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Abstract 

Despite impressive recent cost reductions, there is wide dispersion in the prices of installed solar 
photovoltaic (PV) systems. We identify the most important factors that make a system likely to 
be low priced (LP). Our sample consists of detailed characteristics for 42,611 small-scale (< 15 
kW) PV systems installed in 15 U.S. states during 2013. Using four definitions of LP systems, 
we compare LP and non-LP systems and find statistically significant differences in nearly all 
factors explored, including competition, installer scale, markets, demographics, ownership, 
policy, and system components. Logit and probit model results robustly indicate that LP systems 
are associated with markets with few active installers; experienced installers; customer 
ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also 
find significant differences across states, with LP systems much more likely to occur in some 
than in others. Our focus on the left tail of the price distribution provides implications for policy 
that are distinct from recent studies of mean prices. While those studies find that PV subsidies 
increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to 
simultaneously shift and broaden the price distribution. Much of this broadening occurs in a 
particular location, northern California, which is worthy of further investigation with new data. 

1 Introduction 

The substantial drop in prices of solar photovoltaic (PV) systems in the last decade has been a 
principal driver of the expanding global PV market. In the United States, cumulative residential 
PV capacity increased by a factor of eight from 2009 through 2014 (GTM/SEIA 2015), driven in 
part by a 50% decrease in average residential installed prices over the same period (Barbose and 
Darghouth 2015). In 2014, 32% of total new U.S. electric-generation capacity additions came 
from PV, with 20% of these PV additions as residential installations, 17% as commercial, and 
63% as utility scale (GTM/SEIA 2015). Solar is viewed by many as a key strategy for meeting 
long-term electricity supply needs, especially within the context of global climate change 
mitigation (Baker et al. 2013, IEA 2015). Yet, as governments reconsider direct PV support 
policies and direct incentives continue to wind down, further PV price reductions will be 
necessary to sustain PV capacity growth and enable PV to contribute meaningfully to climate 
change mitigation.  
 
Though PV prices have declined worldwide, there is considerable heterogeneity within the price 
distribution. This heterogeneity is very clear across countries: prices for smaller residential PV 
systems in the United States are on average considerably higher than (sometimes up to twice as 
high as) prices in other mature markets (Seel et al. 2014). Even within the United States there is 
significant variation across states, among different installers, and within those groups. In fact, the 
observed price (in dollars per watt) for small-scale U.S. systems installed in the past 3 years 
spans more than a factor of five. As such, some U.S. systems are priced on par with systems in 
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other lower-priced international markets. This raises important policy-relevant questions: What 
is different about systems at the low end of the PV price distribution? What factors increase the 
likelihood of a system being a low-priced (LP) system? And, ultimately, what can be done to 
reproduce or facilitate those conditions more broadly, to drive down U.S. PV system prices? 
 
This paper is the first to focus on the lowest-priced small-scale PV systems in the United States. 
We explore the characteristics of these systems to help identify practices and policies that might 
reduce future PV prices and further stimulate the market. Our analysis includes a variety of 
statistical methods and uses the sizable data set of system-level PV prices managed by Lawrence 
Berkeley National Laboratory (LBNL).1  
 
This research complements a number of studies exploring the nature of small-scale PV system 
pricing in the U.S. market. The dramatic heterogeneity in prices is quantified in Barbose and 
Darghouth (2015). Gillingham et al. (2016) examine how various factors influence PV system 
price differences, including variables related to market competition, PV installer experience and 
market share, market characteristics, solar policy design, and PV system characteristics. Using a 
subset of those data, Burkhardt et al. (2015) and Dong and Wiser (2014) establish a link between 
local permitting and regulatory processes and PV system prices. Other work has investigated the 
impact of solar incentives and policies on PV system prices (Podolefsky 2013, Shrimali and 
Jenner 2013, Dong et al. 2014) and the influence of third-party ownership (TPO) on reported PV 
prices (Davidson and Steinberg 2013, Varun and Benjamin 2013, Sigrin et al. 2015). Our focus 
on LP systems makes a unique contribution to this literature by analyzing what is needed to 
achieve the lowest PV prices.  
 
The remainder of the paper is structured as follows. The next section provides an overview of 
our methods and data. Section 3 provides descriptive comparisons of the data. Section 4 
compares the means of LP and non-LP systems, and Section 5 uses estimates from logit 
regressions to identify predictors of LP systems. We discuss the results in Section 6 and offer 
conclusions and policy implications in Section 7. 

2 Methods and Data 

This paper relies on a rich data set of recent small-scale U.S. residential and commercial PV 
installations and develops in-depth descriptive and statistical analyses of LP PV systems. Our 
approach has three parts. First, we examine descriptive characteristics of the trends and patterns 
in the entire data set. Second, we use t-tests of means to assess the significance of the differences 
between LP and non-LP systems for each variable individually. Finally, we use logit and probit 

1 This paper is part of a larger body of research conducted by LBNL, University of Texas—Austin, University of 
Wisconsin—Madison, and Yale University that is more broadly exploring U.S. PV system price variability.  
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models to assess each variable’s significance in predicting whether a specific PV installation is in 
the LP group. Definitions for all variables are included in Appendix 1. 

2.1. Installation Data 

We use installed PV system data from 59 PV incentive programs in 34 U.S. states, collected as 
part of LBNL’s Tracking the Sun (TTS) report series. The full TTS data set accounts for about 
two thirds of U.S. PV installations since 2000 and is described in detail in the annual TTS report 
(Barbose and Darghouth 2015). This paper focuses on the prices paid for PV systems and 
considers a wide variety of possible explanatory variables. We take several steps to restrict and 
clean the data, ensuring that our final data set is as free of measurement error as possible, has all 
variables of interest defined, accurately represents the U.S. residential PV market, and is capable 
of addressing our research questions. 
 
We use a subset of the full TTS data set. First, because we are most interested in the 
determinants of the most recent LP systems, we analyze 71,861 systems installed during 2013, 
the most recent year for which comprehensive data were available when the analysis was 
performed. This accounts for about half of the 140,000 U.S. PV systems installed in 2013.2 
 
Second, we focus our analysis on PV systems for which we observe the (pre-incentive) 
transaction prices paid—that is, transactions between the PV system owner and the system 
installer. Transaction prices represent a real flow of funds between the two parties, and they are 
often used to calculate rebates and other government incentives. A dramatic change in the U.S. 
PV market in the past 5 years has been the increase in TPO arrangements, under which 
homeowners lease a PV system from a company or enter into a power purchase agreement with a 
company for the electricity the PV system on their property produces (Davidson et al. 2015). 
More than half of the 2013 installations in our data set are TPO systems, while the remaining 
systems are customer owned. These TPO systems come in two basic varieties. In some cases, the 
third-party owner contracts with a separate entity to install the system, and the purchase price 
reported represents the payment to the installation contractor. In other cases, however, the third-
party owner conducts the installation itself, in which case no transaction occurs from which a 
purchase price can be identified. In these cases, system prices reported to incentive programs and 
other entities are typically “appraised values.” Previous work shows that appraised-value prices 
are not reliable and not generally comparable to prices involving transactions between different 
parties (Davidson and Steinberg 2013). We thus drop the 21,000 appraised-value systems from 
our data set, but we retain other TPO systems for which reported prices are based on a 
transaction between a third-party owner and an installation contractor. We also investigate how 
the retained TPO systems differ from customer-owned systems in our results.  

2 We were unable to collect installed price data for the remaining installations, primarily because they did not submit 
data to state subsidy programs. 
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Third, our focus is on “small-scale” systems, up to 15 kW direct current (DC) in size, and 
therefore excludes 3,600 larger systems from the data. The remaining systems of 15 kWDC or 
smaller include residential and commercial systems. To account for the possibility of reporting 
errors or extreme outliers (e.g., misplaced decimal points), we exclude systems smaller than 1 
kW, systems with prices below $1/W, and systems with prices above $25/W. Together these 
account for less than 100 systems.  
 
Finally, we remove from our regression analysis 4,000 systems that are missing location 
information, the name of the installing firm, or a component used to calculate the customer value 
of solar (VoS). The final data set includes 42,611 installations in 15 states, representing roughly 
30% of all U.S. installations during 2013.  

2.2. System Prices 

The transaction price is the total pre-incentive installed price of the PV system. It includes 
hardware costs (modules, inverter, wiring, support structure, and meters) as well as “soft costs” 
(labor, marketing, insurance, permitting, and other overhead) and installer profit. The price 
excludes government subsidies, such as rebates, tax credits, and renewable energy certificates. It 
also excludes the social costs of grid intermittency and associated need for backup power and 
grid maintenance as well as the social benefits from avoided air pollution. All prices are in 
nominal dollars. 

2.3. System Characteristics 

The TTS data provide detailed characteristics of each system, including system size (in watts 
DC) and an array of binary variables, including whether the system has a sun-tracking 
mechanism, is integrated into roof materials (i.e., is building-integrated PV or BiPV), is installed 
on a newly constructed home, has been self-installed by the PV system host (installer =“owner”), 
or has a battery backup system. The TTS data set also includes data on the panels and inverters, 
including their efficiency, whether the panels were manufactured in China, whether the cells are 
thin film or crystalline silicon, and whether the system uses micro-inverters attached to each 
panel rather than the more typical string inverter. We also know whether the system is residential 
(97% of the systems), commercial, or other (e.g., on a school). 

2.4. PV Installer and Market Structure Characteristics 

The TTS data also include installer names. We standardize the names to account for issues such 
as variant spellings and typographical errors, and we account for any mergers among installers. 
We then use the installer names to construct variables that characterize installers and market 
structure. We construct stocks of experience for each installer based on the number of previous 
installations (using the original data back to 2000) and depreciated at 20% per quarter to account 
for loss through employee turnover and technological obsolescence of the acquired knowledge 
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(Grubler and Nemet 2014). These installer experience stocks are estimated at the county, state, 
and national levels. We also create aggregate experience stocks, shared by all firms, at the 
county, state, and national levels. We create a firm-scale variable using the number of 
installations by a specific installer in the past 3 months at the county, state, and national levels. 
We create a variable for the installer market share based on the number of installations by each 
installer in each county in the 12 months prior to the installation date, and we use these market 
shares to create a Herfindahl-Hirschman index (HHI) for each county to measure market 
concentration. We also create variables for how many installers have installed a system in the 
past 12 months in each county as well as the number of months since the first installation in a 
county. These installer and market variables are described in more detail in Gillingham et al. 
(2016). 

2.5. Other Data Sources 

We complement the TTS data with other sources. We use data on monthly module and inverter 
prices from the Solar Energy Industries Association and GTM Research to account for the slight 
increase (+2%) in hardware costs during 2013 (SEIA/GTM 2014). We add Census zip-code-
level data on the number of households, education levels, household income, labor costs, and 
political party affiliation (BLS 2014, Census 2014). We also construct a measure of population 
density at the zip code and county levels from the Census data. 

2.6. Policy Variables 

A number of relevant policy variables can be inferred from the location of each PV system. We 
calculate a customer VoS variable reflecting the discounted value of all policy instruments, 
including electricity bill savings (see Appendix 1). We also construct a variable that reflects the 
percentage of the total customer VoS that comes from solar renewable energy credits (SRECs), 
which are more uncertain than other elements constituting the total customer VoS. Further, we 
include a state-level interconnection score, which evaluates the ease of interconnecting a PV 
system onto the grid (IREC 2013).  

2.7. Definitions of LP Systems 

There are many ways to define an LP system. We use four: 
 

1. At or below the 5th percentile (P5) of prices ($/W) for all systems installed in 2013. 
2. At or below the 10th percentile (P10) of prices ($/W) for all systems installed in 2013. 
3. At or below the 20th percentile (P20) of prices ($/W) for all systems installed in 2013. 
4. “Conditional LP systems”: After regressing price per watt on system size, system size 

squared, and the sum of module and inverter price indices, we count those systems as LP 
if their residuals are at or below the 10th percentile (P10r). 
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All four definitions overlap. For example, 87% of observations that fall under #2 also fall under 
#4. We use #2 as our primary definition because it is between #1 and #3 and simpler than #4. 
The others we treat as robustness checks, and we indicate when our results differ. 

3 Descriptive Comparisons 

In this section, we provide a descriptive overview of recent price dynamics in the PV market and 
evidence of where and when LP systems tend to be found. Section 3.1 includes pre-2013 data to 
demonstrate underlying trends, and Section 3.2 includes installations for which we have 
incomplete data to put the subsequent results in context. All other analyses refer to the data set of 
42,611 observations, which is summarized in Table A - 1 in Appendix 1. 

3.1. Price Dynamics 

The most salient long-term trend in installed U.S. PV prices for residential-scale installations is 
their steady decline over the 14 years from 2000 to 2013 (Figure 1). Annual average prices paid 
(in real dollars per watt) declined nearly threefold over that period, with much of the decline 
occurring since 2009. Taking the difference between 2000 and 2013 prices, hardware costs 
(module and inverter) and “other costs” each account for about half the decline. Another trend 
over this period has been the steady increase in the size of installed systems, from an average of 
3 kW in 2000 to over 6 kW in 2013.  
 

  
Figure 1. Average installed prices of U.S. PV systems in 2000 and 2013, in real $/W. 

 
Figure 2 shows the distribution of unit prices of systems installed in 2013. The distribution is 
approximately normal, with a slight positive skew—the median is $4.68/W, close to the mean of 
$4.77/W. Our key threshold for an LP system (P10) is $3.46/W. We include the 5th ($3.09/W) 
and 20th ($3.92/W) percentiles in the figure and in subsequent analyses as robustness checks on 
our definition of LP. 
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Figure 2. Distribution of installed prices for systems installed in 2013. 

3.2. Geographic Distribution of LP Systems 

Figure 3 shows the share of installations in each U.S. state that is LP (at or below the 10th 
percentile). The figure includes states for which we have price data but are missing county and 
installer information: Washington DC, Illinois, Maryland, North Carolina, Rhode Island, Texas, 
Utah, Vermont, and Wisconsin. We drop these nine states in the subsequent analyses owing to 
their incomplete data.  
 
A perfectly even distribution of LP systems across states would imply that each state in the 
figure would show 10%. The actual distribution is dramatically uneven. Of the states with more 
than 200 PV systems in our data sample, some—including California and New York—have 
relatively few LP systems as a proportion of their statewide totals, while others—such as 
Arizona, Maine, Texas, and New Hampshire—have relatively high shares of LP systems. The 
states with the largest number of LP systems are Arizona, California, New Jersey, and 
Massachusetts, driven by LP markets in some cases (e.g., Arizona) or simply by the overall size 
of the market in others (e.g., California). The uneven distribution of LP systems is consistent 
with price variability across states, which has been attributed to differences in market size, local 
incentives, and system characteristics (Barbose and Darghouth 2015). 
 



   

 
Figure 3. Share of systems in each state that is P10. Gray states have price data but are missing data 

on other characteristics, so they are dropped from all other analyses. 

3.3. Installer Firms  

With the exception of a few hundred systems that homeowners installed themselves, 1,901 firms 
installed the systems included in our data set. These installers differ considerably from one 
another in the number of systems installed in 2013 and in their experience installing systems 
before 2013. Nationally, the industry is concentrated: the largest 1% of installers accounted for 
38% of 2013 installations.3 The vast majority of installers are small. About 74% of installers 
installed fewer than 10 systems in 2013, and two thirds installed five or less. Small solar 
installers were predominantly localized businesses in 2013. About 55% of installers installed all 
of their systems in a single county, and about 96% installed all of their systems in a single state. 
A few large installers were highly geographically dispersed. About 3% of installers were active 
in more than 10 counties. Of these installers, only 16% installed more than half of their systems 
in any single county. 
 
PV system prices vary considerably across installers, and installers generally operate within a 
small price interval. Installer-level median prices ranged from $3.70/W to $5.94/W at the 10th 
and 90th percentile for installers with at least 10 systems. Individual installers, however, priced 
their systems within $1/W of their median system price for 84% of installations; this contrasts 
with the 67% of all systems in the full sample that are within $1/W of the median system price. 

3 Our data set may understate the true level of concentration owing to our exclusion of appraised-value TPO 
systems.  When appraised-value TPO systems are included, the largest five installers installed about 54% of all 
residential systems in the United States in 2014. 
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Equipment preferences (including module efficiency) help explain intra-installer price 
consistency. On average, installers that installed more than 10 systems (large installers) used the 
same module brand in 68% of their installations, while 33% of installers used the same module 
brand in more than 90% of their installations. In some cases, high-priced installers represent 
companies that specialize in premium systems (Barbose and Darghouth 2015). Compared with 
large-installer systems, small-installer systems are lower priced, larger in capacity, use less 
efficient modules, and are much less likely to be TPO.  
 
TPO systems account for roughly half (54%) of all installations in the data sample and a slightly 
smaller proportion (49%) of LP systems. About 29% of installers installed at least one TPO 
system, 15% used TPO in more than half of their systems, and about 4% used TPO for all 
systems installed. TPO systems are less prevalent among small installers: only 15% of small 
installers used TPO, compared to 68% of larger installers. Depending on the state, TPO systems 
may be more or less likely to be LP than customer-owned systems, as shown in Figure 4. For 
example, in Massachusetts, LP systems are more highly concentrated among TPO systems than 
among customer-owned systems, while the opposite is true in California, Nevada, and New 
York.  
 

 
Figure 4. Percentage of customer-owned and TPO systems that are LP by state for states with TPO 

systems constituting greater than 10% of all systems, in 2013. 

4 Comparisons of Means: LP and Non-LP Systems 

A first step in understanding what makes LP systems different is to evaluate a number of PV 
system and market variables for LP systems and non-LP systems. We do this by comparing the 
mean of each relevant variable for our four definitions of LP systems to the mean for the 
remaining (non-LP) systems. As with the rest of our analysis, our main focus is on the P10 
comparisons.  
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In Figure 5, we normalize means for each group of LP systems by the mean for the remaining 
non-LP systems. Bars pointing left (less than 1) indicate that the mean value for LP systems is 
below that of non-LP systems. For example, the variable “price per W” for P10 systems is 60% 
of the non-LP mean; for the same variable, P5 systems average 54% of the non-LP mean.  
Variables “price per W” through “mod eff” are continuous; “commercial” through “tracking” are 
binary. 
 
The continuous variables for which the P10 mean values most exceed the non-P10 mean include 
HHI, pct srec, and system size. The continuous variables for which the P10 means are 
substantially lower include state-level installer experience, state- and county-level installer scale, 
household density, and interconnection score. An interpretation—from looking at each variable 
independently—is that LP systems are more likely to be installed in markets with fewer active 
installers, by installers with fewer previous installations in the state, in geographies with lower 
household density, and in utility jurisdictions with less-favorable interconnection procedures. 
Some of these results are counterintuitive, and we return to them after the multivariate analysis. 
 
PV system characteristics also differ substantially between LP and non-LP systems. LP systems 
are more likely to be larger and self-installed and to have Chinese-brand panels and thin-film 
panels. They are less likely to use micro-inverters, battery backup, and tracking mechanisms as 
well as to be building integrated and installed in new construction.4 The latter result is 
counterintuitive in that previous studies have found new construction systems, which often 
consist of groups of identical systems installed throughout large housing developments, to be less 
expensive owing to standardized designs and lower labor requirements. This difference is likely 
due to our focus on the left tail rather than the central tendency of the distribution; we revisit this 
at the end of the paper. 
 
We apply t-tests to the continuous variables and tests of proportions to the binary variables to 
determine whether the difference in means between LP and non-LP systems is statistically 
significant. Asterisks in Figure 5 indicate that the resulting t- or z-statistics are significant at the 
95% level.5 The mean difference is significant for almost all variables. The lack of significance 
for some variables is due to small differences in the means (module prices), while for others it is 
due to few LP systems having this characteristic (other customer type, battery, and tracking). 
Finally, we conducted similar means comparisons for TPO and customer-owned systems and 
found that the means ratios for TPO and customer owned are similar to each other. Some 
differences that do emerge from the analysis are that TPO LP systems have relatively higher 
values for experience, scale, SRECs, and commercial systems compared with customer-owned 

4 In almost every case, these results are robust to alternative definitions of LP. A general, and expected, pattern is 
that the P5 means have bigger differences, and the P20 (and P10r) means have smaller differences.  
5 We include test results for the P10 definitions of LP (but, for legibility, not for P5, P10r, and P20).  
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LP systems.  These are small differences, however, and so we pool TPO and non-TPO systems 
in our analysis in the next section, despite the differences in those transactions noted in Section 
2. 
 

 
Figure 5. Comparisons of means for LP systems (for four LP definitions) to mean for non-LP systems 
(mean for non-LP = 1). Asterisks indicate difference is significant with 95% confidence (t- and z-tests 

only for P10). 

5 Predictors of LP Systems 

Next we examine the effects of each of the explanatory variables simultaneously rather than one 
at a time. Because our primary interest is to understand what factors differentiate LP systems 
from non-LP systems, we focus our analysis on understanding the factors that predict 
membership in the LP group. Our strategy is thus to define our dependent variable as a binary 
indicator for whether an installed system is an LP system or not. Using a binary variable 
provides less statistical power than using a continuous variable such as price, especially because 
price spans such a large range and is normally distributed. However, using a binary dependent 
variable more directly addresses our research questions, and any significant results we find are 
likely to be robust. Discarding the price distribution, however, does require that we take caution 
to avoid false negatives (i.e., a type II error).  
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We use logit regression models for our primary results and run robustness checks using probit 
models. Our empirical specification is given by Gillingham et al. (2016): 
 
LPijst = β0 + β1COMPist + β2FIRMjst + β3MKTist + β4POList + β5SYSTEMist + B + eijst 
 
for each installation i, installer firm j, state s, and date t. COMP is a vector of competition 
variables: county-level HHI, number of active installers, and how long since the first system was 
installed in the county. FIRM includes county-level experience, market share, and scale. MKT 
includes whether the customer is residential, commercial, or other; whether the system is third-
party or customer owned; household density; as well as income and percent Democrat for the zip 
code. POL includes three policy variables: customer VoS, percent SREC, and interconnection 
score. We drop sales tax because it is time invariant during 2013. SYSTEM is a vector of 
installation characteristics including system size (and size squared), average module and inverter 
hardware costs, and module efficiency. It also includes binary variables for tracking, BiPV, new 
construction, battery, self-installation, micro-inverters, Chinese panels, and thin-film panels. We 
also add binary variables, B, for the state, the month of application for the installation, the 
installer firm, and the manufacturer of the panel. Because several of these variables co-vary, we 
arrange our specifications to avoid including highly collinear pairs (e.g., installer scale and 
experience; zip-code-level education, income, and wages). The correlations are included in 
Appendix 3. Other variables are dropped because they have the same value for all LP 
observations, e.g., no LP systems have batteries or tracking.  

5.1. Main Results 

Table 1 provides the results for six models. Model 1 is our preferred (base) specification. Model 
2 uses the same regressors but fits the data to a probit rather than logit function. Model 3 drops 
the state binary variables. Model 4 adds HHI as a competition variable. Model 5 uses firm scale 
instead of experience and market share, with which scale is collinear. Model 6 uses a subset of 
the data for which we have module efficiency and manufacturer information. The state effects 
are all relative to the base state, which is California, because it accounts for 65% of the 
installations. 

5.2. Robustness Checks 

As a further robustness check, we run our preferred specification (Model 1 from Table 1) using 
alternative definitions for the binary dependent variable: LP = P10r and LP = P20. The 
coefficients are shown in Appendix 3 (Table A - 6 and Figure A - 3). As a further check, we ran 
additional models in which we include dummy variables for each installer, each panel 
manufacturer, and each installation month. These additional models do not generally change the 
signs or significance of the main results.  
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Table 1. Coefficient estimates from logit regressions of Y = P10 on Xs for 2013 installations.  
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5.3. Sizes of Effects 

To provide a sense of how important these effects are, Figure 6 provides odds ratios for each 
variable using the significant coefficients (b) in Table 1.6 The focus is on Model 1, which is 
represented by the bars. The circles refer to Models 2–6. The continuous variables are shown 
above the dashed line and the binary values below. Because each of the continuous variables has 
been transformed to have a standard deviation of 1, the interpretation for these values is as 
follows: each odds ratio indicates the change in the likelihood of a system being LP due to a 1 
standard deviation increase in that variable, compared to a system with the mean value for that 
variable. For example, increasing installer experience by 1 standard deviation would increase the 
likelihood of an installation being LP by 30%. For the binary variables, the comparison is to the 
null case, e.g., self-installed systems vs. systems installed by installer firms. For states, the base 
case is California, so the chances of an installation located in Arizona being LP are 23 times 
higher than one in California. For negative values, like TPO, the interpretation is that a customer-
owned system is 18% more likely to be LP than a TPO system is.  
 
Based on these results, the continuous variables for which a 1 standard deviation increase 
increases the likelihood of LP the most are system size, customer VoS, county-level installer 
experience, and percent of value from SRECs. For the binary variables, the biggest increases in 
chances of LP are commercial systems, self-installations, thin films, existing homes, and 
installations in Arizona, New Jersey, New Mexico, Maine, and New Hampshire.7 TPO systems 
and systems with micro-inverters are less likely to be LP.8 Variables for tracking and battery 
were dropped from the estimation because no LP systems have those characteristics. While this 
precludes estimating sizes of those effects, avoiding batteries and avoiding tracking are certainly 
important predictors of LP. Finally, while the bars represent sizes from Model 1, the circles 
provide a sense of robustness of these effects. In particular, the coefficient for customer VoS 
loses its significance and reverses sign when the state dummies are removed in Model 3. We 
propose explanations for this finding in the next section. 
 

6 The odds ratio is the unlogged value of each coefficient, b, in Table 1. Here we show eb -1 to show the percentage 
change in the odds of a system being LP. 
7 We include states with significant effects and at least 200 installations.  
8 This result is especially notable since the TPO prices in our sample may not generally include customer acquisition 
costs, and so we might otherwise expect those prices to be lower than for customer-owned systems. 
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Figure 6. Size of effect of each significant variable on odds of an installation being LP. Bars refer to 
Model 1 in Table 1. Circle markers refer to Models 2–6 in Table 1. Variables above dashed line are 

ratio; those below are binary. 

6 Summary and Discussion 

Taking the results altogether—including the means tests in Section 4, the main logit regression 
results, and all robustness checks—several conclusions emerge. Looking at each vector of 
regressors, systems are more likely to be LP under the following conditions: 
 

• Competition: in markets with fewer installers, and to some extent in more concentrated 
markets. 

• Firm: installed by firms with more county-level installation experience but with less 
county-level market share, or by smaller firms. 

• Markets: for commercial installations and for customer-owned (rather than TPO) 
installations. 

• Policy: systems with a high customer VoS (although with caveats) and a higher portion of 
those incentives from SRECs. 

• System: for larger systems; systems excluding tracking, BiPV, micro-inverters, and 
batteries; systems installed on existing homes and self-installed; and systems using thin 
films, less efficient modules, and modules from China. 
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• States: After controlling for all of the above, Arizona, Connecticut, New Jersey, New 
Mexico, Maine, and New Hampshire are large markets that are more likely to have LP 
systems; the base state, California has about half as many LP systems compared to its 
overall share of U.S. systems. Systems in the smaller markets (<200 installations)—
Nevada, Colorado, Florida, and Delaware—are also more likely to be LP. 

 
The largest predictors of LP are system size, customer VoS, county-level installer experience, 
and percent of value from SRECs. Among binary variables, the largest predictors are commercial 
systems, self-installations, thin films, existing homes, and installations in Arizona, Maine, and 
New Hampshire. 

6.1. Installer Competition and Firm Variables 

For the most part, results for the competition and firm variables either fit with theory or with 
previous analyses of the U.S. PV market. Installer experience, as might be expected, increases 
the likelihood of a system being LP: more experienced firms may have lower costs, on average. 
Similarly, firms with lower county-level market share tend to have a higher proportion of LP 
systems, perhaps indicating a lack of local market pricing power. A model that uses installer 
scale rather than experience and market share produces a significant negative result, indicating 
that LP systems are more common among small installers. On the other hand, LP systems appear 
to be more prevalent in markets with fewer installers and maybe in more concentrated markets. 
LP installers might tend to compete in markets where other, more dominant installers exist, and 
they might compete by offering especially low pricing. We also looked at several other measures 
of experience, scale, and industry structure, but we generally found weak and mainly 
insignificant results. Because we are using a logit model, we cannot entirely dismiss the potential 
importance of these factors, but in our results they are less important determinants of LP 
systems. 

6.2. Market and State Variables 

We also find robust results among the market variables. Notably, customer-owned systems are 
18% more likely to be LP than are TPO systems. Commercial systems are more likely to be LP 
than are residential systems—after controlling for size and considering our system size range of 
1–15 kW.  Zip codes with fewer registered Democrats are more likely to host LP systems. Note 
that these zip-code-level data are collinear with income and education, so those could also play a 
role in these location-based effects. 
 
Once other variables are controlled for, location in several states significantly increases the 
likelihood of a system being LP (compared to California). These state-level effects are robust 
across specifications and even when controlling for other variables that operate in large part at 
the state level—such as customer VoS, percent of value from SRECs, and interconnection score. 
Other variables that might be attributed to state difference, such as household income and labor 
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costs (which we drop), are not significant and not correlated with state dummies. California, 
meanwhile, has about half as many LP systems compared to its overall share of U.S. systems. 
Further research may be warranted to understand the drivers for LP systems in these states as 
well as the lack of LP in parts of California.  

6.3. Policy Variables  

In contrast to some of the other results, the main policy result—the effect of customer VoS—
requires a more nuanced interpretation. The effect of customer VoS on LP changes sign from 
negative in the univariate means tests (Figure 5) to positive in most of the multivariate models 
(Table 1). The means test results are obvious when looking at the western states, where LP 
systems are more prevalent in low VoS counties (Figure 7). Including all 15 states, the mean 
customer VoS of an LP system is $0.67/W lower than the mean value for non-LP systems (t = 
24). On the other hand, the positive effect on LP likelihood is a particularly robust result in the 
regressions; it is positive and significant in almost every model. This latter result also apparently 
contrasts with previous work finding a positive relationship between customer VoS and PV 
prices (Seel et al. 2014, Barbose and Darghouth 2015, Gillingham et al. 2016).  
 

 
Figure 7. Customer value of solar in dollars per watt (left) and percent of systems that are LP (right), 

by county for California, Arizona, New Mexico, and Nevada. 
 
We offer three possible explanations to reconcile these results. A first possibility is that the more 
recent data, from 2013, are different than the 2010–2012 data used in previous studies. Perhaps 
the local economies of scale and learning by doing that subsidies stimulate are finally offsetting 
the increase in willingness to pay that subsidies also create.  
 
A second possibility is that customer VoS is correlated with other characteristics, either observed 
or unobserved, and that we are spuriously attributing effects to VoS when they are actually 
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driven by something else. Our substantial data-collection effort was intended to minimize the 
chances of endogeneity due to omitted variables; we control for a large number of variables—at 
least as many as in other studies—including broad ones, such as state effects. Further, a close 
look at the correlation matrices (in Appendix 3) reveals little concern for collinearity with 
customer VoS and other variables. The state dummies seem of highest potential for this problem. 
In Model 3 of Table 1, the VoS coefficient becomes insignificant once the state dummies are 
dropped. An interpretation is that customer VoS only has a positive effect on LP systems in 
countering statewide effects.  
 
A third possibility is that the effects of subsidies are fundamentally different at the left tail of the 
distribution, where we are focused, than they are at the mean, where previous studies have 
focused. Perhaps the set of activities that generate LP systems are more likely to occur when 
customer VoS is high. As such, high VoS may be inflating prices overall, but it is stimulating LP 
systems at the same time. Customer VoS may both shift the mean of the price distribution higher 
and broaden the distribution. For example, high customer VoS may stimulate installer entry into 
new markets, and we see some descriptive evidence that installers underprice systems in new 
markets.  
 
Of the above possibilities, this third explanation—a distinct effect at the tail—is the most 
promising. A careful look at the coefficients in Appendix 3 (Figure A - 3), in which we change 
the LP definition, shows a clear slope in the coefficient for customer VoS; it falls by a factor of 
four from Y = P10 to Y = P20. The effect of customer VoS is largest at the base definition of LP 
(P10) and shrinks as the LP definition is expanded to include systems with prices closer to the 
mean. While not conclusive, these results raise the possibility that a higher customer VoS 
increases both the mean and the distribution of price outcomes—increasing average prices but 
also generating more LP systems. 
 
Finally, California plays a large role across the analyses, because it accounts for two thirds of the 
observations, and its effect is particularly important for customer VoS. When rerunning Model 1 
without California installations, the effect of VoS becomes negative. As Figure 7 shows, 
California has a generally high customer VoS. Within California, however, systems in the 
northern part of the state, primarily the Pacific Gas & Electric (PG&E) service area, have a 
higher customer VoS (mean = $6.93/W) than those in the south served by Southern California 
Edison (SCE) (mean = $5.61/W). Likewise, PG&E systems are 65% more likely to be LP than 
are SCE systems. PG&E system prices have a larger range, a larger coefficient of variation, and 
a lower minimum price compared with SCE system prices. Taking these items together, an 
interesting hypothesis to explore in future research is whether solar subsidies are stimulating a 
wider distribution of system prices in northern California. More specifically, are there 
characteristics of the PV adoption environment in that area that make LP systems more likely 
than in other places?  One hypothesis—suggested by one of the reviewers for this paper—is that 
faster permitting in the PG&E area may enable a greater number of LP systems in Northern 
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California. Because we use a statewide (rather than utility-specific) interconnection score 
variable, this effect may be captured in the customer VoS variable. 

6.4. System Characteristics 

The effects of system characteristics are mostly straightforward. Economies of scale in 
installation size are strong and robust. The mean LP system is about 1 kW larger than the mean 
non-LP system. Negative coefficients on system size squared indicate that the gains in system 
size become smaller at large sizes. Although we have incomplete coverage (76%) on module 
information, those characteristics are also important predictors. LP systems are more likely to 
use low-efficiency, Chinese, and thin-film modules. The mean efficiency of LP modules is 1.2 
percentage points lower than the non-LP mean of 17%. Solar panels using micro-inverters, as 
opposed to a central inverter for the whole system, are also less likely to be LP.  Variation in roof 
type (material, pitch, and height) is not included in our data and likely accounts for some of our 
unexplained residual. 
 
Self-installations are also strong predictors of LP. However, we interpret this as a control rather 
than an important result, because self-installations do not count the homeowner’s labor in the 
installed price. Other system configuration variables all make systems less likely to be LP: 
tracking systems, battery backup systems, and BiPV. These latter three variables might, 
however, offer benefits that our dependent variable—which is based on installed price per watt—
does not count. For example, tracking systems have higher capacity factors, battery systems 
provide independence, and BiPV may avoid roofing materials costs. Future work using actual 
electricity production data would be helpful here. 
 
Finally, in contrast to previous studies of the effects at the mean, we find a robust result that 
installations on existing homes are more likely to be LP than are those on new construction. 
Almost all of the new construction is in California, but the results for new construction are 
similar with and without the state effects. Despite the opportunities for cost savings—for typical, 
or average installations—in new construction, systems on new construction are less likely to be 
LP, perhaps owing to the typically larger firms that install them and the tendency to use higher-
quality modules. Note that in Model 6, with module information, the new construction effect 
loses significance. 

7 Conclusions and Policy Implications 

The goal of this analysis was to identify the characteristics of recently installed small-scale LP 
PV systems. We looked at differences in the means for characteristics of LP and non-LP systems 
using four different definitions of LP. We also looked at the effects of these characteristics 
simultaneously using logit and probit regressions with several model specifications. These 
analyses indicate the significance and size of the effects of each variable on the likelihood of a 
system being LP. We found results that were robust across several of these tests. We found 
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particularly strong effects for policy, market, and system characteristics as well as for several 
states, which represent a bundle of unobservable effects.  
 
Several of our results—in particular the effects of new construction and customer VoS—run 
counter to results in other studies (Barbose and Darghouth 2015, Gillingham et al. 2016). Our 
primary interpretation of these differences is that they arise from a focus on central tendency in 
other studies and a focus on the left tail in ours. The effects of price determinants differ at 
various points on the price distribution. If a primary social objective of solar subsidies is to 
stimulate cost reductions, then we need a research focus on both the central tendency as well as 
the lowest-priced systems available. The LP results are interesting because they presage what 
average systems may look like in the future; for example, a system priced at the P10 threshold in 
2011 would lie at the mean in 2013.  
 
More specifically, the factors we identify may be amenable to influence by policy. These results 
raise questions about which LP predictors are controllable and which are likely to be exogenous, 
or at least driven mainly by consumer preferences. Policy makers will diverge about the extent to 
which government should influence consumer purchasing decisions. Another consideration is to 
what extent policy makers should target cost reductions at the mean price versus at the low end. 
We have identified effects important for LP systems that differ from effects in previous studies 
of mean prices. If a policy goal is to reduce the social cost of a given PV deployment level, then 
attention to determinants at the mean is likely the most appropriate. If a goal of policy is to 
generate—and learn from—new system configurations, financing models, and adoption 
dynamics, then policy makers should examine these results and consider which LP predictors are 
appropriate to influence via public incentives.  
 
Much still must be explained about PV pricing, including analysis of data on more specific 
location characteristics, PV installers, roof characteristics, actual capacity factors, and prices for 
TPO and unsubsidized installations. Many of these data are becoming available for increasingly 
large samples. Our results suggest that solar subsidies might be positively influencing the 
generation of LP systems in some areas. Further work using new data will almost certainly help 
in designing policies targeted toward generating LP systems, which provide models for the 
mean-priced systems of the future.  
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Appendix 1: Data Set Descriptive Statistics, Variable Definitions 

This appendix provides descriptive statistics for the study data set (Table A - 1) and definitions 
of the variables used (Table A - 2), followed by a more detailed description of the VoS variable.  
 

Table A - 1. Descriptive statistics for all observations used. 
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Table A - 2. Variable definitions. 

 
depr. = depreciated; exp = experience; HH = household; IREC = Interstate Renewable Energy Council 
 
Customer VoS variable: The customer VoS variable encompasses all the elements that contribute 
to the economic value of the PV system to the customer. This includes the following: 
 

1. Tax credits. The federal government and a number of states offer investment tax credits 
(ITCs) for PV systems. Since 2009, the federal ITC has been 30% of system costs. For 



   

host-owned residential systems, the credit is based on the total system price net of any 
cash rebates (since the cash rebates are not taxable income). For commercial and TPO 
residential systems, the credit is based on the total system price (since the cash rebates are 
taxable income for commercial entities). From the states for which we have PV system 
data, the following states have had ITCs over the 2000–2013 period (in addition to the 
federal ITC): California, Massachusetts, New Mexico, New York, North Carolina, 
Oregon, Texas, Utah, and Vermont. The ITC rules vary by state, with different rules for 
specific customer segments and periods as well as different ITC caps. The ITC 
calculations were based on the ITC descriptions in (DSIRE 2014) and correspondence 
with state programs.  

 
2. Cash incentives and rebates, from state and local governments. In most cases, the exact 

amounts for the cash incentives and rebates were received directly from the incentive 
programs. In some cases, the incentive programs did not provide incentive data for all 
systems. For those systems, the cash incentive was estimated by using the average known 
incentive amount (in dollars per watt) from other PV systems in a similar size range that 
had applied for an incentive within 1 month from the same incentive program. Because 
cash incentives are taxable for commercial entities, we assumed that commercial and 
TPO systems were taxed at the appropriate corporate federal and state tax rate.  

 
3. Performance-based incentives (PBIs) and feed-in tariffs (FiTs). PBIs and FiTs are tied to 

actual or estimated PV generation and in most cases disbursed annually for a fixed 
amount of time (5–20 years, depending on the incentive program). In order to calculate 
the annual PBI or FiT payment, we estimate the PV production using the National 
Renewable Energy Laboratory’s PVWatts model (http://pvwatts.nrel.gov/), unless an 
estimated lifetime PBI amount is specified by the incentive program. In the latter case, 
we use those data directly, subject to discounting. Inputting system location (i.e., zip 
code) and system size and making a number of assumptions regarding system 
characteristics—such as south-facing panels with a 25-degree tilt and a derate factor of 
0.77—the model returns the system’s estimated annual generation. We then calculate the 
annual PBI or FiT payment (subject to applicable state and federal income taxes), 
assuming a system degradation rate of 0.5% per year (Jordan and Kurtz 2013) and a 
discount rate of 7%. The present value of the income stream is calculated and included in 
the customer VoS variable. 

 
4. SREC payments. Seventeen states plus the District of Columbia have enacted renewable 

portfolio standards with solar or distributed generation set-asides, and in many of those 
states compliance with the set-aside is achieved through the purchase and retirement of 
tradable SRECs. Among the states in our sample, active SREC markets exist in the 
District of Columbia, Delaware, Massachusetts, Maryland, New Hampshire, New Jersey, 
Ohio, and Pennsylvania. Given the uncertainty in future SREC prices, we chose to 
extrapolate the 2-year rolling average price from the state’s SREC market over 5 years, 
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then assumed $100/MWh SREC payment for the following 10 years9. As with the PBI 
calculations, we use estimated PV system generation to calculate total SREC payments 
and sum the present value of all future SREC payments (again, with a discount rate of 7% 
and a system degradation rate of 0.5% per year).  

 
5. Electricity bill savings. We estimate the present value of all electricity bill savings over 

the lifetime of the PV system. We use the National Renewable Energy Laboratory’s 
OpenEI platform to determine each system’s appropriate utility (assuming the default 
service provider in areas with retail competition). We then use the utility’s average retail 
electricity rates for commercial and residential customers for 2010, 2011, 2012, and 
2013, as appropriate, extracted from the U.S. Energy Information Administration’s Form 
861, and the estimated annual PV system generation to calculate annual electricity bill 
savings for each PV system. To account for inclining block pricing in California investor-
owned utilities, we multiply the utilities’ average rate by a tiering factor. The tiering 
factor is based on how much higher the average rate is for net-metered customers (based 
on their gross consumption) than for average non-solar customers following work by the 
environmental consulting company E3. Utilities with inclining block pricing in other 
states have much less steep price tiers, and hence tiered pricing is not modeled for 
utilities outside California. For commercial systems and TPO systems, the bill savings are 
taxed at the applicable state and federal corporate tax rate, to reflect the fact that the 
utility service costs are an expense that reduces taxable income. We assume that rates rise 
with inflation through the lifetime of the system (20 years) and calculate the present value 
of each year’s bill savings from PV. 

 

  

9 For reference, the average SREC prices for 2013 were $290/MWh in DC, $53/MWh in DE, $310/MWh in MA, 
$170/MWh in MD, $50/MWh in NH, $170/MWh in NJ, $170/MWh in OH, and $30/MWh in PA. 
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Appendix 2: Tests of Differences of Means 

This appendix provides results and discussion for additional analyses of differences between LP 
system and non-LP system means. 
 
Table A - 3. Differences in means between percentile bins for each ratio variable: percentiles based on 

price/W for all U.S. (left), percentiles based on residuals controlling for size and time (right). 
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Table A - 4. Differences in proportions between percentile bins for each binary variable: percentiles 
based on price/W for all U.S. (left), percentiles based on residuals controlling for size and time (right). 

 
 
We also compare means between LP (P10) and non-LP for TPO and customer-owned systems 
separately (Figure A - 1), given that these two ownership models involve different transaction 
types (customer-installer transactions in the case of customer owned and TPO-installer 
transactions in the case of TPO; see Section 2). Recall that the groups are well balanced (TPO 
comprises 54% of all systems and customer owned the remaining 46%).  
 
In most cases, the means ratios for TPO and customer owned are similar to each other: LP 
system and market characteristics do not differ dramatically between the two groups. Some 
differences that do emerge from the analysis presented in Figure A - 1 are that TPO LP systems 
have relatively greater experience, scale, SRECs, and commercial systems. The interpretation 
here is that the ratio of TPO LP to non-LP systems is larger than the ratio of customer-owned LP 
to non-LP systems. For example, the finding that LP systems tend to be in locations with lower 
household density appears to be driven more by customer-owned systems than by TPO systems. 
TPO LP systems also have relatively smaller customer VoS and interconnection scores. Finally, 
several of the binary variables are different because TPO systems preclude self-installation and 
rarely include BiPV, battery, or tracking systems. Differences for both TPO and customer owned 
are significant in almost every case where the P10 total is significant, as shown above. 
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Figure A - 1. Comparisons of means for LP (P10) to mean for other systems (mean for other = 1). 
Orange bars for TPO systems, yellow bars for customer owned. Asterisks indicate difference is 

significant with 95% confidence. 
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Appendix 3: Supplemental Descriptions and Regression Results 

This appendix summarizes the LP system results (Table A - 5), compares coefficients across 
models (Figure A - 2) and definitions of LP (Table A - 6 and Figure A - 3), analyzes correlations 
between variables (Figure A - 4 and Figure A - 5), and shows the distribution of LP systems by 
state (Table A - 7). 
 

Table A - 5. Summary of results 

  positive: + = sig, .+ = not sig. negative: -= sig, .-= not sig. 

      Summary 
t-test logit total Interpretation 

      t-test logit total LP more likely with: 
  COMP hhi + .+ .+ concentrated (weak) 
    active instllrs - - - few installers (weak) 
    mkt duration -       
  FIRM exp cnty + + + more experience 
    exp state -       
    mkt share . - -   
    agg exp cnty +       
    inst scale cnty -       
    inst scale st - - -   
  MARKET HH density - .+ .   
    commercial + + + commercial installs 
    other cust . . .   
    TPO - - - customer owned 
  DEMOG inc 100k zip - .+ .   
    pct demo cnty -       
  POLICY value of solar - + + higher customer VoS 
    pct srec . + + more SRECs 
    interconnect - . .   
  COSTS mod pr index . .- .- lower mod prices 
    inv pr index . - - lower inverter prices 
  SIZE sys size + + + larger systems 
    sys size squared   - - … with diminishing returns 
  SYSTEM tracking -   - not tracking 
  CHARAC. BIPV - .- - not BIPV 
    new constr - - - existing homes 
    battery -   - not batteries 
    self install + + + self-installs 
    micro invrtr - - - string inverter 
    mod eff - - - less efficient modules 
    china panel + + + Chinese panels 
    thin film + + + thin films 
  STATE vs CA       LP: AZ, NJ, NM, CT, ME, NH 

 



   

  
Figure A - 2. Comparisons of coefficients across models for 2013 installations. Y = P10 system dummy. 

Darker color indicates p < 0.05. Model numbers correspond to Table 1 in the main text. 
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Table A - 6. Logit regression models for 2013 installations. Dependent variable is P10, P10r, P20. 
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Figure A - 3. Comparisons of coefficients across logit models for 2013 installations using three 

definitions of LP. Y = LP system dummy. Darker color indicates p < 0.05.  
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Figure A - 4. Correlation matrix. Low correlations are smaller and bluer. High correlations are redder 

and larger. Correlations above 0.5 are indicated with white diamonds. 
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Figure A - 5. Correlations between state dummies and regressors. Low correlations are smaller and 
bluer. High correlations are redder and larger. Large dark markers indicate correlations above 0.5. 
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Table A - 7. Distribution of LP systems by state. 
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