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1AbstratEstimation of Complex Generalized Linear Mixed Modelsfor Measurement and GrowthbyMinjeong JeonDotor of Philosophy in EduationUniversity of California, BerkeleyProfessor Sophia Rabe-Hesketh , ChairMaximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) istehnially hallenging beause of the intratable likelihoods that involve high dimensionalintegrations over random e�ets. The problem is magni�ed when the random e�ets have arossed design and thus the data annot be redued to small independent lusters. A varietyof methods have been developed for approximating the intratable likelihood funtions, butthere seems no method yet that is both omputationally e�ient and aurate in a widerange of situations.In this dissertation, I onsider new estimation methods and appliations of omplexGLMMs for measurement and growth. The dissertation onsists of three papers, 1) Varia-tional maximization-maximization (MM) algorithm, 2) Monte Carlo loal likelihood (MCLL)estimation, and 3) Autoregressive item response theory (IRT) growth model for longitudinalitem analysis. In the �rst and seond papers, I develop two ML methods for estimat-ing GLMMs with rossed random e�ets. The variational MM algorithm is a modi�edexpetation-maximization (EM) algorithm where a variational density is introdued in theexpetation (E) step to approximate the true posterior density of the random e�ets giventhe data. The E-step is replaed by another maximization step that minimizes the Kullbak-Leibler (KL) divergene between the posterior and the variational density, or equivalently,maximizes the lower bound of the log-likelihood with respet to the variational distribu-tion. The MCLL algorithm uses the posterior samples of model parameters obtained fromMarkov hain Monte Carlo (MCMC) for likelihood inferene. The posterior density is es-timated by loal likelihood density estimation and the likelihood funtion is approximatedup to a onstant by the loal likelihood density estimate of the posterior divided by theprior. The performane of these new algorithms is evaluated using simulation and empirialstudies and ompared with other ML and Bayesian estimators. In the third paper, a newautoregressive IRT growth model is proposed to take into aount serial orrelations amongresponses to the same items over time. The onsequenes of ignoring serial dependene and



2the initial onditions problem are investigated using simulations. The new model is appliedto longitudinal data of Korean students' self-esteem.Key words: Maximum likelihood estimation; Generalized liner mixed model; Crossed ran-dom e�ets; Variational approximation; MM algorithm; Loal likelihood density estimation;MCLL; Autoregressive models; Loal dependene; Initial onditions problem
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1
Chapter 1General IntrodutionGeneralized linear mixed models (GLMMs), also known as multilevel or hierarhialgeneralized linear models (Raudenbush & Bryk, 2002; Goldstein, 2003; Rabe-Hesketh &Skrondal, 2012), are popular models for multilevel data with units nested in lusters. Theanonial examples of multilevel data are students nested within shools and repeated mea-surements nested within subjets. Item response theory (IRT) models an be oneptualizedas generalized linear mixed models (Rijmen et al., 2003).Crossed random e�ets an be inorporated in GLMMS to handle data with two ormore non-nested lassi�ations suh as students nested within shools ross-lassi�ed withneighborhoods (e.g., Goldstein, 1987; Raudenbush, 1993; MCa�rey et al., 2004). In psyho-metris, rossed random e�ets models are also used e.g., for IRT measurement models withrandom item parameters (Van den Noortgate & De Boek, 2003; De Boek, 2008). Unliketypial IRT models that onsider person as random and items as �xed, random item IRTmodels treat persons and items as random and the resulting model beomes a rossed ran-dom e�ets model. Random item IRT models are found to be useful in various settings, forinstane, to aount for random sampling of items from an item bank, to model item families,and to represent di�erential item funtioning (for more examples, see e.g., De Boek, 2008).Maximum likelihood estimation of GLMMs is tehnially hallenging beause likelihoodsoften involve high dimensional intratable integrations over random e�ets (or latent vari-ables). The problem is magni�ed when the random e�ets have a rossed design and thusthe data annot be redued to small independent lusters (Vaida & Meng, 2005).Various methods have been proposed for approximating the intratable likelihood fun-tion. For instane, the Laplae approximation (Tierney & Kadane, 1986; Lindstrom & Bates,1988; Wol�nger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,2005; Shilling & Bok, 2005) have been widely used. The Laplae approximation and sim-ilarly, penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to performpoorly for small luster sizes and for large variane omponents (Breslow & Lin, 1995; Joe,2008). Adaptive quadrature is more aurate but omputationally more demanding thanGaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).



CHAPTER 1. GENERAL INTRODUCTION 2Monte Carlo (MC) methods have also been utilized in various ways for ML estimation.Most methods are based on sampling the random e�ets given �xed parameter estimates.Several MC expetation maximization (MCEM) algorithms have been proposed using varioussampling methods: e.g., a Metropolis-Hastings (MCulloh, 1997), an independent samplerbased on importane sampling or rejetion sampling (Booth & Hobert, 1999), and a sliesampler (Vaida & Meng, 2005). The basi idea is to use MC samples to approximate theintratable onditional expetation for the E-step of the EM algorithm. MCEM requiressamples at eah iteration of the algorithm. In addition, the algorithm needs a methodfor alulating standard errors of the parameter estimates beause it does not evaluate thelikelihood funtion or its derivatives. A method for monitoring onvergene may also berequired (e.g., Booth & Hobert, 1999).In addition, Bayesian methods have been suggested using di�use priors to approximateML estimates (Tanner, 1993; Diggle et al., 1994; MCulloh, 1997). However, this is ofteninappropriate for models with random e�ets beause the posterior may not exist for di�usepriors (Natarajan & MCulloh, 1995; Hobert & Casella, 1996).In this dissertation, I onsider new estimation methods and appliations of omplexGLMMs for measurement and growth. The dissertation onsists of three papers:1. Variational maximization-maximization (MM) algorithm2. Monte Carlo loal likelihood (MCLL) method3. Autoregressive IRT growth model for longitudinal item analysisIn the �rst and seond papers, I develop two methods for estimating GLMMs with rossedrandom e�ets. In the third paper, I propose a new autoregressive IRT growth model thattakes into aount serial orrelations among responses to the same items over time andapply it to longitudinal data of Korean students' self esteem. The three papers orrespondto Chapters 2, 3, and 4, respetively. An abstrat of eah paper is provided below.Chapter 2:Variational maximization-maximization algorithmA variational maximization-maximization (MM) algorithm is developed for approximatemaximum likelihood estimation of generalized linear mixed models with rossed randome�ets. The variational MM algorithm is a modi�ed EM algorithm where the true posterior isapproximated by a variational density in the E-step. The variational density funtion is foundby minimizing the KL divergene between the posterior and the variational distribution orequivalently, maximizing the lower bound of the log-likelihood with respet to the variationaldistribution. The variational MM algorithm does not require a pre-spei�ed form for thevariational distribution. Models with rossed random e�ets an be estimated by the mean-�eld approximation that assumes the latent variables are onditionally independent given



CHAPTER 1. GENERAL INTRODUCTION 3the data. Adaptive quadrature is inorporated to improve the auray of the algorithm.Methods for estimating standard errors, evaluating the marginal likelihood, and preditingthe random e�ets are provided. Performane of the algorithm is evaluated and omparedwith approximate maximum likelihood estimation based on the Laplae approximation usingempirial and simulation examples.Chapter 3:Monte Carlo loal likelihood methodA Monte Carlo loal likelihood (MCLL) method is developed for estimating generalizedlinear mixed models (GLMMs) with rossed random e�ets. MCLL initially treats modelparameters as random variables and samples them from the posterior for a partiular prior.The likelihood funtion is approximated up to a onstant by �tting a density to the posteriorsamples and dividing it by the prior. In the MCLL algorithm, the posterior density is approx-imated using loal likelihood density estimation (Loader, 1996), where the log-likelihood isloally approximated by a polynomial funtion. In his Monte Carlo kernel likelihood (MCKL)method, De Valpine (2004) proposed suh an approah but using kernel density estimationinstead of loal likelihood density estimation. A novel method to ompute standard errorsis developed for the MCLL method. Using empirial and simulation examples, we evaluatethe MCLL algorithm and ompare it to other maximum likelihood and Bayesian estimators.Chapter 4:Autoregressive IRT growth model for longitudinal item analysisA �rst-order autoregressive or dynami IRT growth model is proposed for longitudinal binaryitem analysis where responses to the same items are onditionally dependent aross timegiven the latent trait. We show that the proposed model is equivalent to a loal dependeneIRT model that inludes interation parameters for responses at adjaent time points. Theinitial onditions problem is addressed using the method suggested by Hekman (1981)and Aitkin & Alfo (2003). The impliation of this treatment is disussed with respetto measurement invariane. The proposed model is applied to longitudinal data on Koreanstudents' self esteem. We investigate the onsequenes of ignoring loal dependene and theinitial onditions problem when the data are generated from a �rst-order autoregressive IRTgrowth model.NotesSome methods and appliations overlap and the notation is not neessarily onsistent arossthe three hapters.



4
Chapter 2Variational Maximization-MaximizationAlgorithm
2.1 IntrodutionMaximum likelihood estimation of generalized linear mixed models (GLMMs) is tehniallyhallenging beause the likelihoods often involve high dimensional intratable integrals overrandom e�ets (or latent variables). The problem is magni�ed when the random e�ets havea rossed design and thus the data annot be redued to small independent lusters.Various methods have been proposed for approximating the intratable likelihood fun-tions. For instane, the Laplae approximation makes use of a seond-order Taylor expansionof the integrand around the mode of the random e�ets (Tierney & Kadane, 1986; Lindstrom& Bates, 1988; Wol�nger, 1993). Penalized quasi-likelihood (PQL) uses the Laplae approx-imation but inludes a penalty term in the approximate likelihood funtion (Breslow &Clayton, 1993). These approximate methods are known to perform poorly for small lustersizes and for large variane omponents (Breslow & Lin, 1995; Joe, 2008).Gaussian quadrature (Bok & Lieberman, 1970; Butler & Mo�tt, 1982) has been used,whih approximates integrals by a weighted average of the integrand evaluated at predeter-mined absissas. The Gaussian quadrature rule an be viewed as a deterministi versionof Monte Carlo integration in whih random samples of the random e�ets are generatedfrom a normal prior distribution (Pinheiro & Bates, 1995). Adaptive quadrature (Naylor &Smith, 1982; Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005; Shilling & Bok, 2005) isequivalent to using importane sampling in the ontext of Gaussian quadrature where thegrid of absissas is entered around the onditional modes or means of the random e�etsrather than zero. Adaptive quadrature with one quadrature point is equivalent to the Laplaeapproximation. For satisfatory results, Gaussian quadrature methods would require manyabsissas. Adaptive quadrature is more aurate but omputationally more demanding thanGaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 5An expetation-maximization (EM) algorithm has been utilized for GLMMs where therandom e�ets are treated as missing data (Dempster et al., 1977). To approximate the on-ditional expetation in the E-step, Monte Carlo (MC) methods have been used with varioussampling methods: e.g., a Metropolis-Hastings (MCulloh, 1997), an independent samplerbased on importane sampling or rejetion sampling (Booth & Hobert, 1999), and a sliesampler (Vaida & Meng, 2005). However, MCEM is omputationally demanding beause itrequires samples at eah iteration of the algorithm and a method for monitoring onvergene.Shafer (1987) used a saled normal density funtion to approximate the posterior in theE-step and Steele (1996) suggested a seond-order Laplae approximation for the integrals.Variational approximation methods have been used in mahine learning (Jordan et al.,1999; Jordan, 2004; Bishop, 2006). Humphreys & Titterington (2003) and Ormerod (2010)applied these ideas to statistial inferene. Reently, Gaussian variational approximationmethods have been proposed (Opper, 2009; Ormerod & Wand, 2012) for estimating GLMMswith nested random e�ets. The idea of the Gaussian variational approximation is to usea Gaussian density as a variational distribution to approximate the exat onditional dis-tribution of the random e�ets given the observed data. However, the Gaussian variationalapproximation an be poor if the posterior is not lose to Gaussian. Importantly, this methodis restrited to models with nested random e�ets.In this paper, we present a di�erent version of the variational approximation method.Unlike the Gaussian variational approximation, no pre-spei�ed form for the variationaldistribution is required in our algorithm. In addition, by using the mean-�eld approximationwhih treats the latent variables as onditionally independent given the data, we an estimatemodels with rossed random e�ets.The outline of this hapter is as follows. In Setion 2.2, we de�ne the type of models thatwe onsider. In Setions 2.3 and 2.4, the variational MM algorithm is desribed in detail. InSetion 2.5, related issues are disussed suh as estimating standard errors, evaluating themarginal likelihood, and prediting the random e�ets. Empirial and simulation studies areprovided in Setions 2.6 and 2.7 to evaluate the proposed variational MM algorithm. Thepaper ends with some onluding remarks.2.2 ModelTo illustrate the proposed method, we onsider a Rash model with random item e�ets(e.g., De Boek, 2008). The model is a generalized linear mixed model with rossed randome�ets for binary data and an be written as
logit (p (yis = 1|θs, δi)) = logit(πis) = β + θs + δi, (2.1)where yis denotes the binary response for item i and person s with i = 1, ..., I and s = 1, ..., N .

β is a �xed interept, θs is the person ability with density p(θs;γ), and −δi is the item



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 6di�ulty with density p(δi; ξ) where γ and ξ are the parameter vetors that haraterize thedistributions of θs and δi, respetively.The likelihood funtion for model (2.1) is obtained by integrating over the vetors oflatent variables θ = (θ1, ..., θN )
′ and δ = (δi, ..., δI)

′

L(y;Ψ) =

∫

θ1

· · ·
∫

θN

∫

δ1

· · ·
∫

δI

p(y|θ, δ)
(∏

s

p(θs;γ)

)(∏

i

p(δi; ξ)

)
dδI · · · dδ1 dθN · · · dθ1,where y is the vetor of responses for all persons and items, Ψ the vetor of all parameters,

Ψ = (β, ξ′,γ′)′ and p(y|θ, δ) is the joint probability of all observed responses given the latentvariables
p(y|θ, δ) =

∏

i

∏

s

p(yis = 1|θs, δi).Later we will speify disrete or normal prior distributions for p(δi; ξ) and p(θs;γ).2.3 Variational MM algorithmThe EM algorithm is a powerful tool for maximum likelihood estimation of models withmissing data or latent variables (Dempster et al., 1977). The algorithm alternates betweenan E-step and an M-step: In the E-step, the expetation of the omplete data log-likelihood,log f(y, z;Ψ) is omputed over the posterior distribution of the latent variables z = (θ, δ)or missing data given the observed data y and given urrent parameter estimates. In the M-step, the posterior expetation omputed in the E-step (often alledQ funtion) is maximizedwith respet to the model parameters to produe updated estimates. The steps are repeateduntil onvergene.In the variational MM algorithm, the traditional E-step is modi�ed by using a variationalapproximation. To desribe the algorithm, we de�ne the Q funtion at the mth iteration as
Q(Ψ;Ψ(m)) = E

{log f(y, z;Ψ)|y;Ψ(m)
}

=

∫

z
p (z|y;Ψ(m)) logf (y, z;Ψ)dz,where Ψ(m) are the urrent parameter estimates and p (z|y;Ψ(m)) is the probability densityof the latent variables given the data for the urrent parameter estimates. The Q fun-tion annot be evaluated analytially due to the integral over the posterior distribution

p(z|y;Ψ(m)). The variational MM algorithm replaes the posterior distribution p(z|y;Ψ(m))by a tratable alternative probability density funtion g(z). The variational density funtion
g(z) is found by minimizing the Kullbak-Leibler (KL) divergene (Shorak & Wellner, 1986,



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 7p.159) between p(z|y;Ψ(m)) and g(z)KL(g(z), p(z|y;Ψ(m))
)
=

∫

z
g(z)log g(z)

p(z|y;Ψ(m))
dz. (2.2)KL(g(z), p(z|y;Ψ(m))

) is stritly positive and zero if and only if g(z) = p(z|y;Ψ(m)) almosteverywhere (Kullbak & Leibler, 1951).Equivalently, it an be shown that minimizing the KL in (2.2) is the same as maximizing alower bound of the log-likelihood. The lower bound an be derived using Jensen's inequality
l(y;Ψ) ≡ log∫

z
f (y, z;Ψ)dz

= log∫
z
g(z)

f (y, z;Ψ)

g(z)
dz

= logEg

{
f (y, z;Ψ)

g(z)

}

≥ Eg

{logf (y, z;Ψ)

g(z)

}

= Eg{log f(y, z;Ψ)} − Eg{log g(z)}
≡ l (y;Ψ), (2.3)where l(y;Ψ) is the log-likelihood and Eg denotes the expetation over the latent variables

z with density g(z). The �rst term in the �fth line of (2.3) is an approximation to the Qfuntion.In order to show the relationship between the KL divergene and the lower bound, rewritethe KL divergene in (2.2)KL (g(z), p(z|y)) =
∫

z
g(z)log g(z)

p(z|y;Ψ)
dz

= Eg {logg(z)} −Eg {logp(z|y;Ψ)}

= Eg {logg(z)} −Eg

{log(f(y, z;Ψ)

p(y;Ψ)

)}

= Eg {logg(z)} −Eg {logf(y, z;Ψ)}+ logp(y;Ψ),where the third line is based on Bayes theorem. In the last line, the �rst two terms are
Eg {logg(z)}−Eg {logf(y, z;Ψ)} = −l (y;Ψ) and the third term logp(y;Ψ) is the marginallog-likelihood l(y;Ψ). Therefore, the following deomposition holds for the marginal log-
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l(y;Ψ) = l (y;Ψ) +KL (g(z), p(z|y)) .That is, the KL divergene KL (g(z), p(z|y)) desribes the di�erene between the marginallog-likelihood and the lower bound. Thus, minimizing KL is equivalent to maximizing thelower bound l (y;Ψ) (Bishop, 2006, p.451).The maximization-maximization (MM) algorithm (MM-algorithm; Neal & Hinton, 1998)onsists of two maximization steps. The �rst M-step involves maximizing the lower bound

l (y;Ψ(m)) with respet to g(z) given the urrent parameter estimates Ψ(m) and the se-ond M-step involves maximizing l (y;Ψ) with respet to Ψ given the urrent variationalapproximation g(z).It is lear that the quality of the variational MM-algorithm depends on the hoie of
g(z). Ideally, g(z) should resemble the true model-based posterior distribution p (z|y;Ψ)and make the integrals omputationally tratable. The mean-�eld approximation assumesomplete fatorizability (or independene) of the latent variables z under the posterior (Hallet al., 2002; Bishop, 2006). The lower bound l (y;Ψ(m)) then takes a relatively simple form
g(z) =

∏
i gi(zi), where zi is the ith element of z and gi(zi) is the orresponding marginaldensity.For model (2.1), the mean-�eld approximation is

g(z) = g (δ, θ)

≈
(∏

i

gi (δi)

)(∏

s

gs (θs)

)
.As a re�nement of the mean-�eld approximation, one may use a di�erent type of approxi-mation, e.g., based on a mixture distribution where eah of the omponent distributions is anindependent distribution (Bishop et al., 1998; Humphreys & Titterington, 2003). Althoughthese alternative re�nements may give sharper lower bounds, they introdue extra ompli-ations to the algorithm, for example, requiring extra variational parameters. In addition,they may work only for partiular problems (Humphreys & Titterington, 2003).Hene, the mean-�eld approximation is a pratial hoie. It is easy to implement andworks well for models with omplex random e�et strutures. For instane, Rijmen & Jeon(in press) adopted a disrete mean-�eld approximation for estimating a omplex generalizedlinear mixed model with rossed random e�ets and reported good preision of the method.In a later setion, the appropriateness of the mean-�eld approximation is investigated byexamining posterior orrelations of the random e�ets as a funtion of sample sizes and priorvarianes.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 92.4 ImplementationWe derive the �rst M-step of the algorithm without speifying funtional forms for thelatent variable distribution or for the variational approximation. The lower bound to thelog-likelihood for model (2.1) an be written as
l =

∫

θ,δ

[∑

s

logp(θs) +∑
i

logp(δi) +∑
i

∑

s

logp(yis|θs, δi)−∑
s

loggs(θs)−∑
i

loggi(δi)]
× g(θ, δ)d(θ)d(δ)

=
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
i

∫

δi

gi(δi)logp(δi)dδi
+
∑

i

∑

s

∫

θs

∫

δi

gi(δi)gs(θs)logp(yis|θs, δi)dδidθs
−
∑

s

∫

θs

gs(θs)loggs(θs)dθs −∑
i

∫

δi

gi(δi)loggi(δi)dδi. (2.4)Here we have used the mean-�eld approximation by assuming a fully fatorized form for
g(θ, δ). We maximize (2.4) with respet to gs(θs) and gi(δi), by means of the alulus ofvariations (or funtional derivatives), subjet to the onstraints that these densities integrateto 1. Rewriting (2.4) and adding Lagrange multipliers for the onstraints, we obtain

F =
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
i

∫

δi

gi(δi)logp(δi)dδi
+
∑

i

∑

s

∫

θs

∫

δi

gi(δi)gs(θs)logp(yis|θs, δi)dδidθs
−
∑

s

∫

θs

gs(θs)loggs(θs)dθs −∑
i

∫

δi

gi(δi)loggi(δi)dδi
+
∑

s

λs

[∫

θs

gs(θs)dθs − 1

]
+
∑

i

λi

[∫

δi

gi(δi)dδi − 1

]
. (2.5)Here λs and λi are the Lagrange multipliers for the normalization onstraints on gs(θs) and

gi(δi).We optimize this funtional F with respet to gs(θs) and gi(δi). In Appendix A, the ideaof a funtional derivative is illustrated with a simple example. For more information on thealulus of variations, see Sagan (1969) and Bishop (2006, Appendix D). The solutions for



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 10loggs(θs) and loggi(δi) an be obtained asloggs(θs) = logp(θs) +∑
i

∫

δi

gi(δi)logp(yis|θs, δi)dδi − 1 + λs, (2.6)loggi(δi) = logp(δi) +∑
s

∫

θs

gs(θs)logp(yis|θs, δi)dδi − 1 + λi.By exponentiating the �rst equation and integrating over θs, we obtain
1 = exp (−1 + λs)

∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs,
−1 + λs = −log∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs. (2.7)Substituting (2.7) for −1 + λs in (2.6), we obtain a solution for loggs(θs)loggs(θs) = logp(θs) +∑
i

∫

δi

gi(δi)logp(yis|θs, δi)dδi
− log∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs.Thus, a solution for gs(θs) an be obtained as
gs(θs) =

p(θs) exp
(∑

i

∫
δi
gi(δi)logp(yis|θs, δi)dδi)

∫
θs
p(θs) exp

(∑
i

∫
δi
gi(δi)logp(yis|θs, δi)dδi)dθs . (2.8)Similarly, a solution for gi(δi) an be obtained as

gi(δi) =
p(δi) exp

(∑
s

∫
θs
gs(θs)logp(yis|θs, δi)dθs)

∫
δi
p(δi) exp

(∑
s

∫
θs
gs(θs)logp(yis|θs, δi)dθs)dδi . (2.9)Note that Equations (2.8) and (2.9) represent a set of onsisteny onditions for themaximum of the lower bound subjet to the fatorization onstraint (Bishop, 2006, p.466).These are not expliit solutions yet beause gs(θs) and gi(δi) depend on expetations om-puted with respet to gi(δi) and gs(θs), respetively. Therefore, onsistent solutions an beobtained by �rst initializing and then iteratively updating the variational approximations.Convergene is guaranteed beause the lower bound is onvex with respet to the fators of
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g(z) (Boyd & Vandenberghe, 2004).The general expressions for the solutions in (2.8) and (2.9) involve integrals over the priorand the approximate posterior distribution of the latent variables. The expliit solutions forthese and thus the rest of the algorithm (the seond M-step) di�er aording to the hoie ofthe prior distributions for θs and δi. In the next subsetions, we desribe two general hoiesfor the prior, ontinuous (normal) and disrete prior distributions.2.4.1 Normal PriorsHere we speify normal priors p(θs) = φ(θs; 0, τθ) and p(δi) = φ(δi; 0, τδ), where φ(·;µ, σ)denotes a normal density with mean µ and standard deviation σ. Then, we rewrite model(2.1) as

logit (p (yis = 1|uθs, uδi)) = β + τθuθs + τδuδi,where uθs and uδi are standard normal variables. The solutions for the random e�ets uθsand uδi are given in (2.8) and (2.9), where θs is replaed by uθs, and δi is replaed by uδi.The integrals in both expressions an be approximated by Gaussian quadrature. Forexample, the integral in the numerator of (2.8) beomes
∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi
=

∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi)

φ(uδi)duδi

≈
∑

d

gi(ld)logp(yis|uθs, uδi = ld)

φ(ld)
wd,where the prior density is used as a weight funtion in the seond line. In the third line,

φ(·) is a standard normal density, and the Gauss-Hermite quadrature rule is applied where
ld and wd are the quadrature loations and orresponding weights for integrating over uδi.Similarly, the integral in the denominator of (2.8) beomes

∫

uθs

φ(uθs) exp

(∑

i

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi)duθs
≈
∫

uθs

φ(uθs) exp

(∑

i

∑

d

gi(ld)logp(yis|uθs, uδi = ld)

φ(ld)
wd

)
duθs

≈
∑

t

wt exp

(∑

i

∑

d

gi(ld)logp(yis|uθs = lt, uδi = ld)

φ(ld)
wd

)
,where lt and wt are the quadrature loations and orresponding weights for integrating over
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uθs. Similarly, we approximate the integrals in (2.9) using Gaussian quadrature.Note that the variational parameters are the posterior probabilities gi(ld) and gs(lt) atthe loations de�ned by the quadrature points.In the seond M-step, the lower bound is optimized with respet to the model parameters,
Ψ= (β, τθ, τδ)

′. For example, with respet to β, the solution for β̂ is found by solving
dl

dβ
=

d

dβ

∫

θ,δ

[∑

i

∑

s

logp(yis|uθs, uδi)] g(θ, δ)dθdδ
=
∑

i

∑

s

∫

uδi

∫

uθs

gi(uδi)gs(uθs)
d

dβ
logp(yis|uθs, uδi)duθsduδi

≈
∑

i

∑

s

∑

d

∑

t

gi(ld)gs(lt)

φ(ld)φ(lt)

d

dβ
logp(yis|uθs = lt, uδi = ld)wdwt = 0. (2.10)The solutions for the variane parameters τθ and τδ an be obtained in a similar way. Notiethat Equation (2.10) orresponds to the sore funtion of a generalized linear model withfrequenies gi(ld)gs(lt)/φ(ld)φ(lt).Adaptive QuadratureA more e�ient numerial integration method is adaptive quadrature whih takes into a-ount the loation and spread (mean and standard deviation or mode and urvature) of theintegrand. The quadrature loations are saled and translated to be plaed under the peak ofthe integrand (Rabe-Hesketh et al., 2005). Spei�ally, adaptive quadrature an be appliedto the numerator of (2.8)

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi
=

∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi

≈
∑

d

gi(lid)logp(yis|uθs, uδi = lid)

φ(ld)
σuδi

wid

=
∑

d

gi(lid)logp(yis|uθs, uδi = lid)wid, (2.11)where
lid = µuδi

+ σuδi
ld,

wid =
σuδi

wd

φ(ld)
,



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 13are the item-spei� quadrature loations and weights for integrating over uδi. In the seondline in (2.11), the variational approximation to the posterior gi(uδi) is approximated by
φ(uδi;µuδi

, σuδi
) where µuδi

and σuδi
are the posterior mean and standard deviation for uδi.In the third line, the variable of integration was hanged to a standard normal variable.The adaptive quadrature method works well if the ratio in the third line of (2.11) is wellapproximated by a low-order polynomial (Liu & Piere, 1994). In (2.11), logp(yis|uθs, uδi) is(mirrored) S-shaped as a funtion of uδi and the denominator is a normal approximation of

gi(uδi). Thus, the integrand in the �rst line of (2.11) is likely to be a unimodal and smoothfuntion.The variational parameters are now the posterior probabilities gi(lid) of the item-spei�adaptive quadrature loations lid. Applying the same logi to the integral in the numeratorof (2.9), the variational parameters are the posterior probabilities of the person-spei�adaptive quadrature loations.Similarly, adaptive quadrature an be applied to the denominator of (2.8)
∫

uθs

[
φ(uθs) exp

(∑

i

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi)] duθs
=

∫

uθs

[
φ(uθs) exp

(∑
i

∫
uδi
gi(uδi)logp(yis|uθs, uδi)duδi)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

≈
∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

≈
∑

t

φ(lst)
wtσuθs

φ(lr)
exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)

=
∑

t

φ(lst)wst exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)
, (2.12)where

lst = µuθs
+ σuθs

lt,

wst =
σuθs

wt

φ(lr)
,are the person-spei� quadrature loations and the orresponding weights for integratingover uθs, and µuθs

and σuθs
are the posterior means and standard deviations for uθs. Detailson deriving (2.11) and (2.12) are provided in Appendix B.Here the integrals over the person random e�ets uθs are evaluated using the same lo-ations and weights as for evaluating the integral in the numerator of (2.9). The integrandin (2.12) is proportional to the variational distribution gs(uθs), whih is the approximate
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, σuθs

). Therefore, the adaptive quadrature method is expeted towork well.The seond M-step also hanges by applying the adaptive quadrature method. That is,(2.10) beomes
dl

dβ
=

d

dβ

∫

θ,δ

[∑

i

∑

s

logp(yis|uθs, uδi)] g(θ, δ)d(θ)d(δ)
=
∑

i

∑

s

∫

uδi

∫

uθs

gi(uδi)gs(uθs)
d

dβ
logp(yis|uθs, uδi)duθsduδi

=
∑

i

∑

s

∑

d

∑

t

gi(lid)gs(lst)

× d

dβ
logp(yis|uθs = lst, uδi = lid)widwst.The sore funtions for the the variane parameters τθ and τδ an be derived in a similarway.The luster-spei� means and varianes of gi(uδi) and gs(uθs) an be obtained by aniterative proedure. For example, for gs(uθs), �rst initialize l(0)st and w

(0)
st using startingvalues µ(0)

uθs and σ(0)
uθs. Then µuθs

and σ2
uθs

are at the kth iteration
µ(k)
uθs

=

∫

uθs

uθsgs(uθs)duθs

≈
∑

t

l
(k−1)
st gs

(
l
(k−1)
st

)
w

(k−1)
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φ
(
l
(k−1)
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) ,
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uθs

2
=

∫
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2gs(uθs)duθs − µuθs
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≈
∑
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st gs

(
l
(k−1)
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)
w

(k−1)
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φ
(
l
(k−1)
st

) l
(k−1)
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2

− µuθs

2, (2.13)where l(k−1)
st , l(k−1)

id and w(k−1)
st , w(k−1)

id are the luster-spei� quadrature loations and or-responding weights at the (k − 1)th iteration. This sequene is repeated until onvergene.The mean and variane for gi(uδi) an be derived similarly. Note that this is the method byNaylor & Smith (1982) and Rabe-Hesketh et al. (2005).Alternatively, the mode and urvature at the mode an be used as in Pinheiro & Bates(1995) and Shilling & Bok (2005). In this ase, an integration is not required.Both methods of using the luster-spei� means and varianes and using modes and



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 15urvatures were implemented in the variational MM algorithm.2.4.2 Disrete PriorsAssuming a normal density may not be optimal e.g., for non-normal or skewed normallatent variables. Without assuming a spei� parametri form for the distribution, thenon-parametri maximum likelihood estimator (NPMLE) of the distribution for the latentvariables beomes a disrete distribution (de Leeuw & Verhelst, 1986; Lindsay et al., 1991;Heinen, 1996; Aitkin, 1999). To interpret the disrete distribution as the NPMLE, thenumber of masses must maximize the likelihood (Simar, 1976; Laird, 1978; Lindsay, 1983).If disrete priors are used, the posteriors also have disrete distributions with the samesupport points as the priors and the variational approximation is disrete with masses asvariational parameters.The disrete distribution of the random e�ets is haraterized by a �nite set of loationsand probabilities at these loations and the integrals in (2.8) and (2.9) beome sums. Forexample, (2.8) beomes
vuθs =

wu
θs
exp

(∑
i

∑
d logp(yis|θs, δi = ldδi)v

d
δi

)
∑

tw
t
θs
exp

(∑
i

∑
d logp(yis|θs = ltθs, δi = ldδi)v

d
δi

) ,where ldδi (d = 1, ..., D) and ltθs (t = 1, ..., T ) indiate loations for the disrete latent variable
δi and θs, respetively. vdδi = g (δi = ldδi) and vtθ = g (θs = ltθs) are the masses of the variationalapproximation and wt

θs
= p (θs = ltθs) are the prior probabilities at the loations.Note that with disrete priors, the prior loations and masses are model parametersand the posterior probabilities are variational parameters. The estimates of the variationalparameters an be used to ompute posterior moments of the random e�ets.2.5 Related IssuesIn this setion, we disuss 1) the lower bound and marginal likelihood, 2) estimation ofstandard errors, 3) dependene struture of the random e�ets, and 4) predition of therandom e�ets.2.5.1 Lower Bound and Marginal LikelihoodIn the variational MM algorithm, the lower bound to the log-likelihood is maximized ratherthan the likelihood funtion itself. For valid inferenes based on the lower bound, it shouldhave the same shape as the log-likelihood, i.e., the same mode and urvature at the mode(Hall et al., 2002).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 16To evaluate the lower bound, we need to ompute the marginal log-likelihood whih isnot feasible for GLMMs in general. Using a sampling method, however, we an approximatethe marginal likelihood L(y;Ψ) as follows: First obtain posterior samples of the randome�ets using Markov hain Monte Carlo (MCMC) with the model parameters treated as�xed onstants and set equal to the variational MM estimates. Then obtain the samplemean and ovariane matrix of the posterior samples and use the orresponding multivariatenormal distribution as importane density. Sample the random e�ets z from the importanedensity. Then the marginal likelihood an be approximated as
L(y;Ψ∗) =

∫
p(y|z,Ψ∗)p(z;Ψ∗)

g̃(z|y,Ψ∗)
g̃(z|y,Ψ∗)dz

≈ 1

m

m∑

j=1

p(y|z(j),Ψ∗)p(z(j);Ψ∗)

g̃(z(j)|y,Ψ∗)
,where p(y|z,Ψ∗) is the joint probability of the responses given the latent variables z, p(z;Ψ∗)is the prior distribution given the parameter estimates Ψ∗ from the variational MM methodand g̃(z|y,Ψ∗) is a normal approximation to the posterior distribution (as the importantdensity) that has the same support as the prior p(z;Ψ∗). z(j) (j = 1, ..., m) is identiallyand independently drawn from g̃(z|y,Ψ∗).By the strong law of large numbers, the importane approximation of the likelihood

L̂(y;Ψ∗) is unbiased and onsistent as m → ∞, as long as the support of g̃(·) ontainsthe support of L(·) (Geweke, 1989). A similar idea of using importane sampling has beenadopted to evaluate a likelihood surfae on whih maximum likelihood estimation is arriedout (Durbin & Koopman, 1997; Shephard & Pitt, 1997).2.5.2 Standard ErrorsAs in the traditional EM algorithm, standard errors are not a by-produt of the variationalMM algorithm. In this setion, we disuss two ways of approximating standard error esti-mates.Hessian MatrixA straightforward way of obtaining standard errors is to use the Hessian matrix. It an bediretly obtained by solving the seond derivatives of the lower bound, evaluated at the �nalestimates of the variational parameters with respet to the model parameters. Alternatively,the sore funtions in the seond M-step (e.g., (2.10) ) an be numerially di�erentiated withrespet to the orresponding parameters.We inlude only the model parameters in the Hessian matrix while treating the variationalparameters as �xed. In the Gaussian variational approximation by Ormerod & Wand (2012),



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 17the variational parameters (mean and variane parameters in their ase) were all inludedin the Hessian matrix.Bootstrap Standard ErrorA bootstrap method an be used to estimate approximate standard errors (e.g., Efron, 1979).Data are simulated from the model given the parameter estimates for the real data. Wedenote the parameter estimates for the bth simulated dataset Ψ̂∗(b). The bootstrap standarderror (ŝeB) an be omputed aŝseB =

√√√√ 1

B

B∑

b=1

[
Ψ̂∗(b)− Ψ̂∗(·)

]2
,where Ψ̂∗(·) = ∑B

b=1
1
B
Ψ̂∗(b) and B is the number of the bootstrap repliates. The MonteCarlo error (MCE) involved in the bootstrap standard error an be omputed as desribedby Koehler et al. (2009). First de�ne the bootstrap squared error as

d(b) =
[
Ψ̂∗(b)− Ψ̂∗(·)

]2
.The squared bootstrap standard error an then be expressed asŝe2B =

1

B

B∑

b=1

d(b).An estimate of MCE for the squared bootstrap standard error (ŝe2B) an be obtained asM̂CE(ŝe2B) =√√√√ 1

B

B∑

b=1

[d(b)− d(·)]2,where d(·) = 1
B

∑B
b=1 d(b).Finally, an MCE estimate for the bootstrap standard error an be obtained using theDelta method M̂CE(ŝeB) = ∣∣∣∣∣∣ 1

2
√ŝe2B ∣∣∣∣∣∣ M̂CE(ŝe2B).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 182.5.3 Dependene Struture of the Random E�etsThe variational MM algorithm is based on the mean-�eld approximation that assumes poste-rior independene of the random e�ets. The performane of the algorithm may be a�etedby the degree to whih the independene assumption is violated. In this setion, we inves-tigate the dependene among the random e�ets under the posterior as a funtion of thesample sizes and prior varianes.To derive analytial solutions, we assume a linear mixed model
y = Xβ +Wz+ ǫ,where z ∼ N(0,Ψ) and ǫ ∼ N(0,Θ) with Θ = Iσ2 and the identity matrix I.The posterior ovariane matrix an be omputed for the linear mixed model as (Laird& Ware, 1982) Cov(z|y, X) = Ψ−Ψ′W ′Σ−1WΨ, (2.14)where Σ =WΨW ′ +Θ for model (2.1).For the model with rossed random e�ets in (2.1), denote z = (θ1, ..., θs, ..., θN , δ1, ..., δi, ..., δI)

′where θs and δi are the two rossed random e�ets with s = 1, ..., N and i = 1, ..., I, re-spetively. The posterior ovariane in (2.14) was omputed as a funtion of the number ofpersons N = (50, 100)′ and the number of items I = (10, 20, 40)′, and the prior standarddeviations τθ = (0.5, 1.0, 1.5)′ and τδ = (0.2, 0.5, 1.0)′. Figures 2.1 and 2.2 summarize theresults.The results suggest that for given prior varianes (τθ = 0.5, τδ = 0.2), the orrelationsbetween θs inrease as I inreases. Similarly, the orrelations between δi inrease as Ninreases. For given sample sizes (I = 10, N = 50), the orrelations between θs and between
δi inrease as the variane of θs or δi inreases. This shows that either when the sample sizeor prior variane for θs or δi inreases, the dependene among the random e�ets under theposterior inreases.2.5.4 Predition of the Random E�etsAssigning values to (or predition of) the random e�ets for individual lusters is usefulfor inferene about partiular lusters (Skrondal & Rabe-Hesketh, 2009), e.g., to assess thee�etiveness of shools or hospitals (Raudenbush & Willms, 1995; Goldstein & Rasbash,1996), in small area estimation or disease mapping (Rao, 2003), or for �nding outlyinglusters (Langford & Lewis, 1998). Predition of abilities is also the main purpose of itemresponse theory (IRT). For more information, see Skrondal & Rabe-Hesketh (2009).Predition of the random e�ets is a di�ult problem for GLMMs beause of the integralin the denominator of the posterior distribution. Here, we suggest using the variationalapproximation to the posterior, to derive posterior means (µθs, µδi) (expeted a posteriori;EAP) or modes (maximum a posteriori; MAP). For instane, assuming normal priors with
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Figure 2.1: Posterior orrelations among the random e�ets by the sample sizes (N=50,100,
I=10,20,40) for given prior varianes τθ = 0.5 and τδ = 0.2
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CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 21adaptive quadrature, the mean and standard deviation using (2.13) an be seen as the EAPand its standard error for θs. If the mode and urvature are used instead, the MAP and itsstandard error an be obtained.2.6 Empirial StudyTo illustrate the proposed algorithm, we use the salamander mating data (MCullagh &Nelder, 1989). This dataset is a benhmark that has been used to ompare many di�erentestimation methods for GLMMs with rossed random e�ets (e.g., Karim & Zeger, 1992;Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,2011).The dataset onsists of three separate experiments, eah involving matings among sala-manders of two di�erent populations, alled Rough Butt (RB) and White Side (WS). Sixtyfemales and sixty males of the two populations of salamander were paired by a rossed,bloked, and inomplete design in an experiment studying whether the two populations havedeveloped generi mehanisms whih would prevent inter-breeding. The response is binary,indiating whether the mating was suessful between female i and male j. We adoptedmodel A used in Karim & Zeger (1992)logit(p(yij = 1|zfi , zmj )) = β0 + β1x1i + β2x2j + β3x1ix2j + zfi + zmj , (2.15)where the ovariates are dummy variables for White Side female (x1i), White Side male(x2j), and the interation (x1ix2j). The two rossed random e�ets are random interepts
zfi ∼ N(0, σ2

f ) for females and zmi ∼ N(0, σ2
m) for males. Eah salamander partiipates in sixmatings, resulting in 360 matings in total.Model (2.15) was �t to the dataset using the variational MM algorithm with adaptivequadrature (10 quadrature points). In order to hek the independene assumption of themean-�eld approximation for the data, we examined the posterior orrelations among thefemale and male random e�ets. The posterior samples of the random e�ets were obtainedby MCMC using WinBUGS 1.4 (Spiegelhalter et al., 2003) with model parameter �xed to theestimates of the variational MM algorithm. The posterior orrelations among the randome�ets (among females, among males, and between females and males) appeared negligible,all being lose to zero.We ompared the parameter and standard error estimates from the MM algorithm withthose from the Laplae approximation implemented using lmer in the R pakage lme4 (Bates& Maehler, 2009). For standard errors, the Hessian matrix was obtained by numeriallydi�erentiating the sore funtions. We also omputed the bootstrap standard errors (basedon 100 repliates) as well as the Monte Carlo errors omputed as desribed in Setion 2.5.2.In addition, we report the estimates from PQL (Breslow & Clayton, 1993) and MCEM(Booth & Hobert, 1999) from the literature. Table 2.1 lists the results.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 22Table 2.1: Comparison of several estimators for the salamander mating data. Standarderrors are given in parentheses if reported. Laplae: lmer; PQL: Breslow & Clayton (1993);MCEM: Booth & Hobert (1999). For the variational MM algorithm, bootstrap standarderrors (Boot.SE) and Monte Carlo errors (MCE) are reported.Method β0 β1 β2 β3 σm σfVariational MM 0.97 -2.84 -0.67 3.49 1.07 1.00(0.39) (0.55) (0.45) (0.62) - -(Boot.SE) (0.35) (0.46) (0.37) (0.59) - -(MCE) (0.02) (0.03) (0.04) (0.05) - -Laplae 1.00 -2.90 -0.70 3.59 1.08 1.02(0.39) (0.56) (0.46) (0.64) - -PQL 0.79 -2.29 -0.54 2.82 0.79 0.72(0.32) (0.43) (0.39) (0.50) - -MCEM 1.02 -2.96 -0.69 3.63 1.18 1.12We do not report standard errors for the variane parameters beause the use of standarderrors for Wald-type tests and on�dene intervals may be inappropriate for these parameters(e.g., Berkhof & Snijders, 2001). The parameter estimates for the variational MM methodare lose to those from the Laplae approximation and MCEM. Our standard error estimatesare lose to the standard errors from the Laplae approximation. The bootstrap standarderrors are slightly smaller than the standard errors from the variational MM and the Laplaeapproximation. The di�erene is less than 2 MCEs.To assess the lower bound of the log-likelihood, we ompared the lower bound withthe approximate marginal log-likelihood obtained using 1) importane sampling desribed inSetion 2.5.1, and 2) adaptive quadrature (with three quadrature points) with gllamm (Rabe-Hesketh et al., 2005). For simpliity, the log-likelihood was plotted for eah parameter withthe other parameters �xed to the estimates from the variational MM algorithm. Figure 2.3presents the results.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 23In the �gure, irles represent the marginal log-likelihood obtained using importanesampling, triangles the lower-bound, and �x� the log-likelihood from adaptive quadrature.The dashed vertial lines indiate the parameter estimates obtained from the variationalMM algorithm. For all parameters, the lower-bounds show shapes similar to the marginallog-likelihoods. The approximate marginal log-likelihood using importane sampling is verylose to that from adaptive quadrature.Finally, preditions of the random e�ets obtained from the variational MM algorithmwere ompared with 1) the MAP from the Laplae approximation and 2) the EAP fromMCMC. The EAP from MCMC was obtained as the mean of the posterior samples of therandom e�ets with the parameters �xed to the estimates. Figure 2.4 shows the results.The sub-panels ompare the EAP and MAP estimates from the variational MM algo-rithm with the Laplae approximation (MAP) and the MCMC method (EAP) for females(�rst row) and males (seond row). The 45 degree line indiates that the two methods pro-due equivalent results. The results show that the variational MM algorithm provides thepreditions lose to those from the Laplae approximation and MCMC methods.
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CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 262.7 Simulation StudiesSimulation studies were arried out to evaluate the performane of the variational MMalgorithm (with adaptive quadrature, 10 quadrature points) and to ompare it with theLaplae approximation. Two examples were onsidered using 1) the rossed random e�etsmodel for the salamander mating data and 2) the random item Rash model.2.7.1 Crossed Random E�ets Model for Salamander Mating DataThe �rst simulation study is losely related to the model for the salamander mating dataused in the empirial study. We simulated 50 datasets based on model (2.15) using thetrue values that have been used by other researhers (e.g., Lin & Breslow, 1996), β =
(1.06,−0.72,−3.05, 3.77)′ and (σ2

f , σ
2
m)

′ = (.50, .50)′. We also generated datasets that areten times as large in terms of the total sample size as the original dataset (alled largedatasets from now on).Figure 2.5 shows the estimated bias and root mean squared error (RMSE) for the pa-rameter estimates from the variational MM algorithm and the Laplae approximation.
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Figure 2.5: Bias and RMSE for the salamander simulation. MM is the variational MMalgorithm and Laplae is the Laplae approximation.In terms of bias, there are negligible di�erenes between the two methods. In terms ofRMSE, the variational MM algorithm tends to show somewhat smaller RMSE for the �xede�ets parameters than the Laplae approximation. A similar pattern is observed for thelarge datasets in Figure 2.6.For the large datasets, there is little di�erene in the estimated bias between the twomethods. The RMSE is still smaller for the variational MM algorithm for the �xed e�etsparameters than the Laplae approximation, but the di�erenes are somewhat smaller than
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Figure 2.6: Bias and RMSE for the salamander simulation for large datasets. MM is thevariational MM algorithm and Laplae is the Laplae approximation.those in the smaller datasets. This result makes sense given that the Laplae approximationprodues less bias for data with large luster sizes (Joe, 2008).2.7.2 Random Item Rash ModelThe seond simulation study uses the random item Rash model desribed in Setion 2.2.Small and large datasets were generated based on model (2.1) under various onditions. Forsmall datasets, we generated data with N = (50, 100)′ persons and I = (20, 50)′ items, andwith standard deviations τθ = 0.5 for person abilities and τδ = (0.2, 0.6, 1.2, 1.5)′ for itemdi�ulties. The interept β was set to 0. For large datasets, we onsidered N = (200, 300)′and I = (20, 50)′ for the sample sizes, and τθ = (0.2, 0.5)′, and τδ = (0.2, 0.6)′ for the standarddeviations. 50 repliates were simulated for eah ondition.Figures 2.7 to 2.10 present the estimated bias and RMSE for the model parameters forthe interept β̂ and the person and item standard deviations τ̂θ and τ̂δ.Eah �gure orresponds to four item di�ulty standard deviations τδ = (0.2, 0.6, 1.2, 1.5)′.In eah �gure, the �rst row presents the estimated bias and the seond row the estimatedRMSE. In eah sub-panel, the solid line is for the variational MM algorithm and the dottedline for the Laplae approximation. The x-axis represents the sample sizes N and I (fourombinations by N1 = 50, N2 = 100 and I1 = 20, I2 = 50).In ondition 1 (τθ = 0.5, τδ = 0.2) in Figure 2.7, the estimated bias and RMSE tend toderease as the sample size inreases for either person N or item I. Between the methods,the Laplae approximation tends to show larger bias for τ̂θ and τ̂δ than the variational MMalgorithm, in partiular with N = 50. In terms of RMSE, the Laplae approximation islarger than the variational MM algorithm aross all sample sizes.
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Figure 2.7: Bias and RMSE for the random item Rash model simulation for small datasetsin ondition 1 (τθ = 0.5, τδ = 0.2). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Laplae approximation.
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Figure 2.8: Bias and RMSE for the random item Rash model simulation for small datasetsin ondition 2 (τθ = 0.5, τδ = 0.6). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Laplae approximation.
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Figure 2.9: Bias and RMSE for the random item Rash model simulation for small datasetsin ondition 3 (τθ = 0.5, τδ = 1.2). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Laplae approximation.
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Figure 2.10: Bias and RMSE for the random item Rash model simulation for small datasetsin ondition 4 (τθ = 0.5, τδ = 1.5). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Laplae approximation.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 32In ondition 2 (τθ = 0.5, τδ = 0.6) in Figure 2.8, a similar pattern is observed exeptthat with I = 50, the Laplae approximation tends to show larger bias and RMSE thanthe variational MM algorithm. For β̂ and τ̂δ, the estimated bias and RMSE inrease forthe Laplae approximation as the item sample size inreases, from the onditions (N1,I1) to(N1,I2).In ondition 3 (τθ = 0.5, τδ = 1.2) in Figure 2.9 and ondition 4 (τθ = 0.5 , τδ = 1.5)in Figure 2.10, similar patterns are observed in general. As the sample sizes inrease, theestimated bias and RMSE tend to derease. However, the di�erenes between the methodsare smaller with large standard deviations τθ and τδ than in onditions 1 and 2.Figures 2.11 to 2.14 present results for the large datasets with N = (200, 300)′ and
I = (20, 50)′.
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Figure 2.11: Bias and RMSE for the random item Rash model simulation for large datasetsin ondition 1 (τθ = 0.2, τδ = 0.2). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Laplae approximation.Eah �gure orresponds to four onditions aording to τθ = (0.2, 0.5)′, and τδ = (0.2, 0.6)′.The x-axis represents the four ombinations by the sample sizes N and I. In ondition 1(τθ = 0.2, τδ = 0.2) in Figure 2.11, the overall pattern is the same as in the small datasets.The estimated bias and RMSE tend to derease as the sample size inreases for either N or
I. The estimated bias and RMSE are quite similar between the methods, exept for β̂, the
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Figure 2.12: Bias and RMSE for the random item Rash model simulation for large datasetsin ondition 2 (τθ = 0.2, τδ = 0.6). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Laplae approximation.
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Figure 2.13: Bias and RMSE for the random item Rash model simulation for large datasetsin ondition 3 (τθ = 0.5, τδ = 0.2). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Laplae approximation.
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Figure 2.14: Bias and RMSE for the random item Rash model simulation for large datasetsin ondition 4 (τθ = 0.5, τδ = 0.6). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Laplae approximation.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 36Laplae approximation shows greater estimated bias and RMSE, partiularly with N=300and I=20. In ondition 2 (τθ = 0.2, τδ = 0.6) in Figure 2.12, ondition 3 (τθ = 0.5, τδ = 0.2)in Figure 2.13, and ondition 4 (τθ = 0.5, τδ = 0.6) in Figure 2.14, similar results are ob-served. For β̂, the Laplae approximation shows somewhat larger estimated bias and RMSEwith N=200 and I=20, and with N=300 and I=20.2.8 Conluding RemarksVariational approximations have been mostly used for Bayesian inferene in mahine learn-ing. Reently, Gaussian variational approximations (Opper, 2009; Ormerod & Wand, 2012)have been proposed for ML estimation of GLMMs. Hall et al. (2011) investigated theoreti-al properties of the Gaussian variational approximation, deriving asymptoti normality ofthe estimators and establishing root-m onsisteny of the estimates under relatively mildassumptions. However, this work was restrited to models with nested random e�ets.In this paper, we proposed a variational MM algorithm for ML inferene of GLMMs withrossed random e�ets. The variational approximation omes into play in approximatingthe posterior distribution of the random e�ets to make the integrals tratable. Aordingly,the algorithm involves �nding a variational density funtion. The E-step is replaed byanother M-step, minimizing the KL distane between the variational distribution and thetrue posterior distribution. This new M-step is equivalent to maximizing the lower boundto the log-likelihood with respet to the variational density funtion.Our variational MM algorithm is more general and �exible than the Gaussian variationalapproximation beause our algorithm does not require a pre-spei�ed funtional form forthe variational distribution. The general form for the variational density funtion is derivedso that di�erent types of priors for the random e�ets an be handled. Importantly, wean estimate models with rossed random e�ets based on the mean-�eld approximationthat assumes onditionally independent latent variables given the data. We found that withreasonable sample sizes and prior varianes, the posterior orrelations between the randome�ets are negligible. In addition, the lower bound was quite lose to the marginal log-likelihood in the examples that we onsidered in this paper.Several simulation examples were provided to evaluate the performane of the variationalMM algorithm and ompare it with the Laplae approximation for GLMMs with rossedrandom e�ets. The results show that overall, the variational MM algorithm performs aswell as the Laplae approximation. With small luster sizes, however, our algorithm performsbetter than the Laplae approximation espeially for the variane parameters. Therefore,the variational MM method ould be an e�etive alternative to the Laplae approximation.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 37Appendix AHere the funtional derivative is illustrated for the �rst M-step of the variational MM algo-rithm in Setion 2.4. A �xed item (or regular) Rash model is used for illustration. Themodel an be formulated as
logit (p (yis = 1|θs)) = βi + θs,where yis denotes the binary response for person s to item i with i = 1, ..., I and s = 1, ..., N .

βi is the item easiness parameter for item i and θs for person s is the person ability with anormal distribution θs ∼ N(0, τ 2θ ).The marginal probability for the response vetor ys for person s an be written as
p(ys) =

∫

θs

p(ys|θs)φ(θs; 0, τθ)dθs,where φ(·;µ, σ) denotes the normal density with mean µ and standard deviation σ. Themarginal log-likelihood funtion for all persons an be written as
L(y) =

∑

s

log∫
θs

p(ys|θs)φ(θs; 0, τθ)dθs.The lower bound to the log-likelihood now an be derived as
l =

∫

θs

log [p(ys|θs)φ(θs; 0, τθ)] gs(θs)dθs −
∫

θs

log [gs(θs)] gs(θs)dθs
=

∫

θ

[∑

s

logp(θs) +∑
s

logp(ys|θs)−
∑

s

loggs(θs)] gs(θ)d(θ)
=
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
s

∫

θs

gs(θs)logp(ys|θs)dθs −
∑

s

∫

θs

gs(θs)loggs(θs)dθs,where gs(θs) is the variational distribution for θs. Note that the funtional form for gs(θs) isnot required here.To apply the funtional derivative, we need to de�ne a funtional. The funtional isobtained here by rewriting the lower bound and adding the onstraint that variational dis-
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F =

∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
s

∫

θs

gs(θs)logp(ys|θs)dθs −
∑

s

∫

θs

gs(θs)loggs(θs)dθs
+
∑

s

λs

[∫

θs

gs(θs)dθs − 1

]
,where λ is the Lagrange multiplier for the onstraint, ∫

θs
gs(θs)dθs = 1.Now perform the funtional derivative of the funtional F with respet to the variationaldensity funtion gs(θs). Note that as in this ase when the funtional is de�ned by integralswhose integrands take the form of F (gs(θs)) and does not depend on the derivatives of gs(θs),stationarity simply requires ∂F

∂gs(θs)
= 0 for all values of θs (Bishop, 2006, p.705).This implies log [p(ys|θs)φ(θs; 0, τθ)]− log [gs(θs)]− 1 + λ = 0.Then we obtain

gs(θs) = p(ys|θs)φ(θs; 0, τθ)exp(−1 + λ). (2.16)By integrating (2.16) over θs, we obtain
1 =

∫

θs

exp(−1 + λ)p(ys|θs)φ(θs; 0, τθ)dθs,

λ = 1− log∫
θs

p(ys|θs)φ(θs; 0, τθ)dθs

= 1− logp(ys).By substituting λ bak to (2.16), we obtain the general solution for gs(θs)
gs(θs) = p(ys|θs)φ(θs; 0, τθ)exp(−1 + 1− logp(ys))

=
p(ys|θs)φ(θs; 0, τθ)

p(ys)

= p(θs|ys).It shows that for the ordinary Rash model, the optimal solution for the variationaldensity funtion gs(θs) is the same as the true posterior density p(θs|ys).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 39Appendix BHere we provide details on how to approximate the integrals in (2.8) and (2.9) using adap-tive quadrature in Setion 2.4.1. To approximate the numerator of (2.8) using adaptivequadrature, onsider the seond line in (2.11)
∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi.To hange the variable of integration to ai ∼ N(0, 1), we need the following hanges:
uδi = µuδi

+ σuδi
ai,

ai =
uδi − µuδi

σuδi

,

duδi = σuδi
dai,

φ(uδi;µuδi
, σuδi

) =
1

σuδi

√
2π
e
−

(uδi−µuδi
)2

2σ2
uδi

=
1

σuδi

√
2π
e−

a2i
2

=
1

σuδi

φ(ai).Plug them all in (2.11) and obtain
∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi

=

∫

ai

gi(µuδi
+ σuδi

ai)logp(yis|uθs, uδi = µuδi
+ σuδi

ai)
1

σuδi

φ(ai)

1

σuδi

φ(ai)σuδi
dai

=

∫

ai

gi(µuδi
+ σuδi

ai)logp(yis|uθs, uδi = µuδi
+ σuδi

ai)

φ(ai)
φ(ai)σuδi

dai

≈
∑

d

gi(lid)logp(yis|uθs, uδi = lid)

φ(ld)
σuδi

wid

=
∑

d

gi(lid)logp(yis|uθs, uδi = lid)wid,
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lid = µuδi

+ σuδi
ld,

wid =
σuδi

wd

φ(ld)
,are the item-spei� quadrature loations and weights for integrating over uδi, and µuδi

and
σuδi

are the posterior means and standard deviations for uδi.Similarly, to approximate the denominator of (2.8) using adaptive quadrature, onsiderthe third line in (2.12)
∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs.To hange the variable of integration to as ∼ N(0, 1), we need the following hanges:

uθs = µuθs
+ σuθs

as,

as =
uθs − µuθs

σuθs

,

duθs = σuθs
das,

φ(uθs;µuθs
, σuθs

) =
1

σuθs

√
2π
e
−

(uθs−µuθs
)2

2σ2
uθs

=
1

σuθs

√
2π
e−

a2s
2

=
1

σuθs

φ(as).
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∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

=

∫

as

[φ(µuθs
+ σuθs

as) exp (
∑

i

∑
d gi(lid)logp(yis|uθs = µuθs

+ σuθs
as, uδi = lid)wid)]

1
σuθs

φ(as)

1
σuθs

φ(as)
σuθs

das

=

∫

as

[φ(µuθs
+ σuθs

as) exp (
∑

i

∑
d gi(lid)logp(yis|uθs = µuθs

+ σuθs
as, uδi = lid)wid)]φ(as)

φ(as)
σuθs

das

≈
∑

t

φ(lst)
wtσuθs

φ(lr)
exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)

=
∑

t

φ(lst)wst exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)
,where

lst = µuθs
+ σuθs

lt,

wst =
σuθs

wt

φ(lr)
,are the person-spei� quadrature loations and the orresponding weights for integratingover uθs, and µuθs

and σuθs
are the posterior means and standard deviations for uθs.
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Chapter 3Monte Carlo Loal Likelihood Method
3.1 IntrodutionMaximum likelihood estimation for generalized linear mixed models (GLMMs) is hinderedby high dimensional intratable integrals involved in the likelihood funtion. The problemis magni�ed when the random e�ets have a rossed design and thus the data annot beredued to small independent lusters (Vaida & Meng, 2005). For instane, a logisti mixedmodel for a binary outome yij an be written aslogit(p(yij = 1|zi, uj)) = µ+ zi + uj,where zi ∼ N(0, σ2) with i = 1, ..., m and uj ∼ N(0, τ 2) with j = 1, ..., n are independentrandom e�ets that are rossed with eah other. If all ombinations of i and j exist in thedata, this likelihood funtion involves m+n dimensional integrals and its integrand involvesa produt of m× n terms.Various methods have been proposed for approximating the intratable likelihood fun-tion. For instane, the Laplae approximation (Tierney & Kadane, 1986; Lindstrom & Bates,1988; Wol�nger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,2005; Shilling & Bok, 2005) have been widely used. The Laplae approximation and simi-lar penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to perform poorlyfor small luster sizes and for large variane omponents (Breslow & Lin, 1995; Joe, 2008).Adaptive quadrature is more aurate but omputationally more demanding than Gaussianquadrature (Pinheiro & Bates, 1995). For more reviews, see e.g. Pinheiro & Bates (1995).Monte Carlo (MC) methods have also been utilized in various ways in ML estimation.Most methods are based on sampling the random e�ets given �xed parameter estimates.These methods an be distinguished by whether a `single sample' or `many samples' are usedper evaluation of the objetive funtion (for this distintion, see Geyer, 1996). The `singlesample' method is omputationally more e�ient than the `many samples' method beauseit uses the same samples for all evaluation of the objetive funtion. For instane, Geyer



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 43& Thompson (1992), Geyer (1994), and Sung & Geyer (2007) used MC simulations of therandom e�ets for an importane sampling approximation of the likelihood (or the likelihoodratio). The e�ieny of the `single sample' method highly depends on the importane sam-pling distribution. If the initial guess of parameters is far from the true parameter values,this method an perform poorly (Geyer, 1994; MCulloh, 1997). Geyer (1996) suggestediterating the proedure so that the objetive funtion is maximized around a true parameterregion. However, it requires many MC samples per eah iteration of the algorithm.MC expetation maximization (MCEM) is an example of a `many sample' method.Several MCEM algorithms have been proposed using various sampling methods: e.g., aMetropolis-Hastings (MCulloh, 1997), an independent sampler based on importane sam-pling or rejetion sampling (Booth & Hobert, 1999), and a slie sampler (Vaida & Meng,2005). The basi idea is to use MC samples to approximate the intratable onditionalexpetation. MCEM requires samples at eah iteration of the algorithm. In addition, thealgorithm needs a method for alulating standard errors beause it does not evaluate thelikelihood funtion or its derivatives. A method for monitoring onvergene may also berequired (e.g., Booth & Hobert, 1999).Compared to the MC methods desribed above, an MC kernel likelihood (MCKL) algo-rithm (De Valpine, 2004) takes a unique position in that it jointly samples the parameters andrandom e�ets to approximate the likelihood funtion. MCKL is a `single sample' methodbeause one the posterior samples of the parameters (along with samples of the randome�ets) are obtained, they are used during all iterations of the algorithm. MCKL is di�erentfrom the typial `single sample' method that samples the random e�ets given partiularparameter values. Spei�ally, the MCKL algorithm initially treats parameters as havingprobability densities and samples them from a posterior density as in Bayesian methods.The likelihood is estimated up to a onstant as a weighted kernel density estimate where theweights are obtained by onsidering the posterior as an importane sampling density. Thelikelihood an also be estimated up to a onstant as an unweighted kernel density estimateddivided by the prior. De Valpine demonstrated the e�ieny of the MCKL method in es-timating the parameters of population dynami models. However, a method for standarderrors has not been provided yet for MCKL.In this paper, we propose a MC loal likelihood (MCLL) method for estimating GLMMs.MCLL is similar to MCKL in spirit: The algorithm begins with treating the parameters asrandom variables and sampling them jointly with random e�ets from a posterior distributionfor a partiular prior distribution (we disuss how to hoose the prior later in this paper).The likelihood funtion is then approximated up to a onstant by �tting a density to theposterior samples of the parameters and dividing it by the prior. In ontrast to MCKL, weapproximate the posterior density using loal likelihood density estimation (Hjort & Jones,1996; Loader, 1996), where the log-likelihood is loally approximated by a polynomial. Anunweighted version of MCKL an be seen as a speial ase of MCLL with a polynomial ofdegree zero. One motivation for MCLL is that the kernel density estimate usually shows asubstantial bias in near peaks (Loader, 1999, Ch.2). Furthermore, MCLL an exploit the



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 44form of the loal likelihood density estimate to provide estimates of standard errors that areaurate and easy to alulate.The outline of this hapter is as follows. In Setion 3.2, we introdue the general idea ofloal likelihood density estimation. The MCLL algorithm is then desribed in detail as wellas some implementation issues. In Setion 3.3, we disuss omputation of standard errorsand marginal likelihoods. Empirial and simulation studies are provided in Setions 3.4and 3.5 to evaluate the proposed MCLL algorithm. The paper ends with some onludingremarks.3.2 Monte Carlo Loal Likelihood MethodThe key idea of MCLL is to use loal likelihood density estimation in order to approximate alikelihood funtion. In this setion, we begin by outlining the general idea of loal likelihooddensity estimation. The proedure of the MCLL algorithm is then desribed in detail andsome implementation issues are disussed.3.2.1 Loal Likelihood Density EstimationSuppose X is a random variable having unknown density f(x) and x1, ..., xn are n inde-pendent observations of X . Given a parametri family f(x;ψ), we approximate f(x) by
f̂(x) = f(x; ψ̂(x)) as proposed by Hjort & Jones (1996). ψ̂ is obtained by maximizing a loallikelihood for f(x), whih is de�ned as

l(x, ψ) =

n∑

j=1

w(xj − t)logf(xj ;ψ)− n

∫

R

w(u− t)f(u;ψ)du,where the nonnegative weight funtion is w(u) = K(u/h)
h

, where K is a symmetri unimodaldensity funtion (or kernel funtion) and h is a bandwidth. When h goes to in�nity, maximiz-ing l(x, ψ) is equivalent to maximizing the usual likelihood. With moderate h, maximizing
l(x, ψ) overs a semi-parametri version of the likelihood.The loal polynomial approximation supposes that logf(x) an be well approximated bya low-degree polynomial in a neighborhood of the �tting point t (Loader, 1996). That is,logf(x) ≈ Pa(x− t).In the one dimensional ase, we an write

Pa(x− t) = a0 + a1(x− t) + · · ·+ ap(x− t)p,where a = (a0, a1, · · · , ap)′ is the parameter vetor for the polynomial funtion with degree
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p. The loalized log-likelihood l̂(x, ψ) an then be approximated as

n∑

j=1

K

(
xj − t

h

)
Pa(xj − t)− n

∫
K

(
u− t

h

)
exp (Pa(u− t))du, (3.1)where the parameter spae for a is assumed to be an open set whih holds if K is ontinuouswith bounded support.If a maximizer of (3.1) exists, it satis�es the system of loal likelihood equations

1

n

n∑

j=1

A

(
xj − t

h

)
K

(
xj − t

h

)

=

∫
A

(
u− t

h

)
K

(
u− t

h

)
exp (Pa(u− t))du,where A(v) = (1, v, · · · , vp)′. This equation shows the moment mathing property betweensample and population moments of the loal likelihood density estimator (Loader, 1996).Theoretial properties of loal likelihood density estimation have been examined by e.g.,Eguhi & Copas (1998), Hall et al. (2002), and Park et al. (2002). Reently, Deliado(2006) has proposed a loal likelihood density estimation based on smooth trunation usinga uniform kernel. Kauermann & Tutz (2000) and Wu & Zhang (2002) used loal likelihoodestimation for linear mixed and generalized linear mixed models, respetively, but in theontext of approximating non-parametri funtions.3.2.2 MCLL ProedureMCLL begins with obtaining Markov hain Monte Carlo (MCMC) samples of model param-eters from the posterior for a partiular set of priors. Then the algorithm involves two nestedmaximization steps: Maximizing an approximate likelihood L̂(y|θ) over θ, with eah evalu-ated value of θ requiring a maximization over parameters in the loal polynomial funtioninvolved in alulating L̂(y|θ). These two maximization steps iterate until onvergene.Spei�ally, assuming a d-dimensional parameter spae θ with observed data vetor y,the MCLL algorithm proeeds as follows:Step 1. Choose a prior p(θ) and use an MCMC method to obtain samples from the posterior

p(θ|y)

p(θ|y) = L(y|θ)p(θ)
Cs

,where the normalizing onstant is Cs =
∫
L(y|θ)p(θ)dθ.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 46Step 2. Maximize an approximate likelihood, de�ned up to the unknown onstant Cs by
L̂(y|θ) = 1

p(θ)
Psp(θ|y), (3.2)where Psp(θ|y) is the loal likelihood estimate of the posterior density. Spei�ally,for a given value of θ, this is obtained by assuming that the log-posterior density anbe loally approximated by a polynomial funtion Pa(u− θ) with parameters a. Forexample, in the three dimensional ase (d=3), in the viinity of θ the log-posterior anbe approximated by a quadrati funtion

Pa(u− θ) = a0 + a1(u1 − θ1) + a2(u2 − θ2) + a3(u3 − θ3)

+
1

2
a4(u1 − θ1)

2 +
1

2
a5(u2 − θ2)

2 +
1

2
a6(u3 − θ3)

2

+ a7(u1 − θ1)(u2 − θ2) + a8(u1 − θ1)(u3 − θ3)

+ a9(u2 − θ2)(u3 − θ3), (3.3)where a = (a0, a1, ..., a9)
′.The a parameters are estimated for a partiular θ by maximizing a loalized versionof the log-likelihood as in (3.1), whih in this ase is

l(θ,a) =

m∑

j=1

K

(
θ(j) − θ

h

)
Pa(θ

(j) − θ)−m

∫
K

(
u− θ
h

)
exp (Pa(u− θ))du,(3.4)where {θ(j)}mj=1 are the posterior sample points.The approximate likelihood funtion (3.2) in Step 2 an be seen as an unweighted estimateof the posterior density (De Valpine, 2004). A weighted version an be formulated as

L̂(y|θ) = 1

m

m∑

j=1

Psp(θ|y)w(j),

w(j) =
1

p(θ(j))
,where w(j) is the weight for Psp(θ|y) and p(θ(j)) is the prior density evaluated at θ(j).In the MCKL ase, the weighted version may be preferable beause it an be seen as anunnormalized, importane-sampled kernel estimate of the true likelihood L(y|θ). However,when loal density estimation is used as in MCLL, it is no longer lear how the weighted ver-sion an be seen as an importane-sampled estimate of the true likelihood. The unweighted



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 47version may have an issue with narrow priors sine a maximum may not exist in suh aase; but with wide priors, there is little di�erene in performane between the weightedand unweighted versions (De Valpine, 2004). In addition, the unweighted version is easierto implement in pratie than the weighted version. Therefore, we adopt the unweightedversion as the main devie for MCLL.3.2.3 Implementation IssuesThere are several issues to be disussed in implementing the MCLL algorithm. First, thebandwidth is hosen in Step 2 by onsidering the bias-variane trade-o�. We hoose abandwidth at eah data point so that the loal neighborhood ontains a spei�ed number ofdata points. For a smoothing parameter α between 0 and 1, the nearest neighbor bandwidthis hosen as the kth smallest distane d, where k = ⌊nα⌋ and d(x, xi) = |x− xi|.The degree of the loal polynomial funtion an also a�et the bias-variane trade-o�.Fitting a high degree will usually lead to less bias but large variability of an estimate. Wehoose a quadrati funtion as a default beause it is often su�ient to hoose a low degreepolynomial and fous on hoosing the bandwidth to obtain a satisfatory �t (Loader, 1999,Ch.2).The weight funtion a�ets the visual quality of the �tted shape rather than the bias-variane trade-o�. A spherially symmetri weight funtion is usually used. We hoose atriube weight funtion, K(u) = exp (−|u|)
1+|u|3

as a default. Hjort & Jones (1996) suggested theGaussian funtion for whih losed-form evaluation of the integrals is available. But for loalquadrati �tting, the parameters are onstrained, whih limits the ability of the estimate toreprodue troughs in the data (Loader, 1996).Seond, we onsider orthogonal transformation of the posterior samples θ(j). Assumingmultivariate normality, the posterior samples an be transformed as
θ̃
(j)

= L−1(θ(j) − b),where b is the mean of the posterior samples θ(j) and L is the Cholesky deomposition ofthe empirial ovariane matrix Ĉov(θ) of the posterior samples θ(j) so that Ĉov(θ) = LLT .The transformed θ̃(j) have an identity ovariane matrix and a zero mean vetor.This orthogonal transformation is also alled data presphering (Wand & Jones, 1993;Duong & Hazelton, 2003). Preshering posterior samples is useful in implementing MCLLbeause it simpli�es the integral term in (3.4). Spei�ally, for multidimensional parameter
θ, if the omponents are approximately independent in the posterior, then interations termsin Pa(u− θ) an be dropped. In addition, a produt kernel an be used, with

K

(
u− θ
h

)
=

d∏

i=1

K0

(
ui − θi
hi

)
, (3.5)



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 48where K0 is a one-dimensional kernel. With these two simpli�ations, the multidimensionalintegral an be fatorized as a produt of one-dimensional integrals due to the orthogonalityof the parameter spae. In addition, the orthogonal transformation standardizes a bandwidthhoie by transforming the parameter spae to be on the same sale.If the parameter spae is not orthogonal, a produt kernel (3.5) may be inappropriate touse. In suh ases, the interation terms an be inluded in the polynomial funtion Pa(u−θ),for whih multidimensional-integration is needed. Ordinary quadrature rules are then nolonger pratial beause for instane, 306 evaluations are required with 30 quadrature pointswhen d = 6. Instead, Halton sequenes an be used to redue the number of evaluations(Sándor & Train, 2004). Draws derived from Halton sequenes have the advantage of bothimproving overage of the domain of integration and induing a negative orrelation betweenthe draws from di�erent observations. Other quasi-random integration rules ould also beused (Fang & Wang, 1993). Halton draws are more e�etive than quasi-random drawsbeause the same auray an be ahieved with Halton draws with a smaller number ofdraws, thereby saving omputer time (Train, 2003).Third, we use a log-transformation of variane parameters. This has several advantages:First, it avoids need for a modi�ed kernel for variane parameters in Step 2. Seond, theposterior distributions are loser to normal so that the data presphering operation worksbetter for a symmetri distribution.Fourth, non-informative priors an be hosen for the �xed and log standard deviationparameters, in whih ase the posterior mean estimates (automatially obtained in Step 1)are also lose to ML estimates. Note that even if informative priors are used, however,the MCLL algorithm provides results lose to the ML estimates, unlike the posterior meanestimates. Informative priors are useful for improving mixing in MCMC in Step 1 but someare is required. We illustrate the hoie of priors for given problems in the empirial studysetion.We wrote an R pakage mll that implements the MCLL algorithm (Step 2 maximiza-tions).3.3 InfereneStandard error estimates and the values of maximized log-likelihoods are standard toolsfor likelihood-based inferene. Sine they are not by-produts of the MCLL algorithm, wedevelop methods for obtaining standard errors and marginal likelihoods. We also show howto ompute the Bayes fator in a relatively simple way with MCLL.3.3.1 Standard ErrorsAsymptoti theory for the ML estimation (MLE) suggests obtaining standard error estimatesusing the Hessian matrix of the log-likelihood funtion evaluated at the ML estimates. Analo-



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 49gously, one ould alulate the Hessian matrix of logL̂(y|θ) through numerial di�erentiationof the log-likelihood funtion. However, urvatures obtained by numerial di�erentiation willbe sensitive to the bandwidth hoie.Therefore, we derive an alternative way of omputing the Hessian matrix for MCLL. Firstwrite down the log-likelihood funtion logL(y|θ)logL(y|θ) = logp(θ|y)− logp(θ) + Cs, (3.6)where logp(θ|y) is the log-posterior, logp(θ) is the log-prior, and Cs is a onstant.Take the seond derivatives with respet to θ on both sides in (3.6) as
∂2

∂θ2
logL(y|θ)∣∣∣∣

θ̂

=
∂2

∂θ2
logp(θ|y)∣∣∣∣

θ̂

− ∂2

∂θ2
logp(θ)∣∣∣∣

θ̂

,evaluated at θ̂. Simply rewrite this as
HL = HPs −HPr,whereHL,HPs, andHPr are the Hessian matries of the approximate log-likelihood logL̂(y|θ),the log-posterior logp(θ|y), and the log-prior logp(θ), respetively.Typially HPr an be solved analytially. To obtain HPs, we use the quadrati approxi-mation of the log-posterior obtained using loal likelihood density estimation, assuming thelog-posterior an be well approximated by a quadrati polynomial in the neighborhood ofthe mode. For example, in the ase d = 3 and a quadrati funtion as given in (3.3), theHessian matrix of the approximation is

HPs ≈  â4 â7 â8
â7 â5 â9
â8 â9 â6


 . (3.7)The oe�ients for the interation terms in (3.3) orrespond to the o�-diagonal terms(â7 to â9) in (3.7) and are zero if the elements of θ are unorrelated in the posterior. Thiswill be approximately true if the orthogonal transformation has been used. Thus in pratie,these o�-diagonal terms are set to zero and not estimated.3.3.2 Likelihood InfereneSuppose there are n observed responses yi for n subjets i with random e�ets (or missingdata) zi in the ontext of GLMMs. Assuming a d-dimensional parameter vetor θ, the



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 50marginal (normalized) likelihood f(y|θ) an be written as
f(y|θ) =

n∏

i=1

∫
p(yi|zi, θ)p(zi)dzi, (3.8)where p(yi|zi, θ) is the joint distribution of yi given the random e�ets zi and the parametervalues θ. p(zi) is the prior distribution for zi.In this setion, we show how to approximate the marginal likelihood in (3.8) and how thelikelihood-ratio (LR) statisti and the Bayes fator an be readily omputed with MCLL.Marginal LikelihoodsIn general, omputation of the marginal likelihood is not feasible for GLMMs. Using asampling method, however, we an approximate the marginal likelihood as follows. Firstobtain posterior samples of the random e�ets using MCMC with model parameters treatedas known onstants set equal to the MCLL estimates. Then obtain the sample mean andovariane matrix of the posterior samples and use the orresponding multivariate normaldistribution as importane density. Sample the random e�ets z from the importane density.Then the marginal likelihood an be approximated as

f(y|θ̂) =
∫

p(y|z, θ̂)p(z; θ̂)
p̃(z|y, θ̂)

p̃(z|y, θ̂)dz

≈ 1

m

m∑

j=1

p(y|z(j), θ̂)p(z(j); θ̂)
p̃(z(j)|y, θ̂)

= f̂(y|θ̂),where the importane density p̃(z|y, θ̂) is the normal approximation to the posterior samplesof the random e�ets, whih has the same support as the prior p(z; θ̂). z(j) (j = 1, ..., m)is identially and independently drawn from p̃(z|y, θ̂). We use the multivariate normalassumption with the mean and ovariane matrix given by the empirial mean and ovarianematrix of the MCMC samples.By the strong law of large numbers, the importane approximation of the likelihood
f̂(y|θ̂) is unbiased and onsistent as m → ∞, as long as the support of p̃(·) ontains thesupport of f(·) (Geweke, 1989). A similar idea of using importane sampling was adoptedto evaluate a likelihood surfae by Durbin & Koopman (1997) and Shephard & Pitt (1997).The approximate marginal likelihood f̂(y|θ̂) almost surely onverges to the true likelihood
f(y|θ̂) no matter whih importane density is hosen, but the rate of onvergene dependson the auray of the importane density used. To measure the auray of the importanedensity, the e�etive sample size (ESS) an be omputed following Liu (2001)ESS =

m

1 + var(wj)
,
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wj =

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
/

m∑

j=1

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
.Here var(wj) is the variane of the m importane weights over the distribution de�nedby p̃(·). A large variane leads to low e�ieny relative to the sample size m and results inlow ESS. In pratie, m an be hosen to produe a su�iently large value (lose to ESS) toensure small var(wj).Following Shephard & Pitt (1997), the approximate log-likelihood is asymptotially un-biased as m→ ∞. With �nite m, the bias an be expressed aslogf̂(y|θ̂) = logf(y|θ̂) + log 1

m

m∑

j=1

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
.Here the term log 1

m

∑m
j=1

p(z(j)|θ̂)

p̃(z(j)|y,θ̂)
is biased to O(m−1) and thus disappears as m inreasesto in�nity. The bias-orreted log-likelihood an be derived aslogf̂(y|θ̂) + 1

2m

1

m− 1

m∑

j=1

{f(y|θ̂)(j) − f̂(y|θ̂)}2, (3.9)where f(y|θ̂)(j) = p(y|z(j),θ̂)p(z(j);θ̂)

p̃(z(j)|y,θ̂)
.Likelihood Ratio StatistisThe approximate marginal log-likelihood an be used to ompute likelihood ratio test statis-tis. For example, denote f̂(y|θ̂1,M1) and f̂(y|θ̂2,M2) the approximate likelihoods for thetwo models M1 and M2, where M1 is nested in M2. The likelihood ratio statisti λ̂(y) anbe omputed as

λ̂(y) = −2[logf̂(y|θ̂1,M1)− logf̂(y|θ̂2,M2)].Sine λ̂(y) onverges in probability to λ(y) as m→ ∞, under the null hypothesis
lim
n→∞

lim
m→∞

p(λ̂(y) > λα)

= lim
n→∞

p(λ(y) > λα)

= p(χ2
p−q > λα) = α,where n is the sample size, α is the ritial point, and p and q are the number of parametersin M1 and M2.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 52With �nite m, λ̂(y) is still biased beause of the bias in f̂(y|θ̂1,M1) and f̂(y|θ̂2,M2).An unbiased estimator of λ̃(y) an be obtained as
λ̃(y) = −2[logf̂(y|θ̂1,M1) + b̂ias(y|θ̂1,M1)− logf̂(y|θ̂2,M2)− b̂ias(y|θ̂2,M2)]

= λ̂(y)− 2[b̂ias(y|θ̂1,M1)− b̂ias(y|θ̂2,M2)],where b̂ias(y|θ∗k,Mk) for Mk was de�ned in (3.9).3.3.3 Bayes FatorsBayes fators are an important tool for Bayesian inferene and an also be useful in afrequentist ontext. For example, the null hypothesis is rejeted when the Bayes fator issmall where the magnitude depends on the distribution of the Bayes fator under the nullhypothesis and the signi�ane level desired for the test (Chaón et al., 2007). Moreover,Bayes fators allow omparisons of nonnested models, irregular models, and more than twomodels (Kass & Raftery, 1995).A Bayes fator an be de�ned as the ratio of the marginal likelihoods for model M1 and
M2 BF12 =

p(y|M1)

p(y|M2)
,where the marginal likelihood for Mk is de�ned as

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk.Here p(y|θk,Mk) is the joint density of the responses given modelMk with parameter values

θk and p(θk|Mk) is the prior density for the model parameters θk in model Mk.Estimation of the Bayes fator is a di�ult problem beause the marginal likelihoods arenot easily omputed from the output of the MCMC algorithm. The MCLL method providesa relatively simple way to ompute the Bayes fator. To show that, �rst write down theposterior densities of the model parameters for models M1 and M2

p(θ̂1|y,M1) = p(θ̂1|M1)
p(y|θ̂1,M1)

p(y|M1)
,

p(θ̂1|y,M2) = p(θ̂2|M2)
p(y|θ̂2,M2)

p(y|M2)
,where p(θ̂k|Mk) is the prior and p(y|θ̂k,Mk) is the likelihood given the MCLL estimates θ̂k



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 53for model Mk. Dividing both sides by their priors, we obtain
p(θ̂1|y,M1)

p(θ̂1|M1)
=
p(y|θ̂1,M1)

p(y|M1)
, (3.10)

p(θ̂2|y,M2)

p(θ̂2|M2)
=
p(y|θ̂2,M2)

p(y|M2)
. (3.11)Notie that the left hand sides in (3.10) and (3.11) are the unnormalized MCLL likelihoods

L̂(y|θ̂2,M2) (the posterior density divided by the prior) forM1 andM2 as omputed in (3.2).Dividing (3.11) by (3.10), obtain
L̂(y|θ̂2,M2)

L̂(y|θ̂1,M1)
=
p(y|M1)

p(y|M2)
× p(y|θ̂2,M2)

p(y|θ̂1,M1)
.Notie that p(y|M1)

p(y|M2)
= B̂F12. That is, the Bayes fator B̂F12 is obtained asB̂F12 =

L̂(y|θ̂2,M2)

L̂(y|θ̂1,M1)
× p(y|θ̂1,M1)

p(y|θ̂2,M2)
, (3.12)where L̂(y|θ̂k,Mk) (k = 1, 2) are by-produts of the MCLL algorithm and the likelihood

p(y|θ̂k,Mk) an be obtained as desribed in Setion 3.3.2. Note that this method works forany method that provides an unnormalized likelihood suh as MCKL.3.4 Empirial StudiesTo illustrate the proposed algorithm, we onsider three empirial examples: 1) the salaman-der mating data (MCullagh & Nelder, 1989), 2) the birth weight data (Rabe-Hesketh et al.,2008), and 3) the longitudinal data of Korean students (Jeon & Rabe-Hesketh, 2012).3.4.1 Salamander Mating DataThe salamander mating dataset is a benhmark that has been used to ompare many di�erentestimation methods for GLMMs with rossed random e�ets (e.g., Karim & Zeger, 1992;Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,2011). This dataset onsists of three separate experiments, eah involving matings amongsalamanders of two di�erent populations, alled Rough Butt (RB) and White Side (WS).Sixty females and sixty males of two populations of salamander were paired by a rossed,bloked, and inomplete design in an experiment studying whether the two populations have



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 54developed generi mehanisms whih would prevent inter-breeding. The response is a binaryvariable indiating whether mating was suessful between female i and male j. We adoptedthe model A used in Karim & Zeger (1992)logit(p(yij = 1|zfi , zmj )) = β1 + β2x1i + β3x2j + β4x1ix2j + zfi + zmj , (3.13)where the ovariates are dummy variables for White Side female (xi), White Side male(xj), and the interation (x1ix2j). The two rossed random e�ets are random interepts
zfi ∼ N(0, σ2

f) for females and zmi ∼ N(0, σ2
m) for males. Eah salamander partiipates insix matings, resulting in 360 matings in total. The two variane omponents in model (3.13)were reparameterized as τf = logσf and τm = logσm.The MCLL parameter estimates were ompared with the Laplae approximation andBayesian estimates (posterior means). They were also ompared with the estimates from theliterature, suh as PQL (Breslow & Clayton, 1993), MCEM (Booth & Hobert, 1999), andMCMLE (Sung & Geyer, 2007). In addition, the MCKL method (De Valpine, 2004) wasimplemented for another omparison with MCLL.The methods for likelihood inferene desribed in Setion 3.3 were implemented. First,for eah parameter the marginal likelihood was omputed in the neighborhood of the MCLLestimate with other parameters set equal to the MCLL estimates. Seond, a redued modelwas �t without the interation parameter (β4 oe�ient of x1ix2j). The likelihood-ratiostatisti and the Bayes fator were alulated to ompare the redued model with the fullmodel.Finally, the standard errors were omputed both using diagonal and full Hessian matri-es. For an e�ient multivariate integration with the full Hessian matrix, we used Haltonsequenes with 20,000 draws. The omputation time was ompared between the diagonaland full Hessian methods.3.4.2 ImplementationTo obtain the MCMC samples from the posterior distribution in Step 1, di�use normal priorswere spei�ed for the �xed e�et (regression oe�ient) parameters (with mean 0, standarddeviation 100) and for the log standard deviation parameters τf and τm (with mean -0.98and standard deviation 0.76). These spei� values were hosen by noting that the mean andstandard deviation an be analytially solved for the untransformed parameters σf and σmusing the moments of the orresponding log-transformed variables. The mean and varianefor the log-transformed variable an be obtained using

E(σ) = logE(τ)− 1

2
log(1 + Var(τ)

E(τ)2

)
,Var(σ) = log(1 + Var(τ)

E(τ)2

)
,



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 55where E(τ) and Var(τ) are the mean and variane for the log-transformed variable. Forexample, to obtain the mean E(τ) = 0.5 and variane Var(τ) = 0.442 for τ , we use E(σ) =
−0.98 and Var(σ) = 0.762 for σ.The Bayesian software WinBUGS (Spiegelhalter et al., 2003) was used to obtain the pos-terior samples in Step 1, whih was run by the R pakage R2WinBUGS (Sturtz et al., 2005).Three hains were used with relatively di�use starting values. Eah hain was run for 5,000iterations after a 2,000 iteration burn-in period. For onvergene assessment, the Gelman-Rubin statisti (Gelman & Rubin, 1992) was used in addition to graphial heks suh astrae plots and autoorrelation plots. For Step 2, we use the R pakage mll that we de-veloped. For the bandwidth seletion in Step 2, we used the default smoothing parameter
α = 0.7. A di�erent hoie of the smoothing parameter (0 ≤ α ≤ 1) did not make muh ofa di�erene in the results.To implement the Laplae approximation, we used the R funtion lmer in the lme4 pak-age (Bates & Maehler, 2009). For adaptive quadrature, xtmelogit in Stata (StataCorp,2009) was used. To implement the MCKL method, we followed the proedure taken byJeon (2011) using the same posterior samples as in the MCLL method. Spei�ally, forthe bandwidth hoie for MCKL, we took diagonal elements of the ovariane matrix of thekernel density to be proportional to the marginal posterior varianes in eah dimension ofthe posterior spae. For a proportionality onstant, we used q = 0.5 although 10 di�erentvalues (0.1 to 1.0) were all tried out for q. We also adjusted for smoothing bias in the MCKLestimates using posterior umulants as suggested by De Valpine (2004).ResultsTable 3.1 lists the parameter estimates for model (3.13) from a variety of estimators in theliterature. Standard errors for the regression oe�ient parameters were inluded when theywere reported in the original papers. Standard errors for the standard deviations σf and σmwere not onsidered beause the Wald-type tests and on�dene intervals are inappropriatefor these parameters (e.g., Berkhof & Snijders, 2001).Overall, the results from MCLL were omparable to the other estimators. The regressionoe�ient estimates were a bit smaller than other estimates exept PQL and MCMLE.The standard deviation estimates were lose to the estimates from adaptive quadrature withthree quadrature points. The MCKL parameter estimates were a bit smaller than the MCLLestimates. With a di�erent bandwidth hoie, the MCKL estimates also varied somewhat.Our standard error estimates were quite lose to those from the other estimators. Withthe full Hessian matrix, we obtained (0.41, 0.56, 0.30, 0.48)′ for the standard errors for theregression oe�ient parameters in order. These were a bit smaller than those from thediagonal Hessian matrix. As for omputation time, it took 54,956 seonds with the fullHessian matrix ompared with 360 seonds with the diagonal Hessian matrix on a IntelPentium Dual-Core 2.5-GHz proessor omputer with 3.2 GB of memory.The approximate log-likelihood was omputed using importane sampling with m=3,000



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 56Table 3.1: Comparison of several estimators for the salamander mating data. Standarderrors are given in parentheses if reported. MCEM: Booth & Hobert (1999); PQL: Breslow& Clayton (1993); Laplae: lmer; Adaptive quad(3): xtmelogit with 3 quadrature points;MCMLE: Sung & Geyer (2007); MCLL: MCLL method; Post.m: Posterior means (theposterior samples that were used for MCLL); MCKL: MCKL method after umulant biasorretion (q = 0.5).Method β1 β2 β3 β4 σm σfMCEM 1.02 -2.96 -0.69 3.63 1.18 1.12PQL 0.79(0.32) -2.29(0.43) -0.54(0.39) 2.82(0.50) 0.79 0.72Laplae 1.00(0.39) -2.90(0.56) -0.70(0.46) 3.59(0.64) 1.08 1.02Adaptive quad(3) 1.01(0.41) -2.95(0.58) -0.70(0.48) 3.62(0.64) 1.16 1.10MCMLE 1.00 (0.35) -2.78(0.36) -0.47(0.33) 3.52(0.53) 1.17 1.10MCLL 0.93 (0.44) -2.87(0.59) -0.65(0.53) 3.59(0.72 ) 1.16 1.08Post.m 1.01 (0.41) -2.92 (0.58) -0.69(0.49) 3.58(0.66) 1.09 1.02MCKL 0.84 -2.77 -0.54 3.47 1.13 1.08for a range of values for eah parameter with the other parameters set equal to the MCLLestimates. The bias was lose to zero for all parameters. The approximate log-likelihoodwas ompared with that from adaptive quadrature. The results are shown in Figure 3.1.In all sub-panels, our log-likelihood surfaes were lose to those from adaptive quadrature,in terms of the overall shape, mode, and urvature at the mode. This shows that our methodusing importane sampling works quite well in approximating the log-likelihood.To ompare the full and redued models, we omputed the marginal log-likelihood, theLR statisti, and the Bayes fator. The marginal log-likelihood was -207.61 for the full modeland -228.43 for the redued model. For both models, our estimate of bias was lose to zeroand ESS was numerially the same as the MC sample size. Adaptive quadrature (with �vequadrature points) provided similar marginal log-likelihoods, -207.62 and -228.44 for the fulland redued models, respetively. As for omputation time, it took about 21,000 seondswith adaptive quadrature but only a few seonds with the importane sampling method.The LR statisti between the full and redued model was λ̂ = −2(−228.41 + 207.62) =
41.58 (p < 0.001, df = 1) and the Bayes fator was omputed as 1.20 using (3.12). Theseresults are strong evidene for the inlusion of the interation term.3.4.3 Birth Weight DataIn order to assess performane of MCLL for data where the true ML estimates are easyto obtain, we onsider a linear mixed model. Spei�ally, we use the linear mixed modelthat was proposed by Rabe-Hesketh et al. (2008) to analyze nulear family birth weight data
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Figure 3.1: Log-likelihood surfaes obtained using importane sampling (MC) and adaptivequadrature (Adaptive). The vertial dashed lines indiate the MCLL estimates for theorresponding parameters.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 58from the Medial Birth Registry of Norway desribed in Magnus et al. (2001). In the originaldataset, there were 1,000 nulear families eah omprising mother, father, and a single hild(not neessarily the only hild in the family). A two-level liner mixed model was formulatedfor family members i nested in families j with three unorrelated random oe�ients
yij = x′

ijβ + α
(2)
1j [Mi +Ki/2] + α

(2)
2j [Fi +Ki/2] + α

(2)
3j [Ki/

√
2] + ǫij , (3.14)where xij is a vetor of ovariates with regression oe�ients β. Mi, Ki, and Fi are dummyvariables for mother, hild, and father, respetively. The ovariates were male, a dummyvariable for being male (x1ij), midage, a dummy variable for mother aged 20-35 at timeof birth (x2ij), and highage, a dummy variable for mother older than 35 at time of birth(x3ij). The three random e�ets at level 2, α(2)

1j , α(2)
2j , and α(2)

3j are i.i.d as α(2)
kj ∼ N(0, σ2

A)with k = 1, 2, 3. The level-1 residuals have a normal distribution, ǫ(2)ij ∼ N(0, σ2
E) andare independent of the random e�ets. Here σA an be interpreted as the additive genetistandard deviation and σE as the unique environment standard deviation.To implement the MCLL method, the same settings were used as in the �rst exam-ple. Di�use normal priors were spei�ed for the regression oe�ient parameters (mean 0,standard deviation 1,000) and for the log standard deviations logσA and logσE (mean 6.17,standard deviation 0.27). The MCLL estimates and standard errors (using the diagonalHessian matrix) were ompared with the Bayesian estimates and standard errors (posteriormeans and standard deviations) and with the true ML estimates whih were obtained fromthe R funtion lme in the pakage nlme (Pinheiro et al., 2012).ResultsTable 3.2 lists the results for model (3.14) to the birth weight dataset.Table 3.2: Parameter estimates (Est) and standard errors (SE) for the birth weight data.MLE is the true maximum likelihood estimates and Post.m is the posterior mean estimatesMLE Post.m MCLLEst SE Est SE Est SE

β1 3368.10 31.14 3366.00 31.50 3369.93 31.73
β2 155.35 17.53 155.33 17.85 154.97 18.45
β3 126.95 30.98 129.26 31.28 125.62 31.74
β4 213.44 52.64 214.39 52.66 216.52 53.68
σE 374.67 - 375.94 - 375.58 -
σA 311.21 - 309.58 - 311.09 -For regression oe�ients, β̂1 indiates the estimated mean birth weight for female babiesof mothers aged younger than 20 at the time of birth, and β̂2, β̂3, and β̂4 represent the



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 59estimated di�erenes in the mean birth weight between male and female babies, betweenmothers, and between old and young mothers, ontrolling for the other variables. In therandom part, the estimated geneti standard deviation (σ̂A) was a bit smaller than theestimated unique environment standard deviation (σ̂E).The MCLL estimates were lose to the true ML estimates both for the regression oef-�ient and standard deviation parameters. The MCLL standard errors were slightly largerthan the ML standard errors although the di�erenes were negligible. Compared with theposterior mean estimates, the MCLL estimates were loser to the ML estimates for the tworegression oe�ient parameters β1, β3, and both standard deviations σA, and σE . Thestandard errors were slightly larger than the posterior standard deviations.3.4.4 Longitudinal Data on Self-esteemThe third example is the linear rossed random e�ets model proposed by Jeon & Rabe-Hesketh (2012) to investigate Korean students' growth in self-esteem. The data were takenfrom the Korea Youth Panel Survey (KYPS; Lee et al., 2010) from 2003 to 2006 wherestudents were in middle shool in the �rst two waves and in high shool in the last twowaves. There were 3,281 students in 104 middle shools at waves 1 and 2 and 2,924 studentsfollowed up after dispersing into 860 high shools at waves 3 and 4.About 2.7% students swithed their shool membership during the middle shool or highshool years and these students were exluded from the data for simpliity. The response vari-able was self-esteem whih is a mean-omposite variable omputed from six 5-point Likert-sale items. The mean (standard deviation) of self-esteem was 3.16 (0.62), 3.26 (0.62), 3.31(0.60), 3.33 (0.61) at waves 1, 2, 3, and 4, respetively. The internal onsisteny of themeasures (Cronbah's α) was on average 0.734.We formulated a three-level linear mixed model with rossed random e�ets for the self-esteem, Ytsmh at time t for student s who attended middle shool m and high shool h
Ytsmh = β1 + β2time2 + β3time3 + β4time4 + δs + δmµt + δhηt + etsmh, (3.15)where β1 is an interept and β2, β3, and β4 are oe�ients for time 2, 3, and 4 dummyvariables. The random part of the model onsists of a student-level random e�et δs ∼

N(0, σ2s ), a middle shool random e�et δm ∼ N(0, σ2m), a high shool random e�et δh ∼
N(0, σ2h), and a time- and student-spei� residual etsmh ∼ N(0, σ2

e). The model ontainsoasion-spei� weights, µ = (1, 1, 1, 1)′ and η = (0, 0, 1, 1)′ that represent the ontributionof shool e�ets on student outomes at eah time point. η1 and η2 were set to zero beausethe future high shool is assumed not to a�et students while they are still in middle shool.Jeon & Rabe-Hesketh (2012) onsidered µ = (1, µ2, µ3, µ4)
′ and η = (0, 0, 1, η4)

′ as modelparameters, but here we simpli�ed the model by treating them as �xed for illustrationpurposes.To implement the MCLL method, the same settings were used as in the �rst two exam-



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 60ples. Di�use normal priors were spei�ed for the regression oe�ient parameters (mean 0,standard deviation 100) and for the log standard deviations, logσs, logσm, logσh, and logσe(mean -4.37, standard deviation 2.35). The MCLL estimates and standard errors (using thediagonal Hessian matrix) were ompared with the posterior means and standard deviationsand with the true ML estimates whih were obtained from the xtmixed funtion in Stata.ResultsTable 3.3 lists the results for model (3.15) to the KYPS dataset.Table 3.3: Parameter estimates (Est) and standard errors (SE) for the Korea Youth PanelSurvey (KYPS) data. MLE is the true maximum likelihood estimates and Post.m is theposterior mean estimates. MLE Post.m MCLLEst SE Est SE Est SE
β1 3.16 0.02 3.16 0.01 3.16 0.02
β2 0.11 0.01 0.11 0.01 0.11 0.01
β3 0.16 0.01 0.16 0.01 0.16 0.01
β4 0.18 0.02 0.18 0.01 0.17 0.02
σs 0.46 - 0.46 - 0.46 -
σm 0.38 - 0.38 - 0.38 -
σh 0.09 - 0.09 - 0.09 -
σe 0.12 - 0.12 - 0.12 -For regression oe�ients, β̂1 indiates the estimated mean self-esteem of students atwave 1 (seond grade in middle shool). The oe�ients for the time dummy variables, β̂2,

β̂3, and β̂4 represent the estimated di�erenes in the mean self-esteem between eah wave andwave 1. The mean growth from waves 1 and 2 was estimated as 0.11, from waves 2 and 3 was0.05, and from waves 3 and 4 as 0.02. Students' self esteem tended to inrease, but the rateof the growth dereased over time. In the random part, the estimated within-student andthe estimated between-student standard deviations (σ̂e, σ̂s) were larger than the between-shool standard deviations (σ̂m, σ̂h). All the regression oe�ient parameter estimates andstandard errors, and the standard deviation estimates from the MCLL method were loseto the ML estimates. There was little di�erene between the MCLL estimates and posteriormeans and standard deviations in this example.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 613.5 Simulation StudiesTwo simulation studies were onduted to evaluate the performane of the MCLL methodusing 1) simulated salamander mating data for a generalized linear mixed model with rossedrandom e�ets and 2) simulated birth weight data for a linear mixed model. A linear mixedmodel is onsidered to evaluate the MCLL method when the true ML estimates are available.3.5.1 Simulation DesignThe �rst example was losely related to the salamander mating data in Setion 3.4.1. 100datasets were generated based on model (3.13) using the same true parameter values onsid-ered by other researhers (e.g., Lin & Breslow, 1996), whih are β = (1.06,−3.05,−0.72, 3.77)′and (σ2
f , σ

2
m)

′ = (.50, .50)′. The seond example was related to the birth weight data in Se-tion 3.4.3. 100 datasets were generated based on model (3.14) using the ML estimatesof the original data as true values, β = (3368.09, 155.34, 126.94, 213.43)′ and (σA, σE)
′ =

(311.21, 374.66)′. To implement the MCLL method, the same settings were used as in theorresponding empirial studies.In addition, Monte Carlo error (MCE) involved in all simulation estimates were estimated.Based on Koehler et al. (2009), MCE for the mean of the estimates (β̂) an be de�ned asM̂CE =

√√√√ 1

B

B∑

b=1

(β̂(b)− β̂(·))2,where β̂(b) is the estimate at the bth simulated data and β̂(·) is the mean of the estimatesof the B repliates β̂(·) = 1
B

∑B
b=1 β̂(b).Stata ommand simsum (White, 2010) was used to ompute the MCE for the means ofthe parameter and standard error estimates in the simulation studies.3.5.2 ResultsTable 3.4 lists the estimated bias and mean squared error (MSE) for the �rst simulationstudy mimiking the salamander mating dataset.The MCLL method performed well ompared with the Bayesian and the Laplae ap-proximation methods. For the regression oe�ient estimates, the bias and MSE were quitesimilar between the methods. For the standard deviations, however, the MCLL methodshowed smaller bias and MSE than the other two methods.Table 3.5 lists the average standard error estimates ompared with the standard de-viations of the parameter estimates (or the empirial standard errors) for the regressionoe�ient parameters.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 62
Table 3.4: Bias and mean squared error (MSE) of the MCLL, Laplae approximation, andposterior mean (Post.m) estimates for 100 simulated salamander datasets.Bias MSETrue Laplae Post.m MCLL Laplae Post.m MCLL

β1 1.06 -0.03 -0.03 -0.03 0.12 0.12 0.12
β2 -3.05 0.04 0.01 0.01 0.22 0.21 0.21
β3 -0.72 0.06 0.06 0.05 0.17 0.17 0.16
β4 3.77 -0.04 -0.01 -0.04 0.35 0.33 0.35
σm 0.71 -0.17 -0.21 -0.13 0.10 0.09 0.07
σf 0.71 -0.15 -0.19 -0.12 0.12 0.09 0.08

Table 3.5: Average standard error estimates for 100 simulated salamander datasets. SDis the empirial standard error (standard deviation of the parameter estimates), SE is theaverage of the standard error estimates, and SE/SD is the ratio of SE to SD.MCLL LaplaeSE SD SE/SD SE SD SE/SD
β1 0.31 0.34 0.91 0.29 0.34 0.85
β2 0.50 0.46 1.09 0.44 0.46 0.96
β3 0.40 0.40 1.00 0.37 0.41 0.90
β4 0.61 0.59 1.03 0.53 0.59 0.90



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 63The results show that the means of the standard error estimates over repliates were quitelose to the empirial standard errors for all methods. Our standard error estimates tendto be more onservative than those from the Laplae approximation. Monte Carlo errors(MCEs) were about 10% of the means of the parameter estimates and less than 0.1 for themeans of the standard errors in all methods.For the linear mixed model example with the simulated birth weight datasets, we om-pared the MCLL and Bayesian estimates (posterior means) with the ML estimates. Figure3.2 ompares the distanes from the ML estimates between the two methods for eah pa-rameter.Figure 3.2 shows that the MCLL estimates are loser to the true ML estimates than theposterior mean estimates. In partiular, the posterior mean estimates display a marked bias(de�ned relative to the ML estimates), whih is evident in the point louds being shiftedaway from zero on the x-axis. The seond step of the MCLL algorithm adjusts the estimatesand we observe that they are no longer biased relative to the ML estimates. This is astrong evidene that MCLL estimates are loser to the ML estimates than the posteriormean estimates. The MCEs were about 10% of the means of the parameter estimates for allmethods.Table 3.6 ompares the average standard error estimates with the empirial standarderrors.Table 3.6: Average standard error estimates for 100 simulated birth weight datasets. SDis the empirial standard error (standard deviation of the parameter estimates), SE is theaverage of the standard error estimates, and SE/SD is the ratio of SE to SD.MCLL MLSE SD SE/SD SE SD SE/SD
β1 32.22 31.70 1.02 31.11 31.49 0.99
β2 17.77 15.35 1.16 17.52 15.31 1.14
β3 31.89 32.00 1.00 30.94 32.00 0.97
β4 53.92 58.05 0.93 52.58 57.99 0.91Table 3.6 shows that both the ML and MCLL standard errors are good approximationsto the empirial standard deviations. As in the �rst simulation example, the MCLL standarderror estimates tend to be a bit more onservative than the ML standard errors. The MCEsfor the means of the standard error estimates were less than 0.05 for MCLL, less than 0.10for the ML method, and less than 0.08 for the Bayesian method.
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Figure 3.2: Distanes from the ML estimates for MCLL estimates (MCLL-MLE) and forposterior mean estimates (Post.m-MLE) for 100 simulated birth weight datasets



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 653.6 Conluding RemarksIn this paper, the Monte Carlo loal likelihood (MCLL) method was proposed for maximumlikelihood estimation of GLMMs with rossed random e�ets. The MCLL method initiallytreats the model parameters as random variables and samples them jointly with randome�ets, from the posterior distribution for a partiular prior. The likelihood funtion is thenapproximated up to a onstant as a loal likelihood density estimate of the posterior dividedby the prior.The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,2004), whih uses kernel density estimation to approximate the posterior. The key advantageof MCLL is that it provides methods for obtaining standard errors whereas MCKL does not.MCLL is also less sensitive to bandwidth seletion than MCKL.De Valpine (2004) showed onvergene of the MCKL estimator based on proofs of on-vergene of kernel mode estimates. The proofs for MCKL may not be diretly applied to theMCLL method with a polynomial higher than degree zero. Unlike kernel density estimation,there has been no proof yet on the onvergene of mode estimates in loal density estimation,whih would be an intermediate step in proving onvergene of the MCLL estimator.Finally, it is important to note that MCLL allows likelihood inferene for any omplexmodels for whih ML estimation may be infeasible but MCMC methods are possible. Forexample, in addition to GLMMs with rossed random e�ets onsidered here, the MCLLalgorithm ould be used to �t state-spae models with higher dimensional latent variables.Potential appliations for MCLL are therefore far beyond the models disussed in this paper.We have shown that the MCLL method provides results lose to the ML estimates. Even ifinformative priors are spei�ed, MCLL provides estimates lose to the ML estimates, whereasthe posterior mean estimates ould be quite di�erent. When ML inferene is desired forhighly omplex models, the MCLL method seems to be an e�etive and pratial hoie.



66
Chapter 4Autoregressive IRT Growth Model
4.1 IntrodutionThis paper onsiders longitudinal data where a latent onstrut is measured by multipleitems at multiple time points. In measuring psyhologial traits suh as engagement or self-esteem, typially the same sales with the same set of items are used over time. In abilitytesting, a set of ommon items are often inluded in di�erent tests for the purpose of vertialequating. Responses to the same items over time may not be onditionally independentgiven the latent trait.When the measures of the latent onstrut are ontinuous, urve-of-fators models orseond-order latent growth models are often used in strutural equation modeling (SEM)(e.g., Hanok & Kuo, 2001; Sayer & Cumsille, 2001). A ommon strategy in suh modelsis to deal with violations of onditional independene by allowing residuals for the sameitems to be orrelated over time (Loehlin, 1998; Sayer & Cumsille, 2001). In eonometris,orrelated errors have also been used in probit models (e.g., Hyslop, 1999; Varin & Czado,2010).In item response theory (IRT), many methods have been developed to deal with loaldependene within tests. Testlet-type models were suggested whih use additional dimen-sions to apture dependene within item bundles or testlets (e.g., Gibbons & Hedeker, 1992;Wilson & Adams, 1995; Bradlow et al., 1999; Wang & Wilson, 2005; Jeon et al., in press).Suh approahes are omputationally demanding in general beause the number of latentvariables required inreases as the number of item lusters inreases. Hoskens & De Boek(1997) present a �xed e�ets approah using interation parameters for within-test loaldependene. Alternatively, marginal models have been proposed e.g., by utilizing opulafuntions to apture loal dependene among items (e.g., Braeken et al., 2007; Braeken,2011). However, these marginal methods appear to be di�ult to implement in pratie.For longitudinal data, multidimensional models have typially been used in IRT withoutmuh onsideration for serial dependene. See for example, Andersen (1985), Embretson



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 67(1991), and MGuire (2010). Reently, Cai (2010) suggested a two-tier IRT model that usesadditional latent variables (or dimensions) to take into aount loal dependene among itemresponses, and also disussed an appliation to a longitudinal setting. A ombination of themultilevel model and the IRT model has also been used to analyze longitudinal data. Forexample, a one-parameter logisti (1PL) IRT measurement model was applied in three-levelgrowth models for binary and ategorial data (e.g., Fox, 2005; Pastor & Beretvas, 2006).Segawa (2005) presented a multilevel IRT model inluding a two-parameter logisti (2PL)IRT measurement model for ordinal responses. For ategorial responses in SEM, Serrano(2010) presented a seond-order model for binary item responses using extra latent variablesto allow for autoorrelations between the responses over time. Eid & Ho�mann (1998)proposed a multistate-multitrait model that inludes latent fators for serial orrelationsamong ordinal responses.In this paper, we present an autoregressive IRT growth model that takes into aountserial dependene. Autoregressive or dynami models for binary panel data have been a-tively investigated in eonometris (e.g., Hekman, 1981; Hsiao, 2003; Bartolui & Nigro,2010) but rarely in psyhometris or eduational measurement. A dynami Rash model hasbeen proposed by Verhelst & Glas (1993) but in a di�erent ontext, to model learning e�etsthroughout tests.The autoregressive IRT growth model that we present here allows the urrent responseto an item to depend on the previous response in addition to the latent trait. In the mea-surement model, the oe�ients for the lagged responses allow to study state dependene,i.e., how the past response an in�uene the response to the same item in the future. Wewill show that this autoregressive model is equivalent to a model that inludes interationparameters for item responses at adjaent time points. The initial onditions problem needsto be addressed beause initial outomes have no lagged variables (see e.g., Hekman, 1981;Wooldridge, 2005). We adopt the treatment suggested by Hekman (1981) and Aitkin &Alfo (2003) to deal with the initial onditions problem.A linear growth urve model is spei�ed for the latent trait in the strutural model. Thefull model an be estimated using standard maximum likelihood (ML) software. ML estima-tion of the proposed model involves only three-dimensional integrals and the dimensionalityof the integrals stays the same regardless of both the number of time-points and the numberof items.The outline of this hapter is as follows: We �rst review how loal dependene has beentreated in IRT. In Setions 4.2 and 4.3, we present IRT models with interation parametersto apture loal dependene for ross-setional data. An autoregressive IRT growth modelis then introdued for longitudinal data. Equivalene of this model to an IRT model withinteration parameters is shown. In Setion 4.4, we disuss the treatment of the initialonditions problem and its impliations for measurement invariane. In Setion 4.5, weinvestigate the onsequenes of ignoring serial dependene and the initial onditions problemusing simulations. An empirial study is provided in Setion 4.6 to illustrate the proposedmodel. We end with some onluding remarks.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 684.2 Treatment of Loal Dependene in IRTIRT models are not robust to violations of loal stohasti independene, alled loal itemdependene or residual dependene (Tuerlinkx & De Boek, 2001; Braeken et al., 2007).Loal item dependene an seriously a�et estimation of model parameters on both itemand person sides, the test information funtion, and the diagnostis that assume onditionalindependene (see e.g., Yen, 1984; Sirei et al., 1991; Yen, 1993; Chen & Thissen, 1997;Tuerlinkx & De Boek, 2001; Braeken et al., 2007).Several methods have been suggested to deal with loal dependene in IRT. Typiallyloal dependene is violated for items nested in subtests (Andrih, 1985), testlets (Wainer &Kiely, 1987), or item bundles (Wilson & Adams, 1995; Rosenbaum, 1999). To deal with theloal dependene, the sum sores of testlets an be used as polytomous items. Alternatively,additional latent variables (or dimension) an be introdued to apture the dependenewithin testlets (Gibbons & Hedeker, 1992; Bradlow et al., 1999; Wang & Wilson, 2005; Cai,2010; Jeon et al., in press).Hoskens & De Boek (1997) present a �xed e�ets approah that diretly models loaldependene using interation parameters. Drawbaks of this approah are �rst, the marginalitem harateristi urves are not reproduible (Fitzmaurie et al., 1993), i.e., the urves areno longer logisti funtions. Seond, the item parameters lose their usual interpretations (Ip,2002; Wang & Wilson, 2005; Braeken et al., 2007; Braeken, 2011).To avoid these problems, marginal models have been proposed suh as the Bahadur-Ipmodel (Ip, 2000, 2001), the hybrid kernel model (Ip, 2002), and opula models (Braekenet al., 2007; Braeken, 2011). The main idea is to keep marginal probabilities intat byaounting for loal dependene by separate tools. However, these methods are di�ult toimplement in pratie and require modeling hoies to be made. For example, for opulamodels, users have to hoose an appropriate opula funtion.4.3 Loal Dependene IRT Models with Interation Pa-rametersA natural way of modeling dependene among orrelated item responses is to inlude inter-ation parameters in the IRT model. This approah was suggested by Hoskens & De Boek(1997) and Adams et al. (1997) to apture loal dependene in ross-setional data, but it analso be extended to a longitudinal setting. In this setion, starting from the loal dependenemodel within tests, a serial dependene model is introdued for longitudinal data.4.3.1 Loal Dependene IRT Model within TestsA 2PL IRT model is onsidered as the basi model. Assuming loal independene, the 2PLmodel spei�es the onditional probability of binary response yis for item i and person s
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Pr(Yis = yis|θs) =

exp [yis(αiθs − βi)]

1 + exp [(αiθs − βi)]
, (4.1)where θs ∼ N(0, σ2), and βi and αi are the item interept and disrimination parameters,respetively. The item di�ulty is βi/αi. Under the loal independene assumption, thejoint probability for a partiular realization of responses (y1s, y2s) to items 1 and 2 for person

s an be written as
Pr(Y1s = y1s, Y2s = y2s|θs) =

exp [y1s(α1θs − β1) + y2s(α2θs − β2)]∑

{d1,d2}

exp [d1(α1θs − β1) + d2(α2θs − β2)]
, (4.2)where the sum in the denominator is over all possible response patterns with (d1, d2) equalto (0,0), (1,0), (0,1), and (1,1).To model loal dependene, interation parameters an be inorporated for loally de-pendent items. For example, model (4.2) an be extended as

Pr(Y1s = y1s, Y2s = y2s|θs) =
exp [y1s(α1θs − β1) + y2s(α2θs − β2) + y2sy1s(−λ21)]∑

{d1,d2}

exp [d1(α1θs − β1) + d2(α2θs − β2) + d2d1(−λ21)]
, (4.3)where λ21 is the parameter that quanti�es the interation between items 1 and 2. Notethat in model (4.3), the marginal probability for yis given θs is not reproduible (not theinverse logit funtion as in (4.1)), and αi and βi lose their usual interpretations as itemdisrimination and interept parameters if λ21 6= 0 (Braeken et al., 2007; Braeken, 2011).4.3.2 Serial Dependene IRT Model for Longitudinal DataThe loal dependene model in Setion 4.3.1 an be extended to longitudinal settings to ap-ture serial dependene. With longitudinal data, loal dependene arises among the responsesto the same items used repeatedly over time. Let the response pattern for item i and person

s aross T oasions be denoted yis ≡ (y1is, y2is, ..., yT is)
′, where ytis is the response to item

i at oasion t, t = 1, . . . , T . Then the probability for yis an be modeled as
Pr(yis|θs) =

exp

[
−βi

T∑

t=1

ytis + αi

T∑

t=1

θtsytis −
T∑

t=1

λiytisy(t−1)is

]

∑

{d}

exp

[
−βi

T∑

t=1

dt + αi

T∑

t=1

θtsdt −
T∑

t=1

λidtdt−1

] , (4.4)



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 70where θs = (θ1s, ..., θTs)
′ is the vetor of latent traits aross time for person s and {d}indiates the set of all possible response patterns. λi is an interation parameter for theresponses to item i between at adjaent oasions t and t − 1. We assume that λi, βi and

αi are onstant aross time for item i. Here y0is does not exist and is set to 0 (See Setion4.5.1 on the initial onditions problem).4.4 Autoregressive IRT Growth ModelWe now introdue a �rst-order autoregressive IRT growth model for longitudinal analysis.Equivalene of this model to the serial dependene IRT model is shown.4.4.1 Measurement ModelThe measurement model orresponds to a �rst-order autoregressive or dynami 2PL model.The onditional probability for binary response ytis at time t for item i and person s an bewritten as logit(Pr(ytis = 1|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is, (4.5)where λi is the lag parameter for state dependene and the lagged variable y(t−1)is for item
i. It is useful to note thatlogPr(ytis = 1|θts, y(t−1)is = 1)/Pr(ytis = 0|θts, y(t−1)is = 1)Pr(ytis = 1|θts, y(t−1)is = 0)/Pr(ytis = 0|θts, y(t−1)is = 0)

= λi,when time t > 1. That is, the lag parameter λi is the log-odds ratio for urrent responsesdue to the previous responses hanging from 0 to 1 (see e.g., Bartolui & Nigro, 2010).The dynami Rash model (Verhelst & Glas, 1993) was presented in IRT in the ontextof modeling learning e�ets. Instead of lagged responses, the umulative number of orretresponses preeding the item in question was used where the e�et of the umulative sum wasonsidered as a learning e�et indued by previous suesses (De Boek et al., 2011). Thismodel was later extended by Verguts & De Boek (2000), allowing for a di�erent learningrate for eah person.In order to show equivalene of model (4.5) to the serial dependene model in (4.4),rewrite model (4.5) using a log-linear formulation. For example, at time 2Pr(y2is|y1is; θ2s) = exp [y2is(αiθ2s − βi)− λiy2isy1is]∑

{d}

exp [d2(αiθ2s − βi)− λid2d1]
.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 71Similarly, write model (4.5) at time 3Pr(y3is|y2is; θ3s) = exp [y3is(αiθ3s − βi)− λiy3isy2is]∑

{d}

exp [d3(αiθ3s − βi)− λid3d2]
.The joint onditional probability of the pair of the responses (y2is, y3is) at time 2 and 3 anthen be written asPr(y2is, y3is|y1is; θts) = exp [y2is(αiθ2s − βi) + y3is(αiθ3s − βi)− λiy2isy1is − λiy3isy2is]∑

{d}

exp [d2(αiθ2s − βi) + d3(αiθ3s − βi)− λid2d1 − λid3d2]
.Notie that if we set y0is = 0 so thatPr(y1is|θ1s) = exp [y1is(αiθ1s − βi)]∑

{d}

exp [d1(αiθ1s − βi)]
,we obtain the joint probability for yis ≡ (y1is, y2is, y3is)

Pr(yis|θs) =
exp

[
−βi

3∑

t=1

ytis + αi

3∑

t=1

θtsytis −
3∑

t=1

λiytisy(t−1)is

]

∑

{d}

exp

[
−βi

T∑

t=1

dt + αi

T∑

t=1

θtsdt −
T∑

t=1

λidtdt−1

] ,

whih is the serial dependene model in (4.4) with T = 3.4.4.2 Strutural ModelIn the measurement model (4.5), θts is the latent trait for person s at oasion t. Andersen(1985) spei�es a longitudinal IRT model with
θs = (θ1s, θ2s, ..., θTs)

′,where θs ∼ N(0,Σ). Beause Andersen's model does not ontain hange parameters, Em-bretson (1991) suggests speifying
θts =

t∑

r=1

θ′rs,



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 72where hanges θ′rs from the previous status to time r are modeled for person s, and θ′s =
(θ′1s, θ

′
2s, ..., θ

′
Ts)

′ with θ′s ∼ N(0,Σ).However, Andersen's and Embretson's models an be omputationally demanding be-ause they require an inreasing number of latent variables as the number of time pointsinreases. MGuire (2010) proposed a simpli�ed version of Embretson's model, whih re-quires only two latent variables, one for the baseline and the other for the growth fator, byspeifying
θts = δs1 + (b1 + δs2)timet, (4.6)where b1 is the mean slope or the mean growth rate and timet is the time assoiated withoasion t. δs1, the random interept (or initial status) and δs2, the random slope (or growthrate) for person s are assumed to have a bivariate normal distribution

(
δs1
δs2

)
∼ N

([
0
0

]
,

[
σ2
s1 σs12

σs21 σ2
s2

])
.This formulation relies on a strong assumption that the latent trait for eah person followsa perfet straight line trajetory (or a higher-order polynomial if powers of time are addedto (4.6)). In addition, it does not allow for a random in�uene on the latent trait (or adeviation from the line trajetory) at eah time point. We extend this model by allowingfor an individual and time-spei� error term ǫts. This extension with a 1PL measurementmodel was presented in Pastor & Beretvas (2006) among others. The strutural model anbe spei�ed as

θts = δs1 + (b1 + δs2)timet + ǫts, (4.7)where ǫts ∼ N(0, σ2
ǫ ). Speifying di�erent time-spei� residual varianes σ2

ǫt orresponds toweak fatorial invariane. Speifying onstant time-spei� residual varianes σ2
ǫ orrespondsto strit fatorial invariane (for more information, see, Meredith, 1993).Note that in this formulation, only three-dimensional integrals are required regardless ofthe number of time points and items. This gives us omputational advantages over previousapproahes suh as: 1) Anderson's and Embretson's IRT growth models where the numberof latent variables grows as the number of time points inreases, and 2) the random e�etsapproahes for handling serial dependene (e.g., Serrano, 2010) that require an inreasingnumber of latent variables as the number of items inreases. Cai (2010) showed how toredue the number of latent variables for his two-tier model, but it still requires more latentvariables as the number of time points inreases.The full model is obtained by ombining the measurement model in (4.5) with the stru-tural model in (4.7). Figure 4.1 illustrates the model for person s assuming I items at eahof four time points.In the �gure, the frame represents person s, ovals latent variables, retangles observedvariables, and arrows onneting latent and/or observed variables represent regression rela-tions. The double-headed urved arrows between the observed variables represent pairwise
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Figure 4.1: A serial dependene linear growth model with the random interept, randomslope, and time-spei� random e�etsinterations between adjaent time points. θ1 to θ4 represent the latent trait at eah of thefour time points, measured by the same I items. The short arrows pointing at the latenttraits at eah time point indiate time-spei� random e�ets ǫts, and the ovals δs1 and δs2represent the random interept (or initial status) and the random slope (or growth rate),respetively. The double-headed urved arrow between δs1 and δs2 represents the ovariane
σs12. The values assoiated with the arrows pointing at θ1 to θ4 indiate fator loadings
(1, 1, 1, 1)′ for δs1 and (1, 2, 3, 4)′ (for a linear growth) for δs2 in this example.4.5 Treatment of the Initial Conditions ProblemThe initial onditions problem is an important theoretial and pratial problem in dynamimodels (Wooldridge, 2005). The onsequenes of ignoring the initial onditions problemhave been studied in detail in eonometris (e.g., Anderson & Hsiao, 1981; Hekman, 1981;Wooldridge, 2005). For example, simply dropping the �rst outome from the analyzed dataprodues inonsistent estimates (Hsiao, 1986; Fotouhi & Davies, 1997; Aitkin & Alfo, 1998).In this setion, the initial onditions problem is illustrated and the treatment of the initialonditions problem is disussed for the proposed autoregressive IRT growth model.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 744.5.1 Initial Conditions ProblemTo begin with, �rst write down the autoregressive model (4.5) at time 1logit(Pr(y1is = 1|y0is; θ1s)) = αiθ1s − βi + λiy0is.The initial onditions problem is that the lagged response y0is does not exist for the initialoutome y1is. There are two simple options to deal with this problem: First, to treat y0isas missing so that y1is is not modeled as a response variable. This leads to an endogeneityproblem beause the assoiation between y1is and θts is not modeled. All the assoiationbetween y2is and y1is will be attributed to λi, whereas some of the assoiation is due to theorrelation between θ2s and θ1s. Consequently λi will be over-estimated partiularly whenthere are few time points (T is small) beause the �rst time point will have a larger impat.The seond method is to set y0is = 0. The problem with this approah is that the model for
ytis is onditional on the previous response when time t > 1, but is marginal (with respetto the hypothetial previous response) at time t = 1. It does not make sense to assume thatthe parameters βi and αi are the same in the onditional and marginal models.Aitkin & Alfo (2003) suggested speifying an approximate model for the marginal (notonditional on the previous response) probability of the initial outome given the latent trait.Hekman (1981) also proposed a similar method that approximates the distribution of the�rst outome. Following Aitkin & Alfo (2003), model (4.5) at time 1 an be formulated aslogit(Pr(y1is = 1|θ1s)) = α′

iθ1s − β ′
i. (4.8)For time t > 1, we retain the modellogit(Pr(ytis|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is. (4.9)It is important to allow β ′

i 6= βi and α′
i 6= αi in models (4.8) and (4.9). Note therefore that

α′
i is still needed for time 1 even if the model is otherwise a 1PL model (with αi = 1).The joint probability of the item responses given the latent trait an then be written as

Pr(ys|θts) =
I∏

i=1

Pr(y1is|θ1s)
T∏

t=2

Pr(ytis|y(t−1)is; θts).As an alternative solution to the initial onditions problem, Wooldridge (2005) onsideredthe distribution of the latent variable, onditional on the initial response
θts = γy1is + θ′ts, (4.10)where θ′ts is unorrelated with the initial response y1is in (4.10). The full model onditional



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 75on y1is then beomeslogit(Pr(ytis = 1|y(t−1)is; θ
′
ts, y1is)) = αiθ

′
ts − βi + αiγy1is + λiyi,when time t > 1. Note that θ′ts is di�erent from the original latent variable θts.Figure 4.2 visualizes the di�erenes between Aitkin and Alfo's and Wooldridge's ap-proahes using a simple example with one item at four time points in a unidimensionalmodel with one latent variable.In the �gures, y11 to y41 indiate the responses to item 1 and x11 to x41 represent thetimes assoiated with the measurement oasions 1 to 4. In Aitkin and Alfo's model in theupper panel, the item parameters β ′

1 and α′
1 at time 1 are di�erent from β1 and α1 at latertime points. Wooldridge's model in the lower panel ontains an arrow from y11 to θ withoe�ient γ.We adopt Aitkin and Alfo's approah to deal with the initial onditions problem in theproposed model. With this treatment, the latent trait vetor θs an be left intat in bothmarginal and onditional models (with respet to the lagged responses) both at time 1 andtime t > 1. Thus, when the main interest is on modeling growth of the latent trait, Aitkinand Alfo's approah is preferable to Wooldridge's method that spei�es the distribution ofthe latent trait onditional on the initial response.4.5.2 Identi�ation and Measurement InvarianeIn the proposed model, the item parameters at time 1 are allowed to be di�erent from thoseat later time points (β ′

i 6= βi and α′
i 6= αi). For model identi�ation, δs1, δs2, and ǫts are setto have mean zero, and αi for the �rst item is �xed to 1. For measurement invariane, theitem parameters αi and βi are set equal when time t > 1. If the lag parameters of one ormore items are set to zero, these items serve as anhor items, allowing analysis of hangein θs from time 1 to time 2. An iterative proedure may be used to �nd anhor items,similarly to item puri�ation proedures for �nding anhor items in deteting di�erentialitem funtioning (Rogers & Swaminathan, 1993; Zumbo, 1999). Even if λi 6= 0 for all items,however, the model is still identi�ed beause linearity is assumed for the mean of θs overtime.At a glane, allowing for β ′

i 6= βi and α′
i 6= αi at time 1 may look like violating themeasurement invariane assumption for longitudinal item analysis. Reall that at time 1,however, the model is marginal, i.e., it does not inlude the lagged responses, whereas at latertime points the model is onditional on the lagged responses. Therefore, imposing the sameitem parameters at time 1 and at later time points atually fores the item harateristiurves (ICCs) to be di�erent aross time, whih is a violation of measurement invariane(Mellenbergh, 1989; Meredith & Millsap, 1992; Millsap, 2010).The marginal probabilities Pr(ytis|θts) (or ICCs) are no longer logisti urves at time

t > 1 if λi 6= 0. We an still ompute the marginal probability for person s to binary item i
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Figure 4.2: Solutions to the initial onditions problem by Aitkin & Alfo (2003) andWooldridge (2005)



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 77at time t reursively for t = 2, 3, . . . , T asPr(ytis|θts) = ∑

{d=0,1}

Pr(ytis|θts, y(t−1)is = d)Pr(y(t−1)is = d|θ(t−1)s).That is, it is the sum of the probabilities of all possible sequenes of responses to item i priorto time t when t > 1. Note that having free parameters at time 1 allows the logisti urveto be lose to the not-quite-logisti urves at t > 1. Assuming onstant λi at time t > 1ensures that the urves are equivalent when t > 1.4.6 Simulation StudyInstead of simulating datasets for a �nite number of persons, we generate �population� databy omputing the response probabilities for all possible response patterns and using themto weight the log-likelihood ontributions of the response patterns for maximum likelihoodestimation. A similar approah was used by Rotnitzky & Wypij (1994) and Heagerty &Kurland (2001).We investigate the asymptoti bias of the maximum likelihood estimators using the pop-ulation data when the model is inorretly spei�ed by 1) ignoring serial dependene, and2) ignoring the initial onditions problem.4.6.1 Generating Population DataSuppose there are three binary items at three time points and hene 29 = 512 responsepatterns in total. For eah response pattern vetor yk (k = 1, 2, ..., 29), we �rst obtain theresponse probability π(yk) = g(yk;ψ0) under the true model with parameters ψ0. Given
π(yk) for all k, we treat the probabilities as frequeny weights (possibly after multiplying bya large number and rounding to integers, but the software an handle non-integer frequenyweights). Using the weights, we �t the model to the pseudo response vetors using theweighted log-likelihood. The maximum likelihood estimates of the spei�ed model minimizesthe Kullbak-Leibler divergene between the true model g(y;ψ0) and the mis-spei�ed, �ttedmodel f(y;ψ) KL (g(y;ψ0), f(y;ψ)) = Eg

{logg(y;ψ0)

f(y;ψ)

}
, (4.11)Let ψ∗ be the ML estimates of the model parameters ψ for the population data. White(1982) shows that√N(ψ̂N−ψ∗) → N (0, A(ψ∗)−1B(ψ∗)A(ψ∗)−1) where A(ψ∗)−1B(ψ∗)A(ψ∗)−1



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 78is the sandwih estimator applied to the population data and
A(ψ∗) = lim

N

1

N

∂2

∂ψ2 logf(y;ψ)∣∣∣∣
ψ

∗

,

B(ψ∗) = lim
N

1

N

N∑

s=1

Varψ { ∂

∂ψ
logf(ys;ψ)

∣∣∣∣
ψ

∗

}
,where ∂2

∂ψ
2 logf(y;ψ) is the Hessian of the marginal log-likelihood, and Varψ { ∂

∂ψ
logf(ys;ψ)

∣∣∣
ψ

∗

}is the ovariane matrix of the subjet-spei� ontributions to the sore vetor. Hene, thesandwih estimator applied to the population data gives us the asymptoti sampling vari-ane of the ML estimators for the mis-spei�ed models. We do not need repliates, as in aonventional simulation study, to obtain sampling varianes.4.6.2 Simulation DesignTo generate population data, we onsider a simple example with three items at three timepoints. At time t, the measurement part for the generating model an be written aslogit(Pr(ytis = 1|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is,where t = 1, 2, 3 and i = 1, 2, 3. We assume that the lagged e�et λ1 for item 1 is the sameaross time, and that λ2 = 0 and λ3 = 0. We generate the lagged response y0is by initiallygenerating item responses at four time points (inluding at t = 0) with the same values for
αi, βi, and λi.The strutural model is written as

θts = δs1 + (b1 + δs2)timet + ǫts, (4.12)where ǫts ∼ N(0, σ2
ǫ ), and

(
δs1
δs2

)
∼ N

([
0
0

]
,

[
σ2
s1 σs12

σs21 σ2
s2

])
.The true values for the model parameters are as follows:

• Item parameters α = (1.0, 1.2, 0.8)′ (α1 is �xed)
• Item parameters β = (−1.0, 1.5, 0)′

• Five di�erent values for lag parameter λ1 = 0.2, 0.4, 0.6, 0.8, and 1.0
• Mean slope b1 = 0.2
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• Variane parameters σǫ = 0.2, σs1 = 1.0, σs2 = 0.5, and σs12 = 0.0Using the generated population data, we estimate and ompare the following models:Model 1: Proposed model. The item parameters are allowed to be di�erent at time 1 fromthose at t > 1 (β ′

i 6= βi and α′
i 6= αi).Model 2: Independene model that ignores serial dependene. λi is not estimated.Model 3: Constrained model that ignores the initial onditions problem. The item param-eters are onstrained to be the same aross all time points (β ′

i = βi and α′
i = αi).Figure 4.3 illustrates these three estimated models in addition to the data generating modelfor item 1.In the �gure, y01 to y31 indiate the responses to item 1 and x01 to x31 represent the timesassoiated with oasions 0 to 3. β1 and α1 are the item parameters and λ1 is the oe�ientfor the lagged response for item 1.Note that in the proposed model, the measurement model at time 1 for item 1 is param-eterized as logit(Pr(y1is = 1; θ1s)) = (α1 + α∗

1)θ1s − (β1 + β∗
1),where α∗

1 and β∗
1 are the free parameters that represent the di�erenes in α1 and β1 betweenat time 1 and t > 1. That is, the item parameters at time 1 are α′

1 = α1+α
∗
1 and β ′

1 = β1+β
∗
1 .At time points 2 and 3, the item parameters are α1 and β1.For simulation onditions, we onsider di�erent values for the autoregression oe�ient

λ1 = 0.2, 0.4, 0.6, 0.8, and 1.0. Let ψ denote one of the model parameters, ψ∗ the maximumlikelihood estimates for the population data, and se∗(ψ∗) and se∗R(ψ∗) denote the model-based and robust (sandwih estimator) standard errors for the population data when theweights add to 1 (if the weights add to Npop, we multiply the standard errors by √Npop). Ineah ondition, we ompute the asymptoti bias as ψ∗ − ψ0 and the asymptoti root meansquared error (RMSE) as√(ψ∗ − ψ0)2 + (se∗R(ψ∗)/
√
N)2 for sample size N . To see how wellthese asymptoti results hold in �nite samples, we also simulate 200 datasets for N=200 andestimate model parameters and ompute the �nite-sample bias and RMSE in the usual way.The software gllamm (Rabe-Hesketh et al., 2005) in Stata was used for the simulationstudy.4.6.3 Power CalulationWe assess the power of the proposed model to detet the lagged e�et λi. In priniple,power an be estimated by arrying out a Monte Carlo study that reords the proportionof repliations in whih the null hypothesis is rejeted. The proedure an be tremendouslysimpli�ed, however, by following a tehnique often used in SEM. One method, introdued
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CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 81by Satorra & Saris (1985), is based on the fat that the likelihood ratio (LR) statisti hasan asymptoti nonentral hi-square distribution χ2(ω, df) with degrees of freedom df andnonentrality parameter ω when the alternative model Ha is orret and the null model H0is tested, where H0 orresponds to df onstraints. The ovariane matrix implied by theassumed model under Ha is used as population data and the models orresponding to Haand H0 are �t to this matrix. The orresponding LR statisti multiplied by N/Npop is thenused as nonentrality parameter ω, where N is the desired sample size and Npop is the samplesize spei�ed for ML estimation. Instead of the LR statisti, Satorra & Saris (1985) alsosuggested using the Wald statisti for the model under Ha.We adopt the Satorra-Saris method: To ompute the power of the test of H0 : λia = λi0 ,we estimate the nonentrality parameter ω based on the Wald statisti with df = 1 (Bollen,1989, p.338-349). Spei�ally, for sample size N
ω = N

(
λ∗ise∗(λ∗i ))2

,where λ∗i is the estimate obtained by �tting the Ha model to the population data generatedunder H0, and se∗(λ∗i ) is the asymptoti standard error when the weights for the populationdata add to 1. The asymptoti power of the test with signi�ane level α is alulated asPr{χ2(ω, df) > cα},where cα is a ritial point.Asymptoti power is alulated for the di�erent values of λi and a range of sample sizes(with 10 quadrature points). In order to assess how well the asymptoti power agrees withthe �nite-sample power, we also simulate 200 datasets for N=200 subjets and estimatethe power based on the proportion of repliates where the null hypothesis is rejeted in thelikelihood ratio test (with df=1).4.6.4 ResultsTables 4.1 to 4.5 list the parameter estimates, standard errors, robust standard errors, andlog-likelihoods for the three models in eah of the �ve simulation onditions. The standarderrors are the asymptoti standard errors for sample size N=100, i.e., se∗(ψ∗)/
√
100.The asymptoti bias of the proposed model is mostly zero or less than 0.01 aross allonditions. The independene model that ignores serial dependene produes some degree ofbias in most parameters. The size of bias appears relatively large for the mean slope b1 andthe standard deviations σǫ, σs1, and σs2 (the item parameters annot be ompared beausetheir interpretation di�ers in the proposed model). The onstrained model that ignores theinitial onditions problem also produes some bias in most parameters. The bias appearslarge for the α, β, λ1, b1, and σǫ parameters, in partiular. The asymptoti standard errors
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Table 4.1: Population parameter estimates ψ̂∗ for ondition 1 (λ1=0.2). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the orrelation, σs12

σs1σs2
.Parameters True Proposed Independene ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.31 0.31 -0.96 0.23 0.23 -0.97 0.22 0.22
β∗
1 - 0.06 0.41 0.41 - - - - - -
β2 1.5 1.50 0.28 0.28 1.49 0.26 0.26 1.51 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.00 0.17 0.17 0.01 0.17 0.17
α∗
1 - 0.02 0.64 0.64 - - - - - -
α2 1.2 1.20 0.55 0.55 1.09 0.36 0.37 1.18 0.48 0.48
α3 0.8 0.80 0.35 0.35 0.73 0.24 0.24 0.79 0.31 0.31
λ1 0.2 0.20 0.50 0.50 - - - 0.17 0.46 0.46
b1 0.2 0.20 0.15 0.15 0.21 0.13 0.13 0.19 0.13 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.18 - -
σs1 1.0 1.00 - - 1.10 - - 1.03 - -
σs2 0.5 0.50 - - 0.56 - - 0.51 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -527.09 -527.16 -527.10
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Table 4.2: Population parameter estimates ψ̂∗ for ondition 2 (λ1=0.4). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the orrelation, σs12

σs1σs2
.Parameters True Proposed Independene ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.93 0.24 0.24 -0.93 0.22 0.22
β∗
1 - 0.12 0.41 0.41 - - - - - -
β2 1.5 1.50 0.29 0.28 1.48 0.25 0.25 1.52 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.17 0.17 0.02 0.17 0.17
α∗
1 - 0.04 0.65 0.65 - - - - - -
α2 1.2 1.20 0.55 0.55 0.98 0.33 0.35 1.16 0.47 0.48
α3 0.8 0.80 0.35 0.35 0.66 0.22 0.23 0.78 0.31 0.31
λ1 0.4 0.40 0.49 0.49 - - - 0.34 0.46 0.46
b1 0.2 0.20 0.15 0.15 0.23 0.13 0.14 0.18 0.13 0.13
σǫ 0.2 0.20 - - 0.00 - - 0.16 - -
σs1 1.0 1.00 - - 1.21 - - 1.06 - -
σs2 0.5 0.50 - - 0.61 - - 0.52 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -527.20 -527.51 -527.26
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Table 4.3: Population parameter estimates ψ̂∗ for ondition 3 (λ1=0.6). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the orrelation, σs12

σs1σs2
.Parameters True Proposed Independene ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.89 0.25 0.26 -0.89 0.22 0.22
β∗
1 - 0.17 0.40 0.40 - - - - - -
β2 1.5 1.50 0.29 0.29 1.47 0.25 0.25 1.53 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.17 0.17 0.03 0.17 0.17
α∗
1 - 0.02 0.66 0.65 - - - - - -
α2 1.2 1.20 0.56 0.56 0.88 0.36 0.37 1.14 0.47 0.48
α3 0.8 0.80 0.36 0.36 0.59 0.24 0.24 0.77 0.31 0.31
λ1 0.6 0.60 0.48 0.48 - - - 0.50 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.25 0.13 0.13 0.17 0.14 0.13
σǫ 0.2 0.20 - - 0.00 - - 0.14 - -
σs1 1.0 1.01 - - 1.33 - - 1.09 - -
σs2 0.5 0.51 - - 0.67 - - 0.53 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -526.89 -527.55 -527.00
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Table 4.4: Population parameter estimates ψ̂∗ for ondition 4 (λ1=0.8). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the orrelation, σs12

σs1σs2
.Parameters True Proposed Independene ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.86 0.27 0.27 -0.86 0.22 0.22
β∗
1 - 0.23 0.40 0.40 - - - - - -
β2 1.5 1.50 0.29 0.29 1.46 0.24 0.24 1.54 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.16 0.16 0.03 0.17 0.17
α∗
1 - 0.07 0.66 0.66 - - - - - -
α2 1.2 1.20 0.56 0.56 0.78 0.27 0.30 1.12 0.46 0.48
α3 0.8 0.80 0.36 0.36 0.52 0.18 0.20 0.76 0.30 0.31
λ1 0.8 0.80 0.48 0.48 - - - 0.67 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.28 0.16 0.16 0.16 0.14 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.11 - -
σs1 1.0 1.01 - - 1.10 - - 1.12 - -
σs2 0.5 0.51 - - 0.56 - - 0.54 - -
ρs12 0.0 0.00 - - 0.00 - - 0.01 - -Log-likelihood -526.14 -527.27 -526.33
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Table 4.5: Population parameter estimates ψ̂∗ for ondition 5 (λ1=1.0). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the orrelation, σs12

σs1σs2
.Par True Proposed Independene ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.83 0.29 0.30 -0.82 0.22 0.23
β∗
1 - 0.29 0.40 0.40 - - - - - -
β2 1.5 1.51 0.29 0.29 1.45 0.23 0.23 1.55 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.16 0.16 0.04 0.17 0.17
α∗
1 - 0.08 0.66 0.66 - - - - - -
α2 1.2 1.20 0.56 0.56 0.68 0.24 0.28 1.10 0.46 0.48
α3 0.8 0.80 0.36 0.36 0.46 0.16 0.18 0.74 0.30 0.31
λ1 1.0 1.00 0.47 0.47 - - - 0.83 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.31 0.17 0.17 0.16 0.14 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.06 - -
σs1 1.0 1.01 - - 1.10 - - 1.15 - -
σs2 0.5 0.51 - - 0.56 - - 0.55 - -
ρs12 0.0 0.00 - - 0.00 - - 0.01 - -Log-likelihood -524.95 -526.64 -525.25



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 87are lose to the robust standard errors in all models aross all onditions (with the di�erenesless than 0.01). The independene and onstrained models tend to somewhat underestimatethe standard errors for all model parameters aross all onditions.For the lag parameter, we ompared the asymptoti standard errors for N=200 withthe standard deviations of the parameter estimates and the means of the estimated standarderrors, based on 200 simulated datasets. With 5 quadrature points, the standard deviations ofthe parameter estimates are a bit larger than the means of the standard error estimates, butboth are smaller than the asymptoti standard errors. Spei�ally, the standard deviationsof the estimates are about 18%, 24%, 31%, 32%, 29%, and 56% smaller than the asymptotistandard errors, and the means of the standard error estimates are about 31%, 37%, 43%,46%, 48%, and 51% smaller than the asymptoti standard errors for λ1 = 0, 0.2, 0.4, 0.6,0.8, and 1.0, respetively. We also tried 10 and 15 quadrature points with λ1 = 0.2, but theresults hardly hanged.Figures 4.4 to 4.8 ompare the asymptoti bias for eah parameter between the modelsaross onditions (exept σs12 that shows little bias (lose to 0) in all models). For theparameters λ1 and b1, the estimated 95% on�dene intervals for the �nite-sample bias areomputed based on 200 simulated datasets for N=200 and for di�erent values of λ1.Overall, the asymptoti bias tends to inrease as the true value for λ1 inreases from 0to 1. The asymptoti bias for λ1 lies in the estimated 95% on�dene interval for the �nite-sample bias in all onditions. Ignoring serial dependene produes partiulary large biasfor all α, b1, σs1, and σs2 parameters, and ignoring the initial onditions problem produeslarger bias for β3 and σǫ than the other parameters. The asymptoti bias for b1 lies in theestimated 95% on�dene interval in all onditions exept when λ1 = 1.0.Figure 4.9 presents the asymptoti RMSE for the mean slope parameter b1 between thethree models when N=200, 1,000, and 3,000.With the sample size N=200, the asymptoti RMSE is larger in the proposed modelthan in the independene model when λ1 < 0.4 and in the onstrained model λ1 < 1.0.This is beause the asymptoti standard errors are underestimated in the independene andonstrained models when the sample size is small. With the sample size N=1,000, theasymptoti RMSE is larger in the independene model when λ1 > 0.2 and in the onstrainedmodel when λ1 > 0.4 than in the proposed model. With the sample size N=3,000, theasymptoti RMSE is larger in both independene and onstrained models when λ1 > 0.2than in the proposed model.Now we illustrate the marginal item harateristi urves (ICCs) for the three models.Figure 4.10 shows ICCs in ondition 5 (λ1 = 1.0).In the �gure, the dashed urves represent the true ICCs from the data generating model,the solid urves represent the ICCs for the estimated models at time points 2 and 3, and thedashed-dotted urves represent the estimated ICC at time 1.For the proposed model, there is nearly no gap between the estimated urves aross time.When serial dependene is ignored, the estimated ICCs are the same aross all time points,but they are all o� from (lower than) the true ICCs. When the initial onditions problem is
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Figure 4.4: Asymptoti bias for the item parameters β1 (top), β2 (middle), and β3 (bottom).Note that β have a di�erent meaning in the proposed model and the onstrained model thatinlude the lag parameter.
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Figure 4.5: Asymptoti bias for the item parameters α2 (top) and α3 (bottom). Note that
α have a di�erent meaning in the proposed model and the onstrained model that inludethe lag parameter.
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Figure 4.6: Asymptoti bias for the lag parameter λ1. The estimated 95% on�dene intervalsfor the �nite-sample bias based on 200 repliates (N=200) are presented for the proposedmodel.
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Figure 4.7: Asymptoti bias for the mean slope b1. The estimated 95% on�dene intervalsfor the �nite-sample bias based on 200 repliates (N=200) are presented for the proposedmodel.
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Figure 4.8: Asymptoti bias for the standard deviations of time e�ets σǫ (top), initial status
σs1 (middle), and growth rate σs2 (bottom).
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CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 94ignored, the estimated ICC at time 1 is di�erent from (lower than) the estimated ICCs attime points 2 and 3 and the true ICCs.This result shows that imposing the invariane assumption on the item parameters arosstime atually fores the ICC to be di�erent at time 1 from ICCs at later time points. Freeingthe item parameters at time 1 helps the ICCs to resemble eah other aross all time points.Ignoring serial dependene results in bias in the ICCs at all time points.Asymptoti power urves to detet the lagged e�et for the proposed model is shown inFigure 4.11 as a funtion of the sample size. The estimated 95% on�dene intervals for the�nite-sample power are omputed for the proposed model based on the LR test (df=1) using200 simulated datasets (with 5 quadrature points). The same estimated on�dene intervalsare obtained with more quadrature points (10 and 15) at N=200.
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CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 95on�dene intervals inlude the asymptoti urves at N=200, 400, and 800, based on the LRtest. When the Wald test was used (df=1) for the �nite samples, the lower bounds of theestimated 95% on�dene intervals tend to be plaed somewhat higher than the asymptotipower urves. It makes sense given that the standard errors were a bit underestimated forthe �nite samples. It is also a known fat that the likelihood ratio test is more onservativeand reliable than the Wald test for �nite samples (e.g., Engle, 1980; Buse, 1982)4.7 Empirial StudyThe Korea Youth Panel Survey (KYPS; Lee et al., 2010) traked a nationally representativesample of seond year middle shool students every year from 2003 to 2008. Six waves of thedata were olleted where students progressed from middle shool to high shool at wave 3and were out of high shool at wave 6. There are 3,449 students in 103 middle shools atwave 1 and 3,125 students in 911 high shools at wave 3. At wave 6, there are 2,833 students.For simpliity, students who swithed their shool membership during the middle shool orhigh shool years were exluded from the data (less than 2% eah year). The self-esteemsale was used whih onsisted of 12 items on a 5-point Likert sale (from strongly disagreeto strongly agree). We hose seven items that appear more losely related to eah other(e.g., all negatively worded), whih was on�rmed by Cronbah's alpha (about 0.65, eahyear). These items are: 1) I sometimes think I am a useless person, 2) I sometimes think Iam a bad person, 3) I sometimes feel like I am a failure, 4) I think I am a trouble maker, 5) Ithink I am a juvenile delinquent, 6) Other people think I am a trouble maker, and 7) Otherpeople think I am a juvenile delinquent. To measure a positive self-image (or self-esteem),the response ategories were reversed and dihotomized.We �t the full model (Ma) inluding the lag parameters for all items using gllamm (Rabe-Hesketh et al., 2005) with 5 quadrature points. Seven separate models (M1 to M7) were also�t, eah inluding a lag parameter for one item (items 1 to 7), respetively. In addition, aredued model (M0) without the lag parameter (λi) and without the two free parameters(α∗
i , β∗

i at time 1) was �t for omparison. Tables 4.6 and 4.7 summarize the results.In all tables, the model-based standard errors are presented sine there is not muhdi�erene (less than 0.01) between the model-based and robust standard errors.In Table 4.6, the estimates of the lag parameter and free item parameters are listed.For the lag parameter, the Wald and likelihood ratio (LR) test statistis are also given. Toompute the LR statisti, the log-likelihood for the redued model (M0) is ompared withthe log-likelihoods for models M1 to M7, eah with 3 degrees of freedom. For the full model(Ma), only the Wald statistis are presented. The lagged e�ets (λi) are signi�ant and theestimates are quite large for all items, ranging from 0.65 to 1.03 (odds ratio 1.91 to 2.80)in the separate models (M1 to M7). The p-values are smaller than 0.0001 based on bothLR and Wald tests, and the LR statistis appear similar to or slightly larger than the Waldstatistis. In the full model (Ma), the lagged e�ets are also all signi�ant and somewhat
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Table 4.6: Parameter estimates and standard errors (in the parentheses) for the lag and freeitem parameters for the Korea Youth Panel Survey (KYPS) data. The estimates from thefull model (Ma) and separate models (M1 to M7) are presented for eah item. β ′

i(= βi + β∗
i )and α′

i(= αi + α∗
i ) are also presented.Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

λiMa 0.85 0.92 0.97 1.21 2.05 2.29 2.51(0.04) (0.04) (0.04) (0.07) (0.13) (0.14) (0.15)(Wald) (389.66) (365.57) (473.49) (267.64) (231.04) (257.92) (258.24)M1-M7 0.65 0.67 0.75 0.67 0.75 1.03 1.01(0.04) (0.04) (0.04) (0.06) (0.11) (0.11) (0.12)(Wald) (239.01) (208.80) (309.41) (100.80) (42.25) (82.08) (64.32)(LR) (243.36) (208.00) (330.68) (195.24) (51.84) (116.96 ) (106.50)
β∗
iMa 0.33 0.28 0.63 0.13 1.61 0.17 1.81(0.06) (0.07) (0.06) (0.12) (0.42) (0.30) (0.47)M1-M7 0.26 0.19 0.58 -0.28 0.37 -0.54 0.77(0.05) (0.06) (0.05) (0.09) (0.21) (0.24) (0.37)
β ′
iMa -0.69 -1.16 -0.04 1.5 5.18 3.55 5.57M1-M7 -0.79 -1.26 -0.16 1.24 4.42 3.20 5.16
α∗
iMa -0.25 -0.23 -0.24 -0.5 -0.64 -1.53 -0.95(0.04) (0.05) (0.04) (0.09) (0.24) (0.20) (0.26)M1-M7 -0.08 -0.04 -0.02 -0.26 -0.33 -1.13 -0.47(0.04) (0.05) (0.05) (0.01) (0.22) (0.20) (0.24)
α′
iMa 0.75 0.94 0.86 1.44 2.55 1.93 2.54M1-M7 0.92 1.07 1.03 1.70 2.82 2.41 2.92



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 97Table 4.7: Parameter estimates and standard errors (in the parentheses) for the struturaland measurement parts of the model for the Korea Youth Panel Survey (KYPS) data. Re-dued model (M0) and full model (Ma) are presented in addition to the separate models(M1 to M7). ρs12 is the orrelation, σs12

σs1σs2
.M0 Ma M1 M2 M3 M4 M5 M6 M7Strutural

b1 0.27 0.24 0.26 0.27 0.28 0.26 0.28 0.26 0.27(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
σǫ 1.41 1.46 1.35 1.40 1.40 1.42 1.39 1.42 1.39(0.08) (0.09) (0.08) (0.07) (0.07) (0.08) (0.07) (0.08) (0.07)
σs1 0.83 0.96 0.79 0.82 0.80 0.76 0.82 0.75 0.84(0.03) (0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04 )
σs2 0.28 0.26 0.24 0.26 0.26 0.24 0.28 0.24 0.26(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
ρs12 0.05 -0.26 0.03 0.04 0.05 0.43 0.04 0.47 0.01(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01 )Measurement
β1 -0.85 -1.02 -1.05 -0.80 -0.83 -0.80 -0.81 -0.83 -0.79(0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03 (0.03) (0.03)
β2 -1.31 -1.44 -1.27 -1.45 -1.31 -1.25 -1.27 -1.29 -1.24(0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04 (0.04) (0.04)
β3 -0.35 -0.67 -0.31 -0.31 -0.74 -0.30 -0.31 -0.33 -0.29(0.03) (0.05) (0.03) (0.03) (0.04) (0.03) (0.03 (0.03) (0.04)
β4 1.76 1.37 1.82 1.83 1.76 1.52 1.81 1.80 1.87(0.06) (0.10) (0.07) (0.07) (0.06) (0.08) (0.06) (0.06) (0.07)
β5 4.46 3.57 4.80 4.80 4.69 4.56 4.05 4.58 4.87(0.13) (0.22) (0.17) (0.17) (0.16) (0.14) (0.30) (0.14) (0.18)
β6 4.31 3.38 4.38 4.38 4.29 4.47 4.38 3.74 4.32(0.16) (0.25) (0.15) (0.15) (0.15) (0.16) (0.16) (0.20) (0.16)
β7 5.39 3.76 5.38 5.38 5.29 5.55 5.30 5.28 4.39(0.19) (0.25) (0.18) (0.18) (0.17) (0.20) (0.18) (0.18) (0.23)
α2 1.17 1.17 1.22 1.11 1.18 1.16 1.17 1.16 1.17(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
α3 1.09 1.10 1.13 1.09 1.05 1.09 1.09 1.09 1.09(0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
α4 2.01 1.94 2.05 1.97 1.98 1.96 1.96 2.01 1.97(0.06) (0.06) (0.06) (0.05) (0.05) (0.06) (0.05) (0.06) (0.05)
α5 3.16 3.19 3.37 3.24 3.25 3.08 3.15 3.18 3.21(0.11) (0.14) (0.13) (0.12) (0.12) (0.10) (0.12) (0.11) (0.12)
α6 3.49 3.46 3.45 3.31 3.35 3.45 3.33 3.54 3.17(0.16) (0.17) (0.14) (0.13) (0.14) (0.16) (0.14) (0.17) (0.12)
α7 3.76 3.49 3.66 3.52 3.56 3.70 3.47 3.58 3.39(0.18) (0.17) (0.15) (0.14) (0.14) (0.17) (0.14) (0.16) (0.15)Log-likelihood -55211 -54278 -55089 -55107 -55045 -55113 -55185 -55152 -55157



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 98larger than those in M1 to M7. In partiular, the lag parameter estimates for items 5 to7 (odds ratio 7.38 to 12.18) are relatively larger than for other items (odds ratio 2.34 to3.35) in the full model. This suggests that items 5 to 7 are more strongly in�uened by theprevious responses to the same items. The responses to these items are also more stableaross time. These items are somewhat more negative than the other items and related tojuvenile delinqueny and other people's judgement of the student's behaviors.The free item parameter estimates range from -0.54 to 0.77 for β∗
i and -0.02 to -1.13 for

α∗
i in the separate models (M1 to M7). The estimates in the full model (Ma) tend to besomewhat larger for β∗

i and smaller for α∗
i than those in M1 to M7. We also present the itemparameters β ′

i (=βi + β∗
i ) and α′

i (=αi + α∗
i ) in Ma and M1 to M7. The di�erenes betweenthese estimates in the full and separate models are smaller in β ′

i and α′
i than in β∗

i and α∗
i .Table 4.7 lists parameter estimates and standard errors in the strutural and measurementparts in all models (Ma, M0, and M1 to M7). Overall, there is not muh di�erene betweenthe models in the strutural model parameters exept ρs12 is larger in absolute values inMa than in other models. Spei�ally, the estimated mean slope (b1) is about 0.7, and theestimated standard deviations of the time spei� e�ets (σǫ), the initial status (σs1), andthe growth rate (σs2) are quite large, about 1.40, 0.80, and 0.26, respetively.Based on the LR test, the full model (Ma) �ts signi�antly better than all separatemodels (p < 0.001, df=20) and the redued model (M0) (p < 0.001, df=23). The Waldtests for the lag parameters in the full model suggest that the full model �ts better thaneah of the seven models with one lag parameter set to zero (and six lag parameters freelyestimated) as well as the seven separate models with a lag parameter for one item at a time.These model omparisons orrespond to the �rst steps of forward seletion and bakwardelimination for model seletion. Based on these results, the full model is hosen over the 15ompeting models.Figure 4.12 illustrates growth trajetories for 11 hypothetial students over six timepoints based on the full model (Ma). The latent trait values were generated using (4.12)where random e�ets were drawn from the orresponding multivariate and univariate normaldistributions.Overall, the Korean students' self-esteem tends to inrease over time from grade 2 inmiddle shool through one year after high shool. The initial status and growth rate varybetween students, but the variation in the initial status appears somewhat larger than thevariation in the growth rate.
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Figure 4.12: Growth trajetories for 11 hypothetial students (based on the full model) withrandomly drawn random e�ets in the Korea Youth Panel Survey (KYPS) data.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 1004.8 Conluding RemarksIn this paper, we presented a �rst-order autoregressive IRT growth model for longitudinalbinary item analysis. The proposed model for studying growth of a latent trait over time a-ommodates serial dependene between responses to the same items aross time. Our modelwas illustrated with a linear growth trajetory, but an extension to a polynomial growthtrajetory is straightforward. For polytomous responses, we an apply tehniques that havebeen developed for ategorial time series data (e.g. Fahrmeir & Kaufmann, 1987). However,suh extensions inrease the number of parameters to estimate and thus are omputationallydemanding.We showed that the �rst-order autoregressive measurement model is equivalent to an IRTmodel with interation parameters for responses at adjaent time points. Higher order in-terations an also be onsidered. For example, an AR(2) autoregressive model is equivalentto allowing for interations among the item responses two time-points apart.Our model deals with serial orrelations in longitudinal item analysis whih has oftenbeen negleted in IRT. Standard ML software an be used for estimating the proposedmodel. Estimation requires only three-dimensional integrals and the dimensionality of theintegrals stays the same regardless of the number of time points and items.The importane of addressing the initial onditions problem in autoregressive IRT mod-els were disussed and illustrated using simulations. We showed that onstraining the itemparameters to be equal aross time an atually fore the ICCs to di�er aross time, resultingin a violation of measurement invariane. A proper way of ahieving approximate measure-ment invariane is to free the item parameters at time 1 so that the ICCs an resemble eahother aross time.The proposed model an be estimated using existing ML software suh as gllamm (Rabe-Hesketh et al., 2005) and M-Plus (Muthén & Muthén, 2008). However, when the data havea more omplex data struture, suh as a ross-lassi�ation of students by middle shooland high shool (Jeon & Rabe-Hesketh, 2012), suh software may no longer be available to�t the model.
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Chapter 5ConlusionIn this dissertation, I onsidered new estimation methods and appliations of omplexgeneralized linear mixed models (GLMMs) for measurement and growth. The dissertationonsists of three papers that orrespond to Chapters 2, 3, and 4. Below I provide a briefsummary for eah hapter.In Chapter 2, the variational maximization-maximization (MM) algorithm was presentedfor estimating GLMMS with rossed random e�ets. The variational MM algorithm is amodi�ed version of the traditional EM algorithm where the E-step is replaed by anotherM-step that minimizes the KL distane between the variational distribution and the trueposterior distribution. This new M-step is equivalent to maximizing the lower bound to thelog-likelihood with respet to the variational distribution.The variational MM algorithm is more general and �exible than the Gaussian variationalapproximation beause our algorithm does not require a pre-spei�ed funtional form forthe variational distribution. The general form for the variational density funtion is derivedso that di�erent types of priors for the random e�ets an be handled. Importantly, wean estimate models with rossed random e�ets based on the mean-�eld approximationthat assumes onditionally independent latent variables given the data. We found that withreasonable sample sizes and prior varianes, the posterior orrelations between the randome�ets are negligible. In addition, the lower bound was quite lose to the marginal log-likelihood in the examples that we onsidered in this paper.Several simulation examples were provided to evaluate the performane of the variationalMM algorithm and to ompare it with the Laplae approximation for GLMMs with rossedrandom e�ets. The results show that overall, the variational MM algorithm performs as wellas the Laplae approximation. With small luster sizes, however, our algorithm performsbetter than the Laplae approximation espeially for the variane parameters. Therefore,the variational MM method ould be an e�etive alternative to the Laplae approximation.In Chapter 3, the Monte Carlo loal likelihood (MCLL) method was presented for max-imum likelihood estimation of GLMMs with rossed random e�ets. The MCLL method



CHAPTER 5. CONCLUSION 102initially treats the model parameters as random variables and samples them jointly withrandom e�ets, from the posterior distribution for a partiular prior. The likelihood fun-tion is then approximated up to a onstant as a loal likelihood density estimate of theposterior divided by the prior.The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,2004), whih uses a kernel density estimation to approximate the posterior. The key advan-tage of MCLL is that it provides methods for obtaining standard errors whereas MCKL doesnot. MCLL is also less sensitive to bandwidth seletion than MCKL.It is important to note that MCLL allows likelihood inferene for any omplex modelsfor whih ML estimation may be infeasible but MCMC methods are possible. For example,in addition to GLMMs with rossed random e�ets onsidered here, the MCLL algorithmould be used to �t state-spae models with higher dimensional latent variables. Potentialappliations for MCLL are therefore far beyond the models disussed in this paper. Wehave shown that the MCLL method provides results lose to the ML estimates. Even ifinformative priors are spei�ed, MCLL provides estimates lose to the ML estimates, whereasthe Bayesian estimates ould be quite di�erent. When ML inferene is desired for highlyomplex models, the MCLL method seems to be an e�etive and pratial hoie.In Chapter 4, a new autoregressive IRT growth model was proposed for longitudinal bi-nary item analysis. The proposed model for studying growth of a latent trait aommodatesserial dependene between responses to the same items aross time. We showed that the�rst-order autoregressive measurement model is equivalent to an IRT model with intera-tion parameters for responses at adjaent time points. Higher order interations an alsobe onsidered. For example, an AR(2) autoregressive model is equivalent to allowing forinterations among the item responses two time-points apart.The proposed model deals with serial orrelations in longitudinal item analysis whih hasoften been negleted in IRT. Standard ML software an be used for estimating the proposedmodel. Estimation requires only three-dimensional integrals and the dimensionality of theintegrals stays the same regardless of the number of time points and items.The importane of addressing the initial onditions problem in autoregressive IRT mod-els were disussed and illustrated using simulations. We showed that onstraining the itemparameters to be equal aross time an atually fore the ICCs to di�er aross time, resultingin a violation of measurement invariane. A proper way of ahieving approximate measure-ment invariane is to free the item parameters at time 1 so that the ICCs an resemble eahother aross time.
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