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1Abstra
tEstimation of Complex Generalized Linear Mixed Modelsfor Measurement and GrowthbyMinjeong JeonDo
tor of Philosophy in Edu
ationUniversity of California, BerkeleyProfessor Sophia Rabe-Hesketh , ChairMaximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) iste
hni
ally 
hallenging be
ause of the intra
table likelihoods that involve high dimensionalintegrations over random e�e
ts. The problem is magni�ed when the random e�e
ts have a
rossed design and thus the data 
annot be redu
ed to small independent 
lusters. A varietyof methods have been developed for approximating the intra
table likelihood fun
tions, butthere seems no method yet that is both 
omputationally e�
ient and a

urate in a widerange of situations.In this dissertation, I 
onsider new estimation methods and appli
ations of 
omplexGLMMs for measurement and growth. The dissertation 
onsists of three papers, 1) Varia-tional maximization-maximization (MM) algorithm, 2) Monte Carlo lo
al likelihood (MCLL)estimation, and 3) Autoregressive item response theory (IRT) growth model for longitudinalitem analysis. In the �rst and se
ond papers, I develop two ML methods for estimat-ing GLMMs with 
rossed random e�e
ts. The variational MM algorithm is a modi�edexpe
tation-maximization (EM) algorithm where a variational density is introdu
ed in theexpe
tation (E) step to approximate the true posterior density of the random e�e
ts giventhe data. The E-step is repla
ed by another maximization step that minimizes the Kullba
k-Leibler (KL) divergen
e between the posterior and the variational density, or equivalently,maximizes the lower bound of the log-likelihood with respe
t to the variational distribu-tion. The MCLL algorithm uses the posterior samples of model parameters obtained fromMarkov 
hain Monte Carlo (MCMC) for likelihood inferen
e. The posterior density is es-timated by lo
al likelihood density estimation and the likelihood fun
tion is approximatedup to a 
onstant by the lo
al likelihood density estimate of the posterior divided by theprior. The performan
e of these new algorithms is evaluated using simulation and empiri
alstudies and 
ompared with other ML and Bayesian estimators. In the third paper, a newautoregressive IRT growth model is proposed to take into a

ount serial 
orrelations amongresponses to the same items over time. The 
onsequen
es of ignoring serial dependen
e and



2the initial 
onditions problem are investigated using simulations. The new model is appliedto longitudinal data of Korean students' self-esteem.Key words: Maximum likelihood estimation; Generalized liner mixed model; Crossed ran-dom e�e
ts; Variational approximation; MM algorithm; Lo
al likelihood density estimation;MCLL; Autoregressive models; Lo
al dependen
e; Initial 
onditions problem
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1
Chapter 1General Introdu
tionGeneralized linear mixed models (GLMMs), also known as multilevel or hierar
hi
algeneralized linear models (Raudenbush & Bryk, 2002; Goldstein, 2003; Rabe-Hesketh &Skrondal, 2012), are popular models for multilevel data with units nested in 
lusters. The
anoni
al examples of multilevel data are students nested within s
hools and repeated mea-surements nested within subje
ts. Item response theory (IRT) models 
an be 
on
eptualizedas generalized linear mixed models (Rijmen et al., 2003).Crossed random e�e
ts 
an be in
orporated in GLMMS to handle data with two ormore non-nested 
lassi�
ations su
h as students nested within s
hools 
ross-
lassi�ed withneighborhoods (e.g., Goldstein, 1987; Raudenbush, 1993; M
Ca�rey et al., 2004). In psy
ho-metri
s, 
rossed random e�e
ts models are also used e.g., for IRT measurement models withrandom item parameters (Van den Noortgate & De Boe
k, 2003; De Boe
k, 2008). Unliketypi
al IRT models that 
onsider person as random and items as �xed, random item IRTmodels treat persons and items as random and the resulting model be
omes a 
rossed ran-dom e�e
ts model. Random item IRT models are found to be useful in various settings, forinstan
e, to a

ount for random sampling of items from an item bank, to model item families,and to represent di�erential item fun
tioning (for more examples, see e.g., De Boe
k, 2008).Maximum likelihood estimation of GLMMs is te
hni
ally 
hallenging be
ause likelihoodsoften involve high dimensional intra
table integrations over random e�e
ts (or latent vari-ables). The problem is magni�ed when the random e�e
ts have a 
rossed design and thusthe data 
annot be redu
ed to small independent 
lusters (Vaida & Meng, 2005).Various methods have been proposed for approximating the intra
table likelihood fun
-tion. For instan
e, the Lapla
e approximation (Tierney & Kadane, 1986; Lindstrom & Bates,1988; Wol�nger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,2005; S
hilling & Bo
k, 2005) have been widely used. The Lapla
e approximation and sim-ilarly, penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to performpoorly for small 
luster sizes and for large varian
e 
omponents (Breslow & Lin, 1995; Joe,2008). Adaptive quadrature is more a

urate but 
omputationally more demanding thanGaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).



CHAPTER 1. GENERAL INTRODUCTION 2Monte Carlo (MC) methods have also been utilized in various ways for ML estimation.Most methods are based on sampling the random e�e
ts given �xed parameter estimates.Several MC expe
tation maximization (MCEM) algorithms have been proposed using varioussampling methods: e.g., a Metropolis-Hastings (M
Cullo
h, 1997), an independent samplerbased on importan
e sampling or reje
tion sampling (Booth & Hobert, 1999), and a sli
esampler (Vaida & Meng, 2005). The basi
 idea is to use MC samples to approximate theintra
table 
onditional expe
tation for the E-step of the EM algorithm. MCEM requiressamples at ea
h iteration of the algorithm. In addition, the algorithm needs a methodfor 
al
ulating standard errors of the parameter estimates be
ause it does not evaluate thelikelihood fun
tion or its derivatives. A method for monitoring 
onvergen
e may also berequired (e.g., Booth & Hobert, 1999).In addition, Bayesian methods have been suggested using di�use priors to approximateML estimates (Tanner, 1993; Diggle et al., 1994; M
Cullo
h, 1997). However, this is ofteninappropriate for models with random e�e
ts be
ause the posterior may not exist for di�usepriors (Natarajan & M
Cullo
h, 1995; Hobert & Casella, 1996).In this dissertation, I 
onsider new estimation methods and appli
ations of 
omplexGLMMs for measurement and growth. The dissertation 
onsists of three papers:1. Variational maximization-maximization (MM) algorithm2. Monte Carlo lo
al likelihood (MCLL) method3. Autoregressive IRT growth model for longitudinal item analysisIn the �rst and se
ond papers, I develop two methods for estimating GLMMs with 
rossedrandom e�e
ts. In the third paper, I propose a new autoregressive IRT growth model thattakes into a

ount serial 
orrelations among responses to the same items over time andapply it to longitudinal data of Korean students' self esteem. The three papers 
orrespondto Chapters 2, 3, and 4, respe
tively. An abstra
t of ea
h paper is provided below.Chapter 2:Variational maximization-maximization algorithmA variational maximization-maximization (MM) algorithm is developed for approximatemaximum likelihood estimation of generalized linear mixed models with 
rossed randome�e
ts. The variational MM algorithm is a modi�ed EM algorithm where the true posterior isapproximated by a variational density in the E-step. The variational density fun
tion is foundby minimizing the KL divergen
e between the posterior and the variational distribution orequivalently, maximizing the lower bound of the log-likelihood with respe
t to the variationaldistribution. The variational MM algorithm does not require a pre-spe
i�ed form for thevariational distribution. Models with 
rossed random e�e
ts 
an be estimated by the mean-�eld approximation that assumes the latent variables are 
onditionally independent given



CHAPTER 1. GENERAL INTRODUCTION 3the data. Adaptive quadrature is in
orporated to improve the a

ura
y of the algorithm.Methods for estimating standard errors, evaluating the marginal likelihood, and predi
tingthe random e�e
ts are provided. Performan
e of the algorithm is evaluated and 
omparedwith approximate maximum likelihood estimation based on the Lapla
e approximation usingempiri
al and simulation examples.Chapter 3:Monte Carlo lo
al likelihood methodA Monte Carlo lo
al likelihood (MCLL) method is developed for estimating generalizedlinear mixed models (GLMMs) with 
rossed random e�e
ts. MCLL initially treats modelparameters as random variables and samples them from the posterior for a parti
ular prior.The likelihood fun
tion is approximated up to a 
onstant by �tting a density to the posteriorsamples and dividing it by the prior. In the MCLL algorithm, the posterior density is approx-imated using lo
al likelihood density estimation (Loader, 1996), where the log-likelihood islo
ally approximated by a polynomial fun
tion. In his Monte Carlo kernel likelihood (MCKL)method, De Valpine (2004) proposed su
h an approa
h but using kernel density estimationinstead of lo
al likelihood density estimation. A novel method to 
ompute standard errorsis developed for the MCLL method. Using empiri
al and simulation examples, we evaluatethe MCLL algorithm and 
ompare it to other maximum likelihood and Bayesian estimators.Chapter 4:Autoregressive IRT growth model for longitudinal item analysisA �rst-order autoregressive or dynami
 IRT growth model is proposed for longitudinal binaryitem analysis where responses to the same items are 
onditionally dependent a
ross timegiven the latent trait. We show that the proposed model is equivalent to a lo
al dependen
eIRT model that in
ludes intera
tion parameters for responses at adja
ent time points. Theinitial 
onditions problem is addressed using the method suggested by He
kman (1981)and Aitkin & Alfo (2003). The impli
ation of this treatment is dis
ussed with respe
tto measurement invarian
e. The proposed model is applied to longitudinal data on Koreanstudents' self esteem. We investigate the 
onsequen
es of ignoring lo
al dependen
e and theinitial 
onditions problem when the data are generated from a �rst-order autoregressive IRTgrowth model.NotesSome methods and appli
ations overlap and the notation is not ne
essarily 
onsistent a
rossthe three 
hapters.
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Chapter 2Variational Maximization-MaximizationAlgorithm
2.1 Introdu
tionMaximum likelihood estimation of generalized linear mixed models (GLMMs) is te
hni
ally
hallenging be
ause the likelihoods often involve high dimensional intra
table integrals overrandom e�e
ts (or latent variables). The problem is magni�ed when the random e�e
ts havea 
rossed design and thus the data 
annot be redu
ed to small independent 
lusters.Various methods have been proposed for approximating the intra
table likelihood fun
-tions. For instan
e, the Lapla
e approximation makes use of a se
ond-order Taylor expansionof the integrand around the mode of the random e�e
ts (Tierney & Kadane, 1986; Lindstrom& Bates, 1988; Wol�nger, 1993). Penalized quasi-likelihood (PQL) uses the Lapla
e approx-imation but in
ludes a penalty term in the approximate likelihood fun
tion (Breslow &Clayton, 1993). These approximate methods are known to perform poorly for small 
lustersizes and for large varian
e 
omponents (Breslow & Lin, 1995; Joe, 2008).Gaussian quadrature (Bo
k & Lieberman, 1970; Butler & Mo�tt, 1982) has been used,whi
h approximates integrals by a weighted average of the integrand evaluated at predeter-mined abs
issas. The Gaussian quadrature rule 
an be viewed as a deterministi
 versionof Monte Carlo integration in whi
h random samples of the random e�e
ts are generatedfrom a normal prior distribution (Pinheiro & Bates, 1995). Adaptive quadrature (Naylor &Smith, 1982; Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005; S
hilling & Bo
k, 2005) isequivalent to using importan
e sampling in the 
ontext of Gaussian quadrature where thegrid of abs
issas is 
entered around the 
onditional modes or means of the random e�e
tsrather than zero. Adaptive quadrature with one quadrature point is equivalent to the Lapla
eapproximation. For satisfa
tory results, Gaussian quadrature methods would require manyabs
issas. Adaptive quadrature is more a

urate but 
omputationally more demanding thanGaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 5An expe
tation-maximization (EM) algorithm has been utilized for GLMMs where therandom e�e
ts are treated as missing data (Dempster et al., 1977). To approximate the 
on-ditional expe
tation in the E-step, Monte Carlo (MC) methods have been used with varioussampling methods: e.g., a Metropolis-Hastings (M
Cullo
h, 1997), an independent samplerbased on importan
e sampling or reje
tion sampling (Booth & Hobert, 1999), and a sli
esampler (Vaida & Meng, 2005). However, MCEM is 
omputationally demanding be
ause itrequires samples at ea
h iteration of the algorithm and a method for monitoring 
onvergen
e.S
hafer (1987) used a s
aled normal density fun
tion to approximate the posterior in theE-step and Steele (1996) suggested a se
ond-order Lapla
e approximation for the integrals.Variational approximation methods have been used in ma
hine learning (Jordan et al.,1999; Jordan, 2004; Bishop, 2006). Humphreys & Titterington (2003) and Ormerod (2010)applied these ideas to statisti
al inferen
e. Re
ently, Gaussian variational approximationmethods have been proposed (Opper, 2009; Ormerod & Wand, 2012) for estimating GLMMswith nested random e�e
ts. The idea of the Gaussian variational approximation is to usea Gaussian density as a variational distribution to approximate the exa
t 
onditional dis-tribution of the random e�e
ts given the observed data. However, the Gaussian variationalapproximation 
an be poor if the posterior is not 
lose to Gaussian. Importantly, this methodis restri
ted to models with nested random e�e
ts.In this paper, we present a di�erent version of the variational approximation method.Unlike the Gaussian variational approximation, no pre-spe
i�ed form for the variationaldistribution is required in our algorithm. In addition, by using the mean-�eld approximationwhi
h treats the latent variables as 
onditionally independent given the data, we 
an estimatemodels with 
rossed random e�e
ts.The outline of this 
hapter is as follows. In Se
tion 2.2, we de�ne the type of models thatwe 
onsider. In Se
tions 2.3 and 2.4, the variational MM algorithm is des
ribed in detail. InSe
tion 2.5, related issues are dis
ussed su
h as estimating standard errors, evaluating themarginal likelihood, and predi
ting the random e�e
ts. Empiri
al and simulation studies areprovided in Se
tions 2.6 and 2.7 to evaluate the proposed variational MM algorithm. Thepaper ends with some 
on
luding remarks.2.2 ModelTo illustrate the proposed method, we 
onsider a Ras
h model with random item e�e
ts(e.g., De Boe
k, 2008). The model is a generalized linear mixed model with 
rossed randome�e
ts for binary data and 
an be written as
logit (p (yis = 1|θs, δi)) = logit(πis) = β + θs + δi, (2.1)where yis denotes the binary response for item i and person s with i = 1, ..., I and s = 1, ..., N .

β is a �xed inter
ept, θs is the person ability with density p(θs;γ), and −δi is the item
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ulty with density p(δi; ξ) where γ and ξ are the parameter ve
tors that 
hara
terize thedistributions of θs and δi, respe
tively.The likelihood fun
tion for model (2.1) is obtained by integrating over the ve
tors oflatent variables θ = (θ1, ..., θN )
′ and δ = (δi, ..., δI)

′

L(y;Ψ) =

∫

θ1

· · ·
∫

θN

∫

δ1

· · ·
∫

δI

p(y|θ, δ)
(∏

s

p(θs;γ)

)(∏

i

p(δi; ξ)

)
dδI · · · dδ1 dθN · · · dθ1,where y is the ve
tor of responses for all persons and items, Ψ the ve
tor of all parameters,

Ψ = (β, ξ′,γ′)′ and p(y|θ, δ) is the joint probability of all observed responses given the latentvariables
p(y|θ, δ) =

∏

i

∏

s

p(yis = 1|θs, δi).Later we will spe
ify dis
rete or normal prior distributions for p(δi; ξ) and p(θs;γ).2.3 Variational MM algorithmThe EM algorithm is a powerful tool for maximum likelihood estimation of models withmissing data or latent variables (Dempster et al., 1977). The algorithm alternates betweenan E-step and an M-step: In the E-step, the expe
tation of the 
omplete data log-likelihood,log f(y, z;Ψ) is 
omputed over the posterior distribution of the latent variables z = (θ, δ)or missing data given the observed data y and given 
urrent parameter estimates. In the M-step, the posterior expe
tation 
omputed in the E-step (often 
alledQ fun
tion) is maximizedwith respe
t to the model parameters to produ
e updated estimates. The steps are repeateduntil 
onvergen
e.In the variational MM algorithm, the traditional E-step is modi�ed by using a variationalapproximation. To des
ribe the algorithm, we de�ne the Q fun
tion at the mth iteration as
Q(Ψ;Ψ(m)) = E

{log f(y, z;Ψ)|y;Ψ(m)
}

=

∫

z
p (z|y;Ψ(m)) logf (y, z;Ψ)dz,where Ψ(m) are the 
urrent parameter estimates and p (z|y;Ψ(m)) is the probability densityof the latent variables given the data for the 
urrent parameter estimates. The Q fun
-tion 
annot be evaluated analyti
ally due to the integral over the posterior distribution

p(z|y;Ψ(m)). The variational MM algorithm repla
es the posterior distribution p(z|y;Ψ(m))by a tra
table alternative probability density fun
tion g(z). The variational density fun
tion
g(z) is found by minimizing the Kullba
k-Leibler (KL) divergen
e (Shora
k & Wellner, 1986,



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 7p.159) between p(z|y;Ψ(m)) and g(z)KL(g(z), p(z|y;Ψ(m))
)
=

∫

z
g(z)log g(z)

p(z|y;Ψ(m))
dz. (2.2)KL(g(z), p(z|y;Ψ(m))

) is stri
tly positive and zero if and only if g(z) = p(z|y;Ψ(m)) almosteverywhere (Kullba
k & Leibler, 1951).Equivalently, it 
an be shown that minimizing the KL in (2.2) is the same as maximizing alower bound of the log-likelihood. The lower bound 
an be derived using Jensen's inequality
l(y;Ψ) ≡ log∫

z
f (y, z;Ψ)dz

= log∫
z
g(z)

f (y, z;Ψ)

g(z)
dz

= logEg

{
f (y, z;Ψ)

g(z)

}

≥ Eg

{logf (y, z;Ψ)

g(z)

}

= Eg{log f(y, z;Ψ)} − Eg{log g(z)}
≡ l (y;Ψ), (2.3)where l(y;Ψ) is the log-likelihood and Eg denotes the expe
tation over the latent variables

z with density g(z). The �rst term in the �fth line of (2.3) is an approximation to the Qfun
tion.In order to show the relationship between the KL divergen
e and the lower bound, rewritethe KL divergen
e in (2.2)KL (g(z), p(z|y)) =
∫

z
g(z)log g(z)

p(z|y;Ψ)
dz

= Eg {logg(z)} −Eg {logp(z|y;Ψ)}

= Eg {logg(z)} −Eg

{log(f(y, z;Ψ)

p(y;Ψ)

)}

= Eg {logg(z)} −Eg {logf(y, z;Ψ)}+ logp(y;Ψ),where the third line is based on Bayes theorem. In the last line, the �rst two terms are
Eg {logg(z)}−Eg {logf(y, z;Ψ)} = −l (y;Ψ) and the third term logp(y;Ψ) is the marginallog-likelihood l(y;Ψ). Therefore, the following de
omposition holds for the marginal log-
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l(y;Ψ) = l (y;Ψ) +KL (g(z), p(z|y)) .That is, the KL divergen
e KL (g(z), p(z|y)) des
ribes the di�eren
e between the marginallog-likelihood and the lower bound. Thus, minimizing KL is equivalent to maximizing thelower bound l (y;Ψ) (Bishop, 2006, p.451).The maximization-maximization (MM) algorithm (MM-algorithm; Neal & Hinton, 1998)
onsists of two maximization steps. The �rst M-step involves maximizing the lower bound

l (y;Ψ(m)) with respe
t to g(z) given the 
urrent parameter estimates Ψ(m) and the se
-ond M-step involves maximizing l (y;Ψ) with respe
t to Ψ given the 
urrent variationalapproximation g(z).It is 
lear that the quality of the variational MM-algorithm depends on the 
hoi
e of
g(z). Ideally, g(z) should resemble the true model-based posterior distribution p (z|y;Ψ)and make the integrals 
omputationally tra
table. The mean-�eld approximation assumes
omplete fa
torizability (or independen
e) of the latent variables z under the posterior (Hallet al., 2002; Bishop, 2006). The lower bound l (y;Ψ(m)) then takes a relatively simple form
g(z) =

∏
i gi(zi), where zi is the ith element of z and gi(zi) is the 
orresponding marginaldensity.For model (2.1), the mean-�eld approximation is

g(z) = g (δ, θ)

≈
(∏

i

gi (δi)

)(∏

s

gs (θs)

)
.As a re�nement of the mean-�eld approximation, one may use a di�erent type of approxi-mation, e.g., based on a mixture distribution where ea
h of the 
omponent distributions is anindependent distribution (Bishop et al., 1998; Humphreys & Titterington, 2003). Althoughthese alternative re�nements may give sharper lower bounds, they introdu
e extra 
ompli-
ations to the algorithm, for example, requiring extra variational parameters. In addition,they may work only for parti
ular problems (Humphreys & Titterington, 2003).Hen
e, the mean-�eld approximation is a pra
ti
al 
hoi
e. It is easy to implement andworks well for models with 
omplex random e�e
t stru
tures. For instan
e, Rijmen & Jeon(in press) adopted a dis
rete mean-�eld approximation for estimating a 
omplex generalizedlinear mixed model with 
rossed random e�e
ts and reported good pre
ision of the method.In a later se
tion, the appropriateness of the mean-�eld approximation is investigated byexamining posterior 
orrelations of the random e�e
ts as a fun
tion of sample sizes and priorvarian
es.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 92.4 ImplementationWe derive the �rst M-step of the algorithm without spe
ifying fun
tional forms for thelatent variable distribution or for the variational approximation. The lower bound to thelog-likelihood for model (2.1) 
an be written as
l =

∫

θ,δ

[∑

s

logp(θs) +∑
i

logp(δi) +∑
i

∑

s

logp(yis|θs, δi)−∑
s

loggs(θs)−∑
i

loggi(δi)]
× g(θ, δ)d(θ)d(δ)

=
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
i

∫

δi

gi(δi)logp(δi)dδi
+
∑

i

∑

s

∫

θs

∫

δi

gi(δi)gs(θs)logp(yis|θs, δi)dδidθs
−
∑

s

∫

θs

gs(θs)loggs(θs)dθs −∑
i

∫

δi

gi(δi)loggi(δi)dδi. (2.4)Here we have used the mean-�eld approximation by assuming a fully fa
torized form for
g(θ, δ). We maximize (2.4) with respe
t to gs(θs) and gi(δi), by means of the 
al
ulus ofvariations (or fun
tional derivatives), subje
t to the 
onstraints that these densities integrateto 1. Rewriting (2.4) and adding Lagrange multipliers for the 
onstraints, we obtain

F =
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
i

∫

δi

gi(δi)logp(δi)dδi
+
∑

i

∑

s

∫

θs

∫

δi

gi(δi)gs(θs)logp(yis|θs, δi)dδidθs
−
∑

s

∫

θs

gs(θs)loggs(θs)dθs −∑
i

∫

δi

gi(δi)loggi(δi)dδi
+
∑

s

λs

[∫

θs

gs(θs)dθs − 1

]
+
∑

i

λi

[∫

δi

gi(δi)dδi − 1

]
. (2.5)Here λs and λi are the Lagrange multipliers for the normalization 
onstraints on gs(θs) and

gi(δi).We optimize this fun
tional F with respe
t to gs(θs) and gi(δi). In Appendix A, the ideaof a fun
tional derivative is illustrated with a simple example. For more information on the
al
ulus of variations, see Sagan (1969) and Bishop (2006, Appendix D). The solutions for
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an be obtained asloggs(θs) = logp(θs) +∑
i

∫

δi

gi(δi)logp(yis|θs, δi)dδi − 1 + λs, (2.6)loggi(δi) = logp(δi) +∑
s

∫

θs

gs(θs)logp(yis|θs, δi)dδi − 1 + λi.By exponentiating the �rst equation and integrating over θs, we obtain
1 = exp (−1 + λs)

∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs,
−1 + λs = −log∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs. (2.7)Substituting (2.7) for −1 + λs in (2.6), we obtain a solution for loggs(θs)loggs(θs) = logp(θs) +∑
i

∫

δi

gi(δi)logp(yis|θs, δi)dδi
− log∫

θs

p(θs) exp

(∑

i

∫

δi

gi(δi)logp(yis|θs, δi)dδi)dθs.Thus, a solution for gs(θs) 
an be obtained as
gs(θs) =

p(θs) exp
(∑

i

∫
δi
gi(δi)logp(yis|θs, δi)dδi)

∫
θs
p(θs) exp

(∑
i

∫
δi
gi(δi)logp(yis|θs, δi)dδi)dθs . (2.8)Similarly, a solution for gi(δi) 
an be obtained as

gi(δi) =
p(δi) exp

(∑
s

∫
θs
gs(θs)logp(yis|θs, δi)dθs)

∫
δi
p(δi) exp

(∑
s

∫
θs
gs(θs)logp(yis|θs, δi)dθs)dδi . (2.9)Note that Equations (2.8) and (2.9) represent a set of 
onsisten
y 
onditions for themaximum of the lower bound subje
t to the fa
torization 
onstraint (Bishop, 2006, p.466).These are not expli
it solutions yet be
ause gs(θs) and gi(δi) depend on expe
tations 
om-puted with respe
t to gi(δi) and gs(θs), respe
tively. Therefore, 
onsistent solutions 
an beobtained by �rst initializing and then iteratively updating the variational approximations.Convergen
e is guaranteed be
ause the lower bound is 
onvex with respe
t to the fa
tors of



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 11
g(z) (Boyd & Vandenberghe, 2004).The general expressions for the solutions in (2.8) and (2.9) involve integrals over the priorand the approximate posterior distribution of the latent variables. The expli
it solutions forthese and thus the rest of the algorithm (the se
ond M-step) di�er a

ording to the 
hoi
e ofthe prior distributions for θs and δi. In the next subse
tions, we des
ribe two general 
hoi
esfor the prior, 
ontinuous (normal) and dis
rete prior distributions.2.4.1 Normal PriorsHere we spe
ify normal priors p(θs) = φ(θs; 0, τθ) and p(δi) = φ(δi; 0, τδ), where φ(·;µ, σ)denotes a normal density with mean µ and standard deviation σ. Then, we rewrite model(2.1) as

logit (p (yis = 1|uθs, uδi)) = β + τθuθs + τδuδi,where uθs and uδi are standard normal variables. The solutions for the random e�e
ts uθsand uδi are given in (2.8) and (2.9), where θs is repla
ed by uθs, and δi is repla
ed by uδi.The integrals in both expressions 
an be approximated by Gaussian quadrature. Forexample, the integral in the numerator of (2.8) be
omes
∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi
=

∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi)

φ(uδi)duδi

≈
∑

d

gi(ld)logp(yis|uθs, uδi = ld)

φ(ld)
wd,where the prior density is used as a weight fun
tion in the se
ond line. In the third line,

φ(·) is a standard normal density, and the Gauss-Hermite quadrature rule is applied where
ld and wd are the quadrature lo
ations and 
orresponding weights for integrating over uδi.Similarly, the integral in the denominator of (2.8) be
omes

∫

uθs

φ(uθs) exp

(∑

i

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi)duθs
≈
∫

uθs

φ(uθs) exp

(∑

i

∑

d

gi(ld)logp(yis|uθs, uδi = ld)

φ(ld)
wd

)
duθs

≈
∑

t

wt exp

(∑

i

∑

d

gi(ld)logp(yis|uθs = lt, uδi = ld)

φ(ld)
wd

)
,where lt and wt are the quadrature lo
ations and 
orresponding weights for integrating over
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uθs. Similarly, we approximate the integrals in (2.9) using Gaussian quadrature.Note that the variational parameters are the posterior probabilities gi(ld) and gs(lt) atthe lo
ations de�ned by the quadrature points.In the se
ond M-step, the lower bound is optimized with respe
t to the model parameters,
Ψ= (β, τθ, τδ)

′. For example, with respe
t to β, the solution for β̂ is found by solving
dl

dβ
=

d

dβ

∫

θ,δ

[∑

i

∑

s

logp(yis|uθs, uδi)] g(θ, δ)dθdδ
=
∑

i

∑

s

∫

uδi

∫

uθs

gi(uδi)gs(uθs)
d

dβ
logp(yis|uθs, uδi)duθsduδi

≈
∑

i

∑

s

∑

d

∑

t

gi(ld)gs(lt)

φ(ld)φ(lt)

d

dβ
logp(yis|uθs = lt, uδi = ld)wdwt = 0. (2.10)The solutions for the varian
e parameters τθ and τδ 
an be obtained in a similar way. Noti
ethat Equation (2.10) 
orresponds to the s
ore fun
tion of a generalized linear model withfrequen
ies gi(ld)gs(lt)/φ(ld)φ(lt).Adaptive QuadratureA more e�
ient numeri
al integration method is adaptive quadrature whi
h takes into a
-
ount the lo
ation and spread (mean and standard deviation or mode and 
urvature) of theintegrand. The quadrature lo
ations are s
aled and translated to be pla
ed under the peak ofthe integrand (Rabe-Hesketh et al., 2005). Spe
i�
ally, adaptive quadrature 
an be appliedto the numerator of (2.8)

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi
=

∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi

≈
∑

d

gi(lid)logp(yis|uθs, uδi = lid)

φ(ld)
σuδi

wid

=
∑

d

gi(lid)logp(yis|uθs, uδi = lid)wid, (2.11)where
lid = µuδi

+ σuδi
ld,

wid =
σuδi

wd

φ(ld)
,
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i�
 quadrature lo
ations and weights for integrating over uδi. In the se
ondline in (2.11), the variational approximation to the posterior gi(uδi) is approximated by
φ(uδi;µuδi

, σuδi
) where µuδi

and σuδi
are the posterior mean and standard deviation for uδi.In the third line, the variable of integration was 
hanged to a standard normal variable.The adaptive quadrature method works well if the ratio in the third line of (2.11) is wellapproximated by a low-order polynomial (Liu & Pier
e, 1994). In (2.11), logp(yis|uθs, uδi) is(mirrored) S-shaped as a fun
tion of uδi and the denominator is a normal approximation of

gi(uδi). Thus, the integrand in the �rst line of (2.11) is likely to be a unimodal and smoothfun
tion.The variational parameters are now the posterior probabilities gi(lid) of the item-spe
i�
adaptive quadrature lo
ations lid. Applying the same logi
 to the integral in the numeratorof (2.9), the variational parameters are the posterior probabilities of the person-spe
i�
adaptive quadrature lo
ations.Similarly, adaptive quadrature 
an be applied to the denominator of (2.8)
∫

uθs

[
φ(uθs) exp

(∑

i

∫

uδi

gi(uδi)logp(yis|uθs, uδi)duδi)] duθs
=

∫

uθs

[
φ(uθs) exp

(∑
i

∫
uδi
gi(uδi)logp(yis|uθs, uδi)duδi)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

≈
∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

≈
∑

t

φ(lst)
wtσuθs

φ(lr)
exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)

=
∑

t

φ(lst)wst exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)
, (2.12)where

lst = µuθs
+ σuθs

lt,

wst =
σuθs

wt

φ(lr)
,are the person-spe
i�
 quadrature lo
ations and the 
orresponding weights for integratingover uθs, and µuθs

and σuθs
are the posterior means and standard deviations for uθs. Detailson deriving (2.11) and (2.12) are provided in Appendix B.Here the integrals over the person random e�e
ts uθs are evaluated using the same lo-
ations and weights as for evaluating the integral in the numerator of (2.9). The integrandin (2.12) is proportional to the variational distribution gs(uθs), whi
h is the approximate
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, σuθs

). Therefore, the adaptive quadrature method is expe
ted towork well.The se
ond M-step also 
hanges by applying the adaptive quadrature method. That is,(2.10) be
omes
dl

dβ
=

d

dβ

∫

θ,δ

[∑

i

∑

s

logp(yis|uθs, uδi)] g(θ, δ)d(θ)d(δ)
=
∑

i

∑

s

∫

uδi

∫

uθs

gi(uδi)gs(uθs)
d

dβ
logp(yis|uθs, uδi)duθsduδi

=
∑

i

∑

s

∑

d

∑

t

gi(lid)gs(lst)

× d

dβ
logp(yis|uθs = lst, uδi = lid)widwst.The s
ore fun
tions for the the varian
e parameters τθ and τδ 
an be derived in a similarway.The 
luster-spe
i�
 means and varian
es of gi(uδi) and gs(uθs) 
an be obtained by aniterative pro
edure. For example, for gs(uθs), �rst initialize l(0)st and w

(0)
st using startingvalues µ(0)

uθs and σ(0)
uθs. Then µuθs

and σ2
uθs

are at the kth iteration
µ(k)
uθs

=

∫

uθs

uθsgs(uθs)duθs

≈
∑

t

l
(k−1)
st gs

(
l
(k−1)
st

)
w

(k−1)
st

φ
(
l
(k−1)
st

) ,

σ(k)
uθs

2
=

∫

uθs

uθs
2gs(uθs)duθs − µuθs

2

≈
∑

t




l
(k−1)
st gs

(
l
(k−1)
st

)
w

(k−1)
st

φ
(
l
(k−1)
st

) l
(k−1)
st





2

− µuθs

2, (2.13)where l(k−1)
st , l(k−1)

id and w(k−1)
st , w(k−1)

id are the 
luster-spe
i�
 quadrature lo
ations and 
or-responding weights at the (k − 1)th iteration. This sequen
e is repeated until 
onvergen
e.The mean and varian
e for gi(uδi) 
an be derived similarly. Note that this is the method byNaylor & Smith (1982) and Rabe-Hesketh et al. (2005).Alternatively, the mode and 
urvature at the mode 
an be used as in Pinheiro & Bates(1995) and S
hilling & Bo
k (2005). In this 
ase, an integration is not required.Both methods of using the 
luster-spe
i�
 means and varian
es and using modes and
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urvatures were implemented in the variational MM algorithm.2.4.2 Dis
rete PriorsAssuming a normal density may not be optimal e.g., for non-normal or skewed normallatent variables. Without assuming a spe
i�
 parametri
 form for the distribution, thenon-parametri
 maximum likelihood estimator (NPMLE) of the distribution for the latentvariables be
omes a dis
rete distribution (de Leeuw & Verhelst, 1986; Lindsay et al., 1991;Heinen, 1996; Aitkin, 1999). To interpret the dis
rete distribution as the NPMLE, thenumber of masses must maximize the likelihood (Simar, 1976; Laird, 1978; Lindsay, 1983).If dis
rete priors are used, the posteriors also have dis
rete distributions with the samesupport points as the priors and the variational approximation is dis
rete with masses asvariational parameters.The dis
rete distribution of the random e�e
ts is 
hara
terized by a �nite set of lo
ationsand probabilities at these lo
ations and the integrals in (2.8) and (2.9) be
ome sums. Forexample, (2.8) be
omes
vuθs =

wu
θs
exp

(∑
i

∑
d logp(yis|θs, δi = ldδi)v

d
δi

)
∑

tw
t
θs
exp

(∑
i

∑
d logp(yis|θs = ltθs, δi = ldδi)v

d
δi

) ,where ldδi (d = 1, ..., D) and ltθs (t = 1, ..., T ) indi
ate lo
ations for the dis
rete latent variable
δi and θs, respe
tively. vdδi = g (δi = ldδi) and vtθ = g (θs = ltθs) are the masses of the variationalapproximation and wt

θs
= p (θs = ltθs) are the prior probabilities at the lo
ations.Note that with dis
rete priors, the prior lo
ations and masses are model parametersand the posterior probabilities are variational parameters. The estimates of the variationalparameters 
an be used to 
ompute posterior moments of the random e�e
ts.2.5 Related IssuesIn this se
tion, we dis
uss 1) the lower bound and marginal likelihood, 2) estimation ofstandard errors, 3) dependen
e stru
ture of the random e�e
ts, and 4) predi
tion of therandom e�e
ts.2.5.1 Lower Bound and Marginal LikelihoodIn the variational MM algorithm, the lower bound to the log-likelihood is maximized ratherthan the likelihood fun
tion itself. For valid inferen
es based on the lower bound, it shouldhave the same shape as the log-likelihood, i.e., the same mode and 
urvature at the mode(Hall et al., 2002).
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ompute the marginal log-likelihood whi
h isnot feasible for GLMMs in general. Using a sampling method, however, we 
an approximatethe marginal likelihood L(y;Ψ) as follows: First obtain posterior samples of the randome�e
ts using Markov 
hain Monte Carlo (MCMC) with the model parameters treated as�xed 
onstants and set equal to the variational MM estimates. Then obtain the samplemean and 
ovarian
e matrix of the posterior samples and use the 
orresponding multivariatenormal distribution as importan
e density. Sample the random e�e
ts z from the importan
edensity. Then the marginal likelihood 
an be approximated as
L(y;Ψ∗) =

∫
p(y|z,Ψ∗)p(z;Ψ∗)

g̃(z|y,Ψ∗)
g̃(z|y,Ψ∗)dz

≈ 1

m

m∑

j=1

p(y|z(j),Ψ∗)p(z(j);Ψ∗)

g̃(z(j)|y,Ψ∗)
,where p(y|z,Ψ∗) is the joint probability of the responses given the latent variables z, p(z;Ψ∗)is the prior distribution given the parameter estimates Ψ∗ from the variational MM methodand g̃(z|y,Ψ∗) is a normal approximation to the posterior distribution (as the importantdensity) that has the same support as the prior p(z;Ψ∗). z(j) (j = 1, ..., m) is identi
allyand independently drawn from g̃(z|y,Ψ∗).By the strong law of large numbers, the importan
e approximation of the likelihood

L̂(y;Ψ∗) is unbiased and 
onsistent as m → ∞, as long as the support of g̃(·) 
ontainsthe support of L(·) (Geweke, 1989). A similar idea of using importan
e sampling has beenadopted to evaluate a likelihood surfa
e on whi
h maximum likelihood estimation is 
arriedout (Durbin & Koopman, 1997; Shephard & Pitt, 1997).2.5.2 Standard ErrorsAs in the traditional EM algorithm, standard errors are not a by-produ
t of the variationalMM algorithm. In this se
tion, we dis
uss two ways of approximating standard error esti-mates.Hessian MatrixA straightforward way of obtaining standard errors is to use the Hessian matrix. It 
an bedire
tly obtained by solving the se
ond derivatives of the lower bound, evaluated at the �nalestimates of the variational parameters with respe
t to the model parameters. Alternatively,the s
ore fun
tions in the se
ond M-step (e.g., (2.10) ) 
an be numeri
ally di�erentiated withrespe
t to the 
orresponding parameters.We in
lude only the model parameters in the Hessian matrix while treating the variationalparameters as �xed. In the Gaussian variational approximation by Ormerod & Wand (2012),
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e parameters in their 
ase) were all in
ludedin the Hessian matrix.Bootstrap Standard ErrorA bootstrap method 
an be used to estimate approximate standard errors (e.g., Efron, 1979).Data are simulated from the model given the parameter estimates for the real data. Wedenote the parameter estimates for the bth simulated dataset Ψ̂∗(b). The bootstrap standarderror (ŝeB) 
an be 
omputed aŝseB =

√√√√ 1

B

B∑

b=1

[
Ψ̂∗(b)− Ψ̂∗(·)

]2
,where Ψ̂∗(·) = ∑B

b=1
1
B
Ψ̂∗(b) and B is the number of the bootstrap repli
ates. The MonteCarlo error (MCE) involved in the bootstrap standard error 
an be 
omputed as des
ribedby Koehler et al. (2009). First de�ne the bootstrap squared error as

d(b) =
[
Ψ̂∗(b)− Ψ̂∗(·)

]2
.The squared bootstrap standard error 
an then be expressed asŝe2B =

1

B

B∑

b=1

d(b).An estimate of MCE for the squared bootstrap standard error (ŝe2B) 
an be obtained asM̂CE(ŝe2B) =√√√√ 1

B

B∑

b=1

[d(b)− d(·)]2,where d(·) = 1
B

∑B
b=1 d(b).Finally, an MCE estimate for the bootstrap standard error 
an be obtained using theDelta method M̂CE(ŝeB) = ∣∣∣∣∣∣ 1

2
√ŝe2B ∣∣∣∣∣∣ M̂CE(ŝe2B).
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e Stru
ture of the Random E�e
tsThe variational MM algorithm is based on the mean-�eld approximation that assumes poste-rior independen
e of the random e�e
ts. The performan
e of the algorithm may be a�e
tedby the degree to whi
h the independen
e assumption is violated. In this se
tion, we inves-tigate the dependen
e among the random e�e
ts under the posterior as a fun
tion of thesample sizes and prior varian
es.To derive analyti
al solutions, we assume a linear mixed model
y = Xβ +Wz+ ǫ,where z ∼ N(0,Ψ) and ǫ ∼ N(0,Θ) with Θ = Iσ2 and the identity matrix I.The posterior 
ovarian
e matrix 
an be 
omputed for the linear mixed model as (Laird& Ware, 1982) Cov(z|y, X) = Ψ−Ψ′W ′Σ−1WΨ, (2.14)where Σ =WΨW ′ +Θ for model (2.1).For the model with 
rossed random e�e
ts in (2.1), denote z = (θ1, ..., θs, ..., θN , δ1, ..., δi, ..., δI)

′where θs and δi are the two 
rossed random e�e
ts with s = 1, ..., N and i = 1, ..., I, re-spe
tively. The posterior 
ovarian
e in (2.14) was 
omputed as a fun
tion of the number ofpersons N = (50, 100)′ and the number of items I = (10, 20, 40)′, and the prior standarddeviations τθ = (0.5, 1.0, 1.5)′ and τδ = (0.2, 0.5, 1.0)′. Figures 2.1 and 2.2 summarize theresults.The results suggest that for given prior varian
es (τθ = 0.5, τδ = 0.2), the 
orrelationsbetween θs in
rease as I in
reases. Similarly, the 
orrelations between δi in
rease as Nin
reases. For given sample sizes (I = 10, N = 50), the 
orrelations between θs and between
δi in
rease as the varian
e of θs or δi in
reases. This shows that either when the sample sizeor prior varian
e for θs or δi in
reases, the dependen
e among the random e�e
ts under theposterior in
reases.2.5.4 Predi
tion of the Random E�e
tsAssigning values to (or predi
tion of) the random e�e
ts for individual 
lusters is usefulfor inferen
e about parti
ular 
lusters (Skrondal & Rabe-Hesketh, 2009), e.g., to assess thee�e
tiveness of s
hools or hospitals (Raudenbush & Willms, 1995; Goldstein & Rasbash,1996), in small area estimation or disease mapping (Rao, 2003), or for �nding outlying
lusters (Langford & Lewis, 1998). Predi
tion of abilities is also the main purpose of itemresponse theory (IRT). For more information, see Skrondal & Rabe-Hesketh (2009).Predi
tion of the random e�e
ts is a di�
ult problem for GLMMs be
ause of the integralin the denominator of the posterior distribution. Here, we suggest using the variationalapproximation to the posterior, to derive posterior means (µθs, µδi) (expe
ted a posteriori;EAP) or modes (maximum a posteriori; MAP). For instan
e, assuming normal priors with
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Figure 2.1: Posterior 
orrelations among the random e�e
ts by the sample sizes (N=50,100,
I=10,20,40) for given prior varian
es τθ = 0.5 and τδ = 0.2
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CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 21adaptive quadrature, the mean and standard deviation using (2.13) 
an be seen as the EAPand its standard error for θs. If the mode and 
urvature are used instead, the MAP and itsstandard error 
an be obtained.2.6 Empiri
al StudyTo illustrate the proposed algorithm, we use the salamander mating data (M
Cullagh &Nelder, 1989). This dataset is a ben
hmark that has been used to 
ompare many di�erentestimation methods for GLMMs with 
rossed random e�e
ts (e.g., Karim & Zeger, 1992;Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,2011).The dataset 
onsists of three separate experiments, ea
h involving matings among sala-manders of two di�erent populations, 
alled Rough Butt (RB) and White Side (WS). Sixtyfemales and sixty males of the two populations of salamander were paired by a 
rossed,blo
ked, and in
omplete design in an experiment studying whether the two populations havedeveloped generi
 me
hanisms whi
h would prevent inter-breeding. The response is binary,indi
ating whether the mating was su

essful between female i and male j. We adoptedmodel A used in Karim & Zeger (1992)logit(p(yij = 1|zfi , zmj )) = β0 + β1x1i + β2x2j + β3x1ix2j + zfi + zmj , (2.15)where the 
ovariates are dummy variables for White Side female (x1i), White Side male(x2j), and the intera
tion (x1ix2j). The two 
rossed random e�e
ts are random inter
epts
zfi ∼ N(0, σ2

f ) for females and zmi ∼ N(0, σ2
m) for males. Ea
h salamander parti
ipates in sixmatings, resulting in 360 matings in total.Model (2.15) was �t to the dataset using the variational MM algorithm with adaptivequadrature (10 quadrature points). In order to 
he
k the independen
e assumption of themean-�eld approximation for the data, we examined the posterior 
orrelations among thefemale and male random e�e
ts. The posterior samples of the random e�e
ts were obtainedby MCMC using WinBUGS 1.4 (Spiegelhalter et al., 2003) with model parameter �xed to theestimates of the variational MM algorithm. The posterior 
orrelations among the randome�e
ts (among females, among males, and between females and males) appeared negligible,all being 
lose to zero.We 
ompared the parameter and standard error estimates from the MM algorithm withthose from the Lapla
e approximation implemented using lmer in the R pa
kage lme4 (Bates& Mae
hler, 2009). For standard errors, the Hessian matrix was obtained by numeri
allydi�erentiating the s
ore fun
tions. We also 
omputed the bootstrap standard errors (basedon 100 repli
ates) as well as the Monte Carlo errors 
omputed as des
ribed in Se
tion 2.5.2.In addition, we report the estimates from PQL (Breslow & Clayton, 1993) and MCEM(Booth & Hobert, 1999) from the literature. Table 2.1 lists the results.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 22Table 2.1: Comparison of several estimators for the salamander mating data. Standarderrors are given in parentheses if reported. Lapla
e: lmer; PQL: Breslow & Clayton (1993);MCEM: Booth & Hobert (1999). For the variational MM algorithm, bootstrap standarderrors (Boot.SE) and Monte Carlo errors (MCE) are reported.Method β0 β1 β2 β3 σm σfVariational MM 0.97 -2.84 -0.67 3.49 1.07 1.00(0.39) (0.55) (0.45) (0.62) - -(Boot.SE) (0.35) (0.46) (0.37) (0.59) - -(MCE) (0.02) (0.03) (0.04) (0.05) - -Lapla
e 1.00 -2.90 -0.70 3.59 1.08 1.02(0.39) (0.56) (0.46) (0.64) - -PQL 0.79 -2.29 -0.54 2.82 0.79 0.72(0.32) (0.43) (0.39) (0.50) - -MCEM 1.02 -2.96 -0.69 3.63 1.18 1.12We do not report standard errors for the varian
e parameters be
ause the use of standarderrors for Wald-type tests and 
on�den
e intervals may be inappropriate for these parameters(e.g., Berkhof & Snijders, 2001). The parameter estimates for the variational MM methodare 
lose to those from the Lapla
e approximation and MCEM. Our standard error estimatesare 
lose to the standard errors from the Lapla
e approximation. The bootstrap standarderrors are slightly smaller than the standard errors from the variational MM and the Lapla
eapproximation. The di�eren
e is less than 2 MCEs.To assess the lower bound of the log-likelihood, we 
ompared the lower bound withthe approximate marginal log-likelihood obtained using 1) importan
e sampling des
ribed inSe
tion 2.5.1, and 2) adaptive quadrature (with three quadrature points) with gllamm (Rabe-Hesketh et al., 2005). For simpli
ity, the log-likelihood was plotted for ea
h parameter withthe other parameters �xed to the estimates from the variational MM algorithm. Figure 2.3presents the results.
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ir
les represent the marginal log-likelihood obtained using importan
esampling, triangles the lower-bound, and �x� the log-likelihood from adaptive quadrature.The dashed verti
al lines indi
ate the parameter estimates obtained from the variationalMM algorithm. For all parameters, the lower-bounds show shapes similar to the marginallog-likelihoods. The approximate marginal log-likelihood using importan
e sampling is very
lose to that from adaptive quadrature.Finally, predi
tions of the random e�e
ts obtained from the variational MM algorithmwere 
ompared with 1) the MAP from the Lapla
e approximation and 2) the EAP fromMCMC. The EAP from MCMC was obtained as the mean of the posterior samples of therandom e�e
ts with the parameters �xed to the estimates. Figure 2.4 shows the results.The sub-panels 
ompare the EAP and MAP estimates from the variational MM algo-rithm with the Lapla
e approximation (MAP) and the MCMC method (EAP) for females(�rst row) and males (se
ond row). The 45 degree line indi
ates that the two methods pro-du
e equivalent results. The results show that the variational MM algorithm provides thepredi
tions 
lose to those from the Lapla
e approximation and MCMC methods.
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Figure 2.3: Log-likelihoods and lower bounds as a fun
tion of ea
h parameter for the sala-mander mating model with other parameters set equal to estimates from the variationalMM algorithm. MC is the marginal log-likelihood from the importan
e sampling method,LowerB is the lower bound from the variational MM algorithm, and Adaptive is the marginallog-likelihood from adaptive quadrature (3 quadrature points).
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Figure 2.4: Comparison of predi
tions (EAP and MAP) from the variational MM algorithmwith the Lapla
e approximation (MAP) and MCMC (the posterior mean; EAP) methods forfemale and male random e�e
ts. L(MAP): Lapla
e MAP, P(EAP): Bayesian EAP, V(MAP):variational MAP, V(EAP): variational EAP.
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arried out to evaluate the performan
e of the variational MMalgorithm (with adaptive quadrature, 10 quadrature points) and to 
ompare it with theLapla
e approximation. Two examples were 
onsidered using 1) the 
rossed random e�e
tsmodel for the salamander mating data and 2) the random item Ras
h model.2.7.1 Crossed Random E�e
ts Model for Salamander Mating DataThe �rst simulation study is 
losely related to the model for the salamander mating dataused in the empiri
al study. We simulated 50 datasets based on model (2.15) using thetrue values that have been used by other resear
hers (e.g., Lin & Breslow, 1996), β =
(1.06,−0.72,−3.05, 3.77)′ and (σ2

f , σ
2
m)

′ = (.50, .50)′. We also generated datasets that areten times as large in terms of the total sample size as the original dataset (
alled largedatasets from now on).Figure 2.5 shows the estimated bias and root mean squared error (RMSE) for the pa-rameter estimates from the variational MM algorithm and the Lapla
e approximation.
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Figure 2.5: Bias and RMSE for the salamander simulation. MM is the variational MMalgorithm and Lapla
e is the Lapla
e approximation.In terms of bias, there are negligible di�eren
es between the two methods. In terms ofRMSE, the variational MM algorithm tends to show somewhat smaller RMSE for the �xede�e
ts parameters than the Lapla
e approximation. A similar pattern is observed for thelarge datasets in Figure 2.6.For the large datasets, there is little di�eren
e in the estimated bias between the twomethods. The RMSE is still smaller for the variational MM algorithm for the �xed e�e
tsparameters than the Lapla
e approximation, but the di�eren
es are somewhat smaller than
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Figure 2.6: Bias and RMSE for the salamander simulation for large datasets. MM is thevariational MM algorithm and Lapla
e is the Lapla
e approximation.those in the smaller datasets. This result makes sense given that the Lapla
e approximationprodu
es less bias for data with large 
luster sizes (Joe, 2008).2.7.2 Random Item Ras
h ModelThe se
ond simulation study uses the random item Ras
h model des
ribed in Se
tion 2.2.Small and large datasets were generated based on model (2.1) under various 
onditions. Forsmall datasets, we generated data with N = (50, 100)′ persons and I = (20, 50)′ items, andwith standard deviations τθ = 0.5 for person abilities and τδ = (0.2, 0.6, 1.2, 1.5)′ for itemdi�
ulties. The inter
ept β was set to 0. For large datasets, we 
onsidered N = (200, 300)′and I = (20, 50)′ for the sample sizes, and τθ = (0.2, 0.5)′, and τδ = (0.2, 0.6)′ for the standarddeviations. 50 repli
ates were simulated for ea
h 
ondition.Figures 2.7 to 2.10 present the estimated bias and RMSE for the model parameters forthe inter
ept β̂ and the person and item standard deviations τ̂θ and τ̂δ.Ea
h �gure 
orresponds to four item di�
ulty standard deviations τδ = (0.2, 0.6, 1.2, 1.5)′.In ea
h �gure, the �rst row presents the estimated bias and the se
ond row the estimatedRMSE. In ea
h sub-panel, the solid line is for the variational MM algorithm and the dottedline for the Lapla
e approximation. The x-axis represents the sample sizes N and I (four
ombinations by N1 = 50, N2 = 100 and I1 = 20, I2 = 50).In 
ondition 1 (τθ = 0.5, τδ = 0.2) in Figure 2.7, the estimated bias and RMSE tend tode
rease as the sample size in
reases for either person N or item I. Between the methods,the Lapla
e approximation tends to show larger bias for τ̂θ and τ̂δ than the variational MMalgorithm, in parti
ular with N = 50. In terms of RMSE, the Lapla
e approximation islarger than the variational MM algorithm a
ross all sample sizes.
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Figure 2.7: Bias and RMSE for the random item Ras
h model simulation for small datasetsin 
ondition 1 (τθ = 0.5, τδ = 0.2). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Lapla
e approximation.
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Figure 2.8: Bias and RMSE for the random item Ras
h model simulation for small datasetsin 
ondition 2 (τθ = 0.5, τδ = 0.6). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Lapla
e approximation.
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Figure 2.9: Bias and RMSE for the random item Ras
h model simulation for small datasetsin 
ondition 3 (τθ = 0.5, τδ = 1.2). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Lapla
e approximation.
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Figure 2.10: Bias and RMSE for the random item Ras
h model simulation for small datasetsin 
ondition 4 (τθ = 0.5, τδ = 1.5). N = (50, 100)′ and I = (20, 50)′. The solid line is for thevariational MM algorithm and the dotted line for the Lapla
e approximation.
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ondition 2 (τθ = 0.5, τδ = 0.6) in Figure 2.8, a similar pattern is observed ex
eptthat with I = 50, the Lapla
e approximation tends to show larger bias and RMSE thanthe variational MM algorithm. For β̂ and τ̂δ, the estimated bias and RMSE in
rease forthe Lapla
e approximation as the item sample size in
reases, from the 
onditions (N1,I1) to(N1,I2).In 
ondition 3 (τθ = 0.5, τδ = 1.2) in Figure 2.9 and 
ondition 4 (τθ = 0.5 , τδ = 1.5)in Figure 2.10, similar patterns are observed in general. As the sample sizes in
rease, theestimated bias and RMSE tend to de
rease. However, the di�eren
es between the methodsare smaller with large standard deviations τθ and τδ than in 
onditions 1 and 2.Figures 2.11 to 2.14 present results for the large datasets with N = (200, 300)′ and
I = (20, 50)′.
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Figure 2.11: Bias and RMSE for the random item Ras
h model simulation for large datasetsin 
ondition 1 (τθ = 0.2, τδ = 0.2). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Lapla
e approximation.Ea
h �gure 
orresponds to four 
onditions a

ording to τθ = (0.2, 0.5)′, and τδ = (0.2, 0.6)′.The x-axis represents the four 
ombinations by the sample sizes N and I. In 
ondition 1(τθ = 0.2, τδ = 0.2) in Figure 2.11, the overall pattern is the same as in the small datasets.The estimated bias and RMSE tend to de
rease as the sample size in
reases for either N or
I. The estimated bias and RMSE are quite similar between the methods, ex
ept for β̂, the
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Figure 2.12: Bias and RMSE for the random item Ras
h model simulation for large datasetsin 
ondition 2 (τθ = 0.2, τδ = 0.6). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Lapla
e approximation.
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Figure 2.13: Bias and RMSE for the random item Ras
h model simulation for large datasetsin 
ondition 3 (τθ = 0.5, τδ = 0.2). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Lapla
e approximation.



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 35

N1,I1 N1,I2 N2,I1 N2,I2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

B
ia

s

Bias for β

 

 
MM
Laplace

N1,I1 N1,I2 N2,I1 N2,I2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

B
ia

s
Bias for τθ

N1,I1 N1,I2 N2,I1 N2,I2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

B
ia

s

Bias for τδ

N1,I1 N1,I2 N2,I1 N2,I2
0

0.05

0.1

0.15

0.2

R
M

S
E

RMSE for β

N1,I1 N1,I2 N2,I1 N2,I2
0

0.05

0.1

0.15

0.2

R
M

S
E

RMSE for τθ

N1,I1 N1,I2 N2,I1 N2,I2
0

0.05

0.1

0.15

0.2
R

M
S

E

RMSE for τδ

Figure 2.14: Bias and RMSE for the random item Ras
h model simulation for large datasetsin 
ondition 4 (τθ = 0.5, τδ = 0.6). N = (200, 300)′ and I = (20, 50)′. The solid line is forthe variational MM algorithm and the dotted line for the Lapla
e approximation.
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e approximation shows greater estimated bias and RMSE, parti
ularly with N=300and I=20. In 
ondition 2 (τθ = 0.2, τδ = 0.6) in Figure 2.12, 
ondition 3 (τθ = 0.5, τδ = 0.2)in Figure 2.13, and 
ondition 4 (τθ = 0.5, τδ = 0.6) in Figure 2.14, similar results are ob-served. For β̂, the Lapla
e approximation shows somewhat larger estimated bias and RMSEwith N=200 and I=20, and with N=300 and I=20.2.8 Con
luding RemarksVariational approximations have been mostly used for Bayesian inferen
e in ma
hine learn-ing. Re
ently, Gaussian variational approximations (Opper, 2009; Ormerod & Wand, 2012)have been proposed for ML estimation of GLMMs. Hall et al. (2011) investigated theoreti-
al properties of the Gaussian variational approximation, deriving asymptoti
 normality ofthe estimators and establishing root-m 
onsisten
y of the estimates under relatively mildassumptions. However, this work was restri
ted to models with nested random e�e
ts.In this paper, we proposed a variational MM algorithm for ML inferen
e of GLMMs with
rossed random e�e
ts. The variational approximation 
omes into play in approximatingthe posterior distribution of the random e�e
ts to make the integrals tra
table. A

ordingly,the algorithm involves �nding a variational density fun
tion. The E-step is repla
ed byanother M-step, minimizing the KL distan
e between the variational distribution and thetrue posterior distribution. This new M-step is equivalent to maximizing the lower boundto the log-likelihood with respe
t to the variational density fun
tion.Our variational MM algorithm is more general and �exible than the Gaussian variationalapproximation be
ause our algorithm does not require a pre-spe
i�ed fun
tional form forthe variational distribution. The general form for the variational density fun
tion is derivedso that di�erent types of priors for the random e�e
ts 
an be handled. Importantly, we
an estimate models with 
rossed random e�e
ts based on the mean-�eld approximationthat assumes 
onditionally independent latent variables given the data. We found that withreasonable sample sizes and prior varian
es, the posterior 
orrelations between the randome�e
ts are negligible. In addition, the lower bound was quite 
lose to the marginal log-likelihood in the examples that we 
onsidered in this paper.Several simulation examples were provided to evaluate the performan
e of the variationalMM algorithm and 
ompare it with the Lapla
e approximation for GLMMs with 
rossedrandom e�e
ts. The results show that overall, the variational MM algorithm performs aswell as the Lapla
e approximation. With small 
luster sizes, however, our algorithm performsbetter than the Lapla
e approximation espe
ially for the varian
e parameters. Therefore,the variational MM method 
ould be an e�e
tive alternative to the Lapla
e approximation.
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tional derivative is illustrated for the �rst M-step of the variational MM algo-rithm in Se
tion 2.4. A �xed item (or regular) Ras
h model is used for illustration. Themodel 
an be formulated as
logit (p (yis = 1|θs)) = βi + θs,where yis denotes the binary response for person s to item i with i = 1, ..., I and s = 1, ..., N .

βi is the item easiness parameter for item i and θs for person s is the person ability with anormal distribution θs ∼ N(0, τ 2θ ).The marginal probability for the response ve
tor ys for person s 
an be written as
p(ys) =

∫

θs

p(ys|θs)φ(θs; 0, τθ)dθs,where φ(·;µ, σ) denotes the normal density with mean µ and standard deviation σ. Themarginal log-likelihood fun
tion for all persons 
an be written as
L(y) =

∑

s

log∫
θs

p(ys|θs)φ(θs; 0, τθ)dθs.The lower bound to the log-likelihood now 
an be derived as
l =

∫

θs

log [p(ys|θs)φ(θs; 0, τθ)] gs(θs)dθs −
∫

θs

log [gs(θs)] gs(θs)dθs
=

∫

θ

[∑

s

logp(θs) +∑
s

logp(ys|θs)−
∑

s

loggs(θs)] gs(θ)d(θ)
=
∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
s

∫

θs

gs(θs)logp(ys|θs)dθs −
∑

s

∫

θs

gs(θs)loggs(θs)dθs,where gs(θs) is the variational distribution for θs. Note that the fun
tional form for gs(θs) isnot required here.To apply the fun
tional derivative, we need to de�ne a fun
tional. The fun
tional isobtained here by rewriting the lower bound and adding the 
onstraint that variational dis-
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F =

∑

s

∫

θs

gs(θs)logp(θs)dθs +∑
s

∫

θs

gs(θs)logp(ys|θs)dθs −
∑

s

∫

θs

gs(θs)loggs(θs)dθs
+
∑

s

λs

[∫

θs

gs(θs)dθs − 1

]
,where λ is the Lagrange multiplier for the 
onstraint, ∫

θs
gs(θs)dθs = 1.Now perform the fun
tional derivative of the fun
tional F with respe
t to the variationaldensity fun
tion gs(θs). Note that as in this 
ase when the fun
tional is de�ned by integralswhose integrands take the form of F (gs(θs)) and does not depend on the derivatives of gs(θs),stationarity simply requires ∂F

∂gs(θs)
= 0 for all values of θs (Bishop, 2006, p.705).This implies log [p(ys|θs)φ(θs; 0, τθ)]− log [gs(θs)]− 1 + λ = 0.Then we obtain

gs(θs) = p(ys|θs)φ(θs; 0, τθ)exp(−1 + λ). (2.16)By integrating (2.16) over θs, we obtain
1 =

∫

θs

exp(−1 + λ)p(ys|θs)φ(θs; 0, τθ)dθs,

λ = 1− log∫
θs

p(ys|θs)φ(θs; 0, τθ)dθs

= 1− logp(ys).By substituting λ ba
k to (2.16), we obtain the general solution for gs(θs)
gs(θs) = p(ys|θs)φ(θs; 0, τθ)exp(−1 + 1− logp(ys))

=
p(ys|θs)φ(θs; 0, τθ)

p(ys)

= p(θs|ys).It shows that for the ordinary Ras
h model, the optimal solution for the variationaldensity fun
tion gs(θs) is the same as the true posterior density p(θs|ys).



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 39Appendix BHere we provide details on how to approximate the integrals in (2.8) and (2.9) using adap-tive quadrature in Se
tion 2.4.1. To approximate the numerator of (2.8) using adaptivequadrature, 
onsider the se
ond line in (2.11)
∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi.To 
hange the variable of integration to ai ∼ N(0, 1), we need the following 
hanges:
uδi = µuδi

+ σuδi
ai,

ai =
uδi − µuδi

σuδi

,

duδi = σuδi
dai,

φ(uδi;µuδi
, σuδi

) =
1

σuδi

√
2π
e
−

(uδi−µuδi
)2

2σ2
uδi

=
1

σuδi

√
2π
e−

a2i
2

=
1

σuδi

φ(ai).Plug them all in (2.11) and obtain
∫

uδi

gi(uδi)logp(yis|uθs, uδi)
φ(uδi;µuδi

, σuδi
)

φ(uδi;µuδi
, σuδi

)duδi

=

∫

ai

gi(µuδi
+ σuδi

ai)logp(yis|uθs, uδi = µuδi
+ σuδi

ai)
1

σuδi

φ(ai)

1

σuδi

φ(ai)σuδi
dai

=

∫

ai

gi(µuδi
+ σuδi

ai)logp(yis|uθs, uδi = µuδi
+ σuδi

ai)

φ(ai)
φ(ai)σuδi

dai

≈
∑

d

gi(lid)logp(yis|uθs, uδi = lid)

φ(ld)
σuδi

wid

=
∑

d

gi(lid)logp(yis|uθs, uδi = lid)wid,
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lid = µuδi

+ σuδi
ld,

wid =
σuδi

wd

φ(ld)
,are the item-spe
i�
 quadrature lo
ations and weights for integrating over uδi, and µuδi

and
σuδi

are the posterior means and standard deviations for uδi.Similarly, to approximate the denominator of (2.8) using adaptive quadrature, 
onsiderthe third line in (2.12)
∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs.To 
hange the variable of integration to as ∼ N(0, 1), we need the following 
hanges:

uθs = µuθs
+ σuθs

as,

as =
uθs − µuθs

σuθs

,

duθs = σuθs
das,

φ(uθs;µuθs
, σuθs

) =
1

σuθs

√
2π
e
−

(uθs−µuθs
)2

2σ2
uθs

=
1

σuθs

√
2π
e−

a2s
2

=
1

σuθs

φ(as).
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∫

uθs

[φ(uθs) exp (
∑

i

∑
d gi(lid)logp(yis|uθs, uδi = lid)wid)]φ(uθs;µuθs

, σuθs
)

φ(uθs;µuθs
, σuθs

)
duθs

=

∫

as

[φ(µuθs
+ σuθs

as) exp (
∑

i

∑
d gi(lid)logp(yis|uθs = µuθs

+ σuθs
as, uδi = lid)wid)]

1
σuθs

φ(as)

1
σuθs

φ(as)
σuθs

das

=

∫

as

[φ(µuθs
+ σuθs

as) exp (
∑

i

∑
d gi(lid)logp(yis|uθs = µuθs

+ σuθs
as, uδi = lid)wid)]φ(as)

φ(as)
σuθs

das

≈
∑

t

φ(lst)
wtσuθs

φ(lr)
exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)

=
∑

t

φ(lst)wst exp

(∑

i

∑

d

gi(lid)logp(yis|uθs = lst, uδi = lid)wid

)
,where

lst = µuθs
+ σuθs

lt,

wst =
σuθs

wt

φ(lr)
,are the person-spe
i�
 quadrature lo
ations and the 
orresponding weights for integratingover uθs, and µuθs

and σuθs
are the posterior means and standard deviations for uθs.
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Chapter 3Monte Carlo Lo
al Likelihood Method
3.1 Introdu
tionMaximum likelihood estimation for generalized linear mixed models (GLMMs) is hinderedby high dimensional intra
table integrals involved in the likelihood fun
tion. The problemis magni�ed when the random e�e
ts have a 
rossed design and thus the data 
annot beredu
ed to small independent 
lusters (Vaida & Meng, 2005). For instan
e, a logisti
 mixedmodel for a binary out
ome yij 
an be written aslogit(p(yij = 1|zi, uj)) = µ+ zi + uj,where zi ∼ N(0, σ2) with i = 1, ..., m and uj ∼ N(0, τ 2) with j = 1, ..., n are independentrandom e�e
ts that are 
rossed with ea
h other. If all 
ombinations of i and j exist in thedata, this likelihood fun
tion involves m+n dimensional integrals and its integrand involvesa produ
t of m× n terms.Various methods have been proposed for approximating the intra
table likelihood fun
-tion. For instan
e, the Lapla
e approximation (Tierney & Kadane, 1986; Lindstrom & Bates,1988; Wol�nger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,2005; S
hilling & Bo
k, 2005) have been widely used. The Lapla
e approximation and simi-lar penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to perform poorlyfor small 
luster sizes and for large varian
e 
omponents (Breslow & Lin, 1995; Joe, 2008).Adaptive quadrature is more a

urate but 
omputationally more demanding than Gaussianquadrature (Pinheiro & Bates, 1995). For more reviews, see e.g. Pinheiro & Bates (1995).Monte Carlo (MC) methods have also been utilized in various ways in ML estimation.Most methods are based on sampling the random e�e
ts given �xed parameter estimates.These methods 
an be distinguished by whether a `single sample' or `many samples' are usedper evaluation of the obje
tive fun
tion (for this distin
tion, see Geyer, 1996). The `singlesample' method is 
omputationally more e�
ient than the `many samples' method be
auseit uses the same samples for all evaluation of the obje
tive fun
tion. For instan
e, Geyer



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 43& Thompson (1992), Geyer (1994), and Sung & Geyer (2007) used MC simulations of therandom e�e
ts for an importan
e sampling approximation of the likelihood (or the likelihoodratio). The e�
ien
y of the `single sample' method highly depends on the importan
e sam-pling distribution. If the initial guess of parameters is far from the true parameter values,this method 
an perform poorly (Geyer, 1994; M
Cullo
h, 1997). Geyer (1996) suggestediterating the pro
edure so that the obje
tive fun
tion is maximized around a true parameterregion. However, it requires many MC samples per ea
h iteration of the algorithm.MC expe
tation maximization (MCEM) is an example of a `many sample' method.Several MCEM algorithms have been proposed using various sampling methods: e.g., aMetropolis-Hastings (M
Cullo
h, 1997), an independent sampler based on importan
e sam-pling or reje
tion sampling (Booth & Hobert, 1999), and a sli
e sampler (Vaida & Meng,2005). The basi
 idea is to use MC samples to approximate the intra
table 
onditionalexpe
tation. MCEM requires samples at ea
h iteration of the algorithm. In addition, thealgorithm needs a method for 
al
ulating standard errors be
ause it does not evaluate thelikelihood fun
tion or its derivatives. A method for monitoring 
onvergen
e may also berequired (e.g., Booth & Hobert, 1999).Compared to the MC methods des
ribed above, an MC kernel likelihood (MCKL) algo-rithm (De Valpine, 2004) takes a unique position in that it jointly samples the parameters andrandom e�e
ts to approximate the likelihood fun
tion. MCKL is a `single sample' methodbe
ause on
e the posterior samples of the parameters (along with samples of the randome�e
ts) are obtained, they are used during all iterations of the algorithm. MCKL is di�erentfrom the typi
al `single sample' method that samples the random e�e
ts given parti
ularparameter values. Spe
i�
ally, the MCKL algorithm initially treats parameters as havingprobability densities and samples them from a posterior density as in Bayesian methods.The likelihood is estimated up to a 
onstant as a weighted kernel density estimate where theweights are obtained by 
onsidering the posterior as an importan
e sampling density. Thelikelihood 
an also be estimated up to a 
onstant as an unweighted kernel density estimateddivided by the prior. De Valpine demonstrated the e�
ien
y of the MCKL method in es-timating the parameters of population dynami
 models. However, a method for standarderrors has not been provided yet for MCKL.In this paper, we propose a MC lo
al likelihood (MCLL) method for estimating GLMMs.MCLL is similar to MCKL in spirit: The algorithm begins with treating the parameters asrandom variables and sampling them jointly with random e�e
ts from a posterior distributionfor a parti
ular prior distribution (we dis
uss how to 
hoose the prior later in this paper).The likelihood fun
tion is then approximated up to a 
onstant by �tting a density to theposterior samples of the parameters and dividing it by the prior. In 
ontrast to MCKL, weapproximate the posterior density using lo
al likelihood density estimation (Hjort & Jones,1996; Loader, 1996), where the log-likelihood is lo
ally approximated by a polynomial. Anunweighted version of MCKL 
an be seen as a spe
ial 
ase of MCLL with a polynomial ofdegree zero. One motivation for MCLL is that the kernel density estimate usually shows asubstantial bias in near peaks (Loader, 1999, Ch.2). Furthermore, MCLL 
an exploit the
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al likelihood density estimate to provide estimates of standard errors that area

urate and easy to 
al
ulate.The outline of this 
hapter is as follows. In Se
tion 3.2, we introdu
e the general idea oflo
al likelihood density estimation. The MCLL algorithm is then des
ribed in detail as wellas some implementation issues. In Se
tion 3.3, we dis
uss 
omputation of standard errorsand marginal likelihoods. Empiri
al and simulation studies are provided in Se
tions 3.4and 3.5 to evaluate the proposed MCLL algorithm. The paper ends with some 
on
ludingremarks.3.2 Monte Carlo Lo
al Likelihood MethodThe key idea of MCLL is to use lo
al likelihood density estimation in order to approximate alikelihood fun
tion. In this se
tion, we begin by outlining the general idea of lo
al likelihooddensity estimation. The pro
edure of the MCLL algorithm is then des
ribed in detail andsome implementation issues are dis
ussed.3.2.1 Lo
al Likelihood Density EstimationSuppose X is a random variable having unknown density f(x) and x1, ..., xn are n inde-pendent observations of X . Given a parametri
 family f(x;ψ), we approximate f(x) by
f̂(x) = f(x; ψ̂(x)) as proposed by Hjort & Jones (1996). ψ̂ is obtained by maximizing a lo
allikelihood for f(x), whi
h is de�ned as

l(x, ψ) =

n∑

j=1

w(xj − t)logf(xj ;ψ)− n

∫

R

w(u− t)f(u;ψ)du,where the nonnegative weight fun
tion is w(u) = K(u/h)
h

, where K is a symmetri
 unimodaldensity fun
tion (or kernel fun
tion) and h is a bandwidth. When h goes to in�nity, maximiz-ing l(x, ψ) is equivalent to maximizing the usual likelihood. With moderate h, maximizing
l(x, ψ) 
overs a semi-parametri
 version of the likelihood.The lo
al polynomial approximation supposes that logf(x) 
an be well approximated bya low-degree polynomial in a neighborhood of the �tting point t (Loader, 1996). That is,logf(x) ≈ Pa(x− t).In the one dimensional 
ase, we 
an write

Pa(x− t) = a0 + a1(x− t) + · · ·+ ap(x− t)p,where a = (a0, a1, · · · , ap)′ is the parameter ve
tor for the polynomial fun
tion with degree



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 45
p. The lo
alized log-likelihood l̂(x, ψ) 
an then be approximated as

n∑

j=1

K

(
xj − t

h

)
Pa(xj − t)− n

∫
K

(
u− t

h

)
exp (Pa(u− t))du, (3.1)where the parameter spa
e for a is assumed to be an open set whi
h holds if K is 
ontinuouswith bounded support.If a maximizer of (3.1) exists, it satis�es the system of lo
al likelihood equations

1

n

n∑

j=1

A

(
xj − t

h

)
K

(
xj − t

h

)

=

∫
A

(
u− t

h

)
K

(
u− t

h

)
exp (Pa(u− t))du,where A(v) = (1, v, · · · , vp)′. This equation shows the moment mat
hing property betweensample and population moments of the lo
al likelihood density estimator (Loader, 1996).Theoreti
al properties of lo
al likelihood density estimation have been examined by e.g.,Egu
hi & Copas (1998), Hall et al. (2002), and Park et al. (2002). Re
ently, Deli
ado(2006) has proposed a lo
al likelihood density estimation based on smooth trun
ation usinga uniform kernel. Kauermann & Tutz (2000) and Wu & Zhang (2002) used lo
al likelihoodestimation for linear mixed and generalized linear mixed models, respe
tively, but in the
ontext of approximating non-parametri
 fun
tions.3.2.2 MCLL Pro
edureMCLL begins with obtaining Markov 
hain Monte Carlo (MCMC) samples of model param-eters from the posterior for a parti
ular set of priors. Then the algorithm involves two nestedmaximization steps: Maximizing an approximate likelihood L̂(y|θ) over θ, with ea
h evalu-ated value of θ requiring a maximization over parameters in the lo
al polynomial fun
tioninvolved in 
al
ulating L̂(y|θ). These two maximization steps iterate until 
onvergen
e.Spe
i�
ally, assuming a d-dimensional parameter spa
e θ with observed data ve
tor y,the MCLL algorithm pro
eeds as follows:Step 1. Choose a prior p(θ) and use an MCMC method to obtain samples from the posterior

p(θ|y)

p(θ|y) = L(y|θ)p(θ)
Cs

,where the normalizing 
onstant is Cs =
∫
L(y|θ)p(θ)dθ.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 46Step 2. Maximize an approximate likelihood, de�ned up to the unknown 
onstant Cs by
L̂(y|θ) = 1

p(θ)
Psp(θ|y), (3.2)where Psp(θ|y) is the lo
al likelihood estimate of the posterior density. Spe
i�
ally,for a given value of θ, this is obtained by assuming that the log-posterior density 
anbe lo
ally approximated by a polynomial fun
tion Pa(u− θ) with parameters a. Forexample, in the three dimensional 
ase (d=3), in the vi
inity of θ the log-posterior 
anbe approximated by a quadrati
 fun
tion

Pa(u− θ) = a0 + a1(u1 − θ1) + a2(u2 − θ2) + a3(u3 − θ3)

+
1

2
a4(u1 − θ1)

2 +
1

2
a5(u2 − θ2)

2 +
1

2
a6(u3 − θ3)

2

+ a7(u1 − θ1)(u2 − θ2) + a8(u1 − θ1)(u3 − θ3)

+ a9(u2 − θ2)(u3 − θ3), (3.3)where a = (a0, a1, ..., a9)
′.The a parameters are estimated for a parti
ular θ by maximizing a lo
alized versionof the log-likelihood as in (3.1), whi
h in this 
ase is

l(θ,a) =

m∑

j=1

K

(
θ(j) − θ

h

)
Pa(θ

(j) − θ)−m

∫
K

(
u− θ
h

)
exp (Pa(u− θ))du,(3.4)where {θ(j)}mj=1 are the posterior sample points.The approximate likelihood fun
tion (3.2) in Step 2 
an be seen as an unweighted estimateof the posterior density (De Valpine, 2004). A weighted version 
an be formulated as

L̂(y|θ) = 1

m

m∑

j=1

Psp(θ|y)w(j),

w(j) =
1

p(θ(j))
,where w(j) is the weight for Psp(θ|y) and p(θ(j)) is the prior density evaluated at θ(j).In the MCKL 
ase, the weighted version may be preferable be
ause it 
an be seen as anunnormalized, importan
e-sampled kernel estimate of the true likelihood L(y|θ). However,when lo
al density estimation is used as in MCLL, it is no longer 
lear how the weighted ver-sion 
an be seen as an importan
e-sampled estimate of the true likelihood. The unweighted



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 47version may have an issue with narrow priors sin
e a maximum may not exist in su
h a
ase; but with wide priors, there is little di�eren
e in performan
e between the weightedand unweighted versions (De Valpine, 2004). In addition, the unweighted version is easierto implement in pra
ti
e than the weighted version. Therefore, we adopt the unweightedversion as the main devi
e for MCLL.3.2.3 Implementation IssuesThere are several issues to be dis
ussed in implementing the MCLL algorithm. First, thebandwidth is 
hosen in Step 2 by 
onsidering the bias-varian
e trade-o�. We 
hoose abandwidth at ea
h data point so that the lo
al neighborhood 
ontains a spe
i�ed number ofdata points. For a smoothing parameter α between 0 and 1, the nearest neighbor bandwidthis 
hosen as the kth smallest distan
e d, where k = ⌊nα⌋ and d(x, xi) = |x− xi|.The degree of the lo
al polynomial fun
tion 
an also a�e
t the bias-varian
e trade-o�.Fitting a high degree will usually lead to less bias but large variability of an estimate. We
hoose a quadrati
 fun
tion as a default be
ause it is often su�
ient to 
hoose a low degreepolynomial and fo
us on 
hoosing the bandwidth to obtain a satisfa
tory �t (Loader, 1999,Ch.2).The weight fun
tion a�e
ts the visual quality of the �tted shape rather than the bias-varian
e trade-o�. A spheri
ally symmetri
 weight fun
tion is usually used. We 
hoose atri
ube weight fun
tion, K(u) = exp (−|u|)
1+|u|3

as a default. Hjort & Jones (1996) suggested theGaussian fun
tion for whi
h 
losed-form evaluation of the integrals is available. But for lo
alquadrati
 �tting, the parameters are 
onstrained, whi
h limits the ability of the estimate toreprodu
e troughs in the data (Loader, 1996).Se
ond, we 
onsider orthogonal transformation of the posterior samples θ(j). Assumingmultivariate normality, the posterior samples 
an be transformed as
θ̃
(j)

= L−1(θ(j) − b),where b is the mean of the posterior samples θ(j) and L is the Cholesky de
omposition ofthe empiri
al 
ovarian
e matrix Ĉov(θ) of the posterior samples θ(j) so that Ĉov(θ) = LLT .The transformed θ̃(j) have an identity 
ovarian
e matrix and a zero mean ve
tor.This orthogonal transformation is also 
alled data presphering (Wand & Jones, 1993;Duong & Hazelton, 2003). Preshering posterior samples is useful in implementing MCLLbe
ause it simpli�es the integral term in (3.4). Spe
i�
ally, for multidimensional parameter
θ, if the 
omponents are approximately independent in the posterior, then intera
tions termsin Pa(u− θ) 
an be dropped. In addition, a produ
t kernel 
an be used, with

K

(
u− θ
h

)
=

d∏

i=1

K0

(
ui − θi
hi

)
, (3.5)
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ations, the multidimensionalintegral 
an be fa
torized as a produ
t of one-dimensional integrals due to the orthogonalityof the parameter spa
e. In addition, the orthogonal transformation standardizes a bandwidth
hoi
e by transforming the parameter spa
e to be on the same s
ale.If the parameter spa
e is not orthogonal, a produ
t kernel (3.5) may be inappropriate touse. In su
h 
ases, the intera
tion terms 
an be in
luded in the polynomial fun
tion Pa(u−θ),for whi
h multidimensional-integration is needed. Ordinary quadrature rules are then nolonger pra
ti
al be
ause for instan
e, 306 evaluations are required with 30 quadrature pointswhen d = 6. Instead, Halton sequen
es 
an be used to redu
e the number of evaluations(Sándor & Train, 2004). Draws derived from Halton sequen
es have the advantage of bothimproving 
overage of the domain of integration and indu
ing a negative 
orrelation betweenthe draws from di�erent observations. Other quasi-random integration rules 
ould also beused (Fang & Wang, 1993). Halton draws are more e�e
tive than quasi-random drawsbe
ause the same a

ura
y 
an be a
hieved with Halton draws with a smaller number ofdraws, thereby saving 
omputer time (Train, 2003).Third, we use a log-transformation of varian
e parameters. This has several advantages:First, it avoids need for a modi�ed kernel for varian
e parameters in Step 2. Se
ond, theposterior distributions are 
loser to normal so that the data presphering operation worksbetter for a symmetri
 distribution.Fourth, non-informative priors 
an be 
hosen for the �xed and log standard deviationparameters, in whi
h 
ase the posterior mean estimates (automati
ally obtained in Step 1)are also 
lose to ML estimates. Note that even if informative priors are used, however,the MCLL algorithm provides results 
lose to the ML estimates, unlike the posterior meanestimates. Informative priors are useful for improving mixing in MCMC in Step 1 but some
are is required. We illustrate the 
hoi
e of priors for given problems in the empiri
al studyse
tion.We wrote an R pa
kage m
ll that implements the MCLL algorithm (Step 2 maximiza-tions).3.3 Inferen
eStandard error estimates and the values of maximized log-likelihoods are standard toolsfor likelihood-based inferen
e. Sin
e they are not by-produ
ts of the MCLL algorithm, wedevelop methods for obtaining standard errors and marginal likelihoods. We also show howto 
ompute the Bayes fa
tor in a relatively simple way with MCLL.3.3.1 Standard ErrorsAsymptoti
 theory for the ML estimation (MLE) suggests obtaining standard error estimatesusing the Hessian matrix of the log-likelihood fun
tion evaluated at the ML estimates. Analo-
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ould 
al
ulate the Hessian matrix of logL̂(y|θ) through numeri
al di�erentiationof the log-likelihood fun
tion. However, 
urvatures obtained by numeri
al di�erentiation willbe sensitive to the bandwidth 
hoi
e.Therefore, we derive an alternative way of 
omputing the Hessian matrix for MCLL. Firstwrite down the log-likelihood fun
tion logL(y|θ)logL(y|θ) = logp(θ|y)− logp(θ) + Cs, (3.6)where logp(θ|y) is the log-posterior, logp(θ) is the log-prior, and Cs is a 
onstant.Take the se
ond derivatives with respe
t to θ on both sides in (3.6) as
∂2

∂θ2
logL(y|θ)∣∣∣∣

θ̂

=
∂2

∂θ2
logp(θ|y)∣∣∣∣

θ̂

− ∂2

∂θ2
logp(θ)∣∣∣∣

θ̂

,evaluated at θ̂. Simply rewrite this as
HL = HPs −HPr,whereHL,HPs, andHPr are the Hessian matri
es of the approximate log-likelihood logL̂(y|θ),the log-posterior logp(θ|y), and the log-prior logp(θ), respe
tively.Typi
ally HPr 
an be solved analyti
ally. To obtain HPs, we use the quadrati
 approxi-mation of the log-posterior obtained using lo
al likelihood density estimation, assuming thelog-posterior 
an be well approximated by a quadrati
 polynomial in the neighborhood ofthe mode. For example, in the 
ase d = 3 and a quadrati
 fun
tion as given in (3.3), theHessian matrix of the approximation is

HPs ≈  â4 â7 â8
â7 â5 â9
â8 â9 â6


 . (3.7)The 
oe�
ients for the intera
tion terms in (3.3) 
orrespond to the o�-diagonal terms(â7 to â9) in (3.7) and are zero if the elements of θ are un
orrelated in the posterior. Thiswill be approximately true if the orthogonal transformation has been used. Thus in pra
ti
e,these o�-diagonal terms are set to zero and not estimated.3.3.2 Likelihood Inferen
eSuppose there are n observed responses yi for n subje
ts i with random e�e
ts (or missingdata) zi in the 
ontext of GLMMs. Assuming a d-dimensional parameter ve
tor θ, the



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 50marginal (normalized) likelihood f(y|θ) 
an be written as
f(y|θ) =

n∏

i=1

∫
p(yi|zi, θ)p(zi)dzi, (3.8)where p(yi|zi, θ) is the joint distribution of yi given the random e�e
ts zi and the parametervalues θ. p(zi) is the prior distribution for zi.In this se
tion, we show how to approximate the marginal likelihood in (3.8) and how thelikelihood-ratio (LR) statisti
 and the Bayes fa
tor 
an be readily 
omputed with MCLL.Marginal LikelihoodsIn general, 
omputation of the marginal likelihood is not feasible for GLMMs. Using asampling method, however, we 
an approximate the marginal likelihood as follows. Firstobtain posterior samples of the random e�e
ts using MCMC with model parameters treatedas known 
onstants set equal to the MCLL estimates. Then obtain the sample mean and
ovarian
e matrix of the posterior samples and use the 
orresponding multivariate normaldistribution as importan
e density. Sample the random e�e
ts z from the importan
e density.Then the marginal likelihood 
an be approximated as

f(y|θ̂) =
∫

p(y|z, θ̂)p(z; θ̂)
p̃(z|y, θ̂)

p̃(z|y, θ̂)dz

≈ 1

m

m∑

j=1

p(y|z(j), θ̂)p(z(j); θ̂)
p̃(z(j)|y, θ̂)

= f̂(y|θ̂),where the importan
e density p̃(z|y, θ̂) is the normal approximation to the posterior samplesof the random e�e
ts, whi
h has the same support as the prior p(z; θ̂). z(j) (j = 1, ..., m)is identi
ally and independently drawn from p̃(z|y, θ̂). We use the multivariate normalassumption with the mean and 
ovarian
e matrix given by the empiri
al mean and 
ovarian
ematrix of the MCMC samples.By the strong law of large numbers, the importan
e approximation of the likelihood
f̂(y|θ̂) is unbiased and 
onsistent as m → ∞, as long as the support of p̃(·) 
ontains thesupport of f(·) (Geweke, 1989). A similar idea of using importan
e sampling was adoptedto evaluate a likelihood surfa
e by Durbin & Koopman (1997) and Shephard & Pitt (1997).The approximate marginal likelihood f̂(y|θ̂) almost surely 
onverges to the true likelihood
f(y|θ̂) no matter whi
h importan
e density is 
hosen, but the rate of 
onvergen
e dependson the a

ura
y of the importan
e density used. To measure the a

ura
y of the importan
edensity, the e�e
tive sample size (ESS) 
an be 
omputed following Liu (2001)ESS =

m

1 + var(wj)
,
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wj =

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
/

m∑

j=1

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
.Here var(wj) is the varian
e of the m importan
e weights over the distribution de�nedby p̃(·). A large varian
e leads to low e�
ien
y relative to the sample size m and results inlow ESS. In pra
ti
e, m 
an be 
hosen to produ
e a su�
iently large value (
lose to ESS) toensure small var(wj).Following Shephard & Pitt (1997), the approximate log-likelihood is asymptoti
ally un-biased as m→ ∞. With �nite m, the bias 
an be expressed aslogf̂(y|θ̂) = logf(y|θ̂) + log 1

m

m∑

j=1

p(z(j); θ̂)

p̃(z(j)|y, θ̂)
.Here the term log 1

m

∑m
j=1

p(z(j)|θ̂)

p̃(z(j)|y,θ̂)
is biased to O(m−1) and thus disappears as m in
reasesto in�nity. The bias-
orre
ted log-likelihood 
an be derived aslogf̂(y|θ̂) + 1

2m

1

m− 1

m∑

j=1

{f(y|θ̂)(j) − f̂(y|θ̂)}2, (3.9)where f(y|θ̂)(j) = p(y|z(j),θ̂)p(z(j);θ̂)

p̃(z(j)|y,θ̂)
.Likelihood Ratio Statisti
sThe approximate marginal log-likelihood 
an be used to 
ompute likelihood ratio test statis-ti
s. For example, denote f̂(y|θ̂1,M1) and f̂(y|θ̂2,M2) the approximate likelihoods for thetwo models M1 and M2, where M1 is nested in M2. The likelihood ratio statisti
 λ̂(y) 
anbe 
omputed as

λ̂(y) = −2[logf̂(y|θ̂1,M1)− logf̂(y|θ̂2,M2)].Sin
e λ̂(y) 
onverges in probability to λ(y) as m→ ∞, under the null hypothesis
lim
n→∞

lim
m→∞

p(λ̂(y) > λα)

= lim
n→∞

p(λ(y) > λα)

= p(χ2
p−q > λα) = α,where n is the sample size, α is the 
riti
al point, and p and q are the number of parametersin M1 and M2.
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ause of the bias in f̂(y|θ̂1,M1) and f̂(y|θ̂2,M2).An unbiased estimator of λ̃(y) 
an be obtained as
λ̃(y) = −2[logf̂(y|θ̂1,M1) + b̂ias(y|θ̂1,M1)− logf̂(y|θ̂2,M2)− b̂ias(y|θ̂2,M2)]

= λ̂(y)− 2[b̂ias(y|θ̂1,M1)− b̂ias(y|θ̂2,M2)],where b̂ias(y|θ∗k,Mk) for Mk was de�ned in (3.9).3.3.3 Bayes Fa
torsBayes fa
tors are an important tool for Bayesian inferen
e and 
an also be useful in afrequentist 
ontext. For example, the null hypothesis is reje
ted when the Bayes fa
tor issmall where the magnitude depends on the distribution of the Bayes fa
tor under the nullhypothesis and the signi�
an
e level desired for the test (Cha
ón et al., 2007). Moreover,Bayes fa
tors allow 
omparisons of nonnested models, irregular models, and more than twomodels (Kass & Raftery, 1995).A Bayes fa
tor 
an be de�ned as the ratio of the marginal likelihoods for model M1 and
M2 BF12 =

p(y|M1)

p(y|M2)
,where the marginal likelihood for Mk is de�ned as

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk.Here p(y|θk,Mk) is the joint density of the responses given modelMk with parameter values

θk and p(θk|Mk) is the prior density for the model parameters θk in model Mk.Estimation of the Bayes fa
tor is a di�
ult problem be
ause the marginal likelihoods arenot easily 
omputed from the output of the MCMC algorithm. The MCLL method providesa relatively simple way to 
ompute the Bayes fa
tor. To show that, �rst write down theposterior densities of the model parameters for models M1 and M2

p(θ̂1|y,M1) = p(θ̂1|M1)
p(y|θ̂1,M1)

p(y|M1)
,

p(θ̂1|y,M2) = p(θ̂2|M2)
p(y|θ̂2,M2)

p(y|M2)
,where p(θ̂k|Mk) is the prior and p(y|θ̂k,Mk) is the likelihood given the MCLL estimates θ̂k



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 53for model Mk. Dividing both sides by their priors, we obtain
p(θ̂1|y,M1)

p(θ̂1|M1)
=
p(y|θ̂1,M1)

p(y|M1)
, (3.10)

p(θ̂2|y,M2)

p(θ̂2|M2)
=
p(y|θ̂2,M2)

p(y|M2)
. (3.11)Noti
e that the left hand sides in (3.10) and (3.11) are the unnormalized MCLL likelihoods

L̂(y|θ̂2,M2) (the posterior density divided by the prior) forM1 andM2 as 
omputed in (3.2).Dividing (3.11) by (3.10), obtain
L̂(y|θ̂2,M2)

L̂(y|θ̂1,M1)
=
p(y|M1)

p(y|M2)
× p(y|θ̂2,M2)

p(y|θ̂1,M1)
.Noti
e that p(y|M1)

p(y|M2)
= B̂F12. That is, the Bayes fa
tor B̂F12 is obtained asB̂F12 =

L̂(y|θ̂2,M2)

L̂(y|θ̂1,M1)
× p(y|θ̂1,M1)

p(y|θ̂2,M2)
, (3.12)where L̂(y|θ̂k,Mk) (k = 1, 2) are by-produ
ts of the MCLL algorithm and the likelihood

p(y|θ̂k,Mk) 
an be obtained as des
ribed in Se
tion 3.3.2. Note that this method works forany method that provides an unnormalized likelihood su
h as MCKL.3.4 Empiri
al StudiesTo illustrate the proposed algorithm, we 
onsider three empiri
al examples: 1) the salaman-der mating data (M
Cullagh & Nelder, 1989), 2) the birth weight data (Rabe-Hesketh et al.,2008), and 3) the longitudinal data of Korean students (Jeon & Rabe-Hesketh, 2012).3.4.1 Salamander Mating DataThe salamander mating dataset is a ben
hmark that has been used to 
ompare many di�erentestimation methods for GLMMs with 
rossed random e�e
ts (e.g., Karim & Zeger, 1992;Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,2011). This dataset 
onsists of three separate experiments, ea
h involving matings amongsalamanders of two di�erent populations, 
alled Rough Butt (RB) and White Side (WS).Sixty females and sixty males of two populations of salamander were paired by a 
rossed,blo
ked, and in
omplete design in an experiment studying whether the two populations have
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 me
hanisms whi
h would prevent inter-breeding. The response is a binaryvariable indi
ating whether mating was su

essful between female i and male j. We adoptedthe model A used in Karim & Zeger (1992)logit(p(yij = 1|zfi , zmj )) = β1 + β2x1i + β3x2j + β4x1ix2j + zfi + zmj , (3.13)where the 
ovariates are dummy variables for White Side female (xi), White Side male(xj), and the intera
tion (x1ix2j). The two 
rossed random e�e
ts are random inter
epts
zfi ∼ N(0, σ2

f) for females and zmi ∼ N(0, σ2
m) for males. Ea
h salamander parti
ipates insix matings, resulting in 360 matings in total. The two varian
e 
omponents in model (3.13)were reparameterized as τf = logσf and τm = logσm.The MCLL parameter estimates were 
ompared with the Lapla
e approximation andBayesian estimates (posterior means). They were also 
ompared with the estimates from theliterature, su
h as PQL (Breslow & Clayton, 1993), MCEM (Booth & Hobert, 1999), andMCMLE (Sung & Geyer, 2007). In addition, the MCKL method (De Valpine, 2004) wasimplemented for another 
omparison with MCLL.The methods for likelihood inferen
e des
ribed in Se
tion 3.3 were implemented. First,for ea
h parameter the marginal likelihood was 
omputed in the neighborhood of the MCLLestimate with other parameters set equal to the MCLL estimates. Se
ond, a redu
ed modelwas �t without the intera
tion parameter (β4 
oe�
ient of x1ix2j). The likelihood-ratiostatisti
 and the Bayes fa
tor were 
al
ulated to 
ompare the redu
ed model with the fullmodel.Finally, the standard errors were 
omputed both using diagonal and full Hessian matri-
es. For an e�
ient multivariate integration with the full Hessian matrix, we used Haltonsequen
es with 20,000 draws. The 
omputation time was 
ompared between the diagonaland full Hessian methods.3.4.2 ImplementationTo obtain the MCMC samples from the posterior distribution in Step 1, di�use normal priorswere spe
i�ed for the �xed e�e
t (regression 
oe�
ient) parameters (with mean 0, standarddeviation 100) and for the log standard deviation parameters τf and τm (with mean -0.98and standard deviation 0.76). These spe
i�
 values were 
hosen by noting that the mean andstandard deviation 
an be analyti
ally solved for the untransformed parameters σf and σmusing the moments of the 
orresponding log-transformed variables. The mean and varian
efor the log-transformed variable 
an be obtained using

E(σ) = logE(τ)− 1

2
log(1 + Var(τ)

E(τ)2

)
,Var(σ) = log(1 + Var(τ)

E(τ)2

)
,



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 55where E(τ) and Var(τ) are the mean and varian
e for the log-transformed variable. Forexample, to obtain the mean E(τ) = 0.5 and varian
e Var(τ) = 0.442 for τ , we use E(σ) =
−0.98 and Var(σ) = 0.762 for σ.The Bayesian software WinBUGS (Spiegelhalter et al., 2003) was used to obtain the pos-terior samples in Step 1, whi
h was run by the R pa
kage R2WinBUGS (Sturtz et al., 2005).Three 
hains were used with relatively di�use starting values. Ea
h 
hain was run for 5,000iterations after a 2,000 iteration burn-in period. For 
onvergen
e assessment, the Gelman-Rubin statisti
 (Gelman & Rubin, 1992) was used in addition to graphi
al 
he
ks su
h astra
e plots and auto
orrelation plots. For Step 2, we use the R pa
kage m
ll that we de-veloped. For the bandwidth sele
tion in Step 2, we used the default smoothing parameter
α = 0.7. A di�erent 
hoi
e of the smoothing parameter (0 ≤ α ≤ 1) did not make mu
h ofa di�eren
e in the results.To implement the Lapla
e approximation, we used the R fun
tion lmer in the lme4 pa
k-age (Bates & Mae
hler, 2009). For adaptive quadrature, xtmelogit in Stata (StataCorp,2009) was used. To implement the MCKL method, we followed the pro
edure taken byJeon (2011) using the same posterior samples as in the MCLL method. Spe
i�
ally, forthe bandwidth 
hoi
e for MCKL, we took diagonal elements of the 
ovarian
e matrix of thekernel density to be proportional to the marginal posterior varian
es in ea
h dimension ofthe posterior spa
e. For a proportionality 
onstant, we used q = 0.5 although 10 di�erentvalues (0.1 to 1.0) were all tried out for q. We also adjusted for smoothing bias in the MCKLestimates using posterior 
umulants as suggested by De Valpine (2004).ResultsTable 3.1 lists the parameter estimates for model (3.13) from a variety of estimators in theliterature. Standard errors for the regression 
oe�
ient parameters were in
luded when theywere reported in the original papers. Standard errors for the standard deviations σf and σmwere not 
onsidered be
ause the Wald-type tests and 
on�den
e intervals are inappropriatefor these parameters (e.g., Berkhof & Snijders, 2001).Overall, the results from MCLL were 
omparable to the other estimators. The regression
oe�
ient estimates were a bit smaller than other estimates ex
ept PQL and MCMLE.The standard deviation estimates were 
lose to the estimates from adaptive quadrature withthree quadrature points. The MCKL parameter estimates were a bit smaller than the MCLLestimates. With a di�erent bandwidth 
hoi
e, the MCKL estimates also varied somewhat.Our standard error estimates were quite 
lose to those from the other estimators. Withthe full Hessian matrix, we obtained (0.41, 0.56, 0.30, 0.48)′ for the standard errors for theregression 
oe�
ient parameters in order. These were a bit smaller than those from thediagonal Hessian matrix. As for 
omputation time, it took 54,956 se
onds with the fullHessian matrix 
ompared with 360 se
onds with the diagonal Hessian matrix on a IntelPentium Dual-Core 2.5-GHz pro
essor 
omputer with 3.2 GB of memory.The approximate log-likelihood was 
omputed using importan
e sampling with m=3,000



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 56Table 3.1: Comparison of several estimators for the salamander mating data. Standarderrors are given in parentheses if reported. MCEM: Booth & Hobert (1999); PQL: Breslow& Clayton (1993); Lapla
e: lmer; Adaptive quad(3): xtmelogit with 3 quadrature points;MCMLE: Sung & Geyer (2007); MCLL: MCLL method; Post.m: Posterior means (theposterior samples that were used for MCLL); MCKL: MCKL method after 
umulant bias
orre
tion (q = 0.5).Method β1 β2 β3 β4 σm σfMCEM 1.02 -2.96 -0.69 3.63 1.18 1.12PQL 0.79(0.32) -2.29(0.43) -0.54(0.39) 2.82(0.50) 0.79 0.72Lapla
e 1.00(0.39) -2.90(0.56) -0.70(0.46) 3.59(0.64) 1.08 1.02Adaptive quad(3) 1.01(0.41) -2.95(0.58) -0.70(0.48) 3.62(0.64) 1.16 1.10MCMLE 1.00 (0.35) -2.78(0.36) -0.47(0.33) 3.52(0.53) 1.17 1.10MCLL 0.93 (0.44) -2.87(0.59) -0.65(0.53) 3.59(0.72 ) 1.16 1.08Post.m 1.01 (0.41) -2.92 (0.58) -0.69(0.49) 3.58(0.66) 1.09 1.02MCKL 0.84 -2.77 -0.54 3.47 1.13 1.08for a range of values for ea
h parameter with the other parameters set equal to the MCLLestimates. The bias was 
lose to zero for all parameters. The approximate log-likelihoodwas 
ompared with that from adaptive quadrature. The results are shown in Figure 3.1.In all sub-panels, our log-likelihood surfa
es were 
lose to those from adaptive quadrature,in terms of the overall shape, mode, and 
urvature at the mode. This shows that our methodusing importan
e sampling works quite well in approximating the log-likelihood.To 
ompare the full and redu
ed models, we 
omputed the marginal log-likelihood, theLR statisti
, and the Bayes fa
tor. The marginal log-likelihood was -207.61 for the full modeland -228.43 for the redu
ed model. For both models, our estimate of bias was 
lose to zeroand ESS was numeri
ally the same as the MC sample size. Adaptive quadrature (with �vequadrature points) provided similar marginal log-likelihoods, -207.62 and -228.44 for the fulland redu
ed models, respe
tively. As for 
omputation time, it took about 21,000 se
ondswith adaptive quadrature but only a few se
onds with the importan
e sampling method.The LR statisti
 between the full and redu
ed model was λ̂ = −2(−228.41 + 207.62) =
41.58 (p < 0.001, df = 1) and the Bayes fa
tor was 
omputed as 1.20 using (3.12). Theseresults are strong eviden
e for the in
lusion of the intera
tion term.3.4.3 Birth Weight DataIn order to assess performan
e of MCLL for data where the true ML estimates are easyto obtain, we 
onsider a linear mixed model. Spe
i�
ally, we use the linear mixed modelthat was proposed by Rabe-Hesketh et al. (2008) to analyze nu
lear family birth weight data
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Figure 3.1: Log-likelihood surfa
es obtained using importan
e sampling (MC) and adaptivequadrature (Adaptive). The verti
al dashed lines indi
ate the MCLL estimates for the
orresponding parameters.
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al Birth Registry of Norway des
ribed in Magnus et al. (2001). In the originaldataset, there were 1,000 nu
lear families ea
h 
omprising mother, father, and a single 
hild(not ne
essarily the only 
hild in the family). A two-level liner mixed model was formulatedfor family members i nested in families j with three un
orrelated random 
oe�
ients
yij = x′

ijβ + α
(2)
1j [Mi +Ki/2] + α

(2)
2j [Fi +Ki/2] + α

(2)
3j [Ki/

√
2] + ǫij , (3.14)where xij is a ve
tor of 
ovariates with regression 
oe�
ients β. Mi, Ki, and Fi are dummyvariables for mother, 
hild, and father, respe
tively. The 
ovariates were male, a dummyvariable for being male (x1ij), midage, a dummy variable for mother aged 20-35 at timeof birth (x2ij), and highage, a dummy variable for mother older than 35 at time of birth(x3ij). The three random e�e
ts at level 2, α(2)

1j , α(2)
2j , and α(2)

3j are i.i.d as α(2)
kj ∼ N(0, σ2

A)with k = 1, 2, 3. The level-1 residuals have a normal distribution, ǫ(2)ij ∼ N(0, σ2
E) andare independent of the random e�e
ts. Here σA 
an be interpreted as the additive geneti
standard deviation and σE as the unique environment standard deviation.To implement the MCLL method, the same settings were used as in the �rst exam-ple. Di�use normal priors were spe
i�ed for the regression 
oe�
ient parameters (mean 0,standard deviation 1,000) and for the log standard deviations logσA and logσE (mean 6.17,standard deviation 0.27). The MCLL estimates and standard errors (using the diagonalHessian matrix) were 
ompared with the Bayesian estimates and standard errors (posteriormeans and standard deviations) and with the true ML estimates whi
h were obtained fromthe R fun
tion lme in the pa
kage nlme (Pinheiro et al., 2012).ResultsTable 3.2 lists the results for model (3.14) to the birth weight dataset.Table 3.2: Parameter estimates (Est) and standard errors (SE) for the birth weight data.MLE is the true maximum likelihood estimates and Post.m is the posterior mean estimatesMLE Post.m MCLLEst SE Est SE Est SE

β1 3368.10 31.14 3366.00 31.50 3369.93 31.73
β2 155.35 17.53 155.33 17.85 154.97 18.45
β3 126.95 30.98 129.26 31.28 125.62 31.74
β4 213.44 52.64 214.39 52.66 216.52 53.68
σE 374.67 - 375.94 - 375.58 -
σA 311.21 - 309.58 - 311.09 -For regression 
oe�
ients, β̂1 indi
ates the estimated mean birth weight for female babiesof mothers aged younger than 20 at the time of birth, and β̂2, β̂3, and β̂4 represent the
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es in the mean birth weight between male and female babies, betweenmothers, and between old and young mothers, 
ontrolling for the other variables. In therandom part, the estimated geneti
 standard deviation (σ̂A) was a bit smaller than theestimated unique environment standard deviation (σ̂E).The MCLL estimates were 
lose to the true ML estimates both for the regression 
oef-�
ient and standard deviation parameters. The MCLL standard errors were slightly largerthan the ML standard errors although the di�eren
es were negligible. Compared with theposterior mean estimates, the MCLL estimates were 
loser to the ML estimates for the tworegression 
oe�
ient parameters β1, β3, and both standard deviations σA, and σE . Thestandard errors were slightly larger than the posterior standard deviations.3.4.4 Longitudinal Data on Self-esteemThe third example is the linear 
rossed random e�e
ts model proposed by Jeon & Rabe-Hesketh (2012) to investigate Korean students' growth in self-esteem. The data were takenfrom the Korea Youth Panel Survey (KYPS; Lee et al., 2010) from 2003 to 2006 wherestudents were in middle s
hool in the �rst two waves and in high s
hool in the last twowaves. There were 3,281 students in 104 middle s
hools at waves 1 and 2 and 2,924 studentsfollowed up after dispersing into 860 high s
hools at waves 3 and 4.About 2.7% students swit
hed their s
hool membership during the middle s
hool or highs
hool years and these students were ex
luded from the data for simpli
ity. The response vari-able was self-esteem whi
h is a mean-
omposite variable 
omputed from six 5-point Likert-s
ale items. The mean (standard deviation) of self-esteem was 3.16 (0.62), 3.26 (0.62), 3.31(0.60), 3.33 (0.61) at waves 1, 2, 3, and 4, respe
tively. The internal 
onsisten
y of themeasures (Cronba
h's α) was on average 0.734.We formulated a three-level linear mixed model with 
rossed random e�e
ts for the self-esteem, Ytsmh at time t for student s who attended middle s
hool m and high s
hool h
Ytsmh = β1 + β2time2 + β3time3 + β4time4 + δs + δmµt + δhηt + etsmh, (3.15)where β1 is an inter
ept and β2, β3, and β4 are 
oe�
ients for time 2, 3, and 4 dummyvariables. The random part of the model 
onsists of a student-level random e�e
t δs ∼

N(0, σ2s ), a middle s
hool random e�e
t δm ∼ N(0, σ2m), a high s
hool random e�e
t δh ∼
N(0, σ2h), and a time- and student-spe
i�
 residual etsmh ∼ N(0, σ2

e). The model 
ontainso

asion-spe
i�
 weights, µ = (1, 1, 1, 1)′ and η = (0, 0, 1, 1)′ that represent the 
ontributionof s
hool e�e
ts on student out
omes at ea
h time point. η1 and η2 were set to zero be
ausethe future high s
hool is assumed not to a�e
t students while they are still in middle s
hool.Jeon & Rabe-Hesketh (2012) 
onsidered µ = (1, µ2, µ3, µ4)
′ and η = (0, 0, 1, η4)

′ as modelparameters, but here we simpli�ed the model by treating them as �xed for illustrationpurposes.To implement the MCLL method, the same settings were used as in the �rst two exam-
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i�ed for the regression 
oe�
ient parameters (mean 0,standard deviation 100) and for the log standard deviations, logσs, logσm, logσh, and logσe(mean -4.37, standard deviation 2.35). The MCLL estimates and standard errors (using thediagonal Hessian matrix) were 
ompared with the posterior means and standard deviationsand with the true ML estimates whi
h were obtained from the xtmixed fun
tion in Stata.ResultsTable 3.3 lists the results for model (3.15) to the KYPS dataset.Table 3.3: Parameter estimates (Est) and standard errors (SE) for the Korea Youth PanelSurvey (KYPS) data. MLE is the true maximum likelihood estimates and Post.m is theposterior mean estimates. MLE Post.m MCLLEst SE Est SE Est SE
β1 3.16 0.02 3.16 0.01 3.16 0.02
β2 0.11 0.01 0.11 0.01 0.11 0.01
β3 0.16 0.01 0.16 0.01 0.16 0.01
β4 0.18 0.02 0.18 0.01 0.17 0.02
σs 0.46 - 0.46 - 0.46 -
σm 0.38 - 0.38 - 0.38 -
σh 0.09 - 0.09 - 0.09 -
σe 0.12 - 0.12 - 0.12 -For regression 
oe�
ients, β̂1 indi
ates the estimated mean self-esteem of students atwave 1 (se
ond grade in middle s
hool). The 
oe�
ients for the time dummy variables, β̂2,

β̂3, and β̂4 represent the estimated di�eren
es in the mean self-esteem between ea
h wave andwave 1. The mean growth from waves 1 and 2 was estimated as 0.11, from waves 2 and 3 was0.05, and from waves 3 and 4 as 0.02. Students' self esteem tended to in
rease, but the rateof the growth de
reased over time. In the random part, the estimated within-student andthe estimated between-student standard deviations (σ̂e, σ̂s) were larger than the between-s
hool standard deviations (σ̂m, σ̂h). All the regression 
oe�
ient parameter estimates andstandard errors, and the standard deviation estimates from the MCLL method were 
loseto the ML estimates. There was little di�eren
e between the MCLL estimates and posteriormeans and standard deviations in this example.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 613.5 Simulation StudiesTwo simulation studies were 
ondu
ted to evaluate the performan
e of the MCLL methodusing 1) simulated salamander mating data for a generalized linear mixed model with 
rossedrandom e�e
ts and 2) simulated birth weight data for a linear mixed model. A linear mixedmodel is 
onsidered to evaluate the MCLL method when the true ML estimates are available.3.5.1 Simulation DesignThe �rst example was 
losely related to the salamander mating data in Se
tion 3.4.1. 100datasets were generated based on model (3.13) using the same true parameter values 
onsid-ered by other resear
hers (e.g., Lin & Breslow, 1996), whi
h are β = (1.06,−3.05,−0.72, 3.77)′and (σ2
f , σ

2
m)

′ = (.50, .50)′. The se
ond example was related to the birth weight data in Se
-tion 3.4.3. 100 datasets were generated based on model (3.14) using the ML estimatesof the original data as true values, β = (3368.09, 155.34, 126.94, 213.43)′ and (σA, σE)
′ =

(311.21, 374.66)′. To implement the MCLL method, the same settings were used as in the
orresponding empiri
al studies.In addition, Monte Carlo error (MCE) involved in all simulation estimates were estimated.Based on Koehler et al. (2009), MCE for the mean of the estimates (β̂) 
an be de�ned asM̂CE =

√√√√ 1

B

B∑

b=1

(β̂(b)− β̂(·))2,where β̂(b) is the estimate at the bth simulated data and β̂(·) is the mean of the estimatesof the B repli
ates β̂(·) = 1
B

∑B
b=1 β̂(b).Stata 
ommand simsum (White, 2010) was used to 
ompute the MCE for the means ofthe parameter and standard error estimates in the simulation studies.3.5.2 ResultsTable 3.4 lists the estimated bias and mean squared error (MSE) for the �rst simulationstudy mimi
king the salamander mating dataset.The MCLL method performed well 
ompared with the Bayesian and the Lapla
e ap-proximation methods. For the regression 
oe�
ient estimates, the bias and MSE were quitesimilar between the methods. For the standard deviations, however, the MCLL methodshowed smaller bias and MSE than the other two methods.Table 3.5 lists the average standard error estimates 
ompared with the standard de-viations of the parameter estimates (or the empiri
al standard errors) for the regression
oe�
ient parameters.
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Table 3.4: Bias and mean squared error (MSE) of the MCLL, Lapla
e approximation, andposterior mean (Post.m) estimates for 100 simulated salamander datasets.Bias MSETrue Lapla
e Post.m MCLL Lapla
e Post.m MCLL

β1 1.06 -0.03 -0.03 -0.03 0.12 0.12 0.12
β2 -3.05 0.04 0.01 0.01 0.22 0.21 0.21
β3 -0.72 0.06 0.06 0.05 0.17 0.17 0.16
β4 3.77 -0.04 -0.01 -0.04 0.35 0.33 0.35
σm 0.71 -0.17 -0.21 -0.13 0.10 0.09 0.07
σf 0.71 -0.15 -0.19 -0.12 0.12 0.09 0.08

Table 3.5: Average standard error estimates for 100 simulated salamander datasets. SDis the empiri
al standard error (standard deviation of the parameter estimates), SE is theaverage of the standard error estimates, and SE/SD is the ratio of SE to SD.MCLL Lapla
eSE SD SE/SD SE SD SE/SD
β1 0.31 0.34 0.91 0.29 0.34 0.85
β2 0.50 0.46 1.09 0.44 0.46 0.96
β3 0.40 0.40 1.00 0.37 0.41 0.90
β4 0.61 0.59 1.03 0.53 0.59 0.90



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 63The results show that the means of the standard error estimates over repli
ates were quite
lose to the empiri
al standard errors for all methods. Our standard error estimates tendto be more 
onservative than those from the Lapla
e approximation. Monte Carlo errors(MCEs) were about 10% of the means of the parameter estimates and less than 0.1 for themeans of the standard errors in all methods.For the linear mixed model example with the simulated birth weight datasets, we 
om-pared the MCLL and Bayesian estimates (posterior means) with the ML estimates. Figure3.2 
ompares the distan
es from the ML estimates between the two methods for ea
h pa-rameter.Figure 3.2 shows that the MCLL estimates are 
loser to the true ML estimates than theposterior mean estimates. In parti
ular, the posterior mean estimates display a marked bias(de�ned relative to the ML estimates), whi
h is evident in the point 
louds being shiftedaway from zero on the x-axis. The se
ond step of the MCLL algorithm adjusts the estimatesand we observe that they are no longer biased relative to the ML estimates. This is astrong eviden
e that MCLL estimates are 
loser to the ML estimates than the posteriormean estimates. The MCEs were about 10% of the means of the parameter estimates for allmethods.Table 3.6 
ompares the average standard error estimates with the empiri
al standarderrors.Table 3.6: Average standard error estimates for 100 simulated birth weight datasets. SDis the empiri
al standard error (standard deviation of the parameter estimates), SE is theaverage of the standard error estimates, and SE/SD is the ratio of SE to SD.MCLL MLSE SD SE/SD SE SD SE/SD
β1 32.22 31.70 1.02 31.11 31.49 0.99
β2 17.77 15.35 1.16 17.52 15.31 1.14
β3 31.89 32.00 1.00 30.94 32.00 0.97
β4 53.92 58.05 0.93 52.58 57.99 0.91Table 3.6 shows that both the ML and MCLL standard errors are good approximationsto the empiri
al standard deviations. As in the �rst simulation example, the MCLL standarderror estimates tend to be a bit more 
onservative than the ML standard errors. The MCEsfor the means of the standard error estimates were less than 0.05 for MCLL, less than 0.10for the ML method, and less than 0.08 for the Bayesian method.
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Figure 3.2: Distan
es from the ML estimates for MCLL estimates (MCLL-MLE) and forposterior mean estimates (Post.m-MLE) for 100 simulated birth weight datasets
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luding RemarksIn this paper, the Monte Carlo lo
al likelihood (MCLL) method was proposed for maximumlikelihood estimation of GLMMs with 
rossed random e�e
ts. The MCLL method initiallytreats the model parameters as random variables and samples them jointly with randome�e
ts, from the posterior distribution for a parti
ular prior. The likelihood fun
tion is thenapproximated up to a 
onstant as a lo
al likelihood density estimate of the posterior dividedby the prior.The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,2004), whi
h uses kernel density estimation to approximate the posterior. The key advantageof MCLL is that it provides methods for obtaining standard errors whereas MCKL does not.MCLL is also less sensitive to bandwidth sele
tion than MCKL.De Valpine (2004) showed 
onvergen
e of the MCKL estimator based on proofs of 
on-vergen
e of kernel mode estimates. The proofs for MCKL may not be dire
tly applied to theMCLL method with a polynomial higher than degree zero. Unlike kernel density estimation,there has been no proof yet on the 
onvergen
e of mode estimates in lo
al density estimation,whi
h would be an intermediate step in proving 
onvergen
e of the MCLL estimator.Finally, it is important to note that MCLL allows likelihood inferen
e for any 
omplexmodels for whi
h ML estimation may be infeasible but MCMC methods are possible. Forexample, in addition to GLMMs with 
rossed random e�e
ts 
onsidered here, the MCLLalgorithm 
ould be used to �t state-spa
e models with higher dimensional latent variables.Potential appli
ations for MCLL are therefore far beyond the models dis
ussed in this paper.We have shown that the MCLL method provides results 
lose to the ML estimates. Even ifinformative priors are spe
i�ed, MCLL provides estimates 
lose to the ML estimates, whereasthe posterior mean estimates 
ould be quite di�erent. When ML inferen
e is desired forhighly 
omplex models, the MCLL method seems to be an e�e
tive and pra
ti
al 
hoi
e.
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Chapter 4Autoregressive IRT Growth Model
4.1 Introdu
tionThis paper 
onsiders longitudinal data where a latent 
onstru
t is measured by multipleitems at multiple time points. In measuring psy
hologi
al traits su
h as engagement or self-esteem, typi
ally the same s
ales with the same set of items are used over time. In abilitytesting, a set of 
ommon items are often in
luded in di�erent tests for the purpose of verti
alequating. Responses to the same items over time may not be 
onditionally independentgiven the latent trait.When the measures of the latent 
onstru
t are 
ontinuous, 
urve-of-fa
tors models orse
ond-order latent growth models are often used in stru
tural equation modeling (SEM)(e.g., Han
o
k & Kuo, 2001; Sayer & Cumsille, 2001). A 
ommon strategy in su
h modelsis to deal with violations of 
onditional independen
e by allowing residuals for the sameitems to be 
orrelated over time (Loehlin, 1998; Sayer & Cumsille, 2001). In e
onometri
s,
orrelated errors have also been used in probit models (e.g., Hyslop, 1999; Varin & Czado,2010).In item response theory (IRT), many methods have been developed to deal with lo
aldependen
e within tests. Testlet-type models were suggested whi
h use additional dimen-sions to 
apture dependen
e within item bundles or testlets (e.g., Gibbons & Hedeker, 1992;Wilson & Adams, 1995; Bradlow et al., 1999; Wang & Wilson, 2005; Jeon et al., in press).Su
h approa
hes are 
omputationally demanding in general be
ause the number of latentvariables required in
reases as the number of item 
lusters in
reases. Hoskens & De Boe
k(1997) present a �xed e�e
ts approa
h using intera
tion parameters for within-test lo
aldependen
e. Alternatively, marginal models have been proposed e.g., by utilizing 
opulafun
tions to 
apture lo
al dependen
e among items (e.g., Braeken et al., 2007; Braeken,2011). However, these marginal methods appear to be di�
ult to implement in pra
ti
e.For longitudinal data, multidimensional models have typi
ally been used in IRT withoutmu
h 
onsideration for serial dependen
e. See for example, Andersen (1985), Embretson
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Guire (2010). Re
ently, Cai (2010) suggested a two-tier IRT model that usesadditional latent variables (or dimensions) to take into a

ount lo
al dependen
e among itemresponses, and also dis
ussed an appli
ation to a longitudinal setting. A 
ombination of themultilevel model and the IRT model has also been used to analyze longitudinal data. Forexample, a one-parameter logisti
 (1PL) IRT measurement model was applied in three-levelgrowth models for binary and 
ategori
al data (e.g., Fox, 2005; Pastor & Beretvas, 2006).Segawa (2005) presented a multilevel IRT model in
luding a two-parameter logisti
 (2PL)IRT measurement model for ordinal responses. For 
ategori
al responses in SEM, Serrano(2010) presented a se
ond-order model for binary item responses using extra latent variablesto allow for auto
orrelations between the responses over time. Eid & Ho�mann (1998)proposed a multistate-multitrait model that in
ludes latent fa
tors for serial 
orrelationsamong ordinal responses.In this paper, we present an autoregressive IRT growth model that takes into a

ountserial dependen
e. Autoregressive or dynami
 models for binary panel data have been a
-tively investigated in e
onometri
s (e.g., He
kman, 1981; Hsiao, 2003; Bartolu

i & Nigro,2010) but rarely in psy
hometri
s or edu
ational measurement. A dynami
 Ras
h model hasbeen proposed by Verhelst & Glas (1993) but in a di�erent 
ontext, to model learning e�e
tsthroughout tests.The autoregressive IRT growth model that we present here allows the 
urrent responseto an item to depend on the previous response in addition to the latent trait. In the mea-surement model, the 
oe�
ients for the lagged responses allow to study state dependen
e,i.e., how the past response 
an in�uen
e the response to the same item in the future. Wewill show that this autoregressive model is equivalent to a model that in
ludes intera
tionparameters for item responses at adja
ent time points. The initial 
onditions problem needsto be addressed be
ause initial out
omes have no lagged variables (see e.g., He
kman, 1981;Wooldridge, 2005). We adopt the treatment suggested by He
kman (1981) and Aitkin &Alfo (2003) to deal with the initial 
onditions problem.A linear growth 
urve model is spe
i�ed for the latent trait in the stru
tural model. Thefull model 
an be estimated using standard maximum likelihood (ML) software. ML estima-tion of the proposed model involves only three-dimensional integrals and the dimensionalityof the integrals stays the same regardless of both the number of time-points and the numberof items.The outline of this 
hapter is as follows: We �rst review how lo
al dependen
e has beentreated in IRT. In Se
tions 4.2 and 4.3, we present IRT models with intera
tion parametersto 
apture lo
al dependen
e for 
ross-se
tional data. An autoregressive IRT growth modelis then introdu
ed for longitudinal data. Equivalen
e of this model to an IRT model withintera
tion parameters is shown. In Se
tion 4.4, we dis
uss the treatment of the initial
onditions problem and its impli
ations for measurement invarian
e. In Se
tion 4.5, weinvestigate the 
onsequen
es of ignoring serial dependen
e and the initial 
onditions problemusing simulations. An empiri
al study is provided in Se
tion 4.6 to illustrate the proposedmodel. We end with some 
on
luding remarks.
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al Dependen
e in IRTIRT models are not robust to violations of lo
al sto
hasti
 independen
e, 
alled lo
al itemdependen
e or residual dependen
e (Tuerlin
kx & De Boe
k, 2001; Braeken et al., 2007).Lo
al item dependen
e 
an seriously a�e
t estimation of model parameters on both itemand person sides, the test information fun
tion, and the diagnosti
s that assume 
onditionalindependen
e (see e.g., Yen, 1984; Sire
i et al., 1991; Yen, 1993; Chen & Thissen, 1997;Tuerlin
kx & De Boe
k, 2001; Braeken et al., 2007).Several methods have been suggested to deal with lo
al dependen
e in IRT. Typi
allylo
al dependen
e is violated for items nested in subtests (Andri
h, 1985), testlets (Wainer &Kiely, 1987), or item bundles (Wilson & Adams, 1995; Rosenbaum, 1999). To deal with thelo
al dependen
e, the sum s
ores of testlets 
an be used as polytomous items. Alternatively,additional latent variables (or dimension) 
an be introdu
ed to 
apture the dependen
ewithin testlets (Gibbons & Hedeker, 1992; Bradlow et al., 1999; Wang & Wilson, 2005; Cai,2010; Jeon et al., in press).Hoskens & De Boe
k (1997) present a �xed e�e
ts approa
h that dire
tly models lo
aldependen
e using intera
tion parameters. Drawba
ks of this approa
h are �rst, the marginalitem 
hara
teristi
 
urves are not reprodu
ible (Fitzmauri
e et al., 1993), i.e., the 
urves areno longer logisti
 fun
tions. Se
ond, the item parameters lose their usual interpretations (Ip,2002; Wang & Wilson, 2005; Braeken et al., 2007; Braeken, 2011).To avoid these problems, marginal models have been proposed su
h as the Bahadur-Ipmodel (Ip, 2000, 2001), the hybrid kernel model (Ip, 2002), and 
opula models (Braekenet al., 2007; Braeken, 2011). The main idea is to keep marginal probabilities inta
t bya

ounting for lo
al dependen
e by separate tools. However, these methods are di�
ult toimplement in pra
ti
e and require modeling 
hoi
es to be made. For example, for 
opulamodels, users have to 
hoose an appropriate 
opula fun
tion.4.3 Lo
al Dependen
e IRT Models with Intera
tion Pa-rametersA natural way of modeling dependen
e among 
orrelated item responses is to in
lude inter-a
tion parameters in the IRT model. This approa
h was suggested by Hoskens & De Boe
k(1997) and Adams et al. (1997) to 
apture lo
al dependen
e in 
ross-se
tional data, but it 
analso be extended to a longitudinal setting. In this se
tion, starting from the lo
al dependen
emodel within tests, a serial dependen
e model is introdu
ed for longitudinal data.4.3.1 Lo
al Dependen
e IRT Model within TestsA 2PL IRT model is 
onsidered as the basi
 model. Assuming lo
al independen
e, the 2PLmodel spe
i�es the 
onditional probability of binary response yis for item i and person s
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Pr(Yis = yis|θs) =

exp [yis(αiθs − βi)]

1 + exp [(αiθs − βi)]
, (4.1)where θs ∼ N(0, σ2), and βi and αi are the item inter
ept and dis
rimination parameters,respe
tively. The item di�
ulty is βi/αi. Under the lo
al independen
e assumption, thejoint probability for a parti
ular realization of responses (y1s, y2s) to items 1 and 2 for person

s 
an be written as
Pr(Y1s = y1s, Y2s = y2s|θs) =

exp [y1s(α1θs − β1) + y2s(α2θs − β2)]∑

{d1,d2}

exp [d1(α1θs − β1) + d2(α2θs − β2)]
, (4.2)where the sum in the denominator is over all possible response patterns with (d1, d2) equalto (0,0), (1,0), (0,1), and (1,1).To model lo
al dependen
e, intera
tion parameters 
an be in
orporated for lo
ally de-pendent items. For example, model (4.2) 
an be extended as

Pr(Y1s = y1s, Y2s = y2s|θs) =
exp [y1s(α1θs − β1) + y2s(α2θs − β2) + y2sy1s(−λ21)]∑

{d1,d2}

exp [d1(α1θs − β1) + d2(α2θs − β2) + d2d1(−λ21)]
, (4.3)where λ21 is the parameter that quanti�es the intera
tion between items 1 and 2. Notethat in model (4.3), the marginal probability for yis given θs is not reprodu
ible (not theinverse logit fun
tion as in (4.1)), and αi and βi lose their usual interpretations as itemdis
rimination and inter
ept parameters if λ21 6= 0 (Braeken et al., 2007; Braeken, 2011).4.3.2 Serial Dependen
e IRT Model for Longitudinal DataThe lo
al dependen
e model in Se
tion 4.3.1 
an be extended to longitudinal settings to 
ap-ture serial dependen
e. With longitudinal data, lo
al dependen
e arises among the responsesto the same items used repeatedly over time. Let the response pattern for item i and person

s a
ross T o

asions be denoted yis ≡ (y1is, y2is, ..., yT is)
′, where ytis is the response to item

i at o

asion t, t = 1, . . . , T . Then the probability for yis 
an be modeled as
Pr(yis|θs) =

exp

[
−βi

T∑

t=1

ytis + αi

T∑

t=1

θtsytis −
T∑

t=1

λiytisy(t−1)is

]

∑

{d}

exp

[
−βi

T∑

t=1

dt + αi

T∑

t=1

θtsdt −
T∑

t=1

λidtdt−1

] , (4.4)
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′ is the ve
tor of latent traits a
ross time for person s and {d}indi
ates the set of all possible response patterns. λi is an intera
tion parameter for theresponses to item i between at adja
ent o

asions t and t − 1. We assume that λi, βi and

αi are 
onstant a
ross time for item i. Here y0is does not exist and is set to 0 (See Se
tion4.5.1 on the initial 
onditions problem).4.4 Autoregressive IRT Growth ModelWe now introdu
e a �rst-order autoregressive IRT growth model for longitudinal analysis.Equivalen
e of this model to the serial dependen
e IRT model is shown.4.4.1 Measurement ModelThe measurement model 
orresponds to a �rst-order autoregressive or dynami
 2PL model.The 
onditional probability for binary response ytis at time t for item i and person s 
an bewritten as logit(Pr(ytis = 1|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is, (4.5)where λi is the lag parameter for state dependen
e and the lagged variable y(t−1)is for item
i. It is useful to note thatlogPr(ytis = 1|θts, y(t−1)is = 1)/Pr(ytis = 0|θts, y(t−1)is = 1)Pr(ytis = 1|θts, y(t−1)is = 0)/Pr(ytis = 0|θts, y(t−1)is = 0)

= λi,when time t > 1. That is, the lag parameter λi is the log-odds ratio for 
urrent responsesdue to the previous responses 
hanging from 0 to 1 (see e.g., Bartolu

i & Nigro, 2010).The dynami
 Ras
h model (Verhelst & Glas, 1993) was presented in IRT in the 
ontextof modeling learning e�e
ts. Instead of lagged responses, the 
umulative number of 
orre
tresponses pre
eding the item in question was used where the e�e
t of the 
umulative sum was
onsidered as a learning e�e
t indu
ed by previous su

esses (De Boe
k et al., 2011). Thismodel was later extended by Verguts & De Boe
k (2000), allowing for a di�erent learningrate for ea
h person.In order to show equivalen
e of model (4.5) to the serial dependen
e model in (4.4),rewrite model (4.5) using a log-linear formulation. For example, at time 2Pr(y2is|y1is; θ2s) = exp [y2is(αiθ2s − βi)− λiy2isy1is]∑

{d}

exp [d2(αiθ2s − βi)− λid2d1]
.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 71Similarly, write model (4.5) at time 3Pr(y3is|y2is; θ3s) = exp [y3is(αiθ3s − βi)− λiy3isy2is]∑

{d}

exp [d3(αiθ3s − βi)− λid3d2]
.The joint 
onditional probability of the pair of the responses (y2is, y3is) at time 2 and 3 
anthen be written asPr(y2is, y3is|y1is; θts) = exp [y2is(αiθ2s − βi) + y3is(αiθ3s − βi)− λiy2isy1is − λiy3isy2is]∑

{d}

exp [d2(αiθ2s − βi) + d3(αiθ3s − βi)− λid2d1 − λid3d2]
.Noti
e that if we set y0is = 0 so thatPr(y1is|θ1s) = exp [y1is(αiθ1s − βi)]∑

{d}

exp [d1(αiθ1s − βi)]
,we obtain the joint probability for yis ≡ (y1is, y2is, y3is)

Pr(yis|θs) =
exp

[
−βi

3∑

t=1

ytis + αi

3∑

t=1

θtsytis −
3∑

t=1

λiytisy(t−1)is

]

∑

{d}

exp

[
−βi

T∑

t=1

dt + αi

T∑

t=1

θtsdt −
T∑

t=1

λidtdt−1

] ,

whi
h is the serial dependen
e model in (4.4) with T = 3.4.4.2 Stru
tural ModelIn the measurement model (4.5), θts is the latent trait for person s at o

asion t. Andersen(1985) spe
i�es a longitudinal IRT model with
θs = (θ1s, θ2s, ..., θTs)

′,where θs ∼ N(0,Σ). Be
ause Andersen's model does not 
ontain 
hange parameters, Em-bretson (1991) suggests spe
ifying
θts =

t∑

r=1

θ′rs,
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hanges θ′rs from the previous status to time r are modeled for person s, and θ′s =
(θ′1s, θ

′
2s, ..., θ

′
Ts)

′ with θ′s ∼ N(0,Σ).However, Andersen's and Embretson's models 
an be 
omputationally demanding be-
ause they require an in
reasing number of latent variables as the number of time pointsin
reases. M
Guire (2010) proposed a simpli�ed version of Embretson's model, whi
h re-quires only two latent variables, one for the baseline and the other for the growth fa
tor, byspe
ifying
θts = δs1 + (b1 + δs2)timet, (4.6)where b1 is the mean slope or the mean growth rate and timet is the time asso
iated witho

asion t. δs1, the random inter
ept (or initial status) and δs2, the random slope (or growthrate) for person s are assumed to have a bivariate normal distribution

(
δs1
δs2

)
∼ N

([
0
0

]
,

[
σ2
s1 σs12

σs21 σ2
s2

])
.This formulation relies on a strong assumption that the latent trait for ea
h person followsa perfe
t straight line traje
tory (or a higher-order polynomial if powers of time are addedto (4.6)). In addition, it does not allow for a random in�uen
e on the latent trait (or adeviation from the line traje
tory) at ea
h time point. We extend this model by allowingfor an individual and time-spe
i�
 error term ǫts. This extension with a 1PL measurementmodel was presented in Pastor & Beretvas (2006) among others. The stru
tural model 
anbe spe
i�ed as

θts = δs1 + (b1 + δs2)timet + ǫts, (4.7)where ǫts ∼ N(0, σ2
ǫ ). Spe
ifying di�erent time-spe
i�
 residual varian
es σ2

ǫt 
orresponds toweak fa
torial invarian
e. Spe
ifying 
onstant time-spe
i�
 residual varian
es σ2
ǫ 
orrespondsto stri
t fa
torial invarian
e (for more information, see, Meredith, 1993).Note that in this formulation, only three-dimensional integrals are required regardless ofthe number of time points and items. This gives us 
omputational advantages over previousapproa
hes su
h as: 1) Anderson's and Embretson's IRT growth models where the numberof latent variables grows as the number of time points in
reases, and 2) the random e�e
tsapproa
hes for handling serial dependen
e (e.g., Serrano, 2010) that require an in
reasingnumber of latent variables as the number of items in
reases. Cai (2010) showed how toredu
e the number of latent variables for his two-tier model, but it still requires more latentvariables as the number of time points in
reases.The full model is obtained by 
ombining the measurement model in (4.5) with the stru
-tural model in (4.7). Figure 4.1 illustrates the model for person s assuming I items at ea
hof four time points.In the �gure, the frame represents person s, ovals latent variables, re
tangles observedvariables, and arrows 
onne
ting latent and/or observed variables represent regression rela-tions. The double-headed 
urved arrows between the observed variables represent pairwise
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Figure 4.1: A serial dependen
e linear growth model with the random inter
ept, randomslope, and time-spe
i�
 random e�e
tsintera
tions between adja
ent time points. θ1 to θ4 represent the latent trait at ea
h of thefour time points, measured by the same I items. The short arrows pointing at the latenttraits at ea
h time point indi
ate time-spe
i�
 random e�e
ts ǫts, and the ovals δs1 and δs2represent the random inter
ept (or initial status) and the random slope (or growth rate),respe
tively. The double-headed 
urved arrow between δs1 and δs2 represents the 
ovarian
e
σs12. The values asso
iated with the arrows pointing at θ1 to θ4 indi
ate fa
tor loadings
(1, 1, 1, 1)′ for δs1 and (1, 2, 3, 4)′ (for a linear growth) for δs2 in this example.4.5 Treatment of the Initial Conditions ProblemThe initial 
onditions problem is an important theoreti
al and pra
ti
al problem in dynami
models (Wooldridge, 2005). The 
onsequen
es of ignoring the initial 
onditions problemhave been studied in detail in e
onometri
s (e.g., Anderson & Hsiao, 1981; He
kman, 1981;Wooldridge, 2005). For example, simply dropping the �rst out
ome from the analyzed dataprodu
es in
onsistent estimates (Hsiao, 1986; Fotouhi & Davies, 1997; Aitkin & Alfo, 1998).In this se
tion, the initial 
onditions problem is illustrated and the treatment of the initial
onditions problem is dis
ussed for the proposed autoregressive IRT growth model.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 744.5.1 Initial Conditions ProblemTo begin with, �rst write down the autoregressive model (4.5) at time 1logit(Pr(y1is = 1|y0is; θ1s)) = αiθ1s − βi + λiy0is.The initial 
onditions problem is that the lagged response y0is does not exist for the initialout
ome y1is. There are two simple options to deal with this problem: First, to treat y0isas missing so that y1is is not modeled as a response variable. This leads to an endogeneityproblem be
ause the asso
iation between y1is and θts is not modeled. All the asso
iationbetween y2is and y1is will be attributed to λi, whereas some of the asso
iation is due to the
orrelation between θ2s and θ1s. Consequently λi will be over-estimated parti
ularly whenthere are few time points (T is small) be
ause the �rst time point will have a larger impa
t.The se
ond method is to set y0is = 0. The problem with this approa
h is that the model for
ytis is 
onditional on the previous response when time t > 1, but is marginal (with respe
tto the hypotheti
al previous response) at time t = 1. It does not make sense to assume thatthe parameters βi and αi are the same in the 
onditional and marginal models.Aitkin & Alfo (2003) suggested spe
ifying an approximate model for the marginal (not
onditional on the previous response) probability of the initial out
ome given the latent trait.He
kman (1981) also proposed a similar method that approximates the distribution of the�rst out
ome. Following Aitkin & Alfo (2003), model (4.5) at time 1 
an be formulated aslogit(Pr(y1is = 1|θ1s)) = α′

iθ1s − β ′
i. (4.8)For time t > 1, we retain the modellogit(Pr(ytis|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is. (4.9)It is important to allow β ′

i 6= βi and α′
i 6= αi in models (4.8) and (4.9). Note therefore that

α′
i is still needed for time 1 even if the model is otherwise a 1PL model (with αi = 1).The joint probability of the item responses given the latent trait 
an then be written as

Pr(ys|θts) =
I∏

i=1

Pr(y1is|θ1s)
T∏

t=2

Pr(ytis|y(t−1)is; θts).As an alternative solution to the initial 
onditions problem, Wooldridge (2005) 
onsideredthe distribution of the latent variable, 
onditional on the initial response
θts = γy1is + θ′ts, (4.10)where θ′ts is un
orrelated with the initial response y1is in (4.10). The full model 
onditional
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omeslogit(Pr(ytis = 1|y(t−1)is; θ
′
ts, y1is)) = αiθ

′
ts − βi + αiγy1is + λiyi,when time t > 1. Note that θ′ts is di�erent from the original latent variable θts.Figure 4.2 visualizes the di�eren
es between Aitkin and Alfo's and Wooldridge's ap-proa
hes using a simple example with one item at four time points in a unidimensionalmodel with one latent variable.In the �gures, y11 to y41 indi
ate the responses to item 1 and x11 to x41 represent thetimes asso
iated with the measurement o

asions 1 to 4. In Aitkin and Alfo's model in theupper panel, the item parameters β ′

1 and α′
1 at time 1 are di�erent from β1 and α1 at latertime points. Wooldridge's model in the lower panel 
ontains an arrow from y11 to θ with
oe�
ient γ.We adopt Aitkin and Alfo's approa
h to deal with the initial 
onditions problem in theproposed model. With this treatment, the latent trait ve
tor θs 
an be left inta
t in bothmarginal and 
onditional models (with respe
t to the lagged responses) both at time 1 andtime t > 1. Thus, when the main interest is on modeling growth of the latent trait, Aitkinand Alfo's approa
h is preferable to Wooldridge's method that spe
i�es the distribution ofthe latent trait 
onditional on the initial response.4.5.2 Identi�
ation and Measurement Invarian
eIn the proposed model, the item parameters at time 1 are allowed to be di�erent from thoseat later time points (β ′

i 6= βi and α′
i 6= αi). For model identi�
ation, δs1, δs2, and ǫts are setto have mean zero, and αi for the �rst item is �xed to 1. For measurement invarian
e, theitem parameters αi and βi are set equal when time t > 1. If the lag parameters of one ormore items are set to zero, these items serve as an
hor items, allowing analysis of 
hangein θs from time 1 to time 2. An iterative pro
edure may be used to �nd an
hor items,similarly to item puri�
ation pro
edures for �nding an
hor items in dete
ting di�erentialitem fun
tioning (Rogers & Swaminathan, 1993; Zumbo, 1999). Even if λi 6= 0 for all items,however, the model is still identi�ed be
ause linearity is assumed for the mean of θs overtime.At a glan
e, allowing for β ′

i 6= βi and α′
i 6= αi at time 1 may look like violating themeasurement invarian
e assumption for longitudinal item analysis. Re
all that at time 1,however, the model is marginal, i.e., it does not in
lude the lagged responses, whereas at latertime points the model is 
onditional on the lagged responses. Therefore, imposing the sameitem parameters at time 1 and at later time points a
tually for
es the item 
hara
teristi

urves (ICCs) to be di�erent a
ross time, whi
h is a violation of measurement invarian
e(Mellenbergh, 1989; Meredith & Millsap, 1992; Millsap, 2010).The marginal probabilities Pr(ytis|θts) (or ICCs) are no longer logisti
 
urves at time

t > 1 if λi 6= 0. We 
an still 
ompute the marginal probability for person s to binary item i
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ursively for t = 2, 3, . . . , T asPr(ytis|θts) = ∑

{d=0,1}

Pr(ytis|θts, y(t−1)is = d)Pr(y(t−1)is = d|θ(t−1)s).That is, it is the sum of the probabilities of all possible sequen
es of responses to item i priorto time t when t > 1. Note that having free parameters at time 1 allows the logisti
 
urveto be 
lose to the not-quite-logisti
 
urves at t > 1. Assuming 
onstant λi at time t > 1ensures that the 
urves are equivalent when t > 1.4.6 Simulation StudyInstead of simulating datasets for a �nite number of persons, we generate �population� databy 
omputing the response probabilities for all possible response patterns and using themto weight the log-likelihood 
ontributions of the response patterns for maximum likelihoodestimation. A similar approa
h was used by Rotnitzky & Wypij (1994) and Heagerty &Kurland (2001).We investigate the asymptoti
 bias of the maximum likelihood estimators using the pop-ulation data when the model is in
orre
tly spe
i�ed by 1) ignoring serial dependen
e, and2) ignoring the initial 
onditions problem.4.6.1 Generating Population DataSuppose there are three binary items at three time points and hen
e 29 = 512 responsepatterns in total. For ea
h response pattern ve
tor yk (k = 1, 2, ..., 29), we �rst obtain theresponse probability π(yk) = g(yk;ψ0) under the true model with parameters ψ0. Given
π(yk) for all k, we treat the probabilities as frequen
y weights (possibly after multiplying bya large number and rounding to integers, but the software 
an handle non-integer frequen
yweights). Using the weights, we �t the model to the pseudo response ve
tors using theweighted log-likelihood. The maximum likelihood estimates of the spe
i�ed model minimizesthe Kullba
k-Leibler divergen
e between the true model g(y;ψ0) and the mis-spe
i�ed, �ttedmodel f(y;ψ) KL (g(y;ψ0), f(y;ψ)) = Eg

{logg(y;ψ0)

f(y;ψ)

}
, (4.11)Let ψ∗ be the ML estimates of the model parameters ψ for the population data. White(1982) shows that√N(ψ̂N−ψ∗) → N (0, A(ψ∗)−1B(ψ∗)A(ψ∗)−1) where A(ψ∗)−1B(ψ∗)A(ψ∗)−1
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h estimator applied to the population data and
A(ψ∗) = lim

N

1

N

∂2

∂ψ2 logf(y;ψ)∣∣∣∣
ψ

∗

,

B(ψ∗) = lim
N

1

N

N∑

s=1

Varψ { ∂

∂ψ
logf(ys;ψ)

∣∣∣∣
ψ

∗

}
,where ∂2

∂ψ
2 logf(y;ψ) is the Hessian of the marginal log-likelihood, and Varψ { ∂

∂ψ
logf(ys;ψ)

∣∣∣
ψ

∗

}is the 
ovarian
e matrix of the subje
t-spe
i�
 
ontributions to the s
ore ve
tor. Hen
e, thesandwi
h estimator applied to the population data gives us the asymptoti
 sampling vari-an
e of the ML estimators for the mis-spe
i�ed models. We do not need repli
ates, as in a
onventional simulation study, to obtain sampling varian
es.4.6.2 Simulation DesignTo generate population data, we 
onsider a simple example with three items at three timepoints. At time t, the measurement part for the generating model 
an be written aslogit(Pr(ytis = 1|y(t−1)is; θts)) = αiθts − βi + λiy(t−1)is,where t = 1, 2, 3 and i = 1, 2, 3. We assume that the lagged e�e
t λ1 for item 1 is the samea
ross time, and that λ2 = 0 and λ3 = 0. We generate the lagged response y0is by initiallygenerating item responses at four time points (in
luding at t = 0) with the same values for
αi, βi, and λi.The stru
tural model is written as

θts = δs1 + (b1 + δs2)timet + ǫts, (4.12)where ǫts ∼ N(0, σ2
ǫ ), and

(
δs1
δs2

)
∼ N

([
0
0

]
,

[
σ2
s1 σs12

σs21 σ2
s2

])
.The true values for the model parameters are as follows:

• Item parameters α = (1.0, 1.2, 0.8)′ (α1 is �xed)
• Item parameters β = (−1.0, 1.5, 0)′

• Five di�erent values for lag parameter λ1 = 0.2, 0.4, 0.6, 0.8, and 1.0
• Mean slope b1 = 0.2
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• Varian
e parameters σǫ = 0.2, σs1 = 1.0, σs2 = 0.5, and σs12 = 0.0Using the generated population data, we estimate and 
ompare the following models:Model 1: Proposed model. The item parameters are allowed to be di�erent at time 1 fromthose at t > 1 (β ′

i 6= βi and α′
i 6= αi).Model 2: Independen
e model that ignores serial dependen
e. λi is not estimated.Model 3: Constrained model that ignores the initial 
onditions problem. The item param-eters are 
onstrained to be the same a
ross all time points (β ′

i = βi and α′
i = αi).Figure 4.3 illustrates these three estimated models in addition to the data generating modelfor item 1.In the �gure, y01 to y31 indi
ate the responses to item 1 and x01 to x31 represent the timesasso
iated with o

asions 0 to 3. β1 and α1 are the item parameters and λ1 is the 
oe�
ientfor the lagged response for item 1.Note that in the proposed model, the measurement model at time 1 for item 1 is param-eterized as logit(Pr(y1is = 1; θ1s)) = (α1 + α∗

1)θ1s − (β1 + β∗
1),where α∗

1 and β∗
1 are the free parameters that represent the di�eren
es in α1 and β1 betweenat time 1 and t > 1. That is, the item parameters at time 1 are α′

1 = α1+α
∗
1 and β ′

1 = β1+β
∗
1 .At time points 2 and 3, the item parameters are α1 and β1.For simulation 
onditions, we 
onsider di�erent values for the autoregression 
oe�
ient

λ1 = 0.2, 0.4, 0.6, 0.8, and 1.0. Let ψ denote one of the model parameters, ψ∗ the maximumlikelihood estimates for the population data, and se∗(ψ∗) and se∗R(ψ∗) denote the model-based and robust (sandwi
h estimator) standard errors for the population data when theweights add to 1 (if the weights add to Npop, we multiply the standard errors by √Npop). Inea
h 
ondition, we 
ompute the asymptoti
 bias as ψ∗ − ψ0 and the asymptoti
 root meansquared error (RMSE) as√(ψ∗ − ψ0)2 + (se∗R(ψ∗)/
√
N)2 for sample size N . To see how wellthese asymptoti
 results hold in �nite samples, we also simulate 200 datasets for N=200 andestimate model parameters and 
ompute the �nite-sample bias and RMSE in the usual way.The software gllamm (Rabe-Hesketh et al., 2005) in Stata was used for the simulationstudy.4.6.3 Power Cal
ulationWe assess the power of the proposed model to dete
t the lagged e�e
t λi. In prin
iple,power 
an be estimated by 
arrying out a Monte Carlo study that re
ords the proportionof repli
ations in whi
h the null hypothesis is reje
ted. The pro
edure 
an be tremendouslysimpli�ed, however, by following a te
hnique often used in SEM. One method, introdu
ed



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 80
PSfrag repla
ements True model Proposed model

Independen
e model Constrained model

y01 y11 y11

y11 y11

y21 y21

y21 y21

y31 y31

y31 y31

x01 x11 x11

x11 x11

x21 x21

x21 x21

x31 x31

x31 x31

θ θ

θ θ

β ′
1β1 β1

β1 β1

β1 β1

β1 β1

β1 β1

β1 β1

α′
1

α1

α1

α1
α1

α1 α1

α1
α1

α1 α1

α1
α1

λ1 λ1 λ1

λ1

λ1 λ1

λ1
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CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 81by Satorra & Saris (1985), is based on the fa
t that the likelihood ratio (LR) statisti
 hasan asymptoti
 non
entral 
hi-square distribution χ2(ω, df) with degrees of freedom df andnon
entrality parameter ω when the alternative model Ha is 
orre
t and the null model H0is tested, where H0 
orresponds to df 
onstraints. The 
ovarian
e matrix implied by theassumed model under Ha is used as population data and the models 
orresponding to Haand H0 are �t to this matrix. The 
orresponding LR statisti
 multiplied by N/Npop is thenused as non
entrality parameter ω, where N is the desired sample size and Npop is the samplesize spe
i�ed for ML estimation. Instead of the LR statisti
, Satorra & Saris (1985) alsosuggested using the Wald statisti
 for the model under Ha.We adopt the Satorra-Saris method: To 
ompute the power of the test of H0 : λia = λi0 ,we estimate the non
entrality parameter ω based on the Wald statisti
 with df = 1 (Bollen,1989, p.338-349). Spe
i�
ally, for sample size N
ω = N

(
λ∗ise∗(λ∗i ))2

,where λ∗i is the estimate obtained by �tting the Ha model to the population data generatedunder H0, and se∗(λ∗i ) is the asymptoti
 standard error when the weights for the populationdata add to 1. The asymptoti
 power of the test with signi�
an
e level α is 
al
ulated asPr{χ2(ω, df) > cα},where cα is a 
riti
al point.Asymptoti
 power is 
al
ulated for the di�erent values of λi and a range of sample sizes(with 10 quadrature points). In order to assess how well the asymptoti
 power agrees withthe �nite-sample power, we also simulate 200 datasets for N=200 subje
ts and estimatethe power based on the proportion of repli
ates where the null hypothesis is reje
ted in thelikelihood ratio test (with df=1).4.6.4 ResultsTables 4.1 to 4.5 list the parameter estimates, standard errors, robust standard errors, andlog-likelihoods for the three models in ea
h of the �ve simulation 
onditions. The standarderrors are the asymptoti
 standard errors for sample size N=100, i.e., se∗(ψ∗)/
√
100.The asymptoti
 bias of the proposed model is mostly zero or less than 0.01 a
ross all
onditions. The independen
e model that ignores serial dependen
e produ
es some degree ofbias in most parameters. The size of bias appears relatively large for the mean slope b1 andthe standard deviations σǫ, σs1, and σs2 (the item parameters 
annot be 
ompared be
ausetheir interpretation di�ers in the proposed model). The 
onstrained model that ignores theinitial 
onditions problem also produ
es some bias in most parameters. The bias appearslarge for the α, β, λ1, b1, and σǫ parameters, in parti
ular. The asymptoti
 standard errors
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Table 4.1: Population parameter estimates ψ̂∗ for 
ondition 1 (λ1=0.2). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the 
orrelation, σs12

σs1σs2
.Parameters True Proposed Independen
e ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.31 0.31 -0.96 0.23 0.23 -0.97 0.22 0.22
β∗
1 - 0.06 0.41 0.41 - - - - - -
β2 1.5 1.50 0.28 0.28 1.49 0.26 0.26 1.51 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.00 0.17 0.17 0.01 0.17 0.17
α∗
1 - 0.02 0.64 0.64 - - - - - -
α2 1.2 1.20 0.55 0.55 1.09 0.36 0.37 1.18 0.48 0.48
α3 0.8 0.80 0.35 0.35 0.73 0.24 0.24 0.79 0.31 0.31
λ1 0.2 0.20 0.50 0.50 - - - 0.17 0.46 0.46
b1 0.2 0.20 0.15 0.15 0.21 0.13 0.13 0.19 0.13 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.18 - -
σs1 1.0 1.00 - - 1.10 - - 1.03 - -
σs2 0.5 0.50 - - 0.56 - - 0.51 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -527.09 -527.16 -527.10
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Table 4.2: Population parameter estimates ψ̂∗ for 
ondition 2 (λ1=0.4). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the 
orrelation, σs12

σs1σs2
.Parameters True Proposed Independen
e ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.93 0.24 0.24 -0.93 0.22 0.22
β∗
1 - 0.12 0.41 0.41 - - - - - -
β2 1.5 1.50 0.29 0.28 1.48 0.25 0.25 1.52 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.17 0.17 0.02 0.17 0.17
α∗
1 - 0.04 0.65 0.65 - - - - - -
α2 1.2 1.20 0.55 0.55 0.98 0.33 0.35 1.16 0.47 0.48
α3 0.8 0.80 0.35 0.35 0.66 0.22 0.23 0.78 0.31 0.31
λ1 0.4 0.40 0.49 0.49 - - - 0.34 0.46 0.46
b1 0.2 0.20 0.15 0.15 0.23 0.13 0.14 0.18 0.13 0.13
σǫ 0.2 0.20 - - 0.00 - - 0.16 - -
σs1 1.0 1.00 - - 1.21 - - 1.06 - -
σs2 0.5 0.50 - - 0.61 - - 0.52 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -527.20 -527.51 -527.26
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Table 4.3: Population parameter estimates ψ̂∗ for 
ondition 3 (λ1=0.6). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the 
orrelation, σs12

σs1σs2
.Parameters True Proposed Independen
e ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.89 0.25 0.26 -0.89 0.22 0.22
β∗
1 - 0.17 0.40 0.40 - - - - - -
β2 1.5 1.50 0.29 0.29 1.47 0.25 0.25 1.53 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.17 0.17 0.03 0.17 0.17
α∗
1 - 0.02 0.66 0.65 - - - - - -
α2 1.2 1.20 0.56 0.56 0.88 0.36 0.37 1.14 0.47 0.48
α3 0.8 0.80 0.36 0.36 0.59 0.24 0.24 0.77 0.31 0.31
λ1 0.6 0.60 0.48 0.48 - - - 0.50 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.25 0.13 0.13 0.17 0.14 0.13
σǫ 0.2 0.20 - - 0.00 - - 0.14 - -
σs1 1.0 1.01 - - 1.33 - - 1.09 - -
σs2 0.5 0.51 - - 0.67 - - 0.53 - -
ρs12 0.0 0.00 - - 0.00 - - 0.00 - -Log-likelihood -526.89 -527.55 -527.00
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Table 4.4: Population parameter estimates ψ̂∗ for 
ondition 4 (λ1=0.8). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the 
orrelation, σs12

σs1σs2
.Parameters True Proposed Independen
e ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.86 0.27 0.27 -0.86 0.22 0.22
β∗
1 - 0.23 0.40 0.40 - - - - - -
β2 1.5 1.50 0.29 0.29 1.46 0.24 0.24 1.54 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.16 0.16 0.03 0.17 0.17
α∗
1 - 0.07 0.66 0.66 - - - - - -
α2 1.2 1.20 0.56 0.56 0.78 0.27 0.30 1.12 0.46 0.48
α3 0.8 0.80 0.36 0.36 0.52 0.18 0.20 0.76 0.30 0.31
λ1 0.8 0.80 0.48 0.48 - - - 0.67 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.28 0.16 0.16 0.16 0.14 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.11 - -
σs1 1.0 1.01 - - 1.10 - - 1.12 - -
σs2 0.5 0.51 - - 0.56 - - 0.54 - -
ρs12 0.0 0.00 - - 0.00 - - 0.01 - -Log-likelihood -526.14 -527.27 -526.33
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Table 4.5: Population parameter estimates ψ̂∗ for 
ondition 5 (λ1=1.0). In the data gener-ating model, β∗
1 = 0 and α∗

1 = 0. ρs12 is the 
orrelation, σs12

σs1σs2
.Par True Proposed Independen
e ConstrainedEst SE SER Est SE SER Est SE SER

β1 -1.0 -1.00 0.32 0.32 -0.83 0.29 0.30 -0.82 0.22 0.23
β∗
1 - 0.29 0.40 0.40 - - - - - -
β2 1.5 1.51 0.29 0.29 1.45 0.23 0.23 1.55 0.28 0.28
β3 0.0 0.00 0.18 0.18 0.01 0.16 0.16 0.04 0.17 0.17
α∗
1 - 0.08 0.66 0.66 - - - - - -
α2 1.2 1.20 0.56 0.56 0.68 0.24 0.28 1.10 0.46 0.48
α3 0.8 0.80 0.36 0.36 0.46 0.16 0.18 0.74 0.30 0.31
λ1 1.0 1.00 0.47 0.47 - - - 0.83 0.45 0.46
b1 0.2 0.20 0.15 0.15 0.31 0.17 0.17 0.16 0.14 0.13
σǫ 0.2 0.20 - - 0.02 - - 0.06 - -
σs1 1.0 1.01 - - 1.10 - - 1.15 - -
σs2 0.5 0.51 - - 0.56 - - 0.55 - -
ρs12 0.0 0.00 - - 0.00 - - 0.01 - -Log-likelihood -524.95 -526.64 -525.25
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lose to the robust standard errors in all models a
ross all 
onditions (with the di�eren
esless than 0.01). The independen
e and 
onstrained models tend to somewhat underestimatethe standard errors for all model parameters a
ross all 
onditions.For the lag parameter, we 
ompared the asymptoti
 standard errors for N=200 withthe standard deviations of the parameter estimates and the means of the estimated standarderrors, based on 200 simulated datasets. With 5 quadrature points, the standard deviations ofthe parameter estimates are a bit larger than the means of the standard error estimates, butboth are smaller than the asymptoti
 standard errors. Spe
i�
ally, the standard deviationsof the estimates are about 18%, 24%, 31%, 32%, 29%, and 56% smaller than the asymptoti
standard errors, and the means of the standard error estimates are about 31%, 37%, 43%,46%, 48%, and 51% smaller than the asymptoti
 standard errors for λ1 = 0, 0.2, 0.4, 0.6,0.8, and 1.0, respe
tively. We also tried 10 and 15 quadrature points with λ1 = 0.2, but theresults hardly 
hanged.Figures 4.4 to 4.8 
ompare the asymptoti
 bias for ea
h parameter between the modelsa
ross 
onditions (ex
ept σs12 that shows little bias (
lose to 0) in all models). For theparameters λ1 and b1, the estimated 95% 
on�den
e intervals for the �nite-sample bias are
omputed based on 200 simulated datasets for N=200 and for di�erent values of λ1.Overall, the asymptoti
 bias tends to in
rease as the true value for λ1 in
reases from 0to 1. The asymptoti
 bias for λ1 lies in the estimated 95% 
on�den
e interval for the �nite-sample bias in all 
onditions. Ignoring serial dependen
e produ
es parti
ulary large biasfor all α, b1, σs1, and σs2 parameters, and ignoring the initial 
onditions problem produ
eslarger bias for β3 and σǫ than the other parameters. The asymptoti
 bias for b1 lies in theestimated 95% 
on�den
e interval in all 
onditions ex
ept when λ1 = 1.0.Figure 4.9 presents the asymptoti
 RMSE for the mean slope parameter b1 between thethree models when N=200, 1,000, and 3,000.With the sample size N=200, the asymptoti
 RMSE is larger in the proposed modelthan in the independen
e model when λ1 < 0.4 and in the 
onstrained model λ1 < 1.0.This is be
ause the asymptoti
 standard errors are underestimated in the independen
e and
onstrained models when the sample size is small. With the sample size N=1,000, theasymptoti
 RMSE is larger in the independen
e model when λ1 > 0.2 and in the 
onstrainedmodel when λ1 > 0.4 than in the proposed model. With the sample size N=3,000, theasymptoti
 RMSE is larger in both independen
e and 
onstrained models when λ1 > 0.2than in the proposed model.Now we illustrate the marginal item 
hara
teristi
 
urves (ICCs) for the three models.Figure 4.10 shows ICCs in 
ondition 5 (λ1 = 1.0).In the �gure, the dashed 
urves represent the true ICCs from the data generating model,the solid 
urves represent the ICCs for the estimated models at time points 2 and 3, and thedashed-dotted 
urves represent the estimated ICC at time 1.For the proposed model, there is nearly no gap between the estimated 
urves a
ross time.When serial dependen
e is ignored, the estimated ICCs are the same a
ross all time points,but they are all o� from (lower than) the true ICCs. When the initial 
onditions problem is
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Figure 4.4: Asymptoti
 bias for the item parameters β1 (top), β2 (middle), and β3 (bottom).Note that β have a di�erent meaning in the proposed model and the 
onstrained model thatin
lude the lag parameter.



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 89
−

.5
−

.4
−

.3
−

.2
−

.1
0

A
sy

m
pt

ot
ic

 B
ia

s

0 .2 .4 .6 .8 1

Proposed Independence Constrained
PSfrag repla
ements λ1

−
.4

−
.3

−
.2

−
.1

0
A

sy
m

pt
ot

ic
 B

ia
s

0 .2 .4 .6 .8 1

Proposed Independence Constrained
PSfrag repla
ements λ1

Figure 4.5: Asymptoti
 bias for the item parameters α2 (top) and α3 (bottom). Note that
α have a di�erent meaning in the proposed model and the 
onstrained model that in
ludethe lag parameter.
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 bias for the lag parameter λ1. The estimated 95% 
on�den
e intervalsfor the �nite-sample bias based on 200 repli
ates (N=200) are presented for the proposedmodel.
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 bias for the mean slope b1. The estimated 95% 
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e intervalsfor the �nite-sample bias based on 200 repli
ates (N=200) are presented for the proposedmodel.
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 bias for the standard deviations of time e�e
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CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 94ignored, the estimated ICC at time 1 is di�erent from (lower than) the estimated ICCs attime points 2 and 3 and the true ICCs.This result shows that imposing the invarian
e assumption on the item parameters a
rosstime a
tually for
es the ICC to be di�erent at time 1 from ICCs at later time points. Freeingthe item parameters at time 1 helps the ICCs to resemble ea
h other a
ross all time points.Ignoring serial dependen
e results in bias in the ICCs at all time points.Asymptoti
 power 
urves to dete
t the lagged e�e
t for the proposed model is shown inFigure 4.11 as a fun
tion of the sample size. The estimated 95% 
on�den
e intervals for the�nite-sample power are 
omputed for the proposed model based on the LR test (df=1) using200 simulated datasets (with 5 quadrature points). The same estimated 
on�den
e intervalsare obtained with more quadrature points (10 and 15) at N=200.
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ements
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λ1 = .8 λ1 = 1.0Figure 4.11: Asymptoti
 power to dete
t the lagged e�e
t as a fun
tion of the sample sizein varying values for the lagged e�e
t. The estimated 95% 
on�den
e intervals for the �nitesamples using LR tests (based on 200 repli
ates) are shown for the proposed model for λ1 =0.2, 0.4, 0.6, 0.8 and 1.0 at N=200, 400, and 800.The sample size required to a
hieve a power of 0.80 is about 200, 300, 600 for λ1 =1.0, 0.8, and 0.6, respe
tively. For λ1 ≤ 0.4, N ≥ 1, 000 is required. The estimated 95%
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on�den
e intervals in
lude the asymptoti
 
urves at N=200, 400, and 800, based on the LRtest. When the Wald test was used (df=1) for the �nite samples, the lower bounds of theestimated 95% 
on�den
e intervals tend to be pla
ed somewhat higher than the asymptoti
power 
urves. It makes sense given that the standard errors were a bit underestimated forthe �nite samples. It is also a known fa
t that the likelihood ratio test is more 
onservativeand reliable than the Wald test for �nite samples (e.g., Engle, 1980; Buse, 1982)4.7 Empiri
al StudyThe Korea Youth Panel Survey (KYPS; Lee et al., 2010) tra
ked a nationally representativesample of se
ond year middle s
hool students every year from 2003 to 2008. Six waves of thedata were 
olle
ted where students progressed from middle s
hool to high s
hool at wave 3and were out of high s
hool at wave 6. There are 3,449 students in 103 middle s
hools atwave 1 and 3,125 students in 911 high s
hools at wave 3. At wave 6, there are 2,833 students.For simpli
ity, students who swit
hed their s
hool membership during the middle s
hool orhigh s
hool years were ex
luded from the data (less than 2% ea
h year). The self-esteems
ale was used whi
h 
onsisted of 12 items on a 5-point Likert s
ale (from strongly disagreeto strongly agree). We 
hose seven items that appear more 
losely related to ea
h other(e.g., all negatively worded), whi
h was 
on�rmed by Cronba
h's alpha (about 0.65, ea
hyear). These items are: 1) I sometimes think I am a useless person, 2) I sometimes think Iam a bad person, 3) I sometimes feel like I am a failure, 4) I think I am a trouble maker, 5) Ithink I am a juvenile delinquent, 6) Other people think I am a trouble maker, and 7) Otherpeople think I am a juvenile delinquent. To measure a positive self-image (or self-esteem),the response 
ategories were reversed and di
hotomized.We �t the full model (Ma) in
luding the lag parameters for all items using gllamm (Rabe-Hesketh et al., 2005) with 5 quadrature points. Seven separate models (M1 to M7) were also�t, ea
h in
luding a lag parameter for one item (items 1 to 7), respe
tively. In addition, aredu
ed model (M0) without the lag parameter (λi) and without the two free parameters(α∗
i , β∗

i at time 1) was �t for 
omparison. Tables 4.6 and 4.7 summarize the results.In all tables, the model-based standard errors are presented sin
e there is not mu
hdi�eren
e (less than 0.01) between the model-based and robust standard errors.In Table 4.6, the estimates of the lag parameter and free item parameters are listed.For the lag parameter, the Wald and likelihood ratio (LR) test statisti
s are also given. To
ompute the LR statisti
, the log-likelihood for the redu
ed model (M0) is 
ompared withthe log-likelihoods for models M1 to M7, ea
h with 3 degrees of freedom. For the full model(Ma), only the Wald statisti
s are presented. The lagged e�e
ts (λi) are signi�
ant and theestimates are quite large for all items, ranging from 0.65 to 1.03 (odds ratio 1.91 to 2.80)in the separate models (M1 to M7). The p-values are smaller than 0.0001 based on bothLR and Wald tests, and the LR statisti
s appear similar to or slightly larger than the Waldstatisti
s. In the full model (Ma), the lagged e�e
ts are also all signi�
ant and somewhat
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Table 4.6: Parameter estimates and standard errors (in the parentheses) for the lag and freeitem parameters for the Korea Youth Panel Survey (KYPS) data. The estimates from thefull model (Ma) and separate models (M1 to M7) are presented for ea
h item. β ′

i(= βi + β∗
i )and α′

i(= αi + α∗
i ) are also presented.Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

λiMa 0.85 0.92 0.97 1.21 2.05 2.29 2.51(0.04) (0.04) (0.04) (0.07) (0.13) (0.14) (0.15)(Wald) (389.66) (365.57) (473.49) (267.64) (231.04) (257.92) (258.24)M1-M7 0.65 0.67 0.75 0.67 0.75 1.03 1.01(0.04) (0.04) (0.04) (0.06) (0.11) (0.11) (0.12)(Wald) (239.01) (208.80) (309.41) (100.80) (42.25) (82.08) (64.32)(LR) (243.36) (208.00) (330.68) (195.24) (51.84) (116.96 ) (106.50)
β∗
iMa 0.33 0.28 0.63 0.13 1.61 0.17 1.81(0.06) (0.07) (0.06) (0.12) (0.42) (0.30) (0.47)M1-M7 0.26 0.19 0.58 -0.28 0.37 -0.54 0.77(0.05) (0.06) (0.05) (0.09) (0.21) (0.24) (0.37)
β ′
iMa -0.69 -1.16 -0.04 1.5 5.18 3.55 5.57M1-M7 -0.79 -1.26 -0.16 1.24 4.42 3.20 5.16
α∗
iMa -0.25 -0.23 -0.24 -0.5 -0.64 -1.53 -0.95(0.04) (0.05) (0.04) (0.09) (0.24) (0.20) (0.26)M1-M7 -0.08 -0.04 -0.02 -0.26 -0.33 -1.13 -0.47(0.04) (0.05) (0.05) (0.01) (0.22) (0.20) (0.24)
α′
iMa 0.75 0.94 0.86 1.44 2.55 1.93 2.54M1-M7 0.92 1.07 1.03 1.70 2.82 2.41 2.92



CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL 97Table 4.7: Parameter estimates and standard errors (in the parentheses) for the stru
turaland measurement parts of the model for the Korea Youth Panel Survey (KYPS) data. Re-du
ed model (M0) and full model (Ma) are presented in addition to the separate models(M1 to M7). ρs12 is the 
orrelation, σs12

σs1σs2
.M0 Ma M1 M2 M3 M4 M5 M6 M7Stru
tural

b1 0.27 0.24 0.26 0.27 0.28 0.26 0.28 0.26 0.27(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
σǫ 1.41 1.46 1.35 1.40 1.40 1.42 1.39 1.42 1.39(0.08) (0.09) (0.08) (0.07) (0.07) (0.08) (0.07) (0.08) (0.07)
σs1 0.83 0.96 0.79 0.82 0.80 0.76 0.82 0.75 0.84(0.03) (0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04 )
σs2 0.28 0.26 0.24 0.26 0.26 0.24 0.28 0.24 0.26(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
ρs12 0.05 -0.26 0.03 0.04 0.05 0.43 0.04 0.47 0.01(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01 )Measurement
β1 -0.85 -1.02 -1.05 -0.80 -0.83 -0.80 -0.81 -0.83 -0.79(0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03 (0.03) (0.03)
β2 -1.31 -1.44 -1.27 -1.45 -1.31 -1.25 -1.27 -1.29 -1.24(0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04 (0.04) (0.04)
β3 -0.35 -0.67 -0.31 -0.31 -0.74 -0.30 -0.31 -0.33 -0.29(0.03) (0.05) (0.03) (0.03) (0.04) (0.03) (0.03 (0.03) (0.04)
β4 1.76 1.37 1.82 1.83 1.76 1.52 1.81 1.80 1.87(0.06) (0.10) (0.07) (0.07) (0.06) (0.08) (0.06) (0.06) (0.07)
β5 4.46 3.57 4.80 4.80 4.69 4.56 4.05 4.58 4.87(0.13) (0.22) (0.17) (0.17) (0.16) (0.14) (0.30) (0.14) (0.18)
β6 4.31 3.38 4.38 4.38 4.29 4.47 4.38 3.74 4.32(0.16) (0.25) (0.15) (0.15) (0.15) (0.16) (0.16) (0.20) (0.16)
β7 5.39 3.76 5.38 5.38 5.29 5.55 5.30 5.28 4.39(0.19) (0.25) (0.18) (0.18) (0.17) (0.20) (0.18) (0.18) (0.23)
α2 1.17 1.17 1.22 1.11 1.18 1.16 1.17 1.16 1.17(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
α3 1.09 1.10 1.13 1.09 1.05 1.09 1.09 1.09 1.09(0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
α4 2.01 1.94 2.05 1.97 1.98 1.96 1.96 2.01 1.97(0.06) (0.06) (0.06) (0.05) (0.05) (0.06) (0.05) (0.06) (0.05)
α5 3.16 3.19 3.37 3.24 3.25 3.08 3.15 3.18 3.21(0.11) (0.14) (0.13) (0.12) (0.12) (0.10) (0.12) (0.11) (0.12)
α6 3.49 3.46 3.45 3.31 3.35 3.45 3.33 3.54 3.17(0.16) (0.17) (0.14) (0.13) (0.14) (0.16) (0.14) (0.17) (0.12)
α7 3.76 3.49 3.66 3.52 3.56 3.70 3.47 3.58 3.39(0.18) (0.17) (0.15) (0.14) (0.14) (0.17) (0.14) (0.16) (0.15)Log-likelihood -55211 -54278 -55089 -55107 -55045 -55113 -55185 -55152 -55157
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ular, the lag parameter estimates for items 5 to7 (odds ratio 7.38 to 12.18) are relatively larger than for other items (odds ratio 2.34 to3.35) in the full model. This suggests that items 5 to 7 are more strongly in�uen
ed by theprevious responses to the same items. The responses to these items are also more stablea
ross time. These items are somewhat more negative than the other items and related tojuvenile delinquen
y and other people's judgement of the student's behaviors.The free item parameter estimates range from -0.54 to 0.77 for β∗
i and -0.02 to -1.13 for

α∗
i in the separate models (M1 to M7). The estimates in the full model (Ma) tend to besomewhat larger for β∗

i and smaller for α∗
i than those in M1 to M7. We also present the itemparameters β ′

i (=βi + β∗
i ) and α′

i (=αi + α∗
i ) in Ma and M1 to M7. The di�eren
es betweenthese estimates in the full and separate models are smaller in β ′

i and α′
i than in β∗

i and α∗
i .Table 4.7 lists parameter estimates and standard errors in the stru
tural and measurementparts in all models (Ma, M0, and M1 to M7). Overall, there is not mu
h di�eren
e betweenthe models in the stru
tural model parameters ex
ept ρs12 is larger in absolute values inMa than in other models. Spe
i�
ally, the estimated mean slope (b1) is about 0.7, and theestimated standard deviations of the time spe
i�
 e�e
ts (σǫ), the initial status (σs1), andthe growth rate (σs2) are quite large, about 1.40, 0.80, and 0.26, respe
tively.Based on the LR test, the full model (Ma) �ts signi�
antly better than all separatemodels (p < 0.001, df=20) and the redu
ed model (M0) (p < 0.001, df=23). The Waldtests for the lag parameters in the full model suggest that the full model �ts better thanea
h of the seven models with one lag parameter set to zero (and six lag parameters freelyestimated) as well as the seven separate models with a lag parameter for one item at a time.These model 
omparisons 
orrespond to the �rst steps of forward sele
tion and ba
kwardelimination for model sele
tion. Based on these results, the full model is 
hosen over the 15
ompeting models.Figure 4.12 illustrates growth traje
tories for 11 hypotheti
al students over six timepoints based on the full model (Ma). The latent trait values were generated using (4.12)where random e�e
ts were drawn from the 
orresponding multivariate and univariate normaldistributions.Overall, the Korean students' self-esteem tends to in
rease over time from grade 2 inmiddle s
hool through one year after high s
hool. The initial status and growth rate varybetween students, but the variation in the initial status appears somewhat larger than thevariation in the growth rate.
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Figure 4.12: Growth traje
tories for 11 hypotheti
al students (based on the full model) withrandomly drawn random e�e
ts in the Korea Youth Panel Survey (KYPS) data.
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luding RemarksIn this paper, we presented a �rst-order autoregressive IRT growth model for longitudinalbinary item analysis. The proposed model for studying growth of a latent trait over time a
-
ommodates serial dependen
e between responses to the same items a
ross time. Our modelwas illustrated with a linear growth traje
tory, but an extension to a polynomial growthtraje
tory is straightforward. For polytomous responses, we 
an apply te
hniques that havebeen developed for 
ategori
al time series data (e.g. Fahrmeir & Kaufmann, 1987). However,su
h extensions in
rease the number of parameters to estimate and thus are 
omputationallydemanding.We showed that the �rst-order autoregressive measurement model is equivalent to an IRTmodel with intera
tion parameters for responses at adja
ent time points. Higher order in-tera
tions 
an also be 
onsidered. For example, an AR(2) autoregressive model is equivalentto allowing for intera
tions among the item responses two time-points apart.Our model deals with serial 
orrelations in longitudinal item analysis whi
h has oftenbeen negle
ted in IRT. Standard ML software 
an be used for estimating the proposedmodel. Estimation requires only three-dimensional integrals and the dimensionality of theintegrals stays the same regardless of the number of time points and items.The importan
e of addressing the initial 
onditions problem in autoregressive IRT mod-els were dis
ussed and illustrated using simulations. We showed that 
onstraining the itemparameters to be equal a
ross time 
an a
tually for
e the ICCs to di�er a
ross time, resultingin a violation of measurement invarian
e. A proper way of a
hieving approximate measure-ment invarian
e is to free the item parameters at time 1 so that the ICCs 
an resemble ea
hother a
ross time.The proposed model 
an be estimated using existing ML software su
h as gllamm (Rabe-Hesketh et al., 2005) and M-Plus (Muthén & Muthén, 2008). However, when the data havea more 
omplex data stru
ture, su
h as a 
ross-
lassi�
ation of students by middle s
hooland high s
hool (Jeon & Rabe-Hesketh, 2012), su
h software may no longer be available to�t the model.
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Chapter 5Con
lusionIn this dissertation, I 
onsidered new estimation methods and appli
ations of 
omplexgeneralized linear mixed models (GLMMs) for measurement and growth. The dissertation
onsists of three papers that 
orrespond to Chapters 2, 3, and 4. Below I provide a briefsummary for ea
h 
hapter.In Chapter 2, the variational maximization-maximization (MM) algorithm was presentedfor estimating GLMMS with 
rossed random e�e
ts. The variational MM algorithm is amodi�ed version of the traditional EM algorithm where the E-step is repla
ed by anotherM-step that minimizes the KL distan
e between the variational distribution and the trueposterior distribution. This new M-step is equivalent to maximizing the lower bound to thelog-likelihood with respe
t to the variational distribution.The variational MM algorithm is more general and �exible than the Gaussian variationalapproximation be
ause our algorithm does not require a pre-spe
i�ed fun
tional form forthe variational distribution. The general form for the variational density fun
tion is derivedso that di�erent types of priors for the random e�e
ts 
an be handled. Importantly, we
an estimate models with 
rossed random e�e
ts based on the mean-�eld approximationthat assumes 
onditionally independent latent variables given the data. We found that withreasonable sample sizes and prior varian
es, the posterior 
orrelations between the randome�e
ts are negligible. In addition, the lower bound was quite 
lose to the marginal log-likelihood in the examples that we 
onsidered in this paper.Several simulation examples were provided to evaluate the performan
e of the variationalMM algorithm and to 
ompare it with the Lapla
e approximation for GLMMs with 
rossedrandom e�e
ts. The results show that overall, the variational MM algorithm performs as wellas the Lapla
e approximation. With small 
luster sizes, however, our algorithm performsbetter than the Lapla
e approximation espe
ially for the varian
e parameters. Therefore,the variational MM method 
ould be an e�e
tive alternative to the Lapla
e approximation.In Chapter 3, the Monte Carlo lo
al likelihood (MCLL) method was presented for max-imum likelihood estimation of GLMMs with 
rossed random e�e
ts. The MCLL method



CHAPTER 5. CONCLUSION 102initially treats the model parameters as random variables and samples them jointly withrandom e�e
ts, from the posterior distribution for a parti
ular prior. The likelihood fun
-tion is then approximated up to a 
onstant as a lo
al likelihood density estimate of theposterior divided by the prior.The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,2004), whi
h uses a kernel density estimation to approximate the posterior. The key advan-tage of MCLL is that it provides methods for obtaining standard errors whereas MCKL doesnot. MCLL is also less sensitive to bandwidth sele
tion than MCKL.It is important to note that MCLL allows likelihood inferen
e for any 
omplex modelsfor whi
h ML estimation may be infeasible but MCMC methods are possible. For example,in addition to GLMMs with 
rossed random e�e
ts 
onsidered here, the MCLL algorithm
ould be used to �t state-spa
e models with higher dimensional latent variables. Potentialappli
ations for MCLL are therefore far beyond the models dis
ussed in this paper. Wehave shown that the MCLL method provides results 
lose to the ML estimates. Even ifinformative priors are spe
i�ed, MCLL provides estimates 
lose to the ML estimates, whereasthe Bayesian estimates 
ould be quite di�erent. When ML inferen
e is desired for highly
omplex models, the MCLL method seems to be an e�e
tive and pra
ti
al 
hoi
e.In Chapter 4, a new autoregressive IRT growth model was proposed for longitudinal bi-nary item analysis. The proposed model for studying growth of a latent trait a

ommodatesserial dependen
e between responses to the same items a
ross time. We showed that the�rst-order autoregressive measurement model is equivalent to an IRT model with intera
-tion parameters for responses at adja
ent time points. Higher order intera
tions 
an alsobe 
onsidered. For example, an AR(2) autoregressive model is equivalent to allowing forintera
tions among the item responses two time-points apart.The proposed model deals with serial 
orrelations in longitudinal item analysis whi
h hasoften been negle
ted in IRT. Standard ML software 
an be used for estimating the proposedmodel. Estimation requires only three-dimensional integrals and the dimensionality of theintegrals stays the same regardless of the number of time points and items.The importan
e of addressing the initial 
onditions problem in autoregressive IRT mod-els were dis
ussed and illustrated using simulations. We showed that 
onstraining the itemparameters to be equal a
ross time 
an a
tually for
e the ICCs to di�er a
ross time, resultingin a violation of measurement invarian
e. A proper way of a
hieving approximate measure-ment invarian
e is to free the item parameters at time 1 so that the ICCs 
an resemble ea
hother a
ross time.
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