
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Parallel GPU Algorithms for Mechanical CAD

Permalink
https://escholarship.org/uc/item/59n1g12w

Author
Krishnamurthy, Adarsh

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59n1g12w
https://escholarship.org
http://www.cdlib.org/

Parallel GPU Algorithms for Mechanical CAD

by

Adarsh Krishnamurthy

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sara McMains, Chair
Professor David Dornfeld

Professor Carlo Séquin

Fall 2010

The dissertation of Adarsh Krishnamurthy, titled Parallel GPU Algorithms for Mechanical

CAD, is approved:

Professor Sara McMains, Chair Date

Professor David Dornfeld Date

Professor Carlo Séquin Date

University of California, Berkeley

Parallel GPU Algorithms for Mechanical CAD

Copyright c© 2010

by

Adarsh Krishnamurthy

Abstract

Parallel GPU Algorithms for Mechanical CAD

by

Adarsh Krishnamurthy

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

This thesis describes new parallel GPU algorithms that accelerate fundamental CAD operations
such as spline evaluations, surface-surface intersections, minimum distance computations, moment
computations, etc., thereby improving the interactivity of a CAD system.

CAD systems (such as SolidWorks, AutoCAD, ProE, etc.) create graphical user interfaces for
solid modeling, which build on fundamental CAD operations that are performed by a modeling
kernel. However, since many of these fundamental operations are compute-intensive, the CAD
systems make the designer wait until a particular operation is completed before providing visual
feedback and allowing new operations to be performed, reducing interactivity. The broad objective
of this research is to develop new parallel algorithms for CAD that run on Graphics Processing
Units to provide order-of-magnitude better performance than current CPU implementations.

A critical operation that all CAD systems have to perform is the evaluation of Non-Uniform
Rational B-Splines (NURBS) surfaces. We developed a unified parallel algorithm to evaluate and
render a NURBS surface directly using the GPU. The GPU algorithm can render over 100 NURBS
surfaces at 30 frames per second, significantly enhancing interactivity.

Fundamental modeling operations (such as surface intersections, separation distance computa-
tions, etc.) are typically performed repeatedly in a CAD system during modeling. We have devel-
oped GPU-accelerated algorithms that perform surface-surface intersections more than 50 times
faster than the commercial solid modeling kernel ACIS. We have also developed GPU algorithms
to perform minimum distance computations, which have applications in multi-axis machining, path
planning, and clearance analysis. These algorithms are not only more than two orders of magnitude
faster than the CPU implementations, they often have much tighter error bounds.

We have also developed algorithms for computing accurate geometric moments of solid models
that are represented using multiple trimmed-NURBS surfaces. We have developed a framework
that makes use of NURBS surface data to evaluate surface integrals of trimmed NURBS surfaces in
real time. With our framework, we can compute volume and moments of solid models with error

1

estimates. The framework also supports local geometry changes, which is useful for providing
interactive feedback to the designer while the solid model is being designed.

Finally, the ultimate objective of this research is to provide a generalized framework to over-
come some of the GPU programming challenges in CAD. Using this framework, a programmer
could easily develop complex CAD algorithms that utilize the GPU to improve the performance of
CAD systems.

2

Acknowledgments

I would like to thank my advisor, Prof. Sara McMains, for providing me sound guidance and
motivation throughout my PhD. She was always supportive of my research and helped me develop
several skills that are invaluable for a researcher. I am always amazed at her sense of precision
in framing and presenting research ideas and problems. I immensely enjoyed working with her
throughout my stay at Berkeley.

I would like to thank my dissertation and qualifying exam committee members Prof. David
Dornfeld and Prof. Carlo Séquin for their guidance. Prof. Dornfeld’s courses on manufacturing
helped me understand the application area where my research could be usefully applied. Prof.
Séquin’s course on Solid Modeling introduced me to the field of CAD and helped me get an idea
of all the interesting unsolved problems in the field. I always enjoyed the invigorating and thought
provoking discussions I had with them.

I would also like to thank the other members of my qualifying exam committee, Prof. Paul
Wright and Prof. Alice Agogino. They provided me invaluable guidance while writing my research
proposal and helped me develop a coherent narrative for my ideas.

I benefited immensely from my two internships at SolidWorks Corporation. I am grateful to
my mentor Kirk Haller for being really helpful and supportive of my research. He introduced me
to many current research challenges in the CAD industry. I immensely enjoyed working with my
colleagues at SolidWorks, especially Xiaobin Wu, and Prof. Stephen Mann.

I would also like to acknowledge my collaborators Prof. Gershon Elber and Prof. Iddo Hanniel
for all the interesting discussions we have had regarding CAD research. Prof. Elber was especially
helpful in making sure that our algorithms are mathematically sound.

I would like to thank all the members of Computer Aided Design and Manufacturing Lab for
providing me a secure environment for performing research. I would especially like to thank Rahul
Khardekar for providing me insights on GPU programming and helping me out whenever I was
stuck. Xiaorui, Youngung, Wei, Yusuke, and Sushrut made sure that working in the lab was a fun
experience.

A special thanks to Kranthi Kiran Mandadapu, my friend and roommate during my stay at
Berkeley, for all the thought-provoking conversations we have had on diverse topics. I would
also like to thank Athulan Vijayaraghavan for all the discussions we have had in the corridors of
Etcheverry hall. I especially enjoyed our long research conversations during our afternoon cookie
breaks.

My stay at Berkeley would have been extremely boring without my friends. Sriram, Karthik,
Dilip, Pannag, Subbu, Mary, and Praveena made sure that I would feel right at home during my
initial years at Berkeley. The last few years at Berkeley would not have been so much fun if not for
Debanjan, Aditya, Yasaswini, Sharanya, Anuj, and Vinay. I would also like to thank my friends
from my undergraduate years at IIT Madras, Vaidehi, Sethu, Subash, Bharat, Radha, Prashant, and
Prathusha, for their support throughout my PhD.

i

My doctoral work would not have been possible if not for my parents’ immutable support for
every endeavor of mine. I am also grateful to my brother, uncle, and grandmother for their love
and support. They have always been a great source of inspiration for all my accomplishments.

ii

Dedicated to my family and friends.

iii

Contents

1 Introduction 1

1.1 Research Outline . 4

2 Background and Mathematical Formulation 6

2.1 NURBS Surface Models . 6

2.2 NURBS Curve and Surface Definitions . 7

2.3 Differential Geometry for B-Spline Surfaces . 8

2.3.1 Rational Derivatives . 10

2.4 Curvature of NURBS Surfaces . 11

2.5 Bounding-Boxes for NURBS Surfaces . 11

2.6 Summary . 13

3 GPU Framework 14

3.1 Programmable GPUs . 14

3.2 GPU Programming Challenges . 15

3.3 Hybrid CPU/GPU Algorithms . 16

3.4 Computations Using Shader Programs . 18

3.5 Reductions . 18

3.5.1 Standard Reductions . 18

3.5.2 Non-Uniform Stream Reductions . 19

iv

3.6 Summary . 23

4 NURBS Evaluation 24

4.1 Introduction . 24

4.1.1 NURBS Evaluation Techniques . 25

4.2 GPU Evaluation and Rendering Algorithm . 27

4.3 NURBS Basis Function Evaluation . 27

4.4 Curve Evaluation . 31

4.4.1 Basic Algorithm . 31

4.4.2 Optimization and Packing of Data . 32

4.4.3 Curve Evaluation Timings . 35

4.5 NURBS Surface Evaluation . 36

4.5.1 Dynamic LOD . 37

4.6 Trimming . 39

4.6.1 Trim Texture Generation . 39

4.6.2 Rendering . 40

4.7 Results . 41

4.8 CUDA Implementation . 45

4.8.1 CUDA Evaluation Timings . 45

4.8.2 Comparison of Different Implementations 49

4.9 Summary and Conclusions . 49

5 NURBS Modeling Operations 52

5.1 Introduction . 52

5.2 Related Work . 54

5.3 Derivatives of NURBS Surfaces . 55

5.3.1 GPU Implementation . 56

5.4 Bounding-Boxes for NURBS Surfaces . 57

v

5.5 Inverse Evaluation of NURBS Surfaces . 57

5.5.1 GPU Implementation of Inverse Evaluation 59

5.5.2 Applications of Inverse Evaluation . 60

5.6 NURBS Intersection Curve Evaluation . 61

5.6.1 Fitting an Intersection Curve . 64

5.6.2 Self Intersection Evaluation . 67

5.6.3 Intersection Timing . 68

5.7 Conclusions . 71

6 Separation Distance Queries 72

6.1 Introduction . 72

6.2 Related Work . 74

6.3 Distance Queries on NURBS Surfaces . 76

6.3.1 Minimum Distance to a NURBS Surface 76

6.3.2 Minimum and Maximum Distance to an AABB 77

6.4 Theoretical Bounds . 79

6.5 Clearance Analysis . 82

6.5.1 Minimum Distance Between Two NURBS Surfaces 82

6.5.2 Minimum and Maximum Distance Between AABBs 84

6.5.3 Minimum Distance Between Two Trimmed NURBS Surfaces 85

6.5.4 Minimum Distance Between Two Complex Objects 87

6.6 Results . 89

6.7 Conclusions . 92

7 Moment Computation 94

7.1 Introduction . 94

7.2 Related Work . 96

7.3 NURBS Surface Bounds . 97

vi

7.4 Mathematical Formulation . 98

7.4.1 Evaluation of NURBS Normals . 99

7.4.2 Surface Integrals of Parametric Surfaces 100

7.4.3 Moments of Solid Bodies . 101

7.5 Moment Computation Algorithm Overview . 103

7.5.1 GPU Implementation . 104

7.6 Numerical Surface Integration of NURBS . 105

7.6.1 1-point Gaussian Quadrature Scheme . 106

7.6.2 2-point Gaussian Quadrature Scheme . 107

7.6.3 3-point Gaussian Quadrature Scheme . 108

7.6.4 Surface Integrals of Trimmed NURBS . 110

7.7 Error Analysis . 111

7.8 Results . 112

7.8.1 Accuracy of the Integration . 112

7.8.2 Volume and Error Analysis of CAD Objects 113

7.8.3 Moment Computation Results . 115

7.9 Conclusions . 116

8 Conclusions and Future Work 118

8.1 Future Research Directions . 118

8.1.1 Collision Detection . 118

8.1.2 Optimization . 119

8.1.3 Design Analysis . 119

8.2 Contributions . 119

8.3 Concluding Remarks . 121

Bibliography 122

vii

Chapter 1

Introduction

Designers are increasingly relying on commercial CAD systems like SolidWorks, ProEngineer etc.
for communicating as well as fine-tuning their designs. However, these systems are not being used
to verify the validity of the design or to check if the design is optimal for further processes like
manufacturing, cleaning, assembly etc. This is because of the lack of efficient tools that can give
interactive feedback to the designer about design and manufacturing. One of the main hurdles
in developing functional feedback in CAD software is that some of the core modeling operations
required to perform these analyses are computationally intensive and cannot be performed fast
enough to give real-time feedback. One way to improve the performance of these fundamental
operations is to parallelize them so that they can run efficiently on current generation hardware
like GPUs and multi-core CPUs.

Redesign

Testing
PrototypeCAD Model

Manufacturability Analysis

Cleanability

…

Design
and

Analysis

Functional

Feedback

Figure 1.1: A design process coupled with analysis and interactive functional feedback will reduce
the number of design cycles.

1

Chapter 1. Introduction

Improving the performance of fundamental modeling operations is essential for providing a
good design experience. Such interactive operations will help integrate analysis with design by
providing interactive functional feedback to the designer while the part is being designed. As
shown in Figure (1.1), this would reduce the time taken for the design process by reducing the
number of design cycles and would ultimately result in reduced time to market for the product.

An important motivation for parallelizing existing CAD algorithms is the growth of multi-core
CPUs. Figure (1.2(a)) shows the projected growth of multi-core processors shipped by Intel, ac-
cording to which 95% of the total CPUs shipped by Intel in 2011 will be multi-core. In addition,
the number of cores in a CPU is expected to be greater than 100 in a few years extrapolating from
the current technological growth rate. Furthermore, a survey by the Venture Development Corpo-
ration projects that the percentage of software tools capable of taking advantage of such multi-core
processors will constitute only 40% of the total software in 2011 even if current development rates
are maintained. These statistics provide compelling motivation for the need to develop new parallel
algorithms for some of the fundamental CAD operations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2007 2011

Multi-core Single-core

(a) Intel’s multi-core processor production

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2007 2011

Multi-core Single-core

(b) Software tools for multi-core processors

Figure 1.2: Projected growth of multi-core hardware and software.

Graphics Processing Units (GPUs) have recently evolved into programmable parallel proces-
sors capable of performing general-purpose computational tasks. Figure (1.3) shows the peak
floating-point performance of AMD and NVIDIA GPUs compared to current generation CPUs.
GPUs are more than an order of magnitude faster than existing CPUs and the rate of increase of
their speed over time has also been higher. GPUs have multi-core programmable units that can
execute a user-defined set of instructions; current GPUs have more than 100 programmable cores.
Because multiple operations are performed in parallel, and operands are four-component vectors,
GPUs can achieve much higher computational speeds than conventional CPUs on arithmetically

2

Chapter 1. Introduction

intensive operations. This high performance has been exploited for performing different general-
purpose computations and has developed into a separate field called General-Purpose computations
on the GPU (GPGPU) with many applications [Kipfer et al., 2004; Pharr, 2005; Guthe et al., 2005;
Loop and Blinn, 2005; Guthe et al., 2006; Carr et al., 2006; Greß et al., 2006; Kanai, 2007;
Sengupta et al., 2007].

0

500

1000

1500

2000

2500

2002 2004 2006 2008 2010

G
F

L
O

P
S

INTEL (CPU) NVIDIA (GPU) AMD (GPU)

Single Precision Double Precision

Figure 1.3: Graph comparing the floating point performance (in terms of billion floating points op-
erations per second) of current generation GPUs with CPUs (figure from John Owen, UC Davis).

Until recently, using the GPU to perform the computations involved casting the computational
problem as a graphics problem; this necessitated the programmer to know the details of graphics
programming to utilize the GPU effectively. Hence, GPGPU programming remained a niche field;
programmers had to come up with novel algorithms to cast the computations as graphics processes.
Early GPGPU applications made use of shaders–specialized graphics programming kernels–to per-
form the computations. The shaders were written in high-level languages (Cg, BROOK, etc.) and
used the OpenGL graphics API to invoke them for performing the computations. This research
tries to build a framework that can be effectively used to develop GPU algorithms for CAD. Such
a framework will help reduce development time and will help in developing optimal implementa-
tions of GPU algorithms.

3

Chapter 1. Introduction

1.1 Research Outline

The main objective of this research is to develop GPU algorithms for fundamental CAD opera-
tions. Since many new commercial products are made of smooth surfaces for better aesthetics,
the focus is on developing algorithms that can efficiently operate on curved free-form surfaces.
Non-Uniform Rational B-Spline (NURBS) surfaces are the most general spline representation for
curved surfaces in CAD systems. We have developed parallel GPU algorithms to render as well
as perform modeling operations on NURBS surfaces. These can be easily extended to actual 3D
solid models since the boundary of these solid models are represented using NURBS surfaces.

NURBS are the most general type of spline curve, encompassing B-splines and Bezier curves
as special cases ([Piegl, 1991]). NURBS offer a way to represent almost arbitrary shapes while
maintaining mathematical exactness. NURBS control points can have non-unit weights, which
make them rational. Rational curves have the advantage that they can represent conic sections,
allowing the exact representation of features with circular cross sections such as rolling ball blends
and surfaces of revolution. Evaluating NUBRS surfaces is one of the fundamental algorithms
required for for interactive feedback in models with curved free-form surfaces. We have developed
a GPU algorithm to evaluate a NURBS surfaces and its normals that is more than 40 times faster
than our optimized CPU implementation. We present the details of this algorithm in Chapter (4).

Expanding further the role of GPUs in CAD, we have developed algorithms for performing sur-
face interrogations. Surface interrogations, which include inverse evaluation and ray intersections,
are fundamental operations required for interacting with NURBS surfaces. These are required to
interactively modify a NURBS surfaces in real-time. Another fundamental operation that has many
applications like Boolean tree to b-rep conversion is evaluation of intersection curves or surface-
surface intersections. We have developed parallel algorithms that run on the GPU and accelerate
both these operations that are explained in detail in Chapter (5).

Computing minimum distances and clearance between solid models is essential for performing
accessibility analysis and path planning in CAD. We have developed GPU-accelerated algorithms
for performing minimum distance computations between NURBS surfaces and models made up
of multiple NURBS surfaces that we explain in detail in Chapter (6). Our algorithms are not only
faster, but also more accurate than the commercial solid-modeling kernels. Our algorithms also
have theoretical error bounds for the results of the queries that are directly applicable to current
CAD systems.

Finally, we have developed surface integration techniques on NURBS surfaces that can be used
to compute accurate moments of solid models (Chapter (7)). We have developed GPU algorithms
that can compute volume, center of mass, and moment of inertia interactively while a designer
is changing a model. Providing feedback about the center of mass informs designers about the
stability of the part while designing. Volume computations are also important in injection molding
to estimate the amount of raw material required to manufacture a part.

4

Chapter 1. Introduction

In Chapter (2), we present the mathematical formulation and the background for NURBS sur-
faces that are requied to understand our GPU algorithms. We also give a introduction to pro-
grammable GPUs and the GPU framework we use to develop algorithms in Chapter (3).

5

Chapter 2

Background and Mathematical Formulation

2.1 NURBS Surface Models

A CAD model is usually represented by the CAD system using the faces that form the boundary of
the model. This method of representation, called Boundary-Representation(B-Rep), is the standard
representation used in commercial systems. The boundary of a CAD model is usually represented
using tensor product NURBS surface patches. Hence, a model is fully defined by defining the
NURBS representation of the faces of the model.

NURBS are the most general type of spline curve, encompassing B-splines and Bezier curves
as special cases [Piegl, 1991]. NURBS offer a way to represent almost arbitrary shapes while
maintaining mathematical exactness. NURBS control points can have non-unit weights, which
make them rational. Rational curves have the advantage that they can represent conic sections,
allowing the exact representation of features with circular cross sections such as rolling ball blends
and surfaces of revolution. Evaluating NUBRS surfaces is one of the fundamental algorithms in a
CAD system.

These NURBS surfaces are rectangular sheets; therefore they are not very flexible, especially
when it comes to representing surfaces that are not rectangular or those with holes or complex local
geometries that arise due to Boolean operations. Therefore, many NURBS patches are trimmed,
discarding a part of the surface portion defined in the parametric domain. An example of a trimmed
NURBS surface in a CAD model is shown in Figure (2.1). The trimming information is defined in
the 2D parametric domain of the surface (Figure (2.1(c))). Typically, trim curves are represented
as directed closed loops; the direction of the loop determines which side of the trim curve to cut
away. There can also be multiple loops per surface, one defining the boundary and others defining
interior holes, or even holes within holes.

6

Chapter 2. Background and Mathematical Formulation

(a) Cordless Drill model (b) Trimmed NURBS surface

v

1

u0 1

(c) Parametric trim curves

Figure 2.1: Cordless drill modeled using trimmed NURBS surfaces.

2.2 NURBS Curve and Surface Definitions

In this section, we briefly review the mathematical notation we use for defining NURBS curves and
surfaces adapted from [Piegl and Tiller, 1997]. Equation (2.1) gives the definition of a NURBS
curve C as a function of the parameter u, where the Pis are the control points and N p

i s are the
B-spline basis function of degree p given by Equation (2.2). Since the NURBS curve can have
repeated knot values, the special case of 0/0 that may arise in either of the terms in Equation (2.2) is
taken to be 0. For concreteness, we consider a NURBS curve of order k with n control points, which
has a knot vector of length n+ k in all the examples. Although a spline curve may have hundreds
of control points, the local support property guarantees that in a B-spline curve of order k, the
curve evaluation point at any given parameter location is controlled only by the k (parametrically)
nearest control points. This simplifies evaluation as well as curve editing and optimization.

C(u) =
∑

n
i=0 N p

i (u)wiPi

∑
n
j=0 N p

i (u)wi
(2.1)

N p
i (u) =

u−ui

ui+p−ui
N p−1

i (u)+
ui+p+1−u

ui+p+1−ui+1
N p−1

i+1 (u) (2.2)

N0
i (u) =

{
1 if ui ≤ u < ui+1
0 otherwise (2.3)

The tensor-product NURBS surface definition (Equation (2.4)) is extended directly from that
of a NURBS curve. The parameter values (u,v) are the 2D evaluation points; the basis functions
N p

i s are the same B-spline basis functions of degree p defined by Equation (2.2); and the P j
i s are

the NURBS control points defined as a quadrilateral mesh. The NURBS surface is fully defined

7

Chapter 2. Background and Mathematical Formulation

Model

Space

x
y

z

Parametric

Space

u

v

(u0,v0)
S(u0, v0)

S(1,0)

S(0,0)

S(0,1)

S(1,1)

(0,0) (0,1)

(1,1)(0,1)

Figure 2.2: A point (u0,v0) in the parametric space is mapped to S(u0,v0) in the model space.

by a control point mesh and the two independent arbitrary degree u and v parametric direction knot
vectors (Figure (2.2)). As in the case of curves, a NURBS surface point is influenced only by a
small sub-mesh of control points of size ku× kv.

S(u,v) =
∑

n
i=0 ∑

n
j=0 N p

i (u)N
p
j (v)wi jPi j

∑
n
i=0 ∑

n
j=0 N p

i (u)N
p
j (v)wi j

(2.4)

2.3 Differential Geometry for B-Spline Surfaces

In this section, we present a concise version of the equations that are required for computing deriva-
tives of NURBS surfaces, adapted from [Piegl and Tiller, 1997]. We present the exact equations for
a Non-Uniform B-Spline (NUBS) surface first and then extend the derivation to include rational
surfaces. For a NUBS surface, S(u,v), given by Equation (2.5), the derivatives can be computed
by multiplying the control points (Pi js) with the derivatives of the basis functions. The N p

i s and
Nq

j s are the B-spline basis functions of degree p and q respectively, as a function of the knots uis
and vis respectively (Equations (2.6) and (2.7)); the Pi js are the NUBS control points defined as a
quadrilateral mesh.

S(u,v) =
n

∑
i=0

m

∑
j=0

N p
i (u)N

q
j (v)Pi j (2.5)

N p
i (u) =

u−ui

ui+p−ui
N p−1

i (u)+
ui+p+1−u

ui+p+1−ui+1
N p−1

i+1 (u) (2.6)

8

Chapter 2. Background and Mathematical Formulation

N0
i (u) =

{
1 if ui ≤ u < ui+1
0 otherwise (2.7)

The derivative of the basis function of degree p with respect to u is given by Equation (2.8). To
evaluate the derivative of a basis function of degree p, the basis function of degree p−1 needs to
be computed. We use the indicial notation N,u to denote the derivative with respect to u. Note that
the p−1 in the numerator of Equation (2.8) arises due to the fact that the B-spline basis function
of degree p that we are differentiating is a piecewise polynomial of degree p in u.

N p
i,u(u) =

p−1
ui+p−ui

N p−1
i (u)− p−1

ui+p+1−ui+1
N p−1

i+1 (u) (2.8)

The derivatives of the B-spline basis functions, N,u and N,v, are then multiplied by the control
points Pi j to get the derivative along the u or v parametric direction on the surface as given by
Equations (2.9) and (2.10) respectively. We can then calculate the surface normal N(u,v) of the
NUBS surface (Figure (2.3)) by taking the cross product of the u and v partial derivatives (Equa-
tion (2.11)). It should be noted that N(u,v) is not a unit vector field but it is well defined as long as
S is a regular surface.

S,u(u,v) =
n

∑
i=0

m

∑
j=0

N p
i,u(u)N

q
j (v)Pi j (2.9)

S,v(u,v) =
n

∑
i=0

m

∑
j=0

N p
i (u)N

q
j,v(v)Pi j (2.10)

N(u,v) = S,u(u,v)×S,v(u,v) (2.11)

v derivative

Normal

u derivative

Normal

Figure 2.3: Calculation of surface normal from the u and v partial derivatives.

9

Chapter 2. Background and Mathematical Formulation

2.3.1 Rational Derivatives

The derivatives of NURBS surfaces are not as straightforward to evaluate as in the NUBS case
[Abi-Ezzi and Wozny, 1990]. This is because the derivatives have to be evaluated using the chain
rule due of the existence of the rational component. The NURBS surface coordinates are eval-
uated as the 4-component vector shown in Equations (2.12) and (2.13). Since we evaluate the
4-component vectors without performing the rational division on the GPU, we can effectively use
this data to evaluate the surface derivatives.

S(u,v) =
X̄
w
, X̄ =

 x
y
z

 (2.12)



x

y

z

w


=



∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)xi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)yi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)zi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)wi j


(2.13)

S,u(u,v) =
X̄,uw− X̄w,u

w2 (2.14)



x,u

y,u

z,u

w,u


=



∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)xi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)yi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)zi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)wi j


(2.15)

The partial derivative with respect to u (Equation (2.14)) is derived using the quotient rule (in
turn derived using the chain rule). It can be calculated by first evaluating the product of the deriva-
tives of the basis functions and the corresponding control points as a 4-component vector (Equa-
tion (2.15)) and then performing the required rational division operations. The partial derivative of
the surface with respect to v can also be evaluated in a similar manner. In this work, we assume all
the weights (w) are positive and hence no poles can occur in S or its partial derivatives.

10

Chapter 2. Background and Mathematical Formulation

2.4 Curvature of NURBS Surfaces

Evaluating the exact curvature of the surfaces along the two parameter directions can be performed
in a similar manner to evaluating the first derivatives. However, the number of additional calcula-
tion steps (16 passes for a bi-cubic surface) required for this operation is prohibitively many and
therefore cannot be completed in a real-time setting. Nevertheless, since we have exact derivatives
along the two parameter directions, we can approximate the second derivatives to a reasonable
accuracy (error < O(1/n2) for n evaluation points) by evaluating them using central differencing.

The central differencing formula for second derivatives is given in Equation (2.16). The value
of h is 1/n for the u direction and 1/m in the v direction since the surface is evaluated on a (n+1)×
(m+1) grid of evaluation points. There are three second-derivative values for each surface point:
the second derivatives with respect to each parameter direction (∂ 2S/∂u2 and ∂ 2S/∂v2) and one
mixed second derivative (∂ 2S/∂u∂v). However, we can use the same program written to perform
the central differencing operation to evaluate the second derivatives with different first derivative
values as input. For example, Equation (2.17) shows how to calculate the second derivative with
respect to u using the first derivative as input using central differencing.

∂F(x)
∂x

=
F(x+h)−F(x−h)

2h
(2.16)

∂ 2S
∂u2 =

∂

(
∂S(u,v)

∂u

)
∂u

=

∂S(u+h,v)
∂u − ∂S(u−h,v)

∂u
2h

,h =
1
n

(2.17)

2.5 Bounding-Boxes for NURBS Surfaces

We make use of axis-aligned bounding-boxes (AABB) for the NURBS surfaces to perform mod-
eling operations using the GPU. With the help of such bounding-boxes, several queries such as
ray-surface intersections and surface-surface intersections can be efficiently answered, which then
form the building blocks for more complex operations like sketching on the surface and intersec-
tion curve calculations. There are different methods to construct bounding-boxes for free-form sur-
faces. One method is to fit bounding-boxes that enclose the control-points that define the surface.
This method however does not produce very tight bounding-boxes and makes the bounding-boxes
independent of the user-defined tolerance values. Another approximate method is to construct
bounding-boxes enclosing sets of four adjacent points evaluated on the surface. In [Greß et al.,
2006], the bounding-boxes for use in collision detection were constructed from sets of four adja-
cent points on a parameterized surface, after ensuring that their approximation of the surface is
within the given tolerance by very finely subdividing the surface. However, this method does not
guarantee that the surface will be completely enclosed by the bounding-box and it can potentially
miss some intersections. We overcome these issues by evaluating the NURBS surface in a regular
grid and then expand the bounding-boxes based on the curvature of the surface so that they are

11

Chapter 2. Background and Mathematical Formulation

guaranteed to enclose the surface. Another advantage of this method is that the bounding-boxes
automatically become tighter when we evaluate the surface at a finer resolution.

Figure 2.4: Surface bounding-boxes constructed from points evaluated on a NURBS surface.

The analytical expression for the factor that can be used to expand the bounding-boxes based
on the surface curvature is given in [Filip et al., 1987]. They show that if a parametric C2 surface is
evaluated at (n+1)× (m+1) grid of points, the deviation of the surface from the piecewise linear
approximation cannot exceed a constant K defined by Equations (2.18)-(2.21).

K =
1
8

(
1
n2 M1 +

2
nm

M2 +
1

m2 M3

)
(2.18)

M1 = max
∀(u,v)

[
max

(∣∣∣∣∂ 2x
∂u2

∣∣∣∣ , ∣∣∣∣∂ 2y
∂u2

∣∣∣∣ , ∣∣∣∣ ∂ 2z
∂u2

∣∣∣∣)] (2.19)

M2 = max
∀(u,v)

[
max

(∣∣∣∣ ∂ 2x
∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂ 2y
∂u∂v

∣∣∣∣ , ∣∣∣∣ ∂ 2z
∂u∂v

∣∣∣∣)] (2.20)

M3 = max
∀(u,v)

[
max

(∣∣∣∣∂ 2x
∂v2

∣∣∣∣ , ∣∣∣∣∂ 2y
∂v2

∣∣∣∣ , ∣∣∣∣∂ 2z
∂v2

∣∣∣∣)] (2.21)

To compute the bounding-boxes for a NURBS surfaces, we first evaluate the surface S(u,v) in
a grid of points using our NURBS evaluator. We also evaluate the precise first derivatives of the
surface, ∂S/∂u and ∂S/∂v, at these points as explained in Section (2.3.1). We approximate the

12

Chapter 2. Background and Mathematical Formulation

K K
K

K

Figure 2.5: We expand the AABBs by K in all three dimensions to guarantee that the surface patch
is completely enclosed.

second partial derivatives of the surface by central differencing (explained in Section (2.4)). We
then find the value of K for the surface using Equation (2.18). The bounding-boxes themselves
are constructed by constructing boxes that enclose sets of four adjacent surface points and then
expanding this box by K, which ensures that no part of the surface penetrates out of the bounding-
box.

2.6 Summary

In this chapter we have presented the mathematical formulations and background that are used in
our NURBS algorithms. We make use of the surface bounding-boxes as a accelerating structure
for our geometric algorithms such as surface-surface intersection evaluation and minimum distance
computations. In addition, we make use of the exact derivatives to calculate the geometric bounds
for these algorithms. In the next chapter, we present the basics of programmable GPUs and the
GPU framework for accelerating CAD algorithms that we have developed.

13

Chapter 3

GPU Framework

3.1 Programmable GPUs

Graphics processing units (GPUs) have evolved into programmable parallel processors capable
of performing general-purpose computational tasks [Kilgariff and Fernando, 2005; Owens et al.,
2007]. Initially, the GPU was programmed by modifying the graphics pipeline with the help of
user-defined set of instructions. These instructions were used to either modify the vertices of
the geometry being rendered using the vertex program, or the fragments (potential pixels) before
rendering using the fragment program. These instructions were executed in the place of a fixed
sequence of geometric transformations, lighting operations (per-vertex operations), and texturing
operations (per-fragment operations). Geometric primitives (triangles generally) assembled from
the vertex data then get rasterized into fragments that pass through the Fragment Processing Unit
(FPU).

Vertex programs can obtain the geometry and attribute (color, texture coordinates, etc.) data
stored in the GPU memory via traditional display lists or Vertex Buffer Objects (VBOs). Vertex
and fragment programs can access data stored in textures that can have full 32-bit floating-point
precision. Usually the output of the FPU goes into a framebuffer, which is a two dimensional block
of memory with four attributes at each location. In modern GPUs, the FPU can also output directly
to a floating-point texture (render-to-texture) using off-screen render targets called Frame-Buffer
Objects (FBOs). This allows the use of the output of a first pass through the rendering pipeline
as input texture data for the second pass. FBOs can also be used to render into a Vertex Buffer
Object (VBO) so that the output can be used as vertex data for the next rendering pass. Because
multiple vertices and pixels are processed in parallel, and operands are four-component vectors,
GPUs can achieve much higher computational speeds than conventional CPUs on arithmetically
intensive operations.

With the evolution of programmable GPUs, general-purpose computations using the graphics
pipeline could be performed relatively easily. NVIDIA developed a high-level language called
Cg, which stands for “C for graphics,” for writing the vertex and fragment programs in a C-like

14

Chapter 3. GPU Framework

language with extensions, which could then be compiled into GPU assembly instructions during
runtime [Mark et al., 2003]. The OpenGL 2.0 specification introduced a similar high-level lan-
guage called GLSL (OpenGL Shading Language) for GPU programming. We make use of Cg in
most of our implementations of our GPU algorithms.

More recently, there has been support to perform general-purpose computations directly with-
out using the graphics pipeline or OpenGL. NVIDIA introduced CUDA (Code-Unified Device
Architecture) that uses C with extensions to utilize the GPU for computations directly. CUDA
provides the advantage of simplifying the programming by separating computing operations from
graphics operations. On the other hand, it is a closed system and runs only on NVIDIA hardware.
To make GPU computing more widespread, an open specification standard, OpenCL, is being
developed by the Khronos group to standardize computing across different platforms, including
multi-core CPUs and GPUs.

3.2 GPU Programming Challenges

Even though general purpose computations using the GPU has started being more widespread, we
had to overcome some key challenges posed by the GPU architecture and computations. We have
identified some of the main challenges that we have tried to address in our GPU algorithms.

The first main challenge is to identify the distribution of work between the CPU and GPU.
Some operations are inherently serial and are better suited to be performed on the CPU. In addition,
proper distribution of work between the CPU and GPU will lead to a balanced algorithm that
provides optimal performance.

The second main challenge is to overcome the limitations of the GPU architecture. Many
common features such as dynamic loops and double precision arithmetic were not available in
older GPUs. Even though newer generation GPUs have these features, the use of these features
usually results in a performance drop. One of the main limitations that we had to overcome in
our GPU CAD algorithms was the lack of scatter operation (random writes to different memory
locations)in traditional GPU programming. We overcame this limitation by using a combination
of a vertex program and a VBO, which is explained in more detail in Section (3.5.2). CUDA, on
the other hand, supports scatter but has a performance drop associated with its use.

In order to develop optimally performing GPU algorithms, we also had to follow some per-
formance guidelines. Operations such as coherent memory reads, where data from consecutive
memory locations are read as a single block and used by different threads, drastically improve the
performance. In addition, the GPU architecture is designed for pure Single Program Multiple Data
(SPMD) operations. Hence operations that introduce branching, such as “if” statements, do not
run as efficiently as branchless kernels. The GPU in such cases waits for the slowest branch to
finish computing before proceeding to the next GPU computation. Finally, we have to reduce the
amount of data that is read back from the GPU. This is because the GPU to CPU data bandwidth is
much lower for read back compared to the bandwidth from CPU to GPU. If possible, we directly

15

Chapter 3. GPU Framework

display the output or perform reduction operations so that we can read back only the required data.
Finally, one of the most significant challenges is to develop algorithms and implementations

that are not vendor specific. Even though newer GPU programming environments such as CUDA
are easier to develop in, they can run only on NVIDIA hardware. In our case, we implemented our
algorithms using OpenGL function calls and used Cg for the GPU fragment programs. This makes
our implementation cross-platform and it can run on both NVIDIA and AMD (ATi) GPUs.

3.3 Hybrid CPU/GPU Algorithms

We present a hybrid framework that can use both the CPU and GPU to perform geometric com-
putations. The main idea is to split the computations into serial and parallel stages as shown in
Figure (3.1). To perform the parallel operations on the GPU, we make use of the map-reduce par-
allelism pattern that consists of assigning the computations to separate non-communicating parallel
threads [Mattson et al., 2004]. The inter-communication between the CPU and GPU is shown in
Figure (3.2).

Parallel Operations

Serial Operations

Serial Operations

Map

Reduce

Figure 3.1: Operation flow for performing geometric computations. The parallel operations are
mapped and performed on the GPU while serial operations are performed on the CPU. The inter-
mediate parallel output is reduced and read back to the CPU.

Once the computations are performed, the computed result can be used by the modeling system
in the three different ways shown. Read-back is important for integrating the GPU algorithms with
traditional modeling systems. In addition, since GPUs are designed for pipelining the data only in
one direction from the CPU to the GPU for display, the method of read-back significantly affects
the performance of hybrid algorithms. The most efficient method of read-back is reducing the

16

Chapter 3. GPU Framework

results to a smaller set of values by using operations such as finding the maximum, minimum,
sum, or by using non-uniform stream reductions ([Sengupta et al., 2007; Blelloch, 1990]). The
second method is to directly display the output on the screen using the GPU. This is ideal for
certain operations that require only visual outputs; for example displaying the evaluated NURBS
surface directly. The last and the most expensive method is to read-back all the results from the
GPU to the CPU; this might be required for certain computations where the result of a computation
is required for further processing on the CPU.

Hybrid CPU/GPUTraditional

Serial

Computation

CPU GPUMap

Parallel

Computation

Reduce

Display

Read

Figure 3.2: Schematic showing our hybrid framework that extends traditional geometric compu-
tations to use the GPU as a co-processor to perform some parts of the computations in parallel.

Our operations on the GPU fall into three main types. The first type includes parallel geomet-
ric computations that can be performed efficiently on the GPU. The outputs of such operations are
usually numeric values that are then stored in the GPU as textures. If an operation produces more
than one output value for each parallel operation, we can store those using separate channels of the
same texture or using different textures. The second GPU operation type is parallel search opera-
tions that give a binary output of 0 or 1 based on the type of search; these include operations such
as bounding-box intersection tests, finding if a value lies within a given range, etc. The third GPU
operation type is reduction that is performed using multiple passes on the GPU. GPU reductions
can in turn be classified into two types. The first type, called standard reductions, include reducing
the given input to a single value such as computing the sum, min, max, etc. Standard reduction
operations are usually performed in O(logn) passes and hence are very efficient. The second type
of reductions, called non-uniform stream reductions, reduces the input to a smaller set of values.

17

Chapter 3. GPU Framework

Non-uniform stream reduction operations are particularly important when the result of a reduction
operation is not a single value but multiple values that satisfy a particular criterion. Since the posi-
tions of the output elements do not have any fixed correspondence with the positions of the input,
the stream-reduction process is considered non-uniform. We make use of an O(n) GPU stream-
reduction algorithm (Section (3.5.2)) to perform non-uniform stream reductions; please refer to
Section (3.5.2) for details of this algorithm.

3.4 Computations Using Shader Programs

We perform standard geometric computations using Shader Programs. These are fragment program
kernels written in Cg and then compiled during run time to GPU assembly code. We make use of
OpenGL rendering primitives to invoke these kernels. If we want to perform some geometric
computation on a rectangular data of size n×m, we transfer the data first to an n×m texture. We
then use OpenGL to draw a rectangle of size n×m to an off-screen render buffer using a FBO. The
kernel is then invoked on each of the n×m pieces of data by the GPU and the final computation
is written to the framebuffer. The framebuffer is attached to a texture which resides in the texture
memory that can be used to access the results or as input for further processing.

The use of texture memory for transferring data has both advantages and disadvantages. The
advantage is that texture memory is cached by the GPU, which hides the latency in accessing the
data. In addition, if the data is stored coherently in the texture, the latency of the read operation
is very efficiently hidden. It is also random-access and can be used to store any kind of data such
as integer or floating-point. On the other hand, texture memory is read-only for the GPU fragment
programs. There is also an overhead incurred while setting up the texture memory.

3.5 Reductions

3.5.1 Standard Reductions

Standard reductions include reducing the given input to a single value such as computing the sum,
min, max, etc. If the given input is a square texture with a size that is a power of two, then we
reduce four adjacent values (for example, the sum) to a single value in a given pass. Thus the total
reduction operation can be performed in O(logn) passes and hence, it is very efficient.

On the other hand, if the input is not a square texture, then we perform the reduction in three
stages. In the first stage, we reduce only two values along the height or the width direction until we
reach a power-of-two texture. In the second stage, we reduce along the larger dimension until we
reach a square texture. Finally, we perform the normal reduction for square power-of-two textures
in the third stage.

18

Chapter 3. GPU Framework

44 23 42 23 76 14 23 63 35 11

54 34 53 33 04 56 23 83 85 26

35 64 77 22 12 66 21 18 52 23

14 55 79 11 98 55 22 23 22 52

33 74 37 58 83 43 32 92 83 11

85 53 56 83

64 77 66 21

55 79 98 23

83 58 83 92

85 83

83 98 98

44 23 42 23 76 14 23 63

85 34 53 33 04 56 23 83

52 64 77 22 12 66 21 18

22 55 79 11 98 55 22 23

83 74 37 58 83 43 32 92

85 34 53 33 04 56 23 83

52 64 77 22 12 66 21 18

22 55 79 11 98 55 22 23

83 74 42 58 83 43 32 92

Stage 1

Stage 2 Stage 3

Figure 3.3: Example showing the different stages in reduction for computing the maximum of a
non-square non-power-of-two texture. Stage 3 is the standard reduction for square power-of-two
texture.

3.5.2 Non-Uniform Stream Reductions

One of the most essential operations in our CAD algorithms is to find the addresses or the indices
(location) of the texels in a texture that have a given value. This operation is usually performed
after a parallel search operation where the texels are marked as either 0 or 1 based on the result
of the search. This sub-problem falls under the class of stream-reduction, the process of removing
unwanted elements from a stream of values and reducing it to a smaller list containing the required
output. GPGPU uses stream reduction to remove defunct elements from the output of a previous
pass before sending it as input for the next pass. Since the positions of the output elements do
not have any fixed correspondence with the positions of the input, the stream-reduction process
is considered non-uniform. Stream reduction is usually considered a serial operation since the
number of elements in the output is not known and hence the whole input has to be operated upon
to output the correct result. We build on previous work that developed parallel algorithms based
on parallel prefix sum for this operation.

Carr et al. [Carr et al., 2006] also presented a GPU algorithm to find the indices of the ren-
dered texels in a texture. A parallel O(k+ logn) algorithm, where k is the output size, for non-
uniform stream reduction based on prefix sums was given in [Blelloch, 1990]. However, standard
graphics cards do not have the capability to perform the scatter operation, which was an essential
step in the algorithm given in [Blelloch, 1990]. Another algorithm has been presented in [Horn,
2005] for non-uniform stream-reduction on the GPU that runs in O(n logn), not as efficient due

19

Chapter 3. GPU Framework

to workarounds required because of lack of scatter. A stream reduction algorithm specifically for
2D textures on the GPU was proposed in [Greß et al., 2006], which used the fragment proces-
sor to perform other operations while performing the scatter operation, thereby hiding the latency.
Recently, an O(n) GPU stream-reduction algorithm was proposed in [Sengupta et al., 2007], also
using prefix sums, that relies on the latest NVIDIA CUDA architecture for its scatter functionality.
We propose a similar O(n) stream-reduction algorithm based on computing a parallel prefix sum,
but implement it using the standard GPGPU framework so that it is both compatible with older
hardware and not limited to a single brand of GPU. Developing algorithms and implementations
that are not restricted to a particular hardware or manufacturer is essential for their wide adoption.

We first explain briefly the parallel stream reduction operation described in [Blelloch, 1990].
It consists of three main steps: up-sweep, down-sweep, and scatter. The up-sweep operation com-
putes a hierarchy of logn levels where each element at a higher-level is obtained as a sum of two
elements in the lower-level (Algorithm (3.1)). An example of the up-sweep operation is shown
using an 8-element 1D array (Figure (3.4)). The last element at the end of the operation gives the
total number of elements with the value 1 in the input array. After performing this operation, we
obtain a binary tree with the last element as the root node and the original array as the leaf nodes;
each node of this tree represents the sum of all the values in the sub-tree of that node.

for d = 0 to log2 n−1 do
forall k = 0 to n−1 by 2d+1 in parallel do

x[k+2d+1−1]←− x[k+2d−1]+ x[k+2d+1−1];
end

end

Algorithm 3.1: The up-sweep algorithm to construct a hierarchy of the input.

The down-sweep operation given by Algorithm (3.2), performed on the array resulting from
Algorithm (3.1), computes the exclusive prefix sum of the original input array. The exclusive prefix
sum of an array is defined as the sum of all the values preceding a particular position in the array
not including the value in the position itself. Figure (3.5) gives an example of the down-sweep
operation performed on the output shown in Figure (3.4) in order to calculate the exclusive prefix
sum for the original input given in Figure (3.4). The first step of the down-sweep operation is to
replace the last element (root element) in the array obtained after the up-sweep operation with the
value 0. Then in the consecutive steps, the parent element at each sub-array is copied to the left
element of the child array and the right element of the child array is calculated as the sum of the
old left element and the parent element. In effect, every element now contains the sum of all the
elements to the left of itself in the tree structure.

The value of the exclusive prefix sum at the positions where the value of the input array is 1
gives the address to which that particular input value has to be scattered to perform the stream re-
duction. The final step, after the up-sweep and down-sweep are completed, is the scatter operation

20

Chapter 3. GPU Framework

0 0 1 0 1 0 0 0Original
array

0 0 1 1 1 1 0 0d=0

0 0 1 1 1 1 0 1d=1 0 0 1 1 1 1 0 1

0 0 1 1 1 1 0 2d=2 0 0 1 1 1 1 0 2d=2

Figure 3.4: Example of the up-sweep operation performed on an 1D array given in the first row.
The inputs indicated are summed at each step.

in which this address is used to reduce the input stream such that the elements with value 1 are
collected at the front of the array.

x[n−1]←− 0;
for d = log2 n−1 down to 0 do

forall k = 0 to n−1 by 2d+1 in parallel do
t←− x[k+2d−1];
x[k+2d−1]←− x[k+2d+1−1];
x[k+2d+1−1]←− t + x[k+2d+1−1];

end
end

Algorithm 3.2: The down-sweep algorithm to construct the inclusive prefix sum.

However, we cannot directly use this stream reduction algorithm on the GPU due to three is-
sues. The first issue is that the original algorithm was developed for 1-dimensional arrays and
hence has to be adapted to operate on a 2-dimensional texture. The second issue is that the tra-
ditional GPGPU model based on OpenGL or DirectX does not allow the scatter operation, which
is the last step of the stream reduction algorithm. Finally, the original formulation in [Blelloch,
1990] computed the prefix sum in situ by modifying the input array. This is not possible using the
standard GPGPU framework since we cannot read and write to the same location simultaneously.

We solve the first problem by first assuming that each row of the texture is a separate array and
compute the first part of the up-sweep operation until each row array is reduced to a single element.
Now we again perform the up-sweep operation on the array formed by concatenating all the single
elements in a column along the column direction. In the example shown in Figure (3.6(b)), we

21

Chapter 3. GPU Framework

0 0 1 1 1 1 0 0

0 0 1 0 1 1 0 1

0 0 1 0 1 1 0 2

0 0 0 1 1 2 2 2

d=2

d=1

d=0

0 0 1 1 1 1 0 2After

up-sweep

Replace

last element

Figure 3.5: Example of the down-sweep operation performed on the original 1D array given in
Figure (3.4). The elements corresponding to the values of 1 in the original input are highlighted in
the result; these are the addresses where those values are to be scattered.

perform the up-sweep operation on each row until we end up with the values in column 7. Then
we perform the up-sweep operation on column 7 and output the results to column 8. As shown in
the example, to overcome the restriction of reading and writing to the same memory location, we
maintain a hierarchy of the input texture. This method uses only twice the storage as the original
texture used, and a single fragment program written to perform the summation can be repeatedly
used. We compute the up-sweep operation in O(logn) passes.

We then perform the down-sweep operation in a similar manner but in reverse order, by first
performing the operation along the columns and then extending it to the rows to obtain the exclu-
sive prefix sum of the input. In the example shown in Figure (3.6(c)), each bold box contains the
exclusive prefix sum of the corresponding bold box in Figure (3.6(b)).

Once we have the output from the down-sweep operation we extract the address of only those
texels which have the value 1 in the input texture (Figure (3.6(d))). We reinterpret this texture as
a VBO and use a vertex program written to output the addresses of the input values with value
1 as (x,y) coordinates, to write to two separate channels of the output texture. The size of the
output texture varies based on the number of elements with value 1 in the input texture; it is equal
to the first square number larger than the number of elements with value 1 in the input. This
output texture is then directly used by the inverse evaluation and the surface-surface intersection
applications for further processing.

22

Chapter 3. GPU Framework

1 0 0 0
0 0 0 0
1 0 1 0
0 0 0 10 0 0 1

(a) Input

Original Data Up-sweep for rows

1 0 1 1
0 0 0 3

1 0 0 0
0 0 0 0

Up-sweep
for0 0 0 3

1 1 2 4
0 1 1

0 0 0 0
1 0 1 0
0 0 0 1

for
Column 7

0 1 10 0 0 1
Column 1 2 3 4 5 6 7 8

(b) Up sweep

Exclusive prefix sums

0 1 1 1
1 1 1 1

0 1 0 0
1 1 1 1

p

1 1 1 1
1 2 2 3

1 1 1 1
1 2 1 0

3 3 3 3 3 3 3

(c) Down sweep

x = 0 1 2 3

0 0
2 3

x coord
0y = 0

1
VBO

Vertex Program

2 3

0 21 2
3 y coord

1

2

3 2 33 y coord3

(d) Scatter using VBO

Figure 3.6: Different steps of the GPU stream reduction algorithm.

3.6 Summary

In this chapter we have presented our framework for developing GPU algorithms for CAD. In
the following chapters, we will explain how this framework can be effectively used to accelerate
different CAD operations.

23

Chapter 4

NURBS Evaluation

4.1 Introduction

In this chapter, we present a new unified and optimized method for evaluating and displaying
trimmed NURBS surfaces using the GPU. Trimmed NURBS surfaces are currently being tes-
sellated into triangles before being sent to the graphics card for display since there is no native
hardware support for NURBS. Other GPU-based NURBS evaluation and display methods either
approximated the NURBS patches with lower degree patches or relied on specific hard-coded
programs for evaluating NURBS surfaces of different degrees. Our method uses a unified GPU
fragment program to evaluate the surface point coordinates of any arbitrary degree NURBS patch
directly, from the control points and knot vectors stored as textures in graphics memory. This eval-
uated surface is trimmed during display using a dynamically generated trim-texture calculated via
alpha blending. The display also incorporates dynamic Level of Detail (LOD) for real-time inter-
action at different resolutions of the NURBS surfaces. Different data representations and access
patterns are compared for efficiency and the optimized evaluation method is chosen. Our GPU
evaluation and rendering speeds are 40 times faster than evaluation using the CPU.

Figure 4.1: NURBS models constructed from trimmed NURBS surfaces evaluated and rendered
on the GPU.

24

Chapter 4. NURBS Evaluation

There is currently no built-in hardware support for displaying NURBS surfaces even though
they are ubiquitous in the CAD industry. OpenGL provides a software NURBS solution; how-
ever, the implementation is not fast enough for evaluating large surfaces interactively, and in our
experience it often renders trimmed NURBS surfaces incorrectly. Because surface evaluation is
a computationally intensive operation, the common practice in CAD systems is to preprocess the
NURBS surfaces by evaluating and tessellating them into triangles, and then using the standard
graphics pipeline to display them.

Using a preprocessing technique not only leads to very high memory usage, but also restricts
the surface evaluation to a particular Level of Detail (LOD). Hence, a highly enlarged view of the
surface may not be tessellated sufficiently, whereas a distant view may render an excessive number
of triangles. In this chapter, we describe a method by which we evaluate and display a trimmed
NURBS surface directly, without approximating it by simpler surfaces, using a programmable
graphics card. Using the GPU’s computational power not only speeds up the surface evaluation
significantly but also reduces the CPU memory usage, eliminating the need to calculate and store
the tessellation data or simplified surface information that is typically used only for visualization
purposes.

Previous GPU methods like [Guthe et al., 2005; Guthe et al., 2006] focused mainly on ren-
dering NURBS surfaces rather than exact evaluation. Hence, they approximated higher degree
NURBS surfaces by lower degree Bezier surfaces that closely resembled the original surface while
rendering. The closeness was measured using pixel location error. Even though such approxi-
mations are good enough for rendering, they cannot be extended to a general-purpose NURBS
evaluator capable of handling arbitrary degree NURBS surfaces. We introduce a unified method
to evaluate arbitrary degree NURBS surfaces on the GPU without making any approximations in
this chapter. The contemporaneous work by [Kanai, 2007] for evaluating NURBS surfaces also
did not use any approximations, but required different GPU programs for evaluating NURBS sur-
faces of different degrees. However, having multiple GPU programs make their implementation
tedious, since specific new programs have to be written for surfaces of different degrees. More-
over, since standard CAD models can be made of surfaces of widely varying degrees, with surfaces
up to degree 100 occurring in many complex models [Haller, 2006], a unified NURBS evaluation
algorithm will be a more practical solution.

4.1.1 NURBS Evaluation Techniques

Many early high-quality renderings of curved surfaces used ray tracing. [Toth, 1985] and [Nishita
et al., 1990] perform ray tracing on parametric and rational surfaces by solving for the ray-surface
intersection point using numerical methods. [Martin et al., 2000] gives a complete algorithm for
ray tracing trimmed NURBS. [Pabst et al., 2006] used ray casting on the GPU to render trimmed
NURBS surfaces.

To take advantage of graphics hardware, parametric surfaces tend to be tessellated before dis-
play. Much work on trimmed NURBS focuses on the trimming aspect. The OpenGL version

25

Chapter 4. NURBS Evaluation

1.1 implementation renders trimmed NURBS surfaces using the method presented in [Rockwood
et al., 1989] for trimmed parametric surfaces, which divides the parametric domain into patches
based on the trim curves. These patches are then tessellated in the 2D domain and then evaluated
to find the surface point coordinates. This algorithm is still used in the current version of OpenGL.
However, in our experience the OpenGL implementation tessellates trimmed NURBS surfaces in-
correctly at trim curve concavities. In addition, being a CPU evaluator, it is not fast enough to
render large numbers of trimmed NURBS surfaces at interactive rates.

Previous work such as [Kumar and Manocha, 1995; Kumar et al., 1996; Kahlesz et al., 2002]
displayed NURBS after first converting them to Bezier patches and converting the trimming curves
to Bezier segments, since Bezier evaluation is less computationally demanding. These patches
were then triangulated and sent to the graphics card for display. [Guthe et al., 2005; Guthe et al.,
2006] approximate each NURBS surface with lower degree Bezier patches, but they then evaluate
the Bezier patches on the GPU after the CPU approximation step. They also introduced a LOD
system for choosing the appropriate approximation patch decomposition and the sampling density.
Since in general no Bezier surface of lower degree can exactly match an arbitrary degree NURBS
surface, a disadvantage of this approach is that the final surface may not achieve sufficient accuracy
unless it is split into many Bezier patches, increasing the number of patches by up to two orders of
magnitude in their examples.

Subdivision surfaces, which have largely replaced tensor-product patches in entertainment ap-
plications where mathematical exactness is not required, have also been directly evaluated on the
GPU. Prior work by [Bolz and Schröder, 2002; Shiue et al., 2005] focused on using a fragment
program to compute the limit points of Catmull-Clark subdivision meshes. These methods can
be extended to evaluate uniform B-spline surfaces; the limit surface of a Catmull-Clark subdivi-
sion in the absence of extraordinary points is the bi-cubic B-spline surface. However, they cannot
be extended to evaluate NURBS because they do not have a subdivision scheme with stationary
rules [Sederberg et al., 2003; Sederberg et al., 1998]. [Loop and Blinn, 2006] used the GPU to
render piecewise algebraic surfaces of lower degrees. However, it is difficult to extend the method
to evaluate arbitrary-degree NURBS surfaces.

These fragment-program implementations of surface evaluation of subdivisions were not fast
enough for real-time interaction with a large number of surfaces because the evaluated surface
coordinates had to be read back from an off-screen pixel buffer using an expensive p-buffer switch
for each surface. [Guthe et al., 2005] overcomes this issue by using a vertex program, but this
method is not as flexible because the number of parameters that can be passed to a vertex program
is quite limited, and vertex texture fetches are possible only on more recent graphic cards. Thus,
they approximated the original input by a hierarchy of bi-cubic Bezier patches to limit the amount
of data that needed to be transferred per patch. In our approach, we use a fragment program but get
around the p-buffer switch issue by using a frame buffer object, which renders directly to a texture,
and a vertex buffer object, which takes this texture as input coordinates for a subsequent rendering
pass.

Recently, [Kanai, 2007] developed a fragment program based NURBS evaluation that closely

26

Chapter 4. NURBS Evaluation

resembles our method. However, their implementation required different fragment programs for
surfaces of different degrees. While this method is theoretically capable of evaluating any NURBS
surface, its implementation becomes tedious since different fragment programs have to be writ-
ten specifically for each possible degree of a NURBS surface that may be present in a model.
Hence a unified evaluation method that can be used to evaluate arbitrary degree NURBS surfaces
is preferred.

4.2 GPU Evaluation and Rendering Algorithm

Our NURBS evaluation algorithm consists of two steps: the first step is to evaluate the NURBS ba-
sis functions and the second step is to multiply these basis function values with the control points
to get the curve or surface point coordinates. This is a multi-pass algorithm that uses fragment
programs to evaluate the surface point coordinates without any approximations. For rendering
trimmed-NURBS surfaces, we make use of our evaluation algorithm to evaluate points on the sur-
face uniformly spaced in the parametric domain. We then use the GPU to trim the unwanted parts
of the surface while rendering. The density of the mesh or the number of points at which the sur-
face is evaluated is based on the view position (Section (4.6.2)). The trimming operation is directly
adapted from the approach by [Guthe et al., 2005]. In our implementation, the trimming curves are
evaluated and the trim-texture is generated using alpha blending in the graphics card. Finally, while
rendering the surface, the actual trimming of the surface is performed on the GPU using another
fragment program. Thus, trimming is completely decoupled from surface evaluation. The flow of
the different operations, some of which are performed on the CPU, is shown in Figure (4.2).

To obtain optimum performance, we distribute the different operations to be performed either
on the CPU or on the GPU. Inherently serial operations, such as calculation of the knot array, are
better suited to be performed on the CPU. Operations like basis function evaluation and NURBS
surface point evaluation are numerically intensive operations well suited for the better floating-
point performance of the GPU. Hence, we parallelize these operations and perform them on the
GPU. However, even though curve evaluation can be performed on the GPU, the performance
gains, if any, are small (see Section 4.4.3). Hence we perform curve evaluation on the CPU itself.

4.3 NURBS Basis Function Evaluation

The first step in NURBS curve or surface evaluation is the calculation of the B-spline basis func-
tions, which are dependent only on the knot vector and the parameter value. We need to transfer
the information corresponding to the knot values to the GPU in order to calculate the basis function
values. For this purpose, we generate a knot array texture on the CPU. The algorithm by [Kanai,
2007] on the other hand, performs this operation using binary-search on the GPU. We perform this
on the CPU since the operation does not involve numerically intensive calculations; performing it

27

Chapter 4. NURBS Evaluation

u Basis Function

(see Section 4.3)

u Basis Function

(see Section 4.3)

Rendered SurfaceRendered Surface

(see Section 4.6.2)

Output GPU Textures

CPU EvaluationInput

u Knot Vector
(see Section 4.3)

u Knot Array

(see Section 4.3)

View Position

v Basis Function

(see Section 4.3)

v Basis Function

(see Section 4.3)
v Knot Vector

(see Section 4.3)

v Knot Array

(see Section 4.3)

Control Points

(see Section 4.5)

Evaluated Mesh

(see Section 4.5)

Trim Curves
(see Section 4.6)

Trim-Texture

(see Section 4.6)

Curve Evaluation

(see Section 4.4)

Curve Evaluation

(see Section 4.4)

Basis Function

Evaluation

Basis Function

Evaluation

VBO

Rendering

Control Point

Multiplication

GPU Algorithm

LOD Based Sampling

Figure 4.2: Algorithm for rendering trimmed NURBS surface.

on the CPU will make the algorithm balanced in terms of CPU/GPU workload.
The knot array texture has the value of the parameter u in the first column; it has dimensions

of width 2k + 1, where k is the order of the NURBS curve, and height equal to the number of
evaluation points. The remaining columns have the 2k knot values for the evaluation of the corre-
sponding non-zero basis function values for a particular evaluation point. An example of such a
knot array is shown in Figure (4.3), where the values are depicted as a color plot for clarity. This
is a sample knot array for evaluating a cubic NURBS curve at 100 evaluation points with equally
spaced parameter values u from 0 to 1. For this example, the knot vector from which the eight
relevant knot values for each value of u are taken is
[0.0 0.0 0.0 0.0 0.1 0.1 0.5 1.0 1.0 1.0 1.0].

Calculation of the basis function (Figure (4.4)) is done by constructing the higher order basis
functions from the lower order basis functions on the GPU. The first-order (zero-degree) basis
function, being the digital impulse function, is common for all evaluation points. It is a vector of
size k+1 and is of the form shown in Equation (4.1).

28

Chapter 4. NURBS Evaluation

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u Knot values

Different

parameter

values u

0

1

Figure 4.3: Knot array; knot values that are transferred to the GPU as a texture depicted as a
color plot.

0 0 ... 0︸ ︷︷ ︸
k−1

1 0

 (4.1)

This vector is generated on the CPU; Figure (4.4(a)) shows the generated first-order basis
functions for the cubic NURBS curve (order 4) for 100 evaluation points. The generated first-
order basis function is then transferred to the graphics card and stored there as a texture, call it
tex1. The second-order basis function is computed from tex1 and the knot array using a fragment
program and is directly rendered to another texture, call it tex2, using the frame buffer object. The
third-order basis function is then similarly computed using tex2 as input and rendering back to
tex1. Thus by alternatively using tex1 and tex2, the higher order basis functions are calculated; a
fourth-order basis function is calculated at the end of the third pass. In general, a kth-order basis
function is computed in k−1 passes. Algorithm (4.1) gives the algorithm for computing the higher
order basis function values from the lower order basis function values and Figure (4.4) shows
the output during intermediate passes while computing a fourth-order basis function. This “ping-
pong” technique of computing back and forth between two textures is commonly used in GPU
programming to deal with cases where the output from an intermediate computation is required at
a later stage. The last column is always 0 during the evaluation; however we still store the values
in the texture to prevent introducing a branch in the code for evaluation. The additional 0 column
unifies the code for evaluation since the access pattern is the same for evaluating all higher-order
basis functions.

29

Chapter 4. NURBS Evaluation

Input : k: Order, n: Number of evaluation points,
B1(n× (k+1)):Basis array, and K(n× (2k+1)): Knot array

Output : Bk(n× (k+1)): Basis function values.

1. For p = 2 to k
2. For each (i, j) in parallel

3. u←− K(0, j).
4. Bp(i, j)←− Bp−1(i, j) u−K(i, j)

K(i+k−1, j)−K(i, j) +Bp−1(i+1, j) K(i+k, j)−u
K(i+k, j)−K(i+1, j) .

Algorithm 4.1: Algorithm to evaluate basis function values in parallel using the GPU.

(a) 1st order (b) 2nd order

(c) 3rd order (d) 4th order

Figure 4.4: Intermediate basis function values depicted as a color plot while computing a cubic
basis function on the GPU. The color values correspond to basis function values between 0 and 1.

30

Chapter 4. NURBS Evaluation

4.4 Curve Evaluation

Following [Piegl and Tiller, 1997], we can break computing the coordinates of a point on a NURBS
curve given a parameter value u into these three steps:

1. Find the knot span [ui,ui+1) in which u lies, i.e. u ∈ [ui,ui+1).

2. Compute the corresponding non-zero basis function values N p
i−p(u), ...,N

p
i (u).

3. Multiply the non-zero basis function values with the corresponding control points and sum
the results.

The first step, finding the knot span in which u lies, is performed on the CPU; this operation is
essentially performed while generating the knot array on the CPU. The basis function values cor-
responding to each control point are then evaluated using a fragment program on the GPU. Finally,
the actual curve points are evaluated by multiplying out the values of the basis functions and the
corresponding control points, and then adding them together using another fragment program. For
clarity, we first describe our procedure for calculating a NURBS curve point without any packing
of data or optimization in the following two sections. Details of our data packing and optimizations
are presented separately in Section (4.4.2).

4.4.1 Basic Algorithm

We first compute the basis function values using the GPU evaluation method described in Sec-
tion (4.3). Once the basis function values are calculated, the next step is to multiply these values
with their corresponding control points. For this, another array with the corresponding control
points for each parameter value to be evaluated is created on the CPU. This control point array is
an array of width k, with the x,y,z and w values stored in the RGBA channels.

Input : Bk(n× k):Basis array, and P(n× k×4): Control point array
Output : M(n× k×4)): Multiplied values.

1. For each (i, j) in parallel
2. M(i, j,0)←− Bk(i, j)∗P(i,k,0)
3. M(i, j,1)←− Bk(i, j)∗P(i,k,1)
4. M(i, j,2)←− Bk(i, j)∗P(i,k,2)
5. M(i, j,3)←− Bk(i, j)∗P(i,k,3)

Algorithm 4.2: Algorithm to multiply the basis function values with the control points in parallel
using the GPU.

31

Chapter 4. NURBS Evaluation

The control point array is multiplied with the basis function array calculated in the previous
step as shown in Algorithm (4.2). A fragment program then multiplies all the four channels of
the control point array simultaneously with the basis function values. The resulting array is then
“reduced” (summed) along the width direction to its per-row sum to obtain the actual curve po-
sitions using a different fragment program. The sequence of steps for calculating the final point
coordinates is shown graphically in Figure (4.5).

X = Reduce

w
z

y
x

Basis function
values

Control points

Figure 4.5: Sequence of steps for curve point evaluation. The control points are first multiplied
with the corresponding basis function values and then summed to get the curve coordinates.

4.4.2 Optimization and Packing of Data

The previous section described our method for curve evaluation without any packing of data or
optimization. We now describe two techniques that reduce the evaluation time, data packing and
index arrays.

GPU calculations are performed simultaneously on all four channels (RGBA); therefore using
only one channel for the calculations leads to wasted resources. Packing of data refers to using the
four channels to store and process the data instead of using just a single channel. By packing the
data in the knot array in an intelligent manner, we can save storage space as well as speed up the
computations. The data can be packed either in the width direction or in the height direction. How-
ever, since the width of the array is dependent on the order of the basis function being evaluated,
packing it in the width direction will necessitate the use of different fragment programs for differ-
ent degrees of the curves being evaluated. This will make the implementation tedious because the
program for the packed version cannot be directly extended from the non-packed version. It is also

32

Chapter 4. NURBS Evaluation

not practical because different programs have to be developed, one each for each different degree
of curve being evaluated.

The data required for the calculation of the B-spline basis function is completely contained in
each row of the knot array. Hence, it will be simpler to pack the data along the height direction
with each channel corresponding to different evaluation points as shown in Figure (4.6). The first
entry of each channel in the row specifies the parameter value at which the basis functions are to
be evaluated. This kind of packing is also easy to implement since it directly extends from the
non-packed version, requiring only minor changes to the fragment program. In addition, the data
access from lower degree basis function to evaluate higher degree basis functions in the fragment
program remain the same for a particular evaluation point. It is also not required to have different
programs based on the order of the curve being evaluated; the same program generalizes to any
order.

Figure 4.6: Packing of the knot and basis function data reduces data transfer and GPU computa-
tions.

However, there is a disadvantage in packing the data for basis function evaluation. NURBS
curves with repeated knot values give rise to the special 0/0 case in their evaluation, which we need
to yield a result of 0 rather than the NaN specified by IEEE standards. Although many older GPUs
we tested return the non-IEEE-compliant 0 that we desire, for greater portability and forward-
compatibility we explicitly check for these special cases. Moreover, since the current generation
GPUs are moving towards IEEE-compliance, they return a NaN value. Since these 0/0 cases
have to be separately handled for each channel, it leads to numerous if statements in the fragment
program, increasing its length. Older graphics cards evaluate both branches of if statements and
hence they can slow down computation. However, the performance drop due to these statements in
our implementation is negligible if any. The difference in the total evaluation timings even in older
cards like the ATi Mobility Radeon 9700 is less than 5% for the largest evaluation size. Newer

33

Chapter 4. NURBS Evaluation

Knots

Corresponding
Indices

Different
parameter
values u

Figure 4.7: Using an index array to prevent data duplication.

graphics cards have hardware support (dynamic flow control) for branching and hence this is not a
major problem.

We now describe the second, alternative optimization technique we implemented. In the eval-
uation of the basis function in the example given in the previous section, many knot values were
repeatedly used. For example, the knot values required for the computation of the first 10 param-
eter values shown in Figure (4.3) use the same knot values. One method to reduce the amount of
data transfer in such cases is to use an index array, which contains indices pointing to the knot
values needed for the basis function evaluation. The knot values are stored separately in another
array and are transferred directly from the CPU to the GPU. The knot array will then only contain
the parameter value and the index of the first element in the knot vector required for the evaluation
of the basis functions (Figure (4.7)).

Using an index array also has its advantages and disadvantages. There is an obvious reduc-
tion in data transfer. On the other hand, the GPU architecture is not optimized for such texture
indirections or nested texture fetches. The cache is optimized to retrieve data quickly from nearby
memory locations; the cache misses are presumably the reason that too many texture indirections
can significantly slow performance by introducing too much latency (latency that can no longer
be hidden by the parallel nature of fragment processing). In addition, the indexed data cannot be
packed anymore because the different channels will point to different knot positions. Hence even if
the data is packed, it will require four texture fetches that offset the advantage gained by packing.
Therefore, we cannot combine our two techniques (data packing and index based).

34

Chapter 4. NURBS Evaluation

4.4.3 Curve Evaluation Timings

Using the above variations of the GPU algorithm, we timed the evaluation of NURBS curves on
different GPUs. Timings were done on four different implementations: CPU, GPU packed, GPU
non-packed, and GPU index-based. The non-packed implementation is the regular implementation
without any packing or indexing as described in Section (4.4.1).

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 500 1000 1500 2000 2500

E
v
a

lu
a

ti
o

n
 T

im
e

 (
s

)

Number of Evaluated Points

CPU 2.8GHz GPU packed X1900 GPU non-packed X1900 GPU index-based X1900

CPU 1.7GHz GPU packed 9700 GPU non-packed 9700 GPU index-based 9700

Figure 4.8: Time for evaluating a cubic NURBS curve on two different GPUs.

Figure (4.8) shows the curve evaluation timings for a cubic NURBS curve with different num-
bers of evaluation points evaluated on ATi Mobility Radeon 9700 and ATi Radeon X1900 graphics
cards. The CPUs used for the evaluation were Intel Centrino 1.7GHz and Intel Pentium-4 2.8GHz
processors respectively. As expected, the evaluation time increases roughly linearly with the num-
ber of points evaluated. It can be seen that the packed method is a bit faster than the 1.7GHz
CPU evaluation. However, the other methods are slower than the CPU method on both platforms,
either due to the amount of data transferred in the case of the unpacked implementation or due to
the texture indirection in the case of the index-based implementation. Evaluation timings on other
GPUs also followed the same qualitative trend, with the packed version always the fastest of the
GPU methods.

35

Chapter 4. NURBS Evaluation

From these results for 2D NURBS curves, it is not immediately clear that a GPU implemen-
tation for NURBS surface evaluation will be enough of an improvement over CPU evaluation to
justify the development effort. However, in the case of surface evaluation, with its higher arith-
metic intensity, the GPU win over CPU is far more pronounced, as described in the later results
section. Since we found the GPU packed method of evaluating the basis functions to be the fastest
of the three different techniques we developed, we use this method in the surface evaluation algo-
rithm. Since the surface control points used for surface evaluation are already 4-component vectors
(XYZW), additional data packing is not required for surface evaluation.

4.5 NURBS Surface Evaluation

Given all the data for a NURBS surface, our surface evaluation algorithm computes the surface
point coordinates at parametric coordinates (u,v) in the following manner.

1. Locate the lower-left corner of the sub-mesh of control points that influence the evaluation
point coordinates.

2. Compute the non-zero basis functions along the two parameter directions.

(a) Compute the non-zero u basis functions using the u direction knot vector.

(b) Compute the non-zero v basis functions using the v direction knot vector.

3. Multiply the non-zero basis functions with their corresponding control points from the sub-
mesh and sum the results.

The first step of computing the lower left corner control point that influences the current surface
point coordinate is equivalent to the first step in the curve evaluation; it is done on the CPU and
transferred as a 1D texture to the graphics card. The two substeps of the second step are each
performed in the same manner as computing the basis functions for curve evaluation explained in
Section (4.3). Finally, the evaluated basis functions are multiplied with the corresponding control
points and added together, as explained in detail below.

Figure (4.9) represents the surface evaluation process pictorially. We specify the parametric u
and v coordinates of the points required to be evaluated on the CPU. We then calculate the basis
functions corresponding to these coordinates on the GPU using the basis function evaluation algo-
rithm defined in Section (4.3) and generate the two textures for u and v having the basis function
values at the required parameter coordinates. We implemented the packed version of the basis
function evaluation algorithm because it was the fastest among the different methods discussed in
Section (4.4.2).

Once the basis functions are evaluated, we again alternate (ping-pong) between output textures
to evaluate the final surface coordinates. We store the control point data in a texture of size n×m

36

Chapter 4. NURBS Evaluation

ku kv

kv

u

v v

n ku

u
m

Basis Functions Control Mesh Evaluation Mesh

Figure 4.9: Graphical representation of the surface evaluation algorithm.

in the GPU memory. We also have a texture of size equal to the evaluation mesh, call it tex1,
which is initialized to zero. Given a particular u and v coordinate, we look up the coordinates of
the control point that influences the current evaluation point using the index values stored in the
1D textures calculated in step 1. We then multiply this control point with its corresponding u and v
basis function values and add it to the corresponding pixel in tex1 using a fragment program. This
fragment program directly renders the multiplied result to another texture, call it tex2. In the next
pass, the newly multiplied values of this pass are added to tex2 and rendered directly back to tex1.
Thus, the final curve point is evaluated in ku× kv passes; for example, a bi-cubic NURBS surface
point is evaluated in 16 passes. In our current implementation, since we evaluate each surface
separately, it does not matter if the processed surfaces have different degrees.

4.5.1 Dynamic LOD

The NURBS patches that make up a particular model or a scene are usually of different sizes and
at different magnification levels. In such cases, it would be inefficient to evaluate all the surfaces
at the same level of detail. Therefore, we use different evaluation grids for different surfaces based
on the size of the surface and the distance of the surface from the eye point. Older graphic cards
were optimized to only work with square power-of-2 textures. Hence, the transitions between the
different LODs are not smooth, leading to popping artifacts between them. Furthermore, it was
not possible to have different number of evaluation points along the u and v directions. However,
newer graphic cards support rectangular textures of any size. Thus, for the different LODs, the
number of evaluation points change continuously from the minimum to the maximum value in our
implementation. In addition, the number of evaluation points are different for the u and v directions.
This leads to a better rendering of dynamic scenes encountered in interactive environments like

37

Chapter 4. NURBS Evaluation

solid modeling. Figure (4.10) shows a duck model rendered at different zoom levels. The LOD
varies continuously between the different levels, resulting in smooth transitions.

Figure 4.10: Dynamic LOD: Duck rendered at different resolutions based on the required LOD.

We compute the required height and width of the evaluation mesh by finding the distance of
the object from the eye point as well as the size of the object. Then the connectivity of the points
is generated on the CPU using the selected size. We make use of the fact that the connectivity of
a 2D mesh in the parametric domain is the same as the connectivity of the final NURBS surface.
This index information is sent to the graphics card and the surface is rendered by using the corre-
sponding point coordinate data taken directly from a texture using a vertex buffer object. This way
we eliminate the redundant and costly operation of reading back the evaluated point coordinates
from the GPU and then sending them back as vertex coordinates.

38

Chapter 4. NURBS Evaluation

4.6 Trimming

] For efficient rendering of a trimmed NURBS surface, the surface evaluation should be decoupled
from trimming. Instead trimming can be performed with the help of texture mapping using a
trim-texture, a trimming technique first applied to trimmed spline surfaces by [Guthe et al., 2005].

The trim-texture is generated by evaluating and rendering the trim curves in the 2D parametric
domain. Even though NURBS curves can theoretically be used for trim curves, most of the trim
curves in practice are piecewise linear segments. This is because a space curve on a 3D NURBS
surface is usually approximated by linear segments in the 2D parametric domain. If the trim curves
are described by splines, they can be evaluated and converted to piecewise linear segments. In our
implementation, the trim curves are evaluated and rendered directly to a trim-texture.

4.6.1 Trim Texture Generation

As described in [Woo et al., 2004], arbitrary concave polygons (possibly even including holes)
do not need to be tessellated for rendering. Instead, triangles connecting a common origin to each
polygon edge in turn are rasterized, but only those regions that are filled an odd number of times are
finally rendered. This is shown in Figure (4.11), where only parts of the domain that are rendered
once or thrice are considered to be the part of the surface that is to be finally rendered. Another
advantage of using such an algorithm is that the orientation of the holes and holes within holes
need not be explicitly dealt with as separate cases.

The above algorithm can be implemented either by using the stencil buffer or by alpha blend-
ing. Using the stencil buffer is sufficient to trim surfaces that are parallel to the view plane; imple-
mentation details for using the stencil buffer are given in [Woo et al., 2004]. However, we use an
alternate implementation based on the alpha blending functionality of graphics cards to generate
the trim-texture because the trimmed surfaces may be arbitrarily oriented or curved.

Some basic preprocessing is required for using alpha blending, as explained below. The view-
port is set up to match the size of the trim-texture, which is determined based on the required LOD,
as in [Guthe et al., 2005]. The Model View matrix is set to 2D mode with view area from [0 1]
in both width and height. For planar faces, the two directions correspond to the two orthogonal
directions defining the coordinate system in the plane of the face; for non-planar faces, the para-
metric u and v directions that define the texture coordinate system are used. The background color
is cleared to (0, 0, 0, 0). The required blending factors are chosen to perform an odd/even count.
This can be done by toggling the existing value from 0 to 1 or 1 to 0 whenever a new fragment is
drawn over it. Once all the parameters are set up, a triangle fan is drawn with color (1, 1, 1, 1).
Thus, the algorithm can be easily extended to complex shapes like fonts or irregular holes.

39

Chapter 4. NURBS Evaluation

A

B

C

E G
F

H

I

v1

v2

v3

v4

v5

v6

v7

Regions: covered by

A*: v1v3v4

B : v1v2v3 v1v3v4

C : v1v3v4 v1v4v5

D*: v1v3v4 v1v4v5 v1v5v6

E : v1v2v3 v1v3v4 v1v4v5 v1v5v6

F*: v1v5v6

G :v1v2v3 v1v5v6

H : v1v5v6 v1v6v7

I : (none)

D

Figure 4.11: Adapted from the OpenGL Programming Guide [Woo et al., 2004]: Example of a
trim-texture. Each of the region names is followed by a list of the triangles that cover it. The
uniformly shaded regions A, D, and F make up the original polygon; note that these three regions
are covered by an odd number of triangles. Every other region is covered by an even number of
triangles (possibly zero). Thus, only the regions that are rendered an odd number of times (starred
regions) are finally displayed.

4.6.2 Rendering

The trim-texture is then used to mask parts of the surface using a fragment program during the
rendering pass. Even though the trim-texture has alpha values that can be mapped directly to the
surface by using alpha blending, this may lead to incorrect results. One such example is shown in
Figure (4.12(a)), where alpha blending is used to cut the holes for a scene with an airplane inside
a box. The correct rendering in seen in Figure (4.12(b)). Unless all the objects are rendered in
back-to-front order, the blending will not be correct; the objects behind discarded trim portions
will not be rendered. The problem becomes even more pronounced in the case of curved surfaces,
where the surface itself may be self-occluding. In this case, since the order in which the fragments
are processed by the graphics card is not defined, the final surface will be rendered incorrectly and
may even have artifacts similar to self-shadowing.

To overcome this problem, only the parts of the surface that lie outside the trim curves are
rendered (Figure (4.12(b))). The advantage of such a method is that the lighting calculations need
not be done to those fragments that are discarded. However, this implementation uses branching
and may lead to a performance drop in older graphic cards. Our fragment program used for the

40

Chapter 4. NURBS Evaluation

(a) Using alpha blending (b) Using fragment program

Figure 4.12: Difference in trimming with using alpha blending and fragment program. Alpha
blending produces incorrect results.

trimming operation, written in Cg [Mark et al., 2003; Fernando and Kilgard, 2003], makes use of
the discard command that kills the fragment when the value of the particular color channel used to
trim is 0. To save memory we store different trim-textures in different color channels of the same
texture. We then switch between the different channels while rendering different trimmed surfaces.

4.7 Results

We tested our evaluation method on the different GPU platforms listed in Table (4.1).

GPU VRAM CPU RAM

ATi X1900 512 MB 2.8 GHz 512 MB
nVIDIA Quadro FX4500 512 MB 3.00 GHz 2048 MB
nVIDIA Quadro FX3000 256 MB 1.88 GHz 1024 MB

nVIDIA GeForce FX6800Go 256 MB 1.60 GHz 512 MB

Table 4.1: Different GPU platforms tested.

41

Chapter 4. NURBS Evaluation

10
5.84

10

0.35

0.66
1

m
e

(s
)

0.13
0.1

al
ua

tio
n

Ti

0.01

Ev
a

0.001
0 200000 400000 600000 800000 1000000 12000000 200000 400000 600000 800000 1000000 1200000

Evaluation Points

CPU 2.8 GHz nVIDIA QuadroFX 3000
nVIDIA GeForceFX 6800Go ATi X1900
nVIDIA QuadroFX 4500

(a) Evaluation timings

0.01m
e

(s
)

0.01

al
ua

tio
n

Ti
Ev

a

0.001
0 500 1000 1500 2000 2500 3000 3500 40000 500 1000 1500 2000 2500 3000 3500 4000

Evaluation Points

CPU 2.8 GHz nVIDIA QuadroFX 3000
nVIDIA GeForceFX 6800Go ATi X1900
nVIDIA QuadroFX 4500

(b) Timings for small evaluation grids

Figure 4.13: Log-scale comparison of evaluation timings for a bi-cubic NURBS surface with
increasing number of evaluation points.

Figure (4.13(a)) compares the evaluation timing alone of a single bi-cubic NURBS patch de-
fined by 144 control points when increasing the density of the evaluation grid. The evaluation time
includes the time taken to generate the knot array and control-point array on the CPU; the timings
will remain the same even if the user interactively changes the knot values or the control points.
The GPU-based evaluation is faster than the CPU-based evaluation by a factor of about 50 when
evaluated at a large numbers of evaluation points. However, the GPU evaluation has more overhead
for very small patches and hence is not suitable for evaluating surfaces having less than 16× 16
evaluation points (Figure (4.13(b)). The nVIDIA QuadroFX 3000 is an older graphics card and
uses AGP8x bus architecture. Hence, the data bandwidth is not as high as the other PCI-e graph-
ics cards tested. As a result, the timings are somewhat slower but still about 10 times faster than
on a CPU. The high end PCI-e 16x graphics cards from both ATi and nVIDIA produced almost
identical results.

The duck model shown in Figure (4.1) consists of three NURBS surfaces with both non-
uniform knots and non-unity weights for the control points. One of the three surfaces in the model
is also trimmed. Figure (4.1) is rendered using an evaluation grid of 64×64 points for each surface
on a window of size 1280×1024. Note that the trimmed yellow patch representing the duck’s body
fills most of this window, but has no obvious tessellation artifacts with this sampling density. This
evaluation grid is similar to the one shown for the largest duck in Figure (4.10). In addition, the
model can be interactively displayed with varying LODs without re-sending the data to the GPU
repeatedly. Similarly, any changes to the model will necessitate transferring only the control points
to the GPU.

Figure (4.14) compares the frame rates for an animated scene containing many such ducks

42

Chapter 4. NURBS Evaluation

0

10

20

30

40

50

60

0 200 400 600 800 1000

fp
s

Number of NURBS surfaces

nVIDIA GeForceFX 6800Go nVIDIA QuadroFX 4500

nVIDIA QuadroFX 3000 OpenGL 1.88 GHz CPU (untrimmed)

Figure 4.14: Comparison of frame rates with different nVIDIA graphics cards. One-third of the
total NURBS surfaces are non-trivially trimmed.

swimming in a (tessellated) teapot, similar to Figure (4.1), using our GPU implementation and
with the CPU OpenGL implementation. The scene is again rendered in a window of size 1280×
1024; the individual NURBS surfaces, being smaller than the full screen area, were evaluated on
a 16×16 grid of evaluation points. One-third of the NURBS surfaces were non-trivially trimmed.
As expected, the frame rate decreases with the increase in the number of surfaces. However, the
decrease in frame rate is not linear in the number of surfaces. This may be due to the extra overhead
of transferring the control points data for a large number of surfaces to the graphics card and some
overhead in switching between the VBO of different surfaces. Even though trimming was not
performed while obtaining the OpenGL-rendered timings, its frame rates are unacceptably slow
for more than about 100 NURBS surfaces, consistently 40-50 times slower than our GPU-based
implementation. In addition, the OpenGL implementation had rendering artifacts at trim curve
concavities while rendering trimmed NURBS surfaces (Figure (4.15)).

43

Chapter 4. NURBS Evaluation

(a) Correct surface (b) OpenGL rendering

Figure 4.15: Trimmed NURBS surface rendered incorrectly by OpenGL. The figure on the left
shows the correct trimming.

100

80

90

100

70

80

50

60

fp
s

30

40

10

20

0
0 200 400 600 800 1000

Number of NURBS surfacesNumber of NURBS surfaces

8x8 Evaluation Points 16x16 Evaluation Points 32x32 Evaluation Points

Figure 4.16: Comparison of frame rates with varying per-patch evaluation grid size on nVIDIA
Quadro FX3000 graphics card.

44

Chapter 4. NURBS Evaluation

Figure (4.16) shows the frame rates for animating the same scene as the above example but
varying the per patch evaluation grid size as well as the number of ducks. The frame rates were
timed on the nVIDIA Quadro FX3000 graphics card. The NURBS surfaces evaluated on a 32×32
grid of evaluation points was the slowest, but for a larger number of surfaces the rates start to
converge.

4.8 CUDA Implementation

In order to assess the performance of our NURBS evaluation algorithm using newer GPU program-
ming techniques, we developed a CUDA implementation. CUDA, as mentioned in Section (3.1),
is NVIDIA’s GPU computing architecture that allows direct general-purpose computations on the
GPU without resorting to graphics primitives.

Our CUDA implementation is very similar to our GPGPU implementation described in detail in
Section (4.5). CUDA supports the use of two kinds of memory on the GPU, called global memory
and shared memory that is shared between a smaller set of CUDA threads. However, since we do
not reuse any data in our evaluation algorithm, we make use of the global memory. CUDA also
supports the use of texture memory on the GPU that is cached. On the other hand, texture memory
is read-only and requires the use of the ping-pong technique to perform multi-pass computations.
The advantage of using global memory is that, since it is read-write, we do not need to ping-pong
to perform the operations but can modify the data in-situ.

To perform parallel computations using CUDA, the programmer has to divide the computations
in to threads that are then executed as blocks by the GPU. However, there can only be a maximum
of 512 threads per block. Since the majority of the surfaces we evaluated were cubic, we found that
a block size of 64×4 to be optimal basis function evaluation. However, to be unbiased with respect
to the parametric directions in surface evaluation, we used a 16×16 block size for the control point
multiplication, since it is the largest square block size that can be evaluated using CUDA. We tried
different square block sizes for the control point multiplication but found the 16×16 block size to
be the optimum size for NURBS evaluation in the graphics cards we tested.

4.8.1 CUDA Evaluation Timings

We first compared the standard CUDA implementation with both our CPU and our GPGPU im-
plementation on four different CUDA-capable NVIDIA graphics cards. Then we compared the
performance of the different variations of our CUDA and GPGPU implementations on two spe-
cific cards. The specifications of the different graphics cards are given in Table (4.2) along with
the details of the CPU systems.

Figure (4.17) shows the evaluation time in seconds with a varying number of evaluation points.
For large numbers of evaluations points, the CUDA implementation is 3 to 4 times faster than
the CPU implementation; however, the GPGPU implementation is more than 30 times faster than

45

Chapter 4. NURBS Evaluation

GPU Release Date VRAM CPU Clock Speed RAM

GeForce 9600GT Feb 2008 512 MB Intel Pentium 4 3.00 GHz 2048 MB
GeForce 9600M GT Oct 2008 256 MB Intel Core2Duo 2.40 GHz 4096 MB
Quadro FX5600 Sep 2007 1536 MB Intel Core2Quad 2.66 GHz 4096 MB
Quadro FX5800 Nov 2008 4096 MB Intel Core2Quad 2.66 GHz 4096 MB

Table 4.2: Different GPU platforms tested.

the CPU implementation. CUDA is slower because there is an overhead in accessing the global
memory. In addition, the texture memory used in the GPGPU implementation is read-only and
cached, which leads to a well-hidden memory latency in the case of texture fetches. Moreover,
in the GPGPU implementation, since the output of the kernel is to a specific pixel location in the
framebuffer instead of a random write, the memory writes are fast.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

GeForce 9600M GT GeForce 9600GT Quadro FX5600

GeForce 9600M GT CUDA GeForce 9600GT CUDA Quadro FX5600 CUDA

2.4GHz CPU

Figure 4.17: Evaluation timings with increasing number of evaluation points for evaluating a
bi-cubic NURBS surface using the CPU, CUDA and GPGPU algorithms.

However, if we focus on smaller evaluation sizes (Figure (4.18)), the GPGPU implementation
is slower than CUDA. This is due to the overhead involved in setting up the texture memory in
OpenGL, which is lower in the case of CUDA. Moreover, the transition point where the OpenGL
implementation is faster changes based on the type of the graphics card used. This is due the

46

Chapter 4. NURBS Evaluation

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

GeForce 9600M GT GeForce 9600GT Quadro FX5600

GeForce 9600M GT CUDA GeForce 9600GT CUDA Quadro FX5600 CUDA

2.4GHz CPU

Figure 4.18: Evaluation timings for smaller number of evaluation points. The transition point
where OpenGL evaluation is faster than CUDA varies for different graphics cards.

variation in the architecture of these graphics cards; the graphics cards tested were released to the
market at different times.

We profiled the CUDA code to understand the discrepancy in the timings between the CUDA
and the GPGPU implementation at higher evaluation resolution. Figure (4.19) shows the main
reasons for the performance drop in CUDA; they can be classified as uncoalesced memory access
and divergent branching. Coalesced access refers to sequential threads accessing adjacent memory
locations in the global memory. In such cases, the memory is read as a single block and the
bandwidth for memory access is high. Uncoalesced or misaligned accesses on the other hand have
an effective bandwidth of only one-eighth of the coalesced access case.

As it can be seen, the percentage of uncoalesced memory load is high in basis function evalu-
ation but is negligible in the case of control point multiplication. The uncoalesced memory access
could be the primary reason why the CUDA code is slow compared to the GPGPU implementation.
The percentage of uncoalesced store is also high in both steps since we output one value for each
kernel call and they are all calculated independently.

Another reason for the performance drop in the case of CUDA is the large number of divergent
branches in the evaluation. Divergent branches in a GPU code leads to a performance drop since
the GPU has to wait until all branches of code are executed before proceeding to the next step.
In CUDA, these branches are required to correctly deal with the border elements that arise due to
mismatch between the block size and the evaluation grid size (Figure (4.20)). These branches are

47

Chapter 4. NURBS Evaluation

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Uncoalesced Load Uncoalesced Store Divergent Branch

Basis Evaluation Control Point Multiplication

Figure 4.19: The main reasons for the performance drop while using CUDA. High uncoalesced
memory accesses and divergent branching reduce the performance of the CUDA implementation.

absent in the case of the GPGPU implementation since there is no blocking of threads. This can
lead to huge performance drops in the CUDA implementation.

CUDA

Evaluation

Block

Evaluation Grid

Border Blocks

Figure 4.20: Evaluation of the border elements results in divergent branches in the CUDA imple-
mentation.

48

Chapter 4. NURBS Evaluation

4.8.2 Comparison of Different Implementations

We performed detailed timings of different CUDA and OpenGL GPGPU implementations using
the GeForce 9600M GT and Quadro FX5800 graphics cards. These two cards both support dy-
namic loops in kernels. We compared the performance of three different CUDA and GPGPU
implementations. They were the basic CUDA implementation, the second one that used texture
memory and the third using dynamic loops without ping-pong. The implementation not using
ping-pong requires loops whose sizes vary based on the degree of NURBS surfaces being eval-
uated. Since the degree of NURBS surfaces can vary, the GPU has to support dynamic loops.
Similarly, we also timed three different GPGPU implementations. These include a basic GPGPU
implementation, the second that uses dynamic loops without ping-pong, and a third implementa-
tion that does not pack the data in textures as explained in Section (4.4.2).

Figure (4.21) compares the timings of the six different implementations between the two graph-
ics cards. It can be seen that there is an order of magnitude difference in the CUDA performance
between the two cards compared to only a factor of two performance difference in case of the
GPGPU implementation. One possible reason for the performance difference could be the fact that
the Quadro FX5800 is a newer card that has built in optimizations for uncoalesced memory reads.

In the GeForce 9600M GT, the use of texture read-only memory improves CUDA performance
when there are large numbers of evaluation points; the textured implementation being almost seven
times faster at the largest evaluation grid size. Even though we do not need such large grids
for display, we require them to meet the tolerances in our modeling operations, which will be
discussed in more detail in Chapter (5). However, all the GPGPU variants are faster than CUDA
for evaluating a large number of points, with the GPGPU implementation without ping-pong being
the fastest.

On the other hand, the initialization times are higher for both GPGPU and the textured imple-
mentations. In the Quadro FX5800, the difference is much more pronounced between the different
implementations for smaller and larger evaluation grid sizes. It can be seen that the initialization
time is much lower for using CUDA global memory. Hence, as a result, the CUDA implementation
is better suited for evaluating smaller number of points and the GPGPU version is better suited for
evaluating large grids.

4.9 Summary and Conclusions

We have presented a new method to evaluate and display trimmed NURBS surfaces on the GPU.
Our algorithm evaluates the NURBS surface point coordinates directly, without resorting to ap-
proximations, using a unified evaluation framework that uses the same fragment program to eval-
uate arbitrary degree NURBS surfaces. Our evaluation framework, which calculates all the basis
function values in parallel, can be extended to calculate derivatives and normals, serving as a foun-
dation for modeling operations as well (Chapter (5)). We show that packing the basis function
arrays into the four color channels (along their height dimension to preserve the unified, degree-

49

Chapter 4. NURBS Evaluation

independent property of the implementation) yields a more efficient algorithm than unpacked or
index-array based approaches for NURBS curve evaluations. The method shows great promise for
real-time interaction with exact NURBS models, as seen from the frame rates we achieved even on
older graphics cards. The evaluation timings show more than 40 times improvement over evalua-
tion on the CPU for large inputs, and a similar improvement in overall frame rate compared to the
OpenGL implementation. However, this method is still not optimal for a small number of evalua-
tion points since the overhead of setting up the GPU for performing the computations is relatively
high in this case. The number of surfaces that can be evaluated and displayed is primarily limited
by texture memory on the GPU that is used to store the evaluated surface points and the trim data.
We found our method to be capable of interactively evaluating and rendering up to 300 NURBS
surfaces. For interactive display of a large number of trimmed NURBS surface patches, we have
demonstrated that GPU-based evaluation of the exact surfaces is a viable option.

We have compared the NURBS evaluation time using both GPGPU and CUDA; both imple-
mentations were faster than the CPU. Even though the GPGPU implementation is faster than the
CUDA implementation for high-resolution grids, it is slower than the CUDA implementation for
smaller grids. This is due to the higher overhead in setting up the texture memory using OpenGL
in the GPGPU implementation than using global memory or texture memory in CUDA. However,
the CUDA implementation is slower than the GPGPU implementation at higher resolutions due to
lack of caching of the global memory. Another main reason for the poor performance of the CUDA
at the higher resolution is due to the presence of divergent branching while handling border ele-
ments that arise due to CUDA execution using blocks. This suggests that for optimal performance,
we have to make use of a hybrid approach for NURBS evaluation. We have to use CUDA if the
evaluation resolution is small and then switch to the GPGPU implementation for evaluating large
resolution grids. In addition, the transition point at which the GPGPU performance gets better than
CUDA changes based on the graphics card used. Hence, the algorithm has to be tuned for different
kinds of graphics cards to get the optimum performance under different conditions.

50

Chapter 4. NURBS Evaluation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

E
v
a

lu
a

ti
o

n
 T

im
e
 (

s
)

Number of Points

CUDA CUDA NoPP CUDA Textures

GPGPU Packed GPGPU GPGPU NoPP

(a) GeForce 9600M GT

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

CUDA CUDA NoPP GPGPU

CUDA Textures GPGPU Packed GPGPU NoPP

(b) Quadro FX5800

Figure 4.21: Comparison of evaluation timings of different CUDA and GPGPU algorithms.

51

Chapter 5

NURBS Modeling Operations

5.1 Introduction

In this chapter, we present algorithms for performing modeling operations such as inverse eval-
uations, ray intersections, and surface-surface intersections on NURBS surfaces. Our modeling
algorithms run in real time, enabling the user to sketch on the actual surface to create new features.
In addition, the designer can edit the surface by interactively trimming it without the need for
re-tessellation. Our GPU-accelerated algorithm to perform surface-surface intersection operations
with NURBS surfaces can output intersection curves in the model space as well as in the paramet-
ric spaces of both the intersecting surfaces at interactive rates. We also extend our surface-surface
intersection algorithm to evaluate self-intersections in NURBS surfaces.

With the advent of programmable graphics hardware, the need for tessellating the NURBS
surface in the CPU for display was obviated, since the GPU can be used for the evaluation and
direct display of the surfaces [Krishnamurthy et al., 2007; Kanai, 2007; Guthe et al., 2005; Pabst
et al., 2006]. However, CAD packages still perform modeling operations using the CPU with either
the tessellated surfaces or analytically using NURBS definitions. In addition, the tessellation is also
performed only using the CPU. This reduces the interactivity for the user when designing these
free-form surfaces, since operations such as sketching on the NURBS surface and fast intersection
curves evaluation are not possible. Leading commercial CAD packages do not allow the designer
to sketch directly on the NURBS surface; instead, they restrict the user to sketching on a tangent
plane. Because of this, the designer has to wait until the operation is completed to get visual
feedback.

The process of finding the surface coordinates (x,y,z) for given parameter values (u,v) is called
evaluation. Inverse evaluation is the process of finding the parameter value (u,v) given any point
on the surface. We have developed a parallel algorithm for fast inverse evaluations of NURBS
surfaces on the GPU. This algorithm forms the basis of many modeling operations like selection
(ray-surface intersection), sketching on the surface, and interactive trimming. Moreover, since
these algorithms exploit the parallelism of the GPU, these operations can now be performed at

52

Chapter 5. NURBS Modeling Operations

(a) Sketching (b) Ray intersection (c) Direct trimming

(d) Surface intersection

Figure 5.1: Modeling operations like sketching, ray intersection, trimming and surface-surface
intersection performed directly on trimmed NURBS models.

interactive speeds, making immediate visual feedback to the designer possible for the first time.
We demonstrate the use of our fast inverse evaluation algorithm to directly sketch on the surface,
which makes certain operations like interactive trimming intuitive to the designer.

Designers are usually trained to work with curves on surfaces, such as silhouette curves and
intersection curves. Thus, they would like to see real-time changes in these curves as the under-
lying surfaces are edited, which requires an efficient algorithm to compute intersection curves of
free-form surfaces. Finding the intersection curve is in general a very complex operation, since
two NURBS surface equations of arbitrary degree have to be solved simultaneously. Many com-
mercial CAD packages use marching methods, where the algorithm uses a numerical root-finding
technique to first find a single intersection point. The algorithm then finds another point along the
intersection curve that is close to the first intersection point. This process is repeated and ultimately
a complete piecewise linear approximation of the intersection curve is calculated. However, since
this technique is inherently serial it cannot be parallelized for efficient evaluation on the GPU.
We have developed a GPU-accelerated parallel algorithm to evaluate the intersection curves using
bounds on the evaluated surface points. This algorithm is both fast and guaranteed to find the
intersection curves within a user-defined tolerance.

53

Chapter 5. NURBS Modeling Operations

Basis Function

Basis Function

Derivatives

Surface Point

Coordinates

Surface Derivatives

(see Section 2.3)

(see Section)

Rendering

(see Section 4.6.2)

Normals

Second Derivatives

(see Section 2.4)

Bounding Boxes

(see Section 2.5)

Output

GPU Evaluation to Textures

CPU Evaluation

Points onPoints on

Intersection Curves

(see Section 5.6)

CPU IntersectionCPU Intersection

Curve Fitting

(see Section 5.6.1)

Input

Control PointsControl PointsKnot Vector

IntersectionIntersection

Curves

Inverse EvaluationInverse Evaluation

(see Section 5.5)

Figure 5.2: Graphic showing the links between different parts of our modeling algorithms. The
results of the GPU evaluations are stored in separate textures.

We extend of our GPU NURBS evaluator (see Chapter (4)) to evaluate the first and second
derivatives of the NURBS surfaces and then use these to compute bounding-boxes for NURBS
surfaces (Section (2.5)). We describe how these bounding-boxes are used to perform inverse evalu-
ations (Section (5.5)) and to compute intersection curves (Section (5.6)) in this chapter. Figure (5.2)
shows the connections between the different parts of our algorithms; each of these operations are
described in detail in the sections indicated.

5.2 Related Work

Previous work that used GPUs to render NURBS curves or surfaces focused only on efficient
evaluation of the surface coordinates and/or normals [Guthe et al., 2005; Loop and Blinn, 2005;
Guthe et al., 2006; Kanai, 2007]. They did not use GPUs to perform modeling operations like
inverse evaluations and intersection curve evaluations. Previous work on inverse evaluation of
NURBS surfaces mainly focused on ray tracing NURBS surfaces. Ray tracing was performed on
parametric and rational surfaces by solving for the ray-surface intersection point using numerical
methods [Toth, 1985; Nishita et al., 1990; Martin et al., 2000]. There has also been previous

54

Chapter 5. NURBS Modeling Operations

work on ray tracing using the GPU, which include [Purcell et al., 2002; Purcell et al., 2003;
Carr et al., 2006; Pabst et al., 2006]. Another application of inverse evaluation of NURBS is
solving for geometric constraints. A method to solve geometric constraints by using multivariate
splines was given in [Elber and Kim, 2001], which can be used to solve several related problems
like ray traps and sweep envelopes. Inverse evaluation has also been used for haptic rendering to
find the parametric (u,v) coordinates of a given point on a NURBS surface [Thompson and Cohen,
1999]. Inverse evaluation was used in this case to solve for the contact point of a haptic probe with
trimmed NURBS surfaces in a virtual environment.

Several approaches to collision detection on the GPU have been proposed. Occlusion queries
on graphics hardware were used in [Govindaraju et al., 2003] to detect collisions of polygonal
meshes in large environments. Collisions between particles were calculated in [Kipfer et al., 2004;
Kolb et al., 2004] to simulate large scale particle systems on the GPU. Recently, a method to detect
collisions between deformable parameterized surfaces using GPUs was presented in [Greß et al.,
2006]. They solve the collision detection problem by generating a bounding-box hierarchy for the
surface and then detect collisions by checking overlap between the bounding-boxes.

Evaluation of intersection curves is a fundamental operation in computer aided geometric de-
sign and solid modeling [Requicha and Rossignac, 1992; Hoffmann, 1989]. There have been sev-
eral attempts to solve the problem, since it is hard to achieve all the desired characteristics of robust-
ness, accuracy, and efficiency. A comprehensive survey of surface-surface intersection algorithms
was summarized in [Patrikalakis, 1993]. A more recent algebraic algorithm for efficient surface
intersection using lower dimensional formulations was given in [Krishnan and Manocha, 1997].
They also classified the conventional methods for evaluating the intersection curves as analytical
methods, lattice evaluations, subdivision methods, and marching methods. Many commercial CAD
software packages use the numerical marching method outlined in [Barnhill and Kersey, 1990;
Kriezis et al., 1990] to evaluate intersection curves.

5.3 Derivatives of NURBS Surfaces

To perform geometric operations on NURBS surfaces, we not only require the surface point coor-
dinates themselves but also the first and second partial derivatives with respect to the two parameter
directions u and v at the surface points. As a very fast first-degree approximation, we can use the
evaluated point coordinates to estimate the first derivatives using central differencing. However,
this approach gives rise to artificial discontinuities at patch boundaries and at rational parts of the
surface. Moreover, second derivatives estimated from these first derivatives in the same manner
have larger errors associated with them. One way to overcome this issue is to evaluate the normals
of the surface exactly at each surface point, similar to the evaluation of the surface coordinates.
Since we already evaluate the higher order basis functions from lower order basis-functions, we
can directly calculate the derivatives of the basis-functions within the same framework as our basis-
function evaluation algorithm, and then use the basis function derivatives to evaluate the derivatives

55

Chapter 5. NURBS Modeling Operations

of the NURBS surface precisely, to within machine precision. However, in our implementation, we
estimate the second derivatives using central differencing since exact evaluation of second deriva-
tives is very compute intensive and is not possible in an interactive setting. However, the errors in
second derivative are very small since we accurately calculate the first derivatives and use a fine
resolution (1024×1024) for the evaluation grid.

5.3.1 GPU Implementation

The GPU implementation of the evaluation of surface derivatives is a direct extension of the evalu-
ation of the surface coordinates as explained in Chapter (4). The mathematical formulation for the
evaluation of the derivatives was given in detail in Section (2.3.1). The GPU evaluation consists
of four steps as given below. The first three steps are similar to the method for evaluation of the
surface coordinates. We give the steps for evaluating the surface derivatives with respect to u; the
steps for finding the derivative with respect to v are similar, exchanging u and v in step 2:

1. Locate the sub-mesh of control points that influence the evaluation point coordinates.

2. Compute the basis functions and their derivatives along the two-parameter directions respec-
tively.

(a) Compute the non-zero basis function derivatives with respect to u.

(b) Compute the non-zero basis functions with respect to v.

3. Multiply the non-zero basis functions and the basis function derivatives with their corre-
sponding control points from the sub-mesh and sum the results.

4. Evaluate the rational derivatives as given by Equation (2.14) using the evaluated surface
coordinates and surface derivatives from the previous step.

One notable feature of this algorithm is that step 1 and step 2(b) are already performed while
evaluating the surface coordinates using our NURBS evaluation algorithm. Moreover, computing
the u derivative in step 2(a) is different from evaluating the B-spline basis function only in the
final step of the evaluation. Since we are using the de Boor evaluation algorithm, evaluating the B-
spline basis function of order k as well as its derivative requires the evaluation of the B-spline basis
function of order k−1. In practice, since we are already computing the B-spline basis function of
order k−1, we store this intermediate result as a texture on the GPU. We then use this as input for
evaluating both the B-spline basis function of order k as well as its derivative.

We evaluate the derivatives of the basis functions with respect to each parameter direction
separately and store them in separate textures on the GPU. Once the derivatives with respect to the
u and v directions are calculated as 4-component vectors, the surface normals are calculated. This
is performed using a separate fragment program that takes the rational surface derivatives as input

56

Chapter 5. NURBS Modeling Operations

and then evaluates their cross product to calculate the surface normal (Equation (2.11)). Thus, the
process of evaluating the NURBS surfaces as well as their normals can be performed efficiently
within a single framework using our method.

5.4 Bounding-Boxes for NURBS Surfaces

We make use of axis-aligned bounding-boxes (AABBs) for the NURBS surfaces to perform mod-
eling operations using the GPU. With the help of such bounding-boxes, several queries such as
ray-surface intersections and surface-surface intersections can be efficiently answered, which then
form the building blocks for more complex operations like sketching on the surface and inter-
section curve calculations. We make use of the GPU to evaluate the derivatives and curvature
of the NURBS surfaces. We then construct the bounding-boxes using the method explained in
Section (2.5). Figure (5.3) shows pictorially the different GPU operations that are performed to
construct the bounding boxes.

∂S/∂u ∂S/∂v

∂2S/∂u2 ∂2S/∂u∂v ∂2S/∂v2

Central
Differencing

M1 M2 M3

GPU Reduction
to find maximum

Expansion Factor KSurface Coordinates

Surface Bounding Box

Figure 5.3: Flow of algorithm to evaluate bounding-boxes of a NURBS surface on the GPU.

5.5 Inverse Evaluation of NURBS Surfaces

Given a point that lies on the NURBS surface, inverse evaluation is the process of finding the
parameter values corresponding to that point. Since the B-spline basis functions are non-linear,
theoretical expressions for the inverse evaluation are very complex and differ based on the degree
of the surfaces. Therefore, inverse evaluations are usually performed numerically to find a solution
within a desired tolerance.

57

Chapter 5. NURBS Modeling Operations

Min texture

Fragment
ProgramRay

Binary texture

Max texture

Figure 5.4: Bounding-boxes stored as min and max textures are tested with the ray using a frag-
ment program; its output is a binary texture indicating the intersection.

The standard numerical approaches based on solving the NURBS equations for inverse evalua-
tion are not easily parallelizable so as to be performed efficiently on the GPU. Therefore, we chose
a method based on axis-aligned bounding-boxes. The AABBs for the NURBS surface are con-
structed using the method outlined in Section (5.4). In the case of selection and directly drawing
on the surface, the AABBs are aligned parallel to the ray cast in the viewing direction, through the
current location of the mouse. We then check for intersection between the ray and all the AABBs
simultaneously using a fragment program written to perform this intersection test. The output of
this program is a two-dimensional array of binary values with the value 1 indicating the intersection
of the ray with the corresponding AABB (Figure (5.4)). In addition, the intersecting AABB also
contains information about the minimum and maximum parameter values of the surface sub-patch
enclosed by the AABB. Using this correspondence, we can efficiently find the parametric (u,v)
value corresponding to the ray intersection point on the surface.

Since the NURBS surfaces are usually curved, there can be many surface sub-patches inter-
secting the given ray. We find the addresses of all the intersecting bounding-boxes (locations
with the value 1 in the binary texture) by using the GPU stream reduction operation explained in
Section (3.5.2). We use this address to access information about the intersecting bounding-box
as well as the parametric ranges of the surface sub-patch enclosed by the bounding-box. Using

58

Chapter 5. NURBS Modeling Operations

the bounding-box information, we get bounds on the location of the intersection point of the ray
with the surface in both the model space as well as in the parametric space simultaneously. If the
bounding-boxes are smaller than the required tolerance, we can take the midpoint of the bounding-
box as the intersection point of the ray with the surface. Once all the ray intersection points on
the surface are found, we output only the point that is closest to the view-plane by evaluating the
distance of all the ray intersection points from the view-plane on the CPU and choosing the point
with the smallest distance value.

5.5.1 GPU Implementation of Inverse Evaluation

The algorithm used for performing the full inverse evaluation is given pictorially in Figure (5.5).
The three steps in the top row of Figure (5.5)—evaluating the surface, constructing bounding-
boxes, and finding intersecting boxes—are performed on the GPU. The data corresponding to the
selected bounding-box is read back from the GPU. We then check on the CPU whether the ranges
in the parametric domain of the surface as well as the size of the bounding-box are within the
required tolerance; for example, we can use an absolute tolerance of 10−6 in the parametric space
and a relative tolerance of 10−3 in the model space. If the tolerance conditions are met, we output
the midpoint of the parametric range as the output of the inverse evaluation. If not, we re-evaluate
the NURBS surface at a finer resolution within the previously output parametric range(s). These
tolerances are usually met within two or three iterations since we evaluate the surface at a high
resolution (1024×1024) during each iteration.

Surface evaluation Calculate bounding-boxes Find intersecting
bounding-boxes

Parametric range and
bounding-box size
within tolerance

List of new parametric ranges
to be re-evaluated

No

YYes

Midpoint of the
parametric range

Figure 5.5: Algorithm for inverse evaluation of NURBS surfaces.

59

Chapter 5. NURBS Modeling Operations

5.5.2 Applications of Inverse Evaluation

We can build different modeling operations using the inverse evaluation algorithm as the basic
module. These operations include ray intersections, direct sketching on NURBS surfaces, and
interactive trimming. Figure (5.6(a)) shows an example where we compute all the intersection
points (two in this case, marked with red crosses) of a particular ray with the surfaces of a model
of a toy. By aligning the ray direction perpendicular to the view plane, we can use the same
algorithm for selecting a particular surface from a given set of NURBS surfaces.

One of the most important advantages of a real-time algorithm to perform inverse evaluation
is the ability to sketch directly on the NURBS surface. The advantage comes from the fact that
the curve is simultaneously sketched both in the 3-dimensional model space as well as in the 2-
dimensional parameter space. This helps in performing modeling operations like extrusions and
trimming, where the parameter space sketches are typically used for defining these operations.
Figure (5.6(b)) shows a curve sketched on a NURBS model and the curve in the parametric domain
is shown in the inset.

(a) Ray intersection (b) Sketching directly on the surface

(c) Interactive trimming: the eyes of the
model were trimmed interactively

Figure 5.6: Different NURBS modeling applications using inverse evaluation.

60

Chapter 5. NURBS Modeling Operations

By combining our sketching interface with the algorithm that renders trimmed NURBS sur-
faces in real-time, we can perform interactive trimming operations (Figure (5.6(c))). Using our
interactive trimming application, the designer gets immediate feedback on the result of the trim-
ming operation, unlike current commercial CAD systems.

5.6 NURBS Intersection Curve Evaluation

Calculating the intersection curve of a surface-surface intersection is a frequently encountered
operation in CAD systems. It forms an essential part of important CAD operations like trimming,
filleting, and b-rep generation from Boolean operations. However, since it is a slow operation, it
is usually performed in the background and thus the user does not get real-time feedback except
in the simplest of cases. We present a GPU-accelerated surface-surface intersection algorithm to
calculate intersection curves both in the model space as well as in the parametric spaces of both
the surfaces.

We now give a broad overview of our surface-surface intersection algorithm. Our algorithm
makes use of bounding-box hierarchies to accelerate the intersection operation. We evaluate both
intersecting surfaces using the GPU and then use the method described in Section (5.4) to con-
struct the AABBs for the surfaces, using the same coordinate frame. We construct a hierarchy of
bounding-boxes by combining four bounding-boxes at a finer level to construct a single bounding-
box in the next coarser level. To find the intersection curve, we traverse along the hierarchy for
both the surfaces simultaneously and find the intersecting bounding-boxes in the finest level using
the GPU. At the same time, we also get the ranges in the parametric domain corresponding to the
intersecting surface patches. We then check if the size of the bounding-boxes as well the para-
metric ranges are within a user-defined tolerance. Once the tolerance conditions are met, we get
a better estimate of the point on the intersection curve by intersecting the linearized surface patch
within the intersecting bounding-boxes.

We will explain the details of our surface-surface intersection algorithm with an example (Fig-
ure (5.7)). Given two surfaces, S1 and S2, we evaluate them and construct their bounding-boxes
as explained in previous sections. We also construct the bounding-box hierarchies for both the
surfaces and store them on the GPU as textures. Once we have the hierarchies, we check whether
the top-level (level 1) bounding-box of S1 intersects with the top-level bounding-box of S2. We
perform this test on the CPU since it is a very simple test. If the bounding-boxes intersect, we
then test the bounding-boxes from the next level (level 2) onwards on the GPU, using one pass per
level. We perform the intersection tests for all the bounding-boxes in a level in parallel using a
fragment program written to perform the bounding-box intersection test. The input to the fragment
program is a texture called the address texture that contains the address of the bounding-boxes in
the hierarchy (also stored as textures). For example, to test for intersection in the second level, we
make use of a 4×4 address texture on the GPU, where we test for intersection of four bounding-
boxes of S1 with all the four bounding-boxes of S2. In Figure (5.7), the rows of the address texture

61

Chapter 5. NURBS Modeling Operations

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

3
0 1

2 3

0 1

2 3

0 1

2 3
1

3

0 1

2 3

0 1

2 3

Level 2

Level 3

Bounding Box

Hierarchy 1

Bounding Box

Hierarchy 2 Address Textures

31 33

GPU Stream

Reduction

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

10

2

0

2

s

t

s

t

Figure 5.7: Example hierarchical bounding-box comparison in the surface-surface intersection
algorithm.

(Level 2) corresponds to bounding-boxes from S1 and the columns correspond to bounding-boxes
from S2. The address texture is a 4-component texture consisting of the address corresponding
to bounding-boxes of S1 and S2 in the bounding-box hierarchy textures ((s1, t1,s2, t2) stored using
RGBA channels). The intersection test is performed on the GPU using a fragment program, which
uses the address information to retrieve the data for the bounding-boxes from the bounding-box
hierarchy and subsequently tests them for intersection. The output of the fragment program is a
binary texture with a value of 1 indicating an intersection. We use the stream reduction algorithm
explained in Section (3.5.2) to find the address of the intersecting bounding-boxes. In the example
shown, we find that bounding-box 3 of S1 intersects with bounding-boxes 1 and 3 of S2 at level 2.

In the next level (pass), we test for the intersection of the children of the intersecting bounding-
box pairs of the previous coarser level simultaneously on the GPU. Thus, the size of the address
texture varies dynamically based on the number of intersections in the previous levels. The size
of the address texture is always a multiple of four since we test for intersection between S1 and S2
in blocks of 4×4 intersection tests. However, to perform the stream reduction operation we zero-

62

Chapter 5. NURBS Modeling Operations

Figure 5.8: Intersecting bounding-boxes of two NURBS surfaces.

pad this rectangular texture to make it a square texture with a power-of-2 size. The parallelism of
the GPU is exploited in checking for intersection of all the intersecting bounding-box pairs at any
given level and this helps in accelerating the intersection algorithm as the address texture grows in
size. Once we reach the finest level of the bounding-box hierarchy, we get a list of the bounding-
boxes that intersect at this level (Figure (5.8)). This list can then be used for further processing on
the CPU to get the actual intersection curve.

Figure 5.9: Intersection curves of two NURBS surfaces plotted both in the model space as well as
in their corresponding parametric spaces.

In addition, we use this list to render the points on the intersection curve of each surface to a
dynamic texture in the parametric domain. We map this texture back onto each surface, providing
real-time feedback to the designer about the shape of the intersection curve (Figure (5.9)).

63

Chapter 5. NURBS Modeling Operations

5.6.1 Fitting an Intersection Curve

To get a better estimate of the intersection point lying on the intersection curve of two surfaces,
we intersect the surface sub-patches enclosed by the intersecting bounding-boxes on the CPU. We
approximate each surface sub-patch inside the bounding-box with two triangles that share an edge.
We intersect these two triangles contained inside the bounding-box of the first surface with the two
other triangles contained in the bounding-box of the second surface. This gives rise to four pairs
of intersection tests between the triangles of the two surfaces; each intersection test can be true or
false, generating 16 different cases. We show the most common case in Figure (5.10), where one
triangle of surface S1 intersects with another triangle of surface S2. The four triangles are denoted
as A0A1A2 and A1A2A3 for surface S1, and B0B1B2 and B1B2B3 for surface S2 in the figure. We find
the midpoint of the intersection line-segment and use this midpoint as a point on the intersection
curve if it lies within the intersecting region of the bounding-boxes. The intersecting region of
the bounding-boxes is denoted by (xmin,ymin,zmin) and (xmax,ymax,zmax) in the figure. In the case
of multiple intersections, we take the centroid of the midpoints of the intersection line-segments
computed for each intersecting triangle pair as a point on the intersection curve.

A0

A1

A2

A3

B0

B1

B2

B3

(xmin, ymin, zmin)

(xmax, ymax, zmax)

Midpoint of

intersection

line-segment

S1

S2

Figure 5.10: Intersecting triangles inside overlapping bounding-box pairs to get a better estimate
of the point on the intersection curve.

64

Chapter 5. NURBS Modeling Operations

We work in the 7-dimensional space ℜ7 for curve fitting, integrating the data from both the
model space as well as the two parametric spaces. Performing the curve fitting in ℜ7 is more robust
since different components of intersection curves that might be close in a particular geometric or
parametric space are less likely to be simultaneously close in all three spaces. We extract the
7-tuple (x,y,z,u1,v1,u2,v2) for each point found on the intersection curve, where (x,y,z) is the
point on the intersection curve in 3D space, (u1,v1) and (u2,v2) are the corresponding points in
the parametric space of surface S1 and surface S2 respectively. The parametric points are found by
computing the barycentric coordinate of the (x,y,z) intersection point in each of the corresponding
intersecting triangles and then interpolating the parametric coordinates at the three vertices of the
triangle linearly using the barycentric coordinates.

Finally, to compute the actual intersection curves themselves from the list of points, we com-
pared two different algorithms. The first one is a greedy algorithm (Algorithm 5.1) that computes
the intersection curves by successively merging polylines that are close to each other.

Input : List of points on the intersection curves in ℜ7.
Output : Polyline list L, corresponding to the intersection curves

(an ordered list of connected edges).

1. Make all points into a polyline of length 0; add to L.
2. For all polylines in L, find the pair, P1 and P2, that is the closest (between two end
points of P1/P2 in ℜ7).
3. If distance greater than maximal distance to merge

Quit;
Otherwise,

(a) Merge P1 and P2 into a new polyline P.
(b) Replace P1 and P2 by P in L.
(c) Goto 2

Algorithm 5.1: Algorithm to fit polylines to the points on the intersection curves.

The second algorithm (Algorithm 5.2) uses the fact that the intersection points we find are
enclosed by AABBs that are part of a regular grid. We can thus fit a polyline by connecting a point
to the closest point whose enclosing bounding-box is a neighbor to the enclosing bounding-box of
the current point, limiting our search to the 1-ring neighborhood of bounding-boxes. After adding
the closest point in the 1-ring neighborhood to the polyline, we repeat our search to find another
point that is the closest to the point just added. Since the starting point can be in the middle
of a intersection curve, we have to grow the polyline in both directions. This algorithm can be
compared to a depth-first search on a list to find all the connected components and hence takes
O(n) time. However, if there is more than one remaining adjacent bounding-box with unmerged
intersection points, some points may not merged into the polyline and will be output as polylines

65

Chapter 5. NURBS Modeling Operations

of length 1 (Figure (5.11)). These polylines can then either be discarded or merged at the correct
position of the longer polylines by making an additional pass.

Figure 5.11: Example showing the possible generation of single-point polyline by Algorithm 5.2.
The figure on the left shows the 1-ring of bounding-boxes (shaded). The point marked in red on the
right is not merged and is output as a single-point polyline if it is not the closest point in ℜ7.

The time taken to fit a polyline using Algorithm (5.1) depends on an efficient closest neighbor
query. Currently, we perform this operation through an exhaustive search that takes O(n2) time,
which could be optimized by using more efficient search techniques, but we would still expect
it to be slower than the O(n) time Algorithm (5.2). For the example shown in Figure (5.9), the
polyline fitting for over 7000 points takes 0.20 seconds on a 2GHz PC for a tolerance value of
2×10−3. On the other hand, the time taken by a single pass of Algorithm (5.2) was 0.02 seconds
for the same input and tolerance value. However, 320 single point polylines were also produced
by Algorithm (5.2) which were discarded. From a tolerant geometry point of view, discarding
these points does not reduce the overall tolerance achieved compared to Algorithm (5.1). Since the
intersection points obtained from our algorithm are enclosed within their corresponding bounding
boxes both in the model space and in the parametric space, we can guarantee a required bound on
the results.

A polyline that passes through our input list of points on the intersection curve can be directly
used for further modeling operations, since these points are sufficiently dense. If a more compact
representation is required, we can fit a NURBS curve of any required order that approximates
the points on the intersection curve using standard curve fitting techniques. We can guarantee an
arbitrary bound in both the model space and parametric spaces. In addition, if the user-defined
bounds are small enough, we are guaranteed not to miss any portion of the intersection curve.
Since we also give instantaneous visual feedback to the user, the user will immediately know if
there are any features missing and can reduce the tolerance to obtain the desired result.

66

Chapter 5. NURBS Modeling Operations

Input : List of points on the intersection curves in ℜ7.
Output : Polyline list L, corresponding to the intersection curves

(an ordered list of connected edges).

1. Add all the points to unmerged points list M.
2. Add S, the first point in M to a new polyline P.
3. A←− S
4. While there are unmerged points in the 1-ring of A (the point added last to P)

(a) Find the closest point B in the 1-ring of A.
(b) Add B to tail of P and remove it from M.
(c) A←− B

5. A←− S
6. While there are unmerged points in the 1-ring of A

(a) Find the closest point B in the 1-ring of A.
(b) Add B to head of P and remove it from M.
(c) A←− B

7. If M is empty
Quit;

Otherwise,
(a) Add P to L
(b) Goto 2.

Algorithm 5.2: Faster algorithm to fit polylines to the points on the intersection curves.

One of the main limitations of both our algorithms for fitting a polyline is that they will fail
to recreate the correct topology when two unrelated intersection curves are very close on both
surfaces. This can happen when an intersection curve splits into two branches or when the two
surfaces are locally flat and are touching each other. A method that ensures the topology of the
intersection set is to be sought as future work, possibly at the CPU level, using the GPU only to
find the simple intersection curves. Such a method will also help in balancing the load between the
CPU and the GPU.

5.6.2 Self Intersection Evaluation

We extended our surface-surface intersection algorithm to detect and evaluate self-intersections in
NURBS surfaces. To perform the self-intersection test, we create two instances of the bounding-
box hierarchy for the surface on the GPU. We then test for intersection between these two surface
instances using the same GPU algorithm we use to perform surface-surface intersections. The
output of this algorithm is a list of bounding-box pairs at the lowest level of the hierarchy that

67

Chapter 5. NURBS Modeling Operations

overlap each other. We then remove from this list all the pairs which correspond to the same
surface sub-patch. Finally if there are any bounding-box pairs which belong to different surface
sub-patches left in the list, then the surface is self-intersecting.

Once we find a surface to be self-intersecting, we perform triangle-triangle intersection of
the triangles contained within the intersecting bounding-box pairs. Similar to the surface-surface
intersection algorithm, we find points on the self-intersection curve and then fit a polyline through
this self intersection curve. However, the main limitation of the algorithm is that a self intersection
smaller than the tolerance will be rejected. This can occur as a local self-intersection due to high
curvature in an offset surface. In this case detecting the intersection curve will be difficult since
the tolerance needs to be infinitesimally small. Figure (5.12) shows two examples where we detect
and evaluate self-intersection curves in NURBS surfaces. The example shown on the right took
0.42 seconds to compute the self-intersection curves to a tolerance value of 2× 10−3, while the
more complicated example shown on the left took 0.97 seconds.

Figure 5.12: Detection and evaluation of self-intersections in NURBS surfaces.

5.6.3 Intersection Timing

We timed our GPU-accelerated algorithm for evaluating the intersection curves on a 3GHz CPU
with 2GB of RAM equipped with a NVIDIA Quadro FX4500 GPU with 512MB graphics memory
running Windows XP. We performed a surface-surface intersection of the two NURBS surfaces
shown in Figure (5.13). The surfaces were bi-cubic NURBS with 403×199 and 298×313 control
points respectively. We used Algorithm (5.2) to fit the polylines during the timing. We compare
our timings to evaluate the intersection curves to the required user-defined tolerance with those of
the commercial solid modeling kernel ACIS (v20).

68

Chapter 5. NURBS Modeling Operations

Figure 5.13: NURBS surfaces used for timing the evaluation of intersection curves.

35

29.708
30

35

25

15

20

Ti
m

e
(s

)

10

15T

0 625

5

0.625
0
0.0001 0.0010 0.0100 0.1000

ToleranceTolerance

GPU Accelerated ACIS

Figure 5.14: Time taken for evaluating the intersection curves of the two NURBS surfaces shown
in Figure (5.13) with different resolutions. Note that we are evaluating many more points on the
intersection curve for a given resolution (Figure (5.15)).

69

Chapter 5. NURBS Modeling Operations

18000

16000

18000

12000

14000

nt
s

8000

10000

be
r o

f P
oi

n

6000

8000

N
um

b

4184

115
2000

4000

115
0
0.0001 0.0010 0.0100 0.1000

ToleranceTolerance

GPU Accelerated ACIS

Figure 5.15: Number of points evaluated on the intersection curve for different resolutions.

Figure (5.14) compares the time for evaluating the intersection curves by varying the tolerance
values. Our GPU-accelerated evaluation is more than 40 times faster than ACIS in computing the
intersection curves to the standard tolerance of 10−3 used in ACIS. The output from ACIS is an
interpolated polyline where the points on the polyline are within the user-defined tolerance value
from the exact intersection curve. ACIS does not guarantee any tolerance on the piecewise linear
line segments that make up the polyline [Corney and Lim, 2001]. On the other hand, we evaluate
dense intersection points with their spacing adjusted based on the tolerance to achieve a guaranteed
tolerance on the piecewise linear segments of the polyline as well. We compute almost 40 times as
many points on the intersection curve as ACIS does for the standard ACIS tolerance value of 10−3

(Figure (5.15)).

ACIS Tolerance

Intersection curve

ACIS polyline

Evaluated points

GPU polyline

Figure 5.16: Example of the tolerance definition used by ACIS. ACIS does not guarantee the
tolerances for the polyline segments that connect the evaluated points on the intersection curve.

70

Chapter 5. NURBS Modeling Operations

Operation Time(s)

Evaluate NURBS surfaces 0.27
Perform intersection tests 0.05
Calculate dense intersection points 0.02
Fitting the polyline 0.14

Total 0.48

Table 5.1: Breakdown of the timing to perform different operations of our intersection algorithm.
The values are for the example shown in Figure (5.9) for a tolerance value of 10−3.

Table (5.1) gives the breakdown of the timing of our intersection algorithm for evaluating
the intersection curves shown in Figure (5.9) for a tolerance value of 10−3. The evaluation of
the NURBS surfaces is a large fraction of the total time. Note that we do not require such high
tolerance values for giving visual feedback; hence, it can be performed at interactive rates.

5.7 Conclusions

The modeling algorithms we have developed do not require the latest graphics cards and are back-
ward compatible with any graphics card that has basic programming capabilities. This is essential
for the actual adoption of our algorithms in commercial CAD systems. We expect the performance
of our algorithms to only improve with the advent of new and faster graphics cards.

Both our GPU algorithm to sketch on NURBS surfaces as well as our GPU-accelerated algo-
rithm to calculate intersection curves give real-time feedback to the designer about the shape of
the curves in the parametric space. This gives a direct handle for the designer to check for incon-
sistency if models fail during rebuilds in a CAD system. Our interactive trimming tool helps the
designer to easily interact with and edit the NURBS models.

71

Chapter 6

Separation Distance Queries

6.1 Introduction

In this chapter we present GPU algorithms for accelerating distance queries on models made of
trimmed NURBS surfaces. By supplementing surface data with a surface bounding-box hierarchy
on the GPU, we answer distance queries such as finding the closest point on a curved NURBS
surface given any point in space and evaluating the clearance between two solid models constructed
using multiple NURBS surfaces. We simultaneously output the parameter values corresponding
to the solution of these queries along with the model space values. Though our algorithms make
use of the programmable fragment processor, the accuracy is based on the model space precision,
unlike earlier graphics algorithms that were based only on image space precision. In addition, we
provide theoretical bounds for both the computed minimum distance values as well as the location
of the closest point. Our algorithms are at least an order of magnitude faster and about two orders
of magnitude more accurate than the commercial solid modeling kernel ACIS.

Distance queries such as finding the minimum distance to a surface play an important role
in many computer aided design and analysis applications, including tolerancing, clearance anal-
ysis, and accessibility analysis. Minimum distance queries are especially useful while designing
complex assemblies to allow for sufficient clearance between different mechanical components.
Such queries are easily answered if the objects or models are made of planar faces and have boxy
shapes. However, modern designs make use of curved freeform NURBS surfaces. Minimum dis-
tance queries on such freeform surfaces are currently being solved by commercial solid modeling
software by first evaluating and tessellating the surface and then finding the minimum distance
to the tessellation vertices [Spatial Corporation, 2009a]. This approach, in addition to being ex-
tremely slow and computationally intensive, is dependent on the tessellation resolution for the
accuracy of the solution; the surface has to be very finely tessellated to get the required accuracy.

72

Chapter 6. Separation Distance Queries

(a) NURBS Clearance (b) Trimmed NURBS Clearance (c) Object Clearance

Figure 6.1: Minimum distance/closest point computations between NURBS surfaces and complex
CAD models accelerated using the GPU.

A technique to accelerate such slow geometric queries is to use programmable GPUs. Previous
GPU-based algorithms that render to the screen to perform these computations have restricted
accuracy corresponding to the dimensions of the pixel or window. Our framework allows for the
GPU algorithms to operate in the model space; therefore, the results of these geometric queries are
accurate to any arbitrary user-defined tolerance.

Solid modeling kernels support certain distance queries such as the minimum distance from
a point to a surface and the minimum distance between two surfaces. Applications of such dis-
tance queries include: finding the closest surface point on a surface to provide haptic feedback;
dimensioning and tolerancing of CAD models; and constructing distance fields. In this chapter, we
present an algorithm that uses our hybrid CPU/GPU framework consisting of surface bounding-
boxes to accelerate these queries. We focus on performing distance queries on objects made of
trimmed NURBS surfaces. However, our algorithms are applicable for any surface that can be
supplemented with a surface bounding-box structure. We provide theoretical bounds on the accu-
racy of both the computed minimum distance as well as the location of the closest point on the
surface, which allow for arbitrary user-defined tolerance values. This is especially important in
CAD systems since these distances might be used by the designer to define subsequent features;
the model might fail to regenerate if there is an error in the computed distance.

To perform geometric computations on NURBS surfaces or assemblies, we make use of a
surface bounding-box structure to map the computations to the GPU. We make use of Axis-Aligned
Bounding-Boxes (AABBs) constructed from an evaluated mesh of points on the NURBS surface
to accelerate the computations (Section (2.5)). The main advantage of AABBs over Oriented
Bounding-Boxes (OBBs) is that several geometric computations such as finding intersections and
distances are simpler in the case of AABBs. This is especially important because the efficiency of
GPU programs can be reduced dramatically with increases in the complexity of the parallel kernels

73

Chapter 6. Separation Distance Queries

that are used. The individual computational kernels for OBBs are more complex and contain many
branching conditions; the GPU has to wait until the most computationally intensive branch of the
kernel in a particular pass is completed before proceeding to the next pass. In addition, since
OBB kernels make use of more temporary registers, the number of computations that can be active
simultaneously on the GPU (called fragments in flight) is reduced; it is difficult to hide the memory
access latency in this case. Thus, we found that the advantage provided by tight OBBs is offset
by the increase in complexity of the algorithms that use them. We achieve better results by using
AABBs even if we must decompose the model to a finer resolution with AABBs than OBBs in
order to maintain the same tolerance bounds.

6.2 Related Work

Minimum distance computations are used by many algorithms that generate geometrical constructs
such as Voronoi diagrams and medial axis transforms. They are also used in path planning and
robot motion planning [Gilbert et al., 1988] and for projecting points onto a patch of a CAD
model [Henshaw, 2002]. Minimum distance computations on curved NURBS surface are very
time-consuming; hence, the commercial solid modeling system ACIS makes use of the tessellation
of the surface to find the closest vertex or pair of vertices while performing tolerance analysis [Spa-
tial Corporation, 2009a]. Johnson et al. [Johnson and Cohen, 1998] gave a unified framework for
minimum distance computations, which was later extended to find the closest point for haptics ap-
plications by Nelson et al. [Nelson et al., 2005]. We use a similar method that uses AABBs to find
the regions of the model that are likely to contain the closest points. However, the methods they
describe were better suited for a serial CPU implementation, since they make use of the convex
hull of the freeform surface to iteratively refine the search. In our algorithm, the distance computa-
tions and search operations are done in parallel, which is better suited for a GPU implementation.
In addition, we also provide theoretical guarantees for the solutions we compute.

Edelsbrunner [Edelsbrunner, 1985] proved that the minimum distance between two convex
polygons can theoretically be computed in O(logn). However, the algorithm used in the proof is
theoretical and has large time-constants in practice. Quinlan [Quinlan, 1994] extended the mini-
mum distance computations to non-convex objects by first performing a convex decomposition and
then using bounding spheres for the convex pieces to create a hierarchy. However, this method is
not practical for dynamic geometries since the convex decomposition might be expensive. Chen et
al. [Chen et al., 2008] compute the minimum distance between a point and a NURBS curve by sub-
dividing the curve into portions that might contain the closest point. Many minimum distance algo-
rithms use Bounding Volume Hierarchies (BVHs) to accelerate the computations. CPU algorithms
usually make use of BVHs that are more complex than AABBs. Gottschalk et al. [Gottschalk et
al., 1996] make use of OBBs to perform distance computations. Larsen et al. [Larsen et al., 2000]
perform proximity queries using a construct called a sphere swept volume, which consists of a
sphere swept over a point, line or a plane, as primitives of a BVH.

74

Chapter 6. Separation Distance Queries

Collision detection and distance field computation are two problems that are closely related to
minimum distance computations. There have been methods to effectively accelerate both using
the GPU. Occlusion queries on graphics hardware were used by Govindaraju et al. [Govindaraju
et al., 2003] to detect collisions of polygonal meshes in large environments. Greß et al. [Greß
et al., 2006] solve the collision detection problem by generating a bounding-box hierarchy for
deformable parameterized surfaces and then detect collisions by checking overlap between the
bounding-boxes using the GPU. Sud et al. [Sud et al., 2004] use the GPU to generate 3D distance
fields by first slicing the model into 2D slices and by using culling and spatial coherence to reduce
the number of distance computations in each slice. Lauterbach et al. [Lauterbach et al., 2009] use
the GPU to construct BVHs that can then be used to accelerate collision detection.

There has been only limited use of GPUs to perform geometric operations because they are
restricted to image-space resolution if the computations are to be performed by rendering on the
screen. Agarwal et al. [Agarwal et al., 2003] make use of the GPU to perform geometric com-
putations on a stream of points by using point-line duality. They compute geometric properties
such as diameter and width of a set of points. However, these algorithms are not stable for points
that are very close and are limited to image-space resolution. Hoff et al. [Hoff et al., 2001] use
the GPU to perform fast proximity queries on 2D shapes using a pixel grid to perform distance
computations, but their technique does not extend to 3D shapes. To overcome the image-space
resolution for spline intersections, researchers at SINTEF adapted the serial subdivision algorithm
to use the GPU. They accelerate the computations by using the GPU to test for intersections and
iteratively subdivide the spline patches until a prescribed accuracy is attained [Briseid et al., 2006;
Dokken et al., 2005].

Prior algorithms for proximity queries on spline models used higher-order bounding volumes
such as OBBs or swept spheres. Krishnan et al. calculate contact between spline models using a
combination of bounding volumes that include spherical shells and OBBs [Krishnan et al., 1998].
Even though these higher-order bounding volumes have low memory requirements, the individ-
ual overlap computations are more complex. We make use of an AABB hierarchy in which the
bounding boxes are not as tight as higher-order bounding volumes, but reduce the complexity of
the computations for each bounding-box pair.

Our algorithm to compute the minimum distance between objects is an hybrid CPU/GPU algo-
rithm that uses the CPU for certain computations that are inherently serial. Lauterbach et al. have
recently developed a GPU algorithm where the hierarchy traversal and primitive queries are also
performed on the GPU [Lauterbach et al., 2010]. Even though such an exclusive GPU algorithm
overcomes the CPU/GPU bottleneck, it requires newer hardware to perform certain operations
such as atomic memory writes. However, these operations are not supported by all GPU hardware
vendors; as a result, such algorithms may not be readily adopted by the CAD industry. The por-
tions of our algorithm that are performed on the CPU could also be easily ported to GPUs that
support atomic operations.

75

Chapter 6. Separation Distance Queries

6.3 Distance Queries on NURBS Surfaces

We first present distance queries that are performed on individual NURBS surfaces and later in
Section (6.5) extend them to complex objects made up of multiple curved surfaces.

6.3.1 Minimum Distance to a NURBS Surface

The first distance query we accelerate using the GPU is computing the minimum distance and the
closest point on a NURBS surface given any point in space. As a first step, we evaluate the NURBS
surface as a grid of points at a very fine resolution based on the user-defined tolerances using our
NURBS evaluator and construct surface AABBs enclosing four neighboring points. Using these
bounding-boxes and the input point, we calculate the range of distances to each bounding box as
explained in Section (6.3.2).

C
P

U
/G

P
U

 D

a
ta

 T
ra

n
s
fe

r
Min Reduce

(a) Min/Max Distances

Parallel Find

Non-Uniform

Stream

Reduction

0 0

0 1

1 0

1 2

1 3

(d) Addresses

(b) Upper bound of

Minimum Distance

(c) Bounding-Boxes

within Range

= Distance Range

0

Max KEY

Figure 6.2: Schematic of our closest point algorithm showing the inter-communication between
the CPU and GPU. The vertical bars represent the range of minimum and maximum distances from
the point to each bounding box.

76

Chapter 6. Separation Distance Queries

Figure (6.2) shows how our GPU closest point algorithm fits into our hybrid framework. We
first use the GPU to compute the minimum and maximum distance to each AABB efficiently in
parallel (Figure (6.2a)). These distances are stored using the red and green channels (the choice of
channels being arbitrary) in a min/max texture on the GPU. We then perform a parallel reduction in
logn passes on the GPU to find the bounding-box with the minimum lower value for the distance
range (Figure (6.2b)). We read back the range of this particular bounding-box. In the next pass, we
use the upper bound of this particular bounding-box as a distance cutoff to search for potentially
close bounding-boxes. We use the GPU to perform a parallel search on the same min/max texture
we computed in the first step to find all the bounding-boxes whose range overlap with the upper
bound (Figure (6.2c)). This prunes the list of bounding-boxes to search for the closest point; we
read back this smaller list by performing non-uniform stream reduction on the results of the search
(Figure (6.2d)).

Once we read back the potentially close bounding-boxes, we approximate the surface patch
inside each of the bounding boxes with two triangles formed from the evaluated surface points.
We then find the distance to each of these triangles and finally choose the one with the minimum
distance. We also find the point lying on the triangle that has the minimum distance as the closest
point on the surface. We prove theoretical error bounds for the evaluated minimum distance and
the calculated closest point in Section (6.4).

6.3.2 Minimum and Maximum Distance to an AABB

The first step of our minimum distance algorithm requires the computation of the minimum and
maximum distance between a point and an AABB. Since we want to perform these computations
in parallel for each AABB, the computations have to be efficient and optimized for the GPU.
The maximum distance can be computed in a straightforward manner by finding the vertex of the
bounding-box that is farthest from the given point. However, to compute the minimum distance,
we not only need to find the minimum distance to the vertices of the AABB but also to the faces.
The number of computations becomes prohibitively many if we have to check all the possibilities.

We make use of the fact that the bounding-boxes are axis-aligned to efficiently compute the
minimum and maximum distance. This makes the calculations simpler and unified for comput-
ing both the minimum and maximum distance simultaneously (Figure (6.3)). For computing the
maximum distance from a point O to an AABB, we compute the maximum distance along each
axis separately and finally take the L2 norm of the individual maximum distances to find the max-
imum distance (Equations (6.1) – (6.4)). However, if we extend the same method to compute the
minimum distance, we have to make sure that the individual distance components are non-zero;
if we directly subtract the half bounding-box widths, we will end up with negative distances. To
overcome this, we take the minimum distance along a particular direction as zero if it is negative
(Equations (6.5) – (6.8)).

77

Chapter 6. Separation Distance Queries

Dcx

2Bx

By

2By

O

DcyC

Bx

(a) Maximum Distance

Dcx

2Bx

2By

O

DcyC

Bx

By

(b) Minimum Distance

Figure 6.3: Efficiently computing the maximum and minimum distance between a query point O
and an AABB. The example shown here is for the 2D case, but the method can be extended to 3D.
See Equations (6.1) – (6.8).

xmax = Dcx +Bx (6.1)

ymax = Dcy +By (6.2)

zmax = Dcz +Bz (6.3)

Dmax =
√
(x2

max + y2
max + z2

max) (6.4)

xmin = max(Dcx−Bx,0) (6.5)

ymin = max(Dcy−By,0) (6.6)

zmin = max(Dcz−Bz,0) (6.7)

Dmin =
√(

x2
min + y2

min + z2
min
)

(6.8)

This formulation is efficient for GPU implementation, since it has only one branch for each
max while computing the minimum distances. We implement these equations using a single frag-
ment program and output the minimum and maximum distance to a texture using the red and
green channels. Thus, the minimum and maximum distances are computed simultaneously for

78

Chapter 6. Separation Distance Queries

all AABBs in parallel. We then use these min/max distances as the input texture for finding the
minimum distance to a NURBS surface (Figure (6.2)) as explained in Section (6.3.1).

6.4 Theoretical Bounds

In this section, we give theoretical bounds for both the computed minimum distance and the loca-
tion of the closest point on the curved surface given any point in space.

Theorem 1. (Minimum Distance Bound) The computed minimum distance does not deviate from
the theoretical minimum distance to the actual surface by more than the surface deviation value K.

Proof. Let O be the point from which we want to find the minimum distance to a curved surface
patch S showed in green in Figure (6.4). Let A1, A2, A3 be three points (of the four points used to
construct the bounding-box) evaluated on the surface. The surface can be approximated linearly
by triangle A1A2A3; the maximum deviation of the linear approximation from the curved surface
is K (Equation (2.18)). Let Q be the actual point closest to O on the curved surface and P′ be the
computed closest point on the triangle. Let P be the closest point to P′ on the surface. Since Q is
the closest point on the surface from O, OQ < OP. From triangle OPP′, by applying the triangle
inequality to the sides, we get OP < OP′+ PP′. Since the maximum deviation of the surface
from the triangle is K, distance PP′ < K. Combining these inequalities, we get OQ < OP′+K
or OQ−OP′ < K. This shows that the distance OQ, the theoretical minimum distance, cannot be
larger than the computed distance OP′ by more than K.

A1

A3

P
Q

P´

O

Q´

d

A2

Curved Surface (P, Q)

Linear Approximation (P', Q')

Figure 6.4: Illustration to prove the bound for the minimum computed distance. The actual curved
surface is shown in green while the linearized approximation is shown in orange.

79

Chapter 6. Separation Distance Queries

Now, consider the point on the triangle that is closest to Q, call it Q′. In this case OP′ <
OQ′ since P′ is the closest point on the triangle from O. Again from triangle OQQ′, we get
OQ′ < OQ+QQ′ and QQ′ < K since Q′ is the closest point on the triangle from Q. Combining
these three inequalities, we get OP′ < OQ+K or OP′−OQ < K. This shows that the theoretical
minimum distance cannot be smaller than the computed distance by K. Combining the minimum
and maximum bound on the distance, we get |OP′−OQ|< K.

Thus, from Theorem 1, we know that the theoretical minimum distance is bounded to lie within
the range (d−K,d +K), where d is the computed minimum distance. We now show how we use
this bound to prove that the location of the closest point we compute is also bounded.

2' 4P Q dK K

d-K d+K

Q

P´

O

2K

Curved Surface

Linear Approximation

Max Possible Deviation

Minimum Distance Bound

Linear Approximation Bound

K

2 2() ()

= 4

d K d K

dK

d

(a) Case 1

d-K
d+K

O

d

QP´

(b) Case 2

Figure 6.5: Illustration to evaluate the bound (Theorem 2) for the computed closest point loca-
tion when the closest point on the plane lies either (a) inside or (b) on the edge of the triangle
approximating the surface.

Theorem 2. (Closest Point Location Bound) The maximum possible distance between the com-
puted closest point and the theoretical one is

√
4Kd +K2 where d is the computed minimum dis-

tance to the surface.

Proof. From Theorem 1, the theoretical minimum distance cannot deviate from d by more than
K, i.e. OQ ∈ [d−K,d +K]. We have two possible cases: the closest point P′ computed on
the plane lies inside the triangle used to approximate the surface or it lies on one of the edges
of the triangle (see Figure (6.5(a)) and Figure (6.5(b)), which show a 2D cross-section). In the
first case (Figure (6.5(a))), the minimum distance bound restricts the theoretical closest point Q
to lie in an annular region between spheres with center O and radii d +K and d−K (marked in

80

Chapter 6. Separation Distance Queries

blue). From our tessellation bound K, we know that the actual surface lies within a region of
width 2K centered around the approximating triangle (marked in red). Thus the point Q lies in the
intersection of these overlapping regions. The maximum possible distance P′Q in this intersecting
region is

√
4Kd +K2. In the second case (Figure (6.5(b))), the approximating triangle is oriented

at an obtuse angle with respect to OP′. In this case, the maximum distance in the overlapping
region occurs only when OP′ is perpendicular to the triangle; for all other angles of rotation of
OP′, it is always less than

√
4Kd +K2.

From Theorem 2, we know that there are two possible cases. In the first case, the closest point
P′ lies inside the triangle and the bound can be computed directly to be

√
4Kd +K2. However,

in the second case, to find the maximum possible value of P′Q, we have to consider all possible
orientations of the triangle with respect to OP′. Let α denote the angle the triangle makes with
OP′; α can vary from 90◦ to 180◦ (the two extremes and a general case are shown in Figure (6.6)).
Angle α cannot be less than 90◦ because then P′ will no longer be the closest point on the triangle.
The angle subtended by P′Q at the center of the sphere, denoted by θ , monotonically decreases
from θmax to θmin, as α increases from 90◦ to 180◦. The values of θmax and θmin can be computed
to be sin−1

(√
4dK

d+K

)
and sin−1 (K

d+K

)
from Figure (6.6(a)) and Figure (6.6(b)) respectively.

When 90 < α < 180, P′Q can be computed to be
√
(d +K)2 +d2−2d(d +K)cosθ from the

cosine rule on triangle OP′Q (Figure (6.6(c))). P′Q will be maximized when the term 2d(d +
K)cosθ is minimized, since all the other terms in the expression are positive. 2d(d +K)cosθ is
minimized when θ is the maximum possible value in the range [θmin,θmax]. Thus P′Q is maximized
when θ = θmax; the extreme case is shown in Figure (6.6(a)) with maximum value of P′Q again
being

√
4Kd +K2 as shown in Figure (6.5(a)). Hence, the maximum possible distance between

the computed closest point and the theoretical one is always
√

4Kd +K2.

max

Q

P´

O

d+K

 = 90

2 2() ()

= 4

d K d K

dK

  

d-K

d

(a) Upper Limit Case

Q

O

min

d+K


P´

d-K

d

K

(b) Lower Limit Case



Q

O

d+K


P´

d-K

d

K

(c) General Case

Figure 6.6: The three different cases that can arise when the closest point computed is on the edge
of the triangle.

81

Chapter 6. Separation Distance Queries

Thus, both the computed minimum distance and the location of the closest point are bounded.
We show in the Results section that these theoretical bounds translate to realistic values that are
useful in practice. Next, we extend our minimum distance computations to compute minimum
distance between two NURBS surfaces or two complex CAD objects represented as B-reps.

6.5 Clearance Analysis

6.5.1 Minimum Distance Between Two NURBS Surfaces

We use a method similar to finding the minimum distance from a point to a surface to find the
minimum distance between two surfaces. However, it is impractical to use this method directly
because the number of distance comparisons increase as O(n2), where n is the number of AABBs
of each surface. Therefore, we make use of a method that uses bounding-box hierarchies to suc-
cessively refine the number of potentially-close bounding-box pairs. We show that this approach,
which is similar to a breadth-first search, can also be fit into our hybrid framework. We perform
the search for potentially-close bounding-box pairs in parallel at each level using the GPU.

1
0 1

2 3

0 1

2 3

Level n

Bounding Box

Hierarchy 1

Min/Max Distances

31 33

Potentially

Close AABBs

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

C
P

U
/G

P
U

 D
a

ta
 T

ra
n

s
fe

r

Non-Uniform

Stream Reduction

Parallel Search for

Potentially Close

AABB

Refine to Next

Level3

0 1

2 3

0 1

2 3

Bounding Box

Hierarchy 2

0

2

1

3

0 1

2 3

0

2

Figure 6.7: We perform minimum distance computation between two NURBS surfaces with the
help of AABB hierarchies for both the surfaces. We compute a list of potentially close bounding-
boxes at each level using the GPU and then refine on the CPU until we reach a set of potentially
close bounding-boxes at the lowest level.

We first construct surface AABBs as shown in Figure (2.4); denote these as original AABBs.
We then generate a bounding-box hierarchy by recursively combining four AABBs in a level to
get a bigger AABB of the next higher level. Thus, we construct an AABB hierarchy starting with

82

Chapter 6. Separation Distance Queries

the original AABBs and finally reaching a single, level-0 bounding box. This operation can be
effectively performed in O(logn) passes using the GPU. We store the bounding-boxes in a manner
that optimizes GPU storage space (Figure (6.7)) similar to mip-map layouts. When the model
is transformed (translated or rotated), we fit new AABBs that contain the transformed original
AABBs and rebuild the hierarchy. However, we still store and use the original AABBs for fitting
after every transformation, since if we keep only the newly fitted AABBs, the bounding-boxes will
keep growing in size.

102

104

106

108

1010

0 2 4 6 8 10

Hierarchy Level

AABBs per Surface Total AABB Pairs Potentially Close AABBs

Figure 6.8: Plot showing the actual number of AABB pairs compared during a typical minimum
distance computation. The number of pairs being tested in parallel remains almost constant after
level 3 of the hierarchy. Note logarithmic scale used for the y-axis.

We compute the minimum distance between the surfaces by recursively going down the hier-
archy and finding potentially-close bounding-boxes at the finest level of the hierarchy. We start
at level 1 of the hierarchy where we compute the minimum and maximum distance between
four AABBs from surface 1 with each of the four AABBs of level 1 from surface 2, a total of
16 minimum and maximum distance pairs. The method used for finding the minimum and max-
imum distance between two AABBs is explained in Section (6.5.2). Once we compute the set
of minimum and maximum distances, we prune those AABB pairs that are outside the min/max
distance range of the closest AABB pair, similar to our method described in Section (6.3.1). We
get a list of potentially-close AABB pairs for this level of the hierarchy at the end of the search.
We then use the GPU to map the next finer level of the hierarchy, in sets of 4×4 AABB pairs, and
repeat finding the potentially-close AABB pairs in the next finer level on the GPU (Figure (6.7)).

83

Chapter 6. Separation Distance Queries

Finally at the end of the recursion, we get a list of potentially-closest AABB pairs in the finest
or highest level of the hierarchy of both the surfaces. Using a hierarchy to prune AABBs outside
the range keeps the number of potentially-close AABB pairs almost constant. Figure (6.8) shows
that the number of pairs to be tested increases at first and after level 3 remains almost constant at
a few thousand potentially-close pairs. These computations can be done efficiently by the GPU in
parallel at each level, as seen in the Results section (Section (6.6)).

Finally, once we obtain all the potentially-closest AABB pairs at the finest level, we compute
the closest distance between the surface patches enclosed by these AABBs on the CPU. We per-
form this operation on the CPU since the list of pairs is usually small; the overhead of setting up
the GPU computations would be much higher than the potential performance gains achievable due
to GPU parallelism. We approximate each surface patch with two triangles and then compute the
minimum distance between the triangles. Similarly, we also compute the pair of closest points.

6.5.2 Minimum and Maximum Distance Between AABBs

We extend our computations described in Section (6.3.2) to compute the minimum and maximum
distance between two AABBs (Figure (6.9)). Similar to the point case, we compute the mini-
mum and maximum distance along each dimension and then calculate the overall minimum and
maximum distances (Equations (6.9) – (6.16)). As before, if any component is negative while
computing the minimum distance, we take that component as zero.

xmax = Dcx +B1x +B2x (6.9)

ymax = Dcy +B1y +B2y (6.10)

zmax = Dcz +B1z +B2z (6.11)

Dmax =
√
(x2

max + y2
max + z2

max) (6.12)

xmin = max(Dcx−B1x−B2x,0) (6.13)

ymin = max(Dcy−B1y−B2y,0) (6.14)

zmin = max(Dcz−B1z−B2z,0) (6.15)

Dmin =
√(

x2
min + y2

min + z2
min
)

(6.16)

84

Chapter 6. Separation Distance Queries

Dcx

2B1x

B1y

2B1y

Dcy
C1

B1x B2x

C2

B2y

(a) Maximum Distance

Dcx

2B1x

B1y

2B1y

Dcy
C1

B1x B2x

C2
B2y

(b) Minimum Distance

Figure 6.9: Computing the maximum and minimum distance between two AABBs. The equations
are similar to the point-AABB distance case. See Equations (6.9) – (6.16)

These equations are implemented using a fragment program on the GPU; we output the values
to the red and green channels of a texture. The distances are computed for all potentially-close
AABB pairs at a particular level in parallel and are then used for finding the potentially-close
AABB pairs in the next level as explained in Section (6.5.1).

6.5.3 Minimum Distance Between Two Trimmed NURBS Surfaces

We extend our NURBS minimum distance computations to find the minimum distance between
two trimmed NURBS surfaces. In order to address trimmed NURBS surfaces, we have to cull the
bounding-boxes that lie in the trimmed regions of the surface. We generate bounding-boxes for a
set of four points evaluated on the surface only if any of the four points lie outside the trimmed
region. Since we store the bounding-box data using two four-channel floating-point textures, we
can indicate whether the bounding-box is valid by using the fourth alpha channel in the texture. If
all the four points lie inside the trimmed region of the NURBS surface, we cull the bounding-box
by setting the alpha channel of the corresponding bounding-box texels to zero.

To perform this culling operation, we first generate a trim-texture (Section (4.6)) of the same
size as the evaluated points. This gives a one-to-one correspondence for checking whether an eval-
uated point lies inside the trimmed region. While generating the bounding-boxes for the surface
patches on the GPU, an extra test is performed to check if every set of four points lie inside the
trimmed region in the parametric space. If so, the bounding-box is culled by setting the alpha
channel to be zero; otherwise, it is set to one. Figure (6.10) shows surface bounding-boxes for
a trimmed NURBS surface that are not culled. Once we generate the bounding-boxes, we con-
struct the bounding-box hierarchy similar to the method explained in Section (6.5.1). However, we
combine only the bounding-boxes that are not culled to generate the hierarchy.

85

Chapter 6. Separation Distance Queries

Figure 6.10: Example of non-culled surface bounding-boxes for a trimmed NURBS surface. The
bounding-boxes that lie in the trimmed region are culled.

After we have generated the bounding-box hierarchy, we use the same algorithm given in Sec-
tion (6.5.1) to find a list of potentially-close bounding-box pairs. While performing the search
operation, we make sure that we do not include the bounding-boxes that are culled in the calcu-
lations. Finally, once we obtain all the potentially-closest AABB pairs at the highest level, we
approximate each surface patch with two triangles and then compute the minimum distance be-
tween the triangles. However, we have to do an additional check to make sure that the computed
closest point lies outside the trimmed region of the surface. If the point lies inside the trimmed
region, we discard the point and continue the search.

A main implication of the presence of trims is that we cannot always guarantee as tight a
tolerance for the minimum distance as in untrimmed surfaces. There are two cases where the
tolerances may be looser. The first case happens when the closest point lies on the edge of a
trim-curve. In this case, since we do not explicitly find the intersection of the trim-curves and
the surface patches that lie inside the closest bounding-boxes, the tolerances calculated for the
untrimmed surface cannot be used. However, the tolerance values are still guaranteed to be less
than the size of the bounding-box that contains the surface patch. The second case is the degenerate
case when the closest point is on an untrimmed feature that is smaller than the parametric tolerance
used for creating the trim-texture and the corresponding bounding-box is culled as a result. In this
case, since we use the same trim-texture for display, the small feature will also display as trimmed
away. When this happens, the user will get visual feedback that the model has not regenerated
correctly and can adjust the parametric tolerance accordingly.

86

Chapter 6. Separation Distance Queries

6.5.4 Minimum Distance Between Two Complex Objects

Finally, we extend our minimum distance computations between NURBS surfaces to complex
objects made up of many NURBS surfaces. CAD systems have support for this query to give
feedback about the clearance between the models in an assembly while the user is manipulating
them. However, existing systems are not interactive due to long computation times for performing
this query. We perform this query in two stages; in the first stage we find a list of potentially close
surface pairs and in the second stage we find the minimum distance between the surfaces.

Figure 6.11: A complex model and its voxel representation. We store the surfaces that intersect
with a particular voxel to accelerate the minimum distance computation.

Voxel-Based First Stage

In the voxel-based approach for the first stage, we construct a grid of voxels in the region occupied
by the object (Figure (6.11)). We then consider these voxels as individual AABBs to perform the
minimum distance computation. We create the voxel representation of the model as a preprocessing
step. We first overlay a regular voxel grid that covers the object completely. We then use the coarse
tessellation of the object that is used for display to populate the voxel grid. For each triangle in
the tessellation, we find the voxels that the triangle intersects and then add a reference in the voxel
to the surface to which the triangle belongs. Thus, each voxel has information about its minimum
and maximum point extents that define the AABB and a list of surfaces that intersect it. Since this
is done only once per object when the object is loaded for display, we perform this operation on
the CPU. In addition, since this is a linear O(n) operation, where n is the number of triangles in
the tessellation, it is fast.

As a first step in finding the closest points, we find a set of potentially-close voxel pairs by
performing a single pass of minimum distance computation. To perform this operation on the
GPU, we map the voxels from the first object to the rows and the voxels from the second object to

87

Chapter 6. Separation Distance Queries

Min/Max Distances

Map

List of Voxels

Figure 6.12: We map the list of voxels of one object to the rows and the other object to the columns
of a 2D texture to compute the minimum and maximum distances between the voxels.

the columns of a 2D texture (Figure (6.12)). We compute the minimum and maximum distances
for each voxel pair of the two objects and output these distances to the texture. This texture is then
used to find the list of potentially-close voxel pairs that lie within the range of the closest voxel pair
(as in Figure (6.2)). We perform non-uniform stream reduction to transfer address information of
the potentially-close voxel pairs to the CPU. Since each voxel has information about the surfaces
that pass through it, we can create a list of potentially-close surface pairs from these potentially-
close voxel pairs. We also make sure that there are no duplicated entries in the surface pairs list,
since the same surface can pass through many voxels in the potentially-close voxel pair list.

Surface-Based Second Stage

In the second stage, we compute the minimum distance for each surface pair in the potentially-
close surface list using our algorithm explained in Section (6.5.3) or Section (6.5.1), depending on
whether the surface is trimmed or not, respectively. We can then output the minimum distance or
clearance between the two objects as the minimum distance computed from all the surface pairs.
We also output the points on each surface as the closest points on the two objects. Even though
we use the coarse tessellation for constructing the voxel grid, we do not use it for the minimum
distance computations. Our computations are performed using the NURBS surfaces directly and lie
within the computed bounds. Hence, they are more accurate than only using the tessellation for the
computations. In the next section, we show that our algorithm performs orders of magnitude faster
than a commercial CPU-based kernel, while simultaneously achieving similar or higher accuracy.

88

Chapter 6. Separation Distance Queries

6.6 Results

We timed our GPU-accelerated distance queries on a 2.66GHz (quad-core) CPU running Windows
Vista with 4GB of RAM and an NVIDIA Quadro FX5800 with 4GB graphics memory. We com-
pare our timings to perform the geometric queries with those of the commercial solid modeling
kernel ACIS (v20).

NURBS Minimum Distance Timings

We timed our minimum distance computations between two curved NURBS surfaces by interac-
tively translating as well as rotating one surface made of 199× 33 control points relative to the
another surface made of 100×105 control points (Figure (6.1(a))). Figure (6.13(a)) shows the in-
teractive computation times recorded during the interaction; the computation times were less than
0.15 seconds for most positions, a near-interactive average frame rate of 9.07 fps. Figure (6.13(b))
shows the distance and position tolerances computed corresponding to the runs in Figure (6.13(a)).
Since these tolerance values are dependent on the model size, we report them as a fraction of the
model size in order to make them consistent with tolerance definitions used by ACIS [Corney and
Lim, 2001]; a value of 0.01 corresponds to 1% of the model size. The model size is the length of
the diagonal of the smallest AABB that will enclose the model.

Position ACIS Time (s) GPU Time (s) Speed-up

1 64.4 0.218 296x
2 65.4 0.109 600x
3 66.9 0.093 720x
4 66.2 0.171 387x

Table 6.1: Time for performing minimum distance computations between two NURBS surfaces.

We recorded the time taken by ACIS to compute the minimum distance at some arbitrar-
ily chosen positions of the NURBS surfaces relative to one another by using the API command
api check face clearance. We set the tolerance value for ACIS to be 4× 10−2, well looser than
our closest-point position tolerances reported in Figure (6.13(b)). We chose this tolerance because
we can guarantee it in our algorithm even if the closest point lies on a trim-curve edge; the toler-
ances can be guaranteed to be much tighter if the closest point does not lie on a trim-curve edge.
Table (6.1) summarizes the results of our NURBS minimum distance computations for these posi-
tions, including the positions where our algorithm was slowest (note that there is little variation in
the ACIS timings for different positions). The GPU accelerated algorithm is at least two orders of
magnitude faster than ACIS. This can be explained by the fact that ACIS first tessellates the object
to get a dense mesh of points on the surface and then performs the minimum distance computation
on these points. We on the other hand use our fast NURBS evaluator to evaluate the surface and

89

Chapter 6. Separation Distance Queries

0.00

0.05

0.10

0.15

0.20

0.25

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

Interactive Runs

1 2 3 4

(a) Computation Time

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

T
o

le
ra

n
c

e
 (

fr
a

c
ti

o
n

 o
f

m
o

d
e

l-
s

iz
e

)

Interactive Runs

Minimum-Distance Closest-Point Position

(b) Tolerance

Figure 6.13: Interactive times for evaluating the minimum distance between two NURBS surfaces
and the corresponding distance and position tolerances scaled with respect to the maximum model
size. The four positions used for ACIS timings in Table (6.1) are marked.

construct surface bounding-boxes in real time. In addition, we not only achieve better performance
but also a higher accuracy; our results have theoretical bounds that are practical for use in a CAD
system.

Operation Time (s)

NURBS evaluation 0.036
Normal evaluation 0.038
Bounding-box construction 0.019
Bounding-box hierarchy construction 0.008

Total evaluation time 0.101

AABB distance evaluation 0.027
Finding potentially close AABBs 0.045
Finding closest triangles on CPU 0.048

Total hierarchy traversal time 0.120

Total computation time 0.221

Table 6.2: Break-down of the timings for performing different operations of the minimum distance
computation algorithm.

90

Chapter 6. Separation Distance Queries

Table (6.2) lists the break-down of the timings for performing different operations while com-
puting the minimum distance between two NURBS surfaces shown in Figure (6.1(a)). It can be
seen that evaluation and hierarchy traversal operations have similar run times.

Trimmed NURBS Minimum Distance Timings

Table (6.3) summarizes the results for computing the minimum distance between two trimmed
NURBS surfaces, where the bottom surface from Figure (6.1(a)) is replaced by a trimmed version
of the same surface (Figure (6.10)). The surfaces were timed by positioning them at the same po-
sitions as in Table (6.1) and using the same tolerance of 4×10−2 for ACIS. As expected, the GPU
timings for finding the minimum distance between trimmed NURBS surfaces are slightly higher
than the timings for un-trimmed surfaces. This is because of the extra tests that are performed at
each stage to exclude the trimmed regions from the computations. However, the timings are still at
least two orders of magnitude faster than ACIS.

Position ACIS Time (s) GPU Time (s) Speed-up

1 55.9 0.234 239x
2 57.7 0.125 461x
3 59.1 0.109 542x
4 58.5 0.187 313x

Table 6.3: Time for performing minimum distance computations between two trimmed NURBS
surfaces.

Object Clearance Timings

We performed object clearance computations using the CAD models listed in Table (6.4); the
models are made of trimmed NURBS surfaces and are of approximately the same complexity as
standard CAD models used in a mechanical assembly. We used a voxel grid of 40× 40× 40 to
perform the first-stage of the minimum distance computations. The objects were also tessellated
to a coarse level that is sufficient for display; the number of triangles in this tessellation is given in
Table (6.4).

Minimum distance queries were performed between the object pairs shown in Table (6.5); the
objects were randomly positioned with respect to each other to perform the queries using both
ACIS and our GPU accelerated algorithm. We use parametric tolerances that are at least as tight as
those specified in the models are. This guarantees that we can accurately calculate the tolerances.
We used the api function call api check solid clearance to compute the minimum distances in
ACIS. It can be seen that the GPU accelerated algorithm is again at least an order of magnitude
faster than ACIS.

91

Chapter 6. Separation Distance Queries

Object Surfaces Triangles

Car Body 80 7134
Toy Car 127 17170
Scooby 157 72094
Plane 215 68696
Space Ship 631 37914

Table 6.4: Complexity of the objects used for the minimum distance computations. The number of
triangles shown is the default coarse level of tessellation used for display.

Object1 Object2
ACIS GPU Improvement

Time (s) Tolerance Time (s) Tolerance Time Tolerance

Toy Car Car Body 9.73 10−2 0.672 2.5×10−5 14x 408x
Car Body Car Body 17.34 10−2 0.439 2.2×10−5 39x 463x
Scooby Scooby 70.62 10−1 0.382 13.7×10−5 185x 728x
Plane Plane 156.03 10−1 1.501 5.2×10−5 104x 1938x
Plane Space Ship 263.01 10−1 0.794 2.9×10−5 331x 3453x

Table 6.5: Time for performing minimum distance computations between different complex ob-
jects.

6.7 Conclusions

We have developed a hybrid framework that uses GPUs to accelerate distance computations. The
results of our algorithms have theoretical bounds that are tighter than the tolerances required for
CAD. They make use of actual surface data and not just the tessellation, which make them inde-
pendent of tessellation errors. We can also compute minimum distances between trimmed NURBS
surfaces, which make the implementation of our algorithms in an existing CAD system simpler.
We also show tremendous performance improvements over existing commercial CPU-based sys-
tems.

We find that having alternating serial and parallel stages and using the map-reduce motif for
parallelism to be ideally suited for developing geometric algorithms that use the GPU. In addition,
the parallel stages can be easily modified and executed on a multi-core CPU in the absence of a
powerful GPU. Our framework provides for maximum flexibility and optimized performance in
developing fast geometric algorithms.

92

Chapter 6. Separation Distance Queries

Figure 6.14: The different pairs of objects that were timed for the minimum distance computations.

93

Chapter 7

Moment Computation

7.1 Introduction

In this chapter we present algorithms for computing accurate geometric moments of solid models
that are represented using multiple trimmed-NURBS surfaces. We have developed a framework
that makes use of NURBS surface coordinates and normals to evaluate surface integrals of trimmed
NURBS surfaces in real time. With our framework, we can compute volume and moments of solid
models with theoretical guarantees. The framework also supports local geometry changes, which
is useful for providing interactive feedback to the designer while the solid model is being designed.
We can compute the center of mass and check for stability of the solid model interactively. Ap-
plications of such real-time moment computation include deformation modeling, animation, and
physically based simulations.

Geometric moments of solid bodies are intrinsic properties of their underlying shape that can
provide important design cues to aid in Computer-aided Design (CAD). Computing moments is
also essential for physically based simulations that help in improving realism in animations. In
addition, many Computer-Aided Manufacturing (CAM) analyses depend on computing accurate
volume, center of mass, and moments of inertia. For example, a part that is fixtured close to its
center of mass will reduce unbalanced loads on the fixturing system. The moments of inertia can
be used to compute the loads that might be transferred to the fixturing system. Although designers
have an intuitive sense of the location of the center of mass and principle moments of inertia,
accurate feedback about these properties can be a valuable asset while designing. The zeroth-order
moment measures the volume enclosed by the solid body. Computing the volume of an object
helps the designer estimate the amount of raw material that might be required to manufacture the
particular part. This is essential especially in the case of molding, where the volume computation
is essential to maintain quality while manufacturing. If a mold is filled incompletely, it leads to
voids in the final part; conversely, filling a mold with excess material leads to flash that needs to be
trimmed later.

94

Chapter 7. Moment Computation

(a) Race Car (b) V8 Engine (c) Engine (d) Freeform

(e) Trefoil (f) Hammer (g) Scooby

Figure 7.1: Computing the volume and center of mass of complex objects made of multiple
trimmed-NURBS surfaces. The center of mass is marked with a green dot; the objects are ren-
dered partially transparent.

Computing accurate moments of CAD models interactively is not straightforward due to the
presence of curved freeform surfaces. Moments of objects made of such freeform surfaces are
currently being computed by commercial solid modeling software by first evaluating and tessellat-
ing the surfaces and then computing the moments of the tessellated object by projecting them to
a common plane that passes through the middle of the object [Spatial Corporation, 2009b]. This
approach, in addition to being slow and computationally intensive, is dependent on the tessellation
resolution for the accuracy of the solution; the surface has to be very finely tessellated to get the re-
quired accuracy. Recent advances in programmable GPUs provide an alternative to accelerate the
computations. We have developed a GPU-accelerated algorithm to compute moments of solid ob-
jects made of trimmed NURBS surfaces interactively. These algorithms exploit the parallelism of
the GPU to provide immediate visual feedback to the designer. The algorithm updates the moment
values interactively while the designer changes the design of the part.

In our method, we calculate moments by first converting the volume integrals for moments
to surface integrals using the divergence theorem. We then use the GPU to compute these sur-
face integrals. Thus, our algorithm is not restricted to computing moments but can be used to
compute general case surface integrals of NURBS surfaces. Computing surface integrals of free-
form surfaces form an important part of several physical simulation algorithms, including finite

95

Chapter 7. Moment Computation

element analysis. In such cases, our algorithm provides a framework to compute surface integrals
of NURBS surfaces rapidly and accurately. We have implemented different numerical integration
techniques that can be used to evaluate surface integrals of NURBS surfaces on the GPU.

7.2 Related Work

Volume and moment computations have been fundamental to many geometric applications and the
literature covering them is vast. We provide a brief summary of some key papers that are close to
our work.

Properties such as volume, moment of inertia, etc. can be classified as integral properties that
are defined by triple (volumetric) integrals over subsets of three-dimensional Euclidean space. Ini-
tial work on computing volume of curved objects by approximating them with polyhedral facets
were performed by [Messner and Taylor, 1980]. However, the errors introduced due to the ap-
proximation were not analyzed. Lee and Requicha published a two-part paper that discussed the
methods that were known up to that time for computing the integral properties of solids. In their
first paper ([Lee and Requicha, 1982a]), they summarize the methods for computing volume and
moments of solid bodies represented using Boundary Representation (B-rep), primitive instancing
etc. In their subsequent paper ([Lee and Requicha, 1982b], they focus on Constructive Solid Ge-
ometry (CSG) and propose a new algorithm based on cellular approximation using octrees. They
also predict the accuracy of their algorithm in approximating the integral properties.

Boundary Representations (B-reps) have become the de facto standard for representation of
solid models in current CAD systems. Lee and Requicha classified the different algorithms for
computing moments of B-reps as either direct integration methods or divergence theorem meth-
ods. For polyhedral models, direct integration methods can be easily applied since the integration is
performed over planes. [Cattani and Paoluzzi, 1990] developed a finite integration method for the
computation of various order monomial integrals over polyhedral solid and surfaces. This method
can be used for exact evaluation of inertial properties of homogeneous polyhedral objects. Mir-
tich [1996] developed a fast algorithm to compute moments of polyhedral objects by successively
applying the divergence theorem. [Timmer and Stern, 1980] developed a computational scheme
that operates directly on parametric bi-cubic spline patches to compute the inertial properties of
solids. Their method relied on computing the intersection curves of adjacent surfaces of the solid
accurately to compute the integral properties. For interactive applications, [Gonzalez-Ochoa et al.,
1998] developed a method to compute moments of piecewise polynomial surfaces that is based on
the divergence theorem. They outline several applications in animation where the model shape can
be changed to match the moments. However, their method relies on modeling the objects using a
particular type of cubic spline surfaces, C1-surface splines, to maintain interactivity. For graphical
animation applications that use subdivision surfaces, [Peters and Nasri, 1997] developed a method
to compute the volume of a solid enclosed by subdivision surfaces by estimating the volume of the
local convex hull near extraordinary points. [Soldea et al., 2002] developed an analytical method

96

Chapter 7. Moment Computation

for computing moments of free-form objects that use either parametric surfaces or a constant set
of trivariate functions as boundary. In their method, they compute integrals of b-spline blending
functions to compute the moments of free-form objects.

GPU geometric algorithms are currently gaining popularity due to the performance gains
achievable by using GPUs. However, algorithms to compute geometric moments were limited to
volume computations since many of them calculated the volume by rendering to the screen. [Kim
et al., 2006] use the depth buffer while rendering to the screen to compute the volume of general
shapes and use it for buoyancy simulation. [Khardekar and McMains, 2006; Khardekar, 2008] have
developed a GPU algorithm to compute the undercut volumes in molds that can then be used to
choose an optimal parting direction while using multi-part molds. GPUs were also used for solving
standard geometric problems such as surface-surface intersections [Briseid et al., 2006] and colli-
sion detection [Govindaraju et al., 2003; Kipfer et al., 2004; Kolb et al., 2004; Greß et al., 2006].
However, there has been limited use of GPUs to compute integral properties for 3-dimensional
solid bodies since algorithms that render to the screen are limited to image-space precision.

One of the advantages of developing a GPU algorithm that uses the divergence theorem is that
the integration method can also be used for the evaluation of surface integrals of polynomial forms.
These forms commonly arise in physical simulations that use Finite Element Analysis (FEA).
Scalar valued functionals, such as energy functionals, are usually evaluated as surface integrals;
they can be used to measure the quality of surfaces [Kobbelt, 1997]. Recently, researchers at the
University of Wisconsin have developed a method of analyzing 3-D beams by performing surface
integration over the boundary of the beam [Samad and Suresh, Accepted 2010; Jorabchi et al.,
2009].

On analyzing the related work in the field, we find that even though numerous methods for com-
puting moments and surface integrals exist, there has been only limited analysis on the accuracy
of the computations. In addition, there has been limited work on parallelizing the computations to
improve their performance. We will try to address both these issues in this work.

7.3 NURBS Surface Bounds

Our moment computation algorithms build on our previous work on GPU NURBS evaluation and
modeling. In our NURBS modeling work, in order to bound the errors, we find the maximum
possible deviation K of a curved surface from the linearized approximation. These bounds were
explained in detail in Section (2.5). We use this constant K in computing the bounds for our
algorithms.

Given any three nearby points evaluated on the surface using the uniform grid of size n×m, we
can approximate the surface linearly using the triangle formed using these points (Figure (7.2)).
We can also bound the coordinates of the curved surface with two parallel triangles that are at a
distance K from the linear approximation, since the maximum possible deviation of the surface is
K.

97

Chapter 7. Moment Computation

A1

A3

A2

Curved Surface

Linear Approximation

Maximum Deviation

Figure 7.2: The maximum possible deviation of the actual surface from a linear approximation is
K. In this case, the surface is bounded by two parallel triangles that are at a distance K from the
linear approximation.

7.4 Mathematical Formulation

In this section, we briefly explain the mathematical formulations required for moment computa-
tions; for a more detailed explanation please refer to [Rudin, 1976]. We make use of Gauss’s
divergence theorem to convert volume integrals to an integral over the boundary surface of the vol-
ume. The divergence theorem is a special case of the generalized n-dimensional Stokes’ theorem
that is restricted to three dimensions.

Theorem 3. (Divergence Theorem) Given a vector field f defined over a closed bounded region,
V ⊂ ℜ3, whose boundary is a piecewise smooth orientable surface S, the volume integral of the
divergence of f over V equals the surface integral of the normal component of f over S.

∇ · f = ∑
∂ fi

∂xi
(7.1)

∫
V

∇ · fdV =
∫

S
f · n̂dS (7.2)

98

Chapter 7. Moment Computation

Equations (7.2) formalizes the statement of the divergence theorem. However, as noted by the
theorem statement, the theorem is applicable only if both the vector field f and the region V satisfy
some basic conditions. The vector field must be continuous and have continuous first partial deriva-
tives in the region containing V . In addition, V itself should be closed and its boundary surfaces
must be orientable and piecewise continuous. The piecewise continuous surface condition expands
the applicability of the theorem to many practical 3-dimensional objects, since it overcomes the
limitation of having undefined normals at sharp edges of objects. The divergence theorem is appli-
cable to any 3-dimensional object as long as it has only 2-manifold surfaces. Using the divergence
theorem, we can convert volume integrals, which are difficult to evaluate for complex solid objects
made of multiple trimmed NURBS surfaces, to surface integrals that can be easily evaluated over
the NURBS surfaces.

The evaluations of surface integrals require the calculation of surface normals. We will briefly
present the equations for evaluating NURBS derivatives and normals in Section (7.4.1); please
refer to [Piegl and Tiller, 1997] for more details.

7.4.1 Evaluation of NURBS Normals

Recall that the parameterized NURBS surface can be represented as a 3-component vector (Equa-
tion (7.3)) which is evaluated as the 4-component vector shown in Equations (7.4). The N p

i s and
Nq

j s are the B-spline basis functions of degree p and q respectively; the (xi j,yi j,zi j,wi j) coordinates
are the NURBS control points defined as a quadrilateral mesh.

S(u,v) =
X
w
,X =

 x
y
z

 (7.3)



x

y

z

w


=



∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)xi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)yi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)zi j

∑
n
i=0 ∑

m
j=0 N p

i (u)N
q
j (v)wi j


(7.4)

Given a NURBS surface, we can evaluate the partial derivatives and normals; Equation (7.5)
gives the partial u-derivative for the NURBS surface that is evaluated from the derivatives of the
basis function of degree p with respect to u, represented as N p

i,u(u). The partial derivative of the
surface with respect to v can also be evaluated in a similar manner. In this work, we assume all
the weights (w) are positive and hence no poles can occur in S or its partial derivatives. Finally,

99

Chapter 7. Moment Computation

the normal to the surface is evaluated as the cross-product of the u and v partial dervatives (Equa-
tion (7.7)).

S,u(u,v) =
X,uw−Xw,u

w2 (7.5)



x,u

y,u

z,u

w,u


=



∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)xi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)yi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)zi j

∑
n
i=0 ∑

m
j=0 N p

i,u(u)N
q
j (v)wi j


(7.6)

n(u,v) = S,u(u,v)×S,v(u,v) (7.7)

7.4.2 Surface Integrals of Parametric Surfaces

Surface integrals of parametric surfaces are straightforward to compute due to the presence of an
underlying 2-dimensional parameterization. We can convert the surface integrals to integrals over
the parametric domain by changing the variables. In Equation (7.8), P represents the parametric
(u,v) domain and J is the Jacobian for the transformation. It can be shown that the Jacobian
can be computed to be numerically equal to the length of the normal of the parametric surface
(Equation (7.9)). ∫

S
dS =

∫
P
|J| dP (7.8)

|J|= |n| (7.9)

The volume integrals simplify with the application of the divergence theorem as given by Equa-
tion (7.10). In particular, for NURBS surfaces, the parametric domain is a square domain with the
(u,v) range [0,1]× [0,1] and dP can be replaced with the product dudv.

100

Chapter 7. Moment Computation

∫
V

∇ · fdV =
∫

S
f · n̂dS

=
∫

P
f · n̂ |n| dP

=
∫

P
f ·ndP

=
∫

P
f ·ndudv

(7.10)

7.4.3 Moments of Solid Bodies

By choosing appropriate vector functions for f, we can compute the moments of solid bodies with
uniform densities. By applying the divergence theorem to the solid body, we can compute the
moments by computing the contribution of each surface and sum the results. In Equation (7.11),
Pi represents the parametric surfaces that make up the solid body.∫

V
∇ · fdV = ∑

i

∫
Pi

f ·ndudv (7.11)

By setting ∇ · f = 1, we get the zeroth-order moment, M0, the volume of solid body. However,
there are many different choices for f that satisfies this condition. One option is to choose f as
shown in Equation (7.12).

M0 = ∑
i

∫
Pi

 0
0
z

 ·ndudv = ∑
i

∫
Pi

znz dudv (7.12)

The first-order moments, defined by Equations (7.13)–(7.16), can also be computed by care-
fully choosing f. For example, in order to compute the first-order moment Mx, we need to set
∇ · f = x. Similar to the volume computation case, there are several choices for f that satisfy this
requirement; we choose the x and y components to be both 0, and the function xz for the z com-
ponent. The other first-order moments can be computed in a similar manner. The center of mass
CM of the object is computed by dividing the first-order moments by the volume of the object
(Equation (7.17)).

M1 =

 Mx
My
Mz

=


∫

V xdV∫
V ydV∫
V zdV

 (7.13)

101

Chapter 7. Moment Computation

Mx = ∑
i

∫
Pi

xznz dudv (7.14)

My = ∑
i

∫
Pi

yznz dudv (7.15)

Mz = ∑
i

∫
Pi

(
z2

2

)
nz dudv (7.16)

Cm =

 Cx
Cy
Cz

=

 Mx/M0
My/M0
Mz/M0

 (7.17)

The second-order moments form the components of the inertia tensor, I, given by Equa-
tion (7.18). The components of the inertia tensor can be computed using Equations (7.19)–(7.24).

I =


Myy +Mzz −Mxy −Mxz

−Mxy Mxx +Mzz −Myz

−Mxz −Myz Mxx +Myy



=



∫
V (y

2 + z2)dV −
∫

V xydV −
∫

V xzdV

−
∫

V xydV
∫

V (x
2 + z2)dV −

∫
V yzdV

−
∫

V xzdV −
∫

V yzdV
∫

V (x
2 + y2)dV



(7.18)

Mxx = ∑
i

∫
Pi

x2 znz dudv (7.19)

Myy = ∑
i

∫
Pi

y2 znz dudv (7.20)

Mzz = ∑
i

∫
Pi

(
z3

3

)
nz dudv (7.21)

102

Chapter 7. Moment Computation

Mxy = ∑
i

∫
Pi

xyznz dudv (7.22)

Myz = ∑
i

∫
Pi

y
(

z2

2

)
nz dudv (7.23)

Mxz = ∑
i

∫
Pi

x
(

z2

2

)
nz dudv (7.24)

7.5 Moment Computation Algorithm Overview

We first give a broad overview of our algorithm that makes use of the theoretical formulation
explained in Section (7.4). Given a solid object that is made of multiple trimmed NURBS sur-
faces, we compute the total moment by summing the moment contribution from each surface
(Figure (7.3)). If the surface is a flat plane, we directly compute its moment contribution by using
the triangulation of the plane. If it is a NURBS or a trimmed NURBS surface, we compute its
moment contribution by performing surface integration using our GPU algorithm. It must be noted
that the surfaces of the object must be 2-manifold for the computed moments to be valid. How-
ever, the main advantage of computing the moments from surface integrals is that the algorithm is
robust in handling the small gaps between trimmed surfaces that exist in a “tolerant” solid model,
since we do not evaluate points on the edges. Tolerant solid modeling provides a framework that
seamlessly covers these small gaps; any two points that lie within a user-defined tolerance is taken
to represent the same point. This is required to interpret the model as being watertight when it has
many trimmed-NURBS surfaces that vary in parameterization along their common edges.

Figure 7.3: We decompose the object into individual boundary surfaces and then compute the
moment contribution from each surface.

103

Chapter 7. Moment Computation

GPU NURBS Evaluator

C
P

U
/G

P
U

T

ra
n
s
fe

r

Multiplication

Reduction

Surface Pointsu Evaluation Points

v Evaluation Points

Trim TextureError

Moments

Surface Normals

Reduction

Figure 7.4: Overview of our surface integration algorithm. The u and v evaluation parameters
are chosen based on the number of sub-patches the NURBS surface is divided into and the type of
integration scheme.

Figure (7.4) gives an overview of our GPU surface integration algorithm. We divide each
NURBS surface into sub-patches equal to the number of knot-intervals in each parametric direc-
tion; we call this the base number of sub-patches. Based on the number of sub-patches and the
type of integration scheme used, we create a vector of u and v parametric positions where we
want to evaluate the surface and normals. If it is a trimmed NURBS surface, we also generate a
trim-texture (Section (4.6)) based on the number of sub-patches. We then compute the moment
contribution from each patch by multiplying the corresponding functions for moments with the
integration weights. Finally, we compute the sum of all the sub-patch moment contributions to get
the moment contribution of the surface.

7.5.1 GPU Implementation

Once we have evaluated the surface coordinates and normals at the integration points using our
GPU NURBS evaluator, we compute the moment contribution of each surface sub-patch in par-
allel using the GPU. We compute four moment values simultaneously, since GPUs are optimized
for simultaneously computing values using four RGBA channels. For example, we compute the

104

Chapter 7. Moment Computation

volume and the three first moments simultaneously in a single pass. We compute the moment
contribution for each sub-patch by multiplying the moment functions with the integration weights.
The moment functions are polynomial functions of the surface coordinates that correspond to the
moment being computed; they are given by the corresponding equations in Section (7.4.3). The
integration weights are based on the type of integration used (Section (7.6)). Once we have com-
puted the individual contributions of each the sub-patches, we sum the values to get the surface
moments by using GPU reduction.

We make use of Cg shader programs to implement the GPU operations to perform the mo-
ment computations and reductions. This is because we found in our preliminary testing that our
shader programs provide better performance for NURBS evaluations compared to our optimized
CUDA implementation of the same algorithm(Section (4.8.1)). In addition, making use of shader
programs to perform these operations makes our implementation cross-platform and backwards-
compatible; our implementation can run on both NVIDIA and AMD GPUs.

7.6 Numerical Surface Integration of NURBS

We compute the surface integrals of NURBS surfaces numerically using the Gaussian quadrature
rule. In numerical analysis, a quadrature rule approximates the definite integral of a function
using a weighted sum of function values at specified points within the domain of integration. An
n-point Gaussian quadrature rule yields an exact result for the integration of polynomials up to
degree 2n− 1 with suitable choice of points ti and weights wi (Equation (7.25)). The domain of
integration for such a rule is conventionally taken as [−1,1]; however, the domain can be easily
changed to any value by using a dummy variable for integration (Equation (7.26)).∫ 1

−1
f (t)dt ≈

n

∑
i=1

wi f (ti) (7.25)

∫ b

a
f (t)dt ≈ b−a

2

n

∑
i=1

wi f
(

b−a
2

ti +
b+a

2

)
(7.26)

We can extend the quadrature rules to compute 2-dimensional integrals by having two weights;
one for each direction. The integration rule can then be modified as given by Equation (7.27). As
in the 1-dimensional case, the domain of integration is [−1,1]× [−1,1]; this can be converted to
any rectangular domain by changing the integration variables.∫ 1

−1
f (t)dt ≈

n

∑
i=1

n

∑
j=1

wi w j f (ti j) (7.27)

In the following sections, we provide details of the weights and evaluation points for perform-
ing 1-point, 2-point, and 3-point Gaussian quadrature integration of NURBS surfaces.

105

Chapter 7. Moment Computation

7.6.1 1-point Gaussian Quadrature Scheme

The 1-point quadrature (mid-point scheme) is the simplest of the numerical integration schemes. It
approximates the integral value with a single point that is evaluated at the center of the integration
domain. The standard weight used for the point is 4.0 for the 2-dimensional case (Equation (7.28)).
This being the simplest rule for integration, it can only integrate accurately up to degree 1 or linear
polynomials. ∫ 1

−1
f (t)dt ≈ 4 f (0,0) (7.28)

Evaluation Point Surface sub-patch

Figure 7.5: Location of evaluation points in the parametric domain for computing the surface
integrals using the mid-point integration scheme.

Figure (7.5) shows how we can use the mid-point scheme to integrate over the surface of a
NURBS patch. For integrating over the surface of a NURBS patch, we divide the parametric
domain into sub-patches along the u and v parametric directions. For each sub-patch, we evaluate
the function at its midpoint; we perform the required change of variable implicitly. The mid-point
scheme is not accurate enough in computing the surface integrals in many practical cases; however,
it can be used to get a rough approximation for the solution since it is easy to evaluate. Another
important advantage is that the mid-point scheme can be implemented on the GPU using uniform
grid spacing; the evaluation points are spaced uniformly along both the u and v directions in the
parametric domain.

106

Chapter 7. Moment Computation

7.6.2 2-point Gaussian Quadrature Scheme

Solid models that are created using popular CAD systems such as SolidWorks are usually com-
posed NURBS surfaces that are bi-cubic. In order to compute the volume accurately for such
solid models, we need to use the 2-point quadrature scheme. Implementing the 2-point quadrature
scheme is slightly more involved than the mid-point scheme since the spacing between the eval-
uation points is not uniform. However, the weights used are constant and they are equal to 1.0;
the sum of the weights of the four evaluation points is 4.0. The evaluation points in the normal-
ized [−1,1] domain are −1/

√
3 and 1/

√
3. Equation (7.29) expands the integration terms for the

2-dimensional case.

Evaluation Point Surface sub-patch

0.
57

7
0.

21
1

0
.2

11

0.5770.211 0.211

ti

tj

Figure 7.6: Distribution of evaluation points in the 2-point Gaussian quadrature integration
scheme. All the four integration points have a uniform weight of 1.0.

∫ 1

−1
f (t)dt ≈ f

(
−1√

3
,
−1√

3

)
+ f

(
−1√

3
,

1√
3

)
+ f
(

1√
3
,
−1√

3

)
+ f

(
1√
3
,

1√
3

) (7.29)

107

Chapter 7. Moment Computation

Figure (7.6) gives the fraction of the intervals between the evaluation points in a single sub-
patch of the NURBS surface. The evaluation points are positioned symmetrically with respect to
both the u and v directions inside the sub-patch. Figure (7.7) gives an example of the position
of the evaluation points in a complete NURBS surface. In this example, the NURBS surface is
divided into 4×5 sub-patches in the u and v directions respectively. The marked points’ paramet-
ric positions are sent as a vector to the GPU evaluator and are then used to evaluate the surface
coordinates and normals.

Evaluation Point Surface sub-patch

Figure 7.7: Example of the evaluation points’ location in the parametric domain for computing
the surface integrals using the 2-point Gaussian quadrature integration scheme.

7.6.3 3-point Gaussian Quadrature Scheme

Computing the higher order moments accurately in a solid model consisting of bi-cubic NURBS
patches requires the 3-point quadrature scheme. Computing using the 3-point scheme requires the
calculation of different weights for the different evaluation points. The parametric positions, tis,
of the evaluation points and their corresponding weights, wis, are given by Equation (7.31). The
definite integral in the canonical domain is approximated by the double-sum of the product of the
weights and the integrand evaluated at the corresponding points. It can be noted that there are nine
evaluation points in the 2-dimensional case; the sum of the product of the weights (∑ wi w j) is 4.0.

∫ 1

−1
f (t)dt ≈

3

∑
i=1

3

∑
j=1

wi w j f (ti, t j) (7.30)

108

Chapter 7. Moment Computation

t1 =−

√(
3
5

)
, w1 =

5
9

t2 = 0, w2 =
8
9

t3 =

√(
3
5

)
, w3 =

5
9

(7.31)

40/81

0.113 0.387 0.1130.387

64/81

25/81

0.
38

7
0.

11
3

0.
38

7
0.

11
3

Evaluation Point Surface sub-patch

ti

tj

Figure 7.8: Distribution of evaluation points in the 3-point Gaussian quadrature integration
scheme. The size of the integration point indicates its relative weight; the weights are also in-
dicated next to the points. The sum of all the weights equals 4.0.

Figure (7.8) gives the location of the 9 evaluation points as a fraction of the sub-patch size. The
size of the evaluation point indicates its relative weight. The center point has the maximum weight
followed by the 4 points near the edge midpoints; the 4 corner points have the least weight.

109

Chapter 7. Moment Computation

7.6.4 Surface Integrals of Trimmed NURBS

We compute the surface integrals of trimmed NURBS in two stages. In the first stage, we treat
them as un-trimmed surfaces and compute the moment contribution of each sub-patch using the
methods explained in Section (7.6). We classify the sub-patches into three different cases: inside,
outside or on the boundary of the trim curves. If the sub-patch lies inside a trimmed region, its
contribution to the total surface integral is taken to be 0. Similarly, if the sub-patch lies outside the
trimmed region, its contribution to the surface integral is taken as 1. The contribution for all the
sub-patches that lie on the boundary of the trim-curves is weighted by the fraction of the sub-patch
that lies outside the trimmed region.

Evaluation Point Surface sub-patch

0.
57

7
0.

21
1

0
.2

11

Trim-texture Point

0.5770.211 0.211

ti

tj

Figure 7.9: Example of the distribution of the trim-texture points for a case with 4 points in each
parametric direction. The 2-point Gaussian quadrature integration scheme evaluation points are
also shown for comparison.

In order to perform the weighting operation, we generate a trim-texture on the GPU by using the
method we described in Section (4.6). Recall that this binary texture has the value 0 in the trimmed
regions (and only the trimmed regions) of the surface in the parametric domain. In order to obtain
an accurate value for the moments, we set the height and width of the trim texture to be three or
four times the number of sub-patches that will be evaluated in that dimension. We find the fraction

110

Chapter 7. Moment Computation

of the number of points that lie outside the trimmed region in a given sub-patch and multiply the
moment contribution of the sub-patch with this fraction. This is similar to oversampling used
in computer graphics for obtaining sub-pixel accuracy while rendering. Figure (7.9) shows an
example where the trim texture is evaluated 4 times more densely than the number of sub-patches
in each of the u and v parametric directions. This leads to a total of 16 positions inside the sub-
patch where the trim is evaluated. The moment contribution of the patch is multiplied with the
fraction of the number of points that lie outside the trimmed region.

7.7 Error Analysis

In this section, we derive estimates for the error in computing the volume of a solid body; this
analysis can be extended in a similar manner to compute the error in higher-order moments. Com-
puting the errors in a Gaussian integration scheme directly is difficult since it involves computing
the 2n-order derivative for an n-point integration scheme. A known simpler method is to compute
the error as the difference between two different Gaussian integration schemes. It can be shown
that this is a good estimate for the error since the integration value converges to the theoretical
value as the order of Gaussian integration is increased. However, the surface integrals have to be
evaluated twice using different orders of integration in this method. In our case, we estimate the
error in the integration by computing the bounds for the coordinates used for the integration; the
bounds are compued from the maximum possible deviation of the surface from a linear approxi-
mation. Using this method, we compute the error in the volume of several practical CAD models
in Section (7.8).

In our method, for each surface sub-patch, we find the second partial derivatives of the surface
as explained in Section (2.4). We then compute the maximum deviation K for each surface sub-
patch based on the maximum second partial derivative. This gives the maximum deviation in
the coordinates used for the surface integration. By neglecting higher order error terms, we can
show that the error in volume computation can be calculated approximately using Equation (7.32).
Intuitively, this error estimate measures the maximum possible deviation of the volume from the
polyhedral approximation of the NURBS surface. It can be shown from Figure (7.2) that this error
estimate measures the volume between the two parallel planes that are located at a distance K from
the linear approximation.

∆M0 ≈∑
i

∫
Pi

|∆znz | dudv

≤∑
i

∫
Pi

|2K nz | dudv
(7.32)

We calculate this error simultaneously while computing the moment values. For each sub-
patch in the surface, we compute the value of K and store it in a separate texture. While computing

111

Chapter 7. Moment Computation

the moments, we compute the error terms for each sub-patch. We then perform the multiplication
and reduction operations just as for the moment computations explained in Section (7.5.1). Finally,
after summing all the error contributions from each sub-patch, we get the total error for the surface.
We perform the same operations on all the surfaces to get the total error in the volume of the solid
object. In case of trimmed-NURBS surfaces, we consider only the error contributions from those
sub-patches that lie outside the trimmed region.

7.8 Results

We timed our GPU-accelerated queries on a 2.40GHz CPU (dual core) running Windows XP with
3GB of RAM and an NVIDIA GeForce 9600M GT GPU with 256MB graphics memory. First, we
discuss the accuracy of our algorithm by using it to compute moments of trimmed-NURBS solid
models whose volume can be calculated theoretically. Next, we vary our integration schemes and
the number of sub-patches used for the integration and check for the convergence of the solution.
Finally, we compare the actual values of volume and center of mass of complex CAD models with
the moment values obtained using ACIS; we also compare the time for the computations.

7.8.1 Accuracy of the Integration

Since the exact value for the moments are very difficult to obtain for complex models, we tested
the accuracy of our integration on a single NURBS patch of a quarter cylinder. We chose a cylinder
since we can accurately compute its theoretical volume and center of mass for comparison, yet it
is non-trivial for our GPU algorithm to evaluate since it is a rational surface. In addition, the cylin-
der was placed horizontally in the coordinate system to make sure the moment contributions from
the cylindrical surfaces are not zero (Figure (7.10(a))). As expected, the higher order quadrature
schemes provide a more accurate answer, particularly with smaller numbers of sub-patches (Fig-
ure (7.11(a))).

(a) Quarter Cylinder (b) Slanted Cylinder Block

Figure 7.10: Solid models used for measuring the accuracy of our moment computation algorithm.
The model on the right consists of a slanted cylinder cut out from a rectangular parallelepiped.
The models are rendered using transparency to show inside surfaces.

112

Chapter 7. Moment Computation

In order to assess the accuracy of our algorithm with the presence of trimmed NURBS surfaces,
we constructed a solid object consisting of a block with a slanted cylindrical section cut from it
(Figure (7.10(b))). We can theoretically calculate the volume and center of mass of this object
since the slanted cylinder is still a prism with a circular base. Figure (7.11(b)) shows the accuracy
as a function of the number of patches per knot interval used for evaluating each NURBS surface.
We set the number of sub-patches equal to the number of knot intervals in the respective u and v
parametric direction of the NURBS surface as a first level of subdivision; the total base number of
sub-patches for this model being 128.

0.97

0.98

0.99

1.00

1.01

0 10 20 30 40 50

N
o

rm
a
li
z
e
d

 V
o

lu
m

e

Sub-patches per knot interval

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

(a) Quarter Cylinder

0.97

0.98

0.99

1.00

1.01

0 2 4 6 8 10

N
o

rm
a
li
z
e
d

 V
o

lu
m

e

Sub-patches per knot interval

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

(b) Slanted Cylinder Block

Figure 7.11: Graphs showing the accuracy of our volume computation algorithm for two cases
whose volume can be theoretically computed. The volume is normalized with respect to the theo-
retical volume. The x-axis for the graphs shows the number of sub-patches per knot interval used
for integration of each NURBS surface. It can be noted that the 2 and 3-point quadrature schemes
give exact results with very few sub-patches.

7.8.2 Volume and Error Analysis of CAD Objects

In order to test the applicability of our algorithm to realistic solid models, we computed the volume
of several CAD models with multiple trimmed NURBS surfaces. For comparison, we calculated
the volume of the models using ACIS with accuracy 0.01 measured as a fraction of the computed
moment. The ACIS algorithm does not have a bound on the precision of the mass properties
because of hard-coded convergence criteria in their functions [Spatial Corporation, 2009b]. If
the accuracy does not meet the requested value, they tighten the convergence criteria and repeat
the calculation. However, if the mass properties remain unchanged, they are as close as can be
achieved by their algorithm. In our algorithm, we estimate the error in the volume while using
2-point or 3-point quadrature integration as explained in Section (7.7).

113

Chapter 7. Moment Computation

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0 2 4 6 8 10

N
o

rm
a
li
z
e
d

 V
o

lu
m

e

Sub-patches per knot interval

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 2 4 6 8 10

E
s
ti

m
a
te

d
 E

rr
o

r

Sub-patches per knot interval

2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

(a) Hammer

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0 2 4 6 8 10

N
o

rm
a
li
z
e
d

 V
o

lu
m

e

Sub-patches per knot interval

1-Point Quadrature 2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 2 4 6 8 10

E
s
ti

m
a
te

d
 E

rr
o

r

Sub-patches per knot interval

2-Point Quadrature 3-Point Quadrature

2 2 2 2 2 2

(b) Freeform

Figure 7.12: Graphs showing the convergence of our volume computation algorithm for the
“Hammer” and “Freeform” models. The volume is shown as a fraction of the volume computed
by ACIS. The x-axis shows the number of sub-patches per knot interval used for the integration,
the base number of sub-patches being 3859 and 4096 for the “Hammer” and “Freeform” models
respectively. The orange band indicates the ACIS error bounds. Note logarithmic scale in the
y-axis of the error graphs.

We computed the volume of these objects using 1-point, 2-point, and 3-point quadrature by
varying the number of sub-patches that are used for the integration of each NURBS surface. As
before, we set the base number of sub-patches equal to the number of knot intervals in the respec-
tive u and v parametric direction of the NURBS surface. Figure (7.12) shows the convergence in
the volume computation for the respective solid models shown in Figure (7.1).

114

Chapter 7. Moment Computation

7.8.3 Moment Computation Results

We compared the results for evaluating the volume and center of mass of different CAD objects
that were made of multiple trimmed-NURBS surfaces using both our GPU algorithm and ACIS.
Table (7.1) gives the complexity of the objects based on the number of surfaces that make up each
object. Please note that the “Scooby” model has the highest percentage of NURBS surfaces while
the “Race Car” has the least percentage of NURBS surfaces. It can be seen that our algorithm is
most effective when the object is made up of a large number of NURBS surfaces.

Object Total Surfaces NURBS Trimmed
Scooby 157 116 89

Trefoil 4 4 0

Freeform 2 1 1

V8 Engine 931 87 36

Engine 580 16 12

Race Car 1076 49 42

Table 7.1: Complexity of the different models showing the distribution of trimmed NURBS sur-
faces.

Object
GPU ACIS

Volume Estimated Volume
Error Fraction

Time (s) Volume Time(s)

Scooby 1.99516×108 6.248×10−2 1.516 1.99601×108 15.547

Trefoil 8.57171×106 4.658×10−3 0.063 8.57174×106 0.175

Freeform 9.79816×105 1.251×10−3 0.015 9.82948×105 0.718

V8 Engine 9.97957×106 1.933×10−6 1.188 9.99160×106 5.078

Engine 1.29932×105 1.000×10−5 0.235 1.30284×105 0.922

Race Car 1.83031×109 5.534×10−5 0.703 1.83799×109 4.140

Table 7.2: Volumes computed by our GPU algorithm and ACIS for different CAD models. Our
values were computed using the 2-point quadrature scheme with 22 sub-patches per knot interval
for each surface. The errors were estimated using our method explained in Section (7.7). The ACIS
error bound was set to be 0.01

115

Chapter 7. Moment Computation

Table (7.2) summarizes the results of the volume computations. However, it should be noted
that neither the ACIS mass properties function nor our GPU algorithm have been optimized for
performance. In addition, the time taken by our GPU algorithm includes the time for evaluating
all the NURBS surfaces, which takes the largest percentage of the total time (≈ 90%). The values
were computed using the 2-point quadrature scheme with two sub-patches per knot interval in both
parametric directions. It can be noted that our GPU algorithm computes accurate moments with
low estimated errors.

Table (7.3) gives the magnitude of the difference between the center of mass values computed
by our GPU algorithm and ACIS as a fraction of the model size. The model size is computed as
the largest dimension of the axis-aligned bounding-box that encloses the model.

Object Object Size
Difference Fraction

x y z

Scooby 2037.02 5.32×10−5 2.47×10−4 7.40×10−5

Trefoil 792.46 3.71×10−7 3.87×10−7 6.01×10−7

Freeform 494.18 4.86×10−6 1.36×10−4 1.40×10−5

V8 Engine 753.57 5.11×10−4 5.29×10−4 1.13×10−3

Engine 158.14 4.23×10−5 6.91×10−4 5.44×10−4

Race Car 5085.59 2.02×10−4 1.77×10−5 2.93×10−4

Table 7.3: Difference between the center of mass values computed by our GPU algorithm and
ACIS for different CAD models expressed as a fraction of the model size. Our values were computed
using the 2-point quadrature scheme with 22 sub-patches per knot interval for each surface.

An advantage of our GPU algorithm is that the updates to the volume and center of mass due
to changes in a single surface can be performed interactively. For example, the GPU algorithm
computes the volume and the center of mass for the “Freeform” model in less than 0.02s. This
means that even though the initial moment computation for complex models takes more than a
second, the moment values can be updated up to 50 times per second while interactively editing
the solid model.

7.9 Conclusions

We have developed a framework that uses GPUs to accelerate moment computations. Our moment
computations can be performed interactively, while the model is being edited. Our algorithms have
error estimates and they are based on object-space resolution instead of just image-space resolution.
They make use of actual surface data and not just the tessellation, which make them independent

116

Chapter 7. Moment Computation

of tessellation errors. We also show significant performance and accuracy improvements over an
existing commercial CPU-based system.

Our GPU-based surface integration algorithms can be extended for use in analysis tools such as
FEA. Accurate and fast surface integration will aid in interactive analysis of complex objects that
will provide functional feedback to the designer. Such functional feedback will reduce the design
lead time of a component, ultimately resulting in significant cost savings.

117

Chapter 8

Conclusions and Future Work

General purpose GPU computing has grown tremendously in the last few years. GPUs are currently
being used to accelerate computations in a variety of fields ranging from advanced simulations to
financial analysis. We have contributed to this nascent field by developing new GPU algorithms
for mechanical CAD. Our algorithms improve the performance of fundamental CAD operations,
thereby enabling interactive feedback to the designer.

Many of the challenges that we have addressed in our algorithms for CAD are frequently
encountered in GPU programming. Some of our algorithms can be directly extended to similar
problems in design and analysis such as collision detection and simulations.

In Section (8.1), we outline some direct extensions of our work. Our main contributions are
summarized in Section (8.2).

8.1 Future Research Directions

8.1.1 Collision Detection

Our surface-surface intersection algorithm makes use of hierarchical bounding-box structure on
the GPU. This data-structure can be used for detecting collisions efficiently. Our algorithm can be
easily extended to develop a fast static collision detection system. Our implementation employs an
efficient method to map the hierarchical structure to the GPU memory architecture that provides
optimum performance. This mapping can be extended to perform collision detection at each level
of the hierarchy, where the collision tests could be performed efficiently using GPU kernels.

Another application of our minimum distance computations is continuous collision detection.
We can use the minimum distance and its direction vector to compute the maximum distance an
object can be moved safely without collisions in an interactive system. The speed of our computa-
tions will enable such a system to be interactive even with complex CAD objects. Such continuous
collision detection systems are invaluable to designers while simulating the product assembly pro-
cess.

118

Chapter 8. Conclusions and Future Work

8.1.2 Optimization

Another related field where our algorithms could be directly used is in the field of optimization.
Optimization methods usually make use of higher dimensional surfaces that correspond to the
constraints of the optimization. These constraint surfaces are often approximated with polynomial
spline surfaces. Our NURBS evaluator could be used to evaluate such arbitrary degree spline
surfaces. In addition, our evaluation algorithm could be easily extended to higher dimensions by
using multiple textures and render targets. Using our evaluator provides a method to sample large
parts of the constraint surface in a fast manner.

Another related problem in optimization is finding the closest point on the constraint surface
given any point that is in the feasible region of the configuration space. Our minimum distance
computations could be extended to find the closest point to a surface in higher dimensions. This is
especially useful in algorithms that need to find the closest point on a constraint surface in higher
dimensions.

8.1.3 Design Analysis

Our algorithms could be used as building blocks of many design analysis methods. One such
method that could benefit tremendously from GPU acceleration is Finite Element Analysis (FEA),
which is used to analyze a component and provide functional feedback to the designer about its
behavior when subject to forces. Such functional feedback will reduce the design lead-time of a
component, ultimately resulting in significant cost savings.

NURBS are recently being used as interpolation functions for FEA. This will not only unify
modeling and analysis with NURBS as a standard, but also reduce the approximation errors due to
discretization of the analysis domain. In addition, since CAD systems represent solid models using
NURBS surfaces by default, it will also be simpler to integrate the FEA directly with the CAD
system. Such methods, called isogeometric analysis, need a fast NURBS evaluator to interpolate
higher dimensional element basis functions. Our NURBS evaluator could be directly used as a fast
interpolator for such higher dimensional surfaces.

Our GPU-based surface integration algorithms could also be extended for use in FEA. Volume
integrals in FEA are usually converted to surface integrals using divergence theorem. These surface
integrals then need to be evaluated, taking into account the different boundary conditions. Our
surface integration algorithms could be adapted to calculate these integrals accurately.

8.2 Contributions

We have developed a GPU method for evaluating arbitrary degree NURBS surfaces with an arbi-
trary number of control points and knots with the same unified fragment program. Our method
uses the GPU to evaluate a grid of points on the NURBS surface that can be directly used for
rendering as well as for further modeling operations. Our algorithms are backward compatible,

119

Chapter 8. Conclusions and Future Work

which make use of standard OpenGL extensions or features that are available even on older cards,
while still taking advantage of the improved performance on newer cards. We have also developed
a rendering method to display trimmed-NURBS surfaces by interpreting the points already eval-
uated as vertices. The rendering algorithm is capable of dynamic continuous LOD based on the
size and location of the surface with respect to the viewpoint. We found our method to be capable
of interactively evaluating and rendering up to 300 NURBS surfaces. For interactive display of a
large number of trimmed NURBS surfaces, we have demonstrated that GPU-based evaluation of
the exact surfaces is a viable option.

Extending our evaluator, we have developed GPU algorithms to perform modeling operations
such as inverse evaluation, ray intersection, and surface-surface intersection. We have developed an
efficient algorithm to perform inverse evaluation of NURBS surfaces on the GPU. This algorithm
finds the parametric (u,v) coordinate given any (x,y,z) coordinate on the NURBS surface within
an arbitrary user-defined tolerance. Combining this with our trimmed NURBS rendering, we have
developed a novel method to interactively trim and sketch on a NURBS surface in real time. This
is possible because our fast inverse evaluation algorithm enables us to sketch in the model space,
not just in the parametric space, with the correspondence tracked simultaneously. Our NURBS
surface-surface intersection algorithm is fast and robust in finding the intersection curve within
user-specified tolerances. The intersection curve, like the sketch curve above, is simultaneously
output in the model space as well as in the parametric spaces of the two NURBS surfaces. We have
also extended the surface-surface intersection algorithm to evaluate self-intersections in NURBS
surfaces. This algorithm can be used to detect self-intersections and output the intersection curves
if the surface is self-intersecting.

We have also developed an hybrid CPU/GPU framework to accelerate minimum distance com-
putations that can be used to find the minimum distance to a surface given any point in space. We
have extended it to a fast algorithm that computes the minimum distance between two surfaces
or between two solid models represented by B-reps, using bounding-box hierarchies on the GPU.
Our algorithm is orders of magnitude faster and more accurate than the commercial solid modeling
kernel ACIS in calculating these distances. These algorithms make use of our unified framework
that uses the GPU as a co-processor to improve the performance of algorithms used for solving
geometric queries. This framework can be extended to accelerate several related queries that are
based on properties such as normals or curvature of the underlying shapes . We also provide the-
oretical guarantees for all of our geometric computations. They allow for user-defined tolerance
values that are essential for integrating our algorithms in a CAD system.

Finally, we have developed GPU algorithms to accelerate moment computations. We can cal-
culate the volume, center of mass, moment of inertia, etc. of solid models that are represented
using multiple trimmed NURBS surfaces. Our computations are independent of the tessellation
of the solid models. They allow for interactive updates of moments while the model is being
edited. Our moment computation algorithms make use of our GPU implementation of numerical
surface integration on trimmed NURBS surfaces. We have implemented midpoint, 2-point Gaus-
sian quadrature, and 3-point Gaussian quadrature integration schemes on the GPU. We compare

120

Chapter 8. Conclusions and Future Work

the accuracy of our algorithm to theoretical results. Our volume computations have error estimates
that allow for user-defined tolerance values. Our volume computation algorithms are both faster
and more accurate than ACIS for many complex CAD models.

8.3 Concluding Remarks

We have developed different GPU algorithms and tools that can be used to improve the perfor-
mance of CAD systems. We envision a CAD system that integrates design and analysis tools and
can take advantage of parallel hardware such as GPUs to accelerate computations in an interactive
framework. The resulting performance improvements and the ability to get real-time feedback
can completely transform the design experience, enabling the designer to explore the design space
more effectively. However, development of such systems requires a paradigm shift in thinking
about CAD systems; traditional algorithms have to be rebuilt with interactivity as a fundamental
requirement. We hope that our tools will form an integral part of the future research in this field.

121

Bibliography

[Abi-Ezzi and Wozny, 1990] S. S. Abi-Ezzi and M. J. Wozny. Factoring a homogeneous trans-
formation for a more efficient graphics pipeline. Computer Graphics Forum, 9(3):245–255,
1990.

[Agarwal et al., 2003] Pankaj Agarwal, Shankar Krishnan, Nabil Mustafa, and Suresh Venkata-
subramanian. Streaming geometric optimization using graphics hardware. In 11th European
Symposium on Algorithms, 2003.

[Barnhill and Kersey, 1990] R. E. Barnhill and S. N. Kersey. A marching method for parametric
surface surface intersection. Computer Aided Geometric Design, 7(1-4):257–280, 1990.

[Blelloch, 1990] Guy E. Blelloch, editor. Vector Models for Data-Parallel Computing. MIT Press,
1990.

[Bolz and Schröder, 2002] Jeffrey Bolz and Peter Schröder. Rapid evaluation of Catmull-Clark
subdivision surfaces. In Web3D 2002, pages 11–17, 2002.

[Briseid et al., 2006] Sverre Briseid, Tor Dokken, Trond Runar Hagen, and Jens Olav Nygaard.
Computational Science - Lecture Notes in Computer Science, volume 3994/2006, chapter Spline
Surface Intersections Optimized for GPUs, pages 204–211. Springer, 2006.

[Carr et al., 2006] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU
ray tracing of dynamic meshes using geometry images. In Proceedings of Graphics Interface
2006, pages 203–209, 2006.

[Cattani and Paoluzzi, 1990] C. Cattani and A. Paoluzzi. Boundary integration over linear poly-
hedra. Computer Aided Design, 22(2):130–135, 1990.

[Chen et al., 2008] Xiao-Diao Chen, Jun-Hai Yong, Guozhao Wang, Jean-Claude Paul, and Gang
Xu. Computing the minimum distance between a point and a NURBS curve. Computer-Aided
Design, 40(10-11):1051 – 1054, 2008.

[Corney and Lim, 2001] Jonathan Corney and Theodore Lim. 3D Modeling with ACIS. Saxe-
Coburg, 2001.

122

BIBLIOGRAPHY

[Dokken et al., 2005] Tor Dokken, Vibeke Skytt, Trond Runar Hagen, and Jens Olav Nygaard. Us
patent 20080259078 - apparatus and method for determining intersections. US Patent Applica-
tion: 20080259078, 2005.

[Edelsbrunner, 1985] H. Edelsbrunner. Computing the extreme distances between two convex
polygons. Journal of Algorithms, 6(2):213–224, 1985.

[Elber and Kim, 2001] Gershon Elber and Myung-Soo Kim. Geometric constraint solver using
multivariate rational spline functions. In SMA 2001: Proceedings of the Sixth ACM Symposium
on Solid Modeling and Applications, pages 1–10. ACM, 2001.

[Fernando and Kilgard, 2003] Randimo Fernando and Mark J. Kilgard. The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics. Addison-Wesley, Boston, 2003.

[Filip et al., 1987] Daniel Filip, Robert Magedson, and Robert Markot. Surface algorithms using
bounds on derivatives. Computer Aided Geometric Design, 3(4):295–311, 1987.

[Gilbert et al., 1988] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE Journal of Robotics
and Automation, 4(2):193–203, 1988.

[Gonzalez-Ochoa et al., 1998] Carlos Gonzalez-Ochoa, Scott McCammon, and Jörg Peters. Com-
puting moments of objects enclosed by piecewise polynomial surfaces. ACM Transactions on
Graphics, 17(3):143–157, 1998.

[Gottschalk et al., 1996] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. In ACM SIGGRAPH, pages 171–180. ACM, 1996.

[Govindaraju et al., 2003] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh
Manocha. CULLIDE: Interactive collision detection between complex models in large en-
vironments using graphics hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pages 25–32. Eurographics Association, 2003.

[Greß et al., 2006] A. Greß, M. Guthe, and R. Klein. GPU-based collision detection for de-
formable parameterized surfaces. Computer Graphics Forum, 25(3):497–506, 2006.

[Guthe et al., 2005] Michael Guthe, Ákos Balázs, and Reinhard Klein. GPU-based trimming and
tessellation of NURBS and T-spline surfaces. ACM Transactions on Graphics, 24(3):1016–
1023, 2005.

[Guthe et al., 2006] Michael Guthe, Ákos Balázs, and Reinhard Klein. GPU-based appearance
preserving trimmed NURBS rendering. Journal of WSCG, 14, 2006.

[Haller, 2006] Kirk Haller. Personal communication, 2006.

123

BIBLIOGRAPHY

[Henshaw, 2002] W. D. Henshaw. An algorithm for projecting points onto a patched CAD model.
Engineering with Computers, 18(3):265–273, 2002.

[Hoff et al., 2001] Kenneth E. Hoff, Andrew Zaferakis, Ming Lin, and Dinesh Manocha. Fast and
simple 2D geometric proximity queries using graphics hardware. In I3D ’01: Proceedings of
the 2001 Symposium on Interactive 3D Graphics, pages 145–148. ACM, 2001.

[Hoffmann, 1989] Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann
Publishers Inc., 1989.

[Horn, 2005] Daniel Horn. GPUGems 2: Programming Techniques for High-Performance Graph-
ics and General-Purpose Computation, chapter Stream Reduction Operations for GPGPU Ap-
plications. Addison-Wesley, 2005.

[Johnson and Cohen, 1998] D.E. Johnson and Elaine Cohen. A framework for efficient minimum
distance computations. IEEE International Conference on Robotics and Automation, 4:3678–
3684, 1998.

[Jorabchi et al., 2009] Kavous Jorabchi, Joshua Danczyk, and Krishnan Suresh. Efficient and au-
tomated analysis of potentially slender structures. Journal of Computing and Information Sci-
ence in Engineering, 9(4), 2009.

[Kahlesz et al., 2002] Ferenc Kahlesz, Ákos Balázs, and Reinhard Klein. Multiresolution render-
ing by sewing trimmed NURBS surfaces. In SMA ’02: ACM Symposium on Solid Modeling
and Applications, pages 281–288, 2002.

[Kanai, 2007] Takashi Kanai. Fragment-based evaluation of Non-Uniform B-spline surfaces on
GPUs. Computer-Aided Design and Applications, 4(3):287–294, 2007.

[Khardekar and McMains, 2006] Rahul Khardekar and Sara McMains. Fast layered manufactur-
ing support volume computation on GPUs. In Proceedings of the ASME Design Engineering
Technical Conferences. ASME, 2006.

[Khardekar, 2008] Rahul Khardekar. Real-time manufacturability feedback. PhD thesis, Univer-
sity of California, Berkeley, Mechanical Engineering Department, 2008.

[Kilgariff and Fernando, 2005] Emmett Kilgariff and Randima Fernando. GPU Gems 2 : Pro-
gramming Techniques for High-Performance Graphics and General-Purpose Computation,
chapter The GeForce 6 Series GPU Architecture, pages 471–491. Addison-Wesley, 2005.

[Kim et al., 2006] Jinwook Kim, Soojae Kim, Heedong Ko, and Demetri Terzopoulos. Fast GPU
computation of the mass properties of a general shape and its application to buoyancy simula-
tion. Visual Computer, 22(9):856–864, 2006.

124

BIBLIOGRAPHY

[Kipfer et al., 2004] Peter Kipfer, Mark Segal, and Rüdiger Westermann. UberFlow: a GPU-
based particle engine. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, pages 115–122. ACM, 2004.

[Kobbelt, 1997] Leif Kobbelt. Robust and efficient evaluation of functionals on parametric sur-
faces. In SCG ’97: Proceedings of the thirteenth annual symposium on computational geometry,
pages 376–378. ACM, 1997.

[Kolb et al., 2004] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and col-
lision detection for large particle systems. In Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, pages 123–131. ACM, 2004.

[Kriezis et al., 1990] G. A. Kriezis, P. V. Prakash, and N. M. Patrikalakis. A method for intersect-
ing algebraic surfaces with rational polynomial patches. Computer Aided Design, 22(10):645–
654, 1990.

[Krishnamurthy et al., 2007] Adarsh Krishnamurthy, Rahul Khardekar, and Sara McMains. Direct
evaluation of NURBS curves and surfaces on the GPU. In ACM Symposium on Solid and
Physical Modeling, pages 329–334. ACM, 2007.

[Krishnan and Manocha, 1997] Shankar Krishnan and Dinesh Manocha. An efficient surface in-
tersection algorithm based on lower-dimensional formulation. ACM Transactions on Graphics,
16(1):74–106, 1997.

[Krishnan et al., 1998] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar. Rapid and
accurate contact determination between spline models using shelltrees. Computer Graphics
Forum, 17(3):315–326, 1998.

[Kumar and Manocha, 1995] Subodh Kumar and Dinesh Manocha. Efficient rendering of
trimmed NURBS surfaces. Computer-Aided Design, 27(7):509–521, 1995.

[Kumar et al., 1996] Subodh Kumar, Dinesh Manocha, and Anselmo Lastra. Interactive display of
large NURBS models. IEEE Transactions on Visualization and Computer Graphics, 2(4):323–
336, 1996.

[Larsen et al., 2000] E. Larsen, S. Gottschalk, Ming Lin, and Dinesh Manocha. Fast distance
queries with rectangular swept sphere volumes. Proceedings of ICRA ’00: IEEE International
Conference on Robotics and Automation, 4:3719–3726, 2000.

[Lauterbach et al., 2009] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. Fast BVH construction on GPUs. In Proceedings of Eurograph-
ics 2009. Eurographics Association, 2009.

125

BIBLIOGRAPHY

[Lauterbach et al., 2010] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gProximity: Hierar-
chical GPU-based operations for collision and distance queries. In Proceedings of Eurographics
2010, page To Appear, 2010.

[Lee and Requicha, 1982a] Yong Tsui Lee and Aristides A. G. Requicha. Algorithms for com-
puting the volume and other integral properties of solids. I. Known methods and open issues.
Communications of the ACM, 25(9):635–641, 1982.

[Lee and Requicha, 1982b] Yong Tsui Lee and Aristides A. G. Requicha. Algorithms for com-
puting the volume and other integral properties of solids. II. A family of algorithms based on
representation conversion and cellular approximation. Communications of the ACM, 25(9):642–
650, 1982.

[Loop and Blinn, 2005] Charles Loop and Jim Blinn. Resolution independent curve rendering
using programmable graphics hardware. In ACM SIGGRAPH 2005, pages 1000–1009. ACM,
2005.

[Loop and Blinn, 2006] Charles Loop and Jim Blinn. Real-time GPU rendering of piecewise al-
gebraic surfaces. ACM Transactions on Graphics, 25(3):664–670, 2006.

[Mark et al., 2003] W. R Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A sys-
tem for programming graphics hardware in C-like language. ACM Transactions on Graphics,
22(3):896–907, 2003.

[Martin et al., 2000] William Martin, Elaine Cohen, Russell Fish, and Peter Shirley. Practical ray
tracing of trimmed NURBS surfaces. Journal of Graphics Tools, 5(1):27–52, 2000.

[Mattson et al., 2004] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns
for Parallel Programming. Addison-Wesley, 2004.

[Messner and Taylor, 1980] A. M. Messner and G. Q. Taylor. Algorithm 550: Solid polyhedron
measures [z]. ACM Transactions on Mathematical Software, 6(1):121–130, 1980.

[Mirtich, 1996] Brian Mirtich. Fast and accurate computation of polyhedral mass properties. Jour-
nal of Graphics Tools, 1(2):31–50, 1996.

[Nelson et al., 2005] Donald D. Nelson, David E. Johnson, and Elaine Cohen. Haptic rendering of
surface-to-surface sculpted model interaction. In SIGGRAPH ’05: ACM SIGGRAPH Courses.
ACM, 2005. Course: Recent advances in haptic rendering and applications.

[Nishita et al., 1990] Tomoyuki Nishita, Thomas W. Sederberg, and Masanori Kakimoto. Ray
tracing trimmed rational surface patches. In ACM SIGGRAPH 90, pages 337–345, 1990.

126

BIBLIOGRAPHY

[Owens et al., 2007] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens
Krüger, Aaron E. Lefohn, and Tim Purcell. A survey of general-purpose computation on graph-
ics hardware. Computer Graphics Forum, 26(1):80–113, March 2007.

[Pabst et al., 2006] H.F. Pabst, J.P. Springer, A. Schollmeyer, R. Lenhardt, C. Lessig, and
B. Froehlich. Ray casting of trimmed NURBS surfaces on the GPU. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing, pages 151–160, 2006.

[Patrikalakis, 1993] Nicholas M. Patrikalakis. Surface-to-surface intersections. IEEE Computer
Graphics and Applications, 13(1):89–95, 1993.

[Peters and Nasri, 1997] Jöorg Peters and Ahmad Nasri. Computing volumes of solids enclosed
by recursive subdivision surfaces. Computer Graphics Forum, 16:89–94, 1997.

[Pharr, 2005] Matt Pharr, editor. GPUGems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley, 2005.

[Piegl and Tiller, 1997] Les A. Piegl and Wayne Tiller. The NURBS Book. Springer, second edi-
tion, 1997.

[Piegl, 1991] Les Piegl. On NURBS: a survey. IEEE Computer Graphics Applications, 11(1):55–
71, 1991.

[Purcell et al., 2002] Timothy J Purcell, Ian Buck, William R Mark, and Pat Hanrahan. Ray trac-
ing on programmable graphics hardware. ACM Transactions on Graphics, 21(3):703–712,
2002.

[Purcell et al., 2003] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,
and Pat Hanrahan. Photon mapping on programmable graphics hardware. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 41–50.
Eurographics Association, 2003.

[Quinlan, 1994] Sean Quinlan. Efficient distance computation between non-convex objects. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 3324–3329.
IEEE, 1994.

[Requicha and Rossignac, 1992] Aristides A. G. Requicha and Jarek R. Rossignac. Solid model-
ing and beyond. IEEE Computer Graphics Applications, 12(5):31–44, 1992.

[Rockwood et al., 1989] Alyn Rockwood, Kurt Heaton, and Tom Davis. Real-time rendering of
trimmed surfaces. In ACM SIGGRAPH 89, pages 107–116, 1989.

[Rudin, 1976] Walter Rudin. Principles of Mathematical Analysis, chapter Integration of Differ-
ential Forms, pages 253–275. McGraw-Hill, 3 edition, 1976.

127

BIBLIOGRAPHY

[Samad and Suresh, Accepted 2010] Wael Abdel Samad and Krishnan Suresh. CAD-integrated
analysis of 3-D beams: A surface-integration approach. Engineering with Computers, Accepted
2010.

[Sederberg et al., 1998] Thomas W. Sederberg, Jianmin Zheng, David Sewell, and Malcolm
Sabin. Non-uniform recursive subdivision surfaces. In Computer Graphics Proceedings, An-
nual Conference Series, pages 387–94. ACM SIGGRAPH 98, July 1998.

[Sederberg et al., 2003] Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov, and Ahmad
Nasri. T-Splines and T-NURCCs. ACM Transactions on Graphics, 22(3):477–484, 2003.

[Sengupta et al., 2007] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan
primitives for GPU computing. In Symposium on Graphics Hardware, pages 97–106. ACM,
Eurographics Association, 2007.

[Shiue et al., 2005] Le-Jeng Shiue, Ian Jones, and Jörg Peters. A real-time GPU subdivision ker-
nel. ACM Transactions on Graphics, 24(3):1010–1015, 2005.

[Soldea et al., 2002] Octavian Soldea, Gershon Elber, and Ehud Rivlin. Exact and efficient com-
putation of moments of free-form surface and trivariate based geometry. Computer-Aided De-
sign, 34(7):529–539, 2002.

[Spatial Corporation, 2009a] Spatial Corporation. ACIS Geometric Modeler: User Guide, 2009.
api check face clearance, Version 20.0.

[Spatial Corporation, 2009b] Spatial Corporation. ACIS Geometric Modeler: User Guide, 2009.
api body mass props, Version 20.0.

[Sud et al., 2004] Avneesh Sud, Miguel A. Otaduy, and Dinesh Manocha. DiFi: Fast 3D distance
field computation using graphics hardware. Computer Graphics Forum, 23(10):557–566, 2004.

[Thompson and Cohen, 1999] T. Thompson and E. Cohen. Direct haptic rendering of complex
trimmed NURBS models. In 8th Annual Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 1999.

[Timmer and Stern, 1980] H.G. Timmer and J.M. Stern. Computation of global geometric prop-
erties of solid objects. Computer-Aided Design, 12(6):301–304, 1980.

[Toth, 1985] Daniel L. Toth. On ray tracing parametric surfaces. In ACM SIGGRAPH 85, pages
171–179, 1985.

[Woo et al., 2004] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL(R) Programming Guide,
Version 1.4, chapter Drawing Filled Concave Polygons Using the Stencil Buffer, pages 600–
601. Addison-Wesley, fourth edition, 2004.

128

	Introduction
	Research Outline

	Background and Mathematical Formulation
	NURBS Surface Models
	NURBS Curve and Surface Definitions
	Differential Geometry for B-Spline Surfaces
	Rational Derivatives

	Curvature of NURBS Surfaces
	Bounding-Boxes for NURBS Surfaces
	Summary

	GPU Framework
	Programmable GPUs
	GPU Programming Challenges
	Hybrid CPU/GPU Algorithms
	Computations Using Shader Programs
	Reductions
	Standard Reductions
	Non-Uniform Stream Reductions

	Summary

	NURBS Evaluation
	Introduction
	NURBS Evaluation Techniques

	GPU Evaluation and Rendering Algorithm
	NURBS Basis Function Evaluation
	Curve Evaluation
	Basic Algorithm
	Optimization and Packing of Data
	Curve Evaluation Timings

	NURBS Surface Evaluation
	Dynamic LOD

	Trimming
	Trim Texture Generation
	Rendering

	Results
	CUDA Implementation
	CUDA Evaluation Timings
	Comparison of Different Implementations

	Summary and Conclusions

	NURBS Modeling Operations
	Introduction
	Related Work
	Derivatives of NURBS Surfaces
	GPU Implementation

	Bounding-Boxes for NURBS Surfaces
	Inverse Evaluation of NURBS Surfaces
	GPU Implementation of Inverse Evaluation
	Applications of Inverse Evaluation

	NURBS Intersection Curve Evaluation
	Fitting an Intersection Curve
	Self Intersection Evaluation
	Intersection Timing

	Conclusions

	Separation Distance Queries
	Introduction
	Related Work
	Distance Queries on NURBS Surfaces
	Minimum Distance to a NURBS Surface
	Minimum and Maximum Distance to an AABB

	Theoretical Bounds
	Clearance Analysis
	Minimum Distance Between Two NURBS Surfaces
	Minimum and Maximum Distance Between AABBs
	Minimum Distance Between Two Trimmed NURBS Surfaces
	Minimum Distance Between Two Complex Objects

	Results
	Conclusions

	Moment Computation
	Introduction
	Related Work
	NURBS Surface Bounds
	Mathematical Formulation
	Evaluation of NURBS Normals
	Surface Integrals of Parametric Surfaces
	Moments of Solid Bodies

	Moment Computation Algorithm Overview
	GPU Implementation

	Numerical Surface Integration of NURBS
	1-point Gaussian Quadrature Scheme
	2-point Gaussian Quadrature Scheme
	3-point Gaussian Quadrature Scheme
	Surface Integrals of Trimmed NURBS

	Error Analysis
	Results
	Accuracy of the Integration
	Volume and Error Analysis of CAD Objects
	Moment Computation Results

	Conclusions

	Conclusions and Future Work
	Future Research Directions
	Collision Detection
	Optimization
	Design Analysis

	Contributions
	Concluding Remarks

	Bibliography

