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ABSTRACT

Geographic Information Systems (GIS) and related technologies have generated substantial interest
among statisticians with regard to scalable methodologies for analyzing large spatial datasets. A
variety of scalable spatial process models have been proposed that can be easily embedded within
a hierarchical modeling framework to carry out Bayesian inference. While the focus of statistical
research has mostly been directed toward innovative and more complex model development, relatively
limited attention has been accorded to approaches for easily implementable scalable hierarchical
models for the practicing scientist or spatial analyst. This article discusses how point-referenced
spatial process models can be cast as a conjugate Bayesian linear regression that can rapidly de-
liver inference on spatial processes. The approach allows exact sampling directly (avoids iterative
algorithms such as Markov chain Monte Carlo) from the joint posterior distribution of regression
parameters, the latent process and the predictive random variables, and can be easily implemented on
statistical programming environments such as R.

Keywords Bayesian linear regression · Exact sampling-based inference · Gaussian process · Low-rank models ·
Nearest-Neighbor Gaussian Processes · Sparse models.

1 Introduction

Statistical modeling and analysis for spatial and spatial-temporal data continue to receive much attention due to
enhancements in computerized Geographic Information Systems (GIS) and accompanying technologies. Bayesian
hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better
understand the complex nature of spatial and temporal variability See, for example, the books [1], [2], [3], [4], [5], [6]
and [7] for a variety of statistical methods in diverse applications domains.

Spatial data analysis is conveniently carried out by embedding a spatial process within the familiar hierarchical modeling
paradigm,

[data | process]× [process | parameters]× [parameters] . (1)
Modeling for point-referenced data, which refers to data referenced by points with coordinates (latitude-longitude,
Easting-Northing etc.), proceeds from a random field that introduces dependence among any finite collection of random
variables. Formally, the random field is a stochastic process defined as an uncountable set of random variables, say
{w(`) : ` ∈ L}, over a domain of interest L. This uncountable set is endowed with a probability law specifying the
joint distribution for any finite subset of random variables. Spatial processes are usually constructed assuming L ⊆ <d
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(usually d = 2 or 3) or, perhaps, as a subset of points on a sphere or ellipsoid. In spatiotemporal settings L = S × T ,
where S ⊂ <d and T ⊂ [0,∞) are the space and time domains, respectively, and ` = (s, t) is a space-time coordinate
with spatial location s ∈ S and time point t ∈ T [see, e.g., 8, for details].

Probability laws over random fields are specified with a covariance function cov{w(`), w(`′)} = Kθ(`, `
′) for any two

points ` and `′ in L. If U and V are finite sets comprising n and m points in L, respectively, then Kθ(U ,V) denotes
the n×m matrix whose (i, j)-th element is evaluated using the covariance function Kθ(·, ·) between the i-th point U
and the j-th point in V . If U or V comprises a single point, Kθ(U ,V) is a row or column vector, respectively. A valid
spatiotemporal covariance function ensures that Kθ(U ,U) is positive definite for any finite set U , which we will denote
simply as Kθ if the context is clear. A customary specification models {w(`) : ` ∈ L} as a zero-centered Gaussian
process, denoted as w(`) ∼ GP (0,Kθ(·, ·)). For any finite collection U = {`1, `2, . . . , `n} in L, the n × 1 random
vector wU = (w(`1)), w(`2), . . . , w(`n))> is distributed as N(0,Kθ), where Kθ = Kθ(U ,U). Further details on valid
spatial (and spatiotemporal) covariance functions can be found in [8], [1], [2], [5], [6] and [7] and numerous references
therein.

If y(`) represents a variable of interest at point `, then a customary spatial regression model at ` is

y(`) = x>(`)β + w(`) + ε(`) , (2)

where x(`) is a p × 1 (p < n) vector of spatially referenced predictors, β is the p × 1 vector of slopes, and w(`) ∼
GP (0,Kθ(·, ·)) is the spatial or spatiotemporal process and ε(`) is a white noise process modeling measurement error
or fine scale variation attributed to disturbances at distances smaller than the minimum observed separations in space
and/or time. We now embed (2) and the spatial process within the Bayesian hierarchical model

p(θ, β, τ)×N(w | 0,Kθ)×N(y |Xβ + w,Dτ ) , (3)

where y = (y(`1), y(`2), . . . , y(`n))> is the n×1 vector of observed outcomes,X is the n×pmatrix of regressors with
i-th row x>(`i) and Dτ is the covariance matrix for ε(`) over {`1, `2, . . . , `n}. A common specification is Dτ = τ2In,
where τ2 is called the “nugget.” The hierarchy is completed by assigning prior distributions to β, θ and τ .

For fitting (3) to large spatial datasets, a substantial computational expense is incurred from the size of Kθ. Since θ is
unknown, each iteration of the model fitting algorithm will involve decomposing or factorizing Kθ, which typically
requires ∼ n3 floating point operations (flops) and order of ∼ n2 for memory requirements. In geostatistical settings,
data are almost never observed on regular grids and the configuration of points are typically highly irregular. The
covariance models that have been demonstrated to be most effective for inference do not, in general, result in any
computationally exploitable structure for Kθ, which makes the matrix computations prohibitive for large values of n.
For Gaussian likelihoods, one can integrate out the random effects w from (3) and work with the posterior

p(θ, β, τ | y) ∝ p(θ, β, τ)×N(y |Xβ,Kθ +Dτ ) . (4)

This reduces the parameter space to {τ2, θ, β} by excluding the high-dimensional vector w, but one still needs to work
with Kθ +Dτ , which is n× n. These are referred to as “big-n” or “high-dimensional” problems in geostatistics.

There is already a substantial literature on high-dimensional spatial and spatiotemporal modeling and we do not attempt
to undertake a comprehensive review here; see, e.g., [9] for a focused review on some popular Bayesian approaches and
[10] for a comparative evaluation for a variety of contemporary statistical methods. These papers, and the references
therein, offer a variety of algorithmic and model-based approaches for large data. Some published methods have scalable
implementations into the millions [see, e.g., 11, 12, 13, 14, 15] but often require specialized high-performance computer
architectures and libraries harnessing parallel processing or graphical processing units. Also, uncertainty quantification
on the spatial process while maintaining fidelity to the underlying probability model may also be challenging. With
the advent of a new generation of data products, there is a need for some simpler implementations that can be run
on modest computing architectures by practicing spatial analysts. This requires new directions in thinking about
high-dimensional spatial problems. Here, we will show how some elementary conjugate Bayesian linear regression
models can be exploited to conduct Bayesian analysis for massive spatial datasets. While a common underlying idea is
to approximate the underlying spatial process with a scalable alternative, we will ensure that such approximations will
result in well-defined probability models. In this sense, these approaches can be described as model-based solutions
for very large spatial datasets that can be executed on modest computing environments. One exception to the fully
model-based approach will be a divide and conquer approach that we briefly review, where an approximation to the full
posterior distribution for the entire data is constructed from several posterior distributions of smaller subsets of the data.

The balance of the paper proceeds as follows. The next section briefly reviews dimension reduction and sparsity inducing
spatial models. Section 3 presents some standard distribution theory for Bayesian linear regression and outlines how
scalable spatial process models can be cast into such frameworks. A synposis of some simulation experiments and
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data analysis examples are provided in Section 4. Section 5 presents an alternative approach based upon dividing and
conquering the data, known as meta-kriging. The paper concludes with some further discussion in Section 6.

2 Dimension reduction and sparsity

Dimension reduction [16] is among the most conspicuous of approaches for handling large spatial datasets. This
customarily proceeds by representing or approximating the spatial process in terms of the realizations of a latent process
over a smaller set of points, often referred to as knots. Thus,

w(`) ≈ w̃(`) =

r∑
j=1

bθ(`, `
∗
j )z(`

∗
j ) = b>θ (`)z, (5)

where z(`) is a well-defined (usually unobserved) process and bθ(·, ·) is a family of basis functions or kernels,
possibly depending upon some parameters θ. The collection of r locations {`∗1, `∗2, . . . , `∗r} are the knots, bθ(`)
and z are r × 1 vectors with components bθ(`, `∗j ) and z(`∗j ), respectively. Therefore, w̃ = Bθz, where w̃ =

(w̃(`1), w̃(`2), . . . , w̃(`n))> and Bθ is n× r with (i, j)-th element bθ(`i, `∗j ). We work with r (instead of n) z(`∗j )’s
and the n × r matrix Bθ. Choosing r << n effectuates dimension reduction because w̃(`), as defined in (5), spans
only an r-dimensional space. When n > r, the joint distribution of w̃ is singular. Nevertheless, we construct a valid
stochastic process with covariance function

cov(w̃(`), w̃(`′)) = b>θ (`)Vzbθ(`
′) , (6)

where Vz is the variance-covariance matrix (also depends upon parameter θ) for z. From (6), we see that, even if bθ(·, ·)
is stationary, the induced covariance function is not. If the z’s are Gaussian, then w̃(`) is a Gaussian process. Every
choice of basis functions yields a process and there are too many choices to enumerate here. Wikle [17] offers an
excellent overview of low rank models.

Some choices of basis functions can be more computationally efficient than others depending upon the specific
application. For example, [18] (also see [19]) discuss “Fixed Rank Kriging” (FRK) by constructing Bθ using very
flexible families of non-stationary covariance functions to carry out high-dimensional kriging, [20] extend FRK to
spatiotemporal settings calling the procedure “Fixed Rank Filtering” (FRF), [21] provide efficient constructions for Bθ
for massive spatiotemporal datasets, and [22] uses spatial basis functions to capture medium to long range dependence
and tapers the residual w(`)− w̃(`) to capture fine scale dependence. Multiresolution basis functions [23, 24] have
been shown to be effective in building computationally efficient nonstationary models. These papers amply demonstrate
the versatility of low-rank approaches using different basis functions. An alternative approach specifies z(`) itself as a
spatial process. This process is called the “parent process” and one can derive a low-rank process w̃(`) from the parent.
One such derivation emerges from truncating the Karhunen-Loève (infinite) basis expansion for a Gaussian process to a
finite number of terms to obtain a low-rank process [see, e.g., 25, 7]. This is equivalent to projecting the parent process
on a lower-dimensional subspace determined by a partial realization of the parent over r knots of the process. This
yields the predictive process and several variants aimed at improving the approximation [26, 27, 28, 29, 11]; also see
[30] and [9] for computational details on efficiently implementing Gaussian predictive processes.

While dimension reduction methods have been applied extensively and effectively to analyze spatial data sets in the
order of n ∼ 104, their computational efficiency and inferential performance tend to struggle at even larger scales
[9]. More recently, there has been substantial developments in full rank models that exploit sparsity. We introduce
sparsity either in the covariance matrix or its inverse (the precision matrix). Covariance tapering [31, 32, 33] is in
the spirit of the former by modeling var{w} = Kθ � Ktap,ν , where Ktap,ν is a sparse covariance matrix formed
from a compactly supported, or tapered, covariance function with tapering parameter ν and � denotes the element
wise (or Hadamard) product of two matrices. The Hadamard product retains positive definiteness, so Kθ �Ktap,ν
is positive definite. Furthermore, Ktap,ν is sparse because a tapered covariance function is equal to 0 for all pairs of
locations separated by a distance beyond a threshold ν. Covariance tapering is undoubtedly an attractive approach for
constructing sparse covariance matrices, but its practical implementation for full Bayesian inference will generally
require efficient sparse Cholesky decompositions, numerically stable determinant computations and, perhaps most
importantly, effective memory management. These issues are yet to be tested for truly massive spatiotemporal datasets
with n ∼ 105 or more.

One could also devise models with sparse precision matrices. For finite-dimensional distributions conditional and
simultaneous autoregressive (CAR and SAR) models [see, e.g., 1, 7, and references therein] adopt this approach for
areally referenced datasets. The CAR models are special instances of Gaussian Markov random fields or GMRFs [34]
that have led to the popular quadrature based Integrated Nested Laplace Approximation (INLA) algorithms [35] for
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Bayesian inference and to the approximation of Gaussian processes[36]. These approaches can be computationally
efficient for certain classes of covariance functions with stochastic partial differential equations (SPDE) representations
(including the versatile Matérn class), but their inferential performance on spatiotemporal or multivariate Gaussian
processes (perhaps specified through more general covariance or cross-covariance functions) embedded within Bayesian
hierarchical models is yet to be fully developed or assessed for massive datasets.

One could also construct massively scalable sparsity-inducing Gaussian processes using essentially the techniques
used in graphical Gaussian models by exploiting the relationship between the Cholesky decomposition of a positive
definite matrix and conditional independence. For Gaussian processes in particular, recent developments on the Nearest
Neighbor Gaussian Processes (NNGP) [37, 38, 9, 14] have proceeded from GP likelihoods using directed acyclic graphs
(or DAGs) as used by Vecchia [39] and Stein et al.[40]. The NNGP is a Gaussian process whose finite-dimensional
realizations will have sparse precision matrices. Other related papers using the approximation in [39] include [41], [42],
[43], and [44]. Shi et al. [45] recently used the NNGP for uncertainty quantification and Ma et al. [46] used it as a part
of a rich class of fused Gaussian process models.

Full Bayesian inference for low-rank and sparse Gaussian process models require iterative algorithms such as Markov
chain Monte Carlo (MCMC) or INLA. Details of these implementations can be found in the aforementioned references.
In the following section, we will discuss how these spatial models can be embedded within a Bayesian linear regression
framework and provide some practical strategies for inference based upon direct (exact) sampling from the posterior
distribution.

3 Conjugate Bayesian models for massive datasets

3.1 Conjugate Bayesian linear geostatistical models

A conjugate Bayesian linear regression model is written as

y |β, σ2 ∼ N(Xβ, σ2Vy) ; β |σ2 ∼ N(β |µβ , σ2Vβ) ; σ2 ∼ IG(aσ, bσ) , (7)

where y is an n× 1 vector of observations of the dependent variable, X is an n× p matrix (assumed to be of rank p) of
independent variables (covariates or predictors) and its first column is usually taken to be the intercept, Vy is a fixed (i.e.,
known) n× n positive definite matrix, µβ , Vβ , aσ and bσ are assumed to be fixed hyper-parameters specifying the prior
distributions on the regression slopes β and the scale σ2. This model is easily tractable and the posterior distribution is

p(β, σ2 | y) = IG(σ2 | a∗σ, b∗σ)︸ ︷︷ ︸
p(σ2 | y)

×N(β |Mm,σ2M)︸ ︷︷ ︸
p(β |σ2,y)

, (8)

where a∗σ = aσ + n/2, b∗σ = bσ + (1/2)
{
µ>β V

−1
β µβ + y>V −1

y y −m>Mm
}

, M−1 = V −1
β + X>V −1

y X and

m = V −1
β µβ + X>V −1

y y. Sampling from the joint posterior distribution of {β, σ2} is achieved by first sampling
σ2 ∼ IG(a∗σ, b

∗
σ) and then sampling β ∼ N(Mm,σ2M) for each sampled σ2. This yields marginal posterior samples

from p(β | y), which is a non-central multivariate t distribution but we do not need to work with its complicated density
function. See [47] for further details on the conjugate Bayesian linear regression model and sampling from its posterior.

We will adapt (7) to accommodate (3) or (4). Let us first consider (4) with the customary specification Dτ = τ2I and let
Kθ = σ2R(φ), where R(φ) is a correlation matrix whose entries are given by a correlation function ρ(φ; `i, `j). Thus,
θ = {σ2, φ}, where σ2 is the spatial variance component and φ is a spatial decay parameter controlling the rate at which
the spatial correlation decays with separation between points. A simple example is ρ(φ; `i, `j) = exp(−φ‖`i − `j‖),
although much richer choices are available [see, e.g., Ch 3 in 7]. Therefore, we can write Kθ = σ2Vy, where
Vy = R(φ) + δ2I and δ2 = τ2/σ2 is the ratio between the “noise” variance and “spatial” variance. If we assume that
φ and δ2 are fixed and that the prior on {β, σ2} are as in (7), then we have reduced (4) to (7) and direct sampling from
its posterior is easily achieved as described below (8). We will return to the issue of fixing {φ, δ2} shortly.

Let us turn to accommodating (3) within (7), which would include directly sampling the spatial random effects w from
their marginal posterior p(w | y). Here, it is instructive to write the joint distribution of y and w in (3) as a linear model,[

y
µβ
0

]
︸ ︷︷ ︸ =

[
X In
Ip O
O In

]
︸ ︷︷ ︸

[
β
w

]
︸ ︷︷ ︸ +

[
η1

η2

η3

]
︸ ︷︷ ︸,

y∗ = X∗ γ + η

, (9)
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where η ∼ N(0, σ2Vy∗) and Vy∗ =

δ2In O O
O Vβ O
O O R(φ)

. If we assume that δ2 and φ are fixed at known values, then

Vy∗ is fixed. We have a conjugate Bayesian linear regression model y∗ = X∗γ + η, where γ has a flat prior and
σ2 ∼ IG(aσ, bσ). Thus,

p(γ, σ2 | y) = IG(σ2 | a∗σ, b∗σ)︸ ︷︷ ︸
p(σ2 | y)

×N(β |M∗m∗, σ2M∗)︸ ︷︷ ︸
p(γ |σ2,y)

, (10)

where a∗σ = aσ+(2n+p)/2, b∗σ = bσ+(1/2)
{
y>∗ V

−1
y∗ y∗ −m>∗M∗m∗

}
,M−1
∗ = X>∗ V

−1
y∗ X∗ andm∗ = X>∗ V

−1
y∗ y∗.

The posterior mean of γ is γ̂ = M∗m∗ =
(
X>∗ V

−1
y∗ X∗

)−1
X>∗ V

−1
y∗ y∗, which is the generalized least squares estimate

obtained from the augmented linear system in (9). Sampling from the posterior proceeds analogous to that described
below (8).

From the preceding account we see that fixing the spatial range decay parameter φ and the noise-to-spatial variance
ratio δ2 casts the Bayesian geostatistical model into a conjugate framework that will allow inference on {β,w, σ2}.
Note that multiplying the posterior samples of σ2 by the fixed quantity δ2 fetches us the posterior samples of τ2.
Therefore, we neglect uncertainty in φ and, partially, for one of the variance components due to fixing their ratio.
This, however, provides the computational advantage that inference can be carried out without resorting to expensive
iterative algorithms such as MCMC that require several iterations before sampling from the posterior distribution. This
computational benefit becomes especially relevant when handling massive spatial data. Furthermore, fixing the values
of δ2 and φ is not entirely unreasonable given that these parameters are weakly identified by the data [48] and difficult to
learn from the posterior. Nevertheless, the inference will depend upon these fixed parameters so we discuss a practical
approach to fix φ and δ2 at reasonable values.

3.2 Choosing φ and δ2

We can set values for φ and δ2 by conducting some simple spatial exploratory data analysis using the “variogram”.
Several practical algorithms exist for empirically calculating the variogram (or semivariogram) from observations using
finite sample moments. Many of these methods for variograms are now offered in user-friendly R packages hosted by
the Comprehensive R Archive Network (CRAN) (https://cran.r-project.org). As one example, Finley et al.
[14] investigate the impact of tree cover and occurrence of forest fires on forest height. They first fit an ordinary linear
regression of the form yFH = β0 + β1xtree + β2xfire + ε and then compute a variogram for the residuals from the
ordinary linear regression.

Figure 1: Variogram of the residuals from non-spatial regression indicates strong spatial pattern

Figure 1 depicts the variogram, which informs about the process parameters. The lower horizontal line represents the
“nugget” or the micro-scale variation captured by the measurement error variance component τ2. The top horizontal
line represents the “sill” (or ceiling) which is the total variation captured by σ2 + τ2. Therefore, the difference between
the two horizontal lines is called the “partial sill” and is captured by σ2. Finally, the vertical line represents the distance
beyond which the variogram flattens or the covariance tends to zero. One can provide “eye-ball” estimates for these
quantities and, in particular, fix the values of φ and δ2 = τ2/σ2. Fixing these values from the variogram yields the
desired highly accessible conjugate framework and the models can be estimated without resorting to Markov chain
Monte Carlo (MCMC) as described earlier. Note that instead of {φ, δ2}, we could also have fixed φ and any one of the
variance components, σ2 or τ2, which would also yield a conjugate model with exact distribution theory. The one slight
advantage of fixing δ2 is that we will get the posterior samples of both σ2 and τ2, the latter obtained simply as σ2δ2.

5
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The above crude estimates can be improved using a K-fold cross-validation. We split the data randomly into K different
folds. Let S[k] be the k-th folder of observed points and let S[−k] denote the observed points outside of S[k]. For each
k, we compute the predictive mean E[y(S[k]) | y(S[−k])]. We then compute the “Root Mean Square Predictive Error”
(RMSPE) [49] and choose the value of {φ, δ2} corresponding to the smallest RMSPE from a grid of candidate values.
The range of the grid is based on interpretation of the hyper-parameters. We suggest a reasonably wide range for δ2 (e.g.,
[0.001, 1000]), which accommodates one variance component substantially dominating the other in either direction.
For the spatial decay φ we suggest a lower bound of 3

maximum inter-site distance , which, based upon the exponential
covariance function, indicates that the spatial correlation drops below 0.05 at the maximum inter-site distance, and an
upper bound that can be initially set as 100 times of the lower bound. Functions like variofit in the R package geoR
[50] can provide empirical estimates for {φ, δ2} from an empirical variogram. After initial fitting, we can shrink the
range and refine the grid of the candidate values for more precise estimators.

3.3 Conjugate Bayesian geostatistical models for massive spatial data

Conjugate models can be estimated by sampling directly from their joint posterior density and, therefore, completely
obviate problems associated with MCMC convergence. This is a major computational benefit. However, the challenges
in analyzing massive spatial data do not quite end here. When the number of spatial locations providing measurements
are in the order of millions as in [14], then the matrices Kθ, Vy or Vy∗ that we encountered earlier in different model
parametrizations will be too massive to be efficiently loaded on to the machine’s memory, let alone be computed with.
This precludes efficient likelihood computations and has led several researchers to propose models specifically adapted
for spatial analysis. We briefly present adaptations of (9) using two different classes of models for massive spatial data:
(i) low-rank process models and (ii) NNGP models.

As discussed in Section 2, in low rank models the n × 1 spatial effect w in (3) is replaced by Bθz, where Bθ is the
n× r matrix whose i-th row is b>θ (`i). Dimension reduction is achieved by fixing r to be much smaller than n so that
we only deal with r random effects instead of n. The framework in (9) can be easily adapted to this situation as below:[

y
µβ
0

]
︸ ︷︷ ︸ =

[
X Bθ
Ip O
O Ir

]
︸ ︷︷ ︸

[
β
z

]
︸ ︷︷ ︸ +

[
η1

η2

η3

]
︸ ︷︷ ︸,

y∗ = X∗ γ + η

, (11)

where η ∼ N(0, σ2Vy∗) and Vy∗ =

δ2In O O
O Vβ O
O O Vz

 is (n + p + r) × (n + p + r) and fixed, and Vz is now r × r

instead of the n× n matrix R(φ) in (9). Computations for (11) proceed analogous to those for (8), but benefits accrue
in terms of storage and the number of floating point operations (flops) when conducting the exact conjugate Bayesian
analysis for this model.

We now outline the construction of sparse NNGP models. These can be regarded as a special case of Gaussian
Markov Random Fields (GMRFs) with a neighborhood structure specified using a directed acyclic graph (DAG). The
computational benefits for NNGP models accrue from the ease of inverting sparse matrices. This is immediate from
noting that the expense to obtain V −1

y∗ in (10) is dominated by R(φ)−1. Therefore, if R(φ)−1 is easily available then
the inference for γ = {β,w} will be inexpensive. Modeling sparse R(φ)−1 can be easily achieved as follows. Writing
N(w | 0, σ2Rφ) as p(w1)

∏n
i=2 p(wi |w1, w2, . . . , wi−1) is equivalent to the following set of linear models,

w1 = 0 + η1 and wi = ai1w1 + ai2w2 + · · ·+ ai,i−1wi−1 + ηi for i = 2, . . . , n ,

or, more compactly, simply w = Aw + η, where A is n× n strictly lower-triangular with elements aij = 0 whenever
j ≥ i and η ∼ N(0, D) and D is diagonal with diagonal entries d11 = var{w1} and dii = var{wi |wj : j < i}
for i = 2, . . . , n. From the structure of A it is evident that I − A is unit lower-triangular, hence nonsingular, and
Rφ = (I −A)−1D(I −A)−>.

We now introduce sparsity in R−1
φ = (I − A)>D(I − A) by letting aij = 0 whenever j ≥ i (since A is strictly

lower-triangular) and also whenever `j is not among the m nearest neighbors of `i, where m is fixed by the user to
be a small number. It turns out that a very effective approximation emerges by recognizing that the lower-triangular
elements of A are precisely the coefficients of a linear combination of w(`j)’s equating to the conditional expectation
E[w(`i) | {w(`j) : j < i}]. Thus, the m× 1 vector ãi of non-zero entries in the i-th row of A are obtained by solving
the m×m linear system R̃φ,Ni,Ni ãi = Rφ,Ni,i, where R̃φ,Ni,Ni is the m×m principal submatrix extracted from Rφ
corresponding to the m neighbors of i (indexed by elements of a neighbor set Ni) and Rφ,Ni,i is the m × 1 vector
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extracted by choosing the m indices in Ni from the i-th column of Rφ. Once ãi is obtained, the i-th diagonal entry of
D is obtained as dii = Rφ[i, i]− ã>i Rφ,Ni,i. These computations need to be carried out for each i = 2, . . . , n (note
that for i = 1, d11 = σ2 and a11 = 0), but m can be kept very small (say 5 or 10 even if n 107) so that the expense is
O(nm3) and still feasible. The details can be found in [9]. This notion is familiar in Gaussian Graphical models and
have been used in [39] and, more recently, in [37] and [14] to tackle massive amounts of spatial locations.

The framework in (9) now assumes the form[
y
µβ
0

]
︸ ︷︷ ︸ =

 X In
Ip O
O D−1/2(I −A)


︸ ︷︷ ︸

[
β
w

]
︸ ︷︷ ︸ +

[
η1

η2

η3

]
︸ ︷︷ ︸,

y∗ = X∗ γ + η

, (12)

where η ∼ N(0, σ2Vy∗) and Vy∗ =

δ2In O O
O Vβ O
O O In

 is (2n + p) × (2n + p) and fixed with much greater sparsity.

While this approach can also be subsumed into the framework of (9), its efficient implementation on standard computing
architectures needs careful consideration and involves solving a large linear system with (n+ p)× (n+ p) coefficient
matrix X>∗ X∗. This matrix is large, but is sparse because of (I −A)>D−1(I −A). Since (I −A) has at most m+ 1
nonzero entries in each row, an upper bound of nonzero entries in (I −A) is n(m+ 1) and, therefore, the upper bound
in (I − A)>D−1(I − A) is n(m + 1)2. This sparsity can be exploited by sparse linear solvers such as conjugate
gradient methods that can be implemented on modest computing environments.

Sampling from the joint posterior distribution p(γ, σ2 | y∗) is achieved in the following manner. First, the least-
squares estimate γ̂ is obtained using a sparse least-square solver using a preconditioned conjugate gradient algorithm.
Subsequently, σ2 is sampled from its marginal posterior density IG(a∗, b∗), where a∗ = aσ + n/2 and b∗ =

bσ + (1/2)(y∗ −X∗γ̂)>(y∗ −X∗γ̂), and then for each sampled σ2, γ is sampled from N
(
γ̂, σ2

(
X>∗ V

−1
y∗ X∗

)−1
)

.

In general, solving X>∗ X∗γ̂ = X>∗ y∗ requires O( 1
3 (n + p)3) flops, but when p � n, the structure of X∗ and

X>∗ X∗ ensures memory requirements in the order of n(m + 1)2 and the computational complexity in the order of
nm+ n(m+ 1)2 flops. Details on such implementations on modest computing platforms can be found in [15].

3.4 Spatial prediction

Let L̃ = { ˜̀
1, ˜̀

2, . . . , ˜̀̃
n} be a set of ñ locations where we wish to predict the outcome y(`). Let Ỹ be an ñ× 1 vector

with i-th element Ỹ (˜̀
i) and let w̃ be the ñ× 1 vector with elements w(˜̀

i). The predictive model augments the joint
distribution p(θ, w, β, τ, y) to

p(θ, τ, β, w, y, w̃, Ỹ ) = p(θ, τ, β)× p(w | θ)× p(w̃ |w, θ)× p(y |β,w, τ)× p(Ỹ |β, w̃, τ) . (13)

The factorization in (13) also implies that Ỹ andw are conditionally independent of each other given w̃ and β. Predictive
inference for spatial data evaluates the posterior predictive distribution p(Ỹ , w̃ | y). This is the joint posterior distribution
for the outcomes and the spatial effects at locations in L̃. This distribution is easily derived from (13) as

p(Ỹ , w̃, β, w, θ, τ | y) ∝ p(β,w, θ, τ | y)× p(w̃ |w, θ)× p(Ỹ |β, w̃, τ) . (14)

Sampling from (14) is achieved by first sampling {β,w, θ, τ} from p(β,w, θ, τ | y). For each drawn sample, we make
one draw of the ñ × 1 vector w̃ from p(w̃ |w, θ) and then, using this sampled w̃, we make one draw of Ỹ from
p(Ỹ |β, w̃, τ). The resulting samples of w̃ and Ỹ will be draws from the desired posterior predictive distribution
p(w̃, Ỹ | y). This delivers inference on both the latent spatial random effect w̃ and the outcome Ỹ at arbitrary locations
since L can be any finite collection of samples. Summarizing these distributions by computing their sample means,
standard errors, and the 2.5-th and 97.5-th quantiles (to produce a 95% credible interval) yields point estimates with
associated uncertainty quantification.

It is instructive to see how the entire inference for Gaussian outcomes can be cast into an augmented linear regression
model. The predictive model for Ỹ can be written as a spatial regression

Ỹ = X̃β + w̃ + ε̃ ; w̃ = Cw + ω , (15)

7
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where X̃ is the ñ × p matrix of predictors observed at locations in L̃ and ε̃ ∼ N(0, D̃τ ), where ε̃ is the ñ × 1

vector with elements ε(˜̀
i). The second equation in (15) expresses the relationship between the spatial effects w̃

across the unobserved locations in L̃ and the spatial effects across the observed locations in L. Since there is
one underlying random field over the entire domain, the covariance function for the random field specifies the
ñ × n coefficient matrix C. In particular, if w ∼ N(0,Kθ), then C = Kθ(L̃,L)K−1

θ and ω ∼ N(0, Fθ), where
Fθ = Kθ(L̃, L̃)−Kθ(L̃,L)K−1

θ Kθ(L, L̃). The model for the data and the predictions is combined into
y
µβ
0
0
0


︸ ︷︷ ︸

=

 X In O O
Ip O O O
O C −Iñ O
X̃ O Iñ −Iñ


︸ ︷︷ ︸

 β
w
w̃
Ỹ


︸ ︷︷ ︸

+


η1

η2

η3

η4

η5


︸ ︷︷ ︸

,

y∗ = X∗ γ + η

, (16)

where η ∼ N

0,


Dτ O O O O
O Vβ O O O
O O Kθ O O
O O O Fθ O
O O O O D̃τ


. If locations where predictions are sought are fixed by study design,

then fitting (16) using the Bayesian conjugate framework can be beneficial. On the other hand, one can first estimate
{β,w, σ2} and store samples from their posterior distribution. Then, for any arbitrary set of points in L̃, for each stored
sample of the parameters we draw one sample of w̃ ∼ N(Cw,Fθ) followed by one draw of Ỹ ∼ N(X̃β + w̃, D̃τ ).
The resulting {w̃, Ỹ } will be the desired posterior predictive samples for the latent spatial process and the unobserved
outcomes. Again, the advantage of this formulation is that an efficient least squares algorithm to solve (16) that can
exploit the sparsity of the design matrix X∗ will immediately deliver inference on the regression slopes (β), the spatial
process (w) at observed points, the interpolated process (w̃) at unobserved points, and the predicted response (Ỹ ) all at
once.

4 Illustrative examples

We present a part of some simulation experiments conducted in [15], where we generated data using the spatial
regression model in (2) over a set of n = 1200 spatial locations within a unit square and using an exponential covariance
function to specify the spatial process. While 1200 spatial locations may seem too modest, we use this to draw
comparisons with a full GP model that will be too expensive for large datasets. The model included an intercept and a
single predictor generated from a standard normal distribution.

We fit a full Gaussian process based model (labeled as full GP in Table 1) using the spBayes package in R, a latent
NNGP model with m = 10 neighbors using the sequential MCMC algorithm described in [37] (using the spNNGP
package), and the conjugate latent NNGP model described in the preceding section with m = 10 neighbors. We will
refer to the latent NNGP model fitted using MCMC (with all process parameters unknown) as simply the NNGP or
latent NNGP model, while we will explicitly use “conjugate” to describe the conjugate latent NNGP model.

These models were trained using n = 1000 observations, while the remaining 200 observations were withheld to assess
predictive performance. The fixed parameters{φ, δ2} for the conjugate latent NNGP model were picked through the
K-fold cross-validation algorithm described in Section 3.2. The intercept and slope parameters in β were assigned
improper flat priors and an IG(2, b) (mean b) prior was used for σ2. For the latent NNGP and full GP models, the
spatial decay φ was modeled using a fairly wide uniform prior U(2.2, 220) prior and Inverse-Gamma priors IG(2, b)
(mean b) were used for the nugget (τ2) and the partial sill (σ2) in order to compare the conjugate Bayesian models
with other models. The shape parameter was fixed at 2 and the scale parameter was set from the empirical estimate
provided by the variogram using the geoR package [50]. The parameter estimates and performance metrics are provided
in Table 1. Table 1 presents parameter estimates and performance metrics for the candidate models. The inference
for β is almost indistinguishable across the three models. The full GP and the NNGP fully estimate {σ2, τ2, φ} using
MCMC and yield very similar results. The conjugate NNGP does not estimate φ and estimates {σ2, τ2} subject to
the constraint that their ratio δ2 is fixed. This results, expectedly, in slightly narrower credible intervals for σ2 and τ2.
Overall, the parameter estimates are very comparable across the models.

Turning to model comparisons, Zhang et al.[15] computed the posterior distribution of the Kullback-Leibler divergence
(KL-D) by computing it between each candidate model and the full GP for each posterior sample. The KL-D values
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Table 1: Simulation study summary table: posterior mean (2.5%, 97.5%) percentiles
True Full GP NNGP Conj NNGP

β0 1 1.07(0.72, 1.42) 1.10 (0.74, 1.43) 1.06 (0.76, 1.46)
β1 -5 -4.97 (-5.02, -4.91) -4.97 (-5.02, -4.91) -4.97 (-5.02, -4.91)
σ2 2 1.94 (1.63, 2.42) 1.95 (1.63, 2.41) 1.94 (1.77, 2.12)
τ2 0.2 0.14 (0.07, 0.23) 0.15 (0.06, 0.24) 0.17 (0.16, 0.19)
φ 16 19.00 (13.92, 23.66) 18.53 (14.12, 24.17) 17.65

KL-D – 4.45(1.16, 9.95) 5.13(1.66, 11.39) 3.58(1.27, 8.56)
MSE(w) – 297.45(231.62, 444.79 ) 303.38(228.18, 429.54) 313.28 (258.96, 483.75)
RMSPE – 0.94 0.94 0.94
time(s) – 2499 + 23147 109.5 12 + 0.6

presented in Table 1 show no significant differences between the three models in their separation from the true full GP
model. The root mean-squared prediction error (RMSPE) values (computed from the hold-out set of 200 locations)
across all three models are also similar, further corroborating the comparable predictive performance of the conjugate
model with the full Gaussian process.

In terms of timing (presented in seconds in Table 1), the recorded time of the conjugate models includes the time for
choosing hyper-parameters through cross-validation and (“+") the time for sampling from the posterior distribution.
The recorded time of the full GP model consists of the time for MCMC sampling and (“+") the time for recovering the
regression coefficients and predictions. The full latent NNGP model is 200 times faster than the full Gaussian process
based model, while the conjugate latent NNGP model uses one tenth of the time required by the latent NNGP model to
obtain similar inference on the regression coefficients and latent process. Further simulation experiments conducted by
Zhang et al. [15] also show that interpolation of the latent process is almost indistinguishable between the conjugate
and full models.

Next, we present a second simulation example using exactly the same setup as in the preceding example, but with
n = 12, 000 spatial locations. Here, we fit a latent NNGP model using the MCMC algorithm in [37] and the conjugate
latent NNGP model. We used 10, 000 locations for training the models while the remaining 2000 locations were used
for predictive assessment. We summarized the results from the latent NNGP model using a post burn-in posterior
sample for 10, 000 iterations. This was deemed adequate based upon the customary convergence diagnostics available
in the coda and mcse packages within the R computing environment [51, 52]. The inference from the conjugate latent
NNGP model were based on 300 samples. This is sufficient for the conjugate latent NNGP model since the conjugate
model provides independent samples from the exact posterior distribution. The full MCMC-based NNGP model took
about 1268 seconds to deliver full Bayesian inference, while the conjugate model took only 99 + 14 = 113 seconds (99
seconds for the cross-validation to fix {φ, δ2} and 13 seconds for sampling from the posterior distribution). We found
that the RMSPE values for the full latent NNGP and the conjugate model computed using the 2000 hold-out locations
were almost identical (0.67 up to 2 decimal places).

The parameter estimates from the full NNGP and conjugate NNGP models in this larger simulation experiment reveal
essentially the same story as in Table 1 so we do not repeat them here. Instead, we focus on the estimation of the latent
process and the predictive performance for the two models. Figure 2 shows interpolated surfaces from the simulation
example: 2(a) shows an interpolated map of the “true” spatial latent process w, while 2(b) and 2(c) present the posterior
means of w(s) over the entire domain obtained from the full latent NNGP model and the conjugate latent NNGP
model, respectively. The recovered spatial residual surfaces are almost indistinguishable, and are comparable to the
true interpolated surface of w(s). Figure 2(d)–(e) present the 95% credible intervals for the spatial effects w from the
latent NNGP model and the conjugate latent NNGP model. These intervals are plotted against the true values of w from
the generated model. We found that 9567 out of 10000 credible intervals successfully included the true value for the
conjugate model, while the corresponding number was a very comparable 9584 for the full NNGP model.

Turning to a real example, we present a synopsis of the analysis in [15] of a spatial dataset from NASA comprising sea
surface temperature (in degrees Centigrade) observations over 2,827,252 spatial locations of which approximately 90%
(2,544,527) were used for model fitting and the rest were withheld for cross-validatory predictive assessment. Details of
the dataset can be found in http://modis-atmos.gsfc.nasa.gov/index.html and details on the analysis can be
found in [15]. The salient feature of the analysis is that a conjugate Bayesian framework for the NNGP model as in (12)
was able to deliver full inference including the estimation of the spatial latent effects in about 2387 seconds. Sampling
from the posterior distribution was achieved using direct sampling as described below (12). Since this algorithm is
fast and directly samples from the posterior, hence there is no burn-in period for convergence, it was run over a grid of
values of {δ2, φ}. For each such value, a posterior predictive assessment over the cross-validatory hold-out set was
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(a) True (b) NNGP (c) Conjugate NNGP

(d) CIs of w from NNGP (e) CIs of w from conjugate
NNGP

Figure 2: Interpolated maps of (a) the true generated surface, (b) the posterior means of the spatial latent process w(s)
for the NNGP and (c) posterior means of w(s) for the conjugate latent NNGP. The 95% confidence intervals for the
spatial effects w from (d) the NNGP and (e) the conjugate NNGP. The NNGP models were all fit using m = 10 nearest
neighbors.

(a) Posterior mean of sea-surface temperature (b) Posterior predictive mean of latent spatial effects

Figure 3: Posterior predictive maps of sea-surface temperature (in degree centigrade) and latent spatial effects. The land
is colored in gray, locations in the ocean without observations are indicated in yellow.

carried out and the value of {δ2, φ} producing the least RMSPE was selected as optimal inputs for which the estimates
of {γ, σ2} were presented.

5 Spatial Meta-Kriging

A different approach toward BIG DATA problems relies upon divide and conquer methods. The idea here is divide and
conquer (or map and reduce) by pooling posterior inference across a partition of data subsets. Once again consider the
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Bayesian linear regression model

p(β, σ2 | y) ∝ IG(σ2 | aσ, bσ)×N(β |µβ , σ2Vβ)×N(y |Xβ, σ2Vy) , (17)

where y isN×1,X isN×p, β is p×1, Vy is a fixedN×N covariance matrix, µβ is a fixed p×1 vector and Vβ is a fixed
p×pmatrix. The joint posterior density p(β, σ2 | y) is available in closed form as p(β, σ2 | y) = p(σ2 | y)×p(β |σ2, y) ,
where the marginal posterior density p(σ2 | y) = IG(σ2 | a∗, b∗) and the conditional posterior density p(β |σ2, y) =
N(β |Mm,σ2M) with a∗ = aσ +N/2, b∗ = bσ + c/2, m = V −1

β µβ +X>V −1
y y, M−1 = V −1

β +X>V −1
y X and

c = µ>β V
−1
β µβ + y>V −1

y y −m>Mm. Therefore, exact posterior inference can be carried out by first sampling σ2

from IG(a∗, b∗) and then sampling β from N(Mm,σ2M) for each sampled value of σ2. This results in samples from
p(β, σ2 | y). Besides the fixed hyperparameters in the prior distributions, this exercise requires computing m, M and c.

Now consider a situation where N is large enough so that memory requirements for computing (17) is unfeasible. One
possible resolution is to replace the likelihood in (17) with a composite likelihood that assumes independence across
blocks formed by partitioning the data into K subsets. We partition the N × 1 vector y into K subvectors with yk
as the nk × 1 subvector forming the k-th subvector, where

∑K
k=1 nk = N . The size of the k-th subset is nk. These

sizes need not be the same across k, but will be chosen in a manner so that each of the subsets can be fitted easily with
the computational resources available. Also, let Xk be the nk × p matrix of predictors corresponding to yk and let
Vyk be the marginal correlation matrix for yk. The conjugate Bayesian model with a block-independent composite

likelihood assumes that yk = Xkβ + εk, where εk
ind∼ N(0, σ2Vyk). The Bayesian specification is completed by

assigning priors to σ2 and β as in (17). If we distribute the analysis to K different computing cores, where the k-th
core fits the above model but only with the likelihood N(yk |Xkβ, σ

2Vyk), then the quantities needed for sampling
from the full p(β, σ2 | y) can be computed entirely using quantities obtained from the individual subsets of the data.
For each k = 1, 2, . . . ,K we independently compute mk = V −1

β µβ + X>k V
−1
yk
yk and M−1

k = V −1
β + X>k V

−1
yk
Xk

based upon the k-th subset of the data. We then combine them to obtain m =
∑K
k=1(mk − (1− 1/K)V −1

β µβ) and

M−1 =
∑K
k=1(M−1

k − (1− 1/K)V −1
β ). Subsequently, we compute c = µ>β V

−1
β µβ +

∑K
k=1 y

>
k V
−1
yk
yk −m>Mm.

Therefore, sampling from the posterior distribution of β and σ2 given the entire dataset can be achieved using quantities
computed independently from each of the K smaller subsets of the data. There is no need to interact between the
subsets and one does not require to store or compute with large objects based upon the entire dataset. This computation
can also be done sequentially. We first obtain the posterior distribution p(β, σ2 | y1) based only upon the first data set.
This posterior becomes the prior for the next step and we obtain p(β, σ2 | y1, y2) ∝ p(β, σ2 | y1)× p(y2 |β, σ2) and so
on until we arrive at p(β, σ2 | y1, y2, . . . , yK) ∝ p(β, σ2 | y1, y2, . . . , yK−1)× p(yK |β, σ2).

Clearly such exact recovery of the full posterior crucially depends on the conditional independence across the different
data blocks (e.g., p(yk |β, σ2, y1, . . . , yk−1) = p(yk |β, σ2) for each k = 2, . . . ,K). While this works for uncorrelated
outcomes, as in standard linear regression, such recovery is precluded for spatial and spatiotemporal process models and,
more generally, for correlated data. Nevertheless, we can develop a general approximation framework for obtaining the
full posterior from posterior densities calculated over smaller subsets. One general way to pool information across these
individual posteriors is to use the unique Geometric Median (GM) of the subset posteriors, as developed by Minsker
[53]. Assume that the individual posterior densities pk ≡ p(Ω | yk) reside on a Banach spaceH equipped with norm

‖ · ‖. The GM is defined as π∗(· | y) = arg min
π∈H

K∑
k=1

‖pk − π‖ρ, where y = (y>1 , y
>
2 , . . . , y

>
K)>. The norm quantifies

the distance between any two posterior densities π1(·) and π2(·) as ‖π1 − π2‖ρ =

∥∥∥∥∫ ρ(Ω, ·)d(π1 − π2)(Ω)

∥∥∥∥, where

ρ(·) is a positive-definite kernel function. Assume ρ(z1, z2) = exp(−‖z1 − z2‖2). The GM is unique and lies in
the convex hull of the individual posteriors, so π∗(Ω | y) is a legitimate probability density. Specifically, π∗(Ω | y) =∑K
k=1 αρ,k(y)pk,

∑K
k=1 αρ,k(y) = 1, each αρ,k(y) being a function of ρ, y, so that

∫
Ω
π∗(Ω | y)dΩ = 1. Computing

the GM π∗ ≡ π∗(Ω | y) is achieved by an iterative algorithm that estimates αρ,k(y) from the subset posteriors pk for each

k = 1, 2, . . . ,K. To further elucidate, we use a well known result that the GM π∗ satisfies π∗ =
∑K
k=1 ‖pk−π

∗‖−1
ρ pk∑K

k=1 ‖pk−π∗‖−1
ρ

,

so that αρ,k(y) =
‖pk−π∗‖−1

ρ∑K
j=1 ‖pk−π∗‖−1

ρ
. There is no apparent closed-form solution for αρ,k(y) satisfying this equation, so

Weiszfeld’s algorithm [53] is used to estimate these functions.

This approach has been extended to spatial process settings by Guhaniyogi and Banerjee [54, 55]. The advantage here
is that one can use existing Bayesian geostatistical software to sample from the posterior distributions of the different
subsets. This can be performed either in parallel over multiple cores or across different machines altogether. One then
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needs to save only the post burn-in samples and execute Weiszfeld’s algorithm to these samples. Weiszfeld’s algorithm
is extremely fast and easy to program.

6 Discussion

This article has attempted to provide a brief overview of how some Bayesian geostatistical models designed for large
spatial and/or spatiotemporal datasets can be further scaled up to analyze massive datasets with observed locations in
the order of 106 or more by exploiting the familiar theory of conjugate Bayesian linear regression models and adapting
them to incorporate latent spatial processes. The resulting distribution theory is available in closed form, thereby
circumventing the need for iterative algorithms such as MCMC or INLA. We have also provided a brief overview of a
distributed approach (spatial meta-kriging) that relies upon analyzing exclusive subsets of the data and combining them
to approximate the full posterior in the spirit of a spatial meta-analysis.

Of course, this requires some compromise in terms of full Bayesian inference. Some parameters need to be provided
as fixed inputs for the distribution theory to be available in closed form. Learning about these input parameters will
be done using exploratory data analysis and cross-validation methods. A practical approach that seems to be quite
effective for analyzing massive datasets in modest computing environments is to choose the optimal value of the process
parameters based upon the minimum RMSPE over hold-out locations. While such approaches may produce slightly
shrunk credible and prediction intervals due to the effect of fixing a parameter, the effect is seen to be moderate in
practical spatial analysis and the approach could form a useful tool for quick spatial analysis within the Bayesian
paradigm for massive spatial datasets. However, the method of learning about these parameters is still ad-hoc and can
possibly be improved with more sophisticated optimization methods. Nevertheless, the approach outlined here can
be a useful tool in the spatial analyst’s toolbox for exploring Bayesian spatial regression at massive scales. We also
point out that the conjugate Bayesian linear regression framework can accommodate almost all of the model-based GP
approximations for dimension reduction or sparsity induction. Any spatial covariance structure that leads to efficient
computations can, in principle, be used.

While the article has focused on the NNGP as a choice for introducing sparsity in the model, more general GMRF
specifications are also admissible here. In fact, there has been much recent activity within the framework of Vecchia
approximations [see, e.g., 43, 44], where the models are being derived using DAGs over the expanded set of observations
and process realizations. While certainly promising, their benefits and improvements over GMRFs are yet to be
demonstrated in large scale case studies. For Vecchia type of likelihoods, there is also interest in choosing the number
of neighbors. First, it should be intuitively clear that DAGs constructed using shrunk neighbor sets will yield probability
models farther away from the full model as the neighbor sets get smaller. To see this, consider a random vector
w = (w>A , w

>
B)>, where A and B are mutually exclusive sets containing indices for the elements of w, and let p(w) =

p(wA)p(wB |wA) denote the joint probability density for w. Consider two submodels p1(w) = p(wA)×p(wB |wN1B
)

and p2(w) = p(wA) × p(wB |wN2B
), where N2B ⊂ N1B ⊂ A. The model p2 will be farther than p1 from p in the

terms of the Kullback-Leibler divergence:

KL(p‖‖p2)−KL(p‖‖p1) =

∫ {
log

(
p(w)

p2(w)

)
− log

(
p(w)

p1(w)

)}
p(w)dw

=

∫
log

(
p1(w)

p2(w)

)
p(w)dw =

∫
log

(
p(wB |wN1B

)

p(wB |wN2B
)

)
p(w)dw

=

∫
log

(
p(wB |wN1B

)

p(wB |wN2B
)

)
p(wB |wN1B

)p(wN1B
)dwBdwN1B

=

∫ {∫
log

(
p(wB |wN1B

)

p(wB |wN2B
)

)
p(wB |wN1B

)dwB

}
p(wN1B

)dwN1B
≥ 0 ,

(18)

where we have used the fact that A \N1B is mutually exclusive of N1B and, crucially, also of N2B (since N2B ⊂ N1B)
to legitimately integrate out wA\N1B

. The final conclusion follows from a customary application of Jensen’s inequality
to show that the inner integral in the last equation is non-negative. Equation (18) provides an alternate distribution-
free proof of a result for Gaussian likelihoods by Guinness (Theorem 1 in [42]). These results also indicate that
the ordering of the variables to construct the approximation can affect model performance and certain designs to
determine the ordering can produce improved results (as demonstrated in [42]). Datta et al. [38] argued against fixing
the neighborhoods in spatiotemporal contexts (since neighbors in space and neighbors in time may not align) and
demonstrate a computationally efficient method to learn about neighbors in spatiotemporal domains.

Finally, we point toward a few future directions of research in this domain. Much of the spatial literature on modeling
massive spatial data have focused upon scalability of models and algorithms. There is still work to be done on evaluating
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the inferential performance of these models at such massive scales. How important is uncertainty quantification at
such scales? How do GP based approaches compare with deep learning with neural networks in spatial analysis?
Another area where the cross-validatory learning approaches for process hyperparameters will struggle is in multivariate
contexts, where the number of hyperparameters is higher than here. These are some areas of research where we believe
the statistical community still has much to offer.
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