UC Irvine
UC Irvine Previously Published Works

Title
Exploring GenAl in Software Development: Insights from a Case Study in a Large Brazilian
Company

Permalink
https://escholarship.org/uc/item/59h2f5hg

Authors

Jackson, Victoria

Vaz Pereira, Guilherme
Prikladnicki, Rafael

Publication Date
2025-01-22

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at bttgs://creativecommons.orq/licenses/bv/4.0,|

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/59h2f5hs
https://escholarship.org/uc/item/59h2f5hs#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Exploring GenAl in Software Development: Insights

from a Case

Guilherme Vaz Pereira Victoria Jackson
PUCRS University
Porto Alegre, Brazil

guilherme.v003 @edu.pucrs.br

Irvine, USA
vfjackso@uci.edu

Luciane Fortes
PUCRS University & Globo
Porto Alegre, Brazil
luciane.fortes@g.globo

Carolina Arayjo
Globo
Porto Alegre, Brazil
carolina.araujo@g.globo

Diego Ramos
Globo
Rio de Janeiro, Brazil
diego.ramos @g.globo

Abstract— Recent progress in Generative AI (GenAl) impacts
different software engineering (ES) tasks in software development
cycle, e.g., from code generation to program repair, and presents a
promising avenue for enhancing the productivity of development
teams. GenAl based tools have the potential to change the way
we develop software and have received attention from industry
and academia. However, although some studies have been ad-
dressing the adoption of these tools in the software industry,
little is known about what are developers’ real experiences in
a professional software development context, aside the hype.
In this paper, we explore the use of GenAl tools by a large
Brazilian media company that has teams developing software in-
house. We observed practitioners for six weeks and used online
surveys at different time points to understand their expectations,
perceptions, and concerns about these tools in their daily work.
In addition, we automatically collected quantitative data from the
company’s development systems, aiming at getting insights about
how GenAlI impacts the development process during the period.
Our results provide insights into how practitioners perceive and
utilize GenAl in their daily work in software development.

Index Terms—Generative Al, Software Development, Al for
SE, Industry Case Study.

[. INTRODUCTION

Over the decades, Software Engineering (SE) has evolved
its methods and practices to address both technical and
non-technical challenges, resulting in the development and
refinement of methodologies and techniques [1]. These ad-
vancements have been driven by continuous improvements in
tools designed to overcome barriers in software development,
enabling engineers to produce higher quality products with
greater efficiency, lower costs, and faster delivery times [2].

Generative Artificial Intelligence (GenAl) tools have gained
increasing attention within the software engineering commu-
nity. These tools can assist in all phases of the software

University of California, Irvine

Study 1n a Large Brazilian Company

Rafael Prikladnicki

PUCRS University

Porto Alegre, Brazil
rafaelp@pucrs.br

André van der Hoek
University of California, Irvine
Irvine, USA
andre @ics.uci.edu

André Coelho Ligia Chelli

Globo Globo
Rio de Janeiro, Brazil Rio de Janeiro, Brazil
andre.ribeiro.coelho@g.globo ligia.chelli@g.globo

development lifecycle, from system analysis and design to
maintenance [3]. According to Stack Overflow’s 2024 annual
developer survey, 76% of 60,907 respondents reported that
they are using or plan to use Al during the year [4]. Addition-
ally, several recent studies have explored the use of GenAl
in various software development activities, e.g., generating
architecture [5], source code generation [6], and program
repair [7].

There are various GenAl-based tools to support software
development. ChatGPT [8] Google Gemini [9] and GitHub
Copilot [10] are some examples. They have the potential to
improve software engineering productivity and help developers
and companies increase their skills [11]. However, adoption in
organizational environments can be challenging for individuals
and teams, as it involves new approaches to working with
and using evolving tools, sometimes without good practice
guidelines on how to use them [12]. Furthermore, the expected
improvements depend not only on the tools, but also on how
people will use them to remove the current barriers in software
development and take advantage of them [2].

The main goal of this study is to as well as to understand
the expectations, perceptions, and concerns of them when
adopting these tools in their daily work. We also intend to
investigate for which tasks practitioners use the GenAl tools.
In this context, this paper reports the findings from a study
about the experience of the largest Brazilian media group.
The company is adopting GenAl tools in its digital hub,
including the use for software development activities. We
aim to contribute to the Software Engineering community by
sharing our observations on the use of GenAl within a real-
world software development setting.

During the study, we collected data from practitioners over
a two-month period. Over the time, we conducted online

surveys at multiple time points to capture their expectations,
perceptions, and concerns regarding the adoption of GenAl
in their work. Additionally, we automatically collected data
from their internal software development systems to better
triangulate the findings.

Our findings provide insights on how GenAl tools are
perceived and adopted in professional software development
settings. While developers appreciate the potential applicabil-
ity, particularly in code-intensive tasks, our results indicate
limitations in creative and collaborative activities. Concerns
about impacts on people and work, reliability of suggestions,
security and privacy, and code quality and maintenance re-
main.

The reminder of this paper is organized as follows: Section
IT presents the related work on the use of generative Al tools
within the software industry. Section III describes the study
settings. Section IV presents the study results. The section
V discusses threats to validation. Finally, Section VII brings
some final considerations and futures directions.

II. RELATED WORK

Generative artificial intelligence (GenAl) tools have gained
widespread adoption across various industries, including soft-
ware engineering. For instance, ChatGPT [8] reached 100
million users within two months of its release, demonstrating
the growing demand for Al-driven technologies. In software
engineering, the LLM-based technology has the potential to
cause a transformation [11] [3], prompting significant interest
from both academia and industry in understanding their impact
on software development.

A recent systematic literature review [13] identifies code
generation as the most extensively researched topic in the con-
text of GenAl tools. Studies exploring various dimensions such
as correctness [6], performance [14], quality [15], robustness
[16], and security [17] [18]. Beyond code generation, GenAl
tools have been explored in various other software engineering
domains, including program repair [7], code comprehension
[19], non-coding activities [20], prompt engineering [21],
productivity [22], SE education [23] [24], and the software
development process (SDP) [2].

The practical aspects of generative Al for ES activities
have also been explored. Barke [25] provides a grounded
theory analysis of how programmers engage with Al-powered
programming assistants like GitHub Copilot [10]. The study
identifies two main interaction modes: acceleration and explo-
ration. In acceleration mode, developers know what they want
to achieve and use Copilot to speed up coding by filling in
routine tasks. In exploration mode, programmers are unsure
of how to proceed and use Copilot to explore different code
options or APIs, relying on its suggestions for unfamiliar
tasks. It highlights key benefits of Copilot, such as improving
workflow speed in acceleration mode, while also pointing
out challenges, including disruptions caused by overly long
suggestions or irrelevant recommendations.

The application of GenAl in software industry settings has
been a topic of interest for researchers and practitioners. Davila

et al. [26] investigate the adoption of Al-based tools like
GitHub Copilot and ChatGPT in a Brazilian agroindustry’s
software development team, focusing on their experiences,
motivations, and challenges when using these tools. The
findings reveal that Al-based assistants are primarily used to
reduce programming effort, such as by speeding up searches
for code snippets and recalling syntax. However, one of the
main challenges identified is the lack of contextual understand-
ing in the Al-generated code suggestions, requiring users to
provide more detailed descriptions to improve outcomes.

Mendes [27] investigates the daily experiences of software
developers using Al code assistants in real-world development
environments. Based on interviews with 14 software engineers,
the study reveals both the advantages and limitations of
these. Some benefits identified are faster development through
automatic completion and improved code quality. By contrast,
challenges such as low accuracy in Al-generated code and
frequent interruptions caused by persistent suggestions are
pointed out.

Finally, Khojah [28] investigates the real-world usage of
ChatGPT by professional software engineers. The study in-
volved 24 participants across 10 organizations and analyzed
their interactions with ChatGPT over a week, supplemented
by an exit survey. The study identifies three main purposes
for using ChatGPT: artifact manipulation (e.g., generating
or modifying code), expert consultation (seeking advice or
information), and training (learning new concepts). It offers
recommendations for improving their usability in professional
settings.

This research focus is relevant due to the constant advances
in tools and the effect they can have on teams. Our case study
in a large Brazilian company contributes to the body of knowl-
edge on the use of GenAl tools by practitioners in their daily
software development activities. It allows us to corroborate
the findings reported in the literature, as well as contribute
new insights by exploring the expectations, perceptions, and
concerns of practitioners in a software development setting.

III. STUDY SETTINGS

This study was conducted by a multidisciplinary team, all
authors of this paper, involving researchers and an internal
team from the partner company, the largest Brazilian media
company and one of the most important in Latin America. Its
operations include a wide range of platforms, including free
and pay television, radio, press, streaming and digital content.

For this study, we invited professionals from the company’s
Digital Hub. We collected data from June to August 2024. The
study was based on two premises defined by the company:
anonymity and non-interference in the software development
process. All participants volunteered to take part in the study
through an open call on the company’s communication plat-
form (Slack). They were asked to adopt GenAl into their
workflow, including reporting on the tasks carried out with
the support of GenAl on JIRA, their project management and
issue tracking tool. They were also asked to answer the surveys
designed for the study.

The company has over 1000 people who provide in-house
software solutions to support all its digital products, such
as publishing audio and video content, and a wide range of
different applications. The technology stack is diverse and
varies according to the business needs of each platform.

The GenAl-based assistant tool predominantly employed
within the company, by its own decision based on business
partnerships, was Google’s Gemini Code Assist [9]. It has Al
code assistance and a natural language chat interface where
you can ask questions or receive programming guidance.

The data collection and data analysis are described in
sections III-B and III-D, respectively.

A. Goal and Research Questions

The main goal of this study is to investigate for which tasks
practitioners use the GenAl tools, as well as to understand the
expectations, perceptions, and concerns of them when adopt-
ing these tools in their daily work. The following research
questions were formulated to guide the study.

o RQI1: What are the expectations and perceptions of pro-
fessionals about the impact of using GenAl in software
development?

o RQ2: In which tasks do practitioners use GenAI?

« RQ3: How was the practitioners’ experience using Al
tools in the development of their daily activities

o RQ4: What concerns do professionals have about using
GenAl in software development?

The first RQ aims to discover the practitioners’ expectations
regarding the possible gains of using GenAl in the professional
software development setting, as well as their perceptions
after using GenAl for a specific time. The aim of the second
RQ is to understand the specific ways in which professionals
are incorporating GenAl tools into their daily development
workflow. The third RQ seeks to know about the overall
experience of practitioners using GenAl. Finally, the fourth
RQ explores the concerns raised regarding the use of GenAl
in this context.

B. Data Collection

We applied a mixed methods approach to collecting data.
Surveys at different time points were used to obtain qualitative
data. Furthermore, quantitative data was collected automati-
cally with records from the Gemini tool and from the JIRA
tool [29].

At the beginning of the study, we applied a pre-survey.
Likewise, at the end of the study, we applied a post-survey. In
addition, participants were invited to complete a weekly (for
six weeks) short survey with questions about their perceptions
about the use of GenAl. Figure 1 illustrates this process. Table
I shows the main focus, number of questions, and number of
responses for each survey.

We used online questionnaires for all surveys. The data
was collected anonymously, following the company’s internal
policy. The opening and closing questionnaires were designed
by the researchers and reviewed by the company’s internal
team. The weekly surveys were designed by the company’s

TABLE I
APPLIED SURVEYS

Questi ire Aspects addressed # Questions | # Responses
Previous GenAl experience

Pre-survey Expectations 20 66
Concerns

Weekly-survey | Practitioner perceptions over the weeks 8 98*
Practitioners’ perceptions

Post-survey Use of the tool 20 23
Concerns after the period of use

*total number of answers.

weekly survey
amm— PEETN -
, L4 ’ g

4: 4! ‘: 4!
Pre- Post-
survey survey

Fig. 1. Surveys application process.

internal team and reviewed by the researchers. Some questions
were inspired by existing surveys [19] [30] [31].

1) Pre-survey: The pre-survey questionnaire aims to collect
data on familiarity with the technology, as well as respondents’
expectations and concerns about it. It begins by assessing the
level of understanding and hands-on experience with LLMs
and GenAl tools supporting software development. It then
explores the use of GenAl in programming tasks as well as in
non-coding software development tasks. Participants are also
asked about their expectations of how GenAl will affect the
speed, quality, collaboration, and creativity of their work in
the near future. They are also asked if they have any concerns
about using GenAl in their work. Finally, there are demo-
graphic questions to capture the profile of the participants.

2) Weekly-survey: Is a short survey with questions about
how the experience was going over the preceding week. This
questionnaire was inspired and adapted from a GitHub survey
[31] about its Al developer tool, GitHub Copilot.

3) Post-survey: The post-survey was designed to get feed-
back about practitioners’ experiences and perceptions of using
GenAl assistance, how they used it (which tasks), and their
concerns after this period. Participants were asked to rate
their overall satisfaction with the tools, their suitability for
workflow, the time it took them to feel comfortable using
them and the quality and reliability of the suggestions provided
by the Al In addition, the questions explored the specific
tasks in which GenAl was used. Participants were again asked
about their concerns with GenAl in professional software
development after using it for a period. Finally, the survey
collected demographic information to contextualize.

The quantitative data was collected automatically and cate-
gorized into two main groups: (1) log data generated by the
Gemini Code Assist tool and (2) data extracted from the JIRA
Software tool. For JIRA, the development team applied custom
tags to the tasks in which GenAl was used, allowing the tasks
to be identified and tracked to obtain the Development Cycle
Time [32] for each one.

The data collected from Gemini Code Assist includes the
following metrics:

o Completion Method: This metric categorizes the type
of operation performed by the generative Al tool. It is
divided into three subtypes: Complete Code, Generate
Code, and Transform Code.

o Full Acceptance Rate: This metric tracks the rate at which
the generated code was fully accepted by the developer. In
other words, it measures how often the developer adopted
the AI’'s suggestion or code block without significant
modifications.

C. Questionnaire Design

The questionnaires used in this study were planned to meet
with the research objectives and answer the research questions
(RQs) guiding our investigation, detailed in section III-A. The
full set of questionnaires used in the study are available in the
supplementary materials'.

The weekly surveys, as stated in Section III-B uses a
GitHub survey [31] with some extra questions. It has closed
questions assessing specific aspects of tool usage and open-
ended questions providing space for additional comments.
Furthermore, it includes a closed question to capture the job
title of the respondent.

The creation of the pre- and post-survey followed an iter-
ative and incremental process. The research team refined the
questions through multiple iterations of development, review,
and adjustments. This allowed us to ensure that the questions
were clear, relevant, and capable of capturing the necessary
data for both qualitative and quantitative analysis.

Some questions in the post-survey mirrored those in the
pre-survey to allow for a comparison between the participants’
expectations and their perceptions. For example, both surveys
included questions about how participants anticipated GenAl
would impact software development speed, quality, and team
collaboration.

Both pre-survey and post-survey instruments emphasize the
anonymity of responses and state that the data will be used
exclusively for research purposes. They then proceed with
questions aligned to their specific objectives, concluding with
demographic questions.

D. Data Analysis

To meet our objectives, we use both qualitative and quan-
titative analyses of data derived from surveys, as well as data
collected from the tools, as detailed in Section III-B. Data was
analyzed by the research team together with the company’s
internal team, in accordance with the organization’s internal
policies.

We developed Python scripts to support data manipula-
tion and interpretation, generating graphs and tables for the
analysis. The open-ended question answers, about practition-
ers’ concerns, were collaboratively analyzed, discussed, and
categorized into high-level topics by authors consensus. The

I'Suplementary Materials - https://bit.ly/4dEuDnx

scripts were used to streamline data processing, while the
collaborative categorization of open-ended responses helped
reduce the risk of analysis bias.

E. Participants and Demographics

Initially, 211 people signed up to be part of the study.
Participation was entirely voluntary, with anonymity guaran-
teed in accordance with the company’s confidentiality policies.
The pre-survey and post-survey gathered demographic and
professional data, including gender, years of experience, pro-
fessional roles, and frequently used programming languages.
The weekly surveys were shorter than others, thus focusing
only on participants’ professional roles.

1) Pre-survey: Sixty-six people answered this survey. Of
these, 51 respondents (77.2%) identified as male, while 14
(21.2%) participants identified as female, and 1 participant pre-
ferred not to disclose their gender identification. No other gen-
der identification was mentioned. Participants demonstrated
considerable experience in software development, with 26
respondents (39.4%) reporting between 4 and 7 years of expe-
rience and 24 respondents (36.4%) having more than 8 years of
experience. The job titles represented were diverse, spanning
12 distinct positions; however, the predominant roles were
back-end (37.9%) and front-end developers (33.3%). The most
frequently selected programming languages were JavaScript
(41 responses) and TypeScript (32 responses), followed by
Go (25 responses) and Python (23 responses), indicating a
prevalence of web and back-end technologies among the
respondents.

2) Post-survey: the participant demographics remained
similar. Of the 23 respondents, 19 (82.6%) identified as male
and 4 (17.4%) identified as female. No other gender identifi-
cation was cited. The majority of participants again had sig-
nificant experience, with 8 respondents (34.8%) reporting 4 to
7 years of experience and 9 respondents (39.1%) having over
8 years of experience. Similar to the pre-survey, the primary
roles were back-end (39.1%) and front-end developers (26%),
with 8 different job titles represented overall. JavaScript was
the most frequently chosen programming language, with 14
occurrences, followed by Go and TypeScript, each with 10
occurrences. Python and Ruby were also selected, with 5 and
4 responses, respectively.

Participants had different levels of familiarity with LLMs,
as summarized in Table II. In addition they reported that, in
their previous experiences, they most frequently used GenAl
tools for programming tasks such as modifying existing code,
writing test cases, and learning new concepts. On the other
hand, activities such as writing documentation and debugging
code had less frequent usage. For non-coding tasks, GenAl
tools were mainly applied to scenario creation and use case
specification. However, the majority of the respondents indi-
cated that they did not use GenAl tools for this type of activity.

ChatGPT was the most widely used tool among practitioners
(58 responses), followed by Google Gemini Code Assist (46
responses) and GitHub Copilot (33 responses). Other tools,

TABLE II
PRACTITIONERS FAMILIARITY WITH LARGE LANGUAGE MODELS
(LLMSs)
Familiarity with LLMs # Responses | Percentage (%)

I don’t know what an LLM is 7 10.6
I've heard of the term LLM 6 9.1
I vaguely know how an LLM works 11 16.7
I can clearly explain what an LLM is,

6 9.1
and name several
I have played with/experimented with

15 227
one or more LLMs on my own
I've started testing the use of an LLM in my work 9 13.6
I routinely use an LLM as part of my work 12 18.2

such as Bard (12 responses) and Tabnine (9 responses), were
also mentioned, though their usage was lower.

The variation in response rates across the surveys can
be attributed to several factors. The duration of the study
likely affected participant engagement over time, particularly
in a voluntary setting where availability and interest can be
variable. Additionally, the repetitive nature of the weekly
surveys, despite their simplicity, may have contributed to
reduced participation, as well as the sense of relevance of the
survey content to the participants’ specific roles.

IV. FINDINGS

In this section, we present the findings of our study, address-
ing the defined research questions. The findings are based on
data collected from a combination of pre-surveys, post-surveys
and weekly surveys, as well as quantitative data from Gemini
and JIRA described in section III-B . Despite the varying
number of responses, the data provides valuable insights on
developers’ relations with GenAl tools in real-world software
development contexts.

A. RQI: On Expectations and Perceptions On The Impact of
GenAl

To answer the first research question (RQ1), we present our
findings on software practitioners’ expectations and percep-
tions of GenAl. We explore their perspectives (see Figure 2)
regarding speed in the development process, software quality,
and collaboration with team members.

Our participants were positive about the potential benefits
the adoption of GenAl in software development would bring,
with very high expectations about its potential to enhance SDP
speed and software quality.

1) Software development process speed: Before GenAl,
98.5% (65/66) of respondents expected faster SDP speed, with
10.6% (7/66) of them expecting transformational changes.
These expectations were broadly matched, as following the use
of GenAl, the majority of participants (95.7%, 22/23) reported
an increase in development speed. Of these, 2 people described
the change as life-changing, while only 1 person indicated that
there was no noticeable impact.

Quantitative data on cycle time automatically extracted from
JIRA supports the practitioners’ perceptions of SDP speed.
The data indicates a reduction in development cycle time for
tasks where GenAl was applied. The average cycle time for

these tasks reduced by 23% based on the company’s historical
data.

2) Software quality: Around 75% (50/66) of participants
expected software quality to improve with the introduction of
GenAl, while only 9% (6/66) expected quality to worsen. Af-
terward, around 74% (17/23) of participants perceived quality
had indeed improved, withonly 8.69% (2/23) thought it was
transformative. 8.69% (2/23) of participants thought software
quality had gotten worse.

3) Collaboration with team members: Expectations regard-
ing team collaboration were modest, with most respondents not
anticipating any significant impact from GenAl on collabora-
tive dynamics. This perception remained consistent post-usage.
Before and after using GenAl, the most common response was
“nothing really changes”. This perhaps reflects a viewpoint
that GenAl is a tool designed to aid individual work rather
than a tool for aiding collaborative activities.

Expectations and Perceptions of GenAl

High expectations for accelerating software develop-
ment and enhancing quality were met with the majority
of respondents reporting improvements in both areas
after using GenAl, although these improvements were
not considered transformative. Particularly, task data
from JIRA shows a 23% reduction in cycle time.
Contrastingly, there were low-expectations in terms of
impact of GenAl on collaboration with most partici-
pants reporting no significant change in collaborative
dynamics.

B. RQ2: In Which Tasks Is GenAlI Used

We discuss how practitioners utilized GenAl throughout
the study, focusing on specific development tasks and the
frequency of use. The Figure 5 illustrates the distribution of
responses indicating the frequency of GenAl use for each of
the listed activities throughout the study.

1) Coding related tasks: In considering the different types
of tasks (Figure 5), coding related tasks were reported as the
most frequently supported by GenAl. Specifically, “Writing
new code”, “Modifying existing code”, and “Writing test
cases” were the most common use cases, with a significant
number of respondents reporting frequent or consistent use of
GenAl in these areas. “Debugging code” was the coding task
with the least Al support.

In terms of actual usage of the Gemini Code Assist tool,
Figure 3 illustrates the number of suggestions generated for
active users each week, as well as the developers’ acceptance
rate of these suggestions. The average acceptance rate for the
period was 42.88% for 14,945 suggestions. Over the course of
six weeks, there was a decline in the number of suggestions,
while the acceptance rate increased slightly.

2) Non-coding tasks: In contrast, tasks involving collab-
oration with team members, such as “Whiteboard meetings”.
“Stand-up meetings” and “Teamwork in general” saw minimal

Expectations (Pre-survey)

SDP speed Software Quality
40
3
@ 31
S 30 27
@
<
5 20
3
o
£
3 10 7
o 0 o 3 I

Perceptions (Post-survey)

SDP speed Software Quality

= B
o [0}

[0}

Number of responses

0

33
17 17
5 6 I 4 >
[| -

(a)

15
12
9
8
7
6
4
1 2 2 1
0 0 pm [| - M o o m O
(b)

Fig. 2. (a) Respondents expectations on the impact of GenAl use on SDP speed, software quality, and collaboration between team members

Significantly worse
M Alittle worse
B Nothing changes
[| Improves a little

Collaboration
38

B improves significantly

M it’s transformative

3
||

6
|

Significantly worse
B Alittle worse
B Nothing changes
I Improves a little

Collaboration

M improves significantly
M It’s transformative

. (b) Respondents

perceptions on the impact of GenAl use on SDP speed, software quality, and collaboration between team members.

46,89%

45,83%

3000 43,87%

39,52% 40,00%
2500

o
2000 30,00%

1721

Exposure

1500
20,00%

Full Acceptance Rate (%)

1000
10,00%
500

0,00%

Week

M Exposure
I Full Acceptance Rate (%)

Fig. 3. Number of Gemini Code Assist suggestions and acceptance rate.

or no GenAl usage. This aligns with the expectations discussed
in Section IV-A3.

3) Creative tasks: When comparing tasks viewed as being
creative (Figure 4) and the GenAl frequency of use per task
type (Figure 5), we can see that tasks often considered as
requiring creativity, such as “High-level (architectural) de-
sign”, “Low-level design” and “UI/UX design” had limited
GenAl influence reported. A similar attitude prevails for tasks
related to analysis and design, such as “Scenario creation”,
“Requirements elicitation/specification”, and Use case speci-
fication. The only tasks that are considered creative and are
supported with frequent use of GenAl are “Writing new code”

Learning new concepts - 3

Scenario creation - 3

Debugging code -)

Requirements elicitation/specification - 7
writing test cases - 6 25

Writing documentation - 6
Writing new code - 1

4

Use case specification - 20

Explaining code - 10
Quality assurance - 15
Modifying existing code -

High-level (architectural) design -

5
2
5
7

Low-level design - -10

Whiteboard meetings

Stand-up meetings - 10

Teamwork in general - 13

UI/UX design n

‘\‘o
2
o

* numbers correspond to the number of answers

Fig. 4. Respondents perceptions on what tasks are considered creative.

and “Learning new concept”.

4) GenAl and Learning: Many respondents indicated they
used GenAl to “Learn new concepts” suggesting that these
tools are viewed not only as coding assistants but also as
valuable resources for continuous learning and knowledge
acquisition.

Note the profile of the respondents likely influences these
findings, since the majority (78.2%, 18/22) of respondents
work as programmers.

Learning new concepts - 2 6 3 8 4 200
Scenario creation 4 4 3 i
Debugging code - 9 6 5 2 1 175
Requirements elicitation/specification 5 2 2 7,
Writing test cases - 4 2 7 5 5
15.0
‘Writing documentation - 6 5 7 2 3
Writing new code - 2 5 5 - 1 125
Use case specification 6 2 1 1
Explaining code - 3 5 7 6 2
10.0
Quality assurance - 8 4 8 2 1
Modifying existing code - 2 4 4 3
N s
High-level (architectural) design q B 4 0
Low-level design 3 5 1 0
-5.0
Whiteboard meetings 2 0] 4]
Stand-up meetings 2 2 1 0
-25
Teamwork in general 3 0 0 0
UI/UX design 2 0 o 0
' ' ' ' -0.0
>3 3 5 o &
g & & & B
¢S @& F
o

* numbers correspond to the number of answers

Fig. 5. Types of activities and GenAl usage frequency.

Use of GenAl for software development tasks

GenAl was widely adopted for technical tasks, par-
ticularly those that are code-intensive. In contrast,
its use in collaborative and creative work is limited.
Although GenAl is proving valuable in specific areas
of software development, there are still notable gaps in
its applicability to human-centric practices. GenAl was
helpful for learning purposes, highlighting the role of
GenAl in enhancing developer skills and knowledge.

C. RQ3: On the Practitioners’ Experience Of GenAl

In this subsection, we explore the overall experience of
practitioners using GenAl tools. The findings offer insights
into how these tools affected everyday development work.

1) Overall Experience: Figure 6 show that the overall
experience about using GenAl was predominantly positive.
According to the post-survey, 82.6% (19/23) of respondents
rated their experience as either “Satisfactory” or “Very sat-
isfactory” Additionally, 95.6% (22/23) reported that GenAl
tools made their tasks easier, with responses ranging from
“a little easier” to “transformative”. In terms of integration,
most respondents (86.9%) (20/23) indicated that GenAl tools
were “Well” or “Very well” incorporated into their existing
workflows. Further, 34.8% of practitioners reported feeling
comfortable using GenAl tools within the two first weeks,
while 47.8% took two to four weeks to feel comfortable.

2) Experience on quality and reliability of GenAl: How-
ever, there was neutral feedback on the quality of the sug-
gestions and the reliability of GenAl tools for software
development. Neutral responses were predominant for both
questions, with “Medium” being the most common response
to the question “How do you rate the quality of the suggestions
provided by generative Al tools?” and “Moderately reliable”

Answers
I Very Unsatisfactory
B Unsatisfactory
W Neutral
mmm Satisfactory
mmm Very Satisfactory

Fig. 6. Practitioners’ overall experience with GenAl in software development.

for “Do you consider generative Al tools reliable for sup-
porting your development activities?”. This neutral response
perhaps indicates why the developers’ average acceptance rate
of Gemini suggestions was no more than 42.88% (see Figure
3): they did not find the quality or the reliability of the response
acceptable.

3) Experience on using GenAl in other aspects of software
development: As shown in Figure 7, our survey respondents
had varying views on using GenAl in different aspects of
software development

I complete tasks faster: A significant proportion (43.9%,
43/98) of respondents agreed that GenAl tools help them
complete tasks more quickly, with 25.5% (25/98) strongly
agreeing. However, 30.6% (30/98) disagreed or remained
neutral. This suggests that while GenAl is perceived to offer
productivity benefits for many, this experience is not universal.
This finding supports the improvement to overall development
speed calculated in JIRA tickets and noted in IV-AL.

I enjoy programming more: The responses show that
20.4% (20/98) of respondents agreed that their enjoyment
of programming increased with GenAl, and 14.3% (14/98)
strongly agreed. Nevertheless, 60.2% (59/98) remained neu-
tral. This reasonable percentage of positive responses indicates
that GenAl positively impacts the programming experience for
some users, likely by automating tedious or repetitive tasks.

I learn from suggestions: Approximately 61.2% (60/98)
of respondents agreed that they learn from the suggestions
provided by GenAl tools. However, 34.7% (34/98) remained
neutral, suggesting that while many find the suggestions edu-
cational, for others, the impact on learning is more limited.

I spend less mental effort on repetitive tasks: A total
of 78.6% (77/98) of participants agreed or strongly agreed
that GenAl reduces the mental effort required for repetitive
tasks, with 39.8% (39/98) strongly agreeing. This finding
reinforces the role of GenAl in automating time-consuming
tasks, allowing developers to focus on more complex work.

[| Strongly Disagree Disagree B Neutral

| complete tasks faster

| spend less mental effort on repetitive tasks I
I spend less time searching for information or examples I
| stay in the "development flow" more easily I

| write better quality code .

0 10 20

22,4% 43,9%
| enjoy programming more I 60,2% 20,4%
| learn from suggestions I 34,7% 37,8%
13,3% 38,8%
45,

9% 21,4%
39,8% 34,7%

[| Agree

Strongly Agree

22,4% 37,8%

30 40 50 60 70 80 90 100

Percentage of Responses

Fig. 7. Survey responses on impact of GenAl on various aspects of software development

I spend less time searching for information or examples:
While 67.3% (66/98) of respondents agreed or strongly agreed
that GenAl reduces the time spent searching for information or
examples, a notable portion (22.4%, 22/98) remained neutral,
and 9.2% (9/98) disagreed. This suggests that while GenAl is
considered useful for retrieving information, its effectiveness
may vary depending on specific use cases.

I stay in the ‘“development flow” more easily: Many
developers (44.9%, 44/98) reported that they stay in the
“development flow” more easily when using GenAl. However,
45.9% (45/98) were neutral, indicating that GenATI’s ability to
help developers maintain focus varies significantly.

I write better quality code: On code quality, 51% (50/98)
of participants agreed that GenAl helps them write better
quality code, while 39.8% (39/98) remained neutral and 9.2%
(9/98) disagreed. This reflects a more mixed perception of the
impact on code quality, possibly due to the need for manual
review and the varying reliability of suggestions.

Practitioners’ Experience Of GenAl

The practitioners’ overall experience with GenAl was
positive, especially concerning task efficiency and
workflow integration. However, feedback on the qual-
ity and reliability of GenAl suggestions was more
varied. Most participants found the tools helpful in
reducing mental effort in repetitive tasks and improv-
ing the speed of performing tasks. There are mixed
opinions about the accuracy of the suggestions and
their possible impact on code quality.

D. RQ4: On Concerns About Using GenAl

By exploring the key concerns raised by participants, we
provide insights into the perceived risks and challenges that
could impact the adoption of GenAl in the software industry.

Through an open-ended question in both the pre-survey and
post-survey, participants expressed their concerns regarding
the use of GenAl. 28% (25/89) of practitioners indicated they
had no concerns regarding the use of GenAl. After analyzing

the remaining responses (we excluded three as they were
either invalid or the respondent had no opinion), we placed
each into one of five identified categories: Code quality and
maintenance, Impact on People and Work, Responsible Use,
Reliability of suggestions, Security and Privacy:

« Impact on People and Work: Refers to concerns about
how GenAl will affect developers’ roles and their work.

« Responsible Use: Describes concerns around responsible
use of GenAl in the workplace.

o Security and Privacy: Relates to concerns around data
security and privacy, including the risk of exposing sen-
sitive information when using GenAl tools, as well as
the potential for unintentional copyright violations in Al-
generated code.

o Reliability of suggestions: Regards the accuracy and
consistency of GenAl suggestions, with concerns about
the need for frequent human intervention, and on leading
people to mistakes.

o Code quality and maintenance: Relates to the quality of
the Al-generated code, e.g., the risk of generating low-
quality or error-prone code that may increase technical
debt and require frequent and costly maintenance.

Table III presents the percentage of responses per category.
The largest concern related to “Impact on people and work”
with “Code quality and maintenance” being the least concern.

1) Impact on People and Work: Concerns about the impli-
cations for practitioners’ jobs were the most frequently cited.
Several respondents expressed worries about an excessive
dependence on Al tools, “If developers start relying too much
on Al, they may lose essential problem-solving skills”. In
a similar way, another respondent remarked, “The biggest
concern is that people don’t become dependent on the tool”.

Additionally, concerns about job security were raised,
“Management sees this as a potential justification for cutting
costs by reducing the number of developers”.

Furthermore, the impact on junior developers was a re-
current theme, with many fearing that GenAl could hinder
their learning process, “GenAl is great for speeding up work,

TABLE III
GENAI CONCERNS RAISED BY SURVEY PARTICIPANTS

Category Responses (%)
Impact on people and work 29.5
Responsible use 24.5
Security and privacy 19.7
Reliability of suggestions 14.7
Code quality and maintenance 11.5

but I'm concerned that junior developers won’t learn to code
properly if they rely on it too much”.

2) Responsible Use: Participants raised concerns that peo-
ple should view GenAl as a complement to human expertise
rather than become beholden to it. Thus, it is important
people are responsible in using GenAl and consider responses
critically, “I worry that they think that GenAl can solve
everything easily, forgetting that there are several complexities
regarding business rules and architectural issues...the process
remains human/machine.”

3) Security and Privacy: There were significant concerns
raised around security and privacy issues, particularly with
the risk of exposing proprietary or sensitive data when using
GenAl tools. One respondent stated, “I am worried about
the potential for data leakage when using GenAl in cloud
environments. We need to ensure that sensitive information
isn’t inadvertently shared or exposed’. Another respondent
pointed out the possibility of Al unintentionally generating
code that infringes on copyright, especially when trained on
public repositories ,“How can we be sure that Al-generated
code doesn’t violate licensing or copyright terms?”.

4) Reliability: The reliability of GenAI’s suggestions was
also questioned, with people expressing doubt about the con-
sistency and accuracy of Al-generated solutions. One prac-
titioner noted, “The suggestions provided by Al are helpful,
but often require significant modifications, which reduces the
time-saving benefits”. This highlights a core challenge: while
GenAl can assist in streamlining some tasks, the necessity for
manual review and modification can reduce potential produc-
tivity gains. Another response stated, “I still worry about the
reliability of the answers in relation to code implementation”.

5) Code quality and maintenance: Eight answers expressed
concerns about the quality of code generated by GenAl tools.
One respondent highlighted the risk of poor-quality output,
“Al-generated code often lacks the finesse and optimization
that experienced developers provide, leading to a higher main-
tenance burden in the long term”. This sentiment was echoed
by others, particularly regarding the potential for introducing
bugs or low-quality solutions that may increase technical debt,
especially for less experienced developers who may not have
the expertise to critically assess the generated code. Another
respondent noted: “I believe that without a certain level of
knowledge, the quality of the code tends to decline”.

Concerns About GenAl

The leading concern involves the potential negative im-
pact on developers’ roles and skills and how developers
use GenAl in their daily work. For example, over-
reliance on GenAl could affect problem-solving skills,
particularly for junior developers. Security and privacy
risks, such as data exposure and potential copyright
violations, are a concern. Code quality and impact on
long-term maintenance were not mentioned often but
one that required frequent human reviews to mitigate.

V. LIMITATIONS AND THREATS TO VALIDITY

Our study is subject to some threats to validity, which are
discussed in this section to provide a clear understanding of
the limitations.

External Validity: The results of this study are based on a
single-company study. While this offers valuable insights into
a real-world software development setting, the findings may
not be generalized to other companies with different scenar-
ios, such as other business domains (e.g., finance), distinct
team structures, development processes, or the use of specific
technologies (e.g., proprietary languages). Furthermore, our
findings may not be transferable to other business domains
(e.g., finance).

Conclusion Validity: The relatively small sample size,
particularly in the post-survey, may affect the robustness. The
variation between the number of responses to the different
surveys indicates that some participants did not remain active
throughout the study. At the same time, some quantitative data
and findings are across many more participants and, as such,
are more robust. Future studies with larger and more diverse
samples are necessary to confirm the trends observed.

Construct Validity: Our study relied on questionnaires as
the primary instrument for data collection, which may lead
to varying interpretations of the questions. To mitigate this
limitation, the questionnaires were passed through an iterative
review process by the authors to ensure clarity and consistency.

While these threats to validity are acknowledged, we have
taken actions to mitigate their potential impact on the study’s
findings. By clearly defining the study’s context, refining the
data collection instruments, and maintaining transparency in
the analysis, we believe that the insights presented here pro-
vide a valuable contribution. Future research will be important
for validating and extending the results.

VI. DISCUSSION

Generative Al tools are a reality and are of widespread
interest to the software industry and academia. This case
study investigated the early-stage adoption of Generative Al
(GenAl) tools within the largest Brazilian media company
that develops in-house software systems. Drawing upon survey
data on participants’ perceptions and experiences of GenAl,
task data from JIRA, and code completion data from Google
Gemini Code Assist, we contribute findings on the impact of
GenAl on software professionals.

We observe that among our survey respondents, GenAl was
predominantly used for coding tasks with little use in other
areas of software development, such as architecture, design,
and requirements. The reasons for this skewed usage are
unclear. We note that most of our participants were developers,
which could bias our data. However, surveys on research
on GenAl use in software engineering [13] have noted little
research beyond coding and testing. This lack of adoption may
reflect a perception that GenAl is less suited for more human-
centered activities such as feature definition.

We note that development speed improved quickly follow-
ing adoption with cycle time reduced, on average, by 23%
during the six-week study compared to historical cycle time
data. This actual reduction matched the perceptions of many
participants who thought GenAl sped up development tasks.
Our survey data shows this is likely due to spending less time
searching for information and less mental effort on repetitive
tasks. It could also be influenced by the speed at which our
participants felt comfortable using GenAl, with nearly 75%
comfortable within four weeks of adopting the tools. This
early speed boost contrasts with Microsoft studies that note
11 weeks are required before benefits are experienced [33].

Similar to other studies (e.g., [34]), GenAl was beneficial
for learning activities, with more than half of the survey
participants highlighting that they learn from suggestions.
Continual learning is important to develop expertise [35], so
being able to learn while delivering faster helps both the
individual and their employer.

Interestingly, enjoyment of coding increased with the
introduction of GenAl. We did not delve into the reasons
why, but we speculate it could be due to the automation of
mundane work, such as GenAl’s ability to quickly autocom-
plete partially written code [25], leaving time for the more
enjoyable and creative parts of coding. Enjoyment of coding
could help improve job satisfaction, potentially leading to
improved individual productivity [36].

Finally, our participants noted concerns about GenAl, with
many concerns raised about the negative impact of GenAl
on their work and role, with some expressing worries
about job security. These concerns align with more general
studies of the impact of GenAl on the workforce, with some
noting that the software profession is at high risk of substantial
change due to GenAl [37]. Similar to other studies [26],
data security and privacy concerns were also raised. Although
unlike [26] that noted absence of ethical and legal concerns
from study participants, legal concerns such as copyright
concerns were mentioned by our participants, perhaps showing
that awareness is increasing in the software profession of some
ethical and legal issues with GenAlI [38].

A. Implications for Practitioners

Our findings show that the deployment of GenAl is largely
positive, with organizational benefits (shorter cycle times)
and individual benefits (increased enjoyment of coding). Yet,
we observe concerns from participants, especially about the
impact on their work and role. We encourage organizations

to foster an open and transparent dialog with their staff about
such concerns and to find ways to address their concerns.

B. Implications for Researchers

Some findings warrant further investigation. Firstly, most
participants were developers with little GenAl use reported
outside coding. We suggest that researchers should explore
how non-developer roles across the software development
process can benefit from GenAl tools. Secondly, as mentioned
by some of our participants, GenAl use may impact novice
developers more than more senior developers such that novices
become dependent on GenAl [39]. It would be beneficial
to understand the relationship between developers of varying
levels of seniority and the use of these tools. Moreover, this
study was conducted in one setting, so analyzing teams in
diverse contexts (legacy code, different industries) is essential,
as findings may well be context-dependent. Finally, the reasons
why GenAl use improves enjoyment of coding should be
explored further to see if this can lead to increased job
satisfaction. Previous research identifies a relationship between
perceived enjoyment and intention to use GenAl [40].

VII. CONCLUSION

This study provides an overview of the use of GenAl tools
in the software industry. Our results suggest that practitioners
generally had a positive experience integrating GenAl into
their daily work. However, some important concerns persist,
mainly regarding the long-term impact on developers and their
work processes, and about the responsible use of GenAl tools.

There are also concerns about how GenAl might affect skill
development, particularly for junior developers, who may miss
out on learning opportunities if they become too dependent on
these tools. Additionally, the implications for collaborative and
creative tasks remain unclear, as GenAl tools are still primarily
used for technical and code-intensive activities.

Future work is needed to increase our understanding of
the use of GenAl in the software development process. We
intend to explore how non-developer roles across the software
development process can benefit from GenAl tools. Under-
standing the relationship between developers of varying levels
of seniority and the use of these tools, as well as analyzing
teams in diverse contexts, will also be important areas of focus.
In addition, we believe that future research is needed to further
explore the reduction in development cycle time suggested.

ACKNOWLEDGEMENTS

We thank the partner company in this study. This paper
was supported by the Ministry of Science, Technology, and
Innovation of Brazil (Law 8.248 from Oct 23, 1991), within
the scope of PPI-SOFTEX, coordinated by Softex, and pub-
lished in the Residéncia em TIC 02 - Aditivo, Official Gazette
01245.012095/2020-56. Guilherme Pereira is supported by the
Federal Institute of Education, Science and Technology of
Rio Grande do Sul (IFRS). Rafael Prikladnicki is partially
supported by CNPq in Brazil. This material is based upon
work supported by the US National Science Foundation under
grant CCF-2210812.

[1]
[2]

[3]

[4]
[5]

[6]

[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

G. Booch, “The history of software engineering,” IEEE Software,
vol. 35, no. 5, pp. 108-114, 2018.

I. Ozkaya, “The next frontier in software development: Ai-augmented
software development processes,” IEEE Software, vol. 40, no. 04, pp.
4-9, jul 2023.

D. Russo, “Navigating the complexity of generative ai adoption in
software engineering,” ACM Trans. Softw. Eng. Methodol., vol. 33,
no. 5, jun 2024. [Online]. Available: https://doi.org/10.1145/3652154
S. Overflow, “Stack overflow 2024 developer survey,” 2024. [Online].
Available: https://survey.stackoverflow.co/2024/ai/

A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, M. S. Aktar, and
T. Mikkonen, “Towards Human-Bot Collaborative Software Architecting
with ChatGPT,” in Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE °23.
Association for Computing Machinery, 2023, pp. 279-285. [Online].
Available: https://dl.acm.org/doi/10.1145/3593434.3593468

N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s
code suggestions,” in Proceedings of the 19th International Conference
on Mining Software Repositories, 2022, pp. 1-5.

D. Sobania, M. Briesch, C. Hanna, and J. Petke, “ An
Analysis of the Automatic Bug Fixing Performance of ChatGPT
) in 2023 [EEE/ACM International Workshop on Automated
Program Repair (APR). Los Alamitos, CA, USA: IEEE
Computer Society, May 2023, pp. 23-30. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/APR59189.2023.00012

O. Al “Chatgpt,” 2024. [Online]. Available: https://chatgpt.com
Google, “Google gemini,” 2024. [Online]. Available:
https://gemini.google.com/app

Github, “Github copilot,” 2024. [Online]. Available:

https://github.com/features/copilot
C. Ebert and P. Louridas, “Generative ai for software practitioners,”
IEEE Software, vol. 40, no. 4, pp. 30-38, 2023.

K. P Agrawal, “Towards adoption of generative ai in
organizational settings,” Journal of Computer Information
Systems, vol. 0, no. 0, pp. 1-16, 2023. [Online]. Available:

https://doi.org/10.1080/08874417.2023.2240744

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo,
D. Lo, J. Grundy, and H. Wang, “Large language models for software
engineering: A systematic literature review,” 2024. [Online]. Available:
https://arxiv.org/abs/2308.10620

N. Nascimento, P. Alencar, and D. Cowan, “Artificial intelligence vs.
software engineers: An empirical study on performance and efficiency
using chatgpt,” in Proceedings of the 33rd Annual International Con-
ference on Computer Science and Software Engineering, ser. CASCON
’23. USA: IBM Corp., 2023, p. 24-33.

A. Moradi Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh,
M. C. Desmarais, and Z. M. J. Jiang, “Github copilot
ai pair programmer: Asset or liability?” Journal of Systems
and Software, vol. 203, p. 111734, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223001292
A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino,
R. Oliveto, and G. Bavota, “On the robustness of code generation
techniques: An empirical study on github copilot,” arXiv preprint
arXiv:2302.00438, 2023.

N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users
write more insecure code with ai assistants?” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’23. New York, NY, USA: Association for
Computing Machinery, 2023, p. 2785-2799. [Online]. Available:
https://doi.org/10.1145/3576915.3623157

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code contri-
butions,” 2021.

D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an 1lm to help with code understanding,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE "24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3639187

A. Schmidt, “Speeding up the engineering of interactive systems
with generative ai,” in Companion Proceedings of the 2023 ACM
SIGCHI Symposium on Engineering Interactive Computing Systems,
ser. EICS ’23 Companion. New York, NY, USA: Association

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

for Computing Machinery, 2023, p. 7-8. Available:
https://doi.org/10.1145/3596454.3597176

J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, ChatGPT
Prompt Patterns for Improving Code Quality, Refactoring, Requirements
Elicitation, and Software Design. Cham: Springer Nature Switzerland,
2024, pp. 71-108.

S. Imai, “Is github copilot a substitute for human pair-programming?
an empirical study,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
May 2022, pp. 319-321.

E. Shein, “The impact of ai on computer science education,” Commun.
ACM, vol. 67, no. 9, p. 13-15, aug 2024. [Online]. Available:
https://doi.org/10.1145/3673428

S. Laato, B. Morschheuser, J. Hamari, and J. Bjorne, “Ai-assisted
learning with chatgpt and large language models: Implications for
higher education,” in 2023 IEEE International Conference on Advanced
Learning Technologies (ICALT), 2023, pp. 226-230.

S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot:
How programmers interact with code-generating models,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLALI, apr 2023. [Online]. Available:
https://doi.org/10.1145/3586030

N. Davila, I. Wiese, I. Steinmacher, L. D. Silva, A. Kawamoto,
G. P. Favaro, and I. Nunes, “An industry case study on
adoption of ai-based programming assistants,” in 2024 IEEE/ACM
46th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). Los Alamitos, CA, USA:
IEEE Computer Society, apr 2024, pp. 92-102. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3639477.3643648

W. Mendes, S. Souza, and C. R. B. De Souza, ““you’re on a bicycle
with a little motor”: Benefits and challenges of using ai code assistants,”
in 2024 IEEE/ACM 17th International Conference on Cooperative and
Human Aspects of Software Engineering (CHASE), 2024, pp. 144-152.
R. Khojah, M. Mohamad, P. Leitner, and F. G. De Oliveira Neto,
“Beyond Code Generation: An Observational Study of ChatGPT
Usage in Software Engineering Practice,” Proc. ACM Softw. Eng.,
vol. 1, no. FSE, pp. 1819-1840, Jul. 2024. [Online]. Available:
https://dl.acm.org/doi/10.1145/3660788
Atlassian, “Jira,” 2024.
https://www.atlassian.com/br/software/jira
I. Shani and G. Staff, “The developer wishlist,” 2023. [Online].
Available: https://github.blog/news-insights/research/survey-reveals-ais-
impact-on-the-developer-experience/

R. Salva, “Measuring the impact of
github copilot,” 2023. [Online]. Available:
https://resources.github.com/learn/pathways/copilot/essentials/measuring-
the-impact-of-github-copilot/

M. Poppendieck and T. Poppendieck, Lean software development: An
agile toolkit: An agile toolkit. Addison-Wesley, 2003.

Microsoft, “Ai data drop: The 11 by 11 tipping point,” 2024.
[Online]. Available: https://www.microsoft.com/en-us/worklab/ai-data-
drop-the-11-by-11-tipping-point

J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE "24. New York, NY, USA: Association
for Computing Machinery, 2024.

S. Baltes and S. Diehl, “Towards a theory of software development
expertise,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
187-200. [Online]. Available: https://doi.org/10.1145/3236024.3236061
M.-A. Storey, T. Zimmermann, C. Bird, J. Czerwonka, B. Murphy,
and E. Kalliamvakou, “Towards a theory of software developer job
satisfaction and perceived productivity,” IEEE Transactions on Software
Engineering, vol. 47, no. 10, pp. 2125-2142, 2021.

R. Kochhar, “Which us workers are exposed to ai in their
jobs — pewresearch.org,” Pew Research, 2024. [Online]. Avail-
able: https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-
workers-are-more-exposed-to-ai-on-their-jobs/

A. Poth, A. Wildegger, and D.-A. Levien, “Considerations about inte-
gration of genai into products and services from an ethical and legal
perspective,” in Systems, Software and Services Process Improvement,

[Online].

[Online]. Available:

[39]

[40]

M. Yilmaz, P. Clarke, A. Riel, R. Messnarz, C. Greiner, and T. Peisl,
Eds. Cham: Springer Nature Switzerland, 2024, pp. 155-171.

J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-
Reilly, G. Powell, J. Finnie-Ansley, and E. A. Santos, ““it’s weird that it
knows what i want”: Usability and interactions with copilot for novice
programmers,” ACM Trans. Comput.-Hum. Interact., vol. 31, no. 1, Nov.
2023.

S. H. Y. Young Woo Kim, Min Chul Cha and S. C. Lee, “Not merely
useful but also amusing: Impact of perceived usefulness and perceived
enjoyment on the adoption of ai-powered coding assistant,” International
Journal of Human—Computer Interaction, vol. 0, no. 0, pp. 1-13, 2024.

