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Abstract: There has been considerable interest and resulting progress in implementing machine
learning (ML) models in hardware over the last several years from the particle and nuclear physics
communities. A big driver has been the release of the Python package, hls4ml, which has enabled
porting models specified and trained using Python ML libraries to register transfer level (RTL) code.
So far, the primary end targets have been commercial field-programmable gate arrays (FPGAs) or
synthesized custom blocks on application specific integrated circuits (ASICs). However, recent
developments in open-source embedded FPGA (eFPGA) frameworks now provide an alternate, more
flexible pathway for implementing ML models in hardware. These customized eFPGA fabrics can be
integrated as part of an overall chip design. In general, the decision between a fully custom, eFPGA, or
commercial FPGA ML implementation will depend on the details of the end-use application. In this
work, we explored the parameter space for eFPGA implementations of fully-connected neural network
(fcNN) and boosted decision tree (BDT) models using the task of neutron/gamma classification with a
specific focus on resource efficiency. We used data collected using an AmBe sealed source incident
on Stilbene, which was optically coupled to an OnSemi J-series silicon photomultiplier (SiPM) to
generate training and test data for this study. We investigated relevant input features and the effects of
bit-resolution and sampling rate as well as trade-offs in hyperparameters for both ML architectures
while tracking total resource usage. The performance metric used to track model performance was the
calculated neutron efficiency at a gamma leakage of 10−3. The results of the study will be used to aid
the specification of an eFPGA fabric, which will be integrated as part of a test chip.
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1 Introduction

The initial release and continued development of the hls4ml Python package over the past several
years has enabled a complete Python to hardware pipeline for fast deployment of neural network
(NN) based machine learning (ML) models. A detailed explanation of the hls4ml workflow is given
in [1] and [2]. This package provides front-end converters to map models defined using standard
Python ML libraries to an internal hls4ml representation and then, after certain optimizations, directly
outputs synthesizable C++ code that functionally describes the ML model. The package targets the
input requirements for specific commercial high level synthesis (HLS) tools such as AMD/Xilinx
Vivado HLS [3] and Intel/Altera Quartus HLS [4] by using the appropriate C++ HLS libraries and
pragmas/directives. Originally, support for boosted decision trees (BDTs) was integrated directly into
hls4ml along with the support for NN-based ML architectures [5]. Since then, the BDT workflow has
been moved into conifer, a complementary Python package released by the same collaboration. The
original hardware target for these packages were commercial field-programmable gate array (FPGA)
devices. However, over the years, the packages have been successfully used for fully custom ML
model implementation on application specific integrated circuits (ASICs) [6] and even more recently,
embedded FPGA (eFPGA) fabrics designed using open-source frameworks [7].

This latest hardware target was made possible by recent developments of open-source eFPGA
frameworks, such as FABulous [8] and OpenFPGA [9], which has removed the need to rely on
expensive commercial vendors to integrate FPGA fabrics as part of an overall chip design. We
intend to use FABulous, which allows for customization of the quantity and placement (location)
of various primitive resources (also known as tiles) that will make up the fabric, chosen from those
available in the framework. In addition, it provides the flexibility to implement custom tiles that can
be integrated as part of an overall fabric. Overall, this technology allows for area-efficient solutions by
specifying and sizing the eFPGA fabric for a given target application. However, there are several new
considerations to using this technology. A detailed overview of the fabric generation workflow and
these considerations are given in [7] and are summarized and expanded on here. Unlike a commercially
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available FPGA device, the availability of specific resource blocks, including memory resources,
and their capabilities will depend on the framework and the technology node selected for physical
implementation of the designed fabric. In addition, these resources must be explicitly included in
the custom eFPGA fabric for them to be available.

Achievable area-optimization for the eFPGA fabric will be limited by achievable routing densities
and resource capabilities of the typically older process nodes used for the mixed-signal integrated
chips targeting the applications under consideration [10]. Explicitly, an eFPGA fabric implemented
in 28 nm versus 180 nm will have very different capabilities for the same arrangement of primitive
resource tiles defined using register transfer level (RTL) code. As a result, the exact latencies, resource
usage, required maximum clock frequency, etc. will be different for the same ML model depending
on the process node selected for implementation. In general, the selected process node and the area
taken up by the eFPGA fabric will directly affect the total cost associated with fabricating the final
integrated chip (IC). Fabricating chips on newer process nodes will have higher costs per mm2, but the
overall area required to implement a specific eFPGA fabric will be lower. This is in contrast with
cheaper per mm2 costs but much larger overall area required for the chip if using an older process
node. Exact values and trade-offs will depend on specific foundries and their offerings, as well as
the number (and type) of resources needed for the eFPGA fabric. Regardless, a much larger focus
on optimizing resources to be included in the eFPGA fabric is required compared to commercial
FPGAs. One example is provided in [7], where limited resource availability in the final eFPGA fabric
prevented higher performance BDT models from being deployed.

A hardware-aware co-design methodology can aid in sparsifying ML models to target eFPGA
deployments. For particle and nuclear physics applications, the eFPGA fabric is expected to be a
part of an overall chip design, which will include dedicated front-end circuits to read out sensors,
data converters, and digital back-ends to interface with data acquisition boards. By integrating data
converter specifications into the ML model specification and training, we can trade-off the area/resource
requirements of the eFPGA fabric with final converter specifications to deploy a specific ML model
while maintaining the necessary level of performance. In addition, deployment of ML models on custom
eFPGA fabrics means that we can also update the models as needed over the lifetime of the experiment
to account for changes in detector conditions, different operations modes (i.e. calibration runs), etc.
on top of the benefit to ML-aided solutions to optimizing data to save for further offline analysis.

Because the number of resources (physical area) required to deploy ML models on eFPGAs
will directly determine feasibility, this work explored the design parameter space (targeting eFPGA
deployments) for two very basic ML algorithms: boosted decision tree (BDT) and fully connected neural
network (fcNN) models. More specifically, we investigated feasibility for very sparse implementations
of these basic ML models, which will translate to an area-efficient implementation for an appropriately
sized custom eFPGA fabric to run these models on a future test chip.

We used an older AMD/Xilinx Artix 7-series [11] device (xc7a35ticsg324-1L) on an Arty
development board as an initial stand-in for this exploration study. The exact resource usage numbers
and other specifications achieved with this study using the stand-in commercial FPGA target will not
directly translate to an open-source framework designed custom eFPGA fabric target. However, it is
expected that the general trends for the models will hold and exact numbers will be off by some scaling
factor. The commercial FPGA target has a total of 90 digital signal processing (DSP) blocks, 41.6k
flip-flops (FFs), 20.8k lookup tables (LUTs) and the equivalent of 100 18 kb random-access memory
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(RAM) blocks. Compared to the top of the line for the 7-series FPGAs, this is an approximately 20×
reduction in resources available. Compared against the top of the line UltraScale+ family devices [12],
this represents an approximately 60× reduction in available flip-flops and LUTs, 100× reduction for
DSPs and 35× reduction for memory resources. The 7-series family devices are fabricated in a 28 nm
process node, representing a realistic upper bound comparison point on achievable performance and
resource capabilities for the expected highest end node targeted for an actual custom eFPGA fabric.
The amount of resources available on this commercial device is expected to be higher than for a
reasonable custom FABulous eFPGA fabric, especially for the older process nodes. Thus, a main focus
of this work was to target using only a small fraction of the overall resources available on this device
when specifying a high performance ML model. We shall expand on the details in the next section.

To frame this feasibility study, the non-trivial task of neutron/gamma classification was used as an
initial case study. We aim to use the results of this study to inform the specification of an actual eFPGA
fabric to be implemented on the test chip, which will be able to deploy high performance ML models for
this classification task. The task of neutron/gamma classification is either explicitly required or desired
in a variety of radiation detection applications including neutron radiography [13, 14], associated
particle imaging (API) [15] and neutron scatter cameras [16–18]. These applications typically happen
in gamma dominated operating environments, necessitating very low false positive rates while still
maintaining high neutron efficiency. The task is fundamentally multi-dimensional. Generally, specific
plastic or organic crystalline scintillators with demonstrated inherent pulse shape discrimination (PSD)
capability are used. This capability derives from the differences of a scintillator’s singlet/triplet
state activation with regards to the type of incident ionizing radiation [19]. However, other factors
such as output scintillation wavelength and expected light yield also affect the overall discrimination
power [20]. In addition, the time distribution of scintillation light produced is convolved with the
silicon photomultiplier (SiPM) single photon response to produce an output electronic current pulse,
introducing yet another dimension. The classification task itself is typically performed by directly or
indirectly using differences in the waveform tail between neutron and gamma energy depositions. The
standard discriminator used is a ratio between partial and total integration of the waveform.

The implementation of neutron/gamma classification ML models on commercial FPGAs is
established. Previous examples of work done include but are not limited to [21–26]. However,
the combined advances in both open-source eFPGAs and translation of ML models to hardware
now provide the basis for a viable pathway to a real-time, low-power and compact neutron/gamma
classification method using ML models directly on a custom ASIC that integrates all required circuitry,
including the eFPGA fabric. Thus, it is important to note that while this classification task is used as a
case study for this work, a successful future eFPGA demonstration would open up new possibilities in
implementing the required discrimination capability for the target applications.

For this work, we use Stilbene [27], a widely utilized organic scintillator, and the OnSemi J-series
60035 SiPM [28] to benchmark performance. While the SiPM single photon response is primarily
set by details of the chosen SiPM, it is additionally shaped by any series resistance in the signal path
and by the bandwidth of front-end electronics used [29]. Although the details of specific front-end
topologies are outside the scope of this work, we nevertheless indirectly explore the effects of front-end
bandwidth in the study through data converter specifications.

Further details on using hls4ml and conifer to deploy ML models in hardware and the details
of the workflow are given in section 2. In section 3, we provide a detailed overview of the study
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conducted in this work to explore the feasibility of a high performance eFPGA targeted ML model
implementation, including setup and methodology. We introduce the test bed used for collecting data,
provide an overview of the relevant hyperparameters for both types of ML architectures investigated
in this study, and detail the metric used for evaluating model performance. In section 4, we look
at the results of the study individually for both ML model architectures. Finally, in section 5, we
summarize these results and its significance for an eventual embedded field-programmable gate
array (eFPGA) fabric implementation.

2 The Python to RTL workflow

The traditional FPGA implementation workflow uses RTL code, which specifies the intended behavioral
functionality of a digital block, for design entry. From there, (vendor-specific) logic synthesis and place
and route (PnR) software tools map the RTL code to resources such as LUTs, FFs, block RAM (BRAM),
etc. on a commercial FPGA target die. In the last two decades, commercial HLS software has matured
and been adopted to allow for bypassing the requirement to write RTL code directly [30]. These tools
use C/C++/SystemC/MATLAB code for design entry. The initial code provides an untimed, functional
description of the intended digital block behavior and is then automatically mapped to a data flow graph
(DFG), from which operations are scheduled based on capabilities of the target process node. The
final output of the HLS software is (timed) RTL code that can be used in the standard FPGA workflow.

As mentioned, the packages, hls4ml and conifer provide C++ input code for the HLS tools.
In addition, they, respectively, allow specification of quantization levels for the biases/weights or
thresholds of the fcNN/BDT model and provide support for pipelining operations. Because of this,
the ML model can accept new inputs after waiting a set number of clock cycles (initiation interval),
potentially before the final prediction for the previous inference is available (achievable latency). This
capability is crucial for potentially replacing neutron/gamma classification circuitry of a large number
of individual channels with a single pipelined ML model implemented on an eFPGA fabric. The
hls4ml package is flexible enough that it provides several user-configurable settings, which can be set
as needed to explore trade-offs in latency, throughput, power and resource usage for the classification
task at hand [2]. In comparison, conifer does not provide as extensive configurability, but the design
parameter space for BDTs is also simpler [5].

To explore the full parameter space, we had to pick specific Python libraries to specify and train
the ML models. While both scikit-learn [31] and XGBoost [32] have Python libraries allowing for the
specification and training of BDTs, it is generally accepted that XGBoost’s version results in both better
performance and faster training [32]. Furthermore, preliminary checks of resource usage for similarly
set hyperparameter values between BDT models specified using the two libraries indicate very similar
resource usage values. For these reasons, we used XGBoost’s BDT model for this work. For fcNNs,
several Python libraries are also available. Currently, both Pytorch [33] and TensorFlow [34], which
has integrated Keras [35], support performing quantization aware training (QAT). However, hls4ml
primarily supports QAT, at present, through the QKeras front-end [36]. Taking into consideration
the importance of this step in the overall aim of resource-efficient ML eFPGA implementations [1],
we have used QKeras for specifying the fcNN models.

Implementing ML models in hardware requires consideration of several new factors that are
generally not necessary for a software implementation. The choice of input features to use in the
ML model will depend on the ability to extract these features in real-time. Depending on the exact
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Figure 1. A system diagram illustrating the general signal progression when analog circuits are used to calculate
input feature values with ADCs digitizing those values on top and when a waveform digitizer and digital signal
processing block are used on the bottom.

input features used, analog circuits or digital signal processing algorithms can be used to extract input
feature values for a given event. The diagrams in figure 1 present a generic system signal progression
diagram comparing both scenarios. The exact input features required and a decision on if the ability to
redefine the input features used is desired will guide such a decision. A re-programmable eFPGA
fabric will need to be sufficiently specified to enable such an ability. In either case, the list of circuitry
includes necessary front-end electronics for direct SiPM read out, analog-to-digital converters (ADCs)
for either waveform or individual input feature digitization and time-to-digital converters (TDCs) for
capturing timing information in addition to dedicated digital blocks and/or an appropriately specified
eFPGA fabric. A more detailed look at differences between using a waveform digitizer or analog
circuits is given in section 3 using a comparative look at the performance of the standalone charge
comparison pulse shape discrimination method. Regardless, it is clear that the specifications of
the ADC in both scenarios will directly set the best possible input feature value quantization. In
other words, the ADC specification can play a significant role on achievable model performance. To
account for this, we chose to fold in the ADC bit-resolution and sampling rate as parameters in our
analysis to understand possible trade-offs of ADC requirements for a future test chip (i.e. perform
a hardware aware co-design of the fcNN/BDT models).

The quantization of the input features plays a significant role in lowering overall resource usage.
In the extreme case, keeping native 32-bit resolution leads to larger resource usage for not much
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represent values in a base unit of V or mV over a 2 V full-scale range. The top figure shows the mapping for
mV and the bottom, for V.

better performance [2]. For our end-use target application(s), as mentioned, we anticipate having
on-chip ADCs. The specifications of the ADC’s bit resolution and full scale range will set the upper
bound on the input feature quantization. The process of assigning ADC counts a physical value
allows for selecting the base unit, which plays a non-trivial role in the required number of bits per
input feature. For example, using millivolts (mV) or Volts (V) for storing the value of a pulse’s peak
amplitude is straightforward and interchangeable in software. However, both hls4ml and conifer use
fixed point format to represent values for input feature. Thus, the number of integer and fractional bits
explicitly need to be set. An additional bit will be used for the sign. Figure 2 explicitly demonstrates
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Figure 3. Diagram of the bench top test bed used to acquire the waveform dataset used in this work. Reproduced
from [37]. The Author(s). CC BY 4.0.

the difference in input word lengths required to exactly represent a value over a 2 V full-scale range
depending on if mV or V is the base unit. For this full-scale range, the main difference is due to an
upfront cost in needing 11 integer bits to represent the maximum integer component when using mV
compared to a single bit when using V. The number of fractional bits scale with ADC bit-resolution.
We expand on this point and the assumptions used in this study in section 3.

The overall requirements on neutron/gamma classification must also take into account the expected
range of operating environments for the end-use applications. More specifically, the expected range of
both gamma and neutron rates encountered will directly affect the absolute efficiency requirement
on the neutron/gamma classification circuitry. We can tolerate larger gamma leakage values if the
gamma rates will be less than or equal to neutron rates in the range of expected operating environments.
However, in gamma dominated operating environments, much lower gamma leakage values are
required. In this work, we assume operation in a gamma-dominated environment and define the
performance metric used to assess performance of trained machine learning (ML) models as the
neutron efficiency at a gamma leakage of 10−3. This is not an absolute lower bound on expected
gamma leakage requirements across all potential end-use applications. Rather, this is due to a statistical
limitation from the size of the training data set used for the study as explained further in section 3.

3 Method

The neutron and gamma waveform data set used in this work was acquired with the same benchtop test
bed described in detail in [37]. We briefly summarize the test bed again here. Figure 3, replicated
from [37], provides a system diagram of the setup. A custom SiPM array fanout board was used to
read out selected channels of an 8 × 8 array of OnSemi J-series 60035 SiPMs [28]. Each standard,
resistively coupled output (SOUT) signal is connected in series with a 50Ω resistor, which provides
current-to-voltage conversion and appropriate impedance matching with the characteristic impedance
of the coaxial connectors that the signal is routed to. Importantly, it also dominates the single photon
response. The additional series resistance increases the decay constant associated with the recharging
of the SiPM’s single photon avalanche diode (SPAD) microcells after receiving a hit. The waveform
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tails extend over a time period > 1 µs as a result. This fact should be kept in mind when interpreting
and extrapolating any of the results of this study. Each fast, capacitively coupled output (FOUT) signal,
already a voltage output, is connected to a balun transformer that provides the correct interface to the
coaxial connector that brings the signal off the board. Signals are digitized using a commercial 14-bit,
250 MS/s CAEN DT5725 digitizer with data collected using a computer interface. Specifically, the
digitized waveforms were collected for a 6 mm cube of Stilbene optically coupled to a single SiPM
in the array with AmBe used as a mixed neutron/gamma emitter.

In total, 80k gamma and 49k neutron waveforms were selected from a full 30 million event data
set with an energy cut selecting only events with > 90 keVee energy depositions. As stated, the goal
of this study was to demonstrate feasibility of high performance ML model deployments on an eFPGA
fabric, not necessarily to improve classification efficiency at low energy depositions. The vast majority
of events in the full data set correspond to the 60 keV Am-241 X-ray emission. Truth labels were
assigned by performing a PSD ratio cut, with total integration set to 1500 ns and partial integration
set to 128 ns, in the standard PSD ratio vs energy parameter space. Figure 4 shows these cuts and
the resulting distribution of gamma and neutron events. The inversion of the neutron and gamma
bands in the figure result from an inversion in the definition of PSD used. Instead of a tail-over-total,
we performed a partial-over-total ratio as defined in Equation (3.1) with the start of the integration
defined as 𝑡0, the partial integration ending at 𝑡1 and the total at 𝑡2:

PSD =

∫ 𝑡1
𝑡0

Waveform(𝑡) dt∫ 𝑡2
𝑡0

Waveform(𝑡) 𝑑𝑡
. (3.1)

Further details for this reasoning are found in [37]. The 130k total events in the dataset confines
the gamma leakage metric to 10−3. Going a magnitude lower means that the obtained neutron
efficiency values will depend on the ability to classify only a few events from the full dataset, once split
into training and truth/validation subsets. This would mean an added level of statistical uncertainty,
which does not map to a true physical limit.

Although the original waveforms were digitized with 14-bit resolution over 1 V full-scale and
centered at 2 V at a sampling rate of 250 MS/s, as mentioned, we wanted to understand the effect of
ADC bit-resolution and sampling rate on the performance of trained BDT and fcNN models. To do so,
we can perform re-digitization, digital filtering and decimation of the waveform samples in software
in order to emulate a range of bit-resolutions, front-end bandwidths and effective sampling rates. In
total, we considered bit-resolutions from eight to the original 14 bits and sampling rates between
15.625 MS/s (decimation by a factor of 16) to the original 250 MS/s. In addition, re-filtering of the
waveforms without downsampling was also performed to take a closer look at the expected degradation
in performance of the benchmark charge comparison PSD method. It is important to note that the
measured thermal noise of the test bed was 180 µV, which limited effective resolution to around 12 bits.

The CAEN digitizer uses a second-order, 125 MHz anti-aliasing filter. We emulated the filter in
software using a second-order Butterworth filter implemented with the SciPy [38] Python package. The
critical frequency (corner frequency) of the filter was varied to be half the effective targeted sampling
rate to match the physical digitizer’s Nyquist configuration. The corner frequency, also known as the
3 dB point, represents the value at which the filter attenuates the input voltage signal by a factor of
1√
2
. Typically, the visual logarithmic representation of the frequency response is shown using a Bode

plot [39]. Figure 5 shows this combined Bode plot of the various filter responses for the different targeted
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Figure 4. The neutron and gamma events used for this study are plotted as a function of PSD ratio vs. total
deposition energy. A partial integration window of 128 ns and total integration window of 1500 ns is used. An
energy cut at 90 keVee is included. Afterwards, upper and lower threshold cuts were defined to exclude events
in between the neutron and gamma bands to maintain purity of the truth data set.

Figure 5. The frequency response of the 2nd-order Butterworth filters used to re-filter the waveforms in
software. Corner frequencies were specified corresponding to a 1×, 2×, 4×, 8×, and 16× downscaling of the
actual 125 MHz anti-aliasing filter used by the CAEN digitizer.

sampling rates. Five effective sampling rates were emulated by downsampling (every Nth sample
kept) the original waveform samples by N, where N is the ratio of the original 250 MS/s sampling rate
divided by the targeted sampling rate. In total, the parameter space encompassed by these two variables
includes 35 unique pairs of effective bit-resolution and sampling rate. Figure 6 shows a representative
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Figure 6. Example FOUT and SOUT waveforms re-digitized in software to various bit-resolutions without any
applied software re-filtering. Each sample corresponds to the original 250 MS/s rate.

FOUT and SOUT neutron waveform at the original 14-bit resolution and at a selection of other
bit-resolutions down to 6 bits. No software re-filtering of the waveforms was performed for this figure.

In section 2, a distinction was made on the degeneracy in physically implementing the extraction
of input features. The two options discussed include using dedicated analog circuits and digitizing the
final values or using a waveform digitizer and calculating input features digitally in a dedicated digital
signal processing block. We can look at the performance of the standard charge comparison (PSD ratio)
method under both scenarios. For both possibilities, 128 ns was used for the partial integration window
and 1024 ns was used for the total integration window. The actual number of samples corresponding
to these time windows varies depending on downsampling for the second option.

For the analog circuit solution, the signal should be considered analog (having “infinite” resolution)
until the final value is digitized. To emulate this signal chain, we re-filter the acquired waveforms
from the dataset but do not downsample nor re-digitize them. This is reflected in figure 7. The
effective bandwidth (filter corner frequency) of the re-filtered waveforms should be interpreted as
an effective front-end bandwidth. The bit-resolution, in comparison, still maps to the ADC. After
partial and total integration values are calculated for these waveforms, the values are re-digitzed to
the specified bit-resolution. In re-digitizing the final integration values, the nearest power of 2 that
encompasses the numerical range of values is used to define the full-scale range. This same full-scale
range is kept regardless of final targeted bit-resolution.

– 10 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
7
0
3
4

Figure 7. Example FOUT and SOUT waveforms re-filtered using a second order Butterworth filter implemented
with the Python scipy [38] package at various corner frequencies and 14-bit resolution. Downsampling of the
waveforms is not performed for this figure. This is used in part to emulate the analog integration option for
calculating input features.

For the waveform digitizer option, we performed re-digitization as well as downsampling to match
the corner frequency of the software filter to emulate the expected signal chain. Examples for the FOUT
and SOUT waveforms after this procedure are shown in figure 8. Partial and total integration values are
calculated on these resulting waveforms. Because we can define extra bits to store the final integration
value, no re-digitization of the final integration values is needed for emulating this second option.

We can plot the calculated partial and total integration values for both possible solutions.
Figures 9, 10 plot the calculated partial and total integration values assuming an analog integration
and digitization of final values, with the former figure showing an ideal 14-bit resolution on the final
values and the latter assuming 10-bit resolution. The bottom panel for both figures show a zoomed out
view of all events from the dataset used for the study and the top panel shows a zoomed in view of the
lowest energy events above the 90 keVee equivalent cut. At 10-bit resolution, a significant degradation
of the band separation is observed at the lowest energies compared to 14-bits, where band separation
of the original waveforms is maintained across different effective bandwidths. It should be noted that a
slight degradation at the lowest considered bandwidth is visible. On the other hand, figures 11, 12 plot
the results for the second option. We see that even at 14-bit resolution, band separation and widths
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Figure 8. Example FOUT and SOUT waveforms re-filtered using a second order Butterworth filter implemented
with the Python scipy [38] package at various corner frequencies and 14-bit resolution. Downsampling
of the waveforms is performed for this figure to equal the Nyquist rate equivalent for the software filter’s
corner frequency.

worsen with decreasing effective bandwidth. At 8-bit resolution, a significant degradation of possible
band separation is observed even at the highest bandwidth considered.

In general, it is clear that the standard charge comparison PSD metric is highly sensitive to the
real-time implementation strategy and requires > 10-bit resolution and 𝑂 (10) − −𝑂 (100) MS/s for
either possible implementation to maintain the ideal performance shown possible in [37]. In that
paper, it was demonstrated that gamma leakages of < 10−5 can be achieved while maintaining neutron
efficiencies of 99.9%. Maintaining that performance equates to the ability to maintain as close to the
ideal band separation and widths at the lowest energy deposition events considered in this work.

As mentioned, for this ML model study, we are limited by dataset statistics to set gamma leakages
at 10−3 but this should be treated as an upper bound as neutron efficiency can be maintained at
lower leakage values. With a larger dataset, we can certainly set the performance metric at lower
gamma leakage values. The results shown in section 4 for both BDT and fcNN ML architectures
should be considered from this point of view.

For the feasibility study, we only consider the waveform digitizer based approach to input feature
calculation. For ML models with multiple input features, a waveform digitizer and calculation of values
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Figure 9. SOUT total vs. partial area is shown, both in units of V µs, for various effective bandwidths based
on re-filtering, but not downsampling waveforms for various filter corner frequencies. The figure explicitly
shows the results for an ideal 14-bit resolution for the final calculated input feature values. Degradation of
neutron/gamma band widths is not observed across all filter corners but band separation slightly decreases as
the filter corner value decreases. The gamma band is above the neutron band.

for each feature digitally is, in general, less complex than designing analog circuits for each feature
and offers a more flexible path towards re-definition, if required. BDTs and fcNNs have different
model hyperparameters and, thus, considerations for resource efficiency. As a result, we independently
constructed evaluation pipelines for these two ML architectures to account for such differences. These
are discussed in the proceeding subsections. Regardless of the architecture, the same four input
features were calculated for each waveform, for each of the 35 sampling rate, bit-resolution pairs. The
four input features are the SOUT total integration value (integration window of 1024 ns), SOUT partial
integration value (integration window of 128 ns), FOUT peak amplitude, and SOUT peak amplitude.
The exact integration windows used were selected to maintain compatibility with the various corner
frequencies used for re-filtering of waveforms. The total integration window was changed from
that used for labeling truth data in an attempt to decouple any potential biases in model training.
Specifically, the partial integration window was selected to ensure that the window encompassed
a sufficient area past the waveform peak amplitude to perform PSD even at the lowest filter corner
value. The total integration window was set large enough to integrate on the full tail of the waveform.
The input features were settled on after a dedicated importance study of various options. The ease
for either analog or digital calculation of the features was kept in mind.

The final study parameter is the base unit used for mapping ADC bit resolution to fixed point
format. While it seems that using V as the base unit is the obvious choice to minimize input word
length, the range of the input feature values and differences in ranges between the different input
features plays a significant role in performance of fcNN models. For the BDT models, differences
in model performance was also observed depending on choice of input feature value scale. For this
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Figure 10. SOUT total vs. partial area is shown, both in units of V µs, for various effective bandwidths based
on re-filtering, but not downsampling waveforms for various filter corner frequencies. The figure explicitly
shows the results for a non-ideal 10-bit resolution for the final calculated input feature values. Degradation of
neutron/gamma band widths is observed across all filter corners, with band separation decreasing as filter corner
value decreases. The gamma band is above the neutron band.

reason, the choice was made to use mV as the base unit for both ML model architectures despite
the larger number of input bits required. For the area input features used, an area unit of V µs was
assumed so that range of values matched to an order of magnitude with the amplitude features. A more
thorough investigation studying the effect of input feature value scale and range can be undertaken
but is outside the scope of this paper. In addition, to provide optimal performance capability for
the fcNN models, the input features were normalized to mean 0 and set to a standard deviation of 1.
The scaler values to accomplish this can be extracted from the trained fcNN model to keep the same
normalization for new input feature values. This will need to be implemented as a pre-processing
step for an actual real-time execution of fcNN ML model inferences. Despite this, we kept the input
word lengths the same across ML algorithms so that resource usage estimates can more closely
correspond to differences from the two ML architectures.

3.1 Resource efficient BDT models

For BDTs, the XGBoost Python package provides a considerable amount of user optimization in
finalizing a specific BDT model implementation. For this paper, we focused on the parameters that
have the most effect on the final resource usage of the eFPGA and assumed fixed values for the other
parameters. The main parameters that contribute to resource usage for the XGBoost BDT model
are max_depth and num_rounds. The scaling of FPGA resources with these two parameters has
been studied and is defined in [5] and replicated here:

𝑟 = 𝑘0 · 𝑛𝑏 + 𝑘1 · 𝑛𝑏 · 2𝑑 (3.2)
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Figure 11. SOUT total vs. partial area is shown, both in units of V µs, for various effective bandwidths
based on re-filtering and downsampling waveforms for various corner frequencies and their corresponding
Nyquist equivalent sampling rates. The figure explicitly shows the results for an ideal 14-bit resolution for the
waveform samples. Degradation of neutron/gamma band separation and widths are observed at lower filter
corner frequencies. However the effects are not as drastic compared to 8-bit waveform sample resolution in
figure 12. The gamma band is above the neutron band.

The terms 𝑘0 and 𝑘1 are unknown constants to be fitted for a given target, 𝑛𝑏 is the number
of boosting rounds (num_rounds) and 𝑑 is the max tree depth (max_depth). Interested readers can
refer to [5] for plots that visually show the scaling resulting from this equation. Although the conifer
implementation of the BDT allows selection of the quantization level for the input feature values,
we assumed this was primarily determined by the ADC bit-resolution and appropriate scaling of
the feature values as discussed. Similarly, the quantization level of the thresholds and the output
raw scores were also selected respectively to account for the range of threshold values in the trained
model consistent with the ranges of input feature values and to maintain overall performance of the
model. Importantly, these parameters do not improve the performance of the BDT model past the
baseline already set by the other parameters.

In total, a four-dimensional parameter space to characterize performance on the neutron/gamma
classification task remains: bit-resolution and sampling rate for the waveform digitizer (from
which the input features are calculated) and the max depth and number of boosting rounds for
the BDT model. Due to the exponential increase of resources with max depth, a fixed value of
3 was assigned after a preliminary look at model performance for max depth = 2 showed that
significantly larger values for number of boosting rounds (> 200) are required to obtain similar
performance to setting max depth = 3. In other words, the decrease in resource usage from using
a max depth value of 2 is overwhelmed by the linear increase in resource usage from the number
of boosting rounds value. As a result, we only focused on a final three-dimensional parameter
space for this study.

– 15 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
7
0
3
4

Figure 12. SOUT total vs. partial area is shown, both in units of V µs, for various effective bandwidths
based on re-filtering and downsampling waveforms for various corner frequencies and their corresponding
Nyquist equivalent sampling rates. The figure explicitly shows the results for a non-ideal 8-bit waveform sample
resolution. Significant degradation in neutron/gamma band widths are observed at lower filter corner frequencies
with band separation degraded at all evaluated frequencies. The gamma band is above the neutron band.

3.2 Resource efficient fcNN models

Much like XGBoost, QKeras for fcNNs has a large number of user configurable parameters. However,
many more of the parameters have a non-trivial effect on the total resource usage of a trained model.
In addition, unlike BDTs, there is no overall straightforward equation to describe the full parameter
space’s relationship to total resource usage. This is partly because the logic synthesis tool can optimize
the exact physical implementation of the circuit. This can obfuscate resource scaling relationships
due to degeneracies in implementing certain operations with DSP or LUT resources. Optimally, the
decision is left primarily to the logic synthesis software unless specified as a directive/pragma by the
user. We can obtain expected scaling of resources if iterating on a single parameter while keeping all
others constant, as should reasonably be expected. However, to obtain a resource-efficient final model,
a defined and ordered procedure for selecting values for the many contributing hyperparameters need
to be defined. In total, there are nine considered hyperparameters that can affect the total resource
usage: input feature bit resolution, output probability bit resolution, bit resolution for weights, biases
(in theory, this can be specified per hidden layer), bit resolution of the activation function, total
number of (and size of each) hidden layers, and target sparsity values for pruning aware training.
A quantized tanh activation function is assumed for the hidden layer(s) and a sigmoid activation
function for the output layer. The importance of quantization and the need to incorporate sparsity
and pruning methods are described in [36].

The order in which values are selected for these hyperparameters does matter. In general, the
extent to which a model can be pruned/sparsified (i.e. the target sparsity value) without performance
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degradation partly depends on overall classification task complexity. Focusing on the neutron/gamma
classification task at hand, it will depend strongly on the starting model size (number of hidden layers
and size of each layer) as well as the input feature quantization level. So, we selected an ordered
approach to defining values for the various hyperparameters.

An initial look was conducted by using the unmodified waveforms recorded with the test bed (14-
bit and 250 MS/s). The purpose was to narrow down the range of values for the overall hyperparameter
space by finding lower bounds. From these initial results, a single hidden layer of size 8 was sufficient
to ensure nearly unity neutron efficiency even with bit-resolution for the weights and biases set to
6 bits and for the activation function set to 10 bits. The number of epochs was set to 120 after the
standard optimization against rate of loss function minimization. A target sparsity value of up to 50%
was found to still maintain neutron efficiency above 90% in the initial look. These starting values for
the hyperparameters provide anchor points when introducing input feature bit resolution and shaping.
Instead of a large number of possible values for the nine parameters, we only accept a small upwards
perturbation from these anchor values. For example, number of hidden layers was only allowed to
vary between 1 and 2 and the size of the hidden layers could be either 8 or 16 for each hidden layer.
Similarly, the number of bits for the weights and biases was allowed to be either 6 or 8, and for the
activation function, either 10 or 12 if needed. Target sparsity values were allowed to vary between
10% to 70% and the number of epochs for training was fixed at 120. Unlike the number of boosting
rounds parameter for BDTs, the number of epochs does not directly increase the model size.

4 Results

The results are considered independently for the two considered ML architectures.

4.1 BDT Results

We calculated the neutron efficiency value at a gamma leakage of 10−3 for each of 35 pairs of
bit-resolution and re-filtered corner frequency values (with downsampling) at several 𝑛𝑏 (number of
boosting rounds) values. At all bit-resolutions and corner frequencies, it is possible to achieve > 95%
efficiency assuming an appropriate selection for 𝑛𝑏. Even with 𝑛𝑏 = 50, we demonstrate that an ADC
with only 8-bit resolution and Nyquist sampling rates of approximately 15 MS/s can still allow us to
maintain excellent neutron efficiency at very low gamma leakage values in figure 13. More generally,
such a large parameter space for ADC specification where performance is maintained allows the final
determination of design specs to be set by other system requirements for any specific target application.

One downside to selecting lower 𝑛𝑏 values, however, is that the range of statistical variations
possible for the final BDT model start to become significant. This can be true despite the possibility
to still achieve very good neutron efficiency values. A possible origin to these variations is that
the information content in the input features dataset is more than can be taken advantage of when
the 𝑛𝑏 value is too low. In this case, depending on initialization of thresholds during training, the
model can achieve sub-optimal neutron efficiency values and, in general, display a high variance
on final model performance.

To take this into account, a total of 20 trials were used as a compromise between required
computation time and having sufficient sample size to calculate ±1𝜎 neutron efficiency values for
each 𝑛𝑏 value across filter corners. For each trial, we kept track of final neutron efficiency values
achieved across a varying number of iterations of BDT model training and kept the model with the
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Figure 13. The mean neutron efficiency and±1𝜎 values are shown as a function of the 𝑛𝑏 value for bit-resolutions
between 8 to 11 bits for BDT models. Each panel respectively shows the results for various evaluated filter
corner frequencies. The filter corner frequency, also known as the 3 dB point, represents the value at which the
filter attenuates the input voltage signal by a factor of 1√

2
. The efficiencies for nbits = 9 to 11 are plotted offset

from the 𝑥 value for nbits = 8, for visual clarity in the figure.

highest resulting value. The number of iterations varied between 200 for all 𝑛𝑏 values less than 50
to 100 at 𝑛𝑏 = 80. The results are shown in figure 13. We observe significant variance on final
neutron efficiency value despite this procedure. For example, at 𝑛𝑏 = 30, we see that, in general,
the ±1𝜎 neutron efficiency values are large compared to 𝑛𝑏 = 40. This trend gets progressively
worse at even lower values.

If we look individually at each bit-resolution performance at the various filter corner frequencies,
we can observe some interesting differences across neutron efficiency results for 𝑛𝑏 = 10 to 40. When
we constrain the 𝑛𝑏 value to be low, the information content (discrimination power) of the input
features dataset can also be insufficient. We see this manifest as lower resulting neutron efficiency
values for the smaller filter corner frequencies. The standard procedure for software implementations
is to simply increase the value used. For the case of targeting a heavily resource constrained hardware
implementation, to do so is not as straightforward, since resource usage also increases.

Another important point is that neutron efficiency values will plateau after reaching some critical 𝑛𝑏
value and enter a diminishing returns regime. In this regime, for a hardware implementation, the resource
requirements to implement the model increase but we only achieve marginally better performance.
This behavior is easily observed in figure 13. For this classification task, the plateau value is between
40 to 60, depending on filter corner frequency and bit resolution. In general, the value will also depend
on both task complexity and the discrimination power of the selected/available input features.
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Figure 14 histograms the number of flip-flops (nFFs) and number of look-up tables (nLUTs) for
various bit resolution and corner frequency values as reported by Vivado post physical implementation.
The selected 𝑛𝑏 value for the figure is 50 but the trends seen can be generalized. This value was
selected to convey the required resources and resulting performance for a model with a neutron
efficiency that has just plateaued. Models with a significantly lower fraction of required resources
are possible if the neutron efficiency target is lowered. It is important to note that the large statistical
variations of the neutron efficiency values do not cause similar effects on obtained resource usage,
initiation interval and latency values. These are primarily set by the hyperparameters that define
the BDT model. However, depending on the details of the final trained model, the synthesizer can
optimize out small parts of the model which can manifest as small fluctuations of these values.

For testing purposes, a streamlined UART-based module was implemented as a wrapper to the
model implementation so that input words can be written to the FPGA development board and results
of an inference execution can be read back to verify performance on an actual Artix 7-series FPGA.
The final nFF and nLUT values in the figure include the resources needed for implementing this
module. A target clock frequency of 100 MHz was used as a constraint. The required number of
flip-flops is less than 3% of the total available on the target device. The required number of LUTs
across the parameter space is less than 25% of the total available.

While an initial increase in nFFs with bit resolution is observed, the numbers level off at higher
bit resolutions. This is not the case for nLUTs. The required nLUTs increase with bit resolution and
for each bit resolution, with filter corner frequency. No digital signal processor (DSP) nor block RAM
(BRAM) resources are required for a BDT model implementation. The breakdown of the hardware
implementation of BDT models and the expected mapping to resource usage is given in [5]. The
minute deviations from the expected trends are most likely a result of optimizations made during logic
synthesis and physical implementation by the Vivado synthesis tool. Across all bit resolution and
sampling rate pairs, initiation intervals of 1 clock cycle were achieved. Similarly, latencies between 3
to 4 clock cycles of were achieved. The clock period for the study was fixed at 10 ns but in general can
be lower, which would result in potentially lower absolute time values for initial intervals and latencies.

4.2 fcNN Results

We also calculated the neutron efficiency values at a gamma leakage of 10−3 for each of the 35 pairs of
bit-resolution and re-filtered corner frequency values (with downsampling) for trained fcNN models.
Because of the larger parameter space, no exact comparable parameter to 𝑛𝑏 for fcNNs is possible.
A single hidden layer of size 16, with the number of bits used for the weights and biases equal to 8
and equal to 12 for the activation function, is sufficient to maintain high neutron efficiency values
across all 35 considered pairs. This is true even at large target sparsity values when performing
pruning and quantization aware training. However, similar neutron efficiency values can also be
obtained with a smaller hidden layer size and lower target sparsity values. We have used the larger
size hidden layer model in figure 15, which plots the observed statistical variance of fcNN models
across a range of target sparsity values from 10% to 70%. As expected, with higher target sparsity
values, the performance of the models at lower bit resolutions decreases, although overall neutron
efficiency is still quite high. Significant statistical variance is not observed, unlike the BDT models.
Some variance is seen at the largest target sparsity values considered. Unlike the BDT models, the
fcNN models were not able to maintain the same level of neutron efficiency performance at 8 bits
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Figure 14. A detailed look at the nFFs and nLUTs required for a BDT model with 𝑛𝑏 = 50 across all evaluated
bit resolution and filter corner frequency values. In addition, the returned latency and initiation interval values,
in units of clock cycles, are given across all evaluated pairs.

across all filter corner values even at a minimal target sparsity values of 10%. Again, a total of 20
trials were used as a compromise between required computation time and having sufficient sample
size to calculate ±1𝜎 values for each target sparsity values. Unlike for the BDT models, only one
training iteration was performed per trial because the number of epochs is set sufficiently high with
no significant increase in resource usages.

Figure 16 histograms the number of flip-flops (nFFs) and number of look-up tables (nLUTs) for
various bit resolution and corner frequency values as reported by Vivado post physical implementation
at a target sparsity values of 30% for the above considered model. Like with the BDT model results,
this value was chosen as representative of the edge of the plateau region. However, in this case,
the decrease in neutron efficiency is minimal. The resources required to implement a fcNN model
can be significantly reduced if the neutron efficiency target value is lowered, as is the case for the
BDT models. We also see small fluctuations in the figure as a result of the synthesizer possibly
optimizing out small parts of the model.

The required number of flip-flops is less than 3% of the total available on the target device. The
required number of LUTs across the parameter space is less than 10% of the total available. Unlike
BDT models, BRAM and DSP resources are required to store the activation function in look-up table
format and to perform the required multiplications when executing an inference. The number of
DSPs are not explicitly plotted but they vary between two to 11 across the hyperparameter values
defined for the figure. This is at maximum, 12% of the total available. Similarly, BRAM usage is
reported as 0.5 of a single 18 kb block for all models. This is the smallest unit reported and the
true usage of the full block is expected to be different across the evaluated parameter space. An
identical clock frequency constraint of 100 MHz is specified. In addition, the same UART-based
wrapper is used to send input words to the FPGA development board and read back the executed
inference result to verify performance. Thus, resource usage numbers reported include this module
as well and should be an identical constant number.
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Figure 15. The mean neutron efficiency and±1𝜎 values are shown as a function of the target sparsity value for bit-
resolutions between 8 to 11 bits for fcNN models. Each panel respectively shows the results for various evaluated
filter corner frequencies. The filter corner frequency, also known as the 3 dB point, represents the value at which
the filter attenuates the input voltage signal by a factor of 1√

2
. The efficiencies for nbits = 9 to 11 are plotted offset

from the x value for nbits = 8, for visual clarity in the figure. The fcNN models all have one hidden layer of size
16 with the number of bits used for the weights and biases equal to 8 and equal to 12 for the activation function.

Unlike the BDT models, resource usage for nFFs and nLUTs are relatively constant across
the hyperparameter space specified. The exact reason can be extrapolated to how a hardware
implementation is approached for the two ML architectures. Regardless, resources will scale with
target sparsity values much like they do with 𝑛𝑏 for BDTs. The exact nFFs required for fcNN models
are higher than for BDTs and the opposite is true for nLUTs. However, this needs to be considered
against the additional DSPs and memory resource tiles required to implement fcNN models. The
breakdown of the hardware implementation of fcNN models and general trends on resource usage
is given in [2]. Across all bit resolution and sampling rate pairs, initiation intervals between 2 to 3
clock cycles were achieved. Similarly, latencies between 8 and 9 clock cycles were achieved. The
BDT models clearly offer lower initiation intervals and latencies compared to fcNN models. This
is expected from the constraints in gating the streaming of data between input to hidden and hidden
to output layers for a given inference execution.

5 Conclusion

We have conducted a dedicated study to explore how to specify and train resource-efficient fcNN and
BDT models for deployment on eFPGA fabrics using a stand-in commercial Artix 7-series FPGA
target and a hardware-aware co-design methodology. We compared the study results to the golden

– 21 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
0
7
0
3
4

Figure 16. A detailed look at the nFFs and nLUTs required for fcNN models across all evaluated bit resolution
and filter corner frequency values. The target sparsity values is set to 30% and all fcNN models have one
hidden layer of size 16. The number of bits used for the weights and biases is equal to 8 and equal to 12 for the
activation function. In addition, the returned latency and initiation interval values, in units of clock cycles, are
given across all evaluated pairs.

standard of using the charge comparison method. The data set for the study was acquired with a fanout
board where the choice of a 50Ω resistor in series with the SiPM dominates the single photon response
shape. In this regime, we were able to show that an ADC with only 8-bit resolution and Nyquist
sampling rates of approximately 15 MS/s can still allow us to maintain excellent neutron efficiency at
very low gamma leakage values when using either multiple input feature ML architecture. For the
standard charge comparison method, with the waveform digitizer option, a ≥ 10-bit, 𝑂 (100) MS/s
ADC has to be used to maintain comparable performance. With the analog integration option, a
similar resolution ADC is required and sampling rate will be set by expected event rate requirements
since only the final integration values are digitized.

We have calculated the resource types and quantities required for both ML architectures to
implement non-trivial, high performance models to target the task of neutron/gamma classification.
While the exact resource quantities and types differ, the general trade-off between BDT and fcNN
models is that no DSP nor block RAM resources are required for BDT models but much larger numbers
of LUTs are required compared to fcNN models. The translation to exact trade-offs in total required
area will be process node and foundry dependent. However, having two fewer resource types to
incorporate into the eFPGA fabric will simplify its design and implementation. The lower latencies and
initiation intervals for BDTs provide an additional benefit if trying to maximize prediction throughput
as is desired for the target applications for this case study. Thus, these two sets of benefits guide
the decision to focus on BDT models and design the eFPGA fabric accordingly for a future first test
chip. This first test chip will need to be larger than the one described in [7] if 10−3 gamma leakage
is required to be maintained. However, for an initial demonstration, relaxing this value to 10−2 and
optimizing the selection of input feature quantization can lower the amount of LUTs required to deploy
high performance BDT models for neutron/gamma classification on eFPGA fabrics.
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