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Abstract

Estimation of Complex Generalized Linear Mixed Models
for Measurement and Growth

by
Minjeong Jeon
Doctor of Philosophy in Education
University of California, Berkeley
Professor Sophia Rabe-Hesketh , Chair

Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is
technically challenging because of the intractable likelihoods that involve high dimensional
integrations over random effects. The problem is magnified when the random effects have a
crossed design and thus the data cannot be reduced to small independent clusters. A variety
of methods have been developed for approximating the intractable likelihood functions, but
there seems no method yet that is both computationally efficient and accurate in a wide
range of situations.

In this dissertation, I consider new estimation methods and applications of complex
GLMMs for measurement and growth. The dissertation consists of three papers, 1) Varia-
tional maximization-maximization (MM) algorithm, 2) Monte Carlo local likelihood (MCLL)
estimation, and 3) Autoregressive item response theory (IRT) growth model for longitudinal
item analysis. In the first and second papers, I develop two ML methods for estimat-
ing GLMMs with crossed random effects. The variational MM algorithm is a modified
expectation-maximization (EM) algorithm where a variational density is introduced in the
expectation (E) step to approximate the true posterior density of the random effects given
the data. The E-step is replaced by another maximization step that minimizes the Kullback-
Leibler (KL) divergence between the posterior and the variational density, or equivalently,
maximizes the lower bound of the log-likelihood with respect to the variational distribu-
tion. The MCLL algorithm uses the posterior samples of model parameters obtained from
Markov chain Monte Carlo (MCMC) for likelihood inference. The posterior density is es-
timated by local likelihood density estimation and the likelihood function is approximated
up to a constant by the local likelihood density estimate of the posterior divided by the
prior. The performance of these new algorithms is evaluated using simulation and empirical
studies and compared with other ML, and Bayesian estimators. In the third paper, a new
autoregressive IRT growth model is proposed to take into account serial correlations among
responses to the same items over time. The consequences of ignoring serial dependence and



the initial conditions problem are investigated using simulations. The new model is applied
to longitudinal data of Korean students’ self-esteem.

Key words: Maximum likelihood estimation; Generalized liner mixed model; Crossed ran-
dom effects; Variational approximation; MM algorithm; Local likelihood density estimation;
MCLL; Autoregressive models; Local dependence; Initial conditions problem
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Chapter 1

(General Introduction

Generalized linear mixed models (GLMMs), also known as multilevel or hierarchical
generalized linear models (Raudenbush & Bryk, 2002; Goldstein, 2003; Rabe-Hesketh &
Skrondal, 2012), are popular models for multilevel data with units nested in clusters. The
canonical examples of multilevel data are students nested within schools and repeated mea-
surements nested within subjects. Item response theory (IRT) models can be conceptualized
as generalized linear mixed models (Rijmen et al., 2003).

Crossed random effects can be incorporated in GLMMS to handle data with two or
more non-nested classifications such as students nested within schools cross-classified with
neighborhoods (e.g., Goldstein, 1987; Raudenbush, 1993; McCaffrey et al., 2004). In psycho-
metrics, crossed random effects models are also used e.g., for IRT measurement models with
random item parameters (Van den Noortgate & De Boeck, 2003; De Boeck, 2008). Unlike
typical IRT models that consider person as random and items as fixed, random item IRT
models treat persons and items as random and the resulting model becomes a crossed ran-
dom effects model. Random item IRT models are found to be useful in various settings, for
instance, to account for random sampling of items from an item bank, to model item families,
and to represent differential item functioning (for more examples, see e.g., De Boeck, 2008).

Maximum likelihood estimation of GLMMs is technically challenging because likelihoods
often involve high dimensional intractable integrations over random effects (or latent vari-
ables). The problem is magnified when the random effects have a crossed design and thus
the data cannot be reduced to small independent clusters (Vaida & Meng, 2005).

Various methods have been proposed for approximating the intractable likelihood func-
tion. For instance, the Laplace approximation (Tierney & Kadane, 1986; Lindstrom & Bates,
1988; Wolfinger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,
2005; Schilling & Bock, 2005) have been widely used. The Laplace approximation and sim-
ilarly, penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to perform
poorly for small cluster sizes and for large variance components (Breslow & Lin, 1995; Joe,
2008). Adaptive quadrature is more accurate but computationally more demanding than
Gaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).
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Monte Carlo (MC) methods have also been utilized in various ways for ML estimation.
Most methods are based on sampling the random effects given fixed parameter estimates.
Several MC expectation maximization (MCEM) algorithms have been proposed using various
sampling methods: e.g., a Metropolis-Hastings (McCulloch, 1997), an independent sampler
based on importance sampling or rejection sampling (Booth & Hobert, 1999), and a slice
sampler (Vaida & Meng, 2005). The basic idea is to use MC samples to approximate the
intractable conditional expectation for the E-step of the EM algorithm. MCEM requires
samples at each iteration of the algorithm. In addition, the algorithm needs a method
for calculating standard errors of the parameter estimates because it does not evaluate the
likelihood function or its derivatives. A method for monitoring convergence may also be
required (e.g., Booth & Hobert, 1999).

In addition, Bayesian methods have been suggested using diffuse priors to approximate
ML estimates (Tanner, 1993; Diggle et al., 1994; McCulloch, 1997). However, this is often
inappropriate for models with random effects because the posterior may not exist for diffuse
priors (Natarajan & McCulloch, 1995; Hobert & Casella, 1996).

In this dissertation, I consider new estimation methods and applications of complex
GLMMs for measurement and growth. The dissertation consists of three papers:

1. Variational maximization-maximization (MM) algorithm
2. Monte Carlo local likelihood (MCLL) method
3. Autoregressive IRT growth model for longitudinal item analysis

In the first and second papers, I develop two methods for estimating GLMMSs with crossed
random effects. In the third paper, I propose a new autoregressive IRT growth model that
takes into account serial correlations among responses to the same items over time and
apply it to longitudinal data of Korean students’ self esteem. The three papers correspond
to Chapters 2, 3, and 4, respectively. An abstract of each paper is provided below.

Chapter 2:
Variational maximization-maximization algorithm

A variational maximization-maximization (MM) algorithm is developed for approximate
maximum likelihood estimation of generalized linear mixed models with crossed random
effects. The variational MM algorithm is a modified EM algorithm where the true posterior is
approximated by a variational density in the E-step. The variational density function is found
by minimizing the KL divergence between the posterior and the variational distribution or
equivalently, maximizing the lower bound of the log-likelihood with respect to the variational
distribution. The variational MM algorithm does not require a pre-specified form for the
variational distribution. Models with crossed random effects can be estimated by the mean-
field approximation that assumes the latent variables are conditionally independent given
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the data. Adaptive quadrature is incorporated to improve the accuracy of the algorithm.
Methods for estimating standard errors, evaluating the marginal likelihood, and predicting
the random effects are provided. Performance of the algorithm is evaluated and compared
with approximate maximum likelihood estimation based on the Laplace approximation using
empirical and simulation examples.

Chapter 3:
Monte Carlo local likelihood method

A Monte Carlo local likelihood (MCLL) method is developed for estimating generalized
linear mixed models (GLMMSs) with crossed random effects. MCLL initially treats model
parameters as random variables and samples them from the posterior for a particular prior.
The likelihood function is approximated up to a constant by fitting a density to the posterior
samples and dividing it by the prior. In the MCLL algorithm, the posterior density is approx-
imated using local likelihood density estimation (Loader, 1996), where the log-likelihood is
locally approximated by a polynomial function. In his Monte Carlo kernel likelihood (MCKL)
method, De Valpine (2004) proposed such an approach but using kernel density estimation
instead of local likelihood density estimation. A novel method to compute standard errors
is developed for the MCLL method. Using empirical and simulation examples, we evaluate
the MCLL algorithm and compare it to other maximum likelihood and Bayesian estimators.

Chapter 4:
Autoregressive IRT growth model for longitudinal item analysis

A first-order autoregressive or dynamic IRT growth model is proposed for longitudinal binary
item analysis where responses to the same items are conditionally dependent across time
given the latent trait. We show that the proposed model is equivalent to a local dependence
IRT model that includes interaction parameters for responses at adjacent time points. The
initial conditions problem is addressed using the method suggested by Heckman (1981)
and Aitkin & Alfo (2003). The implication of this treatment is discussed with respect
to measurement invariance. The proposed model is applied to longitudinal data on Korean
students’ self esteem. We investigate the consequences of ignoring local dependence and the
initial conditions problem when the data are generated from a first-order autoregressive IRT
growth model.

Notes

Some methods and applications overlap and the notation is not necessarily consistent across
the three chapters.



Chapter 2

Variational Maximization-Maximization
Algorithm

2.1 Introduction

Maximum likelihood estimation of generalized linear mixed models (GLMMs) is technically
challenging because the likelihoods often involve high dimensional intractable integrals over
random effects (or latent variables). The problem is magnified when the random effects have
a crossed design and thus the data cannot be reduced to small independent clusters.

Various methods have been proposed for approximating the intractable likelihood func-
tions. For instance, the Laplace approximation makes use of a second-order Taylor expansion
of the integrand around the mode of the random effects (Tierney & Kadane, 1986; Lindstrom
& Bates, 1988; Wolfinger, 1993). Penalized quasi-likelihood (PQL) uses the Laplace approx-
imation but includes a penalty term in the approximate likelihood function (Breslow &
Clayton, 1993). These approximate methods are known to perform poorly for small cluster
sizes and for large variance components (Breslow & Lin, 1995; Joe, 2008).

Gaussian quadrature (Bock & Lieberman, 1970; Butler & Moffitt, 1982) has been used,
which approximates integrals by a weighted average of the integrand evaluated at predeter-
mined abscissas. The Gaussian quadrature rule can be viewed as a deterministic version
of Monte Carlo integration in which random samples of the random effects are generated
from a normal prior distribution (Pinheiro & Bates, 1995). Adaptive quadrature (Naylor &
Smith, 1982; Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005; Schilling & Bock, 2005) is
equivalent to using importance sampling in the context of Gaussian quadrature where the
grid of abscissas is centered around the conditional modes or means of the random effects
rather than zero. Adaptive quadrature with one quadrature point is equivalent to the Laplace
approximation. For satisfactory results, Gaussian quadrature methods would require many
abscissas. Adaptive quadrature is more accurate but computationally more demanding than
Gaussian quadrature (Pinheiro & Bates, 1995; Rabe-Hesketh et al., 2005).
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An expectation-maximization (EM) algorithm has been utilized for GLMMs where the
random effects are treated as missing data (Dempster et al., 1977). To approximate the con-
ditional expectation in the E-step, Monte Carlo (MC) methods have been used with various
sampling methods: e.g., a Metropolis-Hastings (McCulloch, 1997), an independent sampler
based on importance sampling or rejection sampling (Booth & Hobert, 1999), and a slice
sampler (Vaida & Meng, 2005). However, MCEM is computationally demanding because it
requires samples at each iteration of the algorithm and a method for monitoring convergence.
Schafer (1987) used a scaled normal density function to approximate the posterior in the
E-step and Steele (1996) suggested a second-order Laplace approximation for the integrals.

Variational approximation methods have been used in machine learning (Jordan et al.,
1999; Jordan, 2004; Bishop, 2006). Humphreys & Titterington (2003) and Ormerod (2010)
applied these ideas to statistical inference. Recently, Gaussian variational approximation
methods have been proposed (Opper, 2009; Ormerod & Wand, 2012) for estimating GLMMs
with nested random effects. The idea of the Gaussian variational approximation is to use
a Gaussian density as a variational distribution to approximate the exact conditional dis-
tribution of the random effects given the observed data. However, the Gaussian variational
approximation can be poor if the posterior is not close to Gaussian. Importantly, this method
is restricted to models with nested random effects.

In this paper, we present a different version of the variational approximation method.
Unlike the Gaussian variational approximation, no pre-specified form for the variational
distribution is required in our algorithm. In addition, by using the mean-field approximation
which treats the latent variables as conditionally independent given the data, we can estimate
models with crossed random effects.

The outline of this chapter is as follows. In Section 2.2, we define the type of models that
we consider. In Sections 2.3 and 2.4, the variational MM algorithm is described in detail. In
Section 2.5, related issues are discussed such as estimating standard errors, evaluating the
marginal likelihood, and predicting the random effects. Empirical and simulation studies are
provided in Sections 2.6 and 2.7 to evaluate the proposed variational MM algorithm. The
paper ends with some concluding remarks.

2.2 Model

To illustrate the proposed method, we consider a Rasch model with random item effects
(e.g., De Boeck, 2008). The model is a generalized linear mixed model with crossed random
effects for binary data and can be written as

logit (p (yis = 1165, 6;)) = logit(mis) = 5+ 05 + 05, (2.1)

where y;, denotes the binary response for item ¢ and person s with: =1,...,Tands=1,..., N.
B is a fixed intercept, 6, is the person ability with density p(6s;7), and —9; is the item



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 6

difficulty with density p(d;; &) where v and & are the parameter vectors that characterize the
distributions of ¢, and ¢;, respectively.

The likelihood function for model (2.1) is obtained by integrating over the vectors of
latent variables @ = (64, ...,0x) and 6 = (9;, ..., 67)

Liy;®)= [ --- | p(y10,8) [ [[pOs) | [ [[2(5:€) | doy---doydby ---dby,
o d g Lo (T (T

where y is the vector of responses for all persons and items, W the vector of all parameters,
U = (3,¢',4") and p(y|6, d) is the joint probability of all observed responses given the latent

variables
p(v10.8) = [[ ][ p(vis = 116s.6).

Later we will specify discrete or normal prior distributions for p(d;; &) and p(6s; ).

2.3 Variational MM algorithm

The EM algorithm is a powerful tool for maximum likelihood estimation of models with
missing data or latent variables (Dempster et al., 1977). The algorithm alternates between
an E-step and an M-step: In the E-step, the expectation of the complete data log-likelihood,
log f(y,z; ¥) is computed over the posterior distribution of the latent variables z = (6, 9)
or missing data given the observed data y and given current parameter estimates. In the M-
step, the posterior expectation computed in the E-step (often called @ function) is maximized
with respect to the model parameters to produce updated estimates. The steps are repeated
until convergence.

In the variational MM algorithm, the traditional E-step is modified by using a variational
approximation. To describe the algorithm, we define the QQ function at the mth iteration as

QU ¥ =E {log f(y.z;®)|y; \I'(m)}

_ / p (zly: ¥ logf (y, z; ¥)da,
VA

where W™ are the current parameter estimates and p (z|y; \Il(m)) is the probability density
of the latent variables given the data for the current parameter estimates. The () func-
tion cannot be evaluated analytically due to the integral over the posterior distribution
p(z|y; ™). The variational MM algorithm replaces the posterior distribution p(z|y; &™)
by a tractable alternative probability density function g(z). The variational density function
g(z) is found by minimizing the Kullback-Leibler (KL) divergence (Shorack & Wellner, 1986,



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 7

p.159) between p(z|y; ¥™) and g(z)

m g\z
KL (o(2) lalys ) = [ glatog—2 s 22)
z p(zly; ¥)
KL (g(z),p(z|y; lIl(m))) is strictly positive and zero if and only if g(z) = p(z|y; ™) almost

everywhere (Kullback & Leibler, 1951).
Equivalently, it can be shown that minimizing the KL in (2.2) is the same as maximizing a
lower bound of the log-likelihood. The lower bound can be derived using Jensen’s inequality

(y: ¥) = log/z f(y, 2z, ¥)dz

— 1 af =Y
_lg/zg(> 9(z) !

1 [y, z;¥)
_lgEg{ 9(2) }

> Eg{logf(y,Z; ‘I’)}

9(z)

Ey{log f(y,z;¥)} — E,{logg(z)}
L(y; ), (2.3)

where [(y; W) is the log-likelihood and E, denotes the expectation over the latent variables
z with density g(z). The first term in the fifth line of (2.3) is an approximation to the @
function.

In order to show the relationship between the KL divergence and the lower bound, rewrite
the KL divergence in (2.2)

KL (9(a).plaly)) = [ atoog 220

= FE,{logg(z)} — E, {logp(z|y; ¥)}

)
= E,{logg(z)} — E, { og (%) }
= Ey{logg(z)} — E, {logf(y,z; ¥)} + logp(y; ¥),

where the third line is based on Bayes theorem. In the last line, the first two terms are
E,{logg(z)} — E,{logf(y,z; ¥)} = —1(y; ¥) and the third term logp(y; ¥) is the marginal
log-likelihood [(y; ¥). Therefore, the following decomposition holds for the marginal log-

dz
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likelihood
W(y; ¥) =1(y; ¥) + KL (g(z), p(zly)) -

That is, the KL divergence KL (¢g(z), p(z]y)) describes the difference between the marginal
log-likelihood and the lower bound. Thus, minimizing KL is equivalent to maximizing the
lower bound [ (y; ¥) (Bishop, 2006, p.451).

The maximization-maximization (MM) algorithm (MM-algorithm; Neal & Hinton, 1998)
consists of two maximization steps. The first M-step involves maximizing the lower bound
L (y; ®™) with respect to g(z) given the current parameter estimates W™ and the sec-
ond M-step involves maximizing [ (y; ¥) with respect to W given the current variational
approximation ¢(z).

It is clear that the quality of the variational MM-algorithm depends on the choice of
g(z). Ideally, g(z) should resemble the true model-based posterior distribution p (z|y; ¥)
and make the integrals computationally tractable. The mean-field approximation assumes
complete factorizability (or independence) of the latent variables z under the posterior (Hall
et al., 2002; Bishop, 2006). The lower bound [ (y; lIl(m)) then takes a relatively simple form
g(z) = 11, 9i(2), where z; is the ith element of z and g¢;(2;) is the corresponding marginal
density.

For model (2.1), the mean-field approximation is

9(z) = 9(8,0)

~ (Hgi (&)) (Hg (93>> :

As a refinement of the mean-field approximation, one may use a different type of approxi-
mation, e.g., based on a mixture distribution where each of the component distributions is an
independent distribution (Bishop et al., 1998; Humphreys & Titterington, 2003). Although
these alternative refinements may give sharper lower bounds, they introduce extra compli-
cations to the algorithm, for example, requiring extra variational parameters. In addition,
they may work only for particular problems (Humphreys & Titterington, 2003).

Hence, the mean-field approximation is a practical choice. It is easy to implement and
works well for models with complex random effect structures. For instance, Rijmen & Jeon
(in press) adopted a discrete mean-field approximation for estimating a complex generalized
linear mixed model with crossed random effects and reported good precision of the method.

In a later section, the appropriateness of the mean-field approximation is investigated by
examining posterior correlations of the random effects as a function of sample sizes and prior
variances.
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2.4 Implementation

We derive the first M-step of the algorithm without specifying functional forms for the
latent variable distribution or for the variational approximation. The lower bound to the
log-likelihood for model (2.1) can be written as

- /0 5 [Z logp(0s) + D _1ogp(6:) + D D logn(yislds, 6) — Y 10ggs(6:) = Y loggi()

x g(6,0)d(6)d(d)

* ZZ /6, / 9i(0:)95(05)logp(yis |05, 6;)do:do,

-3 [ au0toga 0106, ~ 3 [ a5 g5 (2.4)

Here we have used the mean-field approximation by assuming a fully factorized form for
g(6,9). We maximize (2.4) with respect to gs(6s) and g¢;(d;), by means of the calculus of
variations (or functional derivatives), subject to the constraints that these densities integrate
to 1. Rewriting (2.4) and adding Lagrange multipliers for the constraints, we obtain

F=2 / AOLCEDY / 9:(8:)logp(5,)ds;
+ZZ/ /gz )95 (6:)1ogp(yis| 0, 0:) ddidbs
=3 [ oo toms. @it 3 [ aotomsiain
+£:A U 9—1}+iA U 5—1] (2.5)

Here A\; and \; are the Lagrange multipliers for the normalization constraints on gs(6;) and
9i(9;).

We optimize this functional F' with respect to gs(6;) and ¢;(6;). In Appendix A, the idea
of a functional derivative is illustrated with a simple example. For more information on the
calculus of variations, see Sagan (1969) and Bishop (2006, Appendix D). The solutions for



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM 10
loggs(0s) and logg;(6;) can be obtained as
loggs(6s) = logp(6s) + Z /6 9i(0:)logp(yis|0s, 1)dd; — 1+ A, (2.6)
loggi(6;) = logp(8:) + ) /6 9 (0 )logp(yislf, 0:)dd: — 1+ As

By exponentiating the first equation and integrating over #,, we obtain
l=exp(—1+ )\s)/ p(

9&@(2/&@%%%%@WJM,

s 7 (Si

—14 X, = —log / p(6s) exp (Z / gi(éi)logp(yis\es,5l-)d5l-> db. (2.7)
0s i 9;

Substituting (2.7) for —1 4+ A, in (2.6), we obtain a solution for loggs(6;)

lmwmmmm+zlwm%mﬁwm

— log / 5) exp (Z / 9i(0:)logp(yis|0s, d;)dd; )

Thus, a solution for g4(6s) can be obtained as

<ew@ﬁwlm%mmw

95(0s) = : (2.8)
Jy. p(0s) exp (Z J5, 9i(0:)logp(yis|0s, 6;)do; >d93
Similarly, a solution for ¢;(d;) can be obtained as
p(d;) exp (Z Jo, 95(05)1ogp(yis|0s. 0:)dbs )
9i(;) = (2.9)

Js, p(0:) exp (Z Jo. 95(05)1ogp(yis|0s, 0:)db >d5

Note that Equations (2.8) and (2.9) represent a set of consistency conditions for the
maximum of the lower bound subject to the factorization constraint (Bishop, 2006, p.466).
These are not explicit solutions yet because gs(6;) and g;(d;) depend on expectations com-
puted with respect to g;(9;) and gs(0s), respectively. Therefore, consistent solutions can be
obtained by first initializing and then iteratively updating the variational approximations.
Convergence is guaranteed because the lower bound is convex with respect to the factors of
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g(z) (Boyd & Vandenberghe, 2004).

The general expressions for the solutions in (2.8) and (2.9) involve integrals over the prior
and the approximate posterior distribution of the latent variables. The explicit solutions for
these and thus the rest of the algorithm (the second M-step) differ according to the choice of
the prior distributions for 6, and §;. In the next subsections, we describe two general choices
for the prior, continuous (normal) and discrete prior distributions.

2.4.1 Normal Priors

Here we specify normal priors p(6s) = ¢(6s;0,7) and p(6;) = ¢(6;;0,75), where ¢(-; p, o)
denotes a normal density with mean p and standard deviation o. Then, we rewrite model
(2.1) as

logit (p (yis = 1|ugs, usi)) = B + Tougs + TsUsi,
where ugs and wugs; are standard normal variables. The solutions for the random effects wg;
and ug; are given in (2.8) and (2.9), where 6, is replaced by ugs, and ¢; is replaced by ws;.

The integrals in both expressions can be approximated by Gaussian quadrature. For
example, the integral in the numerator of (2.8) becomes

/ gi (uéi)logp(yis‘u&s’ Uai)du&

Ugq
i (usi)logp(yis|ugs, us;)
/ BB ) oy
Z Gi(la)logp(yis|uos, usi = la)
N wd7
o(la)

where the prior density is used as a weight function in the second line. In the third line,

¢(+) is a standard normal density, and the Gauss-Hermite quadrature rule is applied where

lg and wy are the quadrature locations and corresponding weights for integrating over us;.
Similarly, the integral in the denominator of (2.8) becomes

/ ¢ (ups) exp (Z/ 9i(usi)logp(yis|ues, uéi)du6i> dugs
Ugs i Uss
N gi(la)logp y28|u9sau5l = la)
~ o (ugs) exp Z Z o) wq | dugs
Ugs
i(La)logp(yis|ugs = Uy, ug; =1
%Z’wteXp (Zzg )logp(y Lb(el'd) t; Us d)wd>,
t

where [; and w; are the quadrature locations and corresponding weights for integrating over
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ugs. Similarly, we approximate the integrals in (2.9) using Gaussian quadrature.

Note that the variational parameters are the posterior probabilities g;(l;) and gs(l;) at
the locations defined by the quadrature points.

In the second M-step, the lower bound is optimized with respect to the model parameters,
U= (8,79, 7s5) . For example, with respect to g, the solution for 3 is found by solving

i

d
- Z Z/ / gi(uJi)QS(UGS)%logp(yis‘ues, ug; ) dugsdug;
~ Z Z Z Z gz gl %bgp(%swes = lp, ugi = lag)wqwy = 0. (2.10)

The solutions for the variance parameters 7y and 75 can be obtained in a similar way. Notice
that Equation (2.10) corresponds to the score function of a generalized linear model with
frequencies g;(1q)gs(l:) /o (lq)p(1y)-

dl d
@ = @ 05 [Z;logp(yisWes,uai)] 9(0,6)d0ds

Adaptive Quadrature

A more efficient numerical integration method is adaptive quadrature which takes into ac-
count the location and spread (mean and standard deviation or mode and curvature) of the
integrand. The quadrature locations are scaled and translated to be placed under the peak of

the integrand (Rabe-Hesketh et al., 2005). Specifically, adaptive quadrature can be applied
to the numerator of (2.8)

/ Gi(usi ) Logp(yis|ugs, usi)dus;

Ugs
:/ gi(uaz‘)Ing(yis|Uas,U&‘)
¢(U6z, ,uu(;la O-u(;l)

Z 9i(lia)logp(yis|ugs, usi = lia)
guéz
o(la)

= Zgi (Lia)logp(yis|us, usi = lia)wid, (2.11)
d

(b(u&; Houg;y Oug; )du5i

Wiq

where

l’id = Mug; + Oug; ld)
O-u(;iwd

o(la)

Wiqg =
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are the item-specific quadrature locations and weights for integrating over ug;. In the second
line in (2.11), the variational approximation to the posterior g;(us;) is approximated by
& (Usi; flug; > Oug;) Where g, and oy, are the posterior mean and standard deviation for ws;.
In the third line, the variable of integration was changed to a standard normal variable.

The adaptive quadrature method works well if the ratio in the third line of (2.11) is well
approximated by a low-order polynomial (Liu & Pierce, 1994). In (2.11), logp(yis|ugs, us;) is
(mirrored) S-shaped as a function of us and the denominator is a normal approximation of
gi(us;). Thus, the integrand in the first line of (2.11) is likely to be a unimodal and smooth
function.

The variational parameters are now the posterior probabilities g;(l;4) of the item-specific
adaptive quadrature locations /5. Applying the same logic to the integral in the numerator
of (2.9), the variational parameters are the posterior probabilities of the person-specific
adaptive quadrature locations.

Similarly, adaptive quadrature can be applied to the denominator of (2.8)

/ [¢(U93)€XP (Z/ .gi(u5i>10gp(yis|u937u&z’)du&i)] dug,

:/ |:¢(u6’5) exp (Zz fuéi gi(uéi)lng(yis|u657U(Si)duéi>] A (Uos Hugys Tuy,)

¢(Ues; ,uues) Uues)
N / [P(ugs) exp (3, -4 9i(lia)logp(yis|wos, usi = lia)wia)] ¢(Uos; g, s Tup, )
Ugs (b(u%; Hugs s UU9S)

Ugs

dUQ s

w0,
~ Y o(la) q;(l ; exp (Z > gilia)logp(yis|ugs = L, usi = lid)wz‘d>
t " i d

= Z <Z5(lst)wst exp (Z Zgi(lid)logp(yis‘ues = lot, Usi = lid>wz’d> ) (2-12)
t i d

where

lst = Moy, + ngslta
ngswt

Wst = ¢(lr) ’

are the person-specific quadrature locations and the corresponding weights for integrating
over ups, and fi,,, and o, are the posterior means and standard deviations for ugs. Details
on deriving (2.11) and (2.12) are provided in Appendix B.

Here the integrals over the person random effects ug, are evaluated using the same lo-
cations and weights as for evaluating the integral in the numerator of (2.9). The integrand
in (2.12) is proportional to the variational distribution g4(ugs), which is the approximate
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normal density ¢(ugs; fhu,,, Ou,, ). Therefore, the adaptive quadrature method is expected to
work well.

The second M-step also changes by applying the adaptive quadrature method. That is,
(2.10) becomes

dﬁ dB / lzzlogp y@s|ues,u&)] 9(6,68)d(0)d(d)

— ZZ/ /ues 9i(us;i)gs ues)ddﬁlogp(yismﬁs,Uaz‘)du@sdu&
:ZZZZ% ia)9s(lst)
i s d t

d
X ﬁlogp(yzsw(;s = lgt, Usi = lig) WigWst.

The score functions for the the variance parameters 7y and 75 can be derived in a similar
way.
The cluster-specific means and variances of g;(ug) and gs(ugs) can be obtained by an

iterative procedure. For example, for g,(uys), first initialize lg(t)) and wgg) using starting
values ,uge and ng) Then 4, and o2 ,. are at the kth iteration
/'Lq(jz)s _/ u@sgs(ues)dues
Ugs
k 1) (l(k 1)w§1;71)
~ Z <l(l;;—1))
2
O-z(LIZ)S :/ u052gs(u05)du05 _,uues2
Ugs
2
k—1 k—1 k—1
lgt )gs <l£;t )) wgt ) (k=1) )
~ (k—1) lst — Hugs > (2'13)
t (b <lst )
where lgf 1), ll(s Y and w(k 1), w(s U are the cluster-specific quadrature locations and cor-

responding weights at the (k — 1)th iteration. This sequence is repeated until convergence.
The mean and variance for g;(us;) can be derived similarly. Note that this is the method by
Naylor & Smith (1982) and Rabe-Hesketh et al. (2005).

Alternatively, the mode and curvature at the mode can be used as in Pinheiro & Bates
(1995) and Schilling & Bock (2005). In this case, an integration is not required.

Both methods of using the cluster-specific means and variances and using modes and
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curvatures were implemented in the variational MM algorithm.

2.4.2 Discrete Priors

Assuming a normal density may not be optimal e.g., for non-normal or skewed normal
latent variables. Without assuming a specific parametric form for the distribution, the
non-parametric maximum likelihood estimator (NPMLE) of the distribution for the latent
variables becomes a discrete distribution (de Leeuw & Verhelst, 1986; Lindsay et al., 1991,
Heinen, 1996; Aitkin, 1999). To interpret the discrete distribution as the NPMLE, the
number of masses must maximize the likelihood (Simar, 1976; Laird, 1978; Lindsay, 1983).

If discrete priors are used, the posteriors also have discrete distributions with the same
support points as the priors and the variational approximation is discrete with masses as
variational parameters.

The discrete distribution of the random effects is characterized by a finite set of locations
and probabilities at these locations and the integrals in (2.8) and (2.9) become sums. For
example, (2.8) becomes

ol — Wy, exp (Zz Zd logp(yis|0s, 6; = lf;i)vi)
s wh exp (30, 2 4 logp(yis|0s = 15,0 = 1 )vd )

where I§ (d=1,..,D)andlj (t=1,..,T) indicate locations for the discrete latent variable
d; and 0y, respectively. v§ = g (6; = I{) and v = g (6, = Ij_) are the masses of the variational
approximation and wgs =p(Os = lgs) are the prior probabilities at the locations.

Note that with discrete priors, the prior locations and masses are model parameters
and the posterior probabilities are variational parameters. The estimates of the variational
parameters can be used to compute posterior moments of the random effects.

2.5 Related Issues

In this section, we discuss 1) the lower bound and marginal likelihood, 2) estimation of
standard errors, 3) dependence structure of the random effects, and 4) prediction of the
random effects.

2.5.1 Lower Bound and Marginal Likelihood

In the variational MM algorithm, the lower bound to the log-likelihood is maximized rather
than the likelihood function itself. For valid inferences based on the lower bound, it should
have the same shape as the log-likelihood, i.e., the same mode and curvature at the mode
(Hall et al., 2002).
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To evaluate the lower bound, we need to compute the marginal log-likelihood which is
not feasible for GLMMs in general. Using a sampling method, however, we can approximate
the marginal likelihood L(y;¥) as follows: First obtain posterior samples of the random
effects using Markov chain Monte Carlo (MCMC) with the model parameters treated as
fixed constants and set equal to the variational MM estimates. Then obtain the sample
mean and covariance matrix of the posterior samples and use the corresponding multivariate
normal distribution as importance density. Sample the random effects z from the importance
density. Then the marginal likelihood can be approximated as

Ly ) = / P e dtaly, )

~ Zp (v|29, ¥*)p(z; T7)
me gEWly, e

where p(y|z, ¥*) is the joint probability of the responses given the latent variables z, p(z; ¥*)
is the prior distribution given the parameter estimates ¥* from the variational MM method
and g(z|y, ¥") is a normal approximation to the posterior distribution (as the important
density) that has the same support as the prior p(z; ¥*). z0) (j = 1,...,m) is identically
and independently drawn from g(z|y, ¥").

By the strong law of large numbers, the importance approximation of the likelihood
L(y; ®*) is unbiased and consistent as m — oo, as long as the support of §(-) contains
the support of L(-) (Geweke, 1989). A similar idea of using importance sampling has been
adopted to evaluate a likelihood surface on which maximum likelihood estimation is carried
out (Durbin & Koopman, 1997; Shephard & Pitt, 1997).

2.5.2 Standard Errors

As in the traditional EM algorithm, standard errors are not a by-product of the variational
MM algorithm. In this section, we discuss two ways of approximating standard error esti-
mates.

Hessian Matrix

A straightforward way of obtaining standard errors is to use the Hessian matrix. It can be
directly obtained by solving the second derivatives of the lower bound, evaluated at the final
estimates of the variational parameters with respect to the model parameters. Alternatively,
the score functions in the second M-step (e.g., (2.10) ) can be numerically differentiated with
respect to the corresponding parameters.

We include only the model parameters in the Hessian matrix while treating the variational
parameters as fixed. In the Gaussian variational approximation by Ormerod & Wand (2012),
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the variational parameters (mean and variance parameters in their case) were all included
in the Hessian matrix.

Bootstrap Standard Error

A bootstrap method can be used to estimate approximate standard errors (e.g., Efron, 1979).
Data are simulated from the model given the parameter estimates for the real data. We
denote the parameter estimates for the bth simulated dataset \i/*(b) The bootstrap standard
error (Sép) can be computed as

Sop = ég () - ()]

where U*(-) = S %\if*(b) and B is the number of the bootstrap replicates. The Monte
Carlo error (MCE) involved in the bootstrap standard error can be computed as described
by Koehler et al. (2009). First define the bootstrap squared error as

ﬂ@:ﬁﬁ@-@@r.

The squared bootstrap standard error can then be expressed as

1B
~2

= — d(b).
S€p B;()

An estimate of MCE for the squared bootstrap standard error (56%) can be obtained as

MCE(e3) = | = > [d(b) — d()P,

where d(-) = L 370 d(b).
Finally, an MCE estimate for the bootstrap standard error can be obtained using the
Delta method

MCE(se5) = MCE(5e2).

2
2¢/sep
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2.5.3 Dependence Structure of the Random Effects

The variational MM algorithm is based on the mean-field approximation that assumes poste-
rior independence of the random effects. The performance of the algorithm may be affected
by the degree to which the independence assumption is violated. In this section, we inves-
tigate the dependence among the random effects under the posterior as a function of the
sample sizes and prior variances.

To derive analytical solutions, we assume a linear mixed model

y=XB+Wz+e,

where z ~ N(0,¥) and € ~ N(0,0) with © = [0? and the identity matrix I.
The posterior covariance matrix can be computed for the linear mixed model as (Laird
& Ware, 1982)
Cov(zly,X) =V — VWS, (2.14)

where ¥ = WU’ 4+ © for model (2.1).

For the model with crossed random effects in (2.1), denote z = (61, ..., 05, ..., On, 01, ..y 04y oy 01 )
where 0, and §; are the two crossed random effects with s = 1,..., N and i = 1,.... I, re-
spectively. The posterior covariance in (2.14) was computed as a function of the number of
persons N = (50,100)" and the number of items I = (10, 20,40), and the prior standard
deviations 7y = (0.5,1.0,1.5)" and 75 = (0.2,0.5,1.0)". Figures 2.1 and 2.2 summarize the
results.

The results suggest that for given prior variances (1 = 0.5, 75 = 0.2), the correlations
between 6, increase as [ increases. Similarly, the correlations between ¢; increase as N
increases. For given sample sizes (I = 10, N = 50), the correlations between 6, and between
0; increase as the variance of 6, or 9; increases. This shows that either when the sample size
or prior variance for 6, or J; increases, the dependence among the random effects under the
posterior increases.

2.5.4 Prediction of the Random Effects

Assigning values to (or prediction of) the random effects for individual clusters is useful
for inference about particular clusters (Skrondal & Rabe-Hesketh, 2009), e.g., to assess the
effectiveness of schools or hospitals (Raudenbush & Willms, 1995; Goldstein & Rasbash,
1996), in small area estimation or disease mapping (Rao, 2003), or for finding outlying
clusters (Langford & Lewis, 1998). Prediction of abilities is also the main purpose of item
response theory (IRT). For more information, see Skrondal & Rabe-Hesketh (2009).
Prediction of the random effects is a difficult problem for GLMMs because of the integral
in the denominator of the posterior distribution. Here, we suggest using the variational
approximation to the posterior, to derive posterior means (jug,, ps5) (expected a posteriori;
EAP) or modes (maximum a posteriori; MAP). For instance, assuming normal priors with
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Figure 2.1: Posterior correlations among the random effects by the sample sizes (N=50,100,

1=10,20,40) for given prior variances 7y = 0.5 and 75 = 0.2
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Figure 2.2: Posterior correlations among the random effects by the prior variances for given

sample sizes [ = 10 and N = 50
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adaptive quadrature, the mean and standard deviation using (2.13) can be seen as the EAP
and its standard error for 6. If the mode and curvature are used instead, the MAP and its
standard error can be obtained.

2.6 Empirical Study

To illustrate the proposed algorithm, we use the salamander mating data (McCullagh &
Nelder, 1989). This dataset is a benchmark that has been used to compare many different
estimation methods for GLMMs with crossed random effects (e.g., Karim & Zeger, 1992;
Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,
2011).

The dataset consists of three separate experiments, each involving matings among sala-
manders of two different populations, called Rough Butt (RB) and White Side (WS). Sixty
females and sixty males of the two populations of salamander were paired by a crossed,
blocked, and incomplete design in an experiment studying whether the two populations have
developed generic mechanisms which would prevent inter-breeding. The response is binary,
indicating whether the mating was successful between female ¢ and male j. We adopted
model A used in Karim & Zeger (1992)

lOglt(p(yU = ]_|Zlf, ij)) = ﬁo + leli + Bgl'gj + 531'12‘1‘2]‘ + Zlf + ij, (215)

where the covariates are dummy variables for White Side female (z1;), White Side male
(w2;), and the interaction (z1;z2;). The two crossed random effects are random intercepts
=f ~ N(0, 07) for females and 2" ~ N(0, 07,) for males. Each salamander participates in six
matings, resulting in 360 matings in total.

Model (2.15) was fit to the dataset using the variational MM algorithm with adaptive
quadrature (10 quadrature points). In order to check the independence assumption of the
mean-field approximation for the data, we examined the posterior correlations among the
female and male random effects. The posterior samples of the random effects were obtained
by MCMC using WinBUGS 1.4 (Spiegelhalter et al., 2003) with model parameter fixed to the
estimates of the variational MM algorithm. The posterior correlations among the random
effects (among females, among males, and between females and males) appeared negligible,
all being close to zero.

We compared the parameter and standard error estimates from the MM algorithm with
those from the Laplace approximation implemented using lmer in the R package 1me4 (Bates
& Maechler, 2009). For standard errors, the Hessian matrix was obtained by numerically
differentiating the score functions. We also computed the bootstrap standard errors (based
on 100 replicates) as well as the Monte Carlo errors computed as described in Section 2.5.2.
In addition, we report the estimates from PQL (Breslow & Clayton, 1993) and MCEM
(Booth & Hobert, 1999) from the literature. Table 2.1 lists the results.
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Table 2.1: Comparison of several estimators for the salamander mating data. Standard
errors are given in parentheses if reported. Laplace: 1lmer; PQL: Breslow & Clayton (1993);
MCEM: Booth & Hobert (1999). For the variational MM algorithm, bootstrap standard
errors (Boot.SE) and Monte Carlo errors (MCE) are reported.

Method Bo B B2 B3 Om  Of
Variational MM  0.97 -2.84 -0.67 3.49 1.07 1.00
(0.39) (0.55) (0.45) (0.62) - -

(Boot.SE) (0.35) (0.46) (0.37) (0.59) - -
(MCE) (0.02) (0.03) (0.04) (0.05) - -
Laplace 1.00 -290 -0.70 359 1.08 1.02

(0.39) (0.56) (0.46) (0.64) - -
PQL 0.79 -2.29 -054 2.82 0.79 0.72

(0.32) (0.43) (0.39) (0.50) - -
MCEM 1.02  -296 -0.69 3.63 1.18 1.12

We do not report standard errors for the variance parameters because the use of standard
errors for Wald-type tests and confidence intervals may be inappropriate for these parameters
(e.g., Berkhof & Snijders, 2001). The parameter estimates for the variational MM method
are close to those from the Laplace approximation and MCEM. Our standard error estimates
are close to the standard errors from the Laplace approximation. The bootstrap standard
errors are slightly smaller than the standard errors from the variational MM and the Laplace
approximation. The difference is less than 2 MCEs.

To assess the lower bound of the log-likelihood, we compared the lower bound with
the approximate marginal log-likelihood obtained using 1) importance sampling described in
Section 2.5.1, and 2) adaptive quadrature (with three quadrature points) with gllamm (Rabe-
Hesketh et al., 2005). For simplicity, the log-likelihood was plotted for each parameter with
the other parameters fixed to the estimates from the variational MM algorithm. Figure 2.3
presents the results.
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In the figure, circles represent the marginal log-likelihood obtained using importance
sampling, triangles the lower-bound, and “x” the log-likelihood from adaptive quadrature.
The dashed vertical lines indicate the parameter estimates obtained from the variational
MM algorithm. For all parameters, the lower-bounds show shapes similar to the marginal
log-likelihoods. The approximate marginal log-likelihood using importance sampling is very
close to that from adaptive quadrature.

Finally, predictions of the random effects obtained from the variational MM algorithm
were compared with 1) the MAP from the Laplace approximation and 2) the EAP from
MCMC. The EAP from MCMC was obtained as the mean of the posterior samples of the
random effects with the parameters fixed to the estimates. Figure 2.4 shows the results.

The sub-panels compare the EAP and MAP estimates from the variational MM algo-
rithm with the Laplace approximation (MAP) and the MCMC method (EAP) for females
(first row) and males (second row). The 45 degree line indicates that the two methods pro-
duce equivalent results. The results show that the variational MM algorithm provides the
predictions close to those from the Laplace approximation and MCMC methods.
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Figure 2.3: Log-likelihoods and lower bounds as a function of each parameter for the sala-
mander mating model with other parameters set equal to estimates from the variational
MM algorithm. MC is the marginal log-likelihood from the importance sampling method,
LowerB is the lower bound from the variational MM algorithm, and Adaptive is the marginal
log-likelihood from adaptive quadrature (3 quadrature points).
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Figure 2.4: Comparison of predictions (EAP and MAP) from the variational MM algorithm
with the Laplace approximation (MAP) and MCMC (the posterior mean; EAP) methods for
female and male random effects. L(MAP): Laplace MAP, P(EAP): Bayesian EAP, V(MAP):
variational MAP, V(EAP): variational EAP.
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2.7 Simulation Studies

Simulation studies were carried out to evaluate the performance of the variational MM
algorithm (with adaptive quadrature, 10 quadrature points) and to compare it with the
Laplace approximation. Two examples were considered using 1) the crossed random effects
model for the salamander mating data and 2) the random item Rasch model.

2.7.1 Crossed Random Effects Model for Salamander Mating Data

The first simulation study is closely related to the model for the salamander mating data
used in the empirical study. We simulated 50 datasets based on model (2.15) using the
true values that have been used by other researchers (e.g., Lin & Breslow, 1996), 8 =
(1.06, -0.72,-3.05,3.77)" and (07},07,)" = (.50,.50)". We also generated datasets that are
ten times as large in terms of the total sample size as the original dataset (called large
datasets from now on).

Figure 2.5 shows the estimated bias and root mean squared error (RMSE) for the pa-
rameter estimates from the variational MM algorithm and the Laplace approximation.

Bias RMSE

0.1 T T T T T T 0.6F T T T ¥
o MM o
® *  Laplace

05

&

0.3
“oa} E o2t
o MM ®
* Laplace @

~02 n . . . . . 0
Bo 5 B B Tm If

0.1

Figure 2.5: Bias and RMSE for the salamander simulation. MM is the variational MM
algorithm and Laplace is the Laplace approximation.

In terms of bias, there are negligible differences between the two methods. In terms of
RMSE, the variational MM algorithm tends to show somewhat smaller RMSE for the fixed
effects parameters than the Laplace approximation. A similar pattern is observed for the
large datasets in Figure 2.6.

For the large datasets, there is little difference in the estimated bias between the two
methods. The RMSE is still smaller for the variational MM algorithm for the fixed effects
parameters than the Laplace approximation, but the differences are somewhat smaller than
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Figure 2.6: Bias and RMSE for the salamander simulation for large datasets. MM is the
variational MM algorithm and Laplace is the Laplace approximation.

those in the smaller datasets. This result makes sense given that the Laplace approximation
produces less bias for data with large cluster sizes (Joe, 2008).

2.7.2 Random Item Rasch Model

The second simulation study uses the random item Rasch model described in Section 2.2.
Small and large datasets were generated based on model (2.1) under various conditions. For
small datasets, we generated data with N = (50, 100)" persons and I = (20, 50)" items, and
with standard deviations 7p = 0.5 for person abilities and 75 = (0.2,0.6,1.2,1.5)" for item
difficulties. The intercept /5 was set to 0. For large datasets, we considered N = (200, 300)’
and I = (20, 50)’ for the sample sizes, and 7y = (0.2,0.5), and 75 = (0.2, 0.6)’ for the standard
deviations. 50 replicates were simulated for each condition.

Figures 2.7 to 2.10 present the estimated bias and RMSE for the model parameters for
the intercept B and the person and item standard deviations 7y and Ts.

Each figure corresponds to four item difficulty standard deviations 75 = (0.2,0.6,1.2,1.5)".
In each figure, the first row presents the estimated bias and the second row the estimated
RMSE. In each sub-panel, the solid line is for the variational MM algorithm and the dotted
line for the Laplace approximation. The x-axis represents the sample sizes N and I (four
combinations by N1 = 50, N2 = 100 and 71 = 20, 12 = 50).

In condition 1 (15 = 0.5, 75 = 0.2) in Figure 2.7, the estimated bias and RMSE tend to
decrease as the sample size increases for either person N or item I. Between the methods,
the Laplace approximation tends to show larger bias for 7y and 75 than the variational MM
algorithm, in particular with N = 50. In terms of RMSE, the Laplace approximation is
larger than the variational MM algorithm across all sample sizes.
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Figure 2.7: Bias and RMSE for the random item Rasch model simulation for small datasets
in condition 1 (7p = 0.5, 75 = 0.2). N = (50, 100)" and I = (20, 50)". The solid line is for the
variational MM algorithm and the dotted line for the Laplace approximation.
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Figure 2.8: Bias and RMSE for the random item Rasch model simulation for small datasets
in condition 2 (7p = 0.5, 75 = 0.6). N = (50, 100)" and I = (20, 50)". The solid line is for the
variational MM algorithm and the dotted line for the Laplace approximation.
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Figure 2.9: Bias and RMSE for the random item Rasch model simulation for small datasets
in condition 3 (7p = 0.5, 75 = 1.2). N = (50, 100)" and I = (20, 50)". The solid line is for the
variational MM algorithm and the dotted line for the Laplace approximation.
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Figure 2.10: Bias and RMSE for the random item Rasch model simulation for small datasets
in condition 4 (7p = 0.5, 75 = 1.5). N = (50, 100)" and I = (20, 50)". The solid line is for the
variational MM algorithm and the dotted line for the Laplace approximation.
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In condition 2 (1 = 0.5, 75 = 0.6) in Figure 2.8, a similar pattern is observed except
that with I = 50, the Laplace approximation tends to show larger bias and RMSE than
the variational MM algorithm. For B and 7y, the estimated bias and RMSE increase for
the Laplace approximation as the item sample size increases, from the conditions (N1,I1) to
(N1,12).

In condition 3 (7p = 0.5, 75 = 1.2) in Figure 2.9 and condition 4 (rp = 0.5, 75 = 1.5)
in Figure 2.10, similar patterns are observed in general. As the sample sizes increase, the
estimated bias and RMSE tend to decrease. However, the differences between the methods
are smaller with large standard deviations 7y and 75 than in conditions 1 and 2.

Figures 2.11 to 2.14 present results for the large datasets with N = (200,300)" and
I =(20,50)".
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Figure 2.11: Bias and RMSE for the random item Rasch model simulation for large datasets
in condition 1 (1p = 0.2, 75 = 0.2). N = (200,300)" and I = (20, 50)". The solid line is for
the variational MM algorithm and the dotted line for the Laplace approximation.

Each figure corresponds to four conditions according to 7y = (0.2,0.5)’, and 75 = (0.2, 0.6)".
The x-axis represents the four combinations by the sample sizes N and I. In condition 1
(19 = 0.2, 75 = 0.2) in Figure 2.11, the overall pattern is the same as in the small datasets.
The estimated bias and RMSE tend to decrease as the sample size increases for either N or
I. The estimated bias and RMSE are quite similar between the methods, except for B, the



CHAPTER 2. VARIATIONAL MAXIMIZATION-MAXIMIZATION ALGORITHM

0.04

0.02

-0.02

Bias

-0.04

-0.06

-0.08

0.2

0.15

0.1

RMSE

0.05

Bias for B
o MM
*  Laplace
o= /%‘@
* 7 >34

N1,11  N1,2 N2,1  N2,2

RMSE for B

N1,1  NL1,l2 N2,11  N2,2

Bias

RMSE

0.04

0.02

-0.02

-0.04

-0.06

-0.08

0.2

0.15

0.1

0.05

Bias for 1y

Bias for 1

P

Bias

0.04

0.02

-0.02

-0.04

-0.06

-0.08

By

N1,11  N1,2  N2,1 N2,2

RMSE for 7y

N1,11 N1,2 N2,j1  N2,2

RMSE for T

AN

RMSE

0.2

0.15

0.05

NN

N1l N1,2 N2l N2,2

N1,1  NL1,l2 N2,J1  N2,2

33

Figure 2.12: Bias and RMSE for the random item Rasch model simulation for large datasets
in condition 2 (7p = 0.2, 75 = 0.6). N = (200,300)" and I = (20, 50)". The solid line is for
the variational MM algorithm and the dotted line for the Laplace approximation.
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Figure 2.13: Bias and RMSE for the random item Rasch model simulation for large datasets
in condition 3 (7p = 0.5, 75 = 0.2). N = (200,300)" and I = (20, 50)". The solid line is for
the variational MM algorithm and the dotted line for the Laplace approximation.
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Figure 2.14: Bias and RMSE for the random item Rasch model simulation for large datasets

in condition 4 (7p = 0.5, 75 = 0.6). N = (200,300)" and I = (20, 50)". The solid line is for
the variational MM algorithm and the dotted line for the Laplace approximation.
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Laplace approximation shows greater estimated bias and RMSE, particularly with N—=300
and /=20. In condition 2 (17y = 0.2, 75 = 0.6) in Figure 2.12, condition 3 (7p = 0.5, 75 = 0.2)
in Figure 2.13, and condition 4 (1 = 0.5, 75 = 0.6) in Figure 2.14, similar results are ob-
served. For B, the Laplace approximation shows somewhat larger estimated bias and RMSE
with N=200 and /=20, and with N=300 and /=20.

2.8 Concluding Remarks

Variational approximations have been mostly used for Bayesian inference in machine learn-
ing. Recently, Gaussian variational approximations (Opper, 2009; Ormerod & Wand, 2012)
have been proposed for ML estimation of GLMMs. Hall et al. (2011) investigated theoreti-
cal properties of the Gaussian variational approximation, deriving asymptotic normality of
the estimators and establishing root-m consistency of the estimates under relatively mild
assumptions. However, this work was restricted to models with nested random effects.

In this paper, we proposed a variational MM algorithm for ML inference of GLMMs with
crossed random effects. The variational approximation comes into play in approximating
the posterior distribution of the random effects to make the integrals tractable. Accordingly,
the algorithm involves finding a variational density function. The E-step is replaced by
another M-step, minimizing the KL distance between the variational distribution and the
true posterior distribution. This new M-step is equivalent to maximizing the lower bound
to the log-likelihood with respect to the variational density function.

Our variational MM algorithm is more general and flexible than the Gaussian variational
approximation because our algorithm does not require a pre-specified functional form for
the variational distribution. The general form for the variational density function is derived
so that different types of priors for the random effects can be handled. Importantly, we
can estimate models with crossed random effects based on the mean-field approximation
that assumes conditionally independent latent variables given the data. We found that with
reasonable sample sizes and prior variances, the posterior correlations between the random
effects are negligible. In addition, the lower bound was quite close to the marginal log-
likelihood in the examples that we considered in this paper.

Several simulation examples were provided to evaluate the performance of the variational
MM algorithm and compare it with the Laplace approximation for GLMMs with crossed
random effects. The results show that overall, the variational MM algorithm performs as
well as the Laplace approximation. With small cluster sizes, however, our algorithm performs
better than the Laplace approximation especially for the variance parameters. Therefore,
the variational MM method could be an effective alternative to the Laplace approximation.
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Appendix A

Here the functional derivative is illustrated for the first M-step of the variational MM algo-
rithm in Section 2.4. A fixed item (or regular) Rasch model is used for illustration. The
model can be formulated as

where y;s denotes the binary response for person s to item ¢ with¢=1,..., /T and s =1,..., N.
[; is the item easiness parameter for item ¢ and 6, for person s is the person ability with a
normal distribution 6, ~ N (0, 73).

The marginal probability for the response vector y, for person s can be written as

IWJI/MMQM%&mwm

05

where ¢(-; u,0) denotes the normal density with mean p and standard deviation o. The
marginal log-likelihood function for all persons can be written as

Liy) = 3 log [ 5(3.16.0(6.0, 7).
S 0
The lower bound to the log-likelihood now can be derived as

= /6 1og [p(y |0:)$(6s: 0, 79)] g+ (0,)db, — / log [gs(6s)] 9s(6s)d0s

0

- /9 [Z logp(6,) + Y logp(y.|6s) — Zloggs(es)] 9.(0)d(8)
- Z /9 5 95(05)logp(0)db; + Z /9 S gs(0)logp(y.|0.)db, — Z /9 S 9s(05)logys(65)dbs,

where g4(6;) is the variational distribution for 6. Note that the functional form for g,(0;) is
not required here.

To apply the functional derivative, we need to define a functional. The functional is
obtained here by rewriting the lower bound and adding the constraint that variational dis-
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tribution integrates to 1
F=Y [ a0om0.d0.+ Y [ a0 omly.l0.d0. = 3 [ a.(6.)1omg.(6.)00.
+ Z)\s |:/ gs(es)d‘gs - ]-:| 9
S Os

where A is the Lagrange multiplier for the constraint, fes gs(05)dos = 1.

Now perform the functional derivative of the functional F' with respect to the variational
density function gs(fs). Note that as in this case when the functional is defined by integrals
whose integrands take the form of F'(gs(6s)) and does not depend on the derivatives of g4(6;),
stationarity simply requires 8;3—{;5) = 0 for all values of 0, (Bishop, 2006, p.705).

This implies

log [p(y05)6(0s; 0, 79)] — log[gs(0:)] =1+ A = 0.

Then we obtain
9s(0s) = p(y4l0s)0(0s; 0, 79)exp(—1 + A). (2.16)
By integrating (2.16) over 64, we obtain

1= / exp(—1+ \)p(y,|0s)o(0s; 0, 79)dbs,
0s

A=1-— lOg/ p(ys|93)¢(93, 07 7-9>d95
0
=1—logp(y,).

By substituting A back to (2.16), we obtain the general solution for g,(6;)

9s(05) = p(y,105)6(05; 0, 79)exp(—1 4+ 1 — logp(y,))
_ D(ysl0s)0(05: 0, 79)
(vs)
= p(bslys)-

It shows that for the ordinary Rasch model, the optimal solution for the variational
density function g,(fs) is the same as the true posterior density p(6;|y,)-
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Here we provide details on how to approximate the integrals in (2.8) and (2.9) using adap-

tive quadrature in Section 2.4.1.
quadrature, consider the second line in (2.11)

/ gi(u&)logp(yis|u08au6i)
Ugq

¢(u517 /‘Lugia ngi)

To change the variable of integration to a; ~ N(0, 1), we need the following changes:

Us; =
a; =

dU&' =

QS(U&, ,uu(;ia ngi) =

Plug them all in (2.11) and obtain

/ gi(uaz‘)Ing(yz‘s|Uas,U&‘)
Ui gb(u&; Hous; s Uuéi)

¢(u517 /‘Lugia ngi )du&

Hous; + Oug; Qi
)
guéi
Jugida’i7

¢(u5i; Houg;y Oug; )du5i

= Hug; + Oug, a;) 1

_ / 9i(Puusi + Tus, 03)108P(Yis [ Uos, Usi
as —(a;)

¢(ai)gugidai

auéi

= flug; T Tuy, ai)

_ / Gi(fus, + Ous,03)10gD(Yis| s, Usi

¢(az’)
Z 9i(Lia)logp(yis|ugs, usi = lia)
d(la)

¢(az’)0u&dai

O-u(;i wld

= Z 9i(lia)logp(yis|ues, usi = lia)wia,
d

To approximate the numerator of (2.8) using adaptive
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where

lld = /’Lu(;i + Jugild7
Jugzwd

d(la)

are the item-specific quadrature locations and weights for integrating over wus;, and ., and
0., are the posterior means and standard deviations for us;.

Similarly, to approximate the denominator of (2.8) using adaptive quadrature, consider
the third line in (2.12)

Wiq =

61

dues.

/ [Cb(ues) exp (Zz Zd gi(lid)logp(yis|u05a Us; = lid)wid)] ¢(U05; Haugy UUQS)
Ugs (b(u%; Hougg s UU9S)

To change the variable of integration to as ~ N(0, 1), we need the following changes:

Ugs = Hugp, + OupsAs)
Upgs — Hu,
as = e )
Uues
du&s = O'ugsdasa
1  (ugs—hug,)?
Qb(ué’s; Hugg s Uues) = € 20%95
Ouy, V2T
1 _a?
= e
Ouy, V2T
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Plug them all in (2.12) and obtain

/ [Gb(ues) exp (Zz Zd gi(lid)logp(yis|u6’sa Us; = lz‘d)wid)] ¢(U93; Hougy ngs)
Ugs (b(u@S; Hugs s UU9S>
/ [(b(,U/UgS + ngs as) exXp (Zz Zd gz(lzd)logp(yzs|u93 = ,uugS + ngsasa Us; = lzd)wzd)] ﬁﬂ%)

dUQ s

fs
T Oug.das
Ougs ¢(a8)
_ / [(b(,U/UgS + Oug, as) exXp (Zz Zd gz(lzd)logp(yzs|u93 = ,uugS + ngsasa Us; = lzd)wzd)] (b(as) o da
" P(as) e

WOy,
~ Z ¢(lst) Q;(l ;S exp (Z Zgi(lid)logp(yis\ues = lg,u5 = lid>wz’d>
t r i d

= ¢(la)ws exp (Z > gi(lia)logp(yis|ugs = L, usi = lid)wid> )
: i d

where

lst = Hug, + Uueslty
Jugswt

o(lr)

are the person-specific quadrature locations and the corresponding weights for integrating
over ugs, and fu,,, and o, are the posterior means and standard deviations for wy,.

Wsr =
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Chapter 3

Monte Carlo Local Likelihood Method

3.1 Introduction

Maximum likelihood estimation for generalized linear mixed models (GLMMs) is hindered
by high dimensional intractable integrals involved in the likelihood function. The problem
is magnified when the random effects have a crossed design and thus the data cannot be
reduced to small independent clusters (Vaida & Meng, 2005). For instance, a logistic mixed
model for a binary outcome y;; can be written as

logit(p(yi; = 1]2i,u5)) = p + 2i + uy,

where z; ~ N(0,0%) with ¢ = 1,...,m and u; ~ N(0,7%) with j = 1,...,n are independent
random effects that are crossed with each other. If all combinations of 7 and j exist in the
data, this likelihood function involves m + n dimensional integrals and its integrand involves
a product of m x n terms.

Various methods have been proposed for approximating the intractable likelihood func-
tion. For instance, the Laplace approximation (Tierney & Kadane, 1986; Lindstrom & Bates,
1988; Wolfinger, 1993) and adaptive quadrature (Naylor & Smith, 1982; Rabe-Hesketh et al.,
2005; Schilling & Bock, 2005) have been widely used. The Laplace approximation and simi-
lar penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) are known to perform poorly
for small cluster sizes and for large variance components (Breslow & Lin, 1995; Joe, 2008).
Adaptive quadrature is more accurate but computationally more demanding than Gaussian
quadrature (Pinheiro & Bates, 1995). For more reviews, see e.g. Pinheiro & Bates (1995).

Monte Carlo (MC) methods have also been utilized in various ways in ML estimation.
Most methods are based on sampling the random effects given fixed parameter estimates.
These methods can be distinguished by whether a ‘single sample’ or ‘many samples’ are used
per evaluation of the objective function (for this distinction, see Geyer, 1996). The ‘single
sample’ method is computationally more efficient than the ‘many samples’ method because
it uses the same samples for all evaluation of the objective function. For instance, Geyer
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& Thompson (1992), Geyer (1994), and Sung & Geyer (2007) used MC simulations of the
random effects for an importance sampling approximation of the likelihood (or the likelihood
ratio). The efficiency of the ‘single sample’ method highly depends on the importance sam-
pling distribution. If the initial guess of parameters is far from the true parameter values,
this method can perform poorly (Geyer, 1994; McCulloch, 1997). Geyer (1996) suggested
iterating the procedure so that the objective function is maximized around a true parameter
region. However, it requires many MC samples per each iteration of the algorithm.

MC expectation maximization (MCEM) is an example of a ‘many sample’ method.
Several MCEM algorithms have been proposed using various sampling methods: e.g., a
Metropolis-Hastings (McCulloch, 1997), an independent sampler based on importance sam-
pling or rejection sampling (Booth & Hobert, 1999), and a slice sampler (Vaida & Meng,
2005). The basic idea is to use MC samples to approximate the intractable conditional
expectation. MCEM requires samples at each iteration of the algorithm. In addition, the
algorithm needs a method for calculating standard errors because it does not evaluate the
likelihood function or its derivatives. A method for monitoring convergence may also be
required (e.g., Booth & Hobert, 1999).

Compared to the MC methods described above, an MC kernel likelihood (MCKL) algo-
rithm (De Valpine, 2004) takes a unique position in that it jointly samples the parameters and
random effects to approximate the likelihood function. MCKL is a ‘single sample’ method
because once the posterior samples of the parameters (along with samples of the random
effects) are obtained, they are used during all iterations of the algorithm. MCKL is different
from the typical ‘single sample’ method that samples the random effects given particular
parameter values. Specifically, the MCKL algorithm initially treats parameters as having
probability densities and samples them from a posterior density as in Bayesian methods.
The likelihood is estimated up to a constant as a weighted kernel density estimate where the
weights are obtained by considering the posterior as an importance sampling density. The
likelihood can also be estimated up to a constant as an unweighted kernel density estimated
divided by the prior. De Valpine demonstrated the efficiency of the MCKL method in es-
timating the parameters of population dynamic models. However, a method for standard
errors has not been provided yet for MCKL.

In this paper, we propose a MC local likelihood (MCLL) method for estimating GLMMs.
MCLL is similar to MCKL in spirit: The algorithm begins with treating the parameters as
random variables and sampling them jointly with random effects from a posterior distribution
for a particular prior distribution (we discuss how to choose the prior later in this paper).
The likelihood function is then approximated up to a constant by fitting a density to the
posterior samples of the parameters and dividing it by the prior. In contrast to MCKL, we
approximate the posterior density using local likelihood density estimation (Hjort & Jones,
1996; Loader, 1996), where the log-likelihood is locally approximated by a polynomial. An
unweighted version of MCKL can be seen as a special case of MCLL with a polynomial of
degree zero. One motivation for MCLL is that the kernel density estimate usually shows a
substantial bias in near peaks (Loader, 1999, Ch.2). Furthermore, MCLL can exploit the
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form of the local likelihood density estimate to provide estimates of standard errors that are
accurate and easy to calculate.

The outline of this chapter is as follows. In Section 3.2, we introduce the general idea of
local likelihood density estimation. The MCLL algorithm is then described in detail as well
as some implementation issues. In Section 3.3, we discuss computation of standard errors
and marginal likelihoods. Empirical and simulation studies are provided in Sections 3.4
and 3.5 to evaluate the proposed MCLL algorithm. The paper ends with some concluding
remarks.

3.2 Monte Carlo Local Likelihood Method

The key idea of MCLL is to use local likelihood density estimation in order to approximate a
likelihood function. In this section, we begin by outlining the general idea of local likelihood
density estimation. The procedure of the MCLL algorithm is then described in detail and
some implementation issues are discussed.

3.2.1 Local Likelihood Density Estimation

Suppose X is a random variable having unknown density f(z) and xy,...,z, are n inde-
pendent observations of X. Given a parametric family f(x;1), we approximate f(x) by

f(z) = f(z:(x)) as proposed by Hjort & Jones (1996). 1) is obtained by maximizing a local
likelihood for f(x), which is defined as

n

l(z, ) = Zw(xj — t)logf(z;;¢) — n/ w(u —t) f(u;¥)du,

=1 R

where the nonnegative weight function is w(u) = %/h), where K is a symmetric unimodal
density function (or kernel function) and h is a bandwidth. When h goes to infinity, maximiz-
ing [(x,1) is equivalent to maximizing the usual likelihood. With moderate h, maximizing
l[(x,1) covers a semi-parametric version of the likelihood.

The local polynomial approximation supposes that logf(z) can be well approximated by

a low-degree polynomial in a neighborhood of the fitting point ¢ (Loader, 1996). That is,
logf (2) = Palz — 1),
In the one dimensional case, we can write
Pyx—t)=ao+a(x—t)+ -+ a,(x—1)7,

where a = (ag, a1, -+ ,a,)" is the parameter vector for the polynomial function with degree
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p. The localized log-likelihood Z(x, 1) can then be approximated as

é[( (xjh—t) Py(xj —1) —n/K (uT_t) exp (Py(u — t))du, (3.1)

where the parameter space for a is assumed to be an open set which holds if K is continuous
with bounded support.
If a maximizer of (3.1) exists, it satisfies the system of local likelihood equations

1 - l’j—t .%'j—t
A () ()

_ /A (“ - t) K (“ - t) exp (Pa(u — 1)),

where A(v) = (1,v,---,oP)". This equation shows the moment matching property between
sample and population moments of the local likelihood density estimator (Loader, 1996).

Theoretical properties of local likelihood density estimation have been examined by e.g.,
Eguchi & Copas (1998), Hall et al. (2002), and Park et al. (2002). Recently, Delicado
(2006) has proposed a local likelihood density estimation based on smooth truncation using
a uniform kernel. Kauermann & Tutz (2000) and Wu & Zhang (2002) used local likelihood
estimation for linear mixed and generalized linear mixed models, respectively, but in the
context of approximating non-parametric functions.

3.2.2 MCLL Procedure

MCLL begins with obtaining Markov chain Monte Carlo (MCMC) samples of model param-
eters from the posterior for a particular set of priors. Then the algorithm involves two nested
maximization steps: Maximizing an approximate likelihood f/(y|0) over 0, with each evalu-
ated value of 0 requiring a maximization over parameters in the local polynomial function
involved in calculating L(y|@). These two maximization steps iterate until convergence.

Specifically, assuming a d-dimensional parameter space @ with observed data vector y,
the MCLL algorithm proceeds as follows:

Step 1. Choose a prior p(#) and use an MCMC method to obtain samples from the posterior
p(8ly)

L(y|0)p(6)

ploly) = =X 20,

where the normalizing constant is Cs = [ L(y|0)p(6)d6.
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Step 2. Maximize an approximate likelihood, defined up to the unknown constant C by

L(y|6) = ——Ps,(0]y), (3.2)

1
p(6)
where Ps,(0]y) is the local likelihood estimate of the posterior density. Specifically,
for a given value of @, this is obtained by assuming that the log-posterior density can
be locally approximated by a polynomial function P,(u — @) with parameters a. For

example, in the three dimensional case (d=3), in the vicinity of 8 the log-posterior can
be approximated by a quadratic function

Pa(u — 0) = Qo —+ al(ul — 91) —+ OJQ(UQ — 92) —+ 0J3(U3 — (93)
1 1 1
+ §a4(u1 —01)* + §a5(u2 —0)% + éa(s(uss — 03)°

+ ag(uy — 01)(ug — 0) + ag(uy — 01)(uz — 63)
—+ ag(u2 — 92)(U3 — 93), (33)

where a = (ag, ay, ..., ag)’.

The a parameters are estimated for a particular @ by maximizing a localized version
of the log-likelihood as in (3.1), which in this case is

m () _ , u—
1(0,a) = ;K <0 - 9) P,(0Y) — ) — m/K ( - 0) exp (Py(u — 6))du,

(3.4)

where {0(3‘)};”:1 are the posterior sample points.

The approximate likelihood function (3.2) in Step 2 can be seen as an unweighted estimate
of the posterior density (De Valpine, 2004). A weighted version can be formulated as

L(y|0) = ZPSp Oly)w
W) #
p(8Y)

where w() is the weight for Ps,(0]y) and p(6) is the prior density evaluated at /)

In the MCKL case, the weighted version may be preferable because it can be seen as an
unnormalized, importance-sampled kernel estimate of the true likelihood L(y|@). However,
when local density estimation is used as in MCLL, it is no longer clear how the weighted ver-
sion can be seen as an importance-sampled estimate of the true likelihood. The unweighted
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version may have an issue with narrow priors since a maximum may not exist in such a
case; but with wide priors, there is little difference in performance between the weighted
and unweighted versions (De Valpine, 2004). In addition, the unweighted version is easier
to implement in practice than the weighted version. Therefore, we adopt the unweighted
version as the main device for MCLL.

3.2.3 Implementation Issues

There are several issues to be discussed in implementing the MCLL algorithm. First, the
bandwidth is chosen in Step 2 by considering the bias-variance trade-off. We choose a
bandwidth at each data point so that the local neighborhood contains a specified number of
data points. For a smoothing parameter o between 0 and 1, the nearest neighbor bandwidth
is chosen as the kth smallest distance d, where k = |na| and d(z, z;) = |v — x;].

The degree of the local polynomial function can also affect the bias-variance trade-off.
Fitting a high degree will usually lead to less bias but large variability of an estimate. We
choose a quadratic function as a default because it is often sufficient to choose a low degree
polynomial and focus on choosing the bandwidth to obtain a satisfactory fit (Loader, 1999,
Ch.2).

The weight function affects the visual quality of the fitted shape rather than the bias-
variance trade-off. A spherically symmetric weight function is usually used. We choose a
tricube weight function, K (u) = e"ﬂ(l;“g') as a default. Hjort & Jones (1996) suggested the
Gaussian function for which closed-form evaluation of the integrals is available. But for local
quadratic fitting, the parameters are constrained, which limits the ability of the estimate to
reproduce troughs in the data (Loader, 1996).

Second, we consider orthogonal transformation of the posterior samples 28 Assuming
multivariate normality, the posterior samples can be transformed as

9" = L7169 — b),
where b is the mean of the posterior samples 0Y) and L is the Cholesky decomposition of
the empirical covariance matrix Cov(6) of the posterior samples 8Y) so that Cov(0) = LL”.

The transformed é(j) have an identity covariance matrix and a zero mean vector.

This orthogonal transformation is also called data presphering (Wand & Jones, 1993;
Duong & Hazelton, 2003). Preshering posterior samples is useful in implementing MCLL
because it simplifies the integral term in (3.4). Specifically, for multidimensional parameter
0, if the components are approximately independent in the posterior, then interactions terms
in P,(u — 0) can be dropped. In addition, a product kernel can be used, with

(550) -l 52
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where K is a one-dimensional kernel. With these two simplifications, the multidimensional
integral can be factorized as a product of one-dimensional integrals due to the orthogonality
of the parameter space. In addition, the orthogonal transformation standardizes a bandwidth
choice by transforming the parameter space to be on the same scale.

If the parameter space is not orthogonal, a product kernel (3.5) may be inappropriate to
use. In such cases, the interaction terms can be included in the polynomial function P,(u—8),
for which multidimensional-integration is needed. Ordinary quadrature rules are then no
longer practical because for instance, 30° evaluations are required with 30 quadrature points
when d = 6. Instead, Halton sequences can be used to reduce the number of evaluations
(Sandor & Train, 2004). Draws derived from Halton sequences have the advantage of both
improving coverage of the domain of integration and inducing a negative correlation between
the draws from different observations. Other quasi-random integration rules could also be
used (Fang & Wang, 1993). Halton draws are more effective than quasi-random draws
because the same accuracy can be achieved with Halton draws with a smaller number of
draws, thereby saving computer time (Train, 2003).

Third, we use a log-transformation of variance parameters. This has several advantages:
First, it avoids need for a modified kernel for variance parameters in Step 2. Second, the
posterior distributions are closer to normal so that the data presphering operation works
better for a symmetric distribution.

Fourth, non-informative priors can be chosen for the fixed and log standard deviation
parameters, in which case the posterior mean estimates (automatically obtained in Step 1)
are also close to ML estimates. Note that even if informative priors are used, however,
the MCLL algorithm provides results close to the ML estimates, unlike the posterior mean
estimates. Informative priors are useful for improving mixing in MCMC in Step 1 but some
care is required. We illustrate the choice of priors for given problems in the empirical study
section.

We wrote an R package mc1l that implements the MCLL algorithm (Step 2 maximiza-
tions).

3.3 Inference

Standard error estimates and the values of maximized log-likelihoods are standard tools
for likelihood-based inference. Since they are not by-products of the MCLL algorithm, we
develop methods for obtaining standard errors and marginal likelihoods. We also show how
to compute the Bayes factor in a relatively simple way with MCLL.

3.3.1 Standard Errors

Asymptotic theory for the ML estimation (MLE) suggests obtaining standard error estimates
using the Hessian matrix of the log-likelihood function evaluated at the ML estimates. Analo-
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gously, one could calculate the Hessian matrix of logL(y|6) through numerical differentiation
of the log-likelihood function. However, curvatures obtained by numerical differentiation will
be sensitive to the bandwidth choice.

Therefore, we derive an alternative way of computing the Hessian matrix for MCLL. First
write down the log-likelihood function logL(y|0)

logL(y|@) = logp(6ly) — logp(0) + C, (3.6)
where logp(@|y) is the log-posterior, logp(8) is the log-prior, and Cj is a constant.
Take the second derivatives with respect to 8 on both sides in (3.6) as
2

)
— —_logp(0
T ogp(0)

2 2

) )
~_logL(y|0)| = ——Ilogp(0
59708 (y] ),; e ogp(0ly)

)

6

evaluated at 6. Simply rewrite this as
HL = HPS - HPI“)

where Hy, Hps, and Hp, are the Hessian matrices of the approximate log-likelihood logﬁ(y|0),
the log-posterior logp(@|y), and the log-prior logp(@), respectively.

Typically Hp, can be solved analytically. To obtain Hps, we use the quadratic approxi-
mation of the log-posterior obtained using local likelihood density estimation, assuming the
log-posterior can be well approximated by a quadratic polynomial in the neighborhood of
the mode. For example, in the case d = 3 and a quadratic function as given in (3.3), the
Hessian matrix of the approximation is

~ ~ ~

as a7 das
HPs ~ d7 d5 dg . (37)
as Qg dg
The coefficients for the interaction terms in (3.3) correspond to the off-diagonal terms
(a7 to ag) in (3.7) and are zero if the elements of @ are uncorrelated in the posterior. This

will be approximately true if the orthogonal transformation has been used. Thus in practice,
these off-diagonal terms are set to zero and not estimated.

3.3.2 Likelihood Inference

Suppose there are n observed responses y, for n subjects i with random effects (or missing
data) z; in the context of GLMMs. Assuming a d-dimensional parameter vector 6, the
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marginal (normalized) likelihood f(y|@) can be written as

f(yl6) = H/ (vil2i, 0)p(z:)dz;, (3.8)

where p(y,|z;, @) is the joint distribution of y, given the random effects z; and the parameter
values 6. p(z;) is the prior distribution for z;.

In this section, we show how to approximate the marginal likelihood in (3.8) and how the
likelihood-ratio (LR) statistic and the Bayes factor can be readily computed with MCLL.

Marginal Likelihoods

In general, computation of the marginal likelihood is not feasible for GLMMs. Using a
sampling method, however, we can approximate the marginal likelihood as follows. First
obtain posterior samples of the random effects using MCMC with model parameters treated
as known constants set equal to the MCLL estimates. Then obtain the sample mean and
covariance matrix of the posterior samples and use the corresponding multivariate normal
distribution as importance density. Sample the random effects z from the importance density.
Then the marginal likelihood can be approximated as

vl = [ fy””ﬁ? ‘”ﬁ(zw,é)dz

z), P
Z”' |y 9) %0 _ jiy),

where the importance density p(zy, 9) is the normal approximation to the posterior samples
of the random effects, which has the same support as the prior p(z; é) zV) (j =1,...,m)
is identically and independently drawn from ﬁ(z|y,é). We use the multivariate normal
assumption with the mean and covariance matrix given by the empirical mean and covariance
matrix of the MCMC samples.

By the strong law of large numbers, the importance approximation of the likelihood
f(y|0) is unbiased and consistent as m — oo, as long as the support of j(-) contains the
support of f(-) (Geweke, 1989). A similar idea of using importance sampling was adopted
to evaluate a likelihood surface by Durbin & Koopman (1997) and Shephard & Pitt (1997).

The approximate marginal likelihood f(y|@) almost surely converges to the true likelihood
f(y\é) no matter which importance density is chosen, but the rate of convergence depends
on the accuracy of the importance density used. To measure the accuracy of the importance
density, the effective sample size (ESS) can be computed following Liu (2001)

m

ESS = — ™
55 1 + var(w;)’
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where m is the MCMC sample size and

p(z");

/Zp

Z(] Iy, = (2 ”Iy, )

Here var(w;) is the variance of the m importance weights over the distribution defined
by p(-). A large variance leads to low efficiency relative to the sample size m and results in
low ESS. In practice, m can be chosen to produce a sufficiently large value (close to ESS) to
ensure small var(w;).

Following Shephard & Pitt (1997), the approximate log-likelihood is asymptotically un-
biased as m — oco. With finite m, the bias can be expressed as

P 1 <& ( (). @)
logf(y|0) = logf(y|6) + log— >  ——
= p(zV]y,0)
Here the term log S 2ZI10)_ ig hiaged to O(m™') and thus disappears as m increases

7=1 5(z9|y )
to infinity. The bias-corrected log-likelihood can be derived as

log/(y]6) + 5— 2mm Z{f yl0)Y) — f(y|6)}*, (3.9)

o 7 0)p(Z):0
where f(y|f)) — b2 00ED0)

Likelihood Ratio Statistics

The approximate marginal log-likelihood can be used to compute likelihood ratio test statis-
tics. For example, denote f(y|él, M) and f(y\ég, M,) the approximate likelihoods for the
two models M; and M,, where M is nested in M,. The likelihood ratio statistic 5\(y) can
be computed as

My) = —2[logf(y|01, My) — logf (y02, M>)].
Since S\(y) converges in probability to A(y) as m — oo, under the null hypothesis

lim lim p(A(y) > Aa)

n—o0 Mm—0o0

= lim p(A(y) > o)

n—oo

= p(x;%—q > )\Cl) = &7

where n is the sample size, « is the critical point, and p and g are the number of parameters
in M; and M,.



CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 52

With finite m, A(y) is still biased because of the bias in f(y|01, My) and f(y|0,, My).
An unbiased estimator of A\(y) can be obtained as

AMy) = —2[logf(y|01, M) + bias(y|61, My) — logf (y|0s, Ms) — bias(y|6s, My)]
— Ay) — 2[bias(y|6:, M) — bias(y|0s, M),

where lﬁ\as(ywz, My,) for M), was defined in (3.9).

3.3.3 Bayes Factors

Bayes factors are an important tool for Bayesian inference and can also be useful in a
frequentist context. For example, the null hypothesis is rejected when the Bayes factor is
small where the magnitude depends on the distribution of the Bayes factor under the null
hypothesis and the significance level desired for the test (Chacon et al., 2007). Moreover,
Bayes factors allow comparisons of nonnested models, irregular models, and more than two
models (Kass & Raftery, 1995).

A Bayes factor can be defined as the ratio of the marginal likelihoods for model M; and
M,

BF, =

where the marginal likelihood for M}, is defined as

p(y|My) = /p(ywkaMk)p(ek|Mk)d9k'

Here p(y |0k, M}) is the joint density of the responses given model M; with parameter values
0. and p(0;| M) is the prior density for the model parameters 8 in model Mj,.

Estimation of the Bayes factor is a difficult problem because the marginal likelihoods are
not easily computed from the output of the MCMC algorithm. The MCLL method provides
a relatively simple way to compute the Bayes factor. To show that, first write down the
posterior densities of the model parameters for models M; and M,

- - p(y|01, M)
0.y, M) =p(0|M;)————
p( 1|y 1) p( 1| 1) p(y|M1)
> - p(y|0s, My)
01|y, Ms) = p(05| My)———""—==
p( 1\}’ 2) P( 2\ 2) p(y\MQ)

where p(0)|My) is the prior and p(y|0y, My) is the likelihood given the MCLL estimates 6
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for model M. Dividing both sides by their priors, we obtain

p(0ily, My) _ p(y|0:, M)
p(01| M) p(y|My)

(3.10)

p(éZ‘ya MQ) _ p(yléz, Mz)
(02| My) p(y|Ms)

(3.11)

Notice that the left hand sides in (3.10) and (3.11) are the unnormalized MCLL likelihoods
L(y|02, M,) (the posterior density divided by the prior) for M; and M, as computed in (3.2).
Dividing (3.11) by (3.10), obtain

L(y|62, My)  ply|M) " p(y|0s, My)

L(y|6y, My)  p(yIM2) " p(y|0y, My)

Notice that ggm;; = ]§f‘12. That is, the Bayes factor ]§f‘12 is obtained as

_ L(y|0,, M. 0, M
B, — A(Y|A2> 2) " P(Y|A1a 1)’ (3.12)
L(y|01, M) p(y|@s, Ms)

where L(y|0k, My) (k = 1,2) are by-products of the MCLL algorithm and the likelihood
p(y|60x, My) can be obtained as described in Section 3.3.2. Note that this method works for
any method that provides an unnormalized likelihood such as MCKL.

3.4 Empirical Studies

To illustrate the proposed algorithm, we consider three empirical examples: 1) the salaman-
der mating data (McCullagh & Nelder, 1989), 2) the birth weight data (Rabe-Hesketh et al.,
2008), and 3) the longitudinal data of Korean students (Jeon & Rabe-Hesketh, 2012).

3.4.1 Salamander Mating Data

The salamander mating dataset is a benchmark that has been used to compare many different
estimation methods for GLMMs with crossed random effects (e.g., Karim & Zeger, 1992;
Breslow & Clayton, 1993; Booth & Hobert, 1999; Lee & Nelder, 2006; Cho & Rabe-Hesketh,
2011). This dataset consists of three separate experiments, each involving matings among
salamanders of two different populations, called Rough Butt (RB) and White Side (WS).
Sixty females and sixty males of two populations of salamander were paired by a crossed,
blocked, and incomplete design in an experiment studying whether the two populations have
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developed generic mechanisms which would prevent inter-breeding. The response is a binary
variable indicating whether mating was successful between female i and male j. We adopted
the model A used in Karim & Zeger (1992)

lOglt(p(yU = ]_|Zlf, ij)) = 51 + BQZL‘M + Bgl’gj + 541'12‘1‘2]‘ + Zlf + ij, (313)

where the covariates are dummy variables for White Side female (x;), White Side male
(z;), and the interaction (x1;x9;). The two crossed random effects are random intercepts
2~ N(0,0%) for females and 2" ~ N(0,07,) for males. Each salamander participates in
six matings, resulting in 360 matings in total. The two variance components in model (3.13)
were reparameterized as 7y = logo; and 7, = logo,,.

The MCLL parameter estimates were compared with the Laplace approximation and
Bayesian estimates (posterior means). They were also compared with the estimates from the
literature, such as PQL (Breslow & Clayton, 1993), MCEM (Booth & Hobert, 1999), and
MCMLE (Sung & Geyer, 2007). In addition, the MCKL method (De Valpine, 2004) was
implemented for another comparison with MCLL.

The methods for likelihood inference described in Section 3.3 were implemented. First,
for each parameter the marginal likelihood was computed in the neighborhood of the MCLL
estimate with other parameters set equal to the MCLL estimates. Second, a reduced model
was fit without the interaction parameter (8 coefficient of x1;25;). The likelihood-ratio
statistic and the Bayes factor were calculated to compare the reduced model with the full
model.

Finally, the standard errors were computed both using diagonal and full Hessian matri-
ces. For an efficient multivariate integration with the full Hessian matrix, we used Halton
sequences with 20,000 draws. The computation time was compared between the diagonal
and full Hessian methods.

3.4.2 Implementation

To obtain the MCMC samples from the posterior distribution in Step 1, diffuse normal priors
were specified for the fixed effect (regression coefficient) parameters (with mean 0, standard
deviation 100) and for the log standard deviation parameters 7; and 7, (with mean -0.98
and standard deviation 0.76). These specific values were chosen by noting that the mean and
standard deviation can be analytically solved for the untransformed parameters o; and o,
using the moments of the corresponding log-transformed variables. The mean and variance
for the log-transformed variable can be obtained using

E(o) =logE(T) — %log <1 +

Var(o) = log (1 + ?(YT()TQ) > ,

)




CHAPTER 3. MONTE CARLO LOCAL LIKELIHOOD METHOD 55

where E(7) and Var(r) are the mean and variance for the log-transformed variable. For
example, to obtain the mean E(7) = 0.5 and variance Var(7) = 0.44% for 7, we use E(0) =
—0.98 and Var(o) = 0.762 for o.

The Bayesian software WinBUGS (Spiegelhalter et al., 2003) was used to obtain the pos-
terior samples in Step 1, which was run by the R package R2WinBUGS (Sturtz et al., 2005).
Three chains were used with relatively diffuse starting values. Each chain was run for 5,000
iterations after a 2,000 iteration burn-in period. For convergence assessment, the Gelman-
Rubin statistic (Gelman & Rubin, 1992) was used in addition to graphical checks such as
trace plots and autocorrelation plots. For Step 2, we use the R package mcll that we de-
veloped. For the bandwidth selection in Step 2, we used the default smoothing parameter
a = 0.7. A different choice of the smoothing parameter (0 < a < 1) did not make much of
a difference in the results.

To implement the Laplace approximation, we used the R function 1mer in the 1me4 pack-
age (Bates & Maechler, 2009). For adaptive quadrature, xtmelogit in Stata (StataCorp,
2009) was used. To implement the MCKL method, we followed the procedure taken by
Jeon (2011) using the same posterior samples as in the MCLL method. Specifically, for
the bandwidth choice for MCKL, we took diagonal elements of the covariance matrix of the
kernel density to be proportional to the marginal posterior variances in each dimension of
the posterior space. For a proportionality constant, we used ¢ = 0.5 although 10 different
values (0.1 to 1.0) were all tried out for ¢. We also adjusted for smoothing bias in the MCKL
estimates using posterior cumulants as suggested by De Valpine (2004).

Results

Table 3.1 lists the parameter estimates for model (3.13) from a variety of estimators in the
literature. Standard errors for the regression coefficient parameters were included when they
were reported in the original papers. Standard errors for the standard deviations oy and o,,
were not considered because the Wald-type tests and confidence intervals are inappropriate
for these parameters (e.g., Berkhof & Snijders, 2001).

Overall, the results from MCLL were comparable to the other estimators. The regression
coefficient estimates were a bit smaller than other estimates except PQL and MCMLE.
The standard deviation estimates were close to the estimates from adaptive quadrature with
three quadrature points. The MCKL parameter estimates were a bit smaller than the MCLL
estimates. With a different bandwidth choice, the MCKL estimates also varied somewhat.

Our standard error estimates were quite close to those from the other estimators. With
the full Hessian matrix, we obtained (0.41,0.56,0.30,0.48)" for the standard errors for the
regression coefficient parameters in order. These were a bit smaller than those from the
diagonal Hessian matrix. As for computation time, it took 54,956 seconds with the full
Hessian matrix compared with 360 seconds with the diagonal Hessian matrix on a Intel
Pentium Dual-Core 2.5-GHz processor computer with 3.2 GB of memory.

The approximate log-likelihood was computed using importance sampling with m=3,000
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Table 3.1: Comparison of several estimators for the salamander mating data. Standard
errors are given in parentheses if reported. MCEM: Booth & Hobert (1999); PQL: Breslow
& Clayton (1993); Laplace: 1mer; Adaptive quad(3): xtmelogit with 3 quadrature points;
MCMLE: Sung & Geyer (2007); MCLL: MCLL method; Post.m: Posterior means (the
posterior samples that were used for MCLL); MCKL: MCKL method after cumulant bias
correction (¢ = 0.5).

Method B Ba B3 B Om  Of
MCEM 1.02 -2.96 -0.69 3.63 1.18 1.12
PQL 0.79(0.32) -2.20(0.43) -0.54(0.39) 2.82(0.50) 0.79 0.72
Laplace 1.00(0.39)  -2.90(0.56) -0.70(0.46) 3.59(0.64) 1.08 1.02
Adaptive quad(3) 1.01(0.41) -2.95(0.58) -0.70(0.48) 3.62(0.64) 1.16 1.10
MCMLE 1.00 (0.35) -2.78(0.36) -0.47(0.33) 3.52(0.53) 1.17 1.10
MCLL 0.93 (0.44) -2.87(0.59) -0.65(0.53) 3.59(0.72) 1.16 1.08
Post.m 1.01 (0.41) -2.92 (0.58) -0.69(0.49) 3.58(0.66) 1.09 1.02
MCKL 0.84 -2.77 -0.54 3.47 1.13 1.08

for a range of values for each parameter with the other parameters set equal to the MCLL
estimates. The bias was close to zero for all parameters. The approximate log-likelihood
was compared with that from adaptive quadrature. The results are shown in Figure 3.1.

In all sub-panels, our log-likelihood surfaces were close to those from adaptive quadrature,
in terms of the overall shape, mode, and curvature at the mode. This shows that our method
using importance sampling works quite well in approximating the log-likelihood.

To compare the full and reduced models, we computed the marginal log-likelihood, the
LR statistic, and the Bayes factor. The marginal log-likelihood was -207.61 for the full model
and -228.43 for the reduced model. For both models, our estimate of bias was close to zero
and ESS was numerically the same as the MC sample size. Adaptive quadrature (with five
quadrature points) provided similar marginal log-likelihoods, -207.62 and -228.44 for the full
and reduced models, respectively. As for computation time, it took about 21,000 seconds
with adaptive quadrature but only a few seconds with the importance sampling method.

The LR statistic between the full and reduced model was A = —2(—228.41 + 207.62) =
41.58 (p < 0.001,df = 1) and the Bayes factor was computed as 1.20 using (3.12). These
results are strong evidence for the inclusion of the interaction term.

3.4.3 Birth Weight Data

In order to assess performance of MCLL for data where the true ML estimates are easy
to obtain, we consider a linear mixed model. Specifically, we use the linear mixed model
that was proposed by Rabe-Hesketh et al. (2008) to analyze nuclear family birth weight data
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Figure 3.1: Log-likelihood surfaces obtained using importance sampling (MC) and adaptive
quadrature (Adaptive). The vertical dashed lines indicate the MCLL estimates for the
corresponding parameters.
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from the Medical Birth Registry of Norway described in Magnus et al. (2001). In the original
dataset, there were 1,000 nuclear families each comprising mother, father, and a single child
(not necessarily the only child in the family). A two-level liner mixed model was formulated
for family members ¢ nested in families j with three uncorrelated random coefficients

yij = X8+ P [M; + Ki/2] + of) [Fy + K /2] + o) [K; V2] + e, (3.14)

where x;; is a vector of covariates with regression coefficients 3. M;, K;, and F; are dummy
variables for mother, child, and father, respectively. The covariates were male, a dummy
variable for being male (xy;;), midage, a dummy variable for mother aged 20-35 at time
of birth (z4;), and highage, a dummy variable for mother older than 35 at time of birth

(w3;;). The three random effects at level 2, a(l?, ozg-), and ag) are i.i.d as agj) ~ N(0,0%)

with &k = 1,2,3. The level-1 residuals have a normal distribution, eg) ~ N(0,0%) and
are independent of the random effects. Here o4 can be interpreted as the additive genetic
standard deviation and og as the unique environment standard deviation.

To implement the MCLL method, the same settings were used as in the first exam-
ple. Diffuse normal priors were specified for the regression coefficient parameters (mean 0,
standard deviation 1,000) and for the log standard deviations logo4 and logog (mean 6.17,
standard deviation 0.27). The MCLL estimates and standard errors (using the diagonal
Hessian matrix) were compared with the Bayesian estimates and standard errors (posterior
means and standard deviations) and with the true ML estimates which were obtained from

the R function 1me in the package nlme (Pinheiro et al., 2012).

Results
Table 3.2 lists the results for model (3.14) to the birth weight dataset.

Table 3.2: Parameter estimates (Est) and standard errors (SE) for the birth weight data.
MLE is the true maximum likelihood estimates and Post.m is the posterior mean estimates

MLE Post.m MCLL

Est SE Est SE Est SE
£ | 3368.10 31.14 | 3366.00 31.50 | 3369.93 31.73
(o 155.35 17.53 | 155.33 17.85 | 154.97 18.45
B3 126.95 30.98 | 129.26 31.28 | 125.62 31.74
o 213.44 52.64 | 214.39 52.66 | 216.52 53.68
op | 374.67 - 375.94 - 375.58 -
oa | 311.21 - 309.58 - 311.09 -

For regression coefficients, Bl indicates the estimated mean birth weight for female babies
of mothers aged younger than 20 at the time of birth, and (3,, 83, and (4 represent the
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estimated differences in the mean birth weight between male and female babies, between
mothers, and between old and young mothers, controlling for the other variables. In the
random part, the estimated genetic standard deviation (64) was a bit smaller than the
estimated unique environment standard deviation (o).

The MCLL estimates were close to the true ML estimates both for the regression coef-
ficient and standard deviation parameters. The MCLL standard errors were slightly larger
than the ML standard errors although the differences were negligible. Compared with the
posterior mean estimates, the MCLL estimates were closer to the ML estimates for the two
regression coefficient parameters i, (3, and both standard deviations o4, and og. The
standard errors were slightly larger than the posterior standard deviations.

3.4.4 Longitudinal Data on Self-esteem

The third example is the linear crossed random effects model proposed by Jeon & Rabe-
Hesketh (2012) to investigate Korean students’ growth in self-esteem. The data were taken
from the Korea Youth Panel Survey (KYPS; Lee et al., 2010) from 2003 to 2006 where
students were in middle school in the first two waves and in high school in the last two
waves. There were 3,281 students in 104 middle schools at waves 1 and 2 and 2,924 students
followed up after dispersing into 860 high schools at waves 3 and 4.

About 2.7% students switched their school membership during the middle school or high
school years and these students were excluded from the data for simplicity. The response vari-
able was self-esteem which is a mean-composite variable computed from six 5-point Likert-
scale items. The mean (standard deviation) of self-esteem was 3.16 (0.62), 3.26 (0.62), 3.31
(0.60), 3.33 (0.61) at waves 1, 2, 3, and 4, respectively. The internal consistency of the
measures (Cronbach’s o) was on average 0.734.

We formulated a three-level linear mixed model with crossed random effects for the self-
esteem, Yiqnn at time ¢ for student s who attended middle school m and high school A

Y;‘/smh = ﬁl + B2t1m62 + ﬁ3t1me3 =+ B4t1me4 + 53 + 5m,ut + 5h77t + €tsmhs (315)

where (37 is an intercept and (5, (3, and [, are coefficients for time 2, 3, and 4 dummy
variables. The random part of the model consists of a student-level random effect o, ~
N(0,0?), a middle school random effect 4,, ~ N(0,02), a high school random effect &, ~
N(0,0%), and a time- and student-specific residual e, ~ N(0,0%). The model contains
occasion-specific weights, p = (1,1,1,1)  and n = (0,0, 1, 1)’ that represent the contribution
of school effects on student outcomes at each time point. n; and 7y were set to zero because
the future high school is assumed not to affect students while they are still in middle school.
Jeon & Rabe-Hesketh (2012) considered p = (1, po, i3, pta)’ and m = (0,0, 1,74)" as model
parameters, but here we simplified the model by treating them as fixed for illustration
purposes.

To implement the MCLL method, the same settings were used as in the first two exam-
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ples. Diffuse normal priors were specified for the regression coefficient parameters (mean 0,
standard deviation 100) and for the log standard deviations, logos, logo,,, logoy, and logo,
(mean -4.37, standard deviation 2.35). The MCLL estimates and standard errors (using the
diagonal Hessian matrix) were compared with the posterior means and standard deviations
and with the true ML estimates which were obtained from the xtmixed function in Stata.

Results
Table 3.3 lists the results for model (3.15) to the KYPS dataset.

Table 3.3: Parameter estimates (Est) and standard errors (SE) for the Korea Youth Panel
Survey (KYPS) data. MLE is the true maximum likelihood estimates and Post.m is the
posterior mean estimates.

MLE Post.m MCLL
Est SE | Est SE | Est SE
G | 3.16 0.02 | 3.16 0.01|3.16 0.02
By | 0.11 0.01]0.11 0.01]0.11 0.01
B3 10.16 0.01]0.16 0.01]0.16 0.01
By | 0.18 0.02]0.18 0.01|0.17 0.02

o, 1046 - 046 - ]0.46 -
om | 038 - 1038 - 038 -
o, 1009 - 1009 - ]009 -
o. 1012 - 1012 - ]0.12 -

For regression coefficients, Bl indicates the estimated mean self-esteem of students at
wave 1 (second grade in middle school). The coefficients for the time dummy variables, Bg,
Bg, and B4 represent the estimated differences in the mean self-esteem between each wave and
wave 1. The mean growth from waves 1 and 2 was estimated as 0.11, from waves 2 and 3 was
0.05, and from waves 3 and 4 as 0.02. Students’ self esteem tended to increase, but the rate
of the growth decreased over time. In the random part, the estimated within-student and
the estimated between-student standard deviations (6., 75) were larger than the between-
school standard deviations (6,,, 65). All the regression coefficient parameter estimates and
standard errors, and the standard deviation estimates from the MCLL method were close
to the ML estimates. There was little difference between the MCLL estimates and posterior
means and standard deviations in this example.
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3.5 Simulation Studies

Two simulation studies were conducted to evaluate the performance of the MCLL method
using 1) simulated salamander mating data for a generalized linear mixed model with crossed
random effects and 2) simulated birth weight data for a linear mixed model. A linear mixed
model is considered to evaluate the MCLL method when the true ML estimates are available.

3.5.1 Simulation Design

The first example was closely related to the salamander mating data in Section 3.4.1. 100
datasets were generated based on model (3.13) using the same true parameter values consid-
ered by other researchers (e.g., Lin & Breslow, 1996), which are 3 = (1.06, —3.05, —0.72, 3.77)’
and (0%,07,)" = (.50, .50)". The second example was related to the birth weight data in Sec-
tion 3.4.3. 100 datasets were generated based on model (3.14) using the ML estimates
of the original data as true values, B = (3368.09,155.34,126.94,213.43)" and (oa,0) =
(311.21,374.66)". To implement the MCLL method, the same settings were used as in the
corresponding empirical studies.

In addition, Monte Carlo error (MCE) involved in all simulation estimates were estimated.

~

Based on Koehler et al. (2009), MCE for the mean of the estimates (3) can be defined as

B

NCE = | = S (30) - A0

b=1

where 3(b) is the estimate at the bth simulated data and 3(-) is the mean of the estimates
of the B replicates 3(-) = %Z{il B(b).

Stata command simsum (White, 2010) was used to compute the MCE for the means of
the parameter and standard error estimates in the simulation studies.

3.5.2 Results

Table 3.4 lists the estimated bias and mean squared error (MSE) for the first simulation
study mimicking the salamander mating dataset.

The MCLL method performed well compared with the Bayesian and the Laplace ap-
proximation methods. For the regression coefficient estimates, the bias and MSE were quite
similar between the methods. For the standard deviations, however, the MCLL method
showed smaller bias and MSE than the other two methods.

Table 3.5 lists the average standard error estimates compared with the standard de-
viations of the parameter estimates (or the empirical standard errors) for the regression
coefficient parameters.
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Table 3.4: Bias and mean squared error (MSE) of the MCLL, Laplace approximation, and

posterior mean (Post.m) estimates for 100 simulated salamander datasets.

Bias MSE

True | Laplace Post.m MCLL | Laplace Post.m MCLL
B 1.06 -0.03 -0.03  -0.03 0.12 0.12 0.12
By -3.05 0.04 0.01 0.01 0.22 0.21 0.21
By  -0.72 0.06 0.06 0.05 0.17 0.17 0.16
By 377 -0.04 -0.01 -0.04 0.35 0.33 0.35
om 0.71 -0.17 -0.21 -0.13 0.10 0.09 0.07
or 0.71 -0.15 -0.19  -0.12 0.12 0.09 0.08

Table 3.5: Average standard error estimates for 100 simulated salamander datasets. SD
is the empirical standard error (standard deviation of the parameter estimates), SE is the
average of the standard error estimates, and SE/SD is the ratio of SE to SD.

MCLL Laplace
SE SD SE/SD| SE SD SE/SD
G 031 034 091 029 034 0.85
By 0.50 0.46 1.09 |0.44 0.46 0.96
B3 0.40 0.40 1.00 |0.37 0.41  0.90
B4 0.61 059 1.03 |0.53 0.59 0.90
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The results show that the means of the standard error estimates over replicates were quite
close to the empirical standard errors for all methods. Our standard error estimates tend
to be more conservative than those from the Laplace approximation. Monte Carlo errors
(MCEs) were about 10% of the means of the parameter estimates and less than 0.1 for the
means of the standard errors in all methods.

For the linear mixed model example with the simulated birth weight datasets, we com-
pared the MCLL and Bayesian estimates (posterior means) with the ML estimates. Figure
3.2 compares the distances from the ML estimates between the two methods for each pa-
rameter.

Figure 3.2 shows that the MCLL estimates are closer to the true ML estimates than the
posterior mean estimates. In particular, the posterior mean estimates display a marked bias
(defined relative to the ML estimates), which is evident in the point clouds being shifted
away from zero on the x-axis. The second step of the MCLL algorithm adjusts the estimates
and we observe that they are no longer biased relative to the ML estimates. This is a
strong evidence that MCLL estimates are closer to the ML estimates than the posterior
mean estimates. The MCEs were about 10% of the means of the parameter estimates for all
methods.

Table 3.6 compares the average standard error estimates with the empirical standard
errors.

Table 3.6: Average standard error estimates for 100 simulated birth weight datasets. SD
is the empirical standard error (standard deviation of the parameter estimates), SE is the
average of the standard error estimates, and SE/SD is the ratio of SE to SD.

MCLL ML
SE SD SE/SD | SE SD SE/SD
By 3222 3170 1.02 | 31.11 31.49 0.99
By 17777 1535 1.16 | 17.52 1531 1.14
Bs 31.89 32.00 1.00 |30.94 32.00 0.97
Ba 53.92 58.05 093 | 5258 5799 091

Table 3.6 shows that both the ML and MCLL standard errors are good approximations
to the empirical standard deviations. As in the first simulation example, the MCLL standard
error estimates tend to be a bit more conservative than the ML standard errors. The MCEs
for the means of the standard error estimates were less than 0.05 for MCLL, less than 0.10
for the ML method, and less than 0.08 for the Bayesian method.
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Figure 3.2: Distances from the ML estimates for MCLL estimates (MCLL-MLE) and for
posterior mean estimates (Post.m-MLE) for 100 simulated birth weight datasets
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3.6 Concluding Remarks

In this paper, the Monte Carlo local likelihood (MCLL) method was proposed for maximum
likelihood estimation of GLMMs with crossed random effects. The MCLL method initially
treats the model parameters as random variables and samples them jointly with random
effects, from the posterior distribution for a particular prior. The likelihood function is then
approximated up to a constant as a local likelihood density estimate of the posterior divided
by the prior.

The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,
2004), which uses kernel density estimation to approximate the posterior. The key advantage
of MCLL is that it provides methods for obtaining standard errors whereas MCKL does not.
MCLL is also less sensitive to bandwidth selection than MCKTL.

De Valpine (2004) showed convergence of the MCKL estimator based on proofs of con-
vergence of kernel mode estimates. The proofs for MCKL may not be directly applied to the
MCLL method with a polynomial higher than degree zero. Unlike kernel density estimation,
there has been no proof yet on the convergence of mode estimates in local density estimation,
which would be an intermediate step in proving convergence of the MCLL estimator.

Finally, it is important to note that MCLL allows likelihood inference for any complex
models for which ML estimation may be infeasible but MCMC methods are possible. For
example, in addition to GLMMs with crossed random effects considered here, the MCLL
algorithm could be used to fit state-space models with higher dimensional latent variables.
Potential applications for MCLL are therefore far beyond the models discussed in this paper.
We have shown that the MCLL method provides results close to the ML estimates. Even if
informative priors are specified, MCLL provides estimates close to the ML estimates, whereas
the posterior mean estimates could be quite different. When ML inference is desired for
highly complex models, the MCLL method seems to be an effective and practical choice.
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Chapter 4

Autoregressive IRT Growth Model

4.1 Introduction

This paper considers longitudinal data where a latent construct is measured by multiple
items at multiple time points. In measuring psychological traits such as engagement or self-
esteem, typically the same scales with the same set of items are used over time. In ability
testing, a set of common items are often included in different tests for the purpose of vertical
equating. Responses to the same items over time may not be conditionally independent
given the latent trait.

When the measures of the latent construct are continuous, curve-of-factors models or
second-order latent growth models are often used in structural equation modeling (SEM)
(e.g., Hancock & Kuo, 2001; Sayer & Cumsille, 2001). A common strategy in such models
is to deal with violations of conditional independence by allowing residuals for the same
items to be correlated over time (Loehlin, 1998; Sayer & Cumsille, 2001). In econometrics,
correlated errors have also been used in probit models (e.g., Hyslop, 1999; Varin & Czado,
2010).

In item response theory (IRT), many methods have been developed to deal with local
dependence within tests. Testlet-type models were suggested which use additional dimen-
sions to capture dependence within item bundles or testlets (e.g., Gibbons & Hedeker, 1992;
Wilson & Adams, 1995; Bradlow et al., 1999; Wang & Wilson, 2005; Jeon et al., in press).
Such approaches are computationally demanding in general because the number of latent
variables required increases as the number of item clusters increases. Hoskens & De Boeck
(1997) present a fixed effects approach using interaction parameters for within-test local
dependence. Alternatively, marginal models have been proposed e.g., by utilizing copula
functions to capture local dependence among items (e.g., Braeken et al., 2007; Braeken,
2011). However, these marginal methods appear to be difficult to implement in practice.

For longitudinal data, multidimensional models have typically been used in IRT without
much consideration for serial dependence. See for example, Andersen (1985), Embretson
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(1991), and McGuire (2010). Recently, Cai (2010) suggested a two-tier IRT model that uses
additional latent variables (or dimensions) to take into account local dependence among item
responses, and also discussed an application to a longitudinal setting. A combination of the
multilevel model and the IRT model has also been used to analyze longitudinal data. For
example, a one-parameter logistic (1PL) IRT measurement model was applied in three-level
growth models for binary and categorical data (e.g., Fox, 2005; Pastor & Beretvas, 2006).
Segawa (2005) presented a multilevel IRT model including a two-parameter logistic (2PL)
IRT measurement model for ordinal responses. For categorical responses in SEM, Serrano
(2010) presented a second-order model for binary item responses using extra latent variables
to allow for autocorrelations between the responses over time. Eid & Hoffmann (1998)
proposed a multistate-multitrait model that includes latent factors for serial correlations
among ordinal responses.

In this paper, we present an autoregressive IRT growth model that takes into account
serial dependence. Autoregressive or dynamic models for binary panel data have been ac-
tively investigated in econometrics (e.g., Heckman, 1981; Hsiao, 2003; Bartolucci & Nigro,
2010) but rarely in psychometrics or educational measurement. A dynamic Rasch model has
been proposed by Verhelst & Glas (1993) but in a different context, to model learning effects
throughout tests.

The autoregressive IRT growth model that we present here allows the current response
to an item to depend on the previous response in addition to the latent trait. In the mea-
surement model, the coefficients for the lagged responses allow to study state dependence,
i.e., how the past response can influence the response to the same item in the future. We
will show that this autoregressive model is equivalent to a model that includes interaction
parameters for item responses at adjacent time points. The initial conditions problem needs
to be addressed because initial outcomes have no lagged variables (see e.g., Heckman, 1981,
Wooldridge, 2005). We adopt the treatment suggested by Heckman (1981) and Aitkin &
Alfo (2003) to deal with the initial conditions problem.

A linear growth curve model is specified for the latent trait in the structural model. The
full model can be estimated using standard maximum likelihood (ML) software. ML estima-
tion of the proposed model involves only three-dimensional integrals and the dimensionality
of the integrals stays the same regardless of both the number of time-points and the number
of items.

The outline of this chapter is as follows: We first review how local dependence has been
treated in IRT. In Sections 4.2 and 4.3, we present IRT models with interaction parameters
to capture local dependence for cross-sectional data. An autoregressive IRT growth model
is then introduced for longitudinal data. Equivalence of this model to an IRT model with
interaction parameters is shown. In Section 4.4, we discuss the treatment of the initial
conditions problem and its implications for measurement invariance. In Section 4.5, we
investigate the consequences of ignoring serial dependence and the initial conditions problem
using simulations. An empirical study is provided in Section 4.6 to illustrate the proposed
model. We end with some concluding remarks.
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4.2 Treatment of Local Dependence in IRT

IRT models are not robust to violations of local stochastic independence, called local item
dependence or residual dependence (Tuerlinckx & De Boeck, 2001; Braeken et al., 2007).
Local item dependence can seriously affect estimation of model parameters on both item
and person sides, the test information function, and the diagnostics that assume conditional
independence (see e.g., Yen, 1984; Sireci et al., 1991; Yen, 1993; Chen & Thissen, 1997;
Tuerlinckx & De Boeck, 2001; Braeken et al., 2007).

Several methods have been suggested to deal with local dependence in IRT. Typically
local dependence is violated for items nested in subtests (Andrich, 1985), testlets (Wainer &
Kiely, 1987), or item bundles (Wilson & Adams, 1995; Rosenbaum, 1999). To deal with the
local dependence, the sum scores of testlets can be used as polytomous items. Alternatively,
additional latent variables (or dimension) can be introduced to capture the dependence
within testlets (Gibbons & Hedeker, 1992; Bradlow et al., 1999; Wang & Wilson, 2005; Cai,
2010; Jeon et al., in press).

Hoskens & De Boeck (1997) present a fixed effects approach that directly models local
dependence using interaction parameters. Drawbacks of this approach are first, the marginal
item characteristic curves are not reproducible (Fitzmaurice et al., 1993), i.e., the curves are
no longer logistic functions. Second, the item parameters lose their usual interpretations (Ip,
2002; Wang & Wilson, 2005; Braeken et al., 2007; Braeken, 2011).

To avoid these problems, marginal models have been proposed such as the Bahadur-Ip
model (Ip, 2000, 2001), the hybrid kernel model (Ip, 2002), and copula models (Braeken
et al., 2007; Braeken, 2011). The main idea is to keep marginal probabilities intact by
accounting for local dependence by separate tools. However, these methods are difficult to
implement in practice and require modeling choices to be made. For example, for copula
models, users have to choose an appropriate copula function.

4.3 Local Dependence IRT Models with Interaction Pa-
rameters

A natural way of modeling dependence among correlated item responses is to include inter-
action parameters in the IRT model. This approach was suggested by Hoskens & De Boeck
(1997) and Adams et al. (1997) to capture local dependence in cross-sectional data, but it can
also be extended to a longitudinal setting. In this section, starting from the local dependence
model within tests, a serial dependence model is introduced for longitudinal data.

4.3.1 Local Dependence IRT Model within Tests

A 2PL IRT model is considered as the basic model. Assuming local independence, the 2PL
model specifies the conditional probability of binary response y;s for item ¢ and person s
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given ability 6, as

- o exp [yl-s(ozﬂs — ﬁl)]
PI"(Y;‘S = yzsws) 1 + exp [(041'95 - ﬁ1>]’

(4.1)

where 6, ~ N(0,02), and 3; and a; are the item intercept and discrimination parameters,
respectively. The item difficulty is f3;/c;. Under the local independence assumption, the
joint probability for a particular realization of responses (yis, y25) to items 1 and 2 for person
s can be written as

€xXp [yls(ales - 61) + y23(04295 - 62)]
Z exp [di(a1bs — B1) + da(2ls — 52)]’

{d1,d2}

Pr(ifls = Yis, }/28 = y2s|‘98) = (42)

where the sum in the denominator is over all possible response patterns with (dy, dy) equal
to (0,0), (1,0), (0,1), and (1,1).

To model local dependence, interaction parameters can be incorporated for locally de-
pendent items. For example, model (4.2) can be extended as

exp [y1s(@1bs — 51) + yas(abls — B2) + yasy1s(—A21)]

Z exp [di (b — B1) + da(aels — B2) + dadi(— A2 )]
{di,d2}

Pr(ifls = Yis, Yés = y28|05) = ) (43)

where \y; is the parameter that quantifies the interaction between items 1 and 2. Note
that in model (4.3), the marginal probability for y;s given 6 is not reproducible (not the
inverse logit function as in (4.1)), and «a; and §; lose their usual interpretations as item
discrimination and intercept parameters if \y; # 0 (Braeken et al., 2007; Braeken, 2011).

4.3.2 Serial Dependence IRT Model for Longitudinal Data

The local dependence model in Section 4.3.1 can be extended to longitudinal settings to cap-
ture serial dependence. With longitudinal data, local dependence arises among the responses
to the same items used repeatedly over time. Let the response pattern for item ¢ and person
s across T occasions be denoted y,, = (Y1is, Y2is, ---» Y1is) , where s is the response to item
1 at occasion t, t = 1,...,T. Then the probability for y,, can be modeled as

T T T
exp [_Bi Z Ytis T Qi Z Orsytis — Z /\iytisy(t—l)is]
t=1 - t=1 - t=1 -
> exp [—ﬁi Y dit iy Oudi Y Aidtdt_ll
t=1 t=1 t=1

{d}

Pr(y;|6s) =
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where 0, = (05, ...,075)" is the vector of latent traits across time for person s and {d}
indicates the set of all possible response patterns. \; is an interaction parameter for the
responses to item ¢ between at adjacent occasions ¢ and ¢ — 1. We assume that \;, 3; and
«; are constant across time for item i. Here yo;s does not exist and is set to 0 (See Section
4.5.1 on the initial conditions problem).

4.4 Autoregressive IRT Growth Model

We now introduce a first-order autoregressive IRT growth model for longitudinal analysis.
Equivalence of this model to the serial dependence IRT model is shown.

4.4.1 Measurement Model

The measurement model corresponds to a first-order autoregressive or dynamic 2PL model.
The conditional probability for binary response ;s at time ¢ for item ¢ and person s can be
written as

logit(Pr(ytis = 1|y(t—1)is; 9ts)) = Oéiets - 6@ + )\iy(t—l)isa (45)

where ); is the lag parameter for state dependence and the lagged variable y_);s for item
1.
It is useful to note that
Pr(ytis = 1|9tsay(t71)is = 1)/Pr(ytz’s = O‘thy(tfl)is = 1)

lo =\,
gPr(ytis = ]-|0t57 Y—1)is = 0)/Pr(ytzs = 0|‘9t57 Yi—1)is = 0)

when time ¢ > 1. That is, the lag parameter )\; is the log-odds ratio for current responses
due to the previous responses changing from 0 to 1 (see e.g., Bartolucci & Nigro, 2010).

The dynamic Rasch model (Verhelst & Glas, 1993) was presented in IRT in the context
of modeling learning effects. Instead of lagged responses, the cumulative number of correct
responses preceding the item in question was used where the effect of the cumulative sum was
considered as a learning effect induced by previous successes (De Boeck et al., 2011). This
model was later extended by Verguts & De Boeck (2000), allowing for a different learning
rate for each person.

In order to show equivalence of model (4.5) to the serial dependence model in (4.4),
rewrite model (4.5) using a log-linear formulation. For example, at time 2

OXP [Yais(Xib2s — Bi) — Ailjaisynis
Pr(yais|yris; O2s) = D [y2is(@tifhs — i) YaisYis)

Z exp [da(ibzs — Bi) — Nidad,] '
{d}
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Similarly, write model (4.5) at time 3

X isaies— Z_/\Z isY2is
Pr(ysis|yais; 03s) = P [ysis(ibss — ) Y3isYois)

Z exp [d3(cb3s — B;) — )\id3d2]'
{d}

The joint conditional probability of the pair of the responses (yo;s, ¥3:s) at time 2 and 3 can
then be written as

_ &Xp [Wais(ilas — Bi) + yzis(illss — Bi) — AiYjaisYris — NiYzisYais]

Pr(yais, Ysis [Y1is; Ors) =
t Z exp [da(@iblas — B;) + dz(ifss — Bi) — Nidady — Aidsdy]
{d}

Notice that if we set yp;s = 0 so that

exp [yus(%‘@u - Bz)]

- Z €xXp [dl(aiels - ﬁz)] 7
{d}

Pr(ylz‘s|915)

we obtain the joint probability for y,, = (Y1is, Yois, Ysis)
3 3 3
eXp [_Bi Z Ytis + Z OtsYtis — Z /\iytisy(t—l)is]
t=1 t=1 t=1
T T T
> exp [—ﬁi doditary Ord = Aidtdt_ll
t=1 t=1 t=1

{d}

Pr(y;|6s) =

Y

which is the serial dependence model in (4.4) with 7" = 3.

4.4.2 Structural Model

In the measurement model (4.5), 6 is the latent trait for person s at occasion ¢t. Andersen
(1985) specifies a longitudinal IRT model with

08 - (0187 028a sy QTS),a

where 6, ~ N(0,Y). Because Andersen’s model does not contain change parameters, Em-
bretson (1991) suggests specifying
t
etS = Z 94'37
r=1
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where changes 0/, from the previous status to time r are modeled for person s, and ', =
(01,,05,,....,0%,) with @, ~ N(0,%).

However, Andersen’s and Embretson’s models can be computationally demanding be-
cause they require an increasing number of latent variables as the number of time points
increases. McGuire (2010) proposed a simplified version of Embretson’s model, which re-
quires only two latent variables, one for the baseline and the other for the growth factor, by
specifying

Ors = 051 + (b1 + ds2)timey, (4.6)

where by is the mean slope or the mean growth rate and time; is the time associated with
occasion t. 041, the random intercept (or initial status) and dso, the random slope (or growth
rate) for person s are assumed to have a bivariate normal distribution

651 0 0'31 Os12
(552)NN<{0]’{0821 0l .

This formulation relies on a strong assumption that the latent trait for each person follows
a perfect straight line trajectory (or a higher-order polynomial if powers of time are added
to (4.6)). In addition, it does not allow for a random influence on the latent trait (or a
deviation from the line trajectory) at each time point. We extend this model by allowing
for an individual and time-specific error term ¢;,. This extension with a 1PL measurement
model was presented in Pastor & Beretvas (2006) among others. The structural model can
be specified as
O1s = ds1 + (b1 + dgo)time; + €4, (4.7)

where €5 ~ N(0,07). Specifying different time-specific residual variances o corresponds to
weak factorial invariance. Specifying constant time-specific residual variances o2 corresponds
to strict factorial invariance (for more information, see, Meredith, 1993).

Note that in this formulation, only three-dimensional integrals are required regardless of
the number of time points and items. This gives us computational advantages over previous
approaches such as: 1) Anderson’s and Embretson’s IRT growth models where the number
of latent variables grows as the number of time points increases, and 2) the random effects
approaches for handling serial dependence (e.g., Serrano, 2010) that require an increasing
number of latent variables as the number of items increases. Cai (2010) showed how to
reduce the number of latent variables for his two-tier model, but it still requires more latent
variables as the number of time points increases.

The full model is obtained by combining the measurement model in (4.5) with the struc-
tural model in (4.7). Figure 4.1 illustrates the model for person s assuming I items at each
of four time points.

In the figure, the frame represents person s, ovals latent variables, rectangles observed
variables, and arrows connecting latent and/or observed variables represent regression rela-
tions. The double-headed curved arrows between the observed variables represent pairwise
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person s

Figure 4.1: A serial dependence linear growth model with the random intercept, random
slope, and time-specific random effects

interactions between adjacent time points. #; to 6, represent the latent trait at each of the
four time points, measured by the same [ items. The short arrows pointing at the latent
traits at each time point indicate time-specific random effects ¢;,, and the ovals d; and
represent the random intercept (or initial status) and the random slope (or growth rate),
respectively. The double-headed curved arrow between dy; and 4 represents the covariance
0s12. The values associated with the arrows pointing at 6, to 6, indicate factor loadings
(1,1,1,1) for 05 and (1,2,3,4) (for a linear growth) for ds in this example.

4.5 Treatment of the Initial Conditions Problem

The initial conditions problem is an important theoretical and practical problem in dynamic
models (Wooldridge, 2005). The consequences of ignoring the initial conditions problem
have been studied in detail in econometrics (e.g., Anderson & Hsiao, 1981; Heckman, 1981;
Wooldridge, 2005). For example, simply dropping the first outcome from the analyzed data
produces inconsistent estimates (Hsiao, 1986; Fotouhi & Davies, 1997; Aitkin & Alfo, 1998).
In this section, the initial conditions problem is illustrated and the treatment of the initial
conditions problem is discussed for the proposed autoregressive IRT growth model.
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4.5.1 Initial Conditions Problem

To begin with, first write down the autoregressive model (4.5) at time 1
logit(Pr(y1is = Uyois; O1s)) = ibhis — Bi + Aivjois-

The initial conditions problem is that the lagged response yy;s does not exist for the initial
outcome y1;5. There are two simple options to deal with this problem: First, to treat yg;s
as missing so that yy;s is not modeled as a response variable. This leads to an endogeneity
problem because the association between yy;, and 6;, is not modeled. All the association
between ys;s and yy;s will be attributed to \;, whereas some of the association is due to the
correlation between 6y, and 6;,. Consequently A; will be over-estimated particularly when
there are few time points (7 is small) because the first time point will have a larger impact.
The second method is to set yg;s = 0. The problem with this approach is that the model for
Ytis is conditional on the previous response when time ¢ > 1, but is marginal (with respect
to the hypothetical previous response) at time ¢ = 1. It does not make sense to assume that
the parameters 3; and «; are the same in the conditional and marginal models.

Aitkin & Alfo (2003) suggested specifying an approximate model for the marginal (not
conditional on the previous response) probability of the initial outcome given the latent trait.
Heckman (1981) also proposed a similar method that approximates the distribution of the
first outcome. Following Aitkin & Alfo (2003), model (4.5) at time 1 can be formulated as

lOgit(Pr(ylis = 1‘(913)) = 062(913 — ﬁ: (48)
For time ¢ > 1, we retain the model
logit(Pr(ytis|y(t—1)is; 0i5)) = ibes — Bi + AiY(t—1)is- (4.9)

It is important to allow 3] # f; and ) # «; in models (4.8) and (4.9). Note therefore that
a is still needed for time 1 even if the model is otherwise a 1PL model (with o; = 1).
The joint probability of the item responses given the latent trait can then be written as

I T
Pr(ys\%) = H Pl"(ylis|915) H Pl"(ytis‘y(t—l)is; 91&5)-
i=1 t=2

As an alternative solution to the initial conditions problem, Wooldridge (2005) considered
the distribution of the latent variable, conditional on the initial response

ets = YY1is + 91/557 (410)

where 6], is uncorrelated with the initial response yy;s in (4.10). The full model conditional
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on ¥y;s then becomes
logit(Pr(yus = 1‘y(t71)is§ Ors, Y1is)) = by, — Bi + 0 yyris + N,

when time ¢ > 1. Note that 6}, is different from the original latent variable 6.

Figure 4.2 visualizes the differences between Aitkin and Alfo’s and Wooldridge’s ap-
proaches using a simple example with one item at four time points in a unidimensional
model with one latent variable.

In the figures, y;1 to ys41 indicate the responses to item 1 and x;; to x4 represent the
times associated with the measurement occasions 1 to 4. In Aitkin and Alfo’s model in the
upper panel, the item parameters 5 and o at time 1 are different from 5, and oy at later
time points. Wooldridge’s model in the lower panel contains an arrow from y;; to € with
coefficient ~.

We adopt Aitkin and Alfo’s approach to deal with the initial conditions problem in the
proposed model. With this treatment, the latent trait vector @, can be left intact in both
marginal and conditional models (with respect to the lagged responses) both at time 1 and
time t > 1. Thus, when the main interest is on modeling growth of the latent trait, Aitkin
and Alfo’s approach is preferable to Wooldridge’s method that specifies the distribution of
the latent trait conditional on the initial response.

4.5.2 Identification and Measurement Invariance

In the proposed model, the item parameters at time 1 are allowed to be different from those
at later time points (5] # f; and o # «;). For model identification, 41, ds2, and € are set
to have mean zero, and «; for the first item is fixed to 1. For measurement invariance, the
item parameters a; and [3; are set equal when time ¢ > 1. If the lag parameters of one or
more items are set to zero, these items serve as anchor items, allowing analysis of change
in @, from time 1 to time 2. An iterative procedure may be used to find anchor items,
similarly to item purification procedures for finding anchor items in detecting differential
item functioning (Rogers & Swaminathan, 1993; Zumbo, 1999). Even if \; # 0 for all items,
however, the model is still identified because linearity is assumed for the mean of 8, over
time.

At a glance, allowing for 5/ # (; and o) # «; at time 1 may look like violating the
measurement invariance assumption for longitudinal item analysis. Recall that at time 1,
however, the model is marginal, i.e., it does not include the lagged responses, whereas at later
time points the model is conditional on the lagged responses. Therefore, imposing the same
item parameters at time 1 and at later time points actually forces the item characteristic
curves (ICCs) to be different across time, which is a violation of measurement invariance
(Mellenbergh, 1989; Meredith & Millsap, 1992; Millsap, 2010).

The marginal probabilities Pr(ys|6:s) (or ICCs) are no longer logistic curves at time
t > 1if \; # 0. We can still compute the marginal probability for person s to binary item 4
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Figure 4.2: Solutions to the initial conditions problem by Aitkin & Alfo (2003) and

Wooldridge (2005)
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at time ¢ recursively for t =2,3,...,T as

Pl"(ytis|9ts) = Z Pr(ytis‘etsa Yit—1)is = d)Pr(y(tfl)is = d‘e(tfl)s)-
{d=0,1}

That is, it is the sum of the probabilities of all possible sequences of responses to item ¢ prior
to time ¢ when ¢ > 1. Note that having free parameters at time 1 allows the logistic curve
to be close to the not-quite-logistic curves at ¢ > 1. Assuming constant \; at time ¢ > 1
ensures that the curves are equivalent when ¢ > 1.

4.6 Simulation Study

Instead of simulating datasets for a finite number of persons, we generate “population” data
by computing the response probabilities for all possible response patterns and using them
to weight the log-likelihood contributions of the response patterns for maximum likelihood
estimation. A similar approach was used by Rotnitzky & Wypij (1994) and Heagerty &
Kurland (2001).

We investigate the asymptotic bias of the maximum likelihood estimators using the pop-
ulation data when the model is incorrectly specified by 1) ignoring serial dependence, and
2) ignoring the initial conditions problem.

4.6.1 Generating Population Data

Suppose there are three binary items at three time points and hence 2° = 512 response
patterns in total. For each response pattern vector y, (k = 1,2,...,2%), we first obtain the
response probability 7(y;,) = g(¥i;¥,) under the true model with parameters 1,. Given
7(y,) for all k, we treat the probabilities as frequency weights (possibly after multiplying by
a large number and rounding to integers, but the software can handle non-integer frequency
weights). Using the weights, we fit the model to the pseudo response vectors using the
weighted log-likelihood. The maximum likelihood estimates of the specified model minimizes
the Kullback-Leibler divergence between the true model g(y; %) and the mis-specified, fitted
model f(y; 1))
9(y; )

KL (9(y; %), f(y; ) = E, {logw} : (4.11)

Let 7" be the ML estimates of the model parameters 4 for the population data. White
(1982) shows that \/N(sz—zp*) — N (0, A(xp*) ' B(¢p*)A(¢p*) ') where A(¢p*) "1 B(¢p*) A(xp*) 1
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is the sandwich estimator applied to the population data and

A" = tim~ L 1og(y:
W) =t el 6

P I 9
B(¢") = lim ;\/a% { @bgf(””’b)'w*} :

where 8‘2;2 logf(y; ) is the Hessian of the marginal log-likelihood, and Var,¢ { ﬁlogf(ys; z/))) }
is the covariance matrix of the subject-specific contributions to the score vector. Hence, the
sandwich estimator applied to the population data gives us the asymptotic sampling vari-
ance of the ML estimators for the mis-specified models. We do not need replicates, as in a

conventional simulation study, to obtain sampling variances.

4.6.2 Simulation Design

To generate population data, we consider a simple example with three items at three time
points. At time ¢, the measurement part for the generating model can be written as

logit(Pr(yus = 1|y@—1)is; Ors)) = iblis — Bi + Xiti—1yis,

where t = 1,2,3 and ¢ = 1,2,3. We assume that the lagged effect \; for item 1 is the same
across time, and that A = 0 and A3 = 0. We generate the lagged response yy;s by initially
generating item responses at four time points (including at ¢ = 0) with the same values for
a;, B, and A;.

The structural model is written as

(9,55 = 551 + (b1 + 552)timet + €ts, (412)

where ¢ ~ N(0,02), and

2
Ca) (o) 12 )
The true values for the model parameters are as follows:
e Item parameters a = (1.0,1.2,0.8)" (« is fixed)
e Item parameters 3 = (—1.0,1.5,0)’

e Five different values for lag parameter \; = 0.2, 0.4, 0.6, 0.8, and 1.0

e Mean slope b = 0.2
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e Variance parameters o, = 0.2, 051 = 1.0, 05 = 0.5, and o412 = 0.0
Using the generated population data, we estimate and compare the following models:

Model 1: Proposed model. The item parameters are allowed to be different at time 1 from
those at t > 1 (B! # B; and o} # ;).

Model 2: Independence model that ignores serial dependence. ); is not estimated.

Model 3: Constrained model that ignores the initial conditions problem. The item param-
eters are constrained to be the same across all time points (] = ; and o} = ;).

Figure 4.3 illustrates these three estimated models in addition to the data generating model
for item 1.
In the figure, yo; to y3; indicate the responses to item 1 and zy; to x3; represent the times
associated with occasions 0 to 3. [; and «a; are the item parameters and \; is the coefficient
for the lagged response for item 1.

Note that in the proposed model, the measurement model at time 1 for item 1 is param-
eterized as

logit(Pr(y1is = 1;015)) = (a1 + a)b1s — (B1 + B7),

where o] and [} are the free parameters that represent the differences in oy and /5; between
at time 1 and ¢ > 1. That is, the item parameters at time 1 are o) = ay+aj and §] = g1+ 057.
At time points 2 and 3, the item parameters are a; and (.

For simulation conditions, we consider different values for the autoregression coefficient
A =0.2,04, 0.6, 0.8, and 1.0. Let 1) denote one of the model parameters, 1)* the maximum
likelihood estimates for the population data, and se*(1*) and sej(¢*) denote the model-
based and robust (sandwich estimator) standard errors for the population data when the
weights add to 1 (if the weights add to N,p, we multiply the standard errors by /Nyep). In
each condition, we compute the asymptotic bias as ¢* — 1)y and the asymptotic root mean

squared error (RMSE) as \/(w* — 19)? + (s (1*)/v/N)? for sample size N. To see how well
these asymptotic results hold in finite samples, we also simulate 200 datasets for N=200 and
estimate model parameters and compute the finite-sample bias and RMSE in the usual way.

The software gllamm (Rabe-Hesketh et al., 2005) in Stata was used for the simulation
study.

4.6.3 Power Calculation

We assess the power of the proposed model to detect the lagged effect \;. In principle,
power can be estimated by carrying out a Monte Carlo study that records the proportion
of replications in which the null hypothesis is rejected. The procedure can be tremendously
simplified, however, by following a technique often used in SEM. One method, introduced
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Figure 4.3: Data generating model and three estimated models
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by Satorra & Saris (1985), is based on the fact that the likelihood ratio (LR) statistic has
an asymptotic noncentral chi-square distribution x?(w, df) with degrees of freedom df and
noncentrality parameter w when the alternative model H, is correct and the null model H
is tested, where H, corresponds to df constraints. The covariance matrix implied by the
assumed model under H, is used as population data and the models corresponding to H,
and H, are fit to this matrix. The corresponding LR statistic multiplied by N/N,q, is then
used as noncentrality parameter w, where N is the desired sample size and [V, is the sample
size specified for ML estimation. Instead of the LR statistic, Satorra & Saris (1985) also
suggested using the Wald statistic for the model under H,.

We adopt the Satorra-Saris method: To compute the power of the test of Hy: \;, = A\,
we estimate the noncentrality parameter w based on the Wald statistic with df = 1 (Bollen,
1989, p.338-349). Specifically, for sample size N

RS
=N :
. <se*<A;*>) !

where A} is the estimate obtained by fitting the H, model to the population data generated
under Hy, and se*(\!) is the asymptotic standard error when the weights for the population
data add to 1. The asymptotic power of the test with significance level « is calculated as

Pr{x*(w,df) > ca},

where ¢, is a critical point.

Asymptotic power is calculated for the different values of \; and a range of sample sizes
(with 10 quadrature points). In order to assess how well the asymptotic power agrees with
the finite-sample power, we also simulate 200 datasets for N=200 subjects and estimate
the power based on the proportion of replicates where the null hypothesis is rejected in the
likelihood ratio test (with df=1).

4.6.4 Results

Tables 4.1 to 4.5 list the parameter estimates, standard errors, robust standard errors, and
log-likelihoods for the three models in each of the five simulation conditions. The standard
errors are the asymptotic standard errors for sample size N=100, i.e., se*(¢)*)/+/100.

The asymptotic bias of the proposed model is mostly zero or less than 0.01 across all
conditions. The independence model that ignores serial dependence produces some degree of
bias in most parameters. The size of bias appears relatively large for the mean slope b; and
the standard deviations o, 04, and o4 (the item parameters cannot be compared because
their interpretation differs in the proposed model). The constrained model that ignores the
initial conditions problem also produces some bias in most parameters. The bias appears
large for the a, B, A1, b1, and o, parameters, in particular. The asymptotic standard errors
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Table 4.1: Population parameter estimates {p* for condition 1 (A\;=0.2). In the data gener-
ating model, 5 = 0 and o] = 0. ps12 is the correlation, —Z=12-

? 0s510s2°

Parameters True Proposed Independence Constrained
Est SE SEgr | Est SE SEgr | Est SE SEg
o3 -1.0 | -1.00 0.31 0.31 | -0.96 0.23 0.23 | -0.97 0.22 0.22
BF - 0.06 0.41 0.41 - - - - - -
Ba 1.5 | 1.50 0.28 0.28 | 1.49 0.26 0.26 | 1.51 0.28 0.28
Bs 0.0 | 0.00 0.18 0.18 | 0.00 0.17 0.17| 0.01 0.17 0.17
o - 0.02 0.64 0.64 - - - - - -
Q9 1.2 | 1.20 0.55 0.55| 1.09 0.36 0.37 | 1.18 0.48 0.48
a3 0.8 | 0.80 0.35 0.35| 0.73 0.24 0.24| 0.79 0.31 0.31
A 0.2 | 0.20 0.50 0.50 - - - 0.17 0.46 0.46
by 0.2 | 0.20 0.15 0.15] 0.21 0.13 0.13| 0.19 0.13 0.13
Oc 0.2 | 0.20 - - 0.02 - - 0.18 - -
Os1 1.0 | 1.00 - - 1.10 - - 1.03 - -
Os2 0.5 | 0.50 - - 0.56 - - 0.51 - -
Ps12 0.0 | 0.00 - - 0.00 - - 0.00 - -
Log-likelihood -527.09 -527.16 -527.10




CHAPTER 4. AUTOREGRESSIVE IRT GROWTH MODEL

83

Table 4.2: Population parameter estimates {p* for condition 2 (A\;=0.4). In the data gener-
ating model, 5 = 0 and o] = 0. ps12 is the correlation, —Z=12-

? 0s510s2°

Parameters True Proposed Independence Constrained
Est SE SEgr | Est SE SEgr | Est SE SEg
o3 -1.0 | -1.00 0.32 0.32|-0.93 0.24 0.24 | -0.93 0.22 0.22
BF - 0.12 0.41 0.41 - - - - - -
Ba 1.5 | 1.50 0.29 0.28 | 1.48 0.25 0.25 | 1.52 0.28 0.28
Bs 0.0 | 0.00 0.18 0.18 | 0.01 0.17 0.17| 0.02 0.17 0.17
o - 0.04 0.65 0.65 - - - - - -
Qo 1.2 | 1.20 0.55 0.55| 0.98 0.33 0.35| 1.16 0.47 0.48
a3 0.8 | 0.80 0.35 0.35| 0.66 0.22 0.23 | 0.78 0.31 0.31
A 0.4 | 040 0.49 0.49 - - - 0.34 0.46 0.46
by 0.2 | 0.20 0.15 0.15] 0.23 0.13 0.14| 0.18 0.13 0.13
Oc 0.2 | 0.20 - - 0.00 - - 0.16 - -
Os1 1.0 | 1.00 - - 1.21 - - 1.06 - -
Os2 0.5 | 0.50 - - 0.61 - - 0.52 - -
Ps12 0.0 | 0.00 - - 0.00 - - 0.00 - -
Log-likelihood -527.20 -527.51 -527.26
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Table 4.3: Population parameter estimates {p* for condition 3 (A\;=0.6). In the data gener-
ating model, 5 = 0 and o] = 0. ps12 is the correlation, —Z=12-

? 0s510s2°

Parameters True Proposed Independence Constrained
Est SE SEgr | Est SE SEgr | Est SE SEg
o3 -1.0 | -1.00 0.32 0.32 | -0.89 0.25 0.26 |-0.89 0.22 0.22
BF - 0.17 0.40 0.40 - - - - - -
Ba 1.5 | 1.50 0.29 0.29 | 147 0.25 0.25| 1.53 0.28 0.28
Bs 0.0 | 0.00 0.18 0.18 | 0.01 0.17 0.17| 0.03 0.17 0.17
o - 0.02 0.66 0.65 - - - - - -
Qo 1.2 | 1.20 0.56 0.56 | 0.88 0.36 0.37 | 1.14 0.47 0.48
a3 0.8 | 0.80 0.36 0.36 | 0.59 0.24 0.24 | 0.77 0.31 0.31
A 0.6 | 0.60 0.48 0.48 - - - 0.50 0.45 0.46
by 0.2 | 0.20 0.15 0.15] 0.25 0.13 0.13| 0.17 0.14 0.13
Oc 0.2 | 0.20 - - 0.00 - - 0.14 - -
Os1 1.0 | 1.01 - - 1.33 - - 1.09 - -
Os2 0.5 | 0.51 - - 0.67 - - 0.53 - -
Ps12 0.0 | 0.00 - - 0.00 - - 0.00 - -
Log-likelihood -526.89 -527.55 -527.00
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Table 4.4: Population parameter estimates {p* for condition 4 (A\;=0.8). In the data gener-
ating model, 5 = 0 and o] = 0. ps12 is the correlation, —Z=12-

? 0s510s2°

Parameters True Proposed Independence Constrained
Est SE SEgr | Est SE SEgr | Est SE SEg
o3 -1.0 | -1.00 0.32 0.32 | -0.86 0.27 0.27 | -0.86 0.22 0.22
BF - 0.23 0.40 0.40 - - - - - -
Ba 1.5 | 1.50 0.29 0.29 | 146 0.24 0.24 | 1.54 0.28 0.28
Bs 0.0 | 0.00 0.18 0.18 | 0.01 0.16 0.16 | 0.03 0.17 0.17
o - 0.07 0.66 0.66 - - - - - -
Qo 1.2 | 1.20 0.56 0.56 | 0.78 0.27 0.30 | 1.12 0.46 0.48
a3 0.8 | 0.80 0.36 0.36 | 0.52 0.18 0.20 | 0.76 0.30 0.31
A 0.8 | 0.80 0.48 0.48 - - - 0.67 0.45 0.46
by 0.2 | 0.20 0.15 0.15] 0.28 0.16 0.16 | 0.16 0.14 0.13
Oc 0.2 | 0.20 - - 0.02 - - 0.11 - -
Os1 1.0 | 1.01 - - 1.10 - - 1.12 - -
Os2 0.5 | 0.51 - - 0.56 - - 0.54 - -
Ps12 0.0 | 0.00 - - 0.00 - - 0.01 - -
Log-likelihood -526.14 -527.27 -526.33
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Table 4.5: Population parameter estimates {p* for condition 5 (A\;=1.0). In the data gener-
ating model, 5 = 0 and o] = 0. ps12 is the correlation, —Z=12-

? 0s510s2°

Par True Proposed Independence Constrained
Est SE SEgr| Est SE SEgr | Est SE SEg
o3 -1.0 | -1.00 0.32 0.32|-0.83 0.29 0.30 |-0.82 0.22 0.23
i - 0.29 0.40 0.40 - - - - - -
Ba 1.5 | 1.51 0.29 0.29| 1.45 0.23 0.23 | 1.55 0.28 0.28
Bs 0.0 | 0.00 0.18 0.18] 0.01 0.16 0.16 | 0.04 0.17 0.17
o - 0.08 0.66 0.66 - - - - - -
Qo 1.2 | 1.20 0.56 0.56 | 0.68 0.24 0.28 | 1.10 0.46 0.48
a3 0.8 | 0.80 0.36 0.36 | 0.46 0.16 0.18 | 0.74 0.30 0.31
A 1.0 | 1.00 0.47 0.47 - - - 0.83 0.45 0.46
by 0.2 | 0.20 0.15 0.15| 0.31 0.17 0.17| 0.16 0.14 0.13
o 0.2 | 0.20 - - 0.02 - - 0.06 - -
Os1 1.0 | 1.01 - - 1.10 - - 1.15 - -
Os2 0.5 | 0.51 - - 0.56 - - 0.55 - -
Ps12 0.0 | 0.00 - - 0.00 - - 0.01 - -
Log-likelihood -524.95 -526.64 -525.25
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are close to the robust standard errors in all models across all conditions (with the differences
less than 0.01). The independence and constrained models tend to somewhat underestimate
the standard errors for all model parameters across all conditions.

For the lag parameter, we compared the asymptotic standard errors for N=200 with
the standard deviations of the parameter estimates and the means of the estimated standard
errors, based on 200 simulated datasets. With 5 quadrature points, the standard deviations of
the parameter estimates are a bit larger than the means of the standard error estimates, but
both are smaller than the asymptotic standard errors. Specifically, the standard deviations
of the estimates are about 18%, 24%, 31%, 32%, 29%, and 56% smaller than the asymptotic
standard errors, and the means of the standard error estimates are about 31%, 37%, 43%,
46%, 48%, and 51% smaller than the asymptotic standard errors for A; = 0, 0.2, 0.4, 0.6,
0.8, and 1.0, respectively. We also tried 10 and 15 quadrature points with A\; = 0.2, but the
results hardly changed.

Figures 4.4 to 4.8 compare the asymptotic bias for each parameter between the models
across conditions (except oo that shows little bias (close to 0) in all models). For the
parameters \; and by, the estimated 95% confidence intervals for the finite-sample bias are
computed based on 200 simulated datasets for N=200 and for different values of ;.

Overall, the asymptotic bias tends to increase as the true value for \; increases from 0
to 1. The asymptotic bias for \; lies in the estimated 95% confidence interval for the finite-
sample bias in all conditions. Ignoring serial dependence produces particulary large bias
for all a, by, 041, and o4 parameters, and ignoring the initial conditions problem produces
larger bias for #3 and o, than the other parameters. The asymptotic bias for b; lies in the
estimated 95% confidence interval in all conditions except when A\; = 1.0.

Figure 4.9 presents the asymptotic RMSE for the mean slope parameter b; between the
three models when N=200, 1,000, and 3,000.

With the sample size N=200, the asymptotic RMSE is larger in the proposed model
than in the independence model when A; < 0.4 and in the constrained model A\; < 1.0.
This is because the asymptotic standard errors are underestimated in the independence and
constrained models when the sample size is small. With the sample size N=1,000, the
asymptotic RMSE is larger in the independence model when A\; > 0.2 and in the constrained
model when A\; > 0.4 than in the proposed model. With the sample size N=3,000, the
asymptotic RMSE is larger in both independence and constrained models when A\; > 0.2
than in the proposed model.

Now we illustrate the marginal item characteristic curves (ICCs) for the three models.
Figure 4.10 shows ICCs in condition 5 (A; = 1.0).

In the figure, the dashed curves represent the true ICCs from the data generating model,
the solid curves represent the ICCs for the estimated models at time points 2 and 3, and the
dashed-dotted curves represent the estimated ICC at time 1.

For the proposed model, there is nearly no gap between the estimated curves across time.
When serial dependence is ignored, the estimated ICCs are the same across all time points,
but they are all off from (lower than) the true ICCs. When the initial conditions problem is
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Figure 4.4: Asymptotic bias for the item parameters /31 (top), 52 (middle), and 3 (bottom).
Note that B have a different meaning in the proposed model and the constrained model that
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Figure 4.10: Ttem characteristic curves for the proposed model (top), independence model
(middle), and constrained model (bottom)
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ignored, the estimated ICC at time 1 is different from (lower than) the estimated ICCs at
time points 2 and 3 and the true ICCs.

This result shows that imposing the invariance assumption on the item parameters across
time actually forces the ICC to be different at time 1 from ICCs at later time points. Freeing
the item parameters at time 1 helps the ICCs to resemble each other across all time points.
Ignoring serial dependence results in bias in the ICCs at all time points.

Asymptotic power curves to detect the lagged effect for the proposed model is shown in
Figure 4.11 as a function of the sample size. The estimated 95% confidence intervals for the
finite-sample power are computed for the proposed model based on the LR test (df=1) using
200 simulated datasets (with 5 quadrature points). The same estimated confidence intervals
are obtained with more quadrature points (10 and 15) at N=200.

Figure 4.11: Asymptotic power to detect the lagged effect as a function of the sample size
in varying values for the lagged effect. The estimated 95% confidence intervals for the finite
samples using LR tests (based on 200 replicates) are shown for the proposed model for A\; =
0.2, 0.4, 0.6, 0.8 and 1.0 at N=200, 400, and 800.

The sample size required to achieve a power of 0.80 is about 200, 300, 600 for \; =
1.0, 0.8, and 0.6, respectively. For A\; < 0.4, N > 1,000 is required. The estimated 95%
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confidence intervals include the asymptotic curves at N=200, 400, and 800, based on the LR
test. When the Wald test was used (df=1) for the finite samples, the lower bounds of the
estimated 95% confidence intervals tend to be placed somewhat higher than the asymptotic
power curves. It makes sense given that the standard errors were a bit underestimated for
the finite samples. It is also a known fact that the likelihood ratio test is more conservative
and reliable than the Wald test for finite samples (e.g., Engle, 1980; Buse, 1982)

4.7 Empirical Study

The Korea Youth Panel Survey (KYPS; Lee et al., 2010) tracked a nationally representative
sample of second year middle school students every year from 2003 to 2008. Six waves of the
data were collected where students progressed from middle school to high school at wave 3
and were out of high school at wave 6. There are 3,449 students in 103 middle schools at
wave 1 and 3,125 students in 911 high schools at wave 3. At wave 6, there are 2,833 students.
For simplicity, students who switched their school membership during the middle school or
high school years were excluded from the data (less than 2% each year). The self-esteem
scale was used which consisted of 12 items on a 5-point Likert scale (from strongly disagree
to strongly agree). We chose seven items that appear more closely related to each other
(e.g., all negatively worded), which was confirmed by Cronbach’s alpha (about 0.65, each
year). These items are: 1) I sometimes think T am a useless person, 2) I sometimes think I
am a bad person, 3) I sometimes feel like I am a failure, 4) I think I am a trouble maker, 5) I
think T am a juvenile delinquent, 6) Other people think I am a trouble maker, and 7) Other
people think I am a juvenile delinquent. To measure a positive self-image (or self-esteem),
the response categories were reversed and dichotomized.

We fit the full model (Ma) including the lag parameters for all items using gllamm (Rabe-
Hesketh et al., 2005) with 5 quadrature points. Seven separate models (M1 to M7) were also
fit, each including a lag parameter for one item (items 1 to 7), respectively. In addition, a
reduced model (M0) without the lag parameter ()\;) and without the two free parameters
(af, B at time 1) was fit for comparison. Tables 4.6 and 4.7 summarize the results.

In all tables, the model-based standard errors are presented since there is not much
difference (less than 0.01) between the model-based and robust standard errors.

In Table 4.6, the estimates of the lag parameter and free item parameters are listed.
For the lag parameter, the Wald and likelihood ratio (LR) test statistics are also given. To
compute the LR statistic, the log-likelihood for the reduced model (M0) is compared with
the log-likelihoods for models M1 to M7, each with 3 degrees of freedom. For the full model
(Ma), only the Wald statistics are presented. The lagged effects ();) are significant and the
estimates are quite large for all items, ranging from 0.65 to 1.03 (odds ratio 1.91 to 2.80)
in the separate models (M1 to M7). The p-values are smaller than 0.0001 based on both
LR and Wald tests, and the LR statistics appear similar to or slightly larger than the Wald
statistics. In the full model (Ma), the lagged effects are also all significant and somewhat
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Table 4.6: Parameter estimates and standard errors (in the parentheses) for the lag and free
item parameters for the Korea Youth Panel Survey (KYPS) data. The estimates from the
full model (Ma) and separate models (M1 to M7) are presented for each item. g/(= S; + 57)
and of(= «a; + af) are also presented.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Ai

Ma 0.85 0.92 0.97 1.21 2.05 2.29 2.51
(0.04)  (0.04)  (0.04)  (0.07)  (0.13)  (0.14)  (0.15)

(Wald) (389.66) (365.57) (473.49) (267.64) (231.04) (257.92) (258.24)

M1-M7  0.65 0.67 0.75 0.67 0.75 1.03 1.01
(0.04)  (0.04)  (0.04)  (0.06)  (0.11)  (0.11)  (0.12)

(Wald) (239.01) (208.80) (309.41) (100.80) (42.25)  (82.08)  (64.32)

(LR)  (243.36) (208.00) (330.68) (195.24) (51.84) (116.96) (106.50)

B

Ma 0.33 0.28 0.63 0.13 1.61 0.17 1.81
(0.06)  (0.07)  (0.06)  (0.12)  (0.42)  (0.30)  (0.47)

MI1-M7  0.26 0.19 0.58 -0.28 0.37 -0.54 0.77
(0.05)  (0.06)  (0.05)  (0.09)  (0.21)  (0.24)  (0.37)

/

Ma 0.69  -1.16  -0.04 1.5 5.18 3.55 5.57

MI1-M7  -0.79  -1.26  -0.16 1.24 4.42 3.20 5.16

o

Ma 025  -023  -0.24 0.5 -0.64 -1.53 -0.95
(0.04)  (0.05)  (0.04)  (0.09)  (0.24)  (0.20)  (0.26)

MI1-M7  -0.08  -0.04  -002  -026  -0.33 -1.13 -0.47
(0.04)  (0.05)  (0.05)  (0.01)  (0.22)  (0.20)  (0.24)

o

Ma 0.75 0.94 0.86 1.44 2.55 1.93 2.54

M1-M7 0.92 1.07 1.03 1.70 2.82 241 2.92
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Table 4.7: Parameter estimates and standard errors (in the parentheses) for the structural
and measurement parts of the model for the Korea Youth Panel Survey (KYPS) data. Re-
duced model (M0) and full model (Ma) are presented in addition to the separate models
(M1 to M7). psio is the correlation, —Z=12—

? 051052 "

MO Ma M1 M2 M3 M4 Mb M6 M7

Structural
b 0.27 0.24 0.26 0.27 0.28 0.26 0.28 0.26 0.27
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
O 1.41 1.46 1.35 1.40 1.40 1.42 1.39 1.42 1.39
(0.08) (0.09) (0.08) (0.07) (0.07) (0.08) (0.07) (0.08) (0.07)
Os1 0.83 0.96 0.79 0.82 0.80 0.76 0.82 0.75 0.84
(0.03) (0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04)
O 0.28 0.26 0.24 0.26 0.26 0.24 0.28 0.24 0.26
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Ps12 0.05 -0.26 0.03 0.04 0.05 0.43 0.04 0.47 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Measurement
o5 -0.85 -1.02 -1.05 -0.80 -0.83 -0.80 -0.81 -0.83 -0.79
(0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03 (0.03) (0.03)
Ba -1.31 -1.44  -1.27 -1.45 -1.31 -1.25 -1.27  -1.29 -1.24
(0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04 (0.04) (0.04)
B3 -0.35 -0.67 -0.31 -0.31 -0.74  -0.30 -0.31 -0.33 -0.29
(0.03) (0.05) (0.03) (0.03) (0.04) (0.03) (0.03 (0.03) (0.04)
B4 1.76 1.37 1.82 1.83 1.76 1.52 1.81 1.80 1.87
(0.06) (0.10) (0.07) (0.07) (0.06) (0.08) (0.06) (0.06) (0.07)
Bs 4.46 3.57 4.80 4.80 4.69 4.56 4.05 4.58 4.87
(0.13) (0.22) (0.17) (0.17) (0.16) (0.14) (0.30) (0.14) (0.18)
B 4.31 3.38 4.38 4.38 4.29 4.47 4.38 3.74 4.32
(0.16) (0.25) (0.15) (0.15) (0.15) (0.16) (0.16) (0.20) (0.16)
(7 5.39 3.76 5.38 5.38 5.29 5.55 5.30 5.28 4.39
(0.19) (0.25) (0.18) (0.18) (0.17) (0.20) (0.18) (0.18) (0.23)
Qo 1.17 1.17 1.22 1.11 1.18 1.16 1.17 1.16 1.17
(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
o3 1.09 1.10 1.13 1.09 1.05 1.09 1.09 1.09 1.09
(0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
oy 2.01 1.94 2.05 1.97 1.98 1.96 1.96 2.01 1.97
(0.06) (0.06) (0.06) (0.05) (0.05) (0.06) (0.05) (0.06) (0.05)
Qs 3.16 3.19 3.37 3.24 3.25 3.08 3.15 3.18 3.21
(0.11) (0.14) (0.13) (0.12) (0.12) (0.10) (0.12) (0.11) (0.12)
6 3.49 3.46 3.45 3.31 3.35 3.45 3.33 3.54 3.17
(0.16) (0.17) (0.14) (0.13) (0.14) (0.16) (0.14) (0.17) (0.12)
oy 3.76 3.49 3.66 3.52 3.56 3.70 3.47 3.58 3.39

(0.18) (0.17) (0.15) (0.14) (0.14) (0.17) (0.14) (0.16) (0.15)

Log-likelihood -55211 -54278 -55089 -55107 -55045 -55113 -55185 -55152 -55157
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larger than those in M1 to M7. In particular, the lag parameter estimates for items 5 to
7 (odds ratio 7.38 to 12.18) are relatively larger than for other items (odds ratio 2.34 to
3.35) in the full model. This suggests that items 5 to 7 are more strongly influenced by the
previous responses to the same items. The responses to these items are also more stable
across time. These items are somewhat more negative than the other items and related to
juvenile delinquency and other people’s judgement of the student’s behaviors.

The free item parameter estimates range from -0.54 to 0.77 for 8 and -0.02 to -1.13 for
o in the separate models (M1 to M7). The estimates in the full model (Ma) tend to be
somewhat larger for 8} and smaller for o than those in M1 to M7. We also present the item
parameters 3/ (=3; + 8f) and o} (=a; + o) in Ma and M1 to M7. The differences between
these estimates in the full and separate models are smaller in 8/ and o/ than in 5 and o}.

Table 4.7 lists parameter estimates and standard errors in the structural and measurement
parts in all models (Ma, M0, and M1 to M7). Overall, there is not much difference between
the models in the structural model parameters except pgio is larger in absolute values in
Ma than in other models. Specifically, the estimated mean slope (b;) is about 0.7, and the
estimated standard deviations of the time specific effects (o), the initial status (o), and
the growth rate (o) are quite large, about 1.40, 0.80, and 0.26, respectively.

Based on the LR test, the full model (Ma) fits significantly better than all separate
models (p < 0.001, df=20) and the reduced model (M0) (p < 0.001, df=23). The Wald
tests for the lag parameters in the full model suggest that the full model fits better than
each of the seven models with one lag parameter set to zero (and six lag parameters freely
estimated) as well as the seven separate models with a lag parameter for one item at a time.
These model comparisons correspond to the first steps of forward selection and backward
elimination for model selection. Based on these results, the full model is chosen over the 15
competing models.

Figure 4.12 illustrates growth trajectories for 11 hypothetical students over six time
points based on the full model (Ma). The latent trait values were generated using (4.12)
where random effects were drawn from the corresponding multivariate and univariate normal
distributions.

Overall, the Korean students’ self-esteem tends to increase over time from grade 2 in
middle school through one year after high school. The initial status and growth rate vary
between students, but the variation in the initial status appears somewhat larger than the
variation in the growth rate.
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Figure 4.12: Growth trajectories for 11 hypothetical students (based on the full model) with
randomly drawn random effects in the Korea Youth Panel Survey (KYPS) data.
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4.8 Concluding Remarks

In this paper, we presented a first-order autoregressive IRT growth model for longitudinal
binary item analysis. The proposed model for studying growth of a latent trait over time ac-
commodates serial dependence between responses to the same items across time. Our model
was illustrated with a linear growth trajectory, but an extension to a polynomial growth
trajectory is straightforward. For polytomous responses, we can apply techniques that have
been developed for categorical time series data (e.g. Fahrmeir & Kaufmann, 1987). However,
such extensions increase the number of parameters to estimate and thus are computationally
demanding.

We showed that the first-order autoregressive measurement model is equivalent to an IRT
model with interaction parameters for responses at adjacent time points. Higher order in-
teractions can also be considered. For example, an AR(2) autoregressive model is equivalent
to allowing for interactions among the item responses two time-points apart.

Our model deals with serial correlations in longitudinal item analysis which has often
been neglected in IRT. Standard ML software can be used for estimating the proposed
model. Estimation requires only three-dimensional integrals and the dimensionality of the
integrals stays the same regardless of the number of time points and items.

The importance of addressing the initial conditions problem in autoregressive IRT mod-
els were discussed and illustrated using simulations. We showed that constraining the item
parameters to be equal across time can actually force the ICCs to differ across time, resulting
in a violation of measurement invariance. A proper way of achieving approximate measure-
ment invariance is to free the item parameters at time 1 so that the ICCs can resemble each
other across time.

The proposed model can be estimated using existing ML software such as gllamm (Rabe-
Hesketh et al., 2005) and M-Plus (Muthén & Muthén, 2008). However, when the data have
a more complex data structure, such as a cross-classification of students by middle school
and high school (Jeon & Rabe-Hesketh, 2012), such software may no longer be available to
fit the model.



101

Chapter 5

Conclusion

In this dissertation, I considered new estimation methods and applications of complex
generalized linear mixed models (GLMMs) for measurement and growth. The dissertation
consists of three papers that correspond to Chapters 2, 3, and 4. Below I provide a brief
summary for each chapter.

In Chapter 2, the variational maximization-maximization (MM) algorithm was presented
for estimating GLMMS with crossed random effects. The variational MM algorithm is a
modified version of the traditional EM algorithm where the E-step is replaced by another
M-step that minimizes the KL distance between the variational distribution and the true
posterior distribution. This new M-step is equivalent to maximizing the lower bound to the
log-likelihood with respect to the variational distribution.

The variational MM algorithm is more general and flexible than the Gaussian variational
approximation because our algorithm does not require a pre-specified functional form for
the variational distribution. The general form for the variational density function is derived
so that different types of priors for the random effects can be handled. Importantly, we
can estimate models with crossed random effects based on the mean-field approximation
that assumes conditionally independent latent variables given the data. We found that with
reasonable sample sizes and prior variances, the posterior correlations between the random
effects are negligible. In addition, the lower bound was quite close to the marginal log-
likelihood in the examples that we considered in this paper.

Several simulation examples were provided to evaluate the performance of the variational
MM algorithm and to compare it with the Laplace approximation for GLMMs with crossed
random effects. The results show that overall, the variational MM algorithm performs as well
as the Laplace approximation. With small cluster sizes, however, our algorithm performs
better than the Laplace approximation especially for the variance parameters. Therefore,
the variational MM method could be an effective alternative to the Laplace approximation.

In Chapter 3, the Monte Carlo local likelihood (MCLL) method was presented for max-
imum likelihood estimation of GLMMs with crossed random effects. The MCLL method
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initially treats the model parameters as random variables and samples them jointly with
random effects, from the posterior distribution for a particular prior. The likelihood func-
tion is then approximated up to a constant as a local likelihood density estimate of the
posterior divided by the prior.

The MCLL method is similar to the MC kernel likelihood method (MCKL; De Valpine,
2004), which uses a kernel density estimation to approximate the posterior. The key advan-
tage of MCLL is that it provides methods for obtaining standard errors whereas MCKL does
not. MCLL is also less sensitive to bandwidth selection than MCKTL.

It is important to note that MCLL allows likelihood inference for any complex models
for which ML estimation may be infeasible but MCMC methods are possible. For example,
in addition to GLMMs with crossed random effects considered here, the MCLL algorithm
could be used to fit state-space models with higher dimensional latent variables. Potential
applications for MCLL are therefore far beyond the models discussed in this paper. We
have shown that the MCLL method provides results close to the ML estimates. Even if
informative priors are specified, MCLL provides estimates close to the ML estimates, whereas
the Bayesian estimates could be quite different. When ML inference is desired for highly
complex models, the MCLL method seems to be an effective and practical choice.

In Chapter 4, a new autoregressive IRT growth model was proposed for longitudinal bi-
nary item analysis. The proposed model for studying growth of a latent trait accommodates
serial dependence between responses to the same items across time. We showed that the
first-order autoregressive measurement model is equivalent to an IRT model with interac-
tion parameters for responses at adjacent time points. Higher order interactions can also
be considered. For example, an AR(2) autoregressive model is equivalent to allowing for
interactions among the item responses two time-points apart.

The proposed model deals with serial correlations in longitudinal item analysis which has
often been neglected in IRT. Standard ML software can be used for estimating the proposed
model. Estimation requires only three-dimensional integrals and the dimensionality of the
integrals stays the same regardless of the number of time points and items.

The importance of addressing the initial conditions problem in autoregressive IRT mod-
els were discussed and illustrated using simulations. We showed that constraining the item
parameters to be equal across time can actually force the ICCs to differ across time, resulting
in a violation of measurement invariance. A proper way of achieving approximate measure-
ment invariance is to free the item parameters at time 1 so that the ICCs can resemble each
other across time.
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