UC Berkeley
UC Berkeley Recent Work

Title
The Strange Odyssey of Software Interfaces and Intellectual Property Law

Permalink
https://escholarship.org/uc/item/59n441j\

Author
Samuelson, Pamela

Publication Date
2008-12-12

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/59n441jv
https://escholarship.org
http://www.cdlib.org/

The Strange Odyssey of
Software Interfaces and Intellectual Property Law

by
Pamela Samuelson

To make an appliance that can interoperate with the electrical grid, its developer
must configure the plug so that it fits neatly into the standard wall socket that has come to
be used to connect appliances to the grid. Other aspects of the appliance’s design may
vary in structure or function, but the plug design has got to be exactly right, or else the
appliance won’t work. The same principle applies to computer programs, although
software interfaces are more complex than the plug and socket interface.

No one would ever imagine that copyright protection would be available for
electrical plug and socket designs because they are neither literary nor artistic works.
Trade secrecy protection is also impossible because their designs are readily apparent
from examining existing plugs and sockets. As machine designs, they might once have
been patentable, but any such patent would have expired long ago.

With software interfaces, the obvious analogy to plugs and sockets took many
years to take hold. In the first phase of the odyssey of interfaces in relation to IP law,
software interfaces were either published and seemingly free of IP protection or were
maintained as trade secrets by commercial distribution of programs in unreadable binary
code. In the second phase of this odyssey, some firms and IP lawyers took advantage of
a Congressional decision to protect programs by copyright law and argued that interfaces
were parts of the “structure, sequence, and organization” (SSO) of programs that should
be protected by copyright law. After courts rejected copyright protection for interfaces, a
third phase began in which patent protection was sought for interfaces. In the current
fourth stage of this odyssey, policymakers, courts, and other institutions have taken or are
considering some steps to mute the impact of patent protection for interfaces out of
concern about competition and follow-on innovation. No other intellectual product has
traversed as many forms of IP protection as software interfaces and none has transformed
the law so much as it passed through these forms, which is why the tale of this odyssey is
worth recounting in a book on Con/texts of Invention. Because copyright was the most
pivotal stage in the IP-in-interfaces odyssey, this tale will begin with the key case that
brought it to shore.

James Williams did not set out to establish a bold new precedent in intellectual
property (IP) law when he talked his old friend Claude Arney into leaving his job as a
programmer with Computer Associates International, Inc. (CA) in order to join the
programming team at the Texas start-up company, Altai, Inc., which had lured Williams

“ Richard M. Sherman Distinguished Professor of Law and Information, University of California at
Berkeley. | wish to thank Thomas J. Kearney for his research assistance and Jonathan Band, Robert Barr
and Bob Glushko for their comments on an earlier draft.

away from CA some years before.! Williams was in charge of the team of programmers
tasked with converting Altai’s major product, the Zeke scheduling program, to work on
IBM computers running the MVS as well as the VSE operating systems. Zeke had
originally been designed to run on VSE. Because some of Altai’s customers had leased
both kinds of IBM mainframes, Altai realized that Zeke would be more attractive to a
broader array of customers if it ran on both platforms. Williams considered Arney a good
addition to the Altai team because he had worked on the CA-Scheduler program, Zeke’s
main competitor, and was thus familiar with the tasks that both programs performed.

Shortly after joining Altai, Arney persuaded Williams that the smartest way to
redesign Zeke to make it compatible with both VSE and MVS was to build a new
compatibility component for Zeke, that is, a sub-program (given the name Oscar)
designed to transpose Zeke’s commands for specific tasks into the appropriate format for
interacting with VSE and MVS so that the operating system could, in turn, properly
instruct the IBM hardware to carry out the commands. This new design would avoid the
need to customize each module of Zeke for the two operating systems; and if Altai
wanted to adapt Zeke in the future to be compatible with additional operating systems,
Williams and his team would only need to rewrite parts of Oscar, not the whole of Zeke.
Unbeknownst to Williams, CA had adopted the very same approach in the latest version
of CA-Scheduler, a project on which Arney had worked when he had been in its employ.

Williams’ confidence in Arney’s programming prowess seemed well-placed when
Arney completed Oscar’s VSE compatibility component three months later and the MVS
component in an additional month. Altai shipped the Oscar-enhanced version of Zeke
from 1985 until August of 1988. These shipments stopped after Computer Associates
sued Altai for copyright infringement and trade secret misappropriation, alleging that
Oscar contained code misappropriated from CA-Scheduler. Upon learning of the lawsuit,
Williams called Arney into his office to ask if the charges had merit. Arney confessed
that he had taken a copy of his former employer’s source code when he left the firm and
had directly copied portions of this code when developing Oscar.?

Altai’s management decided that the company should take immediate steps to
purge Oscar of the tainted code. Williams talked to Arney to find out which parts of
Oscar had been copied from CA-Scheduler. He assigned a new team of Altai
programmers to revise Oscar. He provided them with a list of Zeke’s services and
directed them to analyze how to make the services compatible with VSE and MVS, after
which they were to write new non-infringing code. Six months later, the team produced a
new version of Oscar. Altai then began offering a free “upgrade” of Zeke to its existing
customer base as well as selling the revised Zeke to new customers.

! The facts in this and succeeding paragraphs are derived from Computer Associates Int’l, Inc. v. Altai,

Inc., 775 F. Supp. 544 (E.D.N.Y. 1991), aff’d, 982 F.2d 693 (2d Cir. 1992).

2 Arney may have thought it wasteful to be forced to write new code for Altai when he (or one of his fellow
employees) had already produced very efficient code to do the very same set of functions at Computer
Associates. However, copying code from CA-Scheduler was a legally risky strategy, as it was in breach of
his employment agreement with Computer Associates and would have been illegal even in the absence of
this agreement.

Altai accepted it was liable for copyright infringement as to the code directly and
literally copied from CA-Scheduler, but believed the rewrite of Oscar had immunized it
from further liability. CA, however, asserted that the revised Oscar program was still
substantially similar in SSO to the compatibility sub-program of CA-Scheduler,
particularly in the manner in which the program interfaces were structured.

Interfaces are important parts of computer programs because they are specially
designed to enable the exchange of information between programs and program
components. MVS and VSE were both operating system programs for IBM mainframe
computers, but the interfaces of the two programs were not the same. That was why it
was necessary to develop a subprogram like Oscar to, in essence, translate Zeke’s
commands into a format that MVS or VSE could comprehend so that the IBM hardware
could carry out the scheduling program’s commands correctly.’

Interfaces of computer programs are unquestionably parts of program SSO.*
What was unclear before the Altai case was whether similarities in program interfaces
could be the basis for claims of copyright infringement.”

Before delving into how the court in Altai resolved this question, it is worth
considering where the IP journey for interfaces started. In the early days of computing
(i.e., before the mid-1960°s), developers of hardware and software, such as IBM, either
published documents containing interface information (known as “interface
specifications™) or maintained interfaces as trade secrets.®

Firms often have incentives to publish interface specifications and encourage
others to make unrestricted use of them so that customers and developers of software or
peripheral equipment could produce or adapt programs and other products to operate on
that hardware or with the software installed on that hardware. Some firms, however,
decided to maintain interfaces as trade secrets in order to control which software and
peripheral equipment could be developed for their platforms.’

It is well-known that a positive feedback loop can promote the success of
computing platforms: the larger is the number of applications available for a platform,
the more attractive, in general, that system will be in the marketplace, and the more
customers the platform has, the stronger are incentives for software developers to write
programs for that platform. This feedback loop, which is often referred to as exhibiting

® See, e.g., Michael Jacobs, Copyright and Compatibility, 30 Jurimetrics J. 91 (1989)(discussing program
interfaces and the commercial importance of compatibility).

“1d. at 103.

*1d. at 103-04.

® See, e.g., JONATHAN BAND & MASANOBU KATOH, INTERFACES ON TRIAL 19 (1995).

" This strategy has been common in videogame industry. See, e.g., DAVID SHEFF, GAME OVER: How
NINTENDO ZAPPED AN AMERICAN INDUSTRY, CAPTURED YOUR DOLLARS, AND ENSLAVED YOUR CHILDREN
286-91 (1993) (discussing Nintendo’s closed platform and efforts to stave off unlicensed compatible
games).

“network effects,” has implications for incentives for firms to publish (or not) interface
information.®

IBM, for example, initially published interface specifications and provided
customers with source code to make its computer systems more attractive to those
customers. As it became a dominant firm in the computer industry, it realized that
interfaces were commercially valuable in their own right. It then began to treat interface
specifications as trade secrets.” This not only gave IBM control over development of
compatible software and peripheral equipment; it also impeded development of
competing platforms capable of interoperating with applications written for IBM
computers.

For some years, IBM bundled its proprietary hardware, software, and peripherals
together and ceased distributing source code and interface specifications to its customers.
Even after IBM began unbundling software and peripherals, in part under pressure from
antitrust authorities,** it did not publish its interfaces, but rather licensed these trade
secrets on royalty-bearing terms to developers of software and peripheral equipment.

Some firms sought to avoid entering into such trade secret licensing agreements
by undertaking the tedious and time-consuming task of reverse-engineering other firms’
programs to extract interface information in order to make compatible, if unlicensed,
products.*? To block this form of unlicensed access to program interfaces, many firms
have inserted anti-reverse engineering clauses into their license agreements.*®

Prior to 1980, it was unclear whether either patent or copyright protection would
or should be available to protect computer programs or their interfaces. In the 1970’s,
two Supreme Court decisions ruled that certain program-related inventions were
ineligible for patent protection.* Although the Copyright Office began accepting
registrations of computer programs in 1965, it did so under its “rule of doubt;” indeed,
the registration certificates indicated the Office’s doubt about the copyrightability of
programs in machine-executable form.* Unsurprisingly, few programmers registered

8 Joseph Farrell, Standardization and Intellectual Property, 30 Jurimetrics J. 35 (1989).

° See, e.g., Band & Katoh, supra note 6, at 20-25.

19 Fyjitsu was one of IBM’s competitors that developed an IBM-compatible platform, which IBM
challenged as infringing its copyrights. 1d. at 27-28.

11d. at 22. European competition law authorities charged IBM with abusing its dominant position by
changing interfaces in a manner that rendered IBM-compatible peripherals inoperable; IBM settled the
lawsuit by agreeing to pre-disclose changes to its interfaces to aid makers of peripherals in adapting their
products in a timely manner. See F.M. Scherer, Thinking About the European Microsoft Case: F.M.
Scherer Discusses the Relevance of the IBM Case, 84 Antitrust & Trade Reg. Rep. 2090 (Jan. 24, 2003).
12 See, e.g., Sega Enter. Ltd. v. Accolade, Inc., 977 F.2d 1510 (9" Cir. 1992).

13 See, e.g., Vault Corp. v. Quaid Software Ltd., 847 F.2d 255 (5" Cir. 1988).

14 See Parker v. Flook, 437 U.S. 584 (1978) (computer program to update alarm limits for catalytic
conversion); Gottschalk v. Benson, 409 U.S. 63 (1972).

15 Copyright Office Circular 31-D (1965), reprinted in Duncan M. Davidson, Protecting Computer
Software: A Comprehensive Analysis, 1983 ARriz. ST. L.J. 611, 652 n.72.

copyright claims in this period,*® and no litigation tested whether computer programs
were copyrightable subject matter until the very end of the 1970’s."

Doubts about the patentability of programs arose because programs are texts and
because many information innovations embedded in programs, such as algorithms, are
“mental processes” (that is, processes that can be carried out in the human mind or with
the aid of a pen and paper).*® Patent law had long excluded “printed matter,” such as
texts, from the scope of its protection,*® even though printed matter is a manufactured
artifact, and hence literally within the meaning of the term “manufacture,” one of the four
categories of inventions for which patents may issue.”> Mental processes are likewise
processes that would literally seem to be patentable subject matter;? yet, the U.S. Patent
& Trademark Office (PTQO) and the courts have long regarded mental processes as
unpatentable.?? When faced with a patent claim for an algorithm for transforming binary
coded decimals to pure binary form, the Supreme Court in Gottschalk v. Benson ruled
that this mathematical process was ineligible for patent protection, suggesting that
processes should be eligible for patent protection only if they transform matter from one
physical state to another.?®

Computer programs, by contrast, seemed copyrightable in human-readable source
code form or as depicted in flow charts, but once transformed into machine-executable
form, programs seemed uncopyrightable as functional processes.?* Copyright cases
dating back to the 1880°s excluded useful arts, such as machines and mechanical
processes, from the scope of copyright protection.”® The Supreme Court had stated that
“[t]o give to the author of the book an exclusive property in the [useful] art described
therein, when no examination of its novelty has ever been officially made, would be a
surprise and a fraud upon the public. That is the province of letters-patent, not of

1° See NAT’L COMM’N ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL REPORT (1979)
(hereinafter “CONTU Report™) (reporting that about 1200 programs had been registered between 1965 and
1978). Another disincentive to registration, apart from the doubt reflected in the certificate, was that the
Office required deposit of the full source code of programs as a condition of registration, which would
make it impossible to claim trade secret protection for program source code.

7 Data Cash Sys., Inc. v. JS&A Group, Inc., 480 F. Supp. 1063 (N.D. IlI. 1979)(ruling that machine-
executable programs were not copyrightable subject matter, analogizing source code to architectural
drawings and object code to buildings constructed from those drawings, which at that time were
unprotected by U.S. copyright law), aff’d on other grounds, 628 F.2d 1038 (7" Cir. 1980).

18 See, e.g., Pamela Samuelson, Benson Revisited: The Case Against Patent Protection for Algorithms and
Other Computer Program-Related Inventions, 39 Emory L. J. 1025 (1990).

¥ See, e.g., In re Rice, 132 F.2d 140 (C.C.P.A. 1942).

035 U.S.C. sec. 101.

L.

22 See, e.g., In re Abrams, 188 F.2d 165 (C.C.P.A. 1951).

2 Benson, 409 U.S. at 64-70. See also In re Comiskey, 499 F.3d 1365 (Fed. Cir. 2007)(arbitration process
held unpatentable non-technological process).

2 See, e.g. Pamela Samuelson, CONTU Revisited: The Case Against Copyright Protection for Computer
Programs in Machine-Readable Form, 1984 Duke L. J. 663 (1984).

% Baker v. Selden, 101 U.S. 99 (1880)(bookkeeping system and other “useful arts” are ineligible for
copyright protection, although they may qualify for patents). For a discussion of Baker and its progeny,
see, e.¢., Pamela Samuelson, Why Copyright Excludes Systems and Processes From the Scope of Its
Protection, 85 Tex. L. Rev. 1921 (2007).

copyright.”?® In this and other cases, the courts have made a sharp distinction between
the provinces of copyright and utility patent law, perceiving no overlap in their subject
matters.?’

A key turning point in the evolution of IP protection for computer programs came
in 1979 when the National Commission on New Technological Uses of Copyrighted
Works (CONTU) issued a report to Congress.” CONTU had been established to
consider the implications of several new technology issues for copyright law, including
photocopying, inter-library loans, electronic database protection, and inputting of books
into computers.” CONTU went beyond its initial charter in recommending that
copyright protection should be available for computer programs as “literary works.”*

CONTU expressed confidence that copyright law could evolve to make
appropriate distinctions between program ideas (which of course would not be
protectable) and program expression (which would be).*! Perhaps because the CONTU
Commissioners were mostly copyright lawyers who knew very little about computer
programs, the Report did not meaningfully address important scope of protection issues,
including the protectability (or not) of program interfaces.®* In 1980, Congress amended
copyright law, as CONTU recommended.*?

Even after the 1980 amendments, there were some vestiges of doubt about the
copyrightability of programs. Two appellate court decisions snuffed out these doubts by
rejecting challenges to copyrights in Apple Computer’s operating system programs.®*
Makers of clone computers claimed, among other things, that it was necessary to copy the
Apple 11 operating system programs in order for their computers to achieve
interoperability with programs written for the Apple platform.* One court observed:

Franklin may wish to achieve total compatibility with independently
developed application programs written for the Apple I, but that is a
commercial and competitive objective which does not enter into the

2° Baker, 101 U.S. at 102.

%" See, e.g., Pamela Samuelson, Baker v. Selden: Sharpening the Distinction Between Authorship and
Invention, in INTELLECTUAL PROPERTY STORIES (Rochelle C. Dreyfuss & Jane C. Ginsburg, eds. 2005).

8 CONTU Report, supra note 16.

2 pyp. L. No. 93-573, Title II (establishing CONTU).

% CONTU Report, supra note 16, at 1, 9-26.

*11d. at 18-23.

%2 See, e.g., Peter Menell, Tailoring Legal Protection for Computer Programs, 39 Stan. L. Rev. 1329
(1985) (critical of CONTU for failing to consider compatibility-related issues); Samuelson, supra note 24
(criticizing CONTU for its misleading and incorrect statements about computer programs and likely
difficulty of applying copyright to programs because of their functionality).

% pub. L. No. 96-517, 94 Stat. 3007, 3028 (codified at 17 U.S.C. §§ 101, 117 (1982)).

% See Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983); Apple Computer,
Inc. v. Formula Int’l, Inc., 725 F.2d 521 (9" Cir. 1984).

* Franklin, 714 F.2d at 1245-46. Franklin also argued that the CONTU Commission had only intended to
protect application programs that interacted with people, not purely functional programs such as operating
systems. Id. at 1246-52.

somewhat metaphysical issue of whether particular ideas and expressions
have merged.®

This did not augur well for future defenses to claims of infringement based on copying of
interfaces.*’

Even more worrisome for compatible program developers like Altai were
decisions such as Whelan Associates, Inc. v. Jaslow Dental Lab., Inc.®® Whelan involved
a dispute between two former partners about a dental laboratory business program. After
a falling out, Jaslow decided to develop his own version of the Dentalab program.
Although his program and hers were written in different programming languages and
used different algorithms, the overall structure of the programs was similar, as were some
data and file structures, and the two programs performed some of the same functions in
the same manner. The lower court found Jaslow to have infringed Whelan’s copyright.
Jaslow’s principal defense on appeal was that copyright protection was only available for
source and object code, not for program SSO. The Third Circuit Court of Appeals in
Pennsylvania affirmed.

Whelan agreed with CONTU that computer programs should be regarded as
“literary works.” It reasoned that since copyright law had long protected non-literal
elements (i.e., structure and organization) of other types of literary works, such as novels
and plays, it should protect the SSO of programs as well.>** Whelan deemed all program
SSO to be protectable by copyright law as long as there was more than one way to
structure a program to achieve the program’s functions.* If there was only one way to
structure a program to perform particular functions, then the “idea” of that function and
its structural “expression” should be considered “merged,” and treated as among the
unprotectable “ideas” in programs. The court in Whelan also endorsed extending
copyright protection to the “look and feel” of programs, which seemingly included the
manner in which the programs behaved (i.e., how they performed their functions).**
Without broad copyright protection for computer programs, and in particular, for aspects
of program SSO that were costly and difficult to develop as well as commercially
significant, the court worried that there would be too little protection to provide proper
incentives to develop computer programs.

CA relied heavily on Whelan and its progeny in arguing that the revised Oscar
program infringed its copyright in CA-Scheduler.** It pointed to substantial similarities
between the compatibility components of Zeke and CA-Scheduler, especially as to their

%1d. at 1253.

%" The court responded to the CONTU intent-based argument by pointing out that the Apple software at
issue were computer programs within the definition of that term in the copyright statute and CONTU had
not meant to exclude operating system programs from the scope of copyright protection. Id. at 1251.

% 797 F.2d 1222 (3d Cir. 1986).

*1d. at 1234.

“1d. at 1236.

“1d. at 1228, 1247.

%2 See, e.g., Reply Brief for Plaintiff-Appellant, in Computer Associates Int’l, Inc. v. Altai, Inc., 1991 WL
11010234 (relying heavily on Whelan).

parameter lists (i.e., lists of information that needed to be sent and received by
subroutines of the affected programs). These elements of program SSO had been
carefully and precisely designed, making them costly to develop and commercially
significant parts of programs. CA argued that incentives to invest in software
development would be undermined if competitors such as Altai could appropriate
program SSO without fear of liability. Parameter lists and other SSO elements of
program interfaces are, moreover, complex and detailed, not abstract in content, which
under Whelan made them protectable expression. In view of the SSO similarities, CA
argued the revised Oscar still infringed the copyright in CA-Scheduler.

Altai faced a daunting challenge to parry Computer Associates’ rhetorical thrusts.
The Apple case was easy to distinguish because Franklin had not even tried to rewrite the
Apple OS programs, but had instead copied the code exactly, bit for bit.** Altai, by
contrast, had spent hundreds of man-hours and many months developing a new
implementation of Zeke’s interfaces to the IBM programs. Whelan’s analysis, however,
could only be elided by developing a strong counter-rhetoric.

Altai sought to convince the court to conceptualize computer programs as
utilitarian works (which were, therefore, meaningfully different from novels and plays).**
It could then point to caselaw and other sources saying that utilitarian works enjoy, at
best, a “thin” scope of copyright protection (that is, protection against only exact or near-
exact copying).*> Even more important was getting the court to recognize that external
factors sometimes constrain the design choices of programmers. This includes not only
the mechanical specifications of the computer hardware on which a program was
designed to run, but also interface information,“® such as the IBM protocols that enabled
programs such as CA-Scheduler and Zeke to exchange information and interoperate with
the MSV and VSE operating systems. Of course, the parameter lists of CA-Scheduler
and Zeke were similar; both aimed to provide the same scheduling services to their
customers and both were trying to interoperate with MV'S and VSE.*

Altai won the rhetorical war before the Second Circuit Court of Appeals in New
York and established an important precedent. The Altai decision not only rejected claims
of copyright protection in interfaces, but also adopted a now widely used three step test
for assessing claims of copyright infringement in computer programs. The first step
involves constructing a hierarchy of abstractions, from most abstract to most detailed, for
the plaintiff’s program. The second step involves “filtering” out of consideration various
elements of the program that are beyond the scope of copyright protection. The third step
involves comparing any remaining “golden nuggets” of expression in the plaintiff’s
program with the defendant’s program to determine if the defendant copied substantial
amounts of expression from the plaintiff’s program.*

** Franklin, 714 F.2d at 1245.

“ Altai, 982 F.2d 704 ("the essentially utilitarian nature of computer programs™).

** |d. at 704-05 (comparing computer programs to useful arts, such as recipes and bookkeeping systems).
“®1d. at 709-10.

*" See Brief of Defendant-Appellee, Computer Associates Int’l, Inc. v. Altai, Inc., 1991 WL 11010232
(making this argument).

“ Altai, 982 F.2d at 706-11.

Application of the abstraction-filtration-comparison test generally results in
programs having a thin scope of copyright protection because the second step requires
filtering out three kinds of unprotectable elements. The first consists of elements of
program design dictated by efficiency.*® Hypothetically, there may be many ways to
achieve certain program functions, but efficiency considerations will often narrow the
range of practical solutions. Because programmers are constantly striving to achieve
efficiency, adopting the same efficient solution may, moreover, be the product of
independent work, not of copying. The second category of unprotectables includes
design choices that are constrained by external factors, such as the hardware and software
with which the program was designed to operate, demands of the industry being served,
and widely accepted programming practices.®® The third includes elements of programs
that are in the public domain, such as commonplace programming techniques, ideas, and
know-how.”" Later decisions have extended Altai by directing courts to filter out
functional design elements, such as procedures, processes, systems, and methods of
operation.*?

The court in Altai asserted that its test for software copyright infringement “not
only comports with but advances the constitutional policies underlying the Copyright
Act.”®® It recognized that CA might be right that thin copyright protection for programs
could undermine incentives to invest in program development, but the Supreme Court
had “flatly rejected” similar incentive-based arguments for broad copyright protection of
factual works in Feist Publications, Inc. v. Rural Telephone Service Co.>* To extend
broad copyright protection to program SSO would “have a fundamentally corrosive effect
on certain fundamental tenets of copyright doctrine.”> Because copyright seemed ill-
suited to protecting program innovations, the court in Altai suggested that Congress
consider whether programs needed additional IP protection; it also suggested that patents
might be a more suitable form of IP protection for program SSO.*®

The Altai decision may not initially have induced software developers and their
lawyers to start thinking seriously about patenting interfaces and other program SSO, in
part because it took some years for Altai to defeat Whelan in the subsequent caselaw and
emerge as the leading decision for judging claims of software copyright infringement.*’
However, the patent option became more urgent after the Ninth Circuit Court of Appeals

“*1d. at 707-09.

*01d. at 709-10.

! d. at 710.

52 See, e.g., Gates Rubber Co. v. Bando Chemical Indus. Ltd., 9 F.3d 823 (10" Cir. 1993).

%3 Altai, 982 F.2d at 711.

** Id., citing Feist Pub., Inc. v. Rural Telephone Service Co., 499 U.S. 340 (1991)(rejecting “sweat of the
brow” copyright claim in white pages listings of a telephone directory).

% Altai, 982 F.2d at 712. The court criticized Whelan for its unduly broad conception of the scope of
copyright in computer programs, for its reliance on metaphysical distinctions rather than practical
considerations, and for its outdated comprehension of computer science. Id. at 705-06.

4. at 712.

> Altai has been followed in at least 49 subsequent decisions.

in California issued its ruling in Sega Enterprises, Ltd. v. Accolade, Inc.,”® decided less
than a month after Altai.

Sega was important in the IP-in-interfaces odyssey for at least four reasons. For
one thing, it embraced Altai’s rhetorical approach to conceptualizing computer programs
as utilitarian works eligible for only a thin scope of copyright protection.® Second, Sega
followed Altai in ruling that program interfaces were elements of programs that copyright
law did not protect; indeed, Sega spoke of interface information as “functional
requirements for achieving compatibility with other programs.”® Third, the court ruled
that copying program code in the course of reverse engineering it for a legitimate purpose
such as extracting interface information to make a compatible program did not infringe
any copyright in that code.® The court reasoned that

[i]f disassembly of copyrighted object code is per se an unfair use, the
owner of the copyright gains a de facto monopoly over the functional
aspects of his work—aspects that were expressly denied copyright
protection by Congress. In order to enjoy a lawful monopoly over the idea
or functional principle underlying a work, the creator of the work must
satisfy the more stringent standards imposed by the patent laws.

Fourth, it indicated that even copying some exact code from another program would not
be infringement insofar as that code was essential to achieving interoperability.®

After Sega, developers could no longer hope to protect interfaces by copyright.
And because Sega allowed unlicensed reverse-engineering of code to extract interface
information,®® it imperiled developer efforts to protect its interfaces as trade secrets.
Sega signaled that the only reliable means for protecting the functional requirements for
achieving interoperability was by patenting them. Patents had at least one advantage over
copyright law in protecting interfaces because patent law has no “merger” doctrine.
Hence, if there is only one way to achieve a particular function and a developer has
patented that one way, it can exercise its patent rights to stop unlicensed uses.

Altai and Sega contributed to the eventual shift away from reliance on copyright
protection for program SSO and interface innovations and toward reliance on patent
protection. But developments on the patent side also made this form of protection for
program SSO more plausible than in the 1970°s. Especially important was the Supreme
Court’s 5-4 decision Diamond v. Diehr in 1981, which signaled a new receptivity to

%8977 F.2d 1510 (9" Cir. 1992).

% See, e.g., id. at 1526 (“Under the Copyright Act, if a work is largely functional, it receives only weak
protection.”)

®%1d. at 1525-26.

61 |d. at 1527-28 (holding that reverse engineering copies qualified as fair uses).

®21d. at 1525.

% |d. at 1516. See also id. at 1528-32 (treating some Sega code too functional for IP protection).

% Prior to Sega, some commentators had argued that reverse engineering of object code should be treated
as both copyright infringement and trade secret misappropriation. See, e.g., Allen Grogan, Decompilation
and Disassembly: Undoing Software Protection, COMPUTER LAW., Feb. 1984, at 1.

10

patenting computer program-related inventions.®> Diehr claimed to have invented a new
method of curing rubber that used a computer program to calculate when the temperature
inside rubber molds had reached the proper curing point such that the molds should be
opened. The PTO had rejected Diehr’s claim because its only novelty lay in program
calculations. Under earlier Supreme Court decisions, the Office thought this process was
ineligible for protection.®®

In Diehr, the Supreme Court rejected the “point of novelty” test and ruled that
Diehr’s process claimed patentable subject matter. Because the Court was so deeply
divided, because the majority opinion did not repudiate the Court’s earlier rulings on the
unpatentability of certain program innovations, and because the case involved a
traditional manufacturing process (i.e., curing rubber), the Diehr decision was initially
perceived as a modest change in the patent landscape as to program-related inventions.

Certain language in Diehr, however, embraced a broad conception of patentable
subject matter.®” In the decade or so after Diehr, the intermediate appellate court that
hears patent cases developed a very broad conception of patentable subject matter under
which virtually all computer program-related inventions were patentable subject matter.®®
This, coupled with increasing “thinness” of copyright protection after Altai and Sega
achieved widespread acceptance in the mid-1990’s, led to big surge in patenting of
software innovations.®

Software developers often seek patents for program internals, such as algorithms
and data structures. Such patents are, however, generally more useful for defensive than
for offensive purposes. That is, developers tend to seek patents on such internal design
elements to assure themselves of having freedom to develop software embodying these
innovations as well as to build a portfolio of IP assets so that the firms will have
something to trade (e.g., by cross-licensing) if a competitor asserts patent claims against
them.”® Patents on program internal designs are often difficult to assert offensively (that
i, to stop competitors from using them) because such elements are typically difficult to
discern in commercially distributed object code. Because infringement is difficult to
detect, patents on internal program designs are difficult to enforce.

85 450 U.S. 175 (1981).

% See, e.g., Benson, 409 U.S. 63.

%" Diehr, 450 U.S. at 181 (patentable subject matter includes everything under the sun made by man).

%8 See, e.g., AT&T Corp. v. Excel Comm’ns, Inc., 172 F.3d 1352 (Fed. Cir. 1990).

% See Josh Lerner & Feng Zhu, What is the Impact of Software Patent Shifts? Evidence from Lotus v.
Borland 10 (Nat’l Bur. Econ. Res. Working Paper No. 11168 2005) (presenting evidence of surge in
patenting of software in the mid-1990’s).

% See, e.g., Gideon Parchomovsky & R. Polk Wagner, Patent Portfolios, 154 U. Pa. L. Rev. 1 (2005).
Software patents may be useful to firms in obtaining financing from venture capitalists. Ronald Mann, Do
Patents Facilitate Financing in the Software Industry?, 83 Tex. L. Rev. 961, 972 (2007).

11

Patents on interface designs, by contrast, are more likely to be useful for offensive
purposes.” They may confer on their owners an exclusive right to control the
development not only of competing, but also of complementary, products, because the
interface defines the boundaries between and among programs. It is generally easy to
detect infringement of interface patents because if unlicensed products successfully
interoperate with the patentee’s products, they almost certainly infringe. Interface patents
are among the most valuable patents that software developers can own, in part because
such patents can be impossible to work around. Even a narrowly drawn interface patent
may preclude interoperability as to a key component of the program.

Software interfaces are so essential to achieving interoperability that some have
suggested that they should be unpatentable, or if patented, their use should be deemed
non-infringing insofar as there is no equally efficient or effective way to achieve
interoperability.” (The latter approach would, in essence, create a merger doctrine in
patent law.) A similar approach is reflected in the policy adopted by the World Wide
Web Consortium (W3C). W3C requires member firms, which include major industry
players such as Microsoft and IBM, to agree that if they own patents that “read” on a
standard adopted by W3C that is essential to interoperability on the Web, those patents
will be licensed on a royalty-free (RF) basis.”® OASIS (Organization for the
Advancement of Structured Information Standards) does not mandate RF licensing of
webservices interface patents, but offers two widely used RF licensing options for
technical committees to adopt.” RF policies do not, of course, make such patents
unenforceable, but they do substantially reduce the leverage that such patents would
otherwise provide as well as their economic value. This, in turn, dampens incentives to
acquire such patents. Some commentators have, moreover, called for abolition of
software patents, " in part because interface patents pose such risks to open source
programming.

An alternative strategy is to mute the exclusionary character of interface patents is
to allow their use, but to oblige users to compensate the patent’s owner. This liability
rule approach can be implemented in a number of ways. Under the Supreme Court’s
ruling in eBay, Inc. v. MercExchange, L.L.C., ”® courts have discretion to withhold
injunctive relief in cases involving interfaces essential to interoperability and order
payment of a reasonable royalty. In addition, the U.S. government has power to practice
patented inventions and to authorize others to do the same as long as it provides

™ See, e.g., Atari Games Corp. v. Nintendo of Am., Inc., 1993 U.S. Dist. LEXIS 8864, *3-*6 (N.D. Cal.
June 30, 1993); Atari Games Corp. v. Nintendo of Am., Inc., 30 U.S.P.Q.2d (BNA) 1401, 1414 (N.D. Cal.
1993) (granting summary judgment to Nintendo because Atari had infringed an interface patent).

72 See, e.g., Band & Katoh, supra note 6, at 332-34.

" W3C Patent Policy, Feb. 4, 2005, available at http://www.w3.org/Consortium/Patent-Policy-20040205/.
™ See OASIS Intellectual Property Rights Policy, http://www.oasis-open.org/whof/intellectualproperty.php.
Robert J. Glushko, who serves on the OASIS Board, reports that virtually all of the TCs now use one of the
two RF policies. Conversation with Robert J. Glushko, March 2, 2008.

" See, e.g., Brad Feld, Abolish Software Patents, Feld Thoughts, April 10, 2006, available at
http://www.feld.com/blog/archives/2006/04/abolish_softwar.html.

©126 S. Ct. 1837 (2006).

12

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.oasis-open.org/who/intellectualproperty.php
http://www.feld.com/blog/archives/2006/04/abolish_softwar.html

reasonable compensation for the use.”” Antitrust authorities could also require licensing
of interface patents.’

Japan has been considering a proposal to require licensing of patents on essential
interfaces.”” The European Parliament was asked to consider a similar proposal to oblige
owners of patents on essential interfaces to license them on reasonable and non-
discriminatory (RAND) terms during the contentious debate over the proposed directive
on software patents.®® Some standard-setting organizations require participating firms to
agree in advance to license on RAND terms any patents that may be implicated by a
standard adopted by those organizations.®* The widespread practice of cross-licensing of
software patents among large and medium-sized firms in the software industry similarly
may lessen the exclusionary impacts of interface patents.

The story of the strange odyssey of software interfaces in IP law would not be
complete without a brief discussion of an eddy into which some policy makers and
commentators were swept up in the early 1980’s and early 1990’s before copyright
emerged as the international standard for protecting programs.® During that time, there
was considerable international interest in crafting a sui generis (of its own kind) form of
IP protection to computer programs. In 1983, for example, the Japanese Ministry of
International Trade and Industry (MITI) issued a report recommending a sui generis form
of protection for software. The regime resembled copyright in some ways (e.g.,
automatic protection against unauthorized copying), but was shorter in duration and took
into account the importance of interoperability, which copyright law could not readily
do.®® The European Commission also expressed interest in a sui generis form of IP
protection for software.*

728 U.S.C. sec. 1498.

"8 See, e.g., Robert P. Merges & Richard R. Nelson, On the Complex Economics of Patent Scope, 90
Colum. L. Rev. 839 (1990) (giving examples of licenses induced by antitrust oversight).

™ Ministry of Economy, Trade, & Industry, Press Release, Interim Report of the Study Group on the Legal
Protection of Computer Programs and Promotion of Innovation, Oct. 11, 2005, available at
http://www.meti.go.jp/english/information/data/051011SoftInnove.html. (“Industry could consider the
propagation of some concept along the lines of “Creative Commons.” Action should be taken to popularize,
through agreements among enterprises, the business practices of mutual non-assertion of rights to such
patented inventions as relating to certain categories of software, such as OSS, or to interoperability of
software, thereby making this concept the standard in the public domain by utilizing the current patent
office. Moreover, the compulsory licensing system and the enhanced application of the antimonopoly law
are considered as further issues to be studied.”) See also Interpretative Guidelines for Electronic
Commerce (revised March 2007), 192-193, 201 (to assert patent rights to defeat interoperability may be
considered an abuse of right), available at http://www.meti.go.jp/english/information/data/I T-
policy/interpretative_guidelines_on_ec070628.pdf

% Foundation for a Free Information Infrastructure, Plenary Amendments: Interoperability, 9/16/05 (on file
with the author).

8 Mark A. Lemley, Intellectual Property and Standard-Setting Organizations, 90 Cal. L. Rev. 1889
(2002).

8 See Agreement on Trade-Related Intellectual Property Rights, art. 10.

8 See Dennis S. Karjala, Lessons from the Computer Software Protection Debate in Japan, 1984 Ariz. St.
L.J. 53, 63.

8 Green Paper on Copyright and the Challenge of Technology—Copyright Issues Requiring Immediate
Action, Document COM (88), 172 final 7 June 1988. Although the EU ultimately chose to protect
programs by copyright law, it adopted key sui generis features in its software protection directive by

13

http://www.meti.go.jp/english/information/data/051011SoftInnove.html
http://www.meti.go.jp/english/information/data/IT-policy/interpretative_guidelines_on_ec070628.pdf
http://www.meti.go.jp/english/information/data/IT-policy/interpretative_guidelines_on_ec070628.pdf

Some American commentators also argued for sui generis protection for
software.® One such article was “A Manifesto Concerning the Legal Protection of
Computer Programs,” which reported the results of a collaboration among Lotus
Development Corp. founder Mitchell Kapor, computer scientist Randall Davis, law
professor Jerome Reichman, and me.®® It challenged the then-prevailing conception of
computer programs as literary works and characterized programs as machines that
happen to be constructed in text. The Manifesto pointed out that the most valuable
aspects of programs lie not what they say or how they say it, but what the programs do
and how well they do it. It proposed that the “industrial compilations of applied know-
how” in computer programs, including their behaviors, should be protected from market-
destructive appropriations.®” It proposed a short term right to exclude others from
cloning industrial compilation components of programs, followed by a term in which
others could use these components subject to a right of compensation.

Interfaces are among the elements of programs that are best understood as
industrial compilations of applied know-how. Because they are carefully drafted precise
and detailed compilations of information, interfaces resemble copyright subject matter.
Like copyright subject matter, they are relatively cheap and easy to copy, especially in
digital form, and so seem amenable to the ban on unauthorized copying that is copyright
law’s principal hallmark. However, copyright law does not protect industrial
compilations, such as interfaces, rule sets, recipes, and systematic organizations of
information; nor does it protect know-how.®® It is consequently unsuitable as a form of
protection for interface specifications.

Although some firms patent interfaces, the textual nature of interface
specifications and their information-intensive component parts make patents unsuitable
for protecting interface specifications as such.* A sui generis regime focused on
protecting interfaces as industrial compilations of applied know-how would be a more
suitable regime for interface protection than patents.

Whatever the merits of a sui generis approach, the IP odyssey passed it by.
Software developers now use copyrights to protect program code and expressive aspects
of audiovisual displays (e.g., videogame animation). Distributing programs in object
code form generally provides effective trade secret protection for internal designs,

excluding interfaces from the scope of protection and permitting decompilation for purposes of acquiring
interface information. See Council Directive 91/250/EEC of 14 May 1991 on the legal protection of
computer programs, Art. 5-6.

8 Karjala, supra note 83; Menell, supra note 32, at 1364-65.

8 pamela Samuelson, et al., A Manifesto Concerning the Legal Protection of Computer Programs, 94
Colum. L. Rev. 2308 (1994).

87 See also J.H. Reichman, Computer Programs as Applied Scientific Know-How: Implications of
Copyright Protection for Commercialized University Research, 42 Vand. L. Rev. 639 (1989).

% See, e.g., Samuelson, supra note 25, at 1928-52 (discussing caselaw and policy rationale for exclusion of
these innovations from the scope of copyright and legislative history for including a statutory exclusion).
% See supra notes 18-23 and accompanying text.

14

including interfaces.® Licensing programs on terms that forbid reverse-engineering
gives developers reason to hope for a contractual bypass of the Sega decision.” While
firms sometimes get patents on novel interface designs, their ability to exercise patents
that implicate interoperability has been somewhat lessened in ways recounted above.

No other intellectual artifact has had a comparable journey through IP law,
transforming each form as interfaces have passed through them. Interface specifications
began as public domain documents or as trade secrets, depending on whether or not they
were published. For a time, it seemed as though sui generis protection would be the best
way to deal with the interoperability challenges posed by programs, but then copyright
became the norm for software protection. Whelan made it seem that interface
specifications would be protectable by copyright law as program SSO. Altai and Sega,
however, dashed those expectations. Software developers then shifted to patent
protection for interfaces, as well as pinning their hopes on the enforceability of anti-
reverse engineering clauses in software license contracts. Recent developments give hint
of a new shift toward regulated licensing of patented interfaces.

This strange odyssey of interfaces through various forms of IP law offers some
insights worthy of inclusion in this volume. Interface specifications for software are an
information innovation that does not fit neatly in traditional copyright and patent bins.*
Those who sought to protect interfaces by copyright law emphasized their resemblance to
other copyright subject matters. Those who fought against copyright protection for
interfaces had to convince courts that interfaces were functional requirements for
achieving interoperability, akin to electrical plugs and sockets, which seemed more
appropriate for patent protection. Yet, interfaces are so important to competition and
follow-on innovation that there is some reluctance to give patentees a free hand in
exercising their rights under this law. Even though developing interfaces is expensive,
time-consuming, and intellectually challenging, the huge success of the software industry
in the past thirty years suggests that adequate incentives to develop computer programs
do exist, even without IP protection for one commercially significant component, namely,
interfaces.

The copyright part of the IP odyssey might have played out differently had James
Williams not impressed the trial judge in Altai as a decent guy who did his best to repair
the damage caused by his friend Claude Arney when he copied CA-Scheduler code into
Oscar. Had Williams had come off as a “bad guy,” the trial judge might have been more
likely to follow Whelan, and copyright might have become the norm in protecting SSO,
including interfaces, in the U.S. This would have been far more damaging to competition

% Developers of operating system programs, such as Microsoft’s Windows and Vista, also benefit by the
sheer complexity of their programs and the large number of interfaces they contain, which makes reverse
engineering to discover them very difficult.

° The caselaw on the enforceability of anti-reverse engineering clauses is mixed.

%2 Synthetic biology, XML schemas, and computer languages are three other kinds of information
innovations that also do not neatly fit into the patent and copyright bins. See Sapna Kumar & Arti Rai,
Synthetic Biology: The Intellectual Property Puzzle, 83 Tex. L. Rev. 1745 (2007); Douglas E. Phillips,
XML Schemas and Computer Program Language Copyright: Filling in the Blanks in Blank Esperanto, 9 J.
Intell. Prop. L. 63 (2001).

15

and follow-on innovation than patents for interfaces because copyright protection
attaches automatically by operation of law; patents, by contrast, can only be obtained by
applying and subjecting one’s claims to scrutiny by patent examiners, the creativity
standard is far lower, and copyright protection lasts for about five times longer than
patents. This would make no more sense that extending copyright protection to electrical
plugs and sockets. So it was fortuitous indeed that Williams was a decent guy and the
trial judge was willing to look more closely at what kind of program SSO he was being
asked to protect by copyright law and how the protection being sought would affect the
future of competition and follow-on innovation.

16

