self control (Kool, McGuire,
Wang, & Botvinick, 2013) and negative symptom severity in
schizophrenia (Barch, Treadway, & Schoen, 2014). However,
indices for the cost of control that are estimated from sub-
jects’ behavior could instead reflect measures of other, con-
founded motivational variables (e.g. the subject’s sensitivity
to reward). The question arises: Does higher demand avoid-
ance or reduced task performance for a given subject reflect a
higher cost of control, a lower motivation or a reduced capa-
bility to perform the task?

In this work we utilize the expected value of control (EVC)
model (Shenhav et al., 2013; Musslick, Shenhav, Botvinick,
& Cohen, 2015) as an economically informed theory of con-
trol allocation, to derive a method for estimating control costs
based on subject’s task performance. Validating this method,
we show that an individual’s control cost function can be
estimated from task performance under correct assumptions
about other motivational variables. However, we also use
the model to expose how incorrect assumptions about these
variables can lead to misestimations of control costs, limit-
ing their predictive validity with respect to out-of-lab perfor-
mance. The code for all computational simulations can be
accessed at github.com/musslick/CogSci-2018a.

Control Cost Estimation Based on
Expected Value of Control Theory

The EVC theory by Shenhav et al. (2013) proposes that the
optimal amount of control is determined by maximizing the
expected value of control, that is, the expected utility of im-
plementing a control signal with a given intensity u minus an
intrinsic cost that scales with the intensity of the signal

EVC(u,S) =
n

∑
i=1

(P(Oi|u,S)V (Oi))−Cost(u) (1)

where P(Oi|u,S) is the probability of achieving outcome
Oi (e.g. correct response) with i ∈ (1, ...,n) where n is the
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number of possible outcomes, V (Oi) is the perceived value of
reaching that outcome (e.g. the monetary value of responding
correctly) and Cost(u) is the cost of implementing the control
signal with intensity u. It is hypothesized that the control sys-
tem chooses to implement the control signal with the maximal
expected value of control:

u∗ = argmax
u

EVC(u,S) (2)

Provided that participants’ behavior is a result of the re-
ward maximization process formulated in Equations 1 and 2,
it is possible to solve for the derivative of Cost(u)

0 =
dEVC

du
=

n

∑
i=1

(
dP(Oi|u,S)V (Oi)

du

)
− dCost(u)

du
(3)

Cost(u)
du

=
n

∑
i=1

(
dP(Oi|u,S)

du
V (Oi)

)
. (4)

In experimental settings where there is only one cor-
rect (and rewarded) response to a given stimulus, i.e.
V (Ocorrect) > 0 and V (Oi) = 0 with i ∈ (2, ...,n), Equation
4 reduces to

dCost(u)
du

=
dP(Ocorrect |u,S)

du
V (Ocorrect). (5)

With this setup it is possible to compute the first order
derivative of the cost of control function dCost(u)/du from
the value of the reward provided for responding correctly
V (Ocorrect), as well as the derivative of participants’ accuracy
P(Ocorrect |u,S). The functional form of the cost function can
be approximated by integrating dCost(u)/du.

Estimating the functional form of Cost(u) requires sam-
pling multiple values of dP(Ocorrect |u,S)/du. This can be
achieved experimentally by manipulating the amount of re-
ward an agent receives for responding correctly on the same
task. Each reward condition k is associated with an op-
timal control signal u∗k and a corresponding task accuracy
P(Ocorrect |u∗k ,S), leading to different samples of Cost(uk).
Note that this procedure can be applied to any experimental
setting with a fixed trial difficulty and varying reward struc-
ture where, in its simplest form, there is only one correct, re-
warded response associated with each trial (e.g., in the Stroop
task only the response indicating the ink color of the word is
considered correct and rewarded). These criteria can be met
by most paradigms that are used to assess controlled behavior.

The control cost estimation procedure based on the EVC
model exposes what information an experimenter would
need to estimate control costs. This includes the subject’s
task accuracy as a function of her control signal intensity
P(Ocorrect |u,S), as well as her subjective value as a function
of reward V (Ocorrect). The former is a function of task au-
tomaticity, i.e. the ability to perform the task via automatic
processes, without allocation of control. The latter depends
on the subject’s sensitivity to monetary incentives (reward
sensitivity), as well as on the perceived value of performing
well on the task without external incentives (accuracy bias).
Attempting to make inferences about control costs without

incorporating these factors can be problematic. In the next
section we will define a ground truth for these variables be-
fore going onto exploring how sensitive control cost estimates
are to measurement error in these variables.

Control Signal u

Control Cost Function

Control Signal u

Outcome Probability 

Function

Reward ($)

Subjective Value

Function

1» For every trial in a given 
task environment S, 
compute EVC for all 
possible control signal 
intensities

3» Perform task with optimal 
control signal intensity

2» Determine control signal 
intensity with maximum EVC

Agent Model

Control Signal u

$

$$

$$$

1» Map measured task accuracy to 
assumed outcome probability function

2» Compute derivative of 
measured task accuracies

Control Signal u

$

$$

$$$

Cognitive Control Cost Estimation

3» Compute derivative of 
cost function and integrate

Control Signal u

Estimated

Control Cost Function

$ $$
$$$

Task Environment

RED$ RED$$ RED$$$

Experiment Conditions

» Control-demanding task (e.g. Stroop) 
with 
- fixed task difficulty 
- varying reward for correct response

» Assess mean task accuracy for each 
reward condition

Figure 1: Control cost estimation procedure. The goal is
to infer the agent’s true subjective cost that scales with the
amount of control u allocated to a task (shown in red). Es-
timating these costs involves measuring the agent’s perfor-
mance on a given task across different reward conditions and
computing the derivative of the agent’s cost of control for
each reward condition.

Parameterization of Agents and
Task Environment

An EVC agent is assumed to allocate control by taking into
account an intrinsic cost that scales with control signal inten-
sity. While Shenhav et al. (2013) do not commit to any par-
ticular functional form, they suggest that the cost of control
increases monotonically with the amount of control allocated
to a task. In the simulations below we chose an exponential
cost function as the ground truth for a given agent j as

Cost(u) = ec ju−1 (6)

where the cost parameter c j scales the increase in cost
of control with one unit of control signal intensity u. Note
that the parameterization of Cost(u) may vary across dif-
ferent types of control signals and can, in principle, differ
across cognitive control paradigms. We will also validate
the estimation of other functional forms, such as quadratic
Cost(u) = c ju2 and linear function Cost(u) = c ju.

The probability of responding correctly is a function of the
amount of control u that a subject allocates to a given task.
We assume that this probability increases monotonically with
the amount of control intensity allocated, following the sig-
moid function

P(Ocorrect |u,S) =
1

1+ e−15u−a j,S
(7)
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where a j,S determines the degree of task automaticity: The
higher a j,S, the easier the task, that is, the less cognitive con-
trol is needed to reach the correct outcome. Note that a j,S
depends on the task environment S, as well as the task profi-
ciency of subject j.

Finally, an agent’s subjective value can be described as a
function of the reward (e.g. monetary compensation) pro-
vided for a correct response. Here we assume that the value
of the correct outcome simply corresponds to

V (Ocorrect) = v jR(Ocorrect)+b j (8)

where R(Ocorrect) is a monetary reward that is provided in
the event of a correct response, v j is the reward sensitivity of
the agent and b j is the baseline value that the agent assigns to
correct responses (accuracy bias).

Estimating Control Costs
Under Correct Assumptions

We validated the estimation procedure above for three differ-
ent functional forms of control costs (exponential, quadratic
and linear). For each functional form, we parameterized 100
agents with different control cost parameters c j, ranging from
1 to 4 in 100 equally spaced steps. We fixed parameter values
for task automaticity (a j =−7.5), reward sensitivity (v j = 1)
and accuracy bias (b j = 0) across all agents.

We applied the estimation procedure above to sample mul-
tiple estimates of Cost(u), where each sample was obtained
under a different reward condition. That is, we manipu-
lated the amount of reward provided for answering correctly
R(Ocorrect) from $0 to $1 in steps of $0.01 and assessed con-
trol cost estimates for each reward condition based on an
agent’s task performance. Critically, control cost estimates
were obtained assuming perfect knowledge of an agent’s task
automaticity, reward sensitivity, as well as accuracy bias.

(a) (b)Cost of Control Expected Value of Control
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Figure 2: Estimating the cost of cognitive control under cor-
rect assumptions. (a) The cost of control as a function of con-
trol signal intensity for different functional forms with c j = 2
(solid lines). Circles represent estimates of control costs for a
given control signal intensity that were obtained from perfor-
mance measures taken in different reward conditions. (b) The
EVC for an agent with exponential cost function is plotted for
varying control signal intensities and reward conditions. The
agent chooses to allocate control with an intensity that yields
the highest EVC (red line).

We quantified how well the true control cost functions were
estimated by first fitting an assumed cost function to sampled

control cost estimates. We then linearly regressed agents’ true
control costs parameter c j against the estimated parameter ĉ j.
A perfect control cost estimation, i.e. an identical mapping
between true and estimated control costs, should yield a reli-
able regression coefficient with value 1.

Figure 2a shows estimation results for different functional
forms of control costs. Estimated control costs appear to
match true control costs for exponential cost functions, b =
0.99971, t(99)= 3140.1655, p< 10−246, quadratic cost func-
tions, b = 0.95311, t(99) = 53.8651, p < 10−73, as well
as linear cost functions, b = 0.99518, t(99) = 787.3261,
p < 10−187. Note that the maximum EVC for non-zero re-
wards is mostly located at high control signal intensities, lim-
iting the domain for sampled control costs (Figure 2b).

Estimating the Cost of Cognitive Control
Under Incorrect Assumptions

Having provided a proof of concept for the estimation pro-
cedure, we will now demonstrate how incorrect assumptions
about other motivational variables can lead to potentially
drastic misestimations of subjects’ control costs. We will first
perform a sensitivity analysis that exposes how individual dif-
ferences in control costs between two simulated agents can
be misestimated as a function of systematic individual differ-
ences in other variables. We then extend this analysis to in-
vestigate how unsystematic variability among other variables
can impair the recovery of control costs in a population of
agents. Finally, we will show how individual differences in
those variables can give rise to spurious correlations between
agents’ estimated control costs across experiments.

Sensitivity Analysis
The estimation of individual differences based on task per-
formance relies on assumptions about all variables that con-
tribute to task performance. Here we assess how well we
can estimate the true difference in the cost of control for two
agents. We are specifically interested in determining bound-
ary cases for which estimates falsely suggest that the true re-
lationship between the control costs for two agents flips.

In this simulation we consider two agents with an expo-
nential cost function, one with a relatively low cost of con-
trol (c1 = 2) and one with a relatively high cost of control
(c2 = 3). In our estimation of control costs we assume that
agents share the same task automaticity (a′1 = a′2 =−7.5), re-
ward sensitivity (v′1 = v′2 = 1) as well as the same accuracy
bias (b′1 = b′2 = 0) but we will vary the true values for each
parameter away from the assumed value.

Using the estimation procedure described above we at-
tempted to recover the differences in control costs between
the two agents as a function of how much the true parame-
ter values for one of the motivational variables deviates from
the assumed parameter value. We quantified the relationship
between estimated control costs as the difference between es-
timated control cost parameters for both agents ĉ2− ĉ1. If the
distance equals 1 then the relationship is perfectly recovered
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since c2−c1 = 1. If the distance is above 1, or between 0 and
1 then we consider the relationship to be qualitatively in line
with the true relationship but quantitatively overestimated or
underestimated respectively. A distance below 0 implies a
false inference about ordinal differences in costs, i.e. the cost
parameter of agent 1 is incorrectly estimated to be larger than
the cost parameter of agent 2.
(a) (b) (c)
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Figure 3: Sensitivity analysis results. Plots indicate the es-
timated difference in agents control costs for different true
values in agents’ (a) task automaticity (b) reward sensitivity
and (c) accuracy bias. The color indicates the value of the es-
timated difference in control costs parameters ĉ2− ĉ1. If the
distance is 1 then the difference is perfectly recovered. Values
below 0 (e.g., yellow and red) indicate reversals of the ordinal
relationship of agents’ control costs. Values between 0 and 1
(green to dark blue), and greater than 1 (light blue) retain the
ordinal relationship but quantitatively under- or overestimate
the true difference. Dashed black lines show the assumed pa-
rameter value of each agent that is held constant across all
simulations. The black diagonal line indicates a fixed ratio
between the true parameters of the agents that matches the
ratio of assumed parameters.

Figure 3 shows the results of the sensitivity analysis for
variations in all agent parameters. As expected, the deviation
between the true and assumed values for other motivational
parameters can significantly alter the estimated difference in
control costs (up to a point at which the ordinal relationship
between agents is flipped, see yellow and red areas in Figure
3). However, estimated costs can accurately recover the ordi-
nal relationship of agents’ true control costs (c1 < c2) even if
false assumptions are made about other parameters. That is,
the cost estimation procedure still recovers a smaller control
cost for agent 1 compared to agent 2 (ĉ1 < ĉ2) if we under-
estimate the task automaticity of agent 1 relative to agent 2.
Finally, our analysis yields different sensitivity patterns for
different agent parameters. For instance, cost estimates ap-
pear to be relatively sensitive to changes in the ratio between
the agents’ task automaticity. However, as the true accuracy
bias or reward sensitivity of agent 1 increases, control cost
estimates remain robust to deviations in corresponding pa-
rameter values for agent 2. Note that these observations are
limited to the tested range of true parameter values and the
specific set of assumed parameter values.

Limitations on Control Cost Estimation as a
Function of Variability in Other Variables
Several studies have attempted to assess the relationship be-
tween proxies for control cost and other, related criteria (e.g.

self-control measures) across individuals (Kool et al., 2013;
Westbrook et al., 2013; Gold et al., 2015). Often, these ap-
proaches do not factor in other motivational variables (e.g.
task automaticity, reward sensitivity or accuracy bias), thus
making the implicit assumption that participants don’t differ
with respect to these variables. Here we extend our previous
analysis to investigate how unsystematic variability among
agents in terms other motivational variables can impose con-
straints on the ability to recover control costs. Critically, any
such constraint would limit an experimenter’s ability to re-
veal potential relationships between the true control cost of a
subject and other, related criteria (e.g. self-control measures).

We performed separate investigations for each motivational
variable. Every investigation entailed separate experiments,
each involving 100 simulated agents. The control cost pa-
rameter c j was varied across agents from 1 to 4 in steps of
0.02 within an experiment. The parameter for the motiva-
tional variable of interest was drawn from a normal distribu-
tion with means µa = 7.5 (task automaticity), µv = 1 (reward
sensitivity) and µb = 0 (accuracy bias). The standard devia-
tion for the relevant variable was varied across experiments
while the other two motivational variables were fixed to the
mean. The standard deviation was varied for all motivational
variables σ2

a,σ
2
b,σ

2
v from 0 to 10 in steps of 1. Each standard

deviation condition involved 10 experiments.
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Figure 4: Recovery of control costs as a function of variability
in other motivational variables. The correlation between true
and estimated control costs within an agent pool is shown as a
function of variation in either (a) task automaticity, (b) reward
sensitivity or (c) accuracy bias across agents. Solid lines plot
the mean correlation. Each cross corresponds to a simulation
experiment with 100 agents.

We obtained control cost estimates for each experiment by
varying the reward of the correct outcome R(Ocorrect) from
$0 to $1 in steps of $0.01 and applying the estimation pro-
cedure described above under the (false) assumption that pa-
rameters for motivational variables are the same across agents
(a′j = −7.5,v′j = 1,b′j = 0). We then assessed our ability to
recover control cost estimates, quantified as the correlation
between true and estimated control cost parameters across
agents. To investigate how this correlation depends on the
variability for any given motivational variable in the agent
pool, we linearly regressed the correlation between true and
estimated costs against the standard deviation of that variable.

We find that the correlation between true and estimated
control costs decreases with an increased population stan-
dard deviation of task automaticity, b = −0.064, t(99) =
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−25.9268, p < 10−44, reward sensitivity, b = −0.0243,
t(99) = −7.12, p < 10−9, and accuracy bias, b = −0.0053,
t(99) = −35.1012, p < 10−56. That is, the presence of (un-
accounted) variation in any of those variables among subjects
can limit the experimenter’s ability to estimate true individual
differences in control costs. Interestingly, the spread of cor-
relations across experiments increases with the variance of
task automaticity and reward sensitivity, suggesting that the
reliability of cost estimates should decrease as cross-subject
variance in those variables increases.

Spurious Correlations of Control Cost Estimates
Between Different Experiments
Apart from studying differences in subjects’ control costs
within an experiment, a researcher may be interested in relat-
ing such estimations across experiments, for instance, by cor-
relating different proxies for control costs, e.g. measures of
demand avoidance in the demand selection task (DST, Kool
et al., 2010) with measures of cognitive effort discounting
(COGED Westbrook et al., 2013). However, the cognitive
control mechanisms involved in the two tasks may not be the
same. Thus, it is possible that the costs of control across
the two paradigms are not related. Here we will explore
whether correlations between estimated control costs across
paradigms can arise despite the absence of a true correlation.

Similar to the previous section we investigate the effect of
each motivational variable (task automaticity, reward sensi-
tivity, accuracy bias) separately. Each scenario involves 100
agents that are tested in two different paradigms, each of
which may require different types of control signals. To ex-
pose spurious correlations we will assume that an agent’s true
cost parameter in paradigm 1 is unrelated to its true cost pa-
rameter in paradigm 2. Thus, any estimated non-zero corre-
lation of agents’ control costs between paradigms would be
spurious. However, we randomly sampled the parameter for
the motivational variable of interest such that there was a cor-
relation between the true parameter value in paradigm 1 and
the corresponding parameter value in paradigm 2 (ra, rv, rb).
E.g., a high correlation of task automaticity across paradigms
would imply that an agent with higher task automaticity in
paradigm 1 would also have a higher task automaticity in
paradigm 2. We varied this correlation from 0 to 1 in steps
of 0.1 across experiments. Other motivational variables were
held constant (a j =−7.5, v j = 1, b j = 0).

To estimate the control cost parameters we varied
R(Ocorrect) across experiment conditions and applied the esti-
mation procedure described above. We assessed the correla-
tion rĉ between the estimated control cost parameters of both
paradigms for each experiment. This correlation was taken as
the dependent variable and regressed against the manipulated
correlation of the motivational variable ra, rv or rb.

Our results yield spurious correlations between control
costs estimated across different paradigms. These spurious
correlations increased as the relationship between agents’
task automaticity, b = 0.4670, t(99) = 15.9403, p < 10−29

and reward sensitivity, b= 0.2881, t(99) = 9.4694, p< 10−14

increased across paradigms. However, no systematic spurious
correlations occurred for cross-experiment correlations in ac-
curacy bias, b =−0.0195, t(99) =−0.6204, p = 0.5366.

General Discussion and Conclusion
The cost of cognitive control and its estimation from behavior
has become an attracting field of study for many researchers.
While some studies were able to identify relationships be-
tween behavioral proxies of control costs and other criteria,
they were often derived without theory and under neglect of
other, confounding variables. In this work we derived a cost
estimation method from a computational model of control al-
location (Shenhav et al., 2013; Musslick et al., 2015). We
demonstrated that it can recover the functional form and pa-
rameterization of the cost of control from task performance.

Yet, our results reveal how quantitative and qualitative mis-
estimations can arise if the experimenter does not take into
account individual differences related to other variables (e.g.
task automaticity, reward sensitivity and, to a lesser extent,
accuracy bias) that confound the measures from which con-
trol costs are estimated. The sensitivity analyses described
here provide a way of assessing the strength of these distor-
tions. However, the analysis revealed that it is possible to cor-
rectly estimate ordinal relationships of individual costs, espe-
cially if one makes correct assumptions about the ordinal re-
lationship of other motivational parameters between subjects.
Moreover, true ordinal relationship between the control costs
of two subjects (e.g. subject A having a higher cost than sub-
ject B) is more likely to be identified if these two subjects
share a similar relationship with respect to other variables
(e.g. subject A has a lower reward sensitivity, lower accuracy
bias and lower task automaticity than subject B). This sug-
gests that the experimenter may not need perfect knowledge
about the exact value for such parameters (e.g. task auto-
maticity) for every subject if, instead, the experimenter knows
about the ordinal relationship of those parameters between
subjects. Finally, we demonstrated that any between-subject
variability in other motivational variables can (a) generally
limit the ability to recover true costs and (b) lead to spurious
correlations of proxies for control costs across experiments.
Accounting for these individual differences is therefore criti-
cal to obtain valid cost estimates from individuals – a practice
that has been largely neglected in previous work.

These results have significant implications for attempts to
estimate individual differences in the cost of control from be-
havioral measures. That is, the experimenter must ask: If
a person shows more effort avoidance or lower task perfor-
mance , is it because they are less practiced, less motivated or
because they have a higher cost of control? To answer these
questions we recommend that researchers take additional as-
sessments of these variables into account when estimating in-
dividual differences. This may involve simple metrics such
as surveys about socioeconomic status or neural correlates of
sensitivty to rewards that are not tied to performance. Ex-
perimental manipulations may be able to reduce variance in
confounding measures, such as extensive training on a task to
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achieve a similar level of task automaticity across subjects.
Several other factors should be taken into account when

considering results from the presented estimation procedure.
The estimation procedure was performed on a noise-free,
continuous measure of performance (task accuracy) under
perfect measurement conditions. We also did not incorporate
other biases into our analysis that may confound estimates
of control costs from task performance, such as intrinsic re-
wards associated with control allocation (Inzlicht, Shenhav,
& Olivola, 2018). Our results may therefore depict a rather
liberal view of the limitations associated with estimating con-
trol costs under false assumptions. Future extensions of this
work will consider alternative expected value formulations,
such as reward rate, as well control cost estimates from other
behavioral measures like task choice.

A promising step towards a reliable estimation of control
costs is an improved understanding about why these costs ex-
ist in the first place. Recent work suggests that these costs
reflect forgone opportunities for controlled processing that
result from the inability to carry out multiple controlled pro-
cesses at the same time (Kurzban et al., 2013). The latter
can be attributed to a fundamental tradeoff in neural systems
between the learning benefit that is gained from shared rep-
resentations and the bottlenecks shared representations incur
for multitasking (Feng, Schwemmer, Gershman, & Cohen,
2014; Musslick et al., 2016, 2017). From this view, con-
trol costs may serve to reduce interference, by limiting the
number of controlled processes engaged at the same time.
This suggests an unexplored possibility for estimating control
costs based on the degree of shared representation between
tasks – a measurement that is independent of performance.

In conclusion, we argue that model-based estimation pro-
cedures can significantly improve our understanding about
the validity of estimates of the cost of control, by revealing
the conditions for reliable estimation. We hope that the in-
sights gained from our analysis will help to yield more re-
liable and valid individual difference studies on the cost of
cognitive control.
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