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ABSTRACT

Motivation: Researchers now have access to large volumes of

genome sequences for comparative analysis, some generated by

the plethora of public sequencing projects and, increasingly, from

individual efforts. It is not possible, or necessarily desirable, that the

public genome browsers attempt to curate all these data. Instead, a

wealth of powerful tools is emerging to empower users to create their

own visualizations and browsers.

Results: We introduce a pipeline to easily generate collections of

Web-accessible UCSC Genome Browsers interrelated by an align-

ment. It is intended to democratize our comparative genomic browser

resources, serving the broad and growing community of evolutionary

genomicists and facilitating easy public sharing via the Internet. Using

the alignment, all annotations and the alignment itself can be efficiently

viewed with reference to any genome in the collection, symmetrically.

A new, intelligently scaled alignment display makes it simple to view all

changes between the genomes at all levels of resolution, from substi-

tutions to complex structural rearrangements, including duplications.

To demonstrate this work, we create a comparative assembly hub

containing 57 Escherichia coli and 9 Shigella genomes and show

examples that highlight their unique biology.

Availability and implementation: The source code is available as

open source at: https://github.com/glennhickey/progressiveCactus

The E.coli and Shigella genome hub is now a public hub listed on

the UCSC browser public hubs Web page.

Contact: benedict@soe.ucsc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Visualization is key to understanding functional and comparative

genomic information. Genome browsers are therefore critical to
the study of biology, providing accessible resources for displaying

annotations and alignments. The UCSC Genome Browser

(Karolchik et al. 2014) is one of the most popular, but creating
a reference genome browser for a new genome within it previously

required significant resources, as it was necessary to create a

mirror site to host the new reference browser separately, or to

work with the staff of the genome browser to create a new refer-

ence browser within their main site. Assembly hubs (Karolchik

et al. 2014), which build on the successful track hubmodel (Raney

et al. 2013), make it easy to generate an individual UCSC browser

simply by hosting the data in the form of flat files on any publicly

addressable URL. This avoids users having to install and config-

ure the substantial browser code base on their machines and, by

using user hosting, makes updating straightforward. However,

with access to low-cost sequencing technology and the wealth of

genomes already available, users increasingly want to be able to

create not only a single custom browser, but also sets of genome

browsers. This work is intended to meet that growing need; it

extends assembly hubs to allow users to quickly create ‘compara-

tive assembly hubs’, a framework of multiple genome browsers

and annotations interrelated by an alignment. As part of this de-

velopment, we introduce a series of novel features intended to

improve visualization, exploration and community sharing of

novel comparative genomics data.
Displaying multiple genome alignments is extremely challen-

ging owing to both the high dimensionality and volume of the

underlying data [see Nielsen et al. (2010) for a review]. There are

currently three main ways to visualize multiple genome align-

ments: dot plots [e.g. DAGChainer (Haas et al. 2004), VISTA-

Dot (Mayor et al. 2000), etc.], circle plots [e.g. Circos

(Krzywinski et al. 2009), GenomeRing (Herbig et al. 2012),

etc.] and linear, row-oriented representations [e.g. VISTA

(Mayor et al. 2000), Jalview (Waterhouse et al. 2009), IGV

(Thorvaldsd�ottir et al. 2013), etc.]. Each of these visualization

methods has benefits and weaknesses. Dots plots, having two

dimensions, provide equivalently powerful representations of

two genomes in one graphic; however, they are pairwise and

therefore unsuitable for the display of multiple genome align-

ments. Circular genome plots are typically less visually cluttered

than linear representations for viewing genomic rearrangements,

but are less useful for the display of global multiple sequence

alignments, as might be shown at the gene or base level.

Linear representations have the advantage that they fit neatly

with the genome browser displays and tracks, and are flexible,

in that they work reasonably at multiple levels of resolution.

Here we introduce a new linear display—the snake track—

that, to our knowledge, is the first linear representation to
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allow the viewing of all variations, including structural

rearrangements, duplications, substitutions, insertions and dele-

tions in a single, conceptually simple, interactive visualization.

In addition, by using a novel algorithm to generate procedural

levels of detail (LOD), it is viewable at every resolution, from

complete chromosomes to individual residues. Being based on a

symmetric reference independent alignment format (Hickey et al.

2013), for the first time for an alignment view in the UCSC

browser, snake tracks are viewable between any set of genomes

in the hub and from any chosen genome, as all genomes in a hub

have a generated reference browser. This is important because

restricting browsing to a single reference can limit visualization

of regions in other genomes that do not map to the reference, or

which are rearranged with respect to a reference. Finally, to

overcome the limitation of viewing the alignment only from

the perspective of any single reference genome, each comparative

assembly hub provides an automatically generated pangenome

reference browser, using our recently developed algorithm

(Nguyen et al. 2014). Similar to the pioneering visualization con-

cepts described in Herbig et al. (2012), this pangenome includes a

single consensus copy of every set of homologous subsequences

in an ordering that as closely as possible reflects the (weighted)

consensus of the input genomes. We will show how this can be

used to create unique views of the data—here we demonstrate

the creation of an Escherichia coli core genome.
Besides a new visualization, the comparative assembly hubs

are novel from a genome browser perspective. The underlying

alignment is used, by a process of lift-over (Zhu et al. 2007), to

automatically project annotations to any genome in the hub,

even if the annotations were originally mapped to just one

genome. Previously, lift-over was used on a case-by-case basis

within the genome browser to project tracks between assemblies,

for example, when moving to an updated assembly. Here we

make it a default, integral feature, making it easy to view puta-

tive genes and functional annotations on novel genomes by a

process of translation through the underlying alignment, rather

than through a set of (frequently inconsistent) ad hoc pairwise

alignments. The comparative assembly hubs framework is also,

to our knowledge, the first Web-based genome browser that

allows easy public sharing of comparative data without requiring

other users to download data—only a Web browser is required.

Finally, separately to the novel features introduced, we have

worked to integrate these user-generated browsers with many

of the existing tools of the UCSC browser.

2 RESULTS

We first describe the software pipeline for building comparative

assembly hubs, before describing them by example using an

alignment of E.coli and Shigella genomes.

2.1 Comparative assembly hubs pipeline

Our software pipeline comprises three main modular compo-

nents, for which we provide an overall distribution that can be

downloaded and installed with a few commands (see Section 3),

and which should work on unix distributions such as Linux,

BSD and OS X. The first component is the Cactus alignment

program (Paten et al. 2011), which takes as input a set of genome

sequences and outputs a genome multiple sequence alignment in

hierarchical alignment (HAL) format (Hickey et al. 2013). The

second component is HAL tools, to which we have added a series

of command-line tools and C/C++ Application Programming

Interfaces (APIs) for manipulating HAL files and building

comparative assembly hubs. The final component is the snake

track display, which is now part of the UCSC Genome Browser

code base (Karolchik et al. 2014), and which provides visualiza-

tion of alignments directly from HAL files.
The pipeline is run in three steps. First, either Cactus is run to

generate the HAL alignment file directly, or an MAF file, gen-

erated separately by an aligner such as Multiz (Miller et al. 2007),

is converted into a HAL file using the maf2Hal tool (in the HAL

tools package). Second, the hal2AssemblyHub script (in the

HAL tools package) builds the comparative assembly hub

using the HAL file and any set of annotation files provided,

either in BED or WIG format (http://genome.ucsc.edu/FAQ/

FAQformat.html). This script takes care of converting the base

annotation files into the display scaleable bigBed and bigWig

formats and translates these annotations (optionally) via a

process of alignment lift-over (Zhu et al. 2007) to all the other

genomes. At the end of this process, a directory is created that

contains the necessary files, using compressed formats for min-

imal space usage. In the final step, the location of the ‘hub.txt’

file, addressable as a public URL, is pasted into the UCSC

browser hub page to view the browsers.
The pipeline builds one browser for each input genome and, in

addition, any ancestral or pangenomes that were imputed

(e.g. by Cactus, if used) during the alignment process (Nguyen

et al. 2014).

2.2 Escherichia coli comparative assembly hub

To demonstrate this work, we use a set of 57 E.coli and 9 Shigella

spp. complete genomes. Escherichia coli contains substantial

intraspecies genomic diversity, which allows for its high versatil-

ity and variation, encompassing various pathotypes, antibiotic

resistances and lifestyles [see review in Leimbach et al. (2013)].

Comparative genomic analyses of multiple strains of E.coli have

proven useful in understanding the molecular basis of their

phenotypic differences and assisting in practical applications

such as diagnostic and antibiotic developments for infectious

disease (Didelot et al. 2012). Owing to intense study, E.coli is

one of the most sequenced bacterial species, with the second

highest number of complete sequenced genomes (after

Salmonella enterica, source: http://www.ebi.ac.uk/genomes/bac-

teria.html) available at the time of writing. Automated tools

for comparison and visualization are therefore critical for re-

search efforts to keep pace with available data.
To illustrate a browser, Figure 1 displays a region of one of

the E.coli reference genomes, K12 MG1655. The topmost

tracks are K12 MG1655 annotations, including conservation,

GC percentage, genes, antibiotic resistance database, genomic

islands and non-coding RNAs (ncRNAs; rRNA and tRNA).

Below these are snake tracks, showing the alignment of the

genome to a subset of the other genomes, and a lifted-over

ncRNA annotation track (track K12 W3110 RNA) of E.coli

K12 W3110.
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Fig. 1. An example E.coli comparative assembly hub with E.coli K12 MG1655 as the reference browser. The top browser screenshot (a) shows an

�900kb region with a known large inversion (light red) in the closely related strain K12 W3110, which is flanked by homologous (with opposite

orientations) ribosomal RNA operons rrnD and rrnE [Hayashi et al. (2006); Hill and Harnish (1981)], and is the result of recombination between them.

(b–c) Zoom-in of the K12 W3110 inversion left and right boundaries, respectively, showing operon rrnE of K12 W3110 (‘K12_W3110 RNA’ track, in

green, which is K12W3110 ncRNA annotation track lifted-over to K12MG1655) aligned to operon rrnD of K12MG1655 (‘K12_MG1655 RNA’ track,

also in green) on the left and operon rrnD of K12W3110 aligned to operon rrnE of K12MG1655 on the right. If further zoomed in (d), SNPs and query

insertions are visible. The text on the screenshots was adjusted for better readability
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2.2.1 The snake track Each snake track shows the relationship
between the chosen browser genome, termed the reference
(genome), and another genome, termed the query (genome).

The snake display is capable of showing all possible types of
structural rearrangement. When stacked together, snake tracks
allow a flexible view of multiple genomes.

In full display mode (snake tracks in Fig. 1), a snake track can
be decomposed into two primitive drawing elements: segments,
which are the colored rectangles, and adjacencies, which are the

lines connecting the segments. Segments represent subsequences
of the query genome aligned to the given portion of the reference
genome. Adjacencies represent the covalent bonds between the

aligned subsequences of the query genome. Segments can be
configured to be colored by chromosome, strand (as shown) or
be left a single color. Layout of the segments is described in

Section 3. At the highest LOD above that showing individual
bases (i.e. the first level of summary detail above the original
alignment), red tick marks within segments represent substitu-

tions with respect to the reference (Fig. 1b and c). Further zoom-
ing in to the base level, these substitutions are labeled with the
non-reference base (Fig. 1d). An insertion in the reference rela-

tive to the query creates a gap between abutting segment sides
that is connected by an adjacency. An insertion in the query
relative to the reference is represented either by an orange tick

mark that splits a segment at the location the extra bases would
be inserted or by coloring an adjacency orange, indicating that
there are unaligned bases between the two connected segment

ends.
More complex structural rearrangements create adjacencies

that connect the sides of non-abutting segments in a natural

fashion, e.g. Figure 1 shows the known large inversion in K12
MG1655’s closely related strain K12 W3110 (Hill and Harnish
1981). The inversion is a result of a homologous recombination,

with operon rrnD, consisting of rrsD, ileU, alaU, rrlD, rrfD, thrV
and rrfF, and operon rrnE, consisting of rrsE, gltV, rrlE and
rrfE, being homologous segments with opposite directions

(Fig. 1b and c). Also shown in Figure 1 are two smaller inver-
sions in KO11FL (Turner et al. 2012) and O26 H111 1368
(Ogura et al. 2009) and a relatively much smaller inversion in HS.
Duplications within the query genome create extra segments

that overlap along the reference genome axis, e.g. Figure 2 shows
a tandem repeat region of E.coli KO11FL 162099 displayed

along the genome of E.coli KO11FL 52593 that was engineered
by the chromosomal insertion of the Zymomonas mobilis pdc,
adhB and cat genes into E.coli W for ethanol production pur-

poses (Ohta et al. 1991); 162099 is a derivative of 52593 and
contains 20 tandem copies of the inserted pdc-adhB-cat genes
(Turner et al. 2012).
To show regions where the query segments align to multiple

locations within the reference, for each snake track we draw
color-coded sets of lines along the reference genome axis that
indicate self-homologies (intervals of the reference genome that

align to other intervals of the reference genome). To maintain the
semantics of the snake, in which each query segment is drawn
only once, we align any query segment that aligns to multiple

segments in the reference to just the leftmost copy in the refer-
ence (Fig. 2), because otherwise the display ceases to be an alter-
nating sequence of blocks and adjacencies representing the

query. However, the multiple alignment information is not lost,

as the overlap with the color-coded segments on the reference

axis informs the viewer to interpret such a query segment as

being multi-aligned to the reference.

The pack display option can be used to display a snake track in

more limited vertical space. It eliminates the adjacencies from the

display, and forces the segments onto as few rows as possible

given the constraint of still showing duplications in the query

sequence (e.g. track W 162101 of Fig. 2). The dense display fur-

ther eliminates these duplications so that a snake track is com-

pactly represented along just one row, essentially showing the

coverage of the query genome on the reference (e.g. the last

snake track of Fig. 2). Finally, the squish display is similar to

dense but with a thinner thickness of the row to maximally

reduce the vertical space (e.g track IAI1 of Fig. 2).
Clicking on segments moves the display to the corresponding

region in the query genome, making it simple to navigate be-

tween references, all of which have equivalent displays. This sym-

metry frees the user from investigating the alignment from just

one perspective. Various mouse-overs are implemented to show

the sizes of display elements, and the snakes and annotations can

be reordered by dragging.

2.2.2 Procedural levels of alignment detail The different LODs
displayed in Figure 1a–d show the alignment at mega-base, kilo-

base and base levels. To achieve this in a Web browser, serving

data across the Internet (generally still a relatively slow and high

latency connection compared with keeping the data locally), we

needed a novel solution, because, for instance, a chromosome

will typically be decomposed into millions of segments in a HAL

graph. In Section 3, we describe pre-generating interpolated

HAL graphs that store only as much information as is visible

on the screen at different zoom levels, and demonstrate that we

achieve constant load times for Web pages at all levels of reso-

lution using the method.

2.2.3 Managing alignments and lifted annotations A unique fea-

ture of comparative assembly hubs is that all annotations can be

viewed, through the alignment, from any genome. To make

managing the large number of possible snake and lifted-over

annotations easy, for each browser, a central configuration

page is provided that uses a grid layout as its basis (Fig. 3).

This configuration page layout is adapted from the UCSC

Encode Browser [Rosenbloom et al. (2010)] where, instead of

using it to select tracks from combinations of cell line

and assay types, it is instead used to select from the combination

of genomes and (lifted-over) tracks, laid out phylogenetically

(if a tree is provided). As with the Encode browser, the

grid is sufficiently compact to display hundreds of tracks on a

page.

2.2.4 UCSC browser integration A key benefit of comparative
assembly hubs is their integration with the popular UCSC brow-

ser and the tools it provides. For example, export of subregions

of the alignment and track intersections can be made via the

UCSC table browser (Karolchik et al. 2004), and, via user ses-

sions, individual browser displays can be shared (see the supple-

ment for links to examples). Users may also add additional

tracks using the ‘Custom Tracks’ function.
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2.3 Constructing the core and pan E.coli/Shigella genome

As a demonstration of the flexibility of comparative assembly
hubs and the recently introduced pangenome displays it incorp-
orates (Nguyen et al. 2014), we created a comparative assembly

hub representing the core E.coli/Shigella genome. Briefly, this
was achieved by requiring that every alignment block contains

sequence from every input genome (see the Supplementary
Materials). As the pangenome display algorithm generates a con-

sensus ordering (even if the blocks correspond to the core
genome rather than the wider pangenome), this is reflected in

our core genome display (see Fig. 4).
We computed a core genome of size 2.7 Mb, which is consist-

ent with the 2.7 Mb core genome for 44 E.coli/Shigella genomes

reported in Sahl et al. (2011) and the 2.9 Mb core genome for 16

E.coli/Shigella reported in Darling et al. (2010). Both studies

used the whole-genome alignment approach. The core genome

size has been observed to decrease, but progressively plateau as

the number of genomes increases [Leimbach et al. (2013);

Lukjancenko et al. (2010); Touchon et al. (2009)]; this trend is

recapitulated here, as shown in Supplementary Figure S1. In

contrast to the core genome, the pangenome for the 66 strains

is �11 Mb (Supplementary Fig. S3) and continues to grow rela-

tively linearly as new genomes are added.
The average size of an E.coli/Shigella genome is �5 Mb,

�86% of which is genes. Approximately (assuming that the

genes are evenly distributed across the genome), we expect 2.3

Mb (86% of 2.7 Mb) of the core genome to be genic, which

corresponds to �2300 genes. This is consistent with the average

Fig. 2. A browser screenshot showing the pdc-adhB-cat tandem repeat region of E.coli KO11FL 162099 (Turner et al. 2012) displayed along the genome

of E.coli KO11FL 52593. The colored horizontal bars on top of each snake track indicate duplications in KO11FL 52593 [two copies of each gene pflA

(green), pflB-L (green) and pflB-S (orange)]. There is a large deletion in the parent strain W 162011, as this strain does not contain the pdc-adhB-cat

insert. Following the snake track of KO11FL 162099, there are 20 copies of (pflA, pflB-L, cat, adhB, pdc and pdfB-S). As KO11FL 52593 has two copies

of pflA, pflB-L and pflB-S the display arbitrarily picks one copy of each to map corresponding KO11FL 162099 orthologous genes to. The text on the

screenshot was adjusted for better readability
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number of genes of each genome we observed to be overlapped

with the core genome (2348 and 2507 genes for 98% and 90%

minimum coverage cutoffs, respectively).
Remarkably, the core genome is, at a high level (10 kbor greater

block size, approximately), entirely un-rearranged in the majority

of E.coli genomes, despite the dramatic differences between them

in their wider pangenome. The striking converse of the ordering

conservation in E.coli is demonstrated by the Shigella genomes,

which (as shown in the figure) are significantly reordered—though

the summary allows a complete tracing of this reordering.

3 METHODS

Details on the presented E.coli/Shigella comparative assembly hub are in

the Supplementary Materials. Below, we first give links to online instal-

lation, usage instructions and run-time analysis. We then describe the

snake display algorithm, and finally describe the underlying algorithm

for constructing varying levels of alignment detail for display.

3.1 Links to installation, usage instructions and run-time

analysis

� For installing all the described software see: https://github.com/

glennhickey/progressiveCactus/tree/comparative_assembly_hub_pap

er#installation. The git tag of progressiveCactus used is

‘comparative_assembly_hub_paper’.

� For generating an HAL alignment with progressive cactus see:

https://github.com/glennhickey/progressiveCactus/tree/comparative_

assembly_hub_paper#running-the-aligner.

� A brief analysis of the run-time of progressive cactus for generating

the described alignments and separately for aligning mammalian

Fig. 3. An example portion of a comparative assembly hub configuration Web page. Each browser in the hub has its own such equivalent configuration

page. Using the grid layout (rows represent the genomes, columns represent the track types), alignments and annotations can be selected regardless of

which genome they were originally described on. The inset phylogenetic tree is generated automatically by the comparative assembly hub pipeline. The

track controls above the grid allow quick overall configuration. Fine-grained track controls (not shown) are provided at the bottom of the page

Fig. 4. The E.coli/Shigella core genome browser, showing the highly conserved ordering relationships between blocks of the E.coli core genome and the

less conserved ordering in Shigella. Most E.coli look like the first snake track (E24377), with no high-level rearrangements (for space only one is shown).

In contrast, the Shigella has, with respect to E.coli, a fragmented core genome (second snake track SbCDC 308394, again, only one shown for lack of

space)
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genomes is at https://github.com/glennhickey/progressiveCactus/

tree/comparative_assembly_hub_paper#computation-time–memory-

usage.

� Basic instructions for running progressive cactus on a cluster are at:

https://github.com/glennhickey/progressiveCactus/tree/comparative_

assembly_hub_paper#jobtree-options-and-running-on-the-cluster.

� The manual of our cluster/compute management module, jobTree, is

at: https://github.com/benedictpaten/jobTree#jobtree, the documen-

tation for this module gives more details on supported batch systems,

and links to the API for working with a new batch system.

� For alternatively generating a HAL file from aMAF file, see: https://

github.com/glennhickey/hal/tree/comparative_assembly_hub_paper/

README.md#maf-import.

� For building a comparative assembly hub, see: https://github.com/

glennhickey/hal/tree/comparative_assembly_hub_paper/assembly

Hub#comparative-assembly-hub-manual.

� For building conservation tracks (phyloP) (Hubisz et al. 2011) from

an HAL alignment using the progressiveCactus package, see: https://

github.com/glennhickey/hal/tree/comparative_assembly_hub_paper#

constrained-element-prediction.

3.2 Snake display algorithm

A snake plot puts all the query segments within a reference chromosome

range on a set of one or more horizontal rows, indexed from 1 to n,

arranged top down. Before the algorithm is started, all the segments

are placed in a list, sorted by their starting coordinate on the query,

and the current row index is set to 1. Then, in a recursive fashion, the

algorithm places the first segment in the list on the current row. The

algorithm then iterates through the list of segments, and for each segment

adds it to the current row if it does not overlap the previous segment on

the current row and is either in the same order and orientation as the

previous segment added to the current row, or will not have an adjacency

incident with either of its sides that would connect it to a segment on the

current row (thus avoiding making adjacencies between segments on a

single row that are not in the same order and orientation). The current

row index is then increased by 1, all segments that were placed on the

previous row removed from the list, and the process repeated recursively

until the list of segments is empty. Once all the segments have been drawn

on their respective row, lines are drawn between the segment sides to

show the adjacencies between the segments.

3.3 Procedural LOD algorithm

To display snake tracks usefully at all resolutions, from individual bases

to whole chromosomes, we compute multiple representations of the

original alignment at different LODs. Here we formalize this problem,

describe our sampling-based solution and demonstrate its performance in

practice.

3.3.1 Problem definition We begin by briefly introducing the

definition of a sequence graph [more details in Paten et al. (2011)]. In a

sequence graph G, each sequence s 2 S in the alignment (chromosome,

contig, etc.) is represented by a string of DNA, which is, in turn, parti-

tioned into segments. All homologous segments are grouped together into

maximal gapless alignment blocks. Each segment within an alignment

block is associated with a strand identifier to specify whether the forward

or reverse strand of the segment is being aligned. Let jGj refer to the

number of blocks in G. When comparing two different sequence graphs

of the same input data, G1 and G2, we define "ðG1;G2Þ to be the sum of

pairwise base homologies induced by the blocks of G1 and not G2 and

those induced by the blocks of G2 and not G1.

Sequence graphs are conceptually equivalent to HAL graphs. Using

this equivalence, we define the interpolation problem as follows. Given a

sequence graph G and bound K, compute a sequence graph G0 such that

jG0j � K and "ðG0;GÞ are minimal. In practice, K is a function of the

number of pixels in the browser display, and is 100 by default. Because of

the size of the search space (all graphs with � K blocks), we use the

following sampling-based solution.

3.3.2 Sampling the column graph We use a down-sampling algo-

rithm based on the simplifying assumption that alignment block lengths

are roughly uniform: if the total length of all blocks in G is Ltot, then we

expect that each block in G0 will have length approximately

Lblock=Ltot=K. The first step of the algorithm is therefore to sample an

initial graph G0 from G by sampling every Lblock bases of each s 2 S and

extracting the block of length 1 from G into G0 (if it has not been added

already).

To keep the number of sampled blocks proportional toK, we disregard

sampled blocks whose maximum distance (along any segment) to any

block already sampled is less than Lblock.

3.3.3 Extending the column graph Unless Lblock=1, G0 will not

necessarily be a valid sequence graph, as it will not contain all bases in S.

We therefore greedily extend each block in G0 using the following rules,

creating G1. Let s½i� refer to the ith base of sequence s. We define a

segment e as a closed interval of base coordinates (i, j) where i � j on

sequence s 2 S. Recall that because blocks are gapless, all segments con-

tained in a given block must always have the same length. If e is on the

forward strand in its containing block and s½j+1� exists (j+1 is a valid

coordinate) and is not already present in G1, or if e is on the reverse

strand and s½i� 1� exists and is not already in G1, then e can be extended

to the right. A similar check can determine whether e can be extended to

the left. G1 is constructed by, for each block in G0, maximally extending

all segments it contains by the same length in each direction. To avoid

expanding tiny gaps, we greedily extend blocks in reverse order based on

the number of sequences they contain.

3.3.4 Filling in missing blocks We can only extend each block by the

minimum length allowed for any segment it contains, and G1 will there-

fore still not necessarily contain every position of the input sequences. We

complete the procedure by creating a block for each maximal length

sequence not yet present in a block. Finally, we exhaustively merge to-

gether all pairs of blocks that have the same length such that the resulting

set of pairwise homologies induced by the merged blocks are all also

induced by the blocks in G.

Algorithm 1 HAL Interpolate(G, K)

Ltot  sum of block lengths in G;

Lblock  Ltot=K

G0  empty HAL graph

for s 2 S (S is the set of sequences in G) do

i 0

while i5lenðsÞ do

c block created from alignment column in G containing s½i�

d max. distance between any base in c and any base already in

a block in G0

if d � Lblock then

G0  G0 [ c

i i+Lblock

for block b 2 G0 (from largest to smallest) do

maximally extend b in both directions

while 9 position x 2 Gjx=2G0 do

greedily create new block b0 from x

G0  G0 [ b

maximally extend b0 in both directions such that no base is present in

two blocks of G0
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for all pairs of blocks b1; b2 2 G
0 do

if all b1 and b2 can be merged to form a valid gapless alignment that

is present in G then

merge b1 and b2 in G0

3.3.5 LOD creation Pseudocode for the interpolation procedure

described in the steps above is provided in Algorithm 1. The time com-

plexity is OðN+jG0jlog jG0jÞ, where N is the number of bases in G and

jG0j is the number of blocks in the output. The O(N) component derives

from the fact that each base is processed once when it is added to a block,

and the OðjG0jlog jG0jÞ component stems from the sorted sets required to

extend and merge the blocks. A series of LODs can be generated from a

source graph G and is created as follows. The user specifies the scaling

factor between two LODs and the maximum number of blocks B to

process per query, and the algorithm iteratively generates coarser

LODs until one is reached such that the entire alignment can be displayed

in B blocks. An API is provided such that browser queries are directed to

the most detailed LOD such that the expected number of blocks returned

is less than B.

3.3.6 Experimental results The LOD generation algorithm was used

to generate the E.coli/Shigella comparative assembly hub discussed

above, using default parameters that attempt to limit queries to 100

blocks per pairwise alignment. This resulted in the creation of eight

LODs, whose sizes and associated query lengths are listed in Table 1.

The first line of this table corresponds to the original alignment file, which

is used to display browser queries of size up to 4304 bases. Each succes-

sive line corresponds to the next coarser grained LOD generated by the

interpolation algorithm. We found that these LODs, whose sizes decrease

exponentially, were sufficient to allow smooth transitions while zooming.

We assessed the practical impact of the LOD generation by simulating

1000 random browser queries for alignments of four E.coli/Shigella

strains (W 162011, KO11FL 162099, KO11FL 52593 and Ss53) to the

E.coli pangenome reference. The size and location of the queries were

uniformly distributed across the �10mb of the reference genome. The

hub was hosted at the San Diego Supercomputer Center (La Jolla,

California, USA), whereas the Browser server was located at the

University of California Santa Cruz (Santa Cruz, California, USA),

and no data were cached between individual queries. Each random

query was run on the hub twice: once with LOD activated (Fig. 5, blue

dots) and once without (red dots). The results are grouped, by query

length, into bins of size 1 000 000 along the x-axis where bin N contains

queries in the range (N-1000000, N). The average time required for a

query in each bin in seconds is reported in the figure, with the minimum

and maximum query times shown in the error bars. It is apparent from

the chart that without LOD, queries quickly become impractical as the

length approaches a megabase, but with LOD, the time remains relatively

constant for queries of any size.

4 DISCUSSION AND CONCLUSION

In this article, we have shown how UCSC comparative assembly

hubs can be easily constructed to provide useful extensible brow-

sers for sets of evolutionarily related genomes.
The comparative assembly hub framework is novel in several

respects. All the alignments and lifted-over annotations shown

are mutually consistent with one another, because, for the first

time, the annotation lift-over and alignment display is symmet-
rically driven by one reference-free alignment process, rather

than a mixture of different pairwise and reference-based multiple

alignments. The multiple alignment process and HAL format,

being reference free, also allow us to make all the browsers

equivalently powerful, in that all the annotations and alignments

can be displayed from any vantage point. The snake tracks for

the first time in the history of the UCSC browser and (to our

knowledge) a linear display format fully express all the possible

mutation types in one track, while the procedural LOD makes

this useful at all resolution levels. The incorporation of the pan-

genome display gives a new view of the data that, for some

purposes, is more useful for display than any single genome.
We used E.coli and Shigella spp. genomes as a test and auto-

matically reconstructed a core genome of all E.coli/Shigella,

Table 1. Size statistics for the original alignment (first row) and interpo-

lated alignments created by the LOD algorithm

Generated LOD

LOD range Lblock Average

number of

block size

Average

block

length

Full size

1–4304 109 345 47 146

4305–13037 137 60 649 85 35

13 038–39 359 540 21 365 241 12

39 360–118079 2109 13 071 394 7

118 080–354 485 8231 8428 611 5

354 486–1 063580 32105 8716 591 5

1063 581–3 190865 125217 7084 727 4

3190 866–9 572843 488359 4299 1197 3

9572 844– 1 904608 2337 2202 2

Notes. Default parameters were used, setting the maximum expected blocks, K, to

100 and the ratio between LOD sizes to 3.9, requiring eight additional LOD align-

ments to be computed. LOD range is the query range on the browser for which the

LOD applies. Lblock is the interpolation step size computed from K. The remaining

columns report the average number of blocks per pairwise alignment, the average

block length and the overall file sizes in megabytes, respectively. All block lengths

are in number of bases. Because of the heuristic steps used to generate, the sampled

graph (particularly ‘Filling in Missing Blocks’), the number of blocks in each LOD

decreases more slowly than K, but still exponentially.

Fig. 5. Browser querying time with and without LODs
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which recapitulates earlier results and visually demonstrates the
many rearrangements present in the core genome of the Shigella
phylogroup. Though any aligner can in principle be used, in the
Supplementary Materials we demonstrate that the Cactus align-

ment program we used here (and which had not previously been
applied to bacterial genomes) is able to successfully align the vast
majority (99%) of known genes and operons in this clade.

One issue with the display of assembly hubs in general is that
the data must be transferred across the Internet. By using LOD
and caching we have attempted to make page load times reason-

able; however, one way to avoid this bottleneck and avoid con-
figuring the installation of a mirror Web site is to run the
browser server in a virtual machine. The UCSC browser in a

box scheme (http://genome.ucsc.edu/goldenPath/help/gbib),
which is under development, should make this easy and be com-
plementary to assembly hubs, allowing their display locally and
potentially securely within a firewalled environment.

We have also tested comparative assembly hubs with clades of
mammalian genomes (see links to online run-time analysis in the
methods) therefore it is feasible to use comparative assembly

hubs for even large projects, provided significant computational
resources are available in the form of compute clusters. To make
the tool practical for vertebrate genomics communities without

these resources one future aim of the project is to provide a cloud
service, where users could buy compute time to generate their
alignments.
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