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ABSTRACT 

 

Development and Plasticity in the Primary Auditory Cortex 

by 

Heesoo Kim 

 
Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Shaowen Bao, Chair 

 
 
 The early acoustic environment plays a crucial role in how the brain represents 
sounds and how language phonemes are perceived. Human infants are born with the 
capacity to distinguish phonemes from virtually all languages, but very quickly change 
their perceptual ability to match that of their primary language. This has been described 
as the Perceptual Magnet Effect in humans, where phoneme tokens are perceived to be 
more similar than they physically are, leading to decreased discrimination ability. 

Early development is marked by distinct critical periods, when cortical regions are 
highly plastic and particularly sensitive to sensory input. These lasting alterations in 
cortical sensory representation may directly impact the perception of the external world. 
My thesis is comprised of three different studies, all of which investigate the role of the 
developmental acoustic environment on cortical representation and the behavioral 
consequence of altered cortical representation. 
 Passive exposure to pure-tone pips during the auditory critical period can lead to 
over-representation of the exposure tone frequency in the primary auditory cortex (A1) 
of rats. This over-representation is associated with decreased discrimination ability of 
that frequency, similar to the Perceptual Magnet Effect in humans. Another hallmark of 
human language is categorical perception. Using a computational model of A1, I show 
that certain representation patterns (which may be achieved with passive exposure to 
two distinct pure-tone pips) in A1 can lead to categorical perception in rats. This 
suggests that cortical representation may be a mechanism that drives categorical 
perception. 
 Rodents are socially vocal animals whose con-specific calls are often presented 
in bouts in the ultrasonic frequency range. These calls are vocalized at ethologically 
relevant repetition rates. I show that pure-tone pips that are presented at the ethological 
repetition rate (but not slower or faster rates) during the auditory critical period lead to 
over-representation of the pure-tone frequency. A certain subclass of ultrasonic 
vocalizations, the pup isolation calls, occurs during the auditory critical period. I show 
that there is over-representation of ultrasonic vocalization frequencies in the rat A1. This 
preferential representation is experience-dependent and is associated with higher 
discrimination ability. 
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CHAPTER 1: Introduction 
 
 The early acoustic environment plays a crucial role in shaping how sounds are 
perceived in adulthood. For example, individuals who grow in an environment where 
they exclusively hear Japanese often have difficulty distinguishing certain English 
phonemes, such as /ra/ and /la/ (Miyawaki et al., 1975). This reduction of perceptual 
sensitivity near extensively experienced sounds, often call the perceptual magnet effect, 
has been thoroughly studied with comparisons between several languages (Iverson and 
Kuhl, 1995; Kuhl, 2000). This effect is not genetic, but is highly dependent on the early 
developmental acoustic and language environment of the individual. 
 Early development is often associated with high levels brain plasticity. During 
these critical or sensitive periods, various cortical areas are particularly sensitive to their 
respective inputs. Artificially altered sensory inputs during a critical period can often lead 
to lasting changes in cortical representation. However, the same sensory inputs 
presented in a later time in life often have little effect. This was first demonstrated in the 
cat and monkey visual cortex by the seminal work of David Hubel and Torsten Wiesel 
(Wiesel and Hubel, 1965; Hubel and Wiesel, 1970; Hubel et al., 1977) and later 
demonstrated in the rodent model (Fagiolini et al., 1994). Critical period plasticity has 
also been described in the rodent barrel cortex (Fox, 1992) and the rodent primary 
auditory cortex (Zhang et al., 2001). These changes in cortical representation may 
directly impact behavioral perception (Han et al., 2007; Kim and Bao, 2008). 
 This thesis explores the relationship between developmental plasticity and 
perception. This introduction will give a brief overview of rodent primary auditory cortex 
(A1) critical period plasticity; the relationship between cortical representation and 
perception; and rodent vocalizations. The original work for this dissertation is presented 
in three chapters, two of which have been previously published. Chapter 2 is a 
computational modeling study investigating the role of cortical representation on 
categorical perception (Kim and Bao, 2008). Specific patterns of cortical representation 
are proposed to lead to categorical perception. In chapter 3, the role of temporal rate in 
spectral plasticity is explored (Kim and Bao, 2009). Specifically, trains of tone pips that 
are presented at ethologically relevant repetition rates (but not slower or faster rates) 
lead to expansion of representation of the carrier frequency in A1. Finally, chapter 4 will 
explore the cortical representation of ethologically relevant vocalization frequencies. 
Preferential representation of ultrasonic frequencies in A1 is found to be experience-
dependent and is accompanied by increased discrimination ability. 
 
Rodent A1 critical period plasticity 
 The rat auditory cortex has an orderly tonotopic gradient with low to high 
frequencies represented smoothly along the caudal-rostral axis (Sally and Kelly, 1988; 
Rutkowski, 2003). This orderly tonotopy can be altered in adults through intense training 
(Polley et al., 2006) or with co-presentation of neural modulators (Kilgard and 
Merzenich, 1998; Bao et al., 2001). However, during the developmental critical period, 
mere passive exposure to a single frequency tone can lead to substantial over-
representation of that particular frequency (Zhang et al., 2001; Han et al., 2007; Kim 
and Bao, 2009). Although the critical period window for frequency plasticity in rat A1 has 
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been defined to be between post-natal day 11 (P11) and P13 (de Villers-Sidani et al., 
2007), typically longer windows are utilized in sound exposure experiments. 
 Pure tone pips are not the only stimulus that can elicit changes in tonotopic 
representation. Broad-band noise bursts have been shown to disrupt proper 
development of frequency representation (Zhang et al., 2002; Insanally et al., 2009). 
Exposure of frequency modulated (FM) sweeps in a period of time that includes the 
tonal critical period also can result in changes in tone representation. When exposed to 
downward FM sweeps early in development (P8-P15), rat A1 appears to lose 
representation of low frequencies (Insanally et al., 2009). Interestingly, exposure to the 
same stimulus, but at different points in development can lead to differential plasticity 
effect. For example, exposure to downward FM sweep or broadband noise between 
P16 and P23 results to broader tuning bandwidth, but normal tonotopic representation 
(Insanally et al., 2009, 2010). This suggests that critical period of different response 
properties exist at different times in development.  

Efforts to see plasticity effects with multiple tones have lead to results that are 
more difficult to interpret. Passive exposure to multi-tone sequences disrupts tonotopic 
representation, but the changes in representation do not appear to be predictable by the 
stimulus (Nakahara et al., 2004). Similarly in adult animals, while nucleus basalis (NB) 
stimulation paired with single frequency tone pips lead to large increase in 
representation of that frequency (Kilgard and Merzenich, 1998), NB stimuluation paired 
with multiple tone presentations result in normal tonotopic maps (Kilgard et al., 2001). 
Further studies are required to understand the role of complex multi-tone environments 
on cortical plasticity. 
 The mechanisms underlying A1 critical period plasticity are largely unknown, 
although many mechanisms have been proposed to drive plasticity in cortex (Feldman, 
2009). In primary visual cortex (V1) the inhibitory circuit has been proposed to play an 
important role in controlling critical period plasticity (Hensch, 2005). Recently, two 
studies have found the excitatory-inhibitory balance in rat A1 neurons changes during 
early development, suggesting that similar critical period plasticity mechanisms may 
exist between A1 and V1 (Dorrn et al., 2010; Sun et al., 2010). Utilizing pharmacology 
or genetic model organisms such as mice (Barkat et al., 2011) will help us further 
understand the mechanisms underlying A1 critical period plasticity.  
 
Cortical representation and perception 
 Intense behavioral training has been shown to alter cortical representation of 
sounds (Recanzone et al., 1993; Bao et al., 2004; Polley et al., 2006). Generally 
speaking, these studies suggest increased discrimination ability is associated with 
increased cortical representation. However, it has also been shown that increased 
cortical representation via developmental exposure to 7 kHz is associated with 
decreased discrimination ability around 7 kHz (Han et al., 2007). Although seemingly 
contradictory to previous results, closer examination of the tuning curve distribution 
reveals an interesting explanation: many of the tuning curves have a peak around 7 kHz 
with a conspicuous lack of tuning curves with peaks in neighboring frequencies (Han et 
al., 2007). It has previously been suggested that discrimination is easiest along the 
slope of tuning curve (Butts and Goldman, 2006), much in line with the behavioral 
results of this study. Furthermore, this representation pattern and behavioral results are 
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quite similar to the perceptual magnet effect described in human speech perception 
(Iverson and Kuhl, 1995). Chapter 2 explores the proposal that specific distribution of 
tuning curves in A1 can give rise to categorical perception, one of the hallmarks of 
speech perception (Kim and Bao, 2008). 
 Biases in perception are not unique to human language perception. For example, 
human display increased discrimination of cardinal orientations (Girshick et al., 2011). 
Efficient representation of the visual world can explain human’s increased discrimination 
ability for cardinal orientations (Ganguli and Simoncelli, 2011). Similar mechanisms 
have been proposed to explain biases in owl sound localization (Fischer and Peña, 
2011). In addition, developmentally driven changes in rat A1 has been proposed to alter 
perceptual ability (Kim and Bao, 2008; Köver and Bao, 2010). This is explored further in 
Chapter 4, by investigating the representation of ethologically relevant con-specific 
vocalization frequencies and it’s relationship to behavioral perceptual ability. 
 
Rodent vocalizations 
 Rodents are highly vocal animals that have con-specific communication calls that 
are largely in the ultrasonic frequency range. Rat vocalizations have been broadly 
grouped by frequency into three categories: (1) 22 kHz alarm calls, (2) 40 kHz pup 
isolation calls and (3) 50 kHz adult calls that are often associated with positive affective 
states (Brudzynski et al., 1993, 1999; Knutson et al., 2002; Brudzynski, 2005; Portfors, 
2007). In adult rats, calls of different frequencies are associated with specific behaviors, 
such as fighting, feeding and running, further separating the 50 kHz adult calls into 
separate behaviorally relevant groups (Takahashi et al., 2010). These ultrasonic 
vocalizations are capable of eliciting specific behaviors. Mothers will actively search for 
pups when presented with 40 kHz pup isolation calls (Ehret and Haack, 1981; Ehret et 
al., 1987; Hahn and Lavooy, 2005) and female rodents are more receptive to sexual 
encounters after exposure to male encounter calls (McIntosh and Barfield, 1978). These 
calls play an extraordinarily important role in the social behaviors and survival of 
rodents. 
 Investigating how con-specific vocalizations are represented in cortex is 
important in helping us understand how these communication calls can elicit specific 
behaviors (Wang, 2000). Representation of vocalizations can change: maternal 
experience has been shown to alter cortical responses to vocalizations and other 
synthetic sounds (Liu et al., 2006; Cohen et al., 2011). One interesting characteristic of 
animal communication calls is that they are often presented in bouts rather than in 
isolation (Liu et al., 2003; Schnupp et al., 2006; Kim and Bao, 2009). Previous reports 
have shown that auditory cortex neurons are sensitive to the temporal structure of con-
specific calls (Wang and Kadia, 2001). In order to efficient represent ethologically 
relevant spectral frequencies, A1 may utilize the temporal information of external 
auditory stimuli to help filter enhanced representation of specific frequencies (Kim and 
Bao, 2009). This hypothesis is explored in Chapter 3. 
 Rat communication calls primarily occur in the ultrasonic frequency range. 
However, the vast majority of rat A1 studies have only investigated responses to 
frequencies up to 32 kHz (Zhang et al., 2001; Han et al., 2007; Polley et al., 2007; de 
Villers-Sidani et al., 2007; Insanally et al., 2009). The representation of ultrasonic 
frequencies in A1 extends to 64 kHz (Rutkowski, 2003; Kim and Bao, 2009). In Chapter 
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4, the representation of ultrasonic vocalization frequencies in rat A1 is investigated. 
Preferential representation of ultrasonic frequencies is found to be experience-
dependent, and this over-representation is associated with enhanced discrimination 
ability. 
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Abstract 

Categorical perception is a process by which a continuous stimulus space is 
partitioned to represent discrete sensory events. Early experience has been shown to 
shape categorical perception and enlarge cortical representations of experienced stimuli 
in the sensory cortex. The present study examines the hypothesis that enlargement in 
cortical stimulus representations is a mechanism of categorical perception. Perceptual 
discrimination and identification behaviors were analyzed in model auditory cortices that 
incorporated sound exposure-induced plasticity effects. The model auditory cortex with 
over-representations of specific stimuli exhibited categorical perception behaviors for 
those specific stimuli. These results indicate that enlarged stimulus representations in 
the sensory cortex may be a mechanism for categorical perceptual learning. 
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Introduction 
While sensory stimuli may vary continuously along their physical dimensions, the 

behaviorally significant events that they represent are often discrete. Through a process 
called categorical perception, the sensory system maps continuous stimulus spaces to 
discrete perceptual spaces (Harnad, 2003). For instance, lights of gradually changing 
wavelength are perceived as having discrete hues (Bornstein et al., 1976). Gradual shift 
in sound frequencies may lead to categorical changes of the perceived musical intervals 
(Burns and Ward, 1978). Categorically perceived stimuli may be recognized more 
quickly in the presence of distortions and contextual interferences. This efficient sensory 
processing provides the bases for higher-level cognitive functions such as verbal 
communication and music appreciation (Harnad, 1987). 

Categorical perception was first discovered in speech research and was thought 
to involve language-specific, higher-level brain mechanisms, but not the basic sensory 
processing mechanisms of auditory system (Liberman et al., 1967; Liberman et al., 
1957). Later research indicated that categorical perception occurs in a variety of non-
speech sounds (Ehret, 1992; Ehret and Haack, 1981; Nelson and Marler, 1989; 
Wyttenbach et al., 1996). In addition, speech sounds are also categorically perceived by 
animals of many species (Kluender et al., 1987; Kuhl and Miller, 1975; Kuhl and 
Padden, 1982; Kuhl and Padden, 1983). These findings suggest that categorical 
perception may be an auditory, rather than a purely phonetic, process and may be 
mediated by the auditory sensory system. 

Neural mechanisms underlying categorical perception are not well understood. 
Investigations of such mechanisms often involve searching for categorical neurons — 
those that respond preferentially to all stimuli in one category, but not to any of the other 
categories, showing sigmoidal stimulus selectivity. These categorical neurons have 
been found in the frontal cortex (Freedman et al., 2001; Romo et al., 1997). Although 
behavioral and psychophysical evidence suggest that sensory systems may mediate 
categorical perception, the neurons in the sensory cortex, which typically respond to a 
broad range of stimuli and exhibit bell-shaped tuning curves, are not considered 
categorical. 

Categorical perception may arise both through innate mechanisms and as a 
result of sensory experiences and learning (Livingston et al., 1998). Some human 
speech sounds, for instance, are categorically perceived in newborn human infants 
(Eimas, 1974) and in some model animals that have never been exposed to the speech 
sounds (Ehret and Haack, 1981; Kluender et al., 1987; Kuhl and Miller, 1975; Nelson 
and Marler, 1989; Wyttenbach et al., 1996). It has been suggested that the auditory 
systems of both humans and the model animals are innately sensitive to the acoustic 
distinctions of those speech sounds, and our vocal communication system simply 
exploits this sensitivity (Holt et al., 2004; Steinschneider et al., 2003). On the other 
hand, language experience can also alter the perceptual sensitivity of the auditory 
system to speech sounds and change their categorical boundaries (Lasky et al., 1975; 
MacKay et al., 2001; Williams, 1977). This language-specific reshaping of the phonetic 
perceptual categories occurs in the first year of life (Kuhl et al., 1992), presumably as a 
result of acoustic exposure to the speech sound environment. Categorical perception of 
pitch is also shaped by musical experiences (Burns and Ward, 1978). 
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Sensory experience in a limited window of early life has a profound influence on 
the development of the cortical sensory representations (Wiesel, 1982). Recent studies 
indicate that repeated exposure to a stimulus results in enlarged cortical representations 
of the experienced stimulus—i.e., more neurons becoming selectively responsive to the 
stimulus (Chang and Merzenich, 2003; Erickson et al., 2000; Sengpiel et al., 1999; 
Zhang et al., 2001). Similar preferential representations of experienced speech sounds 
and musical notes have also been shown in humans (Naatanen et al., 1997; Pantev et 
al., 1998). Given the profound impact of early experience both on categorical perception 
of speech sounds and musical notes, and on cortical sound representations, it is 
possible that experience-driven reorganization of the auditory cortex plays a role in 
forming perceptual categories (Crozier, 1997; Lasky et al., 1975; MacKay et al., 2001; 
Takeuchi and Hulse, 1993; Williams, 1977). In this study, we construct models of 
acoustic representations of the primary auditory cortex, and examine the effects of 
experience-induced reorganization of acoustic representation on perceptual 
discrimination and identification performances of the model primary auditory cortex. We 
show that categorical perception may arise as a result of enlarged cortical 
representation induced, for instance, by early experience. 
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Methods 
 
Modeling the frequency representations in the primary auditory cortex.  

The parameters of the model were chosen based on properties of the primary 
auditory cortical neurons documented in the literature and our unpublished 
observations. The firing rates of the neurons in the auditory cortex exhibit significant 
variability. We have recorded response magnitude to tone pips from 121 AI neurons and 
obtained a mean Fano factor value of 0.98 ± 0.21 (SD), suggesting that the neuronal 
firing may be modeled with a Poisson process. An earlier study showed more reliable 
responses of auditory cortical neurons (DeWeese et al., 2003). The difference in 
observations may be due to the use of different stimuli, experimental conditions, and 
recording techniques. We modeled the frequency representations in the primary 
auditory cortex with a population of Poisson-firing neurons. Each neuron had a 
Gaussian-shaped, response-frequency tuning curve as 

 (1) 

The maximum response magnitude, !, was set to 1 spike/tone recorded in a 50-ms 
response window for all neurons. Spontaneous firing rate of the model neurons was set 
at 1 spike/second, corresponding to " = 0.05 spike in the 50-ms response window. The 
tuning bandwidth of the model neurons, defined here as two standard deviations of the 
Gaussian-shaped tuning curve, was set at 1 octave (i.e., # = 0.5 octave). These 
response parameters were chosen for simplicity, and are consistent with properties of 
recorded neurons (Bao et al., 2001; Bao et al., 2004). We also examined in later 
sections how changes in these parameters impacted perception behaviors. For the 
model naïve AI, the best frequencies (BFs), corresponding to µ in equation 1, were 
equally spaced along the logarithmic frequency scale from 1 to 50 kHz (Figure 2.1A).  
To model the AI of a 7.1-kHz-tone-exposed animal, best frequencies of model neurons 
in a range of 7.1 kHz ± 1 octave were shifted to have a Gaussian distribution centered 
at 7.1 kHz and a standard deviation of 0.1 octave (Figure 2.1B). 
 
Modeling frequency discrimination.  

The response of the ith neuron of the model AI to a tone of frequency f was 
denoted as Ri—the number of spikes in the response window. As the model neurons 
fire spikes in a Poisson-random fashion, the probability of the neuron responding to f 
with response Ri is 

 (2) 

where Ti is the neuron’s response-frequency tuning curve. In practice, Ri is simulated 
with a Poisson-random number with a mean of Ti(f). 

The responses of all the N model neurons (1, 2, … N) to a tone of an unknown 
frequency f were simulated as R1, R2, … RN. We obtained the maximum likelihood 
estimate of f, denoted as F, by maximizing the following log-likelihood (LL) function 
(Jazayeri and Movshon, 2006; Seung and Sompolinsky, 1993) 
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 (3) 

using a sequential quadratic programming method available in Matlab toolboxes 
(Powell, 1977). 

The F may be regarded as the “percept” of f by the model AI. As the model 
neuronal responses are stochastic, the estimated frequency F may deviate from the true 
frequency f. Such variability of “perception” of the model AI determines its frequency 
decoding precision and frequency discrimination capability. To estimate this variability, 
we presented the model AI with pairs of tones of the same frequency (i.e., f1 = f2). We 
then calculated the estimates of the two frequencies, F1 and F2, and their difference, 
!F0 = |F1 – F2|. This was done 100 times to obtain the distribution of the !F0s (Figure 
2.2). The 50th percentile of all these !F0s was chosen as the threshold, so that random 
chance-level performance would be 50%. To determine discrimination performance for 
a pair of different frequencies (i.e., f1 " f2), the difference of the estimates (!F) was 
calculated 100 times to obtain the distribution of the !F. A !F greater than the !F0 
threshold indicated a pair of tones was discriminated by the model AI. The percentage 
of successful discriminations was used as the performance level. Presented in all 
graphs were means of 200 performance levels in each testing condition. The variability 
of the performance was measured with 95% confidence intervals, which cover the range 
of 2.5th and 97.5th percentile of the performance levels. 
 
Modeling frequency identification.  

In a typical behavioral identification task, the subject is presented with an 
unknown stimulus (fx) and asked to make a forced choice on which of two fixed stimuli 
(f1 and f2) is more likely to be the unknown stimulus. In our simulation, the model AI was 
presented with an unknown frequency (fx). The response of model AI to fx was denoted 
as Rx. The task was to determine which of two known frequencies (f1 and f2) was more 
likely to be the one that activated Rx. We modeled the perceptual decision process in 
the frequency identification task with a stochastic process and a deterministic process. 

The stochastic model assumes that the decision-making is a Bernoulli-stochastic 
process with two alternative outcomes—i.e., the model AI chooses either the low 
frequency f1 or the high frequency f2. We first calculated the log of the ratio of the 
likelihood that Rx was activated by f1 over the likelihood that it was activated by f2 as 

 (4)  

The probability that the model AI selected f1 as supposed to f2 is determined as 
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 (5) 

in which LLR(f1, f1, f2) is the log-likelihood ratio that a f1-activated response is activated 
by f1 as suppose to f2, and LLR(f2, f1, f2) is the log-likelihood that a f2-activated response 
is activated by f1 as suppose to f2. With fixed f1 and f2, LLR(f1, f1, f2)  and LLR(f2, f1, f2) 
are also fixed and were calculated. Thus, the probability of categorizing a frequency fx 
as f1 is a scaled linear function of the LLR(fx, f1, f2), which is a function of the unknown 
frequency fx. The probability P is bounded in the range of 0 to 1. 

The deterministic model assumes that the decision-making in the frequency 
identification task is determined solely by the perceptual process.  The following 
likelihood ratio 

  (6) 

was used to directly determine which frequency to choose in the frequency identification 
task—f1 was chosen if the ratio was greater than one, and f2 was chosen otherwise. 
This method is referred to as the likelihood ratio (LR) method. In addition, we have also 
modeled the stimulus identification process with a maximum likelihood estimation 
method (Equation 2), in which fx was decoded from Rx, denoted as Fx. The frequency 
(either f1 or f2) that was closer to Fx was chosen. This method is referred to as the 
maximum likelihood estimation (MLE) method. 

Each simulation was run 100 times, and the percentage that the model AI chose 
f1 was used as the identification index. Each point in all graphs was the mean of 200 
individually calculated identification indices in the specific testing condition. The 
variability of the performance was measured with 95% confidence intervals, which cover 
the range of 2.5th and 97.5th percentile of the identification indices. 

 
Testing stimulus discrimination in adult rats.  

All procedures are approved by Animals Care and Use Committee of University 
of California, Berkeley. Five female Sprague-Dawley rats (200-300 gm, over 2 months 
old) were trained in a tonal frequency discrimination task. Training and testing took 
place in a wire cage located in an anechoic sound-attenuation chamber. Upon 
automatic initiation of a trial, tone pips of 100-ms duration and of a standard frequency 
were played five times per second through a calibrated speaker. All tones were played 
at a 60-dB sound pressure level. After a random duration of 5-35 seconds, tone pips of 
a target frequency were played in the places of every other standard tone pips. Rats 
were trained to detect the frequency difference and make a nose-poke in a nosing hole 
within 3 seconds after the first target tone, which was scored as a hit and rewarded with 
a food pellet. False alarm rate was determined as the percentage responses to probe 
trials, in which the target frequency was the same as the standard frequency. In each 
training day, an animal was allowed to achieve 200-300 hits. The difference between 
the target and the standard tone pips were varied. The animal’s performance may be 
influenced by its motivational states and its internal response criteria. To account for 
these factors and to estimate the animals’ perceptual ability, we used the discrimination 
index (Grier, 1971; Pollack and Norman, 1964): 
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 (7) 

in which h is the hit rate and fa is the false alarm rate. A` varies from 0.5 to 1, which 
allows comparison with the discrimination probability of the cortical model (see below). 
 
Testing stimulus identification in adult rats.  

Animals were first trained to recognize two prototype tonal frequencies. In each 
trial, 100-ms tone pips of a prototype frequency were played at a rate of 5 pips per 
second and at 60 dB SPL. The animal was trained to make a nose-poke in one of two 
nosing holes (either on the left or on the right) depending on which one of the two 
prototype frequencies (6 kHz or 12 kHz) was being played—i.e. a identification task. A 
nose-poke in the correct hole within ten seconds from the onset of the sound was 
considered a “hit” and rewarded with a food pellet. A nose-poke in the wrong hole or 
inaction in the 10-s period was a miss and not rewarded. It takes approximately 10 days 
for naive animals to reach an asymptotic performance level of approximately 80% 
correct recognition. Then, we tested how animals perceived and categorized a series of 
9 tones of intermediate frequencies. These frequencies were logarithmically equally 
spaced between the two prototype frequencies. The prototype sounds were tested in 
regular trials (80% of all trials). The intermediate sounds were tested in probe trials 
(20%), in which the animal did not receive a food pellet regardless of the animal’s 
response. We did not reinforce the animals in these trials to avoid biasing their 
responses, which could interfere with the perceptual tests. To keep animals motivated 
with food pellet reward, we included 80% regular trials in which correct responses to 
prototype stimuli were rewarded. The percentage of trials that animals made nose-poke 
in the left nosing hole (corresponding to the lower frequency) was used to construct the 
identification function. 
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Results 
 
Psychometric function of the model AI 

We first examined the model performances as a function of the input frequency 
difference and the total number of neurons in the model AI. As shown in Figure 2.3, the 
psychometric performance-difference function was approximately sigmoidal. Having 
more model neurons improved the model performance, as indicated by a leftward shift 
of the psychometric function. The shape of the psychometric function, however, did not 
change with the neuron numbers. As predicted (Seung and Sompolinsky, 1993), the 
discrimination threshold of the model AI, as measured with the half-height frequency 
difference, was inversely proportional to the square root of the number of neurons 
(Figure 2.4A). 

We examined animal performance in a frequency discrimination task, in which 
discrimination of various frequency differences was tested in adult rats that have not 
been exposed to specific sound (hereafter referred to as naïve animals, in contrast to 
sound-exposed animals with altered frequency representations). The psychometric 
function of naïve rats was sigmoidal, similar to that of the model AI. Furthermore, the 
performances of the model AI with 800 neurons fitted well with the animal 
performances. The total number of neurons in the primary auditory cortex of the rat (1-2 
mm2 in size) is on the order of 100,000, including local and inhibitory neurons(Cherniak, 
1990; O'Kusky and Colonnier, 1982). The relatively small number of neurons required 
for the model to reach the performance levels of the animals is consistent with earlier 
modeling results (Paradiso, 1988). All simulations presented in the subsequent sections 
used model AIs with 800 neurons. 

The tuning bandwidth, response magnitude and spontaneous firing rate of the 
model neurons were also varied to examine how these properties influence perceptual 
discrimination behaviors of the model AI. Frequency discrimination threshold decreases 
with greater response magnitude, narrower tuning bandwidth and lower spontaneous 
firing rate (Figure 2.4, B-D). These results provide constraints for further comparison 
between model and animals performances. 
 
Perceptual discrimination by sound-exposed model AI. 

One of the two behavioral traits of categorical perception is that the perceptual 
discrimination ability is worse within a category than between different categories. If a 
perceptual category forms around the experienced stimulus, perceptual discrimination 
would be relatively poor within the category. We constructed a sound-exposed model 
AI, incorporating sound exposure-induced plasticity effects: over-representation of the 
experienced frequency and under-representation of neighboring frequencies in the 
range of ± 1 octave (See Figure 2.1B and Chang and Merzenich, 2003). Simulation 
results indicate that discrimination of 0.1-octave frequency differences in the over-
represented frequency range was significantly impaired. By contrast, discrimination of 
neighboring frequencies was improved (Figure 2.5). 

These results may be understood in terms of the amount of Fisher information 
the model neurons provide for frequency decoding (Dayan and Abbott, 2001). Sensory 
neurons contribute to stimulus decoding by changing their firing rates (Bala et al., 2003; 
Luna et al., 2005; Paradiso, 1988). Two similar stimuli that are near the center of a 
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Gaussian-shaped tuning curve of a neuron will elicit similar firing rates (close to the 
maximum response magnitude). However, two similar stimuli that fall on the slopes of a 
neuron’s tuning curve, where firing rate is most sensitive to stimulus differences, will 
elicit responses of very different firing rates. In the sound-exposed AI, a large number of 
neurons become tuned near the experienced frequency. These retuned neurons are 
less sensitive to changes in frequencies near the experienced tone, because those 
frequencies fall near the center of their tuning curves. Instead, these neurons become 
sensitive to frequency changes in the neighboring frequency bands, where the slopes of 
the tuning curves are located. The limit of decoding accuracy set by Fisher information 
measure can be attained by maximum likelihood estimation, when a large number of 
neurons are involved in coding (Dayan and Abbott, 2001). Thus, discrimination 
thresholds derived from Fisher information should be similar to those calculated with 
MLE. 
 
Perceptual identification by sound-exposed model AI. 

The second behavioral trait of categorical perception is the sigmoidal 
identification function where stimuli on one side of a categorical boundary are classified 
as members of the same category. Behaviorally, it is often tested with an identification 
task, in which animals are required to classify a series of equally spaced stimuli into two 
categories. We performed frequency identification test in naive animals, and observed a 
near-linear frequency identification function (Figure 2.6). Using this result as a 
constraint, we explored three methods to model the stimulus identification process—a 
Bernoulli-stochastic process method, a likelihood-ratio threshold method and a 
maximum-likelihood estimation method (see the Methods section for details). Among 
the three methods, only the Bernoulli random process method produced near linear 
identification function for naïve model AI. The performances of the likelihood-ratio 
threshold (LR) and maximum-likelihood estimation (MLE) methods were almost 
identical, and were pooled together (Figure 2.6). The LR/MLE methods produced an 
inverted sigmoidal identification function that diverges from the corresponding animal 
behavior. The identification function generated with these two methods shows a 
complete categorical transition within a 0.2-octave frequency distance, similar to the 
frequency discrimination threshold shown in Figure 2.3. This is not surprising because 
the methods essentially perform frequency decoding, and then make perceptual 
decisions based on the decoded frequency. The result that the model AI performed 
equally well in identification and discrimination tasks when LR/MLE methods are used is 
inconsistent with experimental findings that animals generally perform worse in 
identification than in discrimination tasks (For a discussion, see Massaro, 1987), 
suggesting that the LR/MLE methods are inappropriate as models of the perceptual 
identification processes. The difference between the Bernoulli-stochastic and LR/MLE 
methods is likely due to their different assumptions about the decision-making 
process—the Bernoulli stochastic method assumes that the decision-making is 
stochastic, and the LR/MLE methods assume that the decision-making is deterministic 
(see Methods). 

Comparison of likelihood measures has been proposed as a model of the 
perceptual decision processes (Green and Swets, 1966). In simple stimulus difference 
detection tasks (e.g., stimulus discrimination), subjects may compare a likelihood of 
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having perceived stimulus differences with a threshold value to make a perceptual 
decision (as in the frequency discrimination process described above). Thus the 
performance is limited by the frequency decoding ability. In the perceptual identification 
task, however, the stimulus differences are often supra-threshold—i.e., fx is perceived 
as different from both f1 and f2. Deciding which one of f1 and f2 is closer to the unknown 
frequency fx is likely a probabilistic process, not by simply comparing an index value to a 
fixed threshold. The notion that the discrimination and identification tasks involve 
different perceptual decision processes is consistent with the findings that performances 
are generally worse in identification than in discrimination tasks (Massaro, 1987). Figure 
2.6 indicates that the performances of MLE/LR methods are as good as the 
performances of the model AI in a discrimination task, but deviate from the animal 
performance. Instead, a Bernoulli-random process with the choice probabilities 
described by the linearly scaled log-likelihood ratio may capture some aspects of the 
perceptual identification behaviors in an identification task. 

We analyzed perceptual identification behaviors of the model 7.1-kHz-exposed 
AI using the Bernoulli-random process method. The results showed that the tone-
exposed AI consistently classified frequencies near 7.1 kHz as the lower one (i.e., 5.9 
kHz) of the two prototypes (Figure 2.7). This behavior, together with the reduced 
discrimination performance near 7.1 kHz, indicates that frequencies near 7.1 kHz were 
group into a perceptual category. It is a result of the sound exposure, because it only 
occurred near the exposed frequency, but not for the frequencies above 8.3 kHz. 
 
Representations of two perceptual categories. 

The above results indicate that exposure to a single stimulus may shape a 
perceptual category near the stimulus. In psychophysical studies, categorical perception 
is typically defined between at least two categories by a peaked discrimination function 
and a sigmoidal identification function. We have also simulated cortical plasticity effects 
of exposure to two tones of different frequencies that were either 2 octaves or 0.5 
octave apart (Figure 2.8). The characteristics of the plasticity effects were similar to 
those in earlier sections of the simulations—neurons that used to be tuned to within 1 
octave of the exposed frequencies were retuned closer to the exposed frequencies, and 
the retuned best frequencies had a Gaussian distribution with a 0.1-octave standard 
deviation (same as those in previous sections, see first section of the Method).  The 
neurons that used to be tuned to the frequencies in-between the two exposure 
frequencies were split equally between the two frequencies. Other neuronal response 
properties (tuning bandwidths, maximum response magnitudes and spontaneous firing 
rate) were unchanged. It should be noted that the specific forms of two-tone-induced 
cortical plasticity used in our simulation are hypothetical, simplified and extrapolated 
from single tone-induced effects (Chang and Merzenich, 2003; Zhang et al., 2001). 

Simulation results indicate that when the two experienced frequencies were 2 
octaves apart, the model two-tone-exposed AI showed categorical perceptual 
behaviors—a sigmoidal identification function and a peaked discrimination function. The 
discrimination function is similar to that of categorical discrimination of phonemes 
observed in animals (Kuhl and Padden, 1983). These results indicate that categorical 
perception may be mediated by populations of neurons with bell-shaped tuning curves. 
In addition, the prototypes of the categorically perceived stimuli are over-represented—
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e.g., more neurons were tuned to the categorically perceived frequencies near 3.5 and 
14 kHz as shown in Figure 2.8 A-B. Interestingly when the two frequencies were 0.5 
octave apart, no categorical perception was observed. Categorical perception would be 
established in this case if the tuning bandwidths of the neurons become narrower (data 
not shown). These results suggest that the properties of the cortical circuits constrain 
the categorical learning processes. Certain stimuli may be more learnable as 
categorical prototypes than the others. 

Figure 2.9 illustrates the population categorical responses of the model AI in 
comparison to non-categorical responses. The tones of the same frequencies activated 
overlapping and gradually shifting populations of neurons in the model naïve AI (Figure 
2.9A). In the model AI that had over-representations of 3.5 and 14 kHz tones, two 
distinctive populations of neurons were activated by tones in the two different categories 
(Figure 2.9B). In the model AI with over-representations of 5.9 and 8.3 kHz (Figure 
2.9C), the same population of neurons was activated by a range of frequencies near the 
over-represented ones. These activation patterns are consistent with the results in 
Figure 2.8, showing categorical perception when the over-represented frequencies are 
two octaves apart. 

We also varied neuronal properties—i.e., tuning bandwidth, response magnitude 
and spontaneous firing rate—and examined how they influence categorical sound 
representation. The model AI used was the same as described in Figure 2.8A, having 
over-representations of 3.5 and 14 kHz. Altering tuning bandwidth had a profound 
impact on categorical representation (Figure 2.10, A and D). When the bandwidth was 
in the range between one and two octaves, we observed two perception categories at 
the two over-represented frequencies. When bandwidth was four octaves, the 0.1-
octave frequency difference was perceived equally poorly across the tested frequency 
range, and the identification function was close to linear, suggesting that there was no 
perceptual categories. When bandwidth was 0.5 octave, there appeared to be three 
categories. Changing response magnitude altered discrimination performances, but not 
frequency identification performances (Figure 2.10, B and E). Altering the level of 
spontaneous had impact only on frequency discrimination, but not on frequency 
identification performances (Figure 2.10, C and F). 
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Discussion 
Categorical perception may be learned by exposure to specific stimuli during 

early development, or by extensive training in adulthood (Goldstone, 1994; Lasky et al., 
1975; MacKay et al., 2001; Williams, 1977). After learning, the stimuli within a stimulus 
category are perceived as being more similar, and stimuli from different categories are 
perceived as being more different. These two forms of perceptual alterations are 
referred to as acquired perceptual equivalence and distinctiveness, respectively 
(Liberman et al., 1957). They are believed to underlie categorical perceptual 
behaviors—e.g., peaked discrimination functions and sigmoidal identification functions. 
Recently electrophysiological studies have revealed that sensory exposure and 
perceptual training often enlarge cortical representations of the relevant stimuli by 
retuning of neuronal selectivity to the stimuli. In the present study, we examined the 
possibility that enlargement in cortical representation is a cortical mechanism of 
categorical perception. Our computational simulation results indicate that the perceptual 
contrast of the over-represented stimuli may be reduced, analogous to acquired 
perceptual equivalence, and the perceptual contrast of the neighboring under-
represented stimuli may be enhanced, resulting in acquired perceptual distinctiveness. 
Thus, a perceptual category may form for the over-represented stimuli. Further analysis 
of the model AI with two over-represented stimulus ranges revealed behaviors 
characteristic of categorical perception—a peaked discrimination function and a 
sigmoidal identification function. These results support the notion that enlargement in 
cortical representation mediates learned categorical perception. 

Previous electrophysiological studies have investigated neural mechanism of 
categorical perception by identifying categorical neurons—those respond to all 
members of one category but not to any members of other categories. These neurons 
may be regarded as the category readout neurons. It is still unclear what kind of 
transformation of sensory information gives rise to this category-selectivity and where 
the transformations take place. Results of the present study suggest that experience-
dependent reorganization of stimulus representations in the primary sensory cortex 
could provide the transformation underlying learned categorical perception. In the 
sensory cortex, sensory information and hence perceptual categories are represented in 
populations of neurons, each of which shows graded responses to a large range of 
stimuli. There must be readout mechanisms to transform this distributed categorical 
representation into categorical responses in single neurons. In the present study, we 
obtained categorical perceptual behaviors in the models of AI using analyses of 
likelihood measures. Whether and how the neural systems perform likelihood analysis is 
still under active investigations, and some models have been proposed (Jazayeri and 
Movshon, 2006; Zhang et al., 1998). These models may provide the needed readout 
mechanisms to transform distributed categorical representations into categorical 
responses in single neurons. 

Several computational models of categorical learning have been investigated in 
earlier studies such as unsupervised, auto associative feedback networks (Anderson et 
al., 1977) and supervised, multi-layered networks with a hidden layer and back-
propagating error signals (Harnad et al., 1991). The construction of these models was 
primarily based on theoretical considerations, and the biological plausibility of some of 
the mechanisms (e.g., the back-propagation of error signal) is unclear. In the present 
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study, the model auditory representations were based on findings of 
electrophysiological studies—e.g., more neurons become tuned to more frequently 
experienced frequency. We only considered the cortical decoding capacity and how it 
would influence animals’ perceptual performances. We did not provide accounts on how 
the experience-altered cortical decoding capacity can be transformed into categorical 
neuronal response and guide perceptual behaviors (i.e., the readout problem). The 
shaping of categorical perception with sensory exposure described in the present study 
is similar to the learning of perceptual categories by the auto-associative network in that 
both are unsupervised learning and the learned perceptual categories are represented 
in distributed population responses (Anderson et al., 1977). The acoustic 
representations modeled in the present study may also be analogous to the hidden 
layers of the multilayer network models, which may be altered by experience in animals, 
and by learning in the multilayer network models (Harnad et al., 1991). Studies of 
sensory plasticity may provide insights for constructing biologically plausible models of 
categorical learning. 

The results of this study provide some insights into cortical mechanisms of 
perceptual learning. Enlarged cortical representations of relevant stimuli have been 
observed after extensive training of adult animals to discriminate tonal frequencies 
(Recanzone et al., 1993), sound levels (Polley et al., 2004; Polley et al., 2006), temporal 
modulation rates (Bao et al., 2004), or somatosensory stimuli (Recanzone et al., 1992). 
Some of the studies show that representational sizes are highly correlated with tonal 
frequency discrimination performances after perceptual training (Recanzone et al., 
1993). These results lead to the notion that greater cortical representations are the 
neural basis for better perceptual discrimination performance. Such a simplistic view, 
however, has been challenged by opposite results showing that perceptual 
discrimination training sometimes does not alter the cortical feature representational 
map (Brown et al., 2004). Furthermore, animals with cortical representations of certain 
tonal frequencies enlarged by intracortical electrical stimulations did not show any 
improvement in stimulus discrimination performances in the over-represented frequency 
range (Talwar and Gerstein, 2001). These results suggest that perceptual discrimination 
capability may be determined by many cortical neuronal properties, and not just by 
representational sizes. This is consistent with the simulation results of the present 
study, which shows that enlarged representations of a very narrow frequency range 
may cause impaired discrimination of the over-represented frequencies. Our modeling 
results also indicate that over-represented frequencies may be discriminated better if 
the tuning bandwidths of the neurons become narrower (Figure 2.10A), or if a large 
range of frequencies are over-represented (not shown). These results help to reconcile 
the seemingly contradicting results reviewed above. 

Maximum likelihood estimation is an optimal population decoding method. It is 
not a considered biologically realistic decoding mechanism, although certain neuronal 
architectures are thought to be able to perform similar computations (Jazayeri and 
Movshon, 2006; Zhang et al., 1998).  In the limit of large numbers of encoding neurons 
and for Poisson firing rate distributions, its performance saturates the Cramer-Rao 
bound of the variance of estimate, and sets the upper limit of the performance of the 
biological systems (Dayan and Abbott, 2001; Seung and Sompolinsky, 1993). In 
essence, maximum likelihood estimation measures the maximum decoding capacity of 
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a representational system. It has been used to model visual discrimination processes 
(Paradiso, 1988). Although the successful applications of the method do not imply that 
brain decodes sensory information using a similar maximum likelihood decoding 
method, it does indicate that perceptual behaviors are correlated with stimulus decoding 
capacity of the neuronal network revealed by the method. We followed the same 
rationale in our analysis of the impact of cortical plasticity effects on perceptual 
discrimination performance. 

The information processing events underlying the perceptual identification 
behavior is unknown. The traditional view is that both discrimination and identification 
are mediated by the same perceptual processes so that their performances should 
match each other. Later experiments showed that the stimulus identification 
performance is generally worse than what would be predicted from discrimination 
functions (Massaro 1987). In the present study, animals showed a nearly linear 
identification function across a large frequency range. Such a linear identification 
function is inconsistent with a purely discrimination-based identification process, which 
would have yielded sigmoidal identification function like that of the MLE/LR group in 
Figure 2.6. We modeled identification behaviors in two steps—first, the choice 
probability is determined with the log-likelihood ratio, and, second, a Bernoulli random 
process determines the identification choices. The two steps may correspond to the two 
separate processes underlying identification behaviors—sensory decoding and 
decision-making. 

In this study, we simplified neuronal tuning properties—all neurons have the 
same firing rate, tuning bandwidth and spontaneous firing rate. Essentially same results 
were obtained with model neurons whose properties have the same distributions as 
those of recorded neurons (data not shown). The sound exposure-induced cortical 
plasticity effects were also simplified in this study, and only changes in the tuning 
frequencies were included in the analysis. Other neuronal response properties, such as 
the shapes of the tuning curves, the maximum response magnitudes, spontaneous 
firing rates, and spike timing/correlation can also be altered either by sound exposure or 
by perceptual learning (Bao et al., 2001; Beitel et al., 2003; Blake et al., 2006; Brown et 
al., 2004; Chang and Merzenich, 2003; Chowdhury and Suga, 2000; Edeline and 
Weinberger, 1993; Engineer et al., 2004; Fritz et al., 2003; Kilgard and Merzenich, 
1998; Kilgard et al., 2001; Ma and Suga, 2003; Ohl and Scheich, 1996; Polley et al., 
2004; Recanzone et al., 1993; Schoups et al., 2001; Zhang et al., 2001). Those forms of 
cortical plasticity effects could also contribute to the learning of categorical perception. 
Nevertheless, our analysis demonstrates that the enlargement of cortical 
representations could be a mechanism for categorical perception. Systematic 
examinations of categorical perception in animals that have been exposed to controlled 
sensory input would provide new insights into the neural mechanisms of categorical 
perceptual learning. 
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Figures 
 

 
 
Figure 2.1. Tuning curves of the model neurons in the model naïve primary auditory 
cortex (A) and the model 7.1-kHz-exposed primary auditory cortex (B). All model 
neurons have a maximum response magnitude of one spike per tone and a tuning 
bandwidth of one octave.  Spontaneous firings of the model neurons are not shown in 
the tuning curves. 
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Figure 2.2. Example of distributions (probability density functions) of the differences 
between the decoded frequencies (i.e., !F, where F denotes the decoded frequency) 
with the input frequencies being 0, 0.1 and 0.5 octave apart in a model naïve AI. !F 
may be considered as perceived frequency difference by the model AI. The distribution 
is shifted towards the right with increasingly greater differences in the input frequencies 
(!f). The vertical dashed line marks the 50th percentile !F value of the distribution with 
!f = 0. This value was used as the discrimination threshold. Any two tones that 
produced !Fs greater than this threshold value were considered discriminated. 
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Figure 2.3. Discrimination performances of the model naïve AI and animals as a 
function of differences between the input frequencies. The model performance was 
quantified with the proportion of all trials in which two frequencies were discriminated. 
The dashed lines show the performances of nine different models each using a different 
number of neurons. From left to right, the number of model neurons are 3200, 2262, 
1600, 1131, 800, 565, 400, 282, 200. Animal performance, shown as circles, was 
quantified with the discrimination index A`. The performance of the model with 800 
neurons matched that of the naïve animals closely. Therefore, 800 model neurons were 
used in all subsequent simulations. 
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Figure 2.4. Influences of neuronal response properties on the discrimination threshold 
of model naïve AI. Discrimination threshold was determined as the frequency difference 
at which the model AI performance is 75% (see figure 3). Discrimination threshold 
decreases with the total number of neurons in the model AI (A) and with the maximum 
response magnitude—i.e., the peak height of the Gaussian tuning curve (B). It 
increases with neuronal tuning bandwidth (C) and with spontaneous firing rate (D). A 
linear regression indicates that the threshold is inversely proportional to the square root 
of the population size. The parameters that were not systematically varied were given 
the following values: Tuning bandwidth, 1 octave; Response magnitude, 1 spike/tone; 
spontaneous activity 1 spike/second. 
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Figure 2.5. Impaired discrimination of the over-represented frequencies.  The model 
naïve AI and 7.1-kHz-exposed AI were tested on frequency discrimination ability of 
various tone-pip pairs with !f = 0.1 octaves. The model naïve AI performed the 
frequency discrimination task with the same success rate across all frequencies 
(dashed line). Model 7.1-kHz-exposed AI, which had enlarged representations near 7.1 
kHz, showed impaired discrimination performance near 7.1 kHz, and improved 
performance in the neighboring 11.9-kHz frequency range. The performance was 
quantified using the proportion of trials in which the two frequencies were discriminated. 
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Figure 2.6. Comparison of naïve animal performances with model naïve AI 
performances in a frequency identification task. The animals showed a near linear 
identification function (dashed line). Naïve model AI performance in the identification 
task was simulated with three methods, likelihood ratio, maximum likelihood estimation 
and Bernoulli stochastic process (for details, see Methods). The first two methods yield 
identical results, which differ from the animal performance. The Bernoulli stochastic 
choice method produced near linear identification function, and was used for later 
analysis of model identification behaviors. The performance was measured with the 
percentage of trials in which the tonal frequency was identified as the low frequency of 
5.9 kHz. 
 



 

 28 

 
 
Figure 2.7. Frequency identification by the model naïve AI and model 7.1-kHz-exposed 
AI. (A) The ratio of the log-likelihood that an unknown frequency is 5.9 kHz vs. the log-
likelihood that the frequency is 11.9 kHz. (B) The percentage of trials that a frequency in 
the range from 5.9 to 11.9 kHz is identified as 5.9 kHz by a naïve model AI and a 7.1-
kHz-exposed AI is shown (see Methods for details). The 7.1-kHz-exposed AI 
consistently identifies several tones as 5.9 kHz, building what looks like a perceptual 
category for lower-frequency tones. 
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Figure 2.8. Representations of two perceptual categories. (A) Model AI with over-
representations of 3.5-kHz and 14-kHz tones. The neighboring frequencies were under-
represented. The over- and under-representations were similar to those described in 
Figure 1B. (B) The model AI described in A showed categorical perception of the 
frequencies with categorical centers at 3.5 and 14 kHz. The model AI showed a 
sigmoidal identification function and better discrimination of 0.1-octave frequency 
difference at the categorical boundary at 7 kHz. (C). Model AI with over-representations 
of 5.9- and 8.3-kHz tones. (D) The model AI described in C did not show categorical 
perception. 
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Figure 2.9. Categorical population responses.  Activity of various model AIs, each 
having 800 model neurons. Each row shows the responses of all neurons to a single 
presentation of a tone. The frequency of the tone is indicated on the left. The bar 
represents the number of spikes that a neuron discharged in response to the tone. 
Neurons are arranged by best frequency such that the neuron with the lowest best 
frequency is to the left on the x-axis. (A) Activity of model naïve AI. Tones of different 
frequencies activated different but overlapping populations of neurons. (B) Activity of 
the model AI with over-representations of 3.5- and 14-kHz tones. The response patterns 
activated by 2.5-, 3.5- and 5-kHz tones were similar, and were much different from 
those activated by 10.5-, 14- and 20-kHz tones. (C) Activity of the model AI with over-
representation of 5.9- and 8.3-kHz tones. Tones of frequencies from 5.6 to 9.1 kHz all 
activated the same population of neurons. 
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Figure 2.10. Influences of neuronal response properties on categorical representation 
of frequencies. We investigated how changes in tuning bandwidth, response magnitude 
and spontaneous activity influence discrimination of 0.1-octave frequency differences 
(A-C) and identification of frequencies  (E-F) in a model with over-representations of 3.5 
and 14 kHz. (A) and (D). Performances of models with four different neuronal tuning 
bandwidths: 0.5, 1, 2 and 4 octaves. Thicker line indicates broader tuning bandwidth. 
Tuning bandwidth has a strong influence on how the model discriminates and identifies 
frequencies. (B-C) and (E-F). Response magnitude and spontaneous firing rate 
influence discrimination but not identification performances. The response magnitudes 
are indicated in the figure in units of spikes/tone. Spontaneous firing rates were 0.1, 0.2, 
0.4, 1, 2, 4 spikes/second. Frequency discrimination performance was generally better 
with higher response magnitude and lower spontaneous firing rates. Frequency 
identification performances were not changed by response magnitude or spontaneous 
firing rate—the performances overlapped completely. The parameters that were not 
systematically varied were given the following values: Tuning bandwidth, 1 octave; 
Response magnitude, 1 spike/tone; spontaneous activity 1 spike/second. 
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Abstract  

  
Exposure to sounds during early development causes enlarged cortical 

representations of those sounds, leading to the commonly held view that the size of 
stimulus representations increases with stimulus exposure. However, representing 
stimuli based solely on their prevalence may be inefficient, because many frequent 
environmental sounds are behaviorally irrelevant. Here we show that cortical plasticity 
depends not only on exposure time, but also on the temporal modulation rate of the 
stimulus set. We examined cortical plasticity induced by early exposure to 7-kHz tone 
pips repeated at a slow (2 Hz), fast (15 Hz) or ethological (6 Hz) rate.  Certain rat calls 
are modulated near 6 Hz. We found that spectral representation of 7-kHz increased only 
in the ethological-rate-reared animals, whereas improved entrainment of cortical 
neurons was seen in animals reared in the slow- and fast-rate condition. This temporal 
rate dependence of spectral plasticity may serve as a filtering mechanism to selectively 
enlarge representations of species-specific vocalizations. Further, our results indicate 
that spectral and temporal plasticity can be separately engaged depending on the 
statistical properties of the input stimuli. 
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Introduction  
Cortical sensory representations can be reorganized during early development 

and in adulthood (Diamond and Weinberger, 1986; Edeline et al., 1993; Recanzone et 
al., 1993; Bakin et al., 1996; Irvine and Rajan, 1996; Kilgard and Merzenich, 1998; Bao 
et al., 2001; Zhang et al., 2001; Beitel et al., 2003; Polley et al., 2004; Blake et al., 2006; 
Norena et al., 2006; Polley et al., 2006; de Villers-Sidani et al., 2008; Zhou et al., 2008). 
Such cortical plasticity processes are believed to enlarge representations of 
behaviorally important stimuli, thereby optimizing the processing capacity for these 
stimuli. Consistent with such a view, behaviorally important sounds, such as species-
specific vocalizations, are preferentially represented in the auditory cortex of many 
species (Rauschecker et al., 1995; Wang et al., 1995; Ohlemiller et al., 1996; Tian et al., 
2001; Wang and Kadia, 2001). While cortical plasticity in adult animals is induced by 
behaviorally important sensory stimuli associated with activity in the neuromodulatory 
systems, plasticity in developing animals can be induced by passive sensory exposure 
(Zhang et al., 2001; Chang and Merzenich, 2003; de Villers-Sidani et al., 2007; de 
Villers-Sidani et al., 2008; Zhou and Merzenich, 2008). A potential problem with 
exposure-induced plasticity is that both behaviorally important and irrelevant stimuli are 
present in the sensory environment. In some environments, behaviorally irrelevant 
stimuli may even dominate the sensory input. Thus, representation of stimuli based 
solely on frequency of occurrence or acoustic power could be highly inefficient.     

Natural animal vocalizations are often repeated in bouts (Liu et al., 2003; 
Schnupp et al., 2006). The temporal repetition rate of vocalizations within these bouts is 
an important feature that may distinguish animal vocalizations from other environmental 
sounds. For instance, mouse vocalization calls are typically produced 5-10 times per 
second, whereas insect chirps may be repeated at much higher rates (Liu et al., 2003; 
Schnupp et al., 2006). A plausible mechanism that could allow for selective 
representations of species-specific calls is temporal filtering of the sensory input so that 
only sounds modulated near an ethologically relevant modulation rates induce 
experience-dependent plasticity.  

In the present study, we investigated how cortical plasticity depends on temporal 
repetition rate. We characterized rat calls, and showed that they are typically repeated 
at 3-10 Hz. We then exposed rat pups to brief tones repeated at 2, 6 or 15 pips per 
second, and subsequently examined spectral frequency and temporal rate 
representations.  Our results indicate that exposure to tones repeated at an 
ethologically relevant rate, but not a slower or faster rate, enlarged cortical 
representations of the exposure frequency.  Although spectral representation was not 
changed for animals reared in the faster or slower rate, temporal rate representation 
was improved.  
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Methods 
Recording and analysis of animal vocalization.   

All procedures used in this study were approved by the University of California 
Berkeley Animal Care and Use Committee.  To record rat pup isolation calls, individual 
rat pups were placed on a platform located in an anechoic chamber where the ambient 
temperature is maintained at 21.5 °C.  A !-inch Bruel and Kjaer (B&K) model 4135 
microphone was connected to a B&K 2669 preamplifier and B&K 2690 conditioning 
amplifier, and the output signal was digitized with a 16-bit A/D converter (National 
Instrument) at 200 kHz. Adult encounter calls were recorded after an adult female rat 
was introduced to the home cage of a single adult male.  Five post-natal 11 (P11), six 
P15 rat pups and two adult pairs were used. 

Visual examination of all recorded rat calls indicated that all pup calls were in the 
frequency range from 25 to 50 kHz and all adult encounter calls were in the frequency 
range from 25 to 70 kHz (Liu et al., 2003; Brudzynski et al., 1999; Brudzynski and 
Pniak, 2002). Thus, we band-pass-filtered all calls to obtain signals in the ranges of 25-
50 kHz for pup calls or 25-75 kHz for adult calls, for further automatic identification of 
the calls based on their amplitude envelopes. The start of a call was defined as an 
upward crossing of a threshold of six standard deviations above the mean amplitude of 
a no-call period, and the end occurred when the amplitude envelope was below the 
threshold for at least 40 ms. Calls less than 5ms (or 10ms) long were automatically 
excluded for the pups (or adults).  Call-onset asynchrony (COA) was defined as the time 
between the start of two consecutive calls.  

  
Acoustic rearing of young rat pups.   

Four groups (Ethological, Slow, Fast and Mixed) of Sprague Dawley rat pups 
were placed with their mothers in anechoic sound-attenuation chambers from P8 to 
P30.  This time range covers the critical period for spectral plasticity in AI and has been 
used previously (Zhang et al., 2001; de Villers-Sidani et al., 2007 Han et al., 2007).  The 
Ethological, Fast and Slow rat pups experienced tone pips (7.071 kHz, 60 dB SPL, 25 
ms) presented at one of three repetition rates 24 hours a day.  The Ethological and Fast 
groups heard trains of six tone pips presented at the rate of 6 Hz and 15 Hz, 
respectively, with one train every 1.5 seconds (Fig. 3.1D). A pair of tone pips were 
played to the Slow group every 1.5 seconds, with 0.5 seconds onset asynchrony 
between the tone pips. To ensure that the Slow group receives the same amount of 
acoustic energy as the other groups, the duration of the tone pips was set at 75 ms (Fig. 
3.1D). The Mix litter was exposed to trains of 15-kHz tone pips (60dB SPL, 25 ms) 
presented at the Ethological rate (6 Hz) and trains of 5-kHz tone pips (60dB SPL, 25ms) 
presented at the Fast rate (15 Hz).  The respective trains were presented once very 3 
seconds and interleaved so they never overlapped (Fig. 3.3A).  After sound exposure, 
rats were moved to a regular animal room environment until they were mapped 
(typically 4-20 days after the end of rearing). A Control litter was reared in a regular 
animal room environment. 

 
Electrophysiological recording procedure.   

The primary auditory cortex (AI) of sound-reared and control rats were mapped 
at comparable ages from P34 to P52.  Care was taken to ensure that animals in 
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different groups were recorded at comparable ages (Control: 47.9 ± 18.4 days; 
Ethological: 39.8 ± 6.3; Fast: 39.2 ± 6; Slow: 37 ± 2.2). Rats were pre-anesthetized with 
buprenorphine (0.05 mg/kg, subcutaneous) a half hour before they were anesthetized 
with sodium pentrobarbital (50 mg/kg, followed by 10-20 mg/kg supplements as 
needed).  Atropine sulfate (0.1 mg/kg) and dexamethasone (1 mg/kg) were 
administered once every 6 hours. The head was secured in a custom head-holder that 
left the ears unobstructed, and the cisterna magna was drained of cerebrospinal fluid.  
The right auditory cortex was exposed through a craniotomy and duratomy, and was 
kept under a layer of silicone oil to prevent desiccation.  Sound stimuli were delivered to 
the left ear through a custom-made speaker that had been calibrated to have less than 
3% harmonic distortion and flat output in the entire frequency range. 

Cortical responses were recorded with tungsten microelectrodes (FHC Inc.).  
Recording sites were chosen to evenly and densely sample the primary auditory cortex 
while avoiding surface blood vessels, and were marked on an amplified digital image of 
the cortex.  Microelectrodes were lowered orthogonally into the cortex to a depth of 450-
600 microns where responses to noise bursts could be found.  Multiunit responses to 25 
ms tone pips of 51 frequencies (1-32 kHz, 0.1-octave spacing, 5-ms cosine-squared 
ramps) and eight sound pressure levels (0-70 dB SPL, 10-dB steps) were recorded to 
reconstruct the frequency-intensity receptive field. In two control animals, 12 additional 
frequencies (32-74 kHz, 0.1-octave spacing) were included to quantify representations 
of high ultrasonic frequencies up to 74 kHz. 

Responses to trains of tone pips and noise bursts were recorded in two 
additional rats per group using 4x4 silicon polytrodes, with approximately 1-m! 
impedance (NeuroNexus Technologies, N2T).  After finding AI by coarse mapping with 
tungsten microelectrodes, a polytrode was lowered into cortex.  Six noise bursts or pure 
tone pips were presented in trains at six different presentation rates (3, 6, 9, 12, 15, 18 
Hz).  The noise bursts and tone pips were 25-ms long (with 5-ms cosine-squared 
ramps) and presented at a sound pressure level of 50 dB.  Each carrier-rate 
combination was repeated 10 times and presented in a pseudo-randomized order.  One 
train was presented once every 3 seconds. 

 
Data Analysis.  

The characteristic frequency (CF) was defined as the frequency at which 
responses are evoked at threshold—the lowest sound pressure level that activate the 
neuron.  The bandwidth at 30 dB above threshold (BW30) measures the width of the 
receptive field (in octaves).  The CF, threshold, and BW30 for each penetration site 
were determined visually.  AI was functionally defined by well-tuned neurons and fine 
tonotopic gradient with increasing CFs going rostrodorsally. Penetrations that were not 
in AI were removed leaving a total of 1590 AI recording sites (389 from Control, 368 
from Ethological, 343 from Fast, 157 from Slow, 194 from Mix, and 139 from ultrasonic 
recordings).  Cortical area representing a specific frequency was measured using 
voronoi tessellation (Matlab, Mathworks). 
 Repetition rate transfer functions (RRTFs), normalized responses as functions of 
presentation rates, were calculated as follows.  First, only trials in which the response to 
the first noise burst (or pure tone) was greater than two standard deviations above 
mean spontaneous spike rate were included.  The normalized response was calculated 
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by taking the average response of the last 5 sound presentations (response being the 
number of spikes triggered 7 to 40 ms after onset of the noise/tone) and dividing it by 
the response to the first sound.  A normalized response greater than one indicates that 
the unit responded better to subsequent sounds than to single noise pulse/tone pip.  All 
reported statistics are two-tailed t-tests unless indicated otherwise. 
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Results 
 
Repetition rate of rat vocalizations 

The repetition rate of rat vocalizations were measured by recording pup isolation 
calls and adult encounter calls.  A total of 1610, 1210 and 1063 calls were extracted for 
adults, P15s and P11s, respectively.  A bout was defined as a series of successive calls 
with call onset asynchronies (COAs) less than one second.  Only calls that were 
produced in bouts were included for further analysis, resulting in 1410 (88%), 724 (60%) 
and 819 (77%) calls over 295, 197 and 209 bouts. An analysis of pup isolation and adult 
encounter vocalizations revealed that calls within bouts occur between 3-10 Hz (Fig. 
3.1). The repetition rate of adult calls is faster than that of the pup calls (Fig. 3.1A, B).  
The COA distribution of the P15 group showed a very clear peak (240 ms, ~4.2 Hz), as 
the isolation calls from P15 pups were very stereotypical and repeated regularly.  The 
repetitions were less regular for the P11 and the adult calls, resulting in the larger 
spreads.  The COA distribution of the P11 group has a peak at 270 ms, corresponding 
to ~3.7 Hz while that of adults has a peak at 160 ms, corresponding to 6.3 Hz.  
 
Effect of presentation rate on spectral plasticity 

To investigate the impact of repetition rates on cortical plasticity, we exposed 
three groups of rat pups to trains of 7-kHz tone pips, with tone trains presented once 
every 1.5 seconds. Within each train, tone pips were repeated at a rate of 2 Hz for the 
Slow group, 6 Hz for the Ethological group and 15 Hz for the Fast group. The Slow and 
Fast rates are below and above the range of the ethological repetition rates of rat 
vocalizations (Fig. 3.1B). The duration of the tone pips was increased for the Slow 
group so that the total acoustic energy of tone pips experienced by the animals was the 
same for all three groups (Fig. 3.1C).  

Previous studies have shown that exposure to a tone increases cortical 
representations of that tone (Zhang et al., 2001; de Villers-Sidani et al., 2007; Han et al., 
2007).  In this study, we mapped the auditory cortex of several animals for each group 
(Control: n = 10; Ethological: n = 6; Fast: n = 6; Slow: n = 4), and found enlarged 
representations of the exposure frequency in animals reared with the Ethological rate, 
but not with the Slow or Fast rate (Fig. 3.2). A 4-conditions by 9-frequencies ANOVA 
showed no differences across condition (p = 0.95) and a significant interaction (p < 
0.04).  One-way ANOVAs across the frequency bins showed significant differences 
between conditions only in the 7-kHz (p < 0.037) and 12-kHz bins (p < 0.041). Animals 
reared in the Ethological rate (6 Hz) showed a significant increase in the cortical area 
representing 7-kHz (± 0.2 octaves) when compared to the naïve Control, Slow and Fast 
groups (p < 0.013, 0.041, 0.001, respectively, one-tailed t-test). Animals reared with the 
Ethological rate showed smaller representations of 12-kHz tone when compared to the 
Control (p < 0.034) and Fast (p < 0.018) groups (Fig. 3.2C).   

An additional group of rat pups were exposed to two different carrier frequencies 
presented at two different rates—trains of 15-kHz tone pips were presented at the 
Ethological rate (6 Hz) and trains of 5-kHz tone pips were presented at the Fast rate (15 
Hz).  The respective trains were presented once every 3 seconds and were interleaved 
so that one train was played every 1.5 seconds (Fig. 3.3A).  A comparison with the 
naive control animals showed an increase in representation of 15-kHz (p < 0.05) and a 
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decrease in the representation of the neighboring 20-kHz (p < 0.001).  No changes were 
observed around the representation of 5-kHz (p = 0.58) (Fig. 3.3B).  These results 
confirm our finding that sounds that are repeated at an ethological rate are over-
represented. 

The average threshold, response latency, BW30, and recording depth are shown 
in Table 3.1. One-way ANOVAs comparing across the five groups showed no significant 
differences for threshold (p> 0.2), latency (p > 0.05), BW30 (p > 0.2) or recording depth 
(p > 0.5).   
 

Over-representation of rat vocalization frequencies  
The above results suggest that the representation of the frequency range of 

ultrasonic rat vocalizations should also be enlarged, because rat calls are mostly 
repeated at ethological rates.  The ultrasonic (up to 74 kHz) region of the AI was 
mapped in two naïve virgin animals.  Both animals showed large representation of 
ultrasonic frequencies (Fig. 3.4C).  To facilitate statistical analysis, penetrations were 
separated into five one-octave-sized frequency bins (lowest bin covering 1.56-3.13 kHz 
and the highest bin covering 25-50 kHz, frequencies higher than 50 kHz were not 
included leaving 106 penetrations).  A Chi-Square test showed that the representation 
of frequencies from 25 to 50 kHz was significantly greater than those of the other 
frequency ranges (p < 0.001, see Fig. 3.4Ciii). 
 

Temporal response plasticity 
Plasticity in temporal response properties was tested in cortical neurons by 

measuring their responses to trains of tone pips presented at various rates. Only units 
that responded reliably to 7-kHz pure tones (see Methods) were included for the 
analysis (Control: n = 26, Ethological: n = 28, Fast: n = 37, Slow: n = 42). The 7-kHz-
tone-derived repetition rate transfer function (RRTF) of the Control and Ethological 
groups overlapped (Fig. 3.4A). A group x rate analysis of variance (ANOVA) showed 
significant main effects for group (p < 0.001) and rate (p < 0.0001) and a significant 
interaction (p < 0.00001).  Post-hoc t-tests revealed that the normalized response at the 
12 Hz repetition rate was significantly larger for the Fast group when compared to all the 
other groups (p < 0.05). In addition, the Slow group had greater normalized responses 
at the repetition rate of 6 Hz when compared to all the other groups (p < 0.001). 
Although neurons in the Fast group showed slightly better following responses than the 
Control groups at the repetition rate of 15 Hz, the rearing rate, the difference was not 
significant (p > 0.2). The Slow group also showed slightly enhanced following responses 
at 3 Hz, but it was not different from that of the Ethological group (p > 0.05). 

Of the 133 units analyzed above, 116 were responsive to noise bursts (Control: n 
= 24, Slow: n = 25, Fast: n = 31, Slow: n= 36).  A one-way ANOVA revealed significant 
differences between groups at the repetition rates of 9 Hz (p = 0.0002) and 18 Hz (p < 
0.01, Fig. 3.4B).  Post-hoc t-tests showed that the Fast group did not entrain to noise 
burst as well as the Control or Slow groups at the repetition rate of 9 Hz (p < 0.002 for 
both), and that the Slow group did not entrain at 18 Hz as well as the other groups (p < 
0.02, for all).  However, we did not observe enhanced responses to noise bursts 
repeated at 12 Hz in the Fast group, or at 6 Hz in the Slow group (Fig. 3.4B). 

We also examined cortical responses to repeated tones of various carrier 
frequencies (4.5, 5.6, 8.9, 11.2, 14.1, or 17.8 kHz) in the Control, Ethological, Fast and 
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Slow groups (n = 21, 23, 32 and 40, respectively). The carrier frequencies were chosen 
to reliably activate the units and only units used in the 7-kHz analysis were included.  
One-way ANOVAs across the different repetition rates showed significant differences 
only for the 15 and 18 Hz (p < 0.01, for both, Fig 4C).  At the repetition rate of 15 Hz, the 
Fast group did not entrain to tone pips as well as the Control or Ethological group (p < 
0.02, for both); while in at the repetition rate of 18 Hz, the Slow group showed lower 
normalized responses compared to all other groups (p < 0.04, for all). Thus the 
enhanced responses to sounds repeated at 12 Hz in the Fast group and enhanced 
response to sounds repeated at 6 Hz in the Slow group were specific to the 7-kHz 
carrier frequency of the exposure tone.   
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Discussion  
In the present study, we tested the hypothesis that temporal repetition rates 

influence how sound experiences shape cortical representations the sound. All animals 
in the Fast, Slow, Ethological groups of animals were exposed to a 7-kHz tone of the 
same total acoustic energy, and yet the sensory experiences had completely different 
effects—a 40% increase in 7-kHz representations for the Ethological group, but not for 
the Fast or the Slow group. Furthermore, exposing developing animals to two tones (5 
and 15 kHz) presented at two different rates (Fast and Ethological, respectively) lead to 
the overrepresentation of only the tone presented at the Ethological rate. These results 
indicate that temporal repetition rates of sensory stimuli have a strong impact on 
experience-dependent plasticity. Earlier studies of sound exposure-induced cortical 
plasticity mostly used repetition rates similar to our Ethological rate, and robust 
increases in representations of the exposed stimulus were observed (Zhang et al., 
2001; Han et al., 2007). In contrast, reduced representations were observed for stimuli 
that are constantly present in the environment without temporal modulation (de Villers-
Sidani et al., 2008; Zhou et al., 2008). Here we show that exposure to tone pips that are 
repeated at 2 or 15 Hz does not result in greater representations of the tone. Such a 
temporal filtering mechanism would enlarge representations of stimuli that are 
repeated/modulated near the ethological rates of species-specific vocalization, and 
would suppress representations of other potentially irrelevant stimuli that are modulated 
at other rates.  

Repetition rates of the rat calls have considerable variability. However, the 
majority of calls were repeated at rates from 3 to 10 Hz (Fig. 3.1). Less than 1% of the 
calls had repetition rate higher than 15 Hz, whereas 26% had repetition rate _2 Hz. 
Thus, a large number of rat calls could pass through the presumptive temporal filter and 
shape cortical acoustic representations. The COAs that were _0.5 s (_ 2 Hz) were 
mostly between two calls in different bouts. The enlarged representation of the 
frequency range of the rat vocalizations is consistent with the notion of a temporal filter 
for selective representation of sounds repeated at ethological rates. However, it could 
also be attributable to other experience-independent mechanisms. 

The neural mechanisms of the temporal filter in cortical plasticity are unknown. It 
is well known that cortical neurons respond differently to sound repeated at different 
rates. For instance, cortical neurons in anesthetized rats do not respond well to sounds 
repeated >10 times per second (Kilgard & Merzenich, 1998b), whereas auditory 
thalamic neurons are capable to responding to much faster rates (Wehr & Zador, 2005). 
In the awake preparation, multi-unit clusters have been shown on average to 
synchronize to click rate of 72 Hz, but normalized responses show a decrase around 10 
Hz (Anderson et al., 2006).  Such temporal response properties may contribute to the 
lack of spectral plasticity in the Fast group. However, such cortical temporal response 
properties cannot account for the lack of spectral plasticity in the Slow group, because 
cortical neurons respond well to slow-rate sounds. 

Although exposure to Fast-rate tone pips did not enlarge representations of the 
tone, it did improve entrainment of responses to quickly repeating tone pips in neurons 
of the Fast group. Similarly, exposure to Slow-rate tone pips enhanced cortical 
responses to slowly repeating tone pips. In previous studies, temporal plasticity was 
induced either with noise bursts (Kilgard et al., 2001; Chang and Merzenich, 2003; Bao 
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et al., 2004; de Villers-Sidani et al., 2008; Zhou and Merzenich, 2008) or tone pips of 
several carrier frequencies (Kilgard et al., 2001). Tone pips of a single frequency were 
previously found ineffective in inducing temporal plasticity (Kilgard et al., 2001). We 
show here that temporal plasticity can be induced with a single-frequency tone, and can 
be specific to the tonal stimulus. The discrepancy between the earlier and the present 
results may be related to differences in the experimental methods. The earlier study 
used stimulation of Nucleus Basalis to induce plasticity in adult animals, whereas we 
simply exposed young animals to the sound stimuli. Further, we restricted our analysis 
only to neurons that responded reliably to the exposure tone, which might be necessary 
to reveal frequency-specific plasticity effects. These results are consistent with earlier 
findings of enhanced entrainment of cortical responses in mother rats to trains that are 
spectrally and temporally similar to pup calls (Liu et al., 2006). Our results suggest that 
both spectral and temporal information of specific stimuli can be represented in the 
same population of neurons. They also indicate that spectral and temporal plasticity can 
be separately engaged depending on the characteristics of input stimuli, such as the 
temporal modulation rate.  

It has long been hypothesized that efficient representations of sensory stimuli 
depends on the stimulus statistics (Barlow, 1961; Lewicki, 2002; Singh and Theunissen, 
2003), and that the learning and plasticity processes that shape sensory 
representations must be sensitive to the statistics of the sensory input (Kilgard et al., 
2001; Maye et al., 2002; Toro and Trobalon, 2005). Our results support this hypothesis 
by showing that cortical circuits are sensitive to temporal rates, and may use this feature 
to selectively represent sounds that are likely to be behaviorally relevant.  
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Table 3.1. Response properties of AI neurons with SEM in parentheses. 
 

 Threshold 
(dB) 

Latency (ms) BW30 (oct) Depth 
(microm) 

Control 37.34 (2.63) 17.93 (0.62) 1.40 (0.073) 550.8 (10.9) 

Ethological 32.42 (3.65) 17.44 (0.46) 1.31 (0.064) 563.8 (13.1) 

Fast 35.29 (1.33) 17.30 (0.41)  1.33 (0.093) 555.9 (15.4) 

Slow 26.2 (2.54) 20.28 (1.07) 1.13 (0.040) 540.0 (5.8) 

Mix 32.88 (2.23) 18.34 (0.37) 1.22 (0.017) 536.1 (3.2) 
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Figures 
 
 

 
 
Figure 3.1. Characterization of rat calls. A, Example spectrograms of a bout of rat pup 
isolation calls (above) and adult encounter calls (below). B, Distributions of call onset 
asynchronies (COA) within a bout.  Green vertical lines indicate the COAs of the three 
experiments condition: Fast (15 Hz, COA = 0.067 s, far left), Ethological (6 Hz, COA = 
0.167 s, middle), and Slow (2 Hz, CAO = 0.5 s, far right).  C, A schematic of the stimuli 
used in the Ethological, Fast, and Slow experimental rearing conditions.   
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Figure 3.2. Influences of stimulus presentation rate on spectral plasticity. A, 
Representative cortical CF maps of the Control, Ethological, Fast, and Slow groups.  
The areas representing 7 kHz ± 0.2 octaves were outlined in black. B, Distributions of 
CFs along the tonotopic axis. C, Sizes of cortical areas representing different frequency 
bands.  Significant differences were seen for the 7-kHz and 12-kHz bands.  Error bars 
indicate standard error of the mean. * indicates p < 0.05. 
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Figure 3.3. Over-representation of sounds repeated at the ethological rates. A, A 
schematic of “mix-rate” rearing stimuli.  A train of 15-kHz tone consisted of six tone pips 
presented at the Ethological rate (6 Hz), and a train of 5-kHz tone consisted of six tone 
pips presented at the Fast rate (15 Hz).  Trains of the two repetition rates were 
interleaved such that one train was heard every 1.5 seconds. B, CF map reorganization 
resulted from the mixed-rate rearing.  Bi, Example maps of control and mixed-rate 
animals.  Control animal is the same as seen in Figure 2A.  Area represented 5 kHz  ± 
0.2 octaves are outlined in gray while area representing 15 kHz ± 0.2 octaves are 
outlined in black. Bii, Distributions of CFs along the tonotopic axis. Biii, Sizes of cortical 
areas representing different frequency bands.  There was a significant increase in 
representation at 15 kHz and a significant decrease at 20 kHz.  Error bars indicate 
standard error of the mean. * indicates p < 0.05, ** indicates p < 0.001.  C, Cortical 
representation of ultrasonic frequencies.  Ci, An example CF map from a control animal 
mapped up to 74 kHz.  Areas representing 25-50 kHz are outlined in blue while areas 
representing 3.13-6.25 kHz are outlined in black. Cii, Distribution of CFs along the 
tonotopic axis. Ciii, Sizes of cortical areas representing one-octave frequency bands.  
The representation of the 25-50 kHz band was significantly larger than those of the 
other bands. 
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Figure 3.4. Effects of tonal exposure on cortical temporal response properties.  A-B, 
Repetition rate transfer functions characterized with trains of 7-kHz tone pips (A) and 
noise bursts (B).  Error bars indicate standard error of the mean. * indicates p < 0.05 
and ** indicates p < 0.001, all for comparison to the Control. 
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CHAPTER 4: Over-representation of ultrasonic vocalization frequencies in the rat 
primary auditory cortex 
 
 
 
 

Abstract 

Species-specific vocalizations play a critical role in communication and guiding 
appropriate behaviors. It is unclear whether the representation and perception of con-
specific vocalization sounds are innate or experience dependent. We find that 
ethologically relevant rat communication calls primarily occur in the ultrasonic frequency 
range (above 30kHz). Virtually all previous studies of the rat primary auditory cortex 
(A1) have studied the representation of frequencies strictly below 32kHz. We find nearly 
40% of A1 is devoted to representing vocalization frequencies (32kHz – 64kHz), 
compared to less than 20% for any other octave-band below 32kHz. This increase in 
representation of ultrasonic frequencies is accompanied by enhanced frequency 
discrimination around 32kHz, suggesting this form of representation is an efficient 
method of representing ethologically relevant frequencies. We show that this 
preferential representation of ultrasonic frequencies depends on early auditory 
experience. Animals reversibly deafened at an early age show a distribution of 
frequency representation similar to immature developing animals. Representation of 
ultrasonic frequencies is also enhanced in the inferior colliculus (IC) of mature rats. We 
find that preferential and efficient representation of ethologically relevant ultrasonic 
frequencies is dependent on early experience with rodent vocalizations. 
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Introduction 

Species-specific vocalizations play a critical role in guiding appropriate social 
behaviors and promoting survival. In rodents, socially relevant ultrasonic vocalizations 
(USVs) exclusively occur in a frequency range well beyond what humans are capable of 
hearing. In rats, three distinct categories of USVs have been reported: 40 kHz pup 
isolation calls, 50 kHz positive affect calls and 22 kHz alarm calls (Brudzynski et al., 
1993, 1999; Knutson et al., 2002; Portfors, 2007; Takahashi et al., 2010). Pup isolation 
calls are thought to be elicited when the body temperature of the pups drop, as would 
occur when a pup is way from its nest. These pup isolation calls will prompt a mother to 
leave her nest and retrieve the vocalizing pup (Hahn and Lavooy, 2005). On the other 
hand, USVs around 50 kHz are often associated with positive affective state (Knutson et 
al., 2002; Brudzynski, 2005). Exposure to adult encounter calls emitted by males will 
prime female rodents to be more receptive to sexual encounters (McIntosh and Barfield, 
1978). We propose that these ethologically relevant vocalizations should be 
preferentially represented in the rat primary auditory cortex (A1). 
 The representation of the frequencies encompassing these ethologically relevant 
calls has not been studied. The vast majority of publications on the rat A1 have focused 
exclusively on pure-tone pips below 32kHz (Zhang et al., 2001; Chang and Merzenich, 
2003; Chang et al., 2005; Han et al., 2007; Polley et al., 2007; Engineer et al., 2008; de 
Villers-Sidani et al., 2008; Zhou and Merzenich, 2008; Insanally et al., 2009). We 
verified that rat USVs, specifically pup isolation calls and adult encounter calls, occur in 
the ultrasonic range above 30kHz, and mapped the primary auditory cortex utilizing 
pure tone pips from 1 to 74kHz, increasing the stimulus set by 1.2 octaves, or 
approximately 20%. We find a clear over-representation of vocalization frequencies in 
the rat A1. Nearly 40% of A1 is devoted to representing vocalization frequencies (32kHz 
– 64kHz), compared to less than 20% for any other octave-band below 32kHz.  
 The distribution of representation and the shape of tuning curves have direct 
implications on perception (Schoups et al., 2001; Butts and Goldman, 2006; Kim and 
Bao, 2008; Fischer and Peña, 2011; Ganguli and Simoncelli, 2011; Girshick et al., 
2011). In addition to more neurons being tuned to ultrasonic frequencies, we find a 
systematic decrease in tuning bandwidth with higher frequency tuning, theorized as an 
optimal organization for representing a sensory environment of vocalizations (Ganguli 
and Simoncelli, 2011). This narrowing of tuning curves would also suggest enhanced 
discrimination ability in the ultrasonic frequency range (Schoups et al., 2001; Girshick et 
al., 2011). We indeed found that rats were better able to discriminate frequencies in the 
ultrasonic range. These results suggest that the representation of ultrasonic frequency 
is efficient and optimized to represent vocalizations (Ganguli and Simoncelli, 2011). 
 Auditory cortex neurons develop in a progressive manner with certain response 
properties maturing before others. Response properties such as response latency, 
bandwidth, threshold, temporal rate following and FM sweep response magnitude have 
all been shown to mature at different points of development (Chang et al., 2005; de 
Villers-Sidani et al., 2007; Insanally et al., 2009). Utilizing frequencies from 1-32kHz, it 
has previously been reported that A1 reaches mature size and spectral representation 
on either P14 or P16, with representation of low and high frequencies being absent in 
younger animals (de Villers-Sidani et al., 2007; Insanally et al., 2009). Studies in 
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subcortical auditory responses have also shown a similar time-course in spectral 
development (Romand and Gunter, 1990). We investigated the representation of 
ultrasonic frequencies in developing animals and found mature, adult-like 
overpresentation appears only after P21. 
 It is unknown whether this over-representation of USV frequencies with narrow 
tuning bandwidth is innate or experience dependent. Previous reports have documented 
the importance of experience on auditory cortex responses to vocalizations (Cheung et 
al., 2005; Liu et al., 2006; Cohen et al., 2011). In addition, we have demonstrated that 
A1 may utilize second order statistic of their acoustic environment to guide plasticity. 
Specifically, pure tone pips that are presented at an ethologically relevant temporal 
repetition rate will lead to increased spectral representation of that tone (Kim and Bao, 
2009). Tones presented at faster or slower rates do not show an expansion in 
representation. Since vocalizations, by definition, are repeated at an ethological rate, we 
previously hypothesized that vocalization frequencies be over-represented in A1. 
However, if this over-representation is due to experience or is an innate feature of A1 is 
still an open question. We reversibly deafened developing animals via ear canal ligation 
(Popescu and Polley, 2010) at post-natal day 10 (P10), well before the auditory critical 
period (de Villers-Sidani et al., 2007) and the onset of hearing (Geal-Dor et al., 1993). 
These animals show less representation of very high ultrasonic frequencies and look 
very similar to young developing animals. This suggests that representation of 
ultrasonic frequency is experience dependent. 
 We find that this preferential representation of ultrasonic frequencies is not 
specific to cortex. The inferior colliculus also showed an over-representation of these 
vocalization frequencies. Further experiments are necessary to determine whether the 
representation in cortex is merely a feed-forward readout of subcortical auditory regions 
or feedback circuits from the cortex are utilized to shape the representation of the IC. 
Female rats are the intended recipients of the calls we studied: pup isolation calls to 
mothers (Ehret et al., 1987) and encounter calls to potential mates (McIntosh and 
Barfield, 1978). However, we find little consistent difference in representation between 
male and female rats, suggesting that early experience plays a role in shaping the 
representation of ultrasonic frequencies. 
 We find an experience-dependent over-representation of species-specific 
ultrasonic vocalization frequencies in the rat. This specialized ultrasonic region has 
significantly narrow bandwidths and a corresponding enhanced behavioral 
discrimination ability. We hypothesize that the auditory and vocalization system of the 
rat co-evolved to utilized ultrasonic frequencies. 
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Methods 

 
Recording and Analysis of Animal Vocalizations.  

All procedures were approved by the University of California Berkeley Animal 
Care and Use Committee. Animal vocalizations were recorded as previously described 
(Kim and Bao, 2009). Briefly, Sprague-Dawley rats were placed in an anechoic chamber 
with a ! inch Bruel and Kjaer (B&K) model 4135 microphone connected to a B&K 2669 
preamplifier and B&K 2690 conditioning amplifier. The signal was digitized with a 16-bit 
analog-to-digital converter (National Instruments) at 200 kHz. Over 2 hours of 
vocalizations were recorded with five postnatal day 11 (P11), six P15 rat pups and two 
pairs of adults. 

Examples of call analysis can be seen in Figure 4.2. The experimenter visually 
identified 1098, 2113 and 1798 (P11, P15 and adult, respectively) calls, indicating for 
each call the approximate start time and center frequency. To increase the signal-to-
noise ratio, a bandpass filter (+/- 10 kHz) was applied around the experimenter-defined 
frequency for each call. The envelope of the filtered call (Hilbert transformation) was 
used to identify the start and end of each call. To be defined as a call, the signal had to 
cross the threshold set at 6X the standard deviation of the residual noise (the signal 25-
50 ms preceding the experimenter-defined start time). The end of a call was marked 
when the signal dropped below threshold for at least 40 ms. The frequency profile or 
distribution of an individual call was defined by collapsing the spectrogram of the filtered 
call across the duration of the call. The center frequency of the call was defined as the 
peak of the frequency profile of the call. The bandwidth of the call was the full width at 
half maximum of the frequency distribution. 
 
Behavioral Testing 

Frequency discrimination ability was tested as previously described (Han et al., 
2007). Adult female animals were food deprived and maintained at 90 to 95% of initial 
body weight. All training and testing took place in a wire cage within a sound attenuated 
box. Trials were automatically initiated with 100ms pure tone pips of the standard 
frequency presented at five pips per second for 5 to 35 seconds, after which the 
standard frequency alternated with a target frequency. Rats indicated the presence of 
the target frequency with a nose poke within 3 seconds to receive a food pellet award. 
Nose pokes outside this three-second window were discouraged through time-outs. 
Rats were trained on the task for up to four days where the difference between the 
standard and target frequencies (!f) was one octave and the response window was 

greater than 3 seconds. Testing was separated into two frequency ranges: normal (4-32 
kHz, 9 bins) and ultrasonic (20-67 kHz, 9 bins). Animals were tested for up to three days 
both ranges, with the order counterbalanced between animals. On testing days, !f was 

set to 30% of 0.5, 0.3 and 0.1 octaves and 10% of 0 octaves (to measure false alarms). 
  
Electrophysiological Recording Procedure 

The primary auditory cortex (A1) was mapped as previously described (Kim and 
Bao, 2009). Inferior colliculus (IC) recordings were adapted from (Popescu and Polley, 
2010). Rats were pre-anesthetized with buprenorphine (0.05 mg/kg, s.c.) one half hour 
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before they were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). Atropine 
sulfate (0.1 mg/kg, s.c.) and dexamethasone (1 mg/kg, s.c.) were administered once 
every 6 hours and lactated Ringer’s solution (0.5 – 1.0 mL, s.c.) was administered once 
every 4 hours. The head was secured in a custom head-holder that left the ears 
unobstructed, and the cisterna magna was drained of CSF. For cortical recordings, the 
right auditory cortex was exposed and kept under a layer of silicone oil to prevent 
desiccation. For IC recordings, a craniotomy was made above the right primary visual 
cortex at the interaural line extending at least 2mm lateral to the midline. Multiunit 
responses to 25 ms pure tone pips (1-74 or 2-74 kHz, 0.1 octave increments at 0-70 dB, 
10 dB increments) were recorded using tungsten microelectrodes (FHC) or silicon 
polytrodes (NeuroNexus). References to neurons or units in this text refer to multi-unit 
responses recorded extracellularly. Cortical responses were recorded in the 
thalamorecipient layer of cortex (450-600 microns). The central nucleus of the IC was 
identified when electrodes/polytrodes had passed through visual cortex and reliable, 
tonotopically-organized responses to tones were seen (starting approximately 3mm 
below surface of V1). Tones were presented at three pips per second into the left ear 
and each frequency-dB combination was repeated 3 times. Cortical penetration 
locations were recorded on a high resolution image and care was taken to avoid blood 
vessels. IC depth was recorded off of readings from a hydraulic pump and depth along 
the silicon polytrode. 
 
Manipulation of Developmental Environment 
 Procedure for reversible deafening by ear ligation were adapted from (Popescu 
and Polley, 2010). Small incisions were made below each pinna and the external 
meatus was ligated using polyester sutures in P10 rat pups under isoflourance 
anesthesia. Following recovery from surgery, rats were returned to their home cages for 
a minimum of two weeks. The quality of the ligation was verified around P21 with either 
Auditory Brainstem Responses (ABRs) and/or visual inspection to ensure adequate 
closure and bilateral deafening of each animal. Prior to cortical recordings from the 
deafened animals, the left outer ear was removed and any buildup was carefully 
removed until the tympanic membrane could be visualized. In most animals, ABRs were 
taken before and after the ear removal to confirm the recovery of hearing. 
 
Auditory Brainstem Responses (ABRs) 
 ABRs were recorded to verify successful deafening and hearing recovery in a 
subset of animals. A 0.005” diameter, half hard, stainless steel bare wires were inserted 
behind the pinna of both ears and the vertex of the skull.  Pure tone pips (3ms duration) 
were presented at 19 pips per second with an average of 500 repetitions for every 
attenuation-dB combination. Data acquisition and sound presentation were done using 
BioSigRP software on a Tucker Davis Technology Sys3 recording rig. 
 
Data Analysis 
 The receptive fields and response properties were isolated utilizing custom-made 
programs in Matlab. For each unit, isolation of the receptive field required calculation of 
the response latency. First the peri-stimulus time histogram (PSTH) for all sound stimuli 
was convolved with a uniform 5 ms window. The peak of the PSTH within 7 and 30 ms 
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after onset of stimuli was the most reliable measure and was defined as the response 
latency as seen in later figures. The baseline firing rate was taken as the mean firing 
rate in the 47 ms preceding the stimuli. The start of the response window was defined 
as the point of time at which the PSTH exceeded the baseline firing rate at least 7ms 
after the onset of stimuli. The end of the response window was defined as the point of 
time at which the PSTH was less than the baseline firing rate at least 10 ms after the 
peak of the PSTH. The spikes that occurred between the start and end of the response 
window were counted to reconstruct an appropriate receptive field (as seen in Figure 
4.4). This penetration-specific re-windowing was important since there is a frequency-
dependent shift in PSTH timing (see Figure 4.5F) and also an age-dependent shift in 
response latency (Figure 4.9D). 
 Receptive fields were isolated utilizing a tresholding and filtering algorithm 
(Insanally et al., 2009). These isolated receptive fields (Figure 4.4, middle panels) were 
the basis for the extraction of the following response properties. The characteristic 
frequency (CF) of a neuron was defined as the center of mass of the isolated receptive 
field. The threshold of the neuron was the lowest dB level that elicited responses in the 
isolated receptive field. The maximum response magnitude was the maximal number of 
spikes seen for a single frequency-dB combination. Since each frequency-dB 
combination was repeated 3 times, the average of those 3 responses was taken. The 
tuning curve of each neuron was calculated by collapsing the responses to the top two 
dB levels of the isolated receptive field (Figure 4.4, bottom panel). To find the bandwidth 
(BW) of the tuning curves, first the tuning curves was smoothed with a uniform 0.4 
octave window and then the full width at half maximum (FWHM) was calculated. The 
same tuning curves were utilized to calculate the Fisher information (FI). Initially, the 
tuning curves were fitted to a Gaussian distribution. To calculate the FI, the square of 
the first derivative of the fitted tuning curve was divided by the tuning curve (Seung and 
Sompolinsky, 1993).  
 All error bars indicate standard errors of the mean (SEM). Appropriate statistical 
tests were applied as necessary (e.g. t-tests, ANOVA, etc). 
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Results   

Rat Vocalizations are Predominately Ultrasonic. 

To understand the representation of vocalization frequencies, we initially 
quantified the distribution of frequencies utilized in rat species-specific communications. 
Postnatal day 11 (P11) and P15 pup isolation and adult encounter calls were recorded 
in a sound attenuated chamber (Figure 4.1A). Individual calls were identified by hand, 
while bandpass filters and amplitude envelopes were utilized to extract call statistics 
(Figure 4.2, see methods). The distribution of the calls’ center frequency and frequency 
profile show all calls were above 20kHz, with the pup isolation calls and adult encounter 
calls encompassing distinct portions of the frequency space (Figure 4.1B, Table 4.1). 
Pup isolation call distribution show a peak between 35 and 40kHz while adult encounter 
calls peak around 60kHz.  

The bandwidth of the P11, P15 pup isolation calls and adult encounter calls were 
not significantly different (Figure 4.1C, Table 4.1). The duration of individual calls were 
significantly different between the adult group and the two pup groups (Table 4.1). 
Interestingly, the duration of the individual calls were significantly inversely correlated 
with the center frequency of a call: calls of higher frequencies had significantly shorter 
duration (r = -0.65, p < 0.001 – collapsing all groups, Figure 4.1D, Table 4.1). The 
difference between the distribution of the center frequency and the frequency profile for 
the P15 calls (Figure 4.1B) can be explained by this effect: although 32% of the P15 
calls had a center frequency higher than 50kHz, these higher frequency calls were 
substantially shorter in duration. 

The vast majority studies mapping the primary auditory cortex (A1) of rats used 
pure tone pips below 32kHz (Zhang et al., 2001; Chang and Merzenich, 2003; Chang et 
al., 2005; Han et al., 2007; Polley et al., 2007; Engineer et al., 2008; de Villers-Sidani et 
al., 2008; Zhou and Merzenich, 2008; Insanally et al., 2009) (but see (Sally and Kelly, 
1988; Rutkowski, 2003; Kim and Bao, 2009)). As previously reported, we confirm that 
ethologically relevant rat vocalizations primarily occur above 30kHz (Knutson et al., 
2002; Hahn and Lavooy, 2005), indicating that most rat A1 studies have been 
investigating a frequency range that is ethologically irrelevant to rodents. To address 
this, we mapped six adult female rats (all older than P150) using 1 to 74kHz tones (and 
additional 1.2 octave compared to most studies).  
 
Ultrasonic Frequencies are Preferentially Represented in A1 
 Increasing the stimulus set by 20% lead to a near doubling in frequency-
response areas of A1 (Figure 4.3 and 4.5B). Similar results were previous reported by 
this lab (Kim and Bao, 2009). The general tonotopic gradient is maintained throughout 
the new ultrasonic frequencies (Figures 4.3A and 4.5A). We find that neurons tuned to 
higher frequencies show narrower tuning bandwidths. When binning the neurons into 
octave-sized bins, we see a gradual linear decrease in bandwidth across all animals, 
with the exception of the two lowest frequency bins (Figure 4.5C). This is most likely 
due to the fact that these low-frequency neurons are capable of responding to 
frequencies lower than 1kHz, therefore our bandwidth measures are often an 
underestimate for the lowest octave band. We find that nearly 75% and 45% of neurons 
with CF lower than 4kHz have a receptive field that extends beyond 1kHz (Table 4.2). 
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Linear regression analysis of neurons with receptive fields completely contained within 1 
and 74kHz show a highly significant negative correlation between CF and BW for all six 
animals (average r = -0.77 with p < 0.0001 for all animals). 
 The receptive field threshold was significantly lower for middle-frequency tuned 
neurons compared to low and high-tuned neurons (Figure 4.5D), as previous reported 
(Sally and Kelly, 1988). Maximal response magnitude varied significantly with CF 
(Figure 4.5E), but no post-hoc pairwise comparisons were significant. However, a 
significant negative correlation was found between response magnitude and CF (r = -
0.57, p < 0.001), suggesting ultrasonic neurons will on average fire fewer action 
potentials in response to a tone. We find no significant difference of response latency 
between frequency bins (Figure 4.5F). 
 
Discrimination Ability Correspond with Population Fisher Information 
 It has been suggested that to efficiently represent the distribution of sensory 
variable, there would be an optimal allocation of neurons and spikes in a population 
(Ganguli and Simoncelli, 2011). For all units, we recorded characteristic V-shaped 
receptive fields and calculated the tuning curve by collapsing across the highest two dB 
levels (Figure 4.4). The narrow bandwidths of the ultrasonic neurons are readily 
apparent, even in an individual animal (Figure 4.6A). Given there are substantially more 
ultrasonic neurons (Figures 4.3B and 4.5B) and these neurons have narrower tuning 
bandwidth (Figure 4.5C), it is no surprise we also find that the population tuning curve 
(an average of all tuning curves) has uniform distributions (4.5A – turquoise line). This 
would suggest that any given pure-tone will elicit the same number of action potentials 
from A1. To automatically assess the Fisher information (FI) of these neurons, we fitted 
a Gaussian to each tuning curve before calculation the FI (single animal example: 
Figure 4.6B). The population FI (the sum of the individual FIs) in enhanced in the 
ultrasonic frequency range (Figure 4.6B – purple line), as expected given the narrow 
bandwidth of these neurons. These effects – uniform population tuning curve and higher 
FI in the ultrasonic region – were consistent between animals. In addition, the peak of 
the population FI corresponded highly with the distribution of frequencies found in the 
USV (Figure 4.6C). 
 The higher FI values in the ultrasonic region would suggest increase 
discrimination ability for those frequencies (Schoups et al., 2001; Han et al., 2007; Kim 
and Bao, 2008). We tested the discrimination ability of 20 adult female rats (half with 
breeding experience, half naïve virgins) utilizing a protocol previous described (Han et 
al., 2007). Animals were trained detect a transition between a train single-frequency 
pure-tone pips (the standard frequency) to alternating pure-tone pips (the standard and 
target frequencies) (Figure 4.7A). The difference between the standard and target 
frequencies (Df) and the standard frequency were both varied. No difference was seen 
between the naïve animals and those with breeding experience, and the results were 
combined. We find an enhanced discrimination ability of ultrasonic frequencies with a 
peak around 32kHz (Figure 4.7B), which highly corresponds to the peak in population FI 
(Figure 4.6C). This improvement in discrimination was not due to an improved detection 
ability, as the false alarm rate remained stable around 15% across all frequencies 
tested. 
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Ultrasonic Representation Develops Relatively Late 
To investigate the development of ultrasonic representation, we mapped A1 of 

several animals across various developmental stages (Figure 4.8). We find that 
developing animals show responses to mid-level frequencies, expanding representation 
of the full spectral range with age, as previously reported (de Villers-Sidani et al., 2007; 
Insanally et al., 2009). Ultrasonic representation appears to mature at P21, with younger 
animals showing very little ultrasonic responses. When comparing the amount of 
cortical area devoted to specific frequency bands between the young (P15-20) and old 
(P21-26) animals, we find the older animals have significantly more area responding to 
frequencies above 45kHz, while the younger animals have more area responding to 
frequencies between 20 and 27kHz (Figure 4.8C).  

Response properties were compared between the young and old animals (Figure 
4.9). For threshold and response magnitude, there were no significant differences 
between the two age groups (p > 0.10 for both). However, a highly significant age effect 
was seen for response latency, with younger developing animals showing longer 
latency values. The younger group was found to have a marginally narrower bandwidth 
than the older group (p = 0.055), similar to previous reports (de Villers-Sidani et al., 
2007; Insanally et al., 2009). 
 
Early Experience is Critical for Ultrasonic Representation 
 Rat pup isolation calls generally occur between P4 and P16 (Noirot, 1968), 
during the critical period for tonal representation in the rat (de Villers-Sidani et al., 2007; 
Insanally et al., 2009). We hypothesized that this early exposure to the 40kHz pup 
isolation calls could be the mechanism driving the over-representation of ultrasonic 
frequencies. To test this hypothesis, we reversibly deafened animals at P10 by ligating 
their ear canals (Popescu and Polley, 2010). Adequate deafening was confirmed by 
ABRs. After an average of 17.7 days after deafening, six animals (P23, P24, P28, P29, 
P31, P31) were put under anesthesia and the left ear was removed to recover hearing 
(confirmed with ABR or visualization of tympanic membrane) while the right auditory 
cortex was mapped. Previously, it has been reported that rearing in continuous noise (to 
mask out environmental sounds) will result in a delay in the development of the auditory 
cortex (Chang and Merzenich, 2003). We find that masking out environmental sounds 
via deafening leads to substantially normal tonotopy (Figure 4.10A). Similar to that of 
developing animals, we find that the ligated animals show less representation of 
frequencies above 45 kHz, but more representation of frequencies between 23 and 
32kHz (Figure 4.10B). 
 When comparing response properties between the ligated animals and our 
controls, we find no significant differences in bandwith (p = 0.25), threshold (p = 0.87), 
response magnitude (p = 0.97), or response latency (p = 0.19) (Figure 4.11).  However, 
we do see a trend where ligated animals have slightly longer response latency, similar 
to that which was seen in the young developing animals. From these results, we 
presume that early experience of ultrasonic vocalizations is critical to the proper 
development of representation of ultrasonic frequencies. 
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Subcortical Representation of Ultrasonic Frequencies 
 We find that preferential representation of ultrasonic frequencies is not specific to 
the cortex. We recorded pure-tone responses from the central nucleus of the inferior 
colliculus (IC) in 3 adult rats (P45, P46, P50). In one animals, tungsten electrodes were 
used, while the remaining two, 1x16 polytrodes were used. For one animal, two 
independent tracks through IC were taken, allowing for 4 sets of data. The superficial 
layers of IC were tuned to low-frequencies with progressively higher-frequency tuning 
for lower layers of IC (Figure 4.12A). Much like what we found in A1, high-frequency 
neurons had narrower bandwidths (Figure 4.12C). To characterize the distribution of 
frequencies along the depth of the IC, neurons were separated into those with CF 
smaller than 32kHz (“low frequency neurons”) or greater than 32kHz (“high frequency 
neurons”). Linear regression of the high, ultrasonic frequency neurons showed 
significantly shallower slopes than the slopes of the lower frequency neurons (Figure 
4.12B). These results indicate that the over-representation of ultrasonic frequencies we 
find in A1 is not specific to cortex and can be found in subcortical auditory regions. 
 Responses properties were generally very similar between the IC and A1. We 
find non-signficant differences between IC and A1 in terms of response threshold (p = 
0.56) and maximal response magnitude (p = 0.82) (Figure 4.13). However, a significant 
difference for bandwidth was found (p = 0.003), along with a significant interaction (p = 
0.0054). We find that IC neurons with CFs between 4 and 32 kHz show significantly 
broader tuning bandwidths compared to similar A1 neurons (Figure 4.13A). In addition, 
IC neurons had a marginally significantly faster latency to response compared to A1 
neurons (p = 0.077), as is expected given that the IC is one of the obligatory relay 
stations in the lemniscal pathway. 
 
Gender and Ultrasonic Representation 

Since pup isolation and adult encounter USVs can elicit specific behavioral 
responses in female rats (McIntosh and Barfield, 1978; Ehret and Haack, 1981; Ehret et 
al., 1987), we were curious if this preferential representation of ultrasonic frequencies 
was specific to female rats. The full A1, including ultrasonic frequencies, of four juvenile 
male rats (P30, P32, P36, P39) and two age-matched female littermate rats (P35 and 
P37) were mapped. Both male and female rats show orderly tonotopy and 
overrepresentation of ultrasonic frequencies (Figure 4.14). When comparing the male 
rats to their female littermates, we find no significant effect for gender (p = 0.72) and a 
marginally significant interaction (p = 0.060). The marginal significance could be due to 
the small sample size of the female littermates. When comparing the four males to the 
six original female adult controls, we again find no significant effect for gender (p = 
0.88), but a significant interaction (p = 0.031). This interaction is most likely due to the 
fact that the male rats show slightly different frequency distributions between 16 and 32 
kHz compared to the female controls (Figure 4.14B). 

Comparing response properties between the male animals and control females 
show many significant differences. The male rats’ bandwidth was found to be broader 
than the female controls (Figure 4.15A; p = 0.00011). However, when comparing 
against the littermate control females, the male rats were found to have narrower 
bandwidth (p = 0.015). Thus, this difference may be due to differences between litters. 
In addition, we find that male rats have higher response magnitude (p < 0.0001) and 
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longer response latency (p = 0.0029) compared to the control females (Figure 4.15C,D). 
However, when comparing against littermate controls, we find that the males have 
significantly lower response magnitudes and slower response latencies (data not 
shown). Again, this is likely due to differences between litters rather than a consistent 
effect of gender. Threshold was found to not be different between the male animals and 
either female group (Figure 4.15B). 
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Discussion 

 We find that ethologically relevant conspecific vocalization frequencies are 
preferentially representing the rat primary auditory cortex (Figure 4.3). These ultrasonic 
frequencies are represented efficiently, leading to an increased behavioral 
discrimination ability of higher frequencies (Figure 4.7). Interestingly, this 
overrepresentation of ultrasonic frequencies develops relatively late, around P21 
(Figure 4.8). Also, this representation is dependent on early experience with 
vocalizations: reversibly deafened animals lack representation of very high ultrasonic 
frequencies (Figure 4.10). In addition, we find that this representation is not specific to 
cortex (Figure 4.12) and is not specific to gender (Figure 4.14). 
  
Is the ultrasonic region a specialized region or a part of A1? 
 The most thorough investigation of the organization of the five tonotopically 
organized auditory regions reports a conspicuous gap between the high-frequency 
regions of A1 and the anterior auditory field (Polley et al., 2007). However, this study 
only used frequencies up to 32 kHz, so likely missed was unable to find the tonal 
receptive field of these neurons. Previous studies that utilize higher frequencies (up to 
50, 64, or 73 kHz) show that tonotopy is maintained beyond 32 kHz (Sally and Kelly, 
1988; Rutkowski, 2003; Wu et al., 2006; Kim and Bao, 2009; Popescu and Polley, 
2010). In one case an orderly reversal is reported between the border of A1 and AAF 
(Rutkowski, 2003), suggesting the ultrasonic region is definitely a part of A1. Even 
though the neurons in the highest frequency band have significantly lower bandwidths, 
higher thresholds and faster response latencies, these differences are part of a gradual 
continuum that starts well below the ultrasonic range (Figure 4.5). In many of our 
recordings, we would find that the tuning of the ultrasonic neurons would reverse, 
indicating a border between A1 and AAF (data not shown). These putative AAF neurons 
were excluded from all analyses. 
 
Ultrasonic representation: comparison between species 

Similar to rats, the primary auditory cortex of cats and mice have been shown to 
have orderly tonotopy going from low to high frequencies on the caudal-rostral axis in 
A1 with a reversal of frequencies at the anterior auditory field (AAF) (Andersen et al., 
1980; Reale and Imig, 1980; Stiebler et al., 1997; Carrasco and Lomber, 2009; Hackett 
et al., 2011). Although neurons in the cat A1 are capable of responding to very high 
ultrasonic frequencies (close to 64kHz), careful analysis have shown that the cat “A1 
showed a uniform distribution in the gradient of characteristic frequencies” (Carrasco 
and Lomber, 2009). Unlike cats, mice A1 and AAF appear to be devoid of very high 
ultrasonic frequencies. The reversal point between A1 and AAF has been reported to be 
between 32 and 45 kHz (Stiebler et al., 1997; Hackett et al., 2011), substantially lower 
than what has been previously reported in rat and what our data would suggest. We 
propose that the preferential representation of ultrasonic frequencies we find the rat is 
specialized to this species and plays an important role in the perception of vocalizations. 

Interestingly, mouse vocalizations have been reported to be quite similar to rat 
calls, with the exception of being substantially higher in frequency (Liu et al., 2003; 
Hahn and Lavooy, 2005; Portfors, 2007), therefore one would assume that 
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representation of these frequencies are critical for mice. Mice appear to have a 
separately specialized region dubbed the ultrasonic field (UF), which represents 
frequencies between 40 and 80 kHz (Stiebler et al., 1997). On possibility is that mouse 
vocalizations are processed through a specialized region, such as the UF in cortex. 
Alternatively, it has also been reported that mouse inferior colliculus neurons show 
robust responses to mouse USVs, even when the vocalization frequencies are 
substantially higher than the neuron’s preferred frequency range (Portfors et al., 2009). 
Similar results have been found for mouse A1 neurons in our lab (Hamilton et al., 
personal communication), however the response of rat cortical neurons to vocalizations 
is still unknown. 
 
Future Directions  
 Although we find an over-representation of vocalization frequencies in the 
primary auditory cortex, it is unknown how these neurons will respond to ultrasonic 
vocalizations. An important future direction in line of research will be to record 
responses to vocalization stimuli in A1 neurons. It will be interesting to see if the coding 
strategy apparent in mice (Portfors et al., 2009) is consistent in rats. 
 In addition to preferential representation of ultrasonic frequencies in the auditory 
cortex, we find enlarged representation in the inferior colliculus as well (Figure 4.12). 
The over-representation of ultrasonic frequencies is not specialized or specific to cortex. 
However, we do not know if the cortical representation is merely a feed-forward readout 
of subcortical representation, or if cortex is playing an active role with feedback to shape 
the representation in IC (Winer et al., 2002; Winer, 2006). To further understand this 
relationship, it will be necessary to map out the development of frequency 
representation in the IC. If the IC reaches mature representation before P21, we would 
assume that cortical representation is a feed-forward readout of subcortical 
representation (cortex reaches mature representation patterns at P21 – Figure 4.8). 
However, if the IC reaches mature representation after P21, we would assume that 
cortical feedback plays a critical role in shaping the representation in IC. Further studies 
are planned to address this question. 
 Early acoustic experience plays a critical role in the development of appropriate 
ultrasonic representation (Figure 4.10). Artificial manipulation of the early acoustic 
environment has also been shown to shape cortical representation (Zhang et al., 2001; 
Chang and Merzenich, 2003; Han et al., 2007; de Villers-Sidani et al., 2007, 2008; 
Insanally et al., 2009; Kim and Bao, 2009). In addition, manipulation of vocal output has 
also been shown to change cortical representation (Cheung et al., 2005). We presume 
that early exposure to pup isolation calls directs the cortical representation of ultrasonic 
frequencies, since the deafening of animals leads to immature representation (Figure 
4.10). However, it is possible that broadly limiting acoustic input can lead to immature 
representation (Chang and Merzenich, 2003). Therefore, it may be necessary to leave 
the animal’s hearing intact while changing their vocalization patterns (Cheung et al., 
2005). Such an experiment can help define whether or not early experience of 
ultrasonic vocalizations is necessary for over-representation of ultrasonic frequencies. 
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Tables  

 

 

 P11 P15 Adult 

mean center 
frequency (STD) in 

kHz ** 
41.2 (5.16) 47.7 (12.95) 57.8 (9.56) 

mean of frequency 
distribution in kHz 

40.8 39.3 58.1 

mean BW (STD) in 
octaves 

0.107 (0.030) 0.103 (0.042) 0.103 (0.085) 

mean duration (STD) 
in ms ** 

117.5 (72.5) 118.6 (112.8) 47.0 (70.4) 

r for duration vs. 
frequency 

-0.48 
(p< 0.001) 

-0.68 
(p<0.001) 

-0.46 
(p<0.001) 

 

** p<0.001 for one-way ANOVA 

 

Table 4.1. Ultrasonic vocalization in the rat 

Call properties (frequency, bandwidth and duration) for three different vocalization 
groups. Although the mean of the center frequency (corresponding to the muted lines in 
Figure 4.1B) shows a very significant difference between all three group (F(2, 5006) = 
935, p < 0.001), the mean of the frequency distribution is very similar between the two 
pup groups (the saturated lines in Figure 4.1B). Bandwidth was not found to be different 
between the groups. The durations of the calls are significantly different between the 
pup isolation calls and the adult encounter call. (One-way ANOVA:  F(2, 5006) = 352, p 
< 0.001; post-hoc comparisons show no significant difference between the P11 and P15 
groups (p > 0.5)). A significant negative correlation was found between the duration and 
center frequency of the calls for all animals. 
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Frequency bin (kHz) 
 

1-2 2-4 4-8 8-16 16-32 32-64 

 
Percentage of tuning 
curves extending 
beyond 1 or 74 kHz 
 

73% 
(26%) 

43% 
(40%) 

9.3% 
(11%) 

0% 
(0%) 

1% 
(3%) 

13% 
(10%) 

 

Table 4.2. Sound stimulus does not capture complete tuning curve for most low  
frequency neurons. 

The mean percentage (and standard deviation) of neurons whose turning curves 
extended beyond 1 or 74 kHz are reported. The bandwidths of the tuning curves are 
likely underestimated for most low neurons.  
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Figures 

 

 
 

Figure 4.1. Ultrasonic vocalization in the rat 

(A) Example pup isolation (postnatal day 11 and P15) and adult encounter calls. 
(B) Peak frequency distribution (muted lines) and average frequency profile (saturated 
lines) for calls recorded. A one-way ANOVA between P11, P15 and adult calls show a 
highly significant difference in call frequencies (F(2, 5006) = 935, p < 0.001). 
(C) Distribution of call bandwidths (BW) were not different between the three groups 
(one-way ANOVA: F(2, 5006) = 1.56, p = 0.21). 
(D) Relationship between center frequency and duration of calls (10% of data shown). 
Higher frequency calls have shorter durations. This accounts for the difference seen 
between the distribution of peak frequency and the average frequency profile seen in 
the P15 pup isolation calls (Figure 1B, pink curves). 
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Figure 4.2. Vocalization analysis methods 

Schematic of how each individual call was analyzed for a pup isolation call (A) and adult 
encounter call (B). The experimenter visually identified the call’s approximate frequency 
and start time (left). A bandpass filter was applied around the approximate frequency to 
exclude residual noise (right). A Hilbert transform (black curve) was applied to identify 
the start and end of each call (indicated by yellow lines). The frequency profile (red 
curve) was calculated by summing across time along the frequency axis for the duration 
of the call (blue curve) and subtracting profile of the residual noise (orange curve – 
taken from the 25-50 ms preceding the start time). Peak frequency and bandwidth were 
determined by the frequency profile. 
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Figure 4.3. Representation of ultrasonic frequencies 

(A) Representative cortical characteristic frequency map, when recording up to 74kHz. 
Gray line indicates where typical maps would end when recording only to 32kHz. Scale 
bar: 0.5 mm. 
(B) Amount of cortical area representing one-octave frequency bands. Representation 
of the 32-64kHz band is significantly larger than the other bands. 
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Figure 4.4. Isolation of response properties 

Example receptive fields for a mid-frequency (A) and high-frequency (B) neuron. Top 
panels: raw receptive fields with frequency represented on the x-axis and decibel level 
represented on the y-axis. Note the V-shaped receptive field commonly found in A1. 
The maximum firing rate was taken from this receptive field. Middle panels: receptive 
fields were isolated utilizing a thresholding and filtering algorithm. The characteristic 
frequency was calculated as the center of mass of this receptive field; the threshold was 
calculated as the lowest dB level that was still a part of the receptive field. Bottom 
panels: tuning curves could be derived either by collapsing the receptive field over the 
top two dB levels. Bandwidth and Fisher Information were calculated using the green 
tuning curves. 
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Figure 4.5. Representation of ultrasonic frequencies and response properties 

(A) Distribution of characteristic frequency (CF) across the tonotopic axis. 
(B) Percentage of cortical area representing 0.25 octave sized bins. 
(C,D,E,F) Bandwidth, threshold, maximal response magnitude and response latency as 
a function of CF. Small gray points indicate individual recording sites; larger black dots 
represents the octave-band average for each animal; the blue line indicates the average 
between animals (error bar: SEM). 
(C) Neurons with higher CFs have narrower bandwidths. The narrow bandwidth of the 
lowest two frequency bins is due an edge effect. One-way ANOVA including all data 
shows a significant CF-dependency on BW (F(5,30) = 15.82, p = 1.2 x 10-7). 
(D) Lower thresholds are generally seen for middle-frequency tuned neurons. One-way 
ANOVA across frequency bands: F(5,30) = 4.69, p=0.0028. * indicates p<0.05, post-hoc 
comparisons. 
(E) For each recording site, the frequency-dB combination that elicited the highest 
number of action potentials was used. Response magnitude indicates the average 
number of spikes observed across three repetitions. Although a one-way ANOVA is 
significant (F(5,30) = 2.6, p = 0.046), no pairwise comparisons came out significant in 
post-hoc analyses. However, a significant negative correlation was found between 
response magnitude and CF (r = -0.57, p < 0.001). 
(F) Peak response latency did not show a CF-dependent difference (one-way ANOVA 
F(5,30) = 1.8, p = 0.14). 
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Figure 4.6. Population Fisher Information 

(A) Tuning curves of all neurons in example map in 4.3A. Thick turquoise line indicates 
the average tuning curve for this map.  
(B) Fisher Information (FI) of all neurons in example map in 4.3A. Thick purple line 
indicates the population FI this map. 
(C) Turquoise and purple curves indicate the average tuning curve and average 
population FI for all control animals. Error bar = SEM. Gray curves indicate the 
distribution of frequencies of rat ultrasonic vocalizations as seen in Figure 4.1B. 
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Figure 4.7. Discrimination of ultrasonic frequencies 

(A) Schematic of behavioral test. Tone pips (100 ms) were presented at 5 pips per 
second. During the hold period, a single reference tone was played for 5 to 35 seconds, 
after which the reference tone alternates with a target tone. The difference between the 
reference and target tone (!f) was varied.  

(B) Behavioral results. Animals were trained at !f = 1.0 octave and were tested at 0.5 

(not shown), 0.3 (blue traces), 0.1 (red traces) and 0 (black traces) octaves. Animals 
were first tested on the two ranges (4-32 kHz and 20-64 kHz) on different days, 
indicated by the lighter and darker colors. Animals showed a steady false alarm rate (!f 

= 0 octaves) of 10-20% across all frequency levels. The task was consistently more 
difficult for smaller !f. Animals also showed improved discrimination ability for 

frequencies near 32 kHz. 
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Figure 4.8. Development of ultrasonic frequencies 

(A) Animals younger than P21. (B) Animals P21 and older. (Ai) & (Bi) The distribution of 
cortical area representing 2-75kHz in young animals ranging from P15 to P24. (Aii) & 
(Bii) Corresponding maps associated with the histograms in Ai and Bi. x’s indicate sites 
that were not sound responsive; scale bar = 0.5 mm. 
(C) Average percentage of representation in 0.25 octave bins. Animals were collapsed 
as either young (n = 4, ages: P15, P17, P19, P20) or old (n = 4, ages: P21, P22, P24, 
P26). Two-way ANOVA (age x frequency bin) finds a no significant effect for age 
(F(1,126) = 0.01, p = 0.94), but highly significant effects for frequency bin (F(20,126) = 
5.3, p < 0.00001) and a highly significant interaction (F(20,126) = 3.79, p < 0.00001). 
Interaction is likely due to a significant increase in representation of frequencies above 
32kHz in the older group. In addition, the younger group shows a systematic increase in 
representation of frequencies between 16 and 32 kHz. (* p < 0.05, ** p < 0.01, 2-sample 
t-tests uncorrected). 
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Figure 4.9. Response properties in developing animals 

Response properties are calculated in the same way as Figure 4.5. Animals are the 
same as that of Figure 4.8C. It should be noted that some of the younger animals did 
not have frequency responses to the lowest and highest bins. These data points were 
removed from the ANOVAs.  
(A) Bandwidth in octaves. A two-way ANOVA (age x frequency bin) reveals a significant 
effect for frequency bin (F(4,26) = 4.93, p = 0.0043), but not for age (F(1,26) = 4.05, p = 
0.055). We do not find a significant interaction (F(4,26) = 1.58, p = 0.208). 
(B) Threshold in dB. We a significant effect for frequency (F(4,26) = 5.4, p = 0.0027), 
but not for age (F(1,26) = 2.44, p = 0.13) and there was no significant interaction 
(F(4,26) = 0.92, p = 0.47). 
(C) Maximal response magnitude in spikes. A two-way ANOVA reveals a significant 
effect for frequency bin (F(4,26) = 6.5, p = 0.0009), but not for age (F(1,26) = 1.51, p = 
0.23) and no significant interaction (F(4,26) = 1.45, p = 0.25). 
(D) Peak response latency in ms. A two-way ANOVA reveals a significant effect for age 
(F(1,26) = 85.7, p < 0.00001), but not for frequency bin (F(4,26) = 1.29, p = 0.30). We 
do not find a significant interaction (F(4,26) = 0.55, p = 0.70). Response latency is 
significantly different for all testable frequencies (p < 0.01 for the four highest bins). 
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Figure 4.10. Ultrasonic representation requires early experience. 

(A) Example map of animal deprived of normal hearing experience from P10 until 
mapping. Scale bar = 0.5 mm. 
(B) Average percentage of representation in 0.25 octave bins. Gray control animals are 
the same as shown in Figure 4.5B. Two-way ANOVA finds a no significant effect for age 
(F(1,21) = 0.03, p = 0.87), but highly significant effects for frequency bin (F(20,210) = 
9.7, p < 0.00001) and a highly significant interaction (F(20,210) = 3.51, p < 0.00001). 
Interaction is likely due to a significant increase in representation of frequencies above 
32kHz in the older group. In addition, the younger group shows a systematic increase in 
representation of frequencies between 16 and 32 kHz. (* p < 0.05, ** p < 0.01, + p < 
0.005, 2-sample t-tests uncorrected). 
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Figure 4.11. Response properties of deafened animals. 

Response properties are calculated in the same way as Figure 4.5. Animals are the 
same as that of Figure 4.10B. 2-way ANOVAs (condition: ligation group vs control x 
frequency bin) were conducted as in Figure 4.5 
(A) Bandwidth in octaves. We find no main effect for condition (F(1,59) = 1.33, p = 
0.25), but a significant effect for frequency bin (F(5,59) = 11.3, p < 0.0001) and a 
significant interaction (F(5,59) = 10.5, p < 0.0001). 
(B) Threshold in dB. No main effect is seen for condition (F(1,59) = 0.03, p = 0.87) and 
there is no interaction (F(5,59) = 1.83, p = 0.12). There is a main effect for frequency bin 
(F(5,59) = 7.4, p < 0.0001). 
(C) Maximal response magnitude in spikes. Again, there is no main effect is seen for 
condition (F(1,59) = 0, p = 0.97) and there is no interaction (F(5,59) = 0.45, p = 0.81). 
There is a main effect for frequency bin (F(5,59) = 2.8, p = 0.035). 
(D) Peak response latency in ms. There is a trend towards the ligated group having 
longer latency (F(1,59) = 1.76, p = 0.19). A significant effect is seen for frequency bin 
(F(5,59) = 16.89, p < 0.0001), but no interaction (F(5,59) = 0.24, p = 0.94). 
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Figure 4.12. Increased representation of ultrasonic frequencies in inferior 
colliculus 

(A) CF distribution as a function of distance below V1 for four independent tracts 
(across 3 animals). Lines of best fit are shown for sites tuned to below or above 32kHz. 
Numbers indicate sites with example receptive fields in C. 
(B) Slope of lines of best fit for low frequency (<32kHz) and high frequency (>32kHz) 
neurons.  
The decrease in slope indicates an over-representation of high, ultrasonic neurons. (p = 
0.0042, paired t-test) 
(C) Example receptive fields as indicated in A. 
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Figure 4.13. Response properties in inferior colliculus 

Response properties are calculated in the same way as Figure 4.5. Animals are the 
same as that of Figure 4.12. 2-way ANOVAs was conducted (condition: IC vs A1 x 
frequency bin) as in Figure 4.5. 
(A) Bandwidth in octaves. We find significant main effects for condition (F(1,45) = 9.82, 
p = 0.003), frequency (F(5,45) = 27.85, p < 0.0001), and an interaction (F(5,45) = 3.86, 
p = 0.0054). Interaction due to the fact that neurons in IC tuned between 4kHz and 
32kHz have broader bandwidths (* p < 0.05; uncorrected t-test). 
(B) Threshold in dB. No effect was found for condition (F(1,45) = 0.35, p = 0.556) and 
no interaction (F(5,45) = 1.01, p = 0.42) was found. There was a significant effect for 
frequency (F(5,45) = 7.77, p < 0.0001). 
(C) Maximal response magnitude in spikes. No main effects (condition: F(1,45) = 0.05, p 
= 0.82; frequency: F(5,45) = 0.96, p = 0.45) or interaction (F(5,45) = 1.65, p = 0.17) 
were found. 
(D) Peak response latency in ms. Response latency was found to be marginally faster in 
the IC group (F(1,45) = 3.27, p = 0.077), with a marginal main effect for frequency 
(F(5,45) = 2.23, p = 0.068). No interaction was found (F(5,45) = 0.11, p = 0.99). 
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Figure 4.14. Gender 

(A) Example maps of male (Ai) and female (Aii) animals. No obvious difference seen. 
Scale bar = 0.5 mm. 
(B) Average percentage of representation in 0.25 octave bins. Gray control animals are 
the same as shown in Figure 4.5B. Two-way ANOVA finds a no significant effect for 
gender (F(1,168) = 0.02, p = 0.88), but highly significant effects for frequency bin 
(F(20,168) = 14.75, p < 0.00001) and a significant interaction (F(20,168) = 1.74, p = 
0.031). Interaction is likely due to small differences seen between the male and female 
groups between 16 and 32 kHz. (* p < 0.05, + p < 0.005, 2-sample t-tests uncorrected). 
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Figure 4.15. Gender Response Properties 

Response properties are calculated in the same way as Figure 4.5. Animals are the 
same as that of Figure 4.14. 2-way ANOVAs was conducted (condition: male vs female 
x frequency bin) as in Figure 4.5. 
(A) Bandwidth in octaves. Significant main effects (condition: F(1,48) = 12.17, p = 
0.0011; frequency: F(5,48) = 45.91, p < 0.0001) and interaction (F(5,48) = 3.28, p = 
0.0125) was found. Males having broader bandwidths only in mid-frequency neurons 
likely drove interaction. 
(B) Threshold in dB. A marginally significant effect was found for condition (F(1,48) = 
3.63, p = 0.063) and highly significant main effect for frequency (F(5,48) = 7.71, p < 
0.0001). No interaction was found (F(5,48) = 0.31, p = 0.90). 
(C) Maximal response magnitude in spikes. A highly significant effect was found for 
condition (F(1,48) = 17.84, p = 0.0001) and marginally significant main effect for 
frequency (F(5,48) = 2.36, p = 0.054). No interaction was found (F(5,48) = 1.74, p = 
0.14). 
(D) Peak response latency in ms. A significant effect for condition (F(1,48) = 9.84, p = 
0.0029) was found with no effect for frequency (F(5,48) = 0.67, p = 0.65) and no 
interaction (F(5,48) = 0.97, p = 0.45). The main effect for latency was likely driven by the 
males having a longer response latency for the highest frequency bin. 



 

 84 

References 
Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and 

corticothalamic conections of AI, AII, and the anterior auditory field (AFF) in the cat: 
Evidence of two largely segregated systems of connections. The Journal of 
Comparative Neurology 194:663–701. 

Brudzynski SM (2005) Principles of rat communication: quantitative parameters of 
ultrasonic calls in rats. Behavior Genetics 35:85–92. 

Brudzynski SM, Bihari F, Ociepa D, Fu XW (1993) Analysis of 22 kHz ultrasonic 
vocalization in laboratory rats: long and short calls. Physiology & Behavior 54:215–
221. 

Brudzynski SM, Kehoe P, Callahan M (1999) Sonographic structure of isolation-induced 
ultrasonic calls of rat pups. Developmental Psychobiology 34:195–204. 

Butts D a, Goldman MS (2006) Tuning curves, neuronal variability, and sensory coding. 
PLoS Biology 4:e92. 

Carrasco A, Lomber SG (2009) Differential modulatory influences between primary 
auditory cortex and the anterior auditory field. The Journal of Neuroscience 
29:8350–8362. 

Chang EF, Bao S, Imaizumi K, Schreiner CE, Merzenich MM (2005) Development of 
spectral and temporal response selectivity in the auditory cortex. Proceedings of 
the National Academy of Sciences 102:16460–16465. 

Chang EF, Merzenich MM (2003) Environmental noise retards auditory cortical 
development. Science 300:498–502. 

Cheung SW, Nagarajan SS, Schreiner CE, Bedenbaugh PH, Wong A (2005) Plasticity 
in primary auditory cortex of monkeys with altered vocal production. The Journal of 
Neuroscience 25:2490–2503. 

Cohen L, Rothschild G, Mizrahi A (2011) Multisensory Integration of Natural Odors and 
Sounds in the Auditory Cortex. Neuron 72:357–369. 

Ehret G, Haack B (1981) Categorical perception of mouse pup ultrasound by lactating 
females. Die Naturwissenschaften 68:208–209. 

Ehret G, Koch M, Haack B, Markl H (1987) Sex and parental experience determine the 
onset of an instinctive behavior in mice. Die Naturwissenschaften 74:47. 

Engineer CT, Perez C a, Chen YH, Carraway RS, Reed AC, Shetake J a, Jakkamsetti 
V, Chang KQ, Kilgard MP (2008) Cortical activity patterns predict speech 
discrimination ability. Nature Neuroscience 11:603–608. 

Fischer BJ, Peña JL (2011) Owl’s behavior and neural representation predicted by 
Bayesian inference. Nature Neuroscience 14:1061–1066. 

Ganguli D, Simoncelli EP (2011) Implicit encoding of prior probabilities in optimal neural 
populations. Processing:6–9. 

Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal 
rats: air and bone conducted ABR thresholds. Hearing Research 69:236–242. 

Girshick AR, Landy MS, Simoncelli EP (2011) Cardinal rules: visual orientation 
perception reflects knowledge of environmental statistics. Nature Neuroscience 
14:926–932. 

Hackett T a, Barkat TR, O’Brien BMJ, Hensch TK, Polley DB (2011) Linking topography 
to tonotopy in the mouse auditory thalamocortical circuit. The Journal of 
Neuroscience 31:2983–2995. 



 

 85 

Hahn ME, Lavooy MJ (2005) A review of the methods of studies on infant ultrasound 
production and maternal retrieval in small rodents. Behavior Genetics 35:31–52. 

Han YK, Köver H, Insanally MN, Semerdjian JH, Bao S (2007) Early experience impairs 
perceptual discrimination. Nature Neuroscience 10:1191–1197. 

Insanally MN, Köver H, Kim H, Bao S (2009) Feature-dependent sensitive periods in the 
development of complex sound representation. The Journal of Neuroscience 
29:5456–5462. 

Kim H, Bao S (2008) Distributed representation of perceptual categories in the auditory 
cortex. Journal of Computational Neuroscience 24:277–290. 

Kim H, Bao S (2009) Selective increase in representations of sounds repeated at an 
ethological rate. The Journal of Neuroscience 29:5163–5169. 

Knutson B, Burgdorf J, Panksepp J (2002) Ultrasonic vocalizations as indices of 
affective states in rats. Psychological Bulletin 128:961–977. 

Liu RC, Linden JF, Schreiner CE (2006) Improved cortical entrainment to infant 
communication calls in mothers compared with virgin mice. The European Journal 
of Neuroscience 23:3087–3097. 

Liu RC, Miller KD, Merzenich MM, Schreiner CE (2003) Acoustic variability and 
distinguishability among mouse ultrasound vocalizations. The Journal of the 
Acoustical Society of America 114:3412. 

McIntosh TK, Barfield RJ (1978) Ultrasonic vocalisations facilitate sexual behaviour of 
female rats. Nature 272:163–164. 

Noirot E (1968) Ultrasounds in young rodents. II. Changes with age in albino rats. 
Animal Behaviour 16:129–134. 

Polley DB, Read HL, Storace D a, Merzenich MM (2007) Multiparametric auditory 
receptive field organization across five cortical fields in the albino rat. Journal of 
Neurophysiology 97:3621–3638. 

Popescu MV, Polley DB (2010) Monaural deprivation disrupts development of binaural 
selectivity in auditory midbrain and cortex. Neuron 65:718–731. 

Portfors CV (2007) Types and functions of ultrasonic vocalizations in laboratory rats and 
mice. Journal of the American Association for Laboratory Animal Science 46:28–
34. 

Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific 
vocalizations in the awake mouse inferior colliculus. Neuroscience 162:486–500. 

Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. The 
Journal of Comparative Neurology 192:265–291. 

Romand R, Gunter E (1990) Development of tonotopy in the inferior colliculus. I 
Electrophysiological mapping in house mice. Developmental Brain Research 
54:221–234. 

Rutkowski R (2003) Characterisation of multiple physiological fields within the 
anatomical core of rat auditory cortex. Hearing Research 181:116–130. 

Sally SL, Kelly JB (1988) Organization of auditory cortex in the albino rat: sound 
frequency. Journal of Neurophysiology 59:1627–1638. 

Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification 
improves orientation coding in V1 neurons. Nature 412:549–553. 

Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population 
codes. Proceedings of the National Academy of Sciences 90:10749–10753. 



 

 86 

Stiebler I, Neulist R, Fichtel I, Ehret G (1997) The auditory cortex of the house mouse: 
left-right differences, tonotopic organization and quantitative analysis of frequency 
representation. Journal of Comparative Physiology 181:559–571. 

Takahashi N, Kashino M, Hironaka N (2010) Structure of rat ultrasonic vocalizations 
and its relevance to behavior. PloS One 5:e14115. 

de Villers-Sidani E, Chang EF, Bao S, Merzenich MM (2007) Critical period window for 
spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of 
Neuroscience 27:180–189. 

de Villers-Sidani E, Simpson KL, Lu Y-F, Lin RCS, Merzenich MM (2008) Manipulating 
critical period closure across different sectors of the primary auditory cortex. Nature 
Neuroscience 11:957–965. 

Winer J (2006) Decoding the auditory corticofugal systems!. Hearing Research 212:1–
8. 

Winer J a, Chernock ML, Larue DT, Cheung SW (2002) Descending projections to the 
inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and 
monkey. Hearing R esearch 168:181–195. 

Wu GK, Li P, Tao HW, Zhang LI (2006) Nonmonotonic synaptic excitation and 
imbalanced inhibition underlying cortical intensity tuning. Neuron 52:705–715. 

Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early 
acoustic environments on primary auditory cortex. Nature Neuroscience 4:1123–
1130. 

Zhou X, Merzenich MM (2008) Enduring effects of early structured noise exposure on 
temporal modulation in the primary auditory cortex. Proceedings of the National 
Academy of Sciences 105:4423. 

 
 




