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Novel Computational Methods to Discover Genes Linked to Drug Response 

Srijib Goswami 

 

Abstract 

Metformin is used first line for treatment of type 2 diabetes (T2D) and is 

one of the most frequently prescribed drugs worldwide. As the global incidence of 

T2D rapidly increases, the low cost of metformin makes this treatment option 

particularly attractive in developing nations. Understanding metformin’s efficacy 

in different patient populations with diverse genetic backgrounds will be critical in 

managing this deleterious metabolic disorder. The major goal of this dissertation 

research was to use novel, quantitative approaches to elucidate genetic and non-

genetic components that predict metformin disposition and glycemic response. 

As a first goal, the role of transcription factor variants on metformin 

pharmacokinetics and pharmacodynamics was investigated. From this analysis, 

five variants in SP1 were significantly associated with changes in treatment 

HbA1c (p < 0.01) and metformin secretory clearance (p < 0.05). Genetic variants 

in transcription factors PPAR-alpha and HNF4-alpha were significantly 

associated with HbA1c change only, but were not significantly associated with 

pharmacokinetics.  A plausible biological mechanism by which genetic variants 

affected the pharmacological variation of metformin was determined using gene 

expression levels linked to genetic variants (eQTLs).  The focus was on 

transporter expression. From this study, we discovered that genomic regions 
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proximal to metformin transporters were linked to expression levels of SLC47A1, 

SLC22A3, and SLC22A2, with a potential transcription factor-binding hypothesis 

for SP1. We also found variants in transcription factor HNF4-alpha were the most 

influential trans-eQTLs, accounting for expression level variation in both 

SLC47A1 and SLC22A1. Finally, we developed a mathematical model to quantify 

disease progression on metformin therapy using HbA1c data with the goal of 

explaining long-term HbA1c variability through the investigation of genetic, 

demographic, and clinical factors. From this analysis, we found two SNPs in 

CSMD1 (rs2617102, rs2954625) and one SNP in SLC22A2 (rs316009) as 

significantly influencing the long-term variance in HbA1c. Overall, this 

dissertation research enhances our current knowledge of the pharmacogenetic 

landscape by expanding the set of pharmacologically relevant genes and 

providing a pharmacokinetic and biological basis for some of these genes. Future 

research will continue to focus on replication and uncovering the mechanism 

driving the pharmacological genes highlighted here. 
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Chapter 1 
Introduction and an Overview of Metformin Pharmacokinetics, 

Pharmacodynamics and Pharmacogenomics* 

 

A review of metformin pharmacokinetics (PK), pharmacodynamics (PD) and 

pharmacogenetics (PgX) 

For this introduction, I appended sections to a review that I had published 

in the Journal of Pharmacogenetics and Genomics that describes metformin PK, 

PD and PGx up until 2012. After that I provide an overview of the goals of my 

dissertation research, highlighting the aims that will be addressed in subsequent 

chapters. 

.  

Introduction to metformin 

Metformin is a first line therapy for type 2 diabetes (T2D, formerly “non-

insulin-dependent diabetes mellitus”), and is one of the most commonly 

prescribed drugs worldwide. As a biguanide agent, metformin lowers both basal 

and postprandial plasma glucose levels1,2. It 

can be used as a monotherapy or in 

combination with other anti-diabetic agents 

including sulfonylureas, alpha-glucosidase 

inhibitors, insulin, thiazolidinediones, DPP-4 

                                            
* This chapter is a modified version of the material published in Pharmacogenetics and Genomics in 
Li Gong, Kathleen M. Giacomini, Russ B. Altman, Teri Klein.  
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inhibitors as well as GLP-1 agonists. Metformin works by inhibiting hepatic 

glucose production, reducing intestinal glucose absorption and improving glucose 

uptake and utilization. Besides lowering blood glucose level, metformin may have 

additional health benefits, including weight reduction, lowering plasma lipid 

levels, and prevention of some vascular complications3. As obesity rates in the 

United States rise, the use of metformin is also increasing. Metformin is also 

used for other indications such as polycystic ovary syndrome1. Metformin has 

also been studied in several cancers. In one meta-analysis, metformin was 

associated with a decreased risk of cancer incidence compared with other 

treatments among diabetic patients4. Also for Alzheimer’s disease (AD), one 

article concluded that there was a slightly higher risk of AD in long-term users of 

metformin5. 

Overall, metformin is well tolerated by the majority of patients. However, 

the glycemic response to metformin is quite variable. Some patients respond 

extremely well while others show no benefit6. The following sections will provide 

an overview of metformin PK, PD and PGx.  

 

A review of metformin pharmacokinetics  

Metformin is not metabolized1,7 and is excreted unchanged in the urine 

with a half-life of approximately 5 hours7. The population mean for renal 

clearance is 510 +/- 120 mL/min. Active tubular secretion in the kidney is the 

principle route of metformin elimination. The drug is widely distributed into body 

tissues including intestine, liver and kidney via various organic cation 
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transporters7. There is large inter-individual variability in metformin 

pharmacokinetics as measured by differences in trough steady-state metformin 

plasma concentrations, which range from 54-4133 ng/ml8. 

The absorption of metformin is incomplete with some literature suggesting 

a dose-dependent absolute bioavailability that decreases with increasing doses. 

This effect is probably attributable to a relatively slow absorption rate together 

with an effective absorption window that is confined to the small intestine, where 

a saturable transport mechanism may occur1,9. At normal doses, the 

bioavailability (F) ranges between 50 and 60%. The intestinal absorption of 

metformin may be mediated by plasma membrane monoamine transporter 

(PMAT, encoded by gene SLC29A4), which is expressed on the luminal side of 

enterocytes10 (Figure 1.1).   
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Figure 1.1 Pharmacokinetics pathway of metformin.  
Stylized cells depicting genes involved in the transport and clearance of 
metformin. A fully interactive version is available online at 
http://www.pharmgkb.org/pathway/PA165948259. 
 
 

However, there are currently no in vivo data on the role of PMAT in the 

disposition and pharmacological effect of metformin. OCT3 (gene SLC22A3) is 

also expressed in the brush border of the enterocytes and may contribute to 

metformin absorption7,11. In fact, a recent study from our laboratory in Oct3-/- 

mice demonstrated that the transporter plays an important role in metformin 

bioavailability12.  Additionally, OCT1 (gene SLC22A1), which is expressed on the 

basolateral membrane of enterocytes, may facilitate transfer of metformin into the 
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interstitial fluids surrounding portal capillaries11. The role of OCT1 and OCT3 in 

intestinal transport of metformin remains to be defined.  

The liver plays an important role in the pharmacological action of 

metformin. The hepatic uptake of metformin is mediated primarily by OCT1 

(SLC22A1), and to a lesser extent by OCT3 (SLC22A3). Both transporters are 

expressed on the basolateral membrane of hepatocytes7,13–15. In Oct1-deficient 

mice, the hepatic metformin concentration in the liver is significantly lower than 

control mice, suggesting that OCT1 is essential for hepatic uptake of metformin16. 

Metformin is also a good substrate for human multidrug and toxin extrusion 1 

(MATE1, encoded by gene SLC47A1) and MATE2-K (gene SLC47A2)13,17,18,19. 

MATE1 (SLC47A1) is highly expressed in the liver, kidney and skeletal muscle20 

and may contribute to the excretion of metformin from both liver and kidney. 

However, MATE1’s role in hepatic secretion has been questioned, as biliary 

excretion of metformin seems to be insignificant in humans7. Data from a Mate1 

knockout mouse study suggest that, at least in rodents, biliary excretion of 

metformin occurs and is mediated in part by MATE121.   

The uptake of metformin from circulation into renal epithelial cells is 

primarily facilitated by OCT2 (gene SLC22A2)13, which is expressed 

predominantly at the basolateral membrane in the proximal tubule. Renal 

excretion of metformin from tubule cell to lumen is mediated via MATE1 

(SLC47A1), MATE2, and MATE2-K (SLC47A2)17,18,22,23. MATE1 and MATE2 are 

expressed on the apical membrane of renal proximal tubule cells and studies in 
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healthy individuals suggest that they contribute to the renal excretion of 

metformin24.  

OCT1 also appears to be expressed on the apical and subapical side of 

both the proximal and distal tubules in the kidney, and may play an important role 

in metformin reabsorption in kidney tubules25. Plasma membrane monoamine 

transporter (PMAT, gene SLC29A4) is expressed on the apical membrane of 

renal epithelial cells, and may play a role in renal reabsorption of metformin26. 

However, there are no in vivo data yet supporting this role. Additionally, P-gp 

(gene ABCB1) and BCRP (gene ABCG2) are involved in the efflux of metformin 

across placental apical membranes27. 

Since metformin is not metabolized in the liver, drug-drug interactions via 

the inhibition of metformin transporters (OCTs and MATEs) are clinically relevant. 

Genetic polymorphisms in these transporter genes are also likely to have a direct 

impact on metformin pharmacokinetics and variability in drug responses (see 

Pharmacogenomics section). Recent drug-drug interaction studies suggest that 

proton pump inhibitors inhibit metformin uptake in vitro by inhibiting OCT1, OCT2 

and OCT3.  Oral anti-diabetic drugs repaglinide and rosiglitazone also inhibited 

OCT1 mediated metformin transport in vitro28. The H2 blocker, cimetidine is 

associated with reduced renal tubular secretion and increased systemic 

exposure to metformin when both drugs are co-administered29. Inhibition of 

MATEs, but not OCT230, is the likely mechanism underlying the drug-drug 

interactions with cimetidine in renal elimination23. A recent study suggests the 

potential for a transporter mediated drug-drug interaction between metformin and 
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specific tyrosine kinase inhibitors (e.g. imatinib, nilotinib, gefitinib, and erlotinib), 

which may have clinical implications on the disposition, efficacy, and toxicity 

of metformin31.  Several of the compounds were shown to inhibit the transporters 

in vitro at clinically relevant concentrations. 

 

A review of metformin pharmacodynamics  

Metformin lowers both basal and postprandial plasma glucose. It works 

mainly by suppressing excessive hepatic glucose production, through a reduction 

in gluconeogenesis32.  Other potential effects of metformin include: an increase in 

glucose uptake, increase in insulin signaling, decrease in fatty acid and 

triglyceride synthesis, and an increase in fatty acid beta-oxidation. Metformin 

may also increase glucose utilization in peripheral tissues, and possibly reduce 

food intake and intestinal glucose absorption. As metformin does not stimulate 

endogenous insulin secretion, it does not cause hypoglycemia or 

hyperinsulinemia, which are common side effects associated with other anti-

diabetic drugs. 

The molecular mechanisms underlying metformin action appear to be 

complex and remain a topic of much debate. Metformin’s pharmacologic effects 

reflect its effects on cellular energy content. Studies in the early 2000’s 

suggested that metformin inhibits Complex I in the mitochondria of the liver, 

reducing ATP levels and increasing the AMP/ATP ratio33; however, recent 

studies suggest that metformin reduces glycolytic energy by affecting hepatic and 

intestinal thiamine disposition34. Further, a study published in Nature 
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demonstrates that the drug inhibits glycerophosphate dehydrogenase, disrupting 

the electron transport chain and the proton gradient needed for ATP generation35.  

Irrespective of how the drug reduces cellular energy, there is general 

agreement that metformin administration results in phosphorylation and 

activation of AMP-activated protein kinase (AMPK) in the liver, which in turn may 

lead to diverse pharmacologic effects, including inhibition of glucose and lipid 

synthesis2,36. Although the specific route of AMPK phosphorylation is not yet 

clear, molecular components LKB1/STK11 and ATM have been demonstrated to 

play a role in the phosphorylation of AMPK in the presence of metformin36 

(Figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Pharmacodynamics pathway of metformin.  
Stylized cell depicting the mechanism of action of metformin. A fully interactive 
version is available online at http://www.pharmgkb.org/pathway/PA165948566. 
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However, ATM, LKB1 and AMPK are not the direct targets of metformin37. 

A recent study using liver-specific AMPK-knockout mice demonstrated that 

inhibition of hepatic glucose production by metformin is preserved, suggesting 

that metformin may inhibit hepatic gluconeogenesis in an LKB1- and AMPK-

independent manner38. In separate study in Oct-1 knockout mice, metformin both 

activated AMPK and reduced gluconeogenesis16. Another group has also 

concluded that metformin inhibits hepatic gluconeogenesis through AMPK 

dependent regulation of SHP39. Furthermore, a reduction in gluconeogenesis 

may occur both ways, in an AMPK dependent and independent manner.  

Although the direct target is not fully clear, metformin specifically inhibits 

ATP production suggesting that this inhibition may activate AMPK by increasing 

the cellular AMP:ATP ratio33,37,40,41. AMPK is a major cellular regulator of lipid 

and glucose metabolism. The activated AMPK phosphorylates and inactivates 

HMG-CoA reductase (encoded by gene HMGCR), mTOR (target of rapamycin); 

ACC-2 (encoded by gene ACACB); ACC (encoded by gene ACACA), glycerol-3-

phosphate acyltransferase (encoded by gene GPAM), and carbohydrate 

response element binding protein36,42.  Activation of AMPK by metformin also 

suppresses the expression of SREBP-1 (encoded by gene SREBF1), a key 

lipogenic transcription factor43.  Phosphorylated AMPK also activates SiRT1 and 

increases Pgc-1a (encoded by gene PPARGC1A) expression in the nucleus, 

leading to the downstream activation of mitochondrial biogenesis. Metformin 

disrupts the co-activation of PXR with SRC1, resulting in down regulation of 

CYP3A4 gene expression44. Finally, activated AMPK results in an increase in 
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glucose uptake in skeletal muscle via increasing the GLUT4 (encoded by gene 

SLC2A4) translocation activity16. The overall pharmacological effect of AMPK 

activation in the liver includes the stimulation of fatty acid (FA) oxidation with 

inhibition of cholesterol and triglyceride synthesis. Peripheral effects include 

stimulation of FA oxidation and glucose uptake in skeletal muscle as well as a 

systemic increase in insulin sensitivity40. However, the role of metformin in 

insulin-mediated glucose uptake has been debated45. 

Given the increased risk of cancer in type 2 diabetes patients, metformin 

has also been evaluated for its tumor suppression ability and its potential to 

protect from cancer46. Population studies have shown that metformin is 

associated with a significant reduction of neoplasia in multiple cancer types 

(cancer of the breast and prostate, in particular)47. Metformin may also inhibit the 

growth of cancer cells. The mechanisms underlying this protective effect are not 

well understood and may involve activation of multiple pathways as well as 

changes in glucose utilization and energy production2,46.  The cell cycle arrest in 

metformin treated breast cancer cells seems to involve activation of AMPK, down 

regulation of cyclin D1, and requires p27Kip1 or p21Cip148,49. Metformin was 

reported to suppress HER2 (ERBB2) oncoprotein overexpression via inhibition of 

the mTOR effector p70S6K1/ RPS6KB1 in human breast carcinoma cells50. 

 

A review of metformin pharmacogenomics  

The role of genetic factors in predicting response variation to metformin 

has been the subject of many investigations. Multiple studies reported 
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associations between genomic variations of metformin transporters and its 

pharmacokinetics and response, and a few have explored the role of 

pharmacodynamic genes/variants in drug efficacy. However, the clinical 

relevance of these variants remains to be established in large-scale studies. 

Currently, no validated genetic predictor is used in the clinic. 

Over the past few years, progress has been made in understanding the 

effect of common genetic polymorphisms in transporter genes on modulation of 

metformin pharmacokinetics. Much work has been done with the organic cation 

transporter family (SLC22A family) (reviewed by Nies et al.51). OCT1 (gene 

SLC22A1) is essential for the hepatic uptake of metformin7. In one study with 20 

healthy volunteers, several genetic variants of OCT1: R61C (rs12208357), 

G401S (rs34130495), 420del (rs142448543 or rs34305973 or rs35191146), and 

G465R (rs34059508) had a significant effect on the pharmacokinetics of 

metformin after oral administration. Individuals carrying any of the reduced 

function OCT1 alleles demonstrated a higher area under the concentration–time 

curve (AUC), higher maximal plasma concentration (Cmax) and a lower volume of 

distribution (V) compared to individuals carrying wild type alleles16.  A 

subsequent study in 103 healthy male Caucasians demonstrated the impact of 

these low activity alleles on pharmacokinetics, with increased renal clearances 

(CLr) and decreased hepatic uptake. However, unlike the earlier study, the 

reduced function allele did not lead to differences in metformin exposure (AUC)25. 

A recent study by Christensen et al. demonstrated that reduced functional alleles 

of OCT1 were associated with decreased trough steady-state concentration of 
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metformin and a reduction in the absolute decrease in Hb1Ac during the initiation 

as well as maintenance period8. Overall, replication of OCT1 low activity alleles 

on governing metformin disposition highlights the importance of these genetic 

variants on pharmacokinetic impact and may be taken into consideration for 

metformin therapy.  

Studies in healthy volunteers have tested the effect of genetic variants in 

OCT2 (gene SLC22A2) on metformin pharmacokinetics.  Genetic variants of 

OCT2 (c.596C>T, c602C>T, and c.808G>T (rs316019)) were associated with 

differences in pharmacokinetics, compared to the reference genotype with an 

increase in AUC and Cmax and a decrease in renal clearance52.  A follow up study 

in 15 healthy Chinese participants observed that rs316019 (808G>T) is 

associated with a reduced CLr but not overall drug exposure30. Interestingly, in a 

separate healthy volunteer study consisting of Caucasian and African-Americans, 

individuals heterozygous for the variant 808G/T had higher metformin renal 

clearances than the reference group53. Similar to OCT1, the impact of OCT2 

genetic variants is replicated, strongly suggesting the importance of these alleles 

on determining metformin exposure.  There has been limited research conducted 

on genetic variants of MATE1 or MATE2K for explaining differences in metformin 

pharmacokinetics. In a more recent study, MATE2-K variants (rs578427 and 

rs34834489) showed that common promoter haplotypes of MATE2-K were 

associated with increased renal and secretory clearance5.  

As far as DDIs are concerned, the importance of MATE1 and MATE2K are 

clear. In one healthy volunteer study, administration of a MATE inhibitor, 
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pyrimethamine, caused significant increases in metformin Cmax and AUC. In vivo 

studies also demonstrated the importance of the rodent Mate1 in modulating the 

pharmacokinetics of metformin through gene knockout22. 

In addition to pharmacokinetics, a number of studies have been conducted 

investigating the role of genetic variants on metformin pharmacodynamics and 

response. Despite having an effect on renal clearance, well-established genetic 

polymorphisms of OCT1 and OCT2 that alter metformin disposition do not 

sufficiently explain the broad variation in clinical efficacy54,55. A pharmacogenetic 

study in healthy volunteers demonstrated significant clinical effects of reduced 

function OCT1 variants (R61C, G401S, 420del and G465R), causing an impaired 

response to a glucose tolerance test16. A prospective study conducted in patients 

with polycystic ovary syndrome concluded that genetic variations in OCT1 may 

be associated with heterogeneity in metabolic response to metformin56.  

Interestingly, the minor allele of an intronic variant of MATE1/SLC47A1, 

rs2289669 G>A, was significantly associated with a greater reduction in 

hemoglobin A1c (HbA1c), in a cohort of 116 metformin users, despite the lack of 

association between the polymorphism and metformin CLr or other 

pharmacokinetic parameters57. In a meta-analysis by Jablonski et al., the minor 

allele of rs8065082, a SNP in LD with MATE1 intronic SNP rs2289669, was 

associated with reduced diabetes incidence in patients taking metformin58. A 

recent study by Choi et al., also observed the association between this MATE1 

intronic variant with a change in HbA1c level, almost at the level of statistical 

significance59. This evidence, along with the relatively large sample sizes, 
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provides strong support for the functional impact of this MATE1 intronic variant. 

However, the missing link between pharmacokinetics and a reduction in HbA1c 

requires further research regarding this SNP and it’s mechanistic role.  

Recently, a study by Choi et al. showed diabetic patients who were 

homozygous for g.-130G>A (rs12943590) in MATE2-K had a significantly poorer 

response to metformin treatment, assessed by the relative change in glycated 

hemoglobin59. In addition to the aforementioned transporters, the effect of 

variations in OCT3 has also been investigated. An in vitro study showed that 

OCT3 (gene SLC22A3) may also play a role in the therapeutic action of 

metformin14. OCT inhibitor, such as OCT3-specific short hairpin RNA, 

significantly reduced the activating effect of metformin on AMPK in skeletal 

muscle cells. Also, genetic variants of OCT3 (T400I (rs8187725), V423F and 

T44M (rs8187715)) significantly impacted metformin uptake and kinetics. In 

addition to transporters, a SNP in serine racemase (SRR), rs391300, 

demonstrated an association with serum fasting plasma glucose (FPG), 

postprandial plasma glucose (PPG), and cholesterol (CHO) in 402 Chinese 

patients and 171 healthy controls taking metformin60. This discovery, although 

yet to be replicated, provides promise for the discovery of other genetic variants 

that may affect clinical outcome. The exploration of gene-gene interaction may 

be a promising new area of research. In a study by Becker et al.61, an interaction 

between two polymorphisms, rs622342 in OCT1 and rs2289669 in MATE1 was 

reported, suggesting that interactions between genes in the metformin pathway 

may impact metformin response. However, this study is small and the importance 
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of epistatic mechanism remains to be replicated. More recently in a study by 

Stocker et al. findings suggested that promoter variants of MATE1 (rs2252281) 

and MATE2 (rs12943590) were important determinants of metformin disposition 

and response in healthy volunteers and diabetic patients. Interestingly, the renal 

and secretory clearances of metformin were higher (22% and 26%) respectively 

in carriers of variant MATE2, who were also MATE1 reference. These 

pharmacokinetic results were consistent with metformin response, with variant 

carriers of MATE1 and MATE2 having an enhanced and reduced response 

respectively62. Table 1.1 summarizes some of the important and more recent 

PGx findings for metformin. 

Table 1.1 Summary of genes and variants involved in metformin 
pharmacogenomics 
Gene Variant Associated phenotype PMID PK/PD 

SLC22A1 
(OCT1) 

Reduced function 
alleles: R61C 
(rs12208357), 
G401S 
(rs34130495), 
420del 
(rs142448543 or 
rs34305973 or 
rs35191146), and 
G465R 
(rs34059508)  

High AUC, higher maximal plasma 
concentration (Cmax), and lower 
oral volume of distribution (V/F)  

17609683 PK 

Impaired response to a glucose 
tolerance test  17609683 PD 

Increased renal clearances (CLr) 
and decreased hepatic uptake, no 
exposure changes (AUC) 

19536068 PK 

Reduced lipid response (total 
cholesterol and triglycerides) and 
insulin responses to metformin in 
PCOS women 

 20660041 PD 

rs622342 Decreased CL renal reference and 
lower and CL sec reference 23873119 PK 

rs72552763 
deletion, 
rs34130495 and 
other reduced 
function alleles 

Reduced trough metformin steady-
state concentration, and 
association with the initial absolute 
decrease in HbA1c 

21989078 PK, PD 

SLC22A2 
(OCT2) 
  
  

596C>T, 602C>T, 
and 808G>T 
(rs316019) 

Increase in AUC and Cmax and a 
decrease in renal clearance 18401339 PK 

rs316019 (808G>T)  Reduced CLr but no effect on 
overall drug exposure 18551044 PK 

rs316019 (808G>T)  Higher metformin renal clearances  19483665 PK 
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SLC22A3 
(OCT3) 

T400I (rs8187725), 
V423F and T44M 
(rs8187715) 

Reduced metformin uptake 20859243 PK, PD 

SLC47A1 
(MATE1) 
  
  
  

rs2289669 
  

Reduction in hemoglobin A1c 
(HbA1c) 19228809 PD 

No observed association with 
metformin CLr or other 
pharmacokinetic parameters 

19228809 PK 

rs2252281 

Enhanced metformin response in 
healthy volunteers (post-metformin 
glucose tolerance) and in patients 
(relative change in HbA1c levels) 

23267855 PD, PK 

rs8065082 Reduced diabetes incidence 20682687 PD 

SLC47A2 
(MATE2-K) 
  
  
  

rs12943590 
(-130G>A) 
  

Poorer response to metformin 
treatment, assessed by the relative 
change in glycated hemoglobin 

21956618 PD 

Renal and secretory clearance of 
metformin were higher in carriers 
of variant who were also reference 
MATE 1 (rs2252281); altered 
metformin glucose tolerance 

23267855 PD, PK 

rs34834489 

Increased renal clearance and 
secretion clearance of metformin 
when administered in healthy 
individuals 

23652408 PK 

rs578427 

Increased renal clearance and 
secretion clearance of metformin 
when administered in healthy 
individuals 

23652408 PK 

SRR rs391300 Associated with levels of FPG, 
PPG, and CHO 21933224 PD 

ATM rs11212617 Associated with metformin 
treatment success (Hba1c < 7%) 21186350 PD 

LKB/STK11  rs8111699 
C allele associated with a 
significantly decreased chance of 
ovulation in PCOS women 

18681789; 
18000088 PD 

CAPN rs3792269 Decreased response to metformin 
in people with Diabetes Mellitus 25327507 PD 

PPARG rs1801282 
Increased likelihood of short and 
long-term weight loss when treated 
with metformin 

22179955 PD 

SP1 
  

rs784888 
  

Decreased post-HbA1c levels 
when treated with metformin in 
people with diabetes 

24853734 PD 

Decreased metformin secretory 
clearance when exposed to 
metformin 

24853734 PK 

PPARA rs149711321 
Decreased post-HbA1c levels 
when treated with metformin in 
patients with diabetes 

24853734 PD 

 

The first genome wide association study on metformin response by 

GoDARTs and UKPDS and WTCCC2 investigated 1024 Scottish individuals with 

T2D, and was replicated in two cohorts including 1,783 Scottish individuals and 
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1,113 individuals from a UK prospective study63. The study discovered that 

common variants near the ATM (Ataxia Telangiectasia Mutated) locus were 

associated with glycemic response to metformin. The genes near this locus 

include: CUL5, NPAT, C11org65, EXPH5, ACAT1, and KDELC2. The minor 

allele (C) of the most strongly associated SNP, rs11212617, had a population 

frequency of 44% and was associated with treatment success (achieving HbA1c 

< 7%). In the meta-analysis, SNP rs11212617 was significantly associated with 

treatment success with an odds ratio of 1.35. Despite the strong association, the 

SNP only accounts for 2.5% of the observed variability in glycemic response. 

ATM was selected as a causative gene due to its role in insulin resistance, 

increased risk of diabetes and its role in AMPK activation.  Furthermore, in vitro 

functional studies performed by this group demonstrated that inhibition of ATM by 

a chemical inhibitor (KU-55933) attenuated the metformin-induced 

phosphorylation and activation of AMPK.   However, recent data suggest that this 

ATM inhibitor also inhibits OCT1 and may have acted through inhibition of 

metformin uptake rather than inhibition of ATM64. Furthermore, a study by Florez 

et al. reported that the association between rs11212617 with metformin response 

was not confirmed in the diabetes prevention program (DPP) cohort65. Overall, 

this recent finding strongly suggests that the effect of ATM on activating AMPK 

and altering pharmacological outcomes is far from conclusive.  

In addition to the treatment of diabetes, metformin is used in the treatment 

of insulin resistance in individuals with polycystic ovary syndrome (PCOS). A 

small study demonstrated that a polymorphism in LKB/STK11 (rs8111699) is 
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associated with ovulatory response to treatment with metformin alone in a 

prospective randomized trial; with the C allele associated with a significantly 

decreased chance of ovulation in PCOS women treated with metformin66,67. 

 

Research focus 

Although many new drugs have been developed for T2D, metformin is still 

widely accepted as first line therapy due to its low incidence of micro- and macro-

vascular events and its beneficial effects on plasma lipids and body weight. 

There is no validated genetic predictor of metformin response or 

pharmacokinetics, and the data suggest that epistatic mechanisms (gene-gene 

interactions) may be important. Investigation of genetic variants in specific patient 

populations (e.g. stratification by ethnicity), considerations of response dynamics, 

as well as the investigation of gene-gene and gene-environment interactions may 

elucidate important determinants governing the pleiotropic nature of response. 

Overall, enhancing our understanding of the factors underlying response 

variability will have a significant impact on the diabetic community, resulting in 

the identification of disease subtypes and biomarkers that may lead to 

downstream dosage adjustments or administration of other, more personalized 

anti-diabetic drugs.  

Research hypothesis: Our research aim is to use novel, quantitative 

approaches in order to elucidate crucial genetic and non-genetic components in 

pharmacological pathways that predict metformin disposition and glycemic 

response. At a high level, the goal of this research is to combine pharmacometric 
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approaches with genetic analysis techniques to describe and quantify the 

pleiotropic nature of metformin pharmacokinetics and pharmacodynamics. A 

special focus of this research will be on interrogating genetic variants in 

transporter and transcription factor genes. Secondly, the biological mechanism of 

genetic variants will be explored by analyzing the link of prioritized variants with 

gene expression levels of metformin transporters. Finally, longitudinal changes in 

HbA1c levels in patients with heterogeneous genetic and demographic makeup 

will be quantified using semi-mechanistic modeling approaches. The downstream 

vision of this research is to translate research findings into clinical practice, 

enabling clinicians to provide personalized treatment advice to TII Diabetes 

patients.  My dissertation research had three aims: 

Aim 1) To investigate the roles of transcription factor variants on 

metformin pharmacokinetics and pharmacodynamics. A pharmacokinetic model 

was developed to investigate the role of prioritized genetic variants on the 

kinetics of metformin. 

Aim 2) To discover expression quantitative trait loci (eQTLs) that are 

linked to the gene expression levels of metformin transporters. A total of sixty 

kidney tissue samples were used to identify cis and trans genomic regions linked 

to gene expression levels of primary metformin transporters.  

Aim 3) To develop a longitudinal HbA1c model that characterizes the 

underlying disease progression and the time course of glycosylated hemoglobin 

(HbA1c) in relation to a patient’s exposure to metformin therapy (PK).  
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Chapter 2 addresses Aim 1, where we investigated the role of gene 

expression modulators (transcription factors) of metformin transporter genes on 

the pharmacokinetics and pharmacodynamics of metformin. We explored a 

pharmacokinetic mechanism for these SNP associations by developing a 

population pharmacokinetic model of metformin in healthy volunteers and Type 2 

diabetic patients. Chapter 3 aims to profile SNPs that are linked to the gene 

expression levels of metformin transporter genes (e.g. SLC22A1, SLC22A2 etc.) 

by performing a computational analysis on genetic and gene expression levels in 

kidney tissues. Finally, in chapter 3, we develop a longitudinal model to 

characterize and quantify disease progression on metformin therapy, with the 

goal of explaining temporal HbA1c variability through the investigation of genetic, 

demographic and clinical factors. 
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Chapter 2 

Genetic Variants in Transcription Factors Associate with the 

Pharmacokinetics and Pharmacodynamics of Metformin† 

 
INTRODUCTION 

Metformin is a first-line therapy for type 2 diabetes, and is one of the most 

commonly prescribed drugs worldwide1–9. Despite 50 years of clinical use, its 

mechanism of action remains controversial. It has been well-established that 

metformin activates AMP-activated protein kinase, which may contribute to many 

of the pharmacological outcomes of metformin, including the inhibition 

of gluconeogenesis, reduction of glucose absorption, and enhancement 

of glucose uptake and utilization2,6,10. 

There is considerable variability in the glycemic response and 

pharmacokinetic characteristics of metformin. In terms of pharmacokinetics, 

metformin is not metabolized, and is excreted unchanged in the urine, with a half-

life of roughly 5 hours2,5,6,9. The pharmacokinetic variability of metformin is 

unusually high for a renally cleared drug. In particular, mean plasma 

concentrations of metformin fluctuate between 0.4 and 1.3 mg/L at a dose of 

1000 mg twice daily1,2,5,6,11–16. Metformin relies on facilitated transport for uptake 

into various tissues as well as for renal elimination. Specifically, transporters that 

mediate metformin elimination and tissue distribution include organic 

                                            
† This chapter was published in Clinical Pharmacology and Therapeutics in June 2014. The following 
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cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs), 

and may contribute to the wide variation in metformin pharmacokinetics. 

Pharmacokinetic variability contributes to variation in response to metformin as 

various research groups have observed dose-response relationships with fasting 

plasma glucose and HbA1c levels17–19. Metformin response variability is 

substantial, as >30% of patients receiving metformin are classified as poor 

responders1,5,9. 

To date, many pharmacogenetic studies have focused on the relationship 

between genetic variants in transporters and metformin pharmacokinetic 

parameters, and there has been one genome wide association study for 

metformin response1,5,11–16,20–23. For example, OCT1 is a major determinant of 

metformin uptake into hepatocytes, and genetic polymorphisms of OCT1 have 

been associated with reduced response and changes in metformin 

pharmacokinetics in healthy subjects and diabetic patients1,7,24. Recently, 

promoter variants of MATE1 and MATE2K, transporters that determine the efflux 

of metformin into the urine, were also shown to associate with metformin 

disposition and response in healthy subjects and diabetic patients5,14,25. 

Understanding genetic predictors of variability of both its response and 

disposition is important in the rational use of metformin for the treatment of 

patients with type 2 diabetes.  

Though genetic studies have demonstrated associations with SNPs in 

transporters with metformin pharmacokinetics and pharmacodynamics, each 

individual SNP only accounts for a small fraction of the variation in HbA1c among 
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type 2 diabetic patients.  This is not surprising given that metformin disposition is 

governed by multiple transporters rather than a single transporter.  With this in 

mind, I proposed to study genetic variants in transcription factors that may 

regulate the expression levels of multiple metformin transporters and thus have 

larger effects on metformin disposition and response than variants in a single 

transporter.  A subset of transcription factors have been shown to modulate the 

expression levels of OCTs (SLC22) and MATEs (SLC47), which are involved in 

determining metformin pharmacokinetics26. For example, transfection of HNF4-

alpha has been shown to increase transcript levels of OCT1 in hepatocytes3,7,8. 

SP1 has been implicated in modulating mRNA levels of MATE127–29. AP2 has 

been shown to have a repressive effect on MATE1 gene expression3,28,30. Other 

transcription factors have also been linked to modulating the expression levels of 

OCTs and MATEs involved in metformin disposition7,24,27,29,31,32. To date, the 

impact of transcription factor polymorphisms on metformin pharmacokinetics and 

response phenotypes has not been studied. Our hypothesis is that, compared to 

genetic variants in transporter genes, genetic variants in transcription factors will 

have a stronger impact on overall metformin plasma and tissue levels.  This is 

because transcription factors modulate expression levels of a system of 

transporters leading to stronger effect sizes on pharmacological outcomes.   

In this study, I first investigated the effect of genetic variants in a subset of 

genes on metformin response, specifically HbA1c levels in type 2 diabetic 

patients. Genes included were relevant metformin transcription factors, cited in 

the literature and demonstrated to play a modulatory role on key 
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metformin transporters. Subsequently, for the most significant transcription factor 

variants associated with HbA1c change, I further investigated their relationship 

with metformin pharmacokinetics using two approaches: 1) In a subset of healthy 

subjects with abundant pharmacokinetic measurements and available urine data, 

I used multiple linear regression to investigate the effect of the top transcription 

factor variants on measured metformin secretory clearance, which is a major 

route of metformin elimination. 2) Using data combined from type 2 diabetic 

patients and healthy subjects, I then developed a population pharmacokinetic 

model to investigate the effect of prioritized transcription factor variants identified 

to be significantly associated with secretory clearance, on various metformin 

pharmacokinetic parameters, attempting to explain the variability of parameter 

estimates in the context of well-studied transporter variants and ethnic 

variation1,5,13.  

This study suggests the importance of transcription factors and genetic 

variants in transcription factors on the pharmacological outcomes of 

metformin, namely HbA1c levels and metformin pharmacokinetic parameters. 

Variants in SP1 exhibited the strongest association with both metformin 

pharmacokinetics and pharmacodynamics. 

 

METHODS 

Healthy human subjects 

Data from four healthy volunteer studies from the University of California, 

San Francisco were pooled for this study, as previously described5,34. Healthy 
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male and female subjects were recruited directly from the Study of 

Pharmacogenetics in Ethnically Diverse Populations (IRB 10-03167) and 

participants were enrolled only after informed consent was provided. Volunteers 

of European American, African American, or Asian American ancestry in the 

study were at least 18 years of age and not taking any medications other than 

vitamins and/or oral contraceptives. Studies 6112, 6113, and 865 followed similar 

protocols. Healthy subjects were dosed with 1,000 mg of metformin, followed by 

an 850 mg dose of metformin on the second day of the study. Participants from 

study 767 were given a single 850 mg dose of metformin. The screening visit 

included a comprehensive medical history, physical examination, and laboratory 

studies. Volunteers with values two standard deviations from normal or a positive 

pregnancy test were excluded. During the short duration of the study in healthy 

volunteers, metformin levels in the liver may not have reached steady state. 

 

Patients with type 2 diabetes 

Diabetic patients of European American, African American, or Asian 

American ancestry were recruited into a multicenter retrospective study as 

described previously5,14. All patients were metformin naive, had HbA1c levels 

measured before and after initiation of metformin therapy (between 3 and 18 

months), and had a medication possession ratio of >80%. The IRBs of Marshfield 

Clinic Research Foundation, Kaiser Permanente South East, Kaiser Georgia, 

and Vanderbilt approved this study and informed consent was obtained. In 

diabetic patients, metformin was administered for at least three months and 



 33 

steady-state would have been achieved. 

 

Selection of transcription factor genes and variants 

The candidate gene study consisted of genes and SNPs from transcription 

factors known to modulate levels of metformin related transporters (Figure 2.1).  

 

Figure 2.1.  Transcription factors regulating metformin PK/PD.  
A: A cell diagram that depicts a putative network of transcription factors working 
in concert to modulate gene expression levels of metformin transporters. B: A 
high-level gene diagram that highlights a mechanism by which a single 
nucleotide polymorphism change in a transcription factor gene may modulate the 
pharmacological outcome of metformin. 

 

PharmGKB was the resource used to determine the list of transporters 

used in this study2,33. Transcription factors were selected based on evidence 
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from previous publications linking the transcription factor to one of the metformin 

related transporters3,30,7,28,34. Special importance was placed on transcription 

factors that had a regulatory link to MATE1 and OCT1, two transporters that play 

a crucial role in metformin pharmacokinetics and response. For example, our 

laboratory previously defined AP1 and AP2 as regulators of MATE13. SP1 was 

also selected as a potential regulator of MATE1. Functional involvement of SP1 

was confirmed by SP1 overexpression, a mutational analysis of SP1 binding 

sites, and an electrophoretic mobility shift assay. A separate study by our 

laboratory also suggested a role of SP1 on OCT330. HNF4-alpha and PPAR-

alpha were also selected in the final list due to strong evidence linking the 

transcription factors to OCT17,27. Because the goal of the study was to generate 

hypotheses about transcription factors that are involved in metformin response 

and pharmacokinetics, we took a less stringent approach to multiple comparisons 

testing.  That is, we corrected for the number of genes tested (i.e. 5 genes) rather 

than the number of SNPs. Accordingly, the p-value was set at p < 0.01 for 

treatment HbA1c levels. A total of 5 transcription factors were selected, including 

SP1, AP2, AP1, HNF4-alpha and PPAR-alpha. After filtering out SNPs with low 

minor allele frequencies (MAF < 5%) in the type 2 diabetes cohort, we selected 

SNPs in transcription factors within 50,000 base pairs upstream and downstream 

of each transcription factor gene.  Imputation was performed using data from the 

1000 Genomes project.  

 

Phenotype selection for multivariate regression analysis 
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For the pharmacodynamic analysis, a minimum treatment HbA1c value 

between 3 and 18 months post initiation of metformin, referred to as the 

treatment HbA1c, was selected as the phenotype of interest. The lower limit of 

this range takes into consideration metformin's delayed effect on HbA1c levels. 

Top associated SNPs with treatment HbA1c were selected and subsequently 

tested on metformin secretory clearance using multivariate regression. 

Pharmacokinetic parameters from a healthy subject study were determined 

previously using non-compartmental analysis (NCA)5. Secretory clearance was 

the primary parameter of interest since this parameter is assumed to be most 

sensitive to changes in transporter function and expression level and it was 

calculated using the following formula: 

CLSR = CLR – CLCr 

where CLSR is secretory clearance, CLR is renal clearance, and CLCr is 

creatinine clearance.  

 

Genotyping, quality control and imputation 

Isolated DNA samples from healthy human volunteers and patients with 

T2D were genotyped on Illumina OmniExpress1.0 genotyping array at the RIKEN 

institute in Japan. Genotype data quality control was done using the standard 

protocol that has been previously described in other GWA studies. Imputation on 

relevant genes was performed using the IMPUTE2 software. SNPs associated 

with metformin pharmacokinetics and pharmacodynamics were filtered by 

excluding variants with low imputed scores (imputed score < 0.5).  



 36 

Linear regression analysis 

Linear regression was performed using PLINK (v1.07), assuming an 

additive genetic model35. Imputation was performed using IMPUTE2 software 

(version 2)36. Variants with < 5% minor allele frequency (MAF) were excluded 

from the regression analysis. The statistical base model included clinically 

relevant covariates. For the regression analysis with treatment HbA1c, the 

statistical base model was adjusted for principal components, baseline HbA1c 

levels, average serum creatinine level, time to baseline, time to treatment HbA1c 

collection, other T2D drugs patients were administered, clinical site, age and 

gender. Transcription factor variants were then tested on the statistical base 

model. Pharmacokinetic data were used to provide mechanistic support for 

treatment HbA1c associated genetic variants. Top variants associated with 

treatment HbA1c with an adjusted P value <0.01 were filtered. These SNPs were 

then tested against metformin secretory clearance. In healthy subjects, the 

statistical model corrected for principal components and age. 

 

Population pharmacokinetic modeling of metformin and final model 

selection 

Data from 5 studies (patient study, and healthy volunteer studies 6112, 

6113, 865, and 767), which includes healthy volunteers and type 2 diabetic 

patients, were analyzed using non-linear mixed effect modeling (NONMEM 7) 

with first order conditional estimation method with interaction (FOCE-I). Model 

selection was informed by using the objective function value (OFV, -2log 
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likelihood) and visual inspection of diagnostic plots. Different base models with 

varying transit compartments to capture the absorption of metformin were 

evaluated. The final structural model was parameterized in terms of apparent 

clearance (CL/F), apparent central and peripheral volumes of distribution (Vc/F 

and Vp/F), apparent inter-compartmental clearance (Q/F), mean transit time 

(MTT), and a first order absorption (ka). Inter-individual variability was estimated 

for CL/F, Vc/F and Q/F. The structural model was first built using healthy 

volunteer data due to the availability of abundant plasma samples. Once the 

structural model was established, patient data were then added and parameters 

were re-estimated to provide the base model for covariate inspection.  The 

Stepwise Covariate Model (SCM) tool in Perl Speaks NONMEM (PsN) was used 

to develop the final model with statistically significant covariates on metformin 

pharmacokinetic parameters. Along with the top transcription factor variants, a 

comprehensive list of the transporter variants that were tested in SCM is shown 

in Table 2.1. 
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Table 2.1 List of transporter genetic variants investigated in the population 
pharmacokinetic model of metformin 
 

Variant Gene Relevance/Association in literature # Samples 
in Study 

rs35191146 SLC22A1 éAUC é Cmax éCLr ê Vd  êOGTT1,15 N=21 
N=103 

rs34130495 SLC22A1 éAUC é Cmax éCLr ê Vd  êOGTT1,15 N=21 
N=103 

rs34059508 SLC22A1 éAUC é Cmax éCLr ê Vd  êOGTT1,15 N=21 
N=103 

rs12208357 SLC22A1 éAUC é Cmax éCLr ê Vd  êOGTT1,15 N=21 
N=103 

rs1867351 SLC22A1 éRenal Clearance (CLr)1 N=103 
rs622342  SLC22A1 Response: é HbA1c20 N=99 

rs2289669 SLC47A1 Response: êHbA1c12,37 N=116 

rs8065082 SLC47A1 êDiabetes incidence12,37 N=116 

rs316019 SLC22A2 éAUC éCmax éCLr 13,21,22 
N=26 
N=15 
N=23 

rs12943590 SLC47A2 Response: êHbA1c é CLr14 N=57 

rs2252281 SLC47A1 Altered glucose tolerance5 N=57 

rs555754 SLC22A3 
é Luciferase activity for Minor allele  
émRNA of OCT330 - 

rs683369 SLC22A1 êResponse to imatinib mesylate 23 - 
AUC = Exposure of metformin for the particular study cited. Cmax = Maximum 
plasma concentration of metformin. CLr = Metformin renal clearance. Vd = 
Metformin volume of distribution. OGTT = Oral glucose tolerance test. 
 

Finally, a bootstrap was performed with 1000 samples to obtain 95% 

confidence intervals of all pharmacokinetic parameters used to characterize the 

final model.  

 

Gene expression correlations 

Gene expression data were collected from control kidney samples from 

The Cancer Genome Atlas database. From this publically available online portal, 
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a total of 65 kidney tissue samples were available for analysis, which was 

retrieved on June of 2012. Gene expression correlations were calculated using 

Pearson correlation analysis. 

 

Transcription factor binding analysis 

The likelihood of SP1, PPAR-alpha, HNF4-alpha, and AP2 binding to DNA 

sequences 50 kilobases upstream and downstream of the 6 transporter genes 

was determined using available online tool FIMO38. Transcription factor AP1 was 

not available in dataset. Probability matrices were generated for each 

transcription factor using other online sources including JASPAR and 

NUBISCAN38,39. Once the probability matrix was established, FIMO was then 

used to scan the likelihood of a given transcription factor binding to DNA regions 

proximal to the transporter genes.  

 

RESULTS  

Characteristics of type 2 diabetic patients and healthy subjects  

Baseline characteristics of patients and healthy subjects are summarized 

in Table 2.2. Clinical data included longitudinal HbA1c measurements from 440 

Type 2 diabetic patients. A total of 2382 metformin plasma samples in healthy 

subjects (102) and patients (133) were used to develop a population 

pharmacokinetic model. Of the 102 healthy subjects, 57 subjects also had 

available urine samples, which allowed for the collection of creatinine levels and 

the subsequent calculation of metformin secretory clearance.   
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Table 2.2 Baseline characteristics of patients with type 2 diabetes and 
healthy volunteers dosed with metformin 

 Type 2 Diabetic Patients Healthy Volunteers 

Characteristic Marshfield 
Clinic 

Kaiser 
South East Vanderbilt Study No. 

6112/6113 

Study 
No. 

865/767 

N 149 133 162 57 45 
Available PK 

data, N 0 133 0 57 45 

Male, N 65 44 78 21 23 

Female, N 84 89 84 36 22 
European 

American (%) 100 18 NA 32 84 

African 
American (%) - 76 NA 58 11 

Asian 
American (%) - 4 NA 10 5 

Other (%) - 2 NA - - 

Quantitative traits 

Age (years) 57 
(23-90) 

58 
(33-79) 

59 
(33-81) 

25 
(18-45) 

31 
(18-44) 

Average body 
weight (kg) 

98 
(51-212) 

98 
(58-182) 

93 
(34-184) 

73 
(49-136) 

70 
(44-112) 

Baseline HbA1c 
(%) 

7.5 
(5.5-12.8) 

7.7 
(5.2-11.9) 

7.6  
(5.8-14.9) - - 

Average 
metformin daily 

dose (mg) 

990 
(500-2000) 

1000 
(250-2500) 

1000 
(250-2000) NA NA 

Metformin dose 
(mg) 

(Healthy 
Volunteers) 

NA NA NA 1850 1850/850 

Quantitative data shown reflect the median (range). From the Kaiser South East 
cohort, 4 patients did not have reported baseline HbA1c levels.  
Study 6112/6113/865: Healthy volunteers in these studies were administered 1000 
mg of metformin, followed by 850 mg of metformin after a 12 hour interval. Healthy 
subjects in studies 6112/6113 also had urine data available to calculate metformin 
secretory clearance. Please see references 5,8,9. 
Study 767: Healthy volunteers were given a single dose of metformin (850 mg). 
Please see reference 9 in paper.  
Vanderbilt ethnicity is not reported (NA), and principal components were used for 
the genetic analysis across all studies. 
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All healthy volunteers and 133 patients with sparse pharmacokinetic 

information were used to build the population pharmacokinetic model. 

 

Top transcription factor variants from multivariate regression approach 

A total of five transcription factors were selected (AP1, AP2, SP1, HNF4-

alpha and PPAR-alpha) for multivariate linear regression with treatment HbA1c 

levels. Among the tested genetic variants that met our criteria (see Methods 

section), 40 SNPs were associated with HbA1c change 3 months after metformin 

initiation, adjusted for baseline levels (Treatment HbA1c). Among the 40 SNPs, a 

multivariate linear regression on metformin secretory clearance was performed 

as one method for investigating a pharmacokinetic mechanism. A total of six 

SNPs in two genes were significantly associated with metformin secretory 

clearance and treatment HbA1c levels using a multivariate regression model. Of 

these six genetic variants, five were located in the SP1 region and one was 

located in the AP2 region (Table 2.3) 
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Table 2.3 Prioritized genetic variants in SP1 and AP2 associated with 
metformin pharmacodynamics and pharmacokinetics 
SNP Gene FRQ BETA P Phenotype 
chr13:74559166:D AP2 0.06 0.45 0.003 A1C 
chr13:74559166:D AP2 0.06 185.93 0.004 CLSR 
rs784892 SP1 0.91 -0.32 0.008 A1C 
rs784892 SP1 0.82 -76.94 0.01 CLSR 
rs2694855 SP1 0.92 -0.40 0.008 A1C 
rs2694855 SP1 0.86 -98.63 0.01 CLSR 
rs2683511 SP1 0.90 -0.32 0.01 A1C 
rs2683511 SP1 0.83 -86.75 0.01 CLSR 
rs10747673 SP1 0.12 0.38 0.01 A1C 
rs10747673 SP1 0.18 105.98 0.02 CLSR 
rs784888 SP1 0.92 -0.36 0.01 A1C 
rs784888 SP1 0.86 -106.23 0.04 CLSR 

FRQ = Frequency of the associated allele in the dataset. CLSR= Metformin 
secretory clearance. A1C = treatment HbA1c. BETA = Slope of association 

 
 

Population Pharmacokinetic Model 

In addition to metformin secretory clearance, a population based modeling 

approach was used to investigate the effect of prioritized transcription factor 

variants on the systemic plasma levels of metformin in both patients and healthy 

subjects. The six-transcription factor SNPs (associated with metformin PK and 

PD) identified from the multiple linear regression analysis along with 13 genetic 

variants in metformin transporters and demographic variables were investigated.  

A 2-compartment model with a delayed absorption (1-transit compartment) 

best described the data. A schematic of the final model with included covariates 

is shown in Figure 2.2.  
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Figure 2.2 Final pharmacokinetic model and visual predictive check.  
A: A 2-compartment model with delayed absorption best characterized the data. 
All parameters reflect ratios over the bioavailability of metformin (F). The model 
structure includes the final model covariates determined by a stepwise covariate 
analysis (SCM). CrCL= Creatinine clearance. Vc = Apparent central volume of 
distribution. Vp =Apparent peripheral volume of distribution. CL= Apparent 
clearance of metformin. Ktr = transit rate constant. Ka = absorption rate constant. 
B: Visual predicted check of the final population pharmacokinetic model. The 
shaded regions indicate the 95th and 5th percentiles (ends) and the range of 
median simulated profiles (center) of simulated predictions from the visual 
predictive check. Overlaid back points are combined healthy volunteer (n=102) 
and type 2 diabetic patient (n=133) data observations. The solid line indicates the 
median of the observed data, with red lines indicating the 95th and 5th percentile 
of observations.  

 

Pharmacokinetic profiles were overall quite similar between healthy subjects and 

patients, as has been previously observed40. The final model consisted of 

statistically significant covariates on central compartment volume (Vc/F), apparent 

clearance (CL/F), and metformin peripheral flow (Q/F). Covariates that affected 

Vc/F were body weight, OCT3 variant rs555754 and OCT2 variant rs316019. 
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Based on different combinations of these covariates, Vc/F may decrease by as 

much as 54% and increase by as much as 260% (Figure 2.3). 

 

Figure 2.3 Summary of covariate effects on population pharmacokinetic 
parameters.  
CrCL=creatinine clearance. A: Predicted effects of covariates on apparent clearance 
(CL/F) with the reference ethnicity identified as European Americans. B: Predicted 
effect of covariates on inter-compartment clearance (Q/F). C: Predicted effects of 
covariates on central compartment volume (Vc/F). D, E, and F: Simulations of 
pharmacokinetic profiles following a single 850 mg dose of metformin with variability 
estimates on clearance. Simulations were based on the predicted metformin 
clearance estimates. Predicted clearance estimates are based on the covariates 
described in figure 2.3A. Ethnicity, creatinine clearance (CrCL), and SP1 variant 
status are shown in each figure. Dashed line at 1 mg/L indicates the lower target of 
metformin concentration based on therapeutic range. D: Black solid line=typical 
value of clearance for a Caucasian with normal creatinine clearance (80-130 
mL/min), and homozygous (CC) SNP rs784888. Dashed black lines indicate the 
97.5% and 2.5% of the Inter-individual variability (ETA) distribution for CL/F for this 
patient.  E: Black solid line=typical value of clearance for a Caucasian with low 
creatinine clearance (<70 mL/min), and homozygous (GG) for SNP rs784888. 
Dashed lines indicate the 97.5% and 2.5% of the Inter-individual variability (ETA) 
distribution for CL/F for this patient.  F: Black solid line=typical value of clearance for 
an African American with normal creatinine clearance (80-130 mL/min), and 
homozygous (CC) for SNP rs784888. Dashed lines indicate the 97.5% and 2.5% of 
the Inter-individual variability (ETA) distribution for CL/F for this patient. 
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For peripheral flow (Q/F), ethnicity and the MATE2 variant rs12943590 

were significant. Based on different combinations of ethnicity and the rs12943590 

variant, Q/F may increase by as much as 230%. In Figure 2.3, the reference 

ethnic population was European American to more clearly show the range of 

covariate effects on Q/F and CL/F. Finally for CL/F, creatinine clearance (CrCL), 

ethnicity, and the SP1 variant rs784888 were statistically significant. Different 

combination of these covariates may decrease CL/F by as much as 29% and 

increase it by as much as 37%. Final model parameter estimates are 

summarized in table 2.4. 
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Table 2.4 Population pharmacokinetic model derived estimates and 
bootstrap results for pharmacokinetic parameters of metformin  

Final Model Parameter 
Median 
(%RSE)1 

Median 
(90% CI)2 

Total clearance CL/F (L/h) 78.4 (6) 77.5 (70-87) 
Central volume of distribution Vc/F (L) 76.8 (15) 76.7 (53-95) 
Peripheral flow Q/F (L/h) 18.1 (9) 18.8 (16-32) 

Peripheral volume of distribution Vp/F (L) 413 (43) 
419 
(286-3293) 

Mean transit time (h) 0.207 (24) 
0.203 
(0.14-0.37) 

Absorption rate Ka (1/h) 0.312 (5) 
0.31 
(0.28-0.34) 

Between-subject variability (% variance) 
Between-subject variability (CL) 50 (10) 50 (40-60) 
Between-subject variability (Vc) 45 (13) 45 (34-64) 
Between-subject variability (Q) 41 (23) 40 (27-49) 
Covariance of parameters 

Correlation CL-V 0.05 (5) 
0.10 
(-0.33-0.29) 

Residual error model 
Studies 6112/6113 

Proportional error (%) 14 (12) 
0.14 
(0.11-0.16) 

Additive error 0.02 (32) 
0.02 
(0.01-0.02) 

Study 865 
Proportional error (%) 12 (6) 12 (11-13) 
Additive error 0.01 - 
Study 787 
Proportional error (%) 21 (13) 20 (16-25) 

Additive error 0.01 (20) 
0.007 
(0.003-0.012) 

Patient data 
Proportional error (%) 20 (13) 0.2 (0.16-0.24) 
Additive error 0.01 - 
1Typical value of pharmacokinetic parameter in final model. RSE= Relative 
standard error (%), also known as the precision of the population 
pharmacokinetic parameter estimate.  
2Confidence interval for the population pharmacokinetic parameter following 
bootstrap results. Reference ethnicity of model output is African Americans, 
due to high proportion of African Americans in the cohort.  
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The final model explained 5% of the variability in CL/F, 23% of the 

variability in Vc/F, and 13% in Q/F. The SP1 variant rs784888 and ethnicity 

reduced the variance of inter-individual variability (IIV) in CL/F by 1.6% and 2.3% 

respectively. The covariates body weight, OCT3 variant rs555765, and OCT2 

variant rs316019 reduced the variance of IIV in Vc/F by 41.3%, 7.8%, and 7.4% 

respectively. Finally, for Q/F, covariates MATE2 variant rs12943590 and ethnicity 

reduced the variance of IIV in Q/F by 20% and 41% respectively. Based on 

model estimates, an extreme case of high metformin clearance (low exposure) is 

brought on by an African American (AA) patient with normal renal function and 

homozygous reference for the SP1 variant rs784888. The performance of the 

final model, as determined by basic goodness of fit plots, parameter precision, 

bootstrapping, and visual predictive checks was adequate (Table 2.4 and Figure 

2.2). The final equations for CL/F, Vc/F, and Q/F were (Eqs 1,2,3): 

1
𝐶𝐿
𝐹 !"

= 78.4×(1 +   𝜃!"!# 𝐶𝑅𝐶𝐿   − 112 )×(1 +   𝜃!"!!"#"$%,!")  ×(1 +   𝜃!"!"#"""× 𝑆𝑃1 − 0 ) 

2
𝑉𝑐
𝐹 !"

= 76.8×(1 +   𝜃!"!!!"!# 𝑂𝐶𝑇3!"!!!"!# − 0 )× 1 +   𝜃!"   × 𝑊𝑇 − 75 ×(1 + 𝜃!"!"#$"%) 

3
𝑄
𝐹!"

= 18.1×(1 +   𝜃𝑟𝑠12943590)×(1 +   𝜃!"!!"#"$%,!)   

where 78.4 L/h is the typical metformin apparent clearance for an African 

American with a creatinine clearance of 112 mL/min, and homozygous reference 

(CC genotype) for the SP1 variant, rs784888. The imputed SP1 variant can take 

on a value between 0 and 2, which quantifies the presence of a minor allele. 

Similarly, 76.8 L is the typical central compartment volume for an African 

American weighing 75 kg (WT), and is homozygous reference for both rs555754 
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(SLC22A3) and rs316019 (SLC22A2). ΘCRCL, ΘEthnicity,CL, Θrs784888, Θrs555754, ΘWT, 

Θrs316019, Θrs12943590, and  ΘEthnicity,Q, are the corresponding effect sizes for 

creatinine clearance, ethnicity on CL/F, SP1 variant rs784888, OCT3 variant 

rs555754, body weight, OCT2 variant rs316019, MATE2 variant rs12943590 and 

ethnicity on Q/F, respectively. The number of subjects in the dataset with an 

imputed value of greater than or equal to 1 (for the minor allele) for variants 

rs784888, rs555754, rs316019 and rs12943590 were 54, 131, 106, and 60, 

respectively. African Americans were used as the reference ethnic population in 

the model due to a large representation of African Americans in our cohort. In 

Figure 2.3, the reference ethnic population was changed to European American 

(EA) to more clearly show the range of covariate effects on each 

pharmacokinetic parameter.  

 

Genetic variants in SP1 were critical determinants of variation in 

pharmacokinetics and pharmacodynamics of metformin 

Our top finding was in the transcription factor, SP1, a gene previously 

noted to potentially modulate transcript levels of OCT3 and MATE128,30. Our 

regression results showed multiple independent SNPs in the SP1 locus 

associated with pharmacodynamic and pharmacokinetic phenotypes of 

metformin. Five of the six total variants linked to metformin pharmacokinetics and 

pharmacodynamics were in the SP1 gene region. Most of the SNPs were in 

noncoding regions including intronic, upstream and downstream regions of SP1.  

The most strongly associated SNP, rs784892, is in the intronic region of the 
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downstream gene, AMHR2 (Anti-Mullerian Hormone Receptor, Type II). This 

SNP strongly associated with both metformin pharmacodynamics (HbA1c) and 

pharmacokinetics (metformin secretory clearance), with beta coefficients of -0.32 

HbA1c per G allele (P = 0.008) and -76.9 mL/min per G allele (P = 0.02) 

respectively (Figure 2.4). 

 

Figure 2.4. Influence of top SP1 variants on metformin pharmacodynamics 
and pharmacokinetics using multivariate regression.   
PD = Pharmacodynamics, variant association with treatment HbA1c level, as 
defined in the text. PK= Pharmacokinetics, variant association with measured 
metformin secretory clearance (mL/min). G=Associated allele of rs784892. Gene 
diagram summarizes the chromosome location of top associated SNPs in 
relation to exonic regions. N=440 patients for pharmacodynamics analysis and 
N=57 healthy subjects for the pharmacokinetic analysis. 
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To further investigate the significance of SP1 variants on secretory 

clearance, a separate analysis was performed on creatinine clearance. From this 

analysis, no statistical significance or trend was observed between SP1 variants 

and creatinine clearance. The rs784892 variant has a combined minor allele 

frequency of approximately 11% across all ethnic groups, with African Americans 

(~35%) having a higher frequency than European Americans (<1%). However, 

the effect of race was accounted for using principal components in our 

multivariate analysis, and a separate analysis in African Americans was 

performed to ensure that the variant has a significant effect on both Treatment 

HbA1c levels and secretory clearance in African Americans. 

Statistical significance was observed for both phenotypes in the African American 

cohort.  

Results from the final population pharmacokinetic model of metformin 

determined that rs784888, a SNP less than 50 kilobases downstream of SP1, 

was an important predictor of metformin apparent clearance. The rs784888 G 

allele led to a 12% reduction in metformin apparent clearance. This variant has a 

frequency of approximately 9% (AA=42%, EA=<1%). Similar to rs784892, a 

separate analysis confirmed this finding in African Americans.  

 

PPAR-alpha, and HNF4-alpha were major genes with polymorphisms 

associated with variation in pharmacodynamics, independent of 

pharmacokinetics 
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A total of 17 variants in PPAR-alpha and 6 variants in HNF4-alpha 

associated with metformin pharmacodynamics (P<0.01) (Figure 2.5).  

 

Figure 2.5. Manhattan plots of top SNPs for HNF4-alpha and PPAR-alpha.  
A zoomed-in view of genetic polymorphisms in HNF4-alpha and PPAR-alpha 
associated with treatment HbA1c levels. Circles represent the location and the -
log10 P value of the association. Recombination rates are also overlaid on the 
figure, with each peak representing relatively high recombination rates for that 
region.  
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The most significant variant from our pharmacodynamic analysis was 

intronic SNP rs149711321 in PPAR-alpha (P=1E-05). This variant has a minor 

allele frequency of 6% reported for both European American and African 

American ethnicities.  Out of the 23 total variants in PPAR-alpha and HNF4-

alpha, none were significantly associated with metformin pharmacokinetics in 

healthy subjects.  

 

Deletion in AP2, a repressor, was associated with changes in metformin 

pharmacokinetics and pharmacodynamics 

A total of 11 variants in AP2 were linked to changes in HbA1c levels in 

type 2 diabetic patients receiving metformin. Of these, 1 imputed deletion variant 

in the intronic region of AP2, associated with an increase in metformin secretory 

clearance (P=0.004) and an increase in treatment HbA1c levels (P=0.003). The 

minor allele frequency of this variant was 6%, with a slope of 0.45 percentage 

change in HbA1c per minor allele. This variant was not associated with the 

pharmacokinetics of metformin in our population pharmacokinetic model. 

However, it is important to note that the model did not specifically include 

metformin secretory clearance as a pharmacokinetic parameter due to the 

absence of urine data. 

 

Significant impact of other covariates in the population pharmacokinetic 

model on metformin pharmacokinetic parameters 
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Transporter variants previously associated with metformin 

pharmacokinetics from non-compartmental approaches were also significantly 

associated with metformin kinetics (CL/F, Vc/F Q/F) in the population 

pharmacokinetic model. In particular, a MATE2/SLC47A2 variant (rs12943590) 

was significantly associated with peripheral flow (Figure 2.2), potentially 

increasing the uptake of metformin into peripheral tissues by up to 30%. A 

gene/gene interaction effect of an OCT3 variant (rs555754) and an OCT2 variant 

(rs316019) on metformin central volume was also observed. This interaction 

reflected a range of effect sizes on Vc/F. Depending on the combination of minor 

alleles from rs555754 and rs316019, metformin Vc/F may decrease by as much 

as 32% and increase by as much as 39% (Figure 2.3). Although significant in the 

final model, the downstream clinical significance of these variants will require 

replication by other studies before the findings can be clinically translated.  

The effect of ethnicity was investigated in 123 African Americans, 69 

European Americans, and 22 Asian American type 2 diabetic patients using our 

population pharmacokinetic model. Ethnicity was found to be a significant 

predictor of metformin flow, specifically, the pharmacokinetic parameters CL/F 

and Q/F. For both parameters, African Americans had significantly higher values 

compared to European Americans (Figure 2.3). Compared to African Americans, 

European Americans had approximately a 26% lower metformin clearance and 

Asian Americans had a 22% lower clearance. For Q/F, European Americans 

were predicted to have a 46% lower peripheral flow compared to African 

Americans. These effects were independent of creatinine clearance and body 
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weight. Simulations in Figure 2.3 compare the effect of typical and extreme 

values of metformin clearance following an 850 mg dose (based on different 

covariate combinations). The impact is shown on metformin plasma levels, with a 

line drawn at 1 mg/L to indicate a lower concentration target for metformin.  

 

DISCUSSION  

Previous pharmacogenetic studies of metformin pharmacokinetics have 

focused on a few non-synonymous variants in transporter genes1,5,13,14.  

Pharmacogenetic investigation of variants in gene expression modulators of key 

transporters involved in metformin pharmacokinetics is a novel approach in 

understanding the variability in response to metformin. This study tested the 

effect of genetic variants in key transcription factor genes on metformin 

pharmacodynamics with a focus on glycemic response to metformin in type 2 

diabetic patients. Subsequently, the top hits associated with metformin response 

were examined for a pharmacokinetic mechanism in both type 2 diabetic patients 

and healthy subjects using two approaches. Four important findings emerged 

from our combined PK/PD analysis: 1) SNPs in SP1 associated with metformin 

pharmacodynamics in type 2 diabetic patients and this association had a 

pharmacokinetic basis. 2) SNPs in AP2, in particular a deletion variant, 

associated with the pharmacokinetics and pharmacodynamics of metformin. 3) 

SNPs in PPAR-alpha and HNF4-alpha associated with the pharmacodynamics of 

metformin, but did not have a pharmacokinetic mechanism. 4) Finally, African 
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Americans were observed to have greater apparent clearances compared with 

European Americans and Asian Americans.  

 

To date, the role of SP1 on metformin pharmacology has not been 

investigated despite previous studies indicating that SP1 modulates the gene 

expression of MATE1 and OCT3, two important metformin transporters.28,30 Our 

findings strongly suggest an important role of SP1 in governing metformin 

disposition and response. Using standard regression, we observed that 5 genetic 

variants in SP1 associated with metformin PK and PD. Multiple independent 

effects were observed even after accounting for linkage disequilibrium. A 

population-based approach demonstrated that one such SNP located 

downstream of SP1, rs784888, significantly affected metformin apparent 

clearance, therefore impacting systemic plasma levels of metformin. Comparing 

the effect size of this SP1 variant on CL/F with the effect sizes of transporter 

variants observed in previous studies revealed that the effect size for the SP1 

variant (12%) was greater than those previously reported for variants in 

transporters and CL/F1,5,11. Interestingly, rs784888 is in strong linkage 

disequilibrium with rs147778161 (r2>0.8), an intronic SNP of SP1, which was 

initially removed due to not passing our initial pharmacodynamic cutoff (P<0.01). 

The observed associations for SP1 are biologically plausible, considering the 

expression of MATE1 on the apical membrane in the proximal tubule of the 

kidney and its role in metformin renal secretion.  The role of OCT3 in the renal 

elimination of metformin is still not fully elucidated, therefore, it is not known 
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whether SNPs in SP1 may modulate metformin pharmacokinetics by regulating 

the expression of OCT3 in addition to MATE1 and other metformin transporters.  

Furthermore, we performed a separate transcription factor binding analysis using 

a transcription factor binding tool (FIMO), and found that in addition to regulating 

the expression of MATE1 and OCT3, SP1 may also modulate levels of OCT2 

and MATE2-K, transporters that are known to play a very important role in 

metformin elimination from the kidney. Though speculative, we propose that 

genetic variants in SP1 may affect the binding affinity or the expression level of 

the transcription factor, which could then have a combined effect on MATE1, 

OCT2, OCT3, and MATE2-K levels, globally affecting the pharmacokinetic and 

pharmacodynamic outcomes of metformin. Furthermore, the regression results 

suggest a clinically significant impact of SP1 variants on metformin 

pharmacokinetics and pharmacodynamics.  For example, typical patients 

homozygous for the minor allele in rs784892, achieved on average treatment 

HbA1c levels 1.1% lower than patients homozygous for the reference allele. This 

finding, if replicated, would have enormous clinical significance, given that 

metformin reduces HbA1c levels by 1.12% on average (i.e. from 8.0% A1c to 

6.9% A1c) within the first year of therapy27,41,42. Furthermore, in healthy subjects, 

there was a 98 mL/min reduction in metformin secretory clearance on average in 

homozygous carriers of the variant allele, compared to homozygous carriers of 

the reference allele. This pharmacokinetic mechanism supports our 

pharmacodynamic finding, where a lower metformin secretory clearance is 

expected to increase metformin exposure and hence reduce HbA1c levels to a 
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greater extent than the reference allele.  In our population-based approach, 

rs784892 trended in the same direction as observed in our regression analysis 

for metformin secretory clearance, but was only borderline significant from 

stepwise covariate modeling building, and was not included in the final model 

based on our strict criteria. However, SP1 variant rs784888 was included. This 

variant had a significant impact on the apparent clearance of metformin, and was 

predicted to lower metformin clearance by up to 24% in homozygous carriers of 

the minor allele. A lower clearance of metformin was predicted to increase 

metformin exposure, potentially leading to a more favorable response to 

metformin.  

Interestingly, one deletion variant in AP2 associated with an increase in 

metformin secretory clearance and a reduction in the glycemic response to 

metformin. This finding was similar to those observed for polymorphisms in SP1, 

and consistent with previous studies in our laboratory showing that AP2 is an 

important repressor of SLC47A1 (MATE1) transcription3,5. This finding is 

biologically plausible, with high expression of AP2 and MATE1 found in the 

kidney.43 Furthermore, we performed additional gene expression analysis using 

data from The Cancer Genome Atlas (TCGA) to investigate correlations between 

high priority transcription factors and transporter genes. Gene expression data, 

along with our supplemental motif binding analysis suggested a regulatory role of 

AP2 on SLC47A1 and SLC47A2.  In addition to SP1, AP2 may also play an 

important role in modulating metformin pharmacokinetics and 
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pharmacodynamics via its role as a global regulator of multiple transporter 

genes.  

PPAR-alpha and HNF4-alpha are multifunctional transcription factors 

primarily expressed in the liver7,27. PPAR-alpha is a known regulator of lipid 

metabolism in the liver. In a study by the Diabetes Prevention Program, one SNP 

in PPAR-alpha was associated with diabetes incidence and another variant 

showed significant interaction with metformin intervention37. Mutations in HNF4-

alpha have also been linked to Type 2 diabetes44. Moreover, there is literature 

evidence to suggest that both PPAR-alpha and HNF4-alpha are important 

regulators of SLC22A1 (OCT1), a key transporter mediating the uptake of 

metformin into the liver, the primary site of action5,27. Our regression results 

suggest that PPAR-alpha and HNF4-alpha are important modulators of 

metformin pharmacodynamics, perhaps independent of pharmacokinetics. A total 

of 23 genetic variants in PPAR-alpha and HNF4-alpha associated with treatment 

HbA1c levels, none of which were explained by a pharmacokinetic mechanism. 

Furthermore, gene expression levels for both transcription factors were strongly 

correlated with OCT1 expression, as well as other metformin transporters in the 

liver. PPAR-alpha and HNF4-alpha may be involved in regulating OCT1 and 

other genes in the liver that play a role in metformin disposition and glycemic 

response.    

In addition to genetics, ethnicity was a significant predictor of metformin 

pharmacokinetics, affecting inter-compartmental clearance (Q/F) and apparent 

clearance (CL/F). African Americans had significantly higher mean CL/F and Q/F 
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estimates compared to European Americans and Asian Americans. The effects 

of creatinine clearance and body weight did not confound this effect observed in 

our model. Furthermore, based on our simulations, for African Americans to 

achieve similar metformin exposure to European Americans, a 26% increase in 

dose should be considered. This is taking into account similar creatinine 

clearances and SP1 genotype status for both ethnicities. This means that where 

a European American individual would start with an 850 mg dose of metformin, 

an African American would require at least a 1000 mg dose of the drug to attain 

similar exposure levels. The impact of ethnicity on metformin response still needs 

to be investigated. Also, further studies and different approaches are required to 

validate this observation for metformin pharmacokinetics.  

Overall, this study demonstrates that genetic variants in key transcription 

factor genes, along with transporters and ethnicity, are important determinants of 

metformin pharmacokinetics and pharmacodynamics. Transcription factors may 

regulate gene expression levels either through enhancer or repressor activity. In 

some cases, e.g., SP1 and AP2, the association of genetic variants with 

pharmacodynamics may be mediated through pharmacokinetic mechanisms, 

which ultimately control systemic blood levels of the drug.  For example, SP1 

may regulate the expression of a system of transporters in the kidney involved in 

metformin elimination. In other cases, PPAR-alpha for example, the observed 

mechanisms for the effects of SNPs are unclear. PPAR-alpha SNPs may be 

modulating metformin pharmacodynamics independent of the effects on systemic 

levels of metformin.  Clearly, future studies are needed to further clarify the 
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biological roles of SP1, AP2, HNF4-alpha and PPAR-alpha in the disposition and 

action of metformin. 
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Chapter 3 

Discovery of Expression Quantitative Trait Loci (eQTLs) of 

Metformin Transporters 

INTRODUCTION 

To date, pharmacogenetic research on metformin response has primarily 

focused on investigating the role of non-synonymous variants in kidney and liver 

specific transporters1–3.  Despite promising findings, researchers are still unable 

to explain a significant portion of the response variation observed in type 2 

diabetes (T2D) patients on metformin.  Variation in the overall protein expression 

levels of solute carrier (SLC) transporters governing metformin disposition may 

be crucial in determining variation in metformin response3,4. Gene expression is 

one of the major determinants of how much protein is expressed; hence 

understanding the mechanistic nature of how genetic variants influence gene 

expression variation of crucial transporters may aid in analyzing the underlying 

physiology that governs metformin response5.  

Gene expression varies significantly between individuals; it is believed that 

expression quantitative trait loci (eQTLs), which are genome loci that are 

associated with gene expression, may account for a significant portion of this 

inter-individual variability in expression6. Identification of regulatory elements in 

metformin transporter genes is therefore essential for understanding the factors 

that control the expression level of these genes. eQTLs will highlight genomic 

regions (e.g. transcription binding sites, enhancer sites, etc.) that modulate the 

expression of SLC transporters involved in metformin disposition and elimination 



 66 

and provide a biological basis for the pharmacological variation observed.  With 

the use of various pattern-matching algorithms, this analysis may also highlight 

novel transcription factors that regulate gene expression.  

Gene expression regulation in individuals has been extensively studied in 

human lymphoblastoid cell lines and a number of primary tissues7–13. While 

eQTLs have been identified in several human tissue types, there are a limited 

number of studies to date that have identified eQTLs in the kidney. The discovery 

of eQTLs can indicate genomic regions that regulate gene expression, identify 

transcription factors involved in this mechanism, and increase overall 

understanding of the underlying cellular biology in the kidney in relation to the 

pharmacological variation of metformin.  The goal of the current study was to 

discover eQTLs of the transporters that modulate metformin disposition: OCT1, 

OCT2, OCT3, MATE1 and MATE2-K. The clinical basis of identified eQTLs were 

then investigated by genotyping healthy volunteers and linking the variant to 

pharmacokinetic phenotypes. From this study, genomic regions proximal to 

metformin transporters were linked to expression levels of SLC47A1, SLC22A3, 

and SLC22A2, with a potential transcription factor-binding hypothesis (e.g. SP1). 

Additionally, variants in transcription factor HNF4-alpha were the most influential 

trans-eQTLs, correlating with expression level variation in both SLC47A1 and 

SLC22A1. Our findings provide a mechanistic basis of the identified variants that 

affect metformin pharmacology.  
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METHODS 

Kidney tissue samples 

Kidney tissues were purchased from commercial vendors and consist of 

renal cortex samples from Caucasian males and females excised during surgery. 

A BioTrove qPCR instrument was used to determine gene expression levels for 

several transporters, enzymes, and transcription factors. An Affymetrix Axiom 

array designed to finely map confirmed disease associated regions and ADME  

(Absorption, Disposition, Metabolism, and Excretion) genes was used to 

generate genotyping data. The transporter genes of focus that were extracted for 

analysis include SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2.  

 

Post processing of expression and genotype data 

Raw expression data were evaluated by principal component analysis to 

identify and remove extreme outliers in gene expression patterns. Expression 

data from the aforementioned metformin transporters were extracted and 

normalized by calculating the geometric mean of housekeeping genes. To 

ensure high quality genotype information, the data were filtered based on 

genotype call rate, minor allele frequency, relatedness of patients, and gender 

confirmation. 

 

Computational analysis 

A linear regression analysis was performed for the transporters of interest 

in order to interrogate SNPs in both cis and trans regions. A cis region was 
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defined here by containing all SNPs within a 50 kilobase (kb) region proximal to 

the transporter gene of interest. A trans region in this context contains SNPs in a 

20 kb region surrounding a transcription factor gene of interest. Transcription 

factors were included when highly expressed in the kidney and meeting one or 

more of the following criteria: 1) Previously implicated in literature as a genetic 

regulator of SLC transporters, 2) Having a strong correlation with gene 

expression levels of an SLC transporter, or 3) Computationally identified in 

TRANSFAC to bind to an evolutionarily conserved, non-exonic region within 50 

kb of a metformin transporter gene14. Evolutionary conserved regions (ECRs) 

were determined using an ECR browser15. Association was performed using 

linear regression in PLINK (a whole genome association analysis toolset) 

assuming an additive genetic model (Figure 3.1)16. Genotypes were encoded as 

0, 1, or 2, depending on the number of minor alleles present. The additive model 

examined an association between genotype count and expression level. For 

example, a linear trend in gene expression was expected with the addition of 

each minor allele (i.e., 0, 1, or 2).  
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Figure 3.1. Proposed mechanism of SNP influence on SLC expression.  
Cis-acting and trans-acting mechanisms either inhibit or induce gene expression 
levels of the transporter. 

 

To adjust for the number of SNPs tested, other statistical measures were used to 

further investigate statistical significance, including the empirical P-value and 

False Discovery Rate (FDR). 

 

Linkage disequilibrium (LD) analysis 

Significant SNPs were collected and expanded for further analysis. 

Statistical significance of a SNP from the association analysis does not 

necessarily indicate that the SNP is causative. Hence, we investigated all SNPs 

in LD to top associated SNPs (R2>0.8) using the HapMap data conversion tool 

with 1000 genomes. Upon obtaining the expanded list of cis region SNPs (cis-

eQTLs), I functionally annotated each SNP (e.g., whether the SNP is in a coding 

region, near a TSS, TES, etc.). Computational exploration of the biological 
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mechanism was performed to investigate the affinity of transcription factor 

binding to DNA regions consisting of the interrogated polymorphism. A number of 

online tools such as TRANSFAC, JASPAR, TFSEARCH, and TOMTOM were 

used for this investigation14,17–19. 

 

Clinical basis of eQTLs 

In addition to examining the mechanistic nature of the statistical 

association, the clinical relevance of the genetic polymorphism was also 

investigated in order to link the impact of the identified eQTL to a 

pharmacokinetic or pharmacodynamic phenotype and therefore also link the 

genetic mechanism to the clinical outcome. Previously described healthy 

volunteer studies at UCSF provided information on secretion clearance (CLsr), 

renal clearance, exposure (AUC), and fasting plasma glucose (FPG)1,20. After 

finalizing the top eQTLs, the SNPs were subsequently genotyped in healthy 

volunteer samples with the goal of revealing an association between the SNP 

and a pharmacological phenotype of metformin. 

 

RESULTS 

Summary of gene expression levels across metformin transporters 

A total of 60 kidney tissue samples were used for this analysis. Gene 

expression values were normalized to housekeeping genes (delta Ct 

normalized). Overall, there was marked variation observed in expression levels 

across all metformin transporters. The mean delta Ct values for SLC22A1, 
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SLC22A2, SLC22A3, SLC47A1, and SLC47A2 were 9.8, 4.47, 7.46, 6.6, and 

9.13, respectively (higher delta Ct value corresponds to lower expression). Since 

the mRNA transcript level is inversely proportional to the delta Ct value, the 

negative value of delta Ct normalized is summarized in Figure 3.2, so that higher 

expression levels may correspond to higher numbers. SLC22A2 had the largest 

variation with a %CV of 32%, followed by SLC47A1 (26%) and SLC22A3 

(20.7%). 

 

Figure 3.2. Summary of gene expression variation of metformin 
transporters. 
Logarithm of % of housekeeping genes is the inverse of delta Ct normalized. In 
real time PCR, the Ct (cycle threshold) is defined as the number of cycles 
required for the fluorescent signal to cross the threshold. The Ct levels are 
inversely proportional to the amount of the targeted mRNA in the sample.  
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Cis-eQTL Analysis  

A regression analysis of genetic variants less than 50 kb from each 

transporter gene was performed to identify cis-eQTLs of metformin transporters. 

A statistical filter of p < 0.05 was used to prioritize variants, with the top variants 

listed in Table 3.1.   

 

Table 3.1 Summary of statistically significant cis-eQTLs.  
 

 
Transporter 

 
SNP 

 
p 

value 

 
Kruskal-

Wallis 
statistic 

 
Identified 

TF 

 
TF Expressed 

in Kidney? 

SLC47A1 rs2250486 0.01 yes Sox-5 Yes 

SLC47A1 rs2247436 0.02 no SP1/TATA/ 
FOXA1/A2 

Yes 

SLC47A1 rs6587200 0.03 no GATA-1 Yes 

SLC22A2 rs604258 0.02 no NA NA 

SLC22A2 rs576075 0.04 no NA NA 

SLC22A3 rs600987 0.05 yes ADR1 Yes 

TF= Transcription factor. TFSEARCH is an online tool that was used to identify 
transcription factors that exhibit differential DNA binding once the SNP is 
introduced in the cis-eQTL containing DNA sequence. NA = No identified TF from 
TFSEARCH. The column ‘TF Expressed in the Kidney’ summarizes whether the 
transcription factor (TF) identified has known expression in the kidney. 

 

The most significant variant was rs2250486 (p = 0.01), an intronic variant 

in the SLC47A1 gene (Figure 3.3). This variant, along with SLC22A3 variants 

(rs60098, p < 0.05) remained significant even when exploring an independent 

statistical measure (i.e. Kruskal-Wallis test). Both variants were also significant 

after performing a multiple testing procedure using permutation correction, in 

which the expression level was permuted 10,000 times.  



 73 

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
Figure 3.3. Top cis-eQTLs associated with expression levels of SLC47A1 
and SLC22A3.  
Expression level units reflect the negative value of delta-Ct normalized. For SNP 
rs2250486, homozygous TT alleles were not present.  
 
 

The initial variant list was subsequently expanded to include SNPs in 

strong linkage disequilibrium (r2 > 0.8) to the statistically associated variants. 

Transcription factor binding algorithms (i.e., TFSEARCH and JASPAR) were 

applied to the DNA region (±10 base pairs) containing the variant of interest in 

order to identify the transcription factors that have a lower probability of binding 

to the genomic region once the variant has been introduced. This particular 

analysis highlighted Sox-5, SP1, FOXA1, TATA, GATA-1, and ADR-1 as 

transcription factors that demonstrate (in silico) differential binding once the 

variant is introduced into the system. 

 

Summary of top trans-eQTLs 



 74 

An eQTL analysis of genetic variants less than 20 kilobases from a subset 

of transcription factor genes was performed to identify significantly associated 

trans eQTLs of metformin transporters. The major result from this analysis was in 

transcription factor gene HNF4-alpha, where SNPs in this transcription factor 

affected the expression levels of SLC47A1 as well as SLC22A1 (Table 3.2).  

 

Table 3.2. HNF4-alpha SNPs (P < 0.05) associated with metformin transporters.  
Main SNP Significant (P < 
0.05) 

LD SNPs to Main SNP Transporter 
Association 

rs2093248 (p = 0.03) 
  

rs911358  
rs2093247 

OCT1 
 

rs3212198 (p = 0.02) rs3212199 MATE1 

rs6093978 (p = 0.04) 
  

rs6073432 
rs6073433 

MATE1 
 

rs6073432 (p = 0.04) 
  
  

rs34956692 
rs6093978 
rs6073433 

MATE1 
 

rs6031606 (p = 0.04) 
  

rs6103738 
rs6017344 (r2 = 0.68) 

OCT1 
 

Transporter association indicates the transporter mRNA levels that are 
significantly associated with the main trans SNP.  LD=Linkage disequilibrium. 
 

The list was subsequently expanded to include variants that had a strong LD to 

the primary SNP of interest. The most significant trans eQTLs (rs3212198 and 

rs6093978) were in the intronic regions of HNF4-alpha (p  <  0.01) (Figure 3.4). 
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Figure 3.4. Association between top HNF4-alpha eQTLs with SLC47A1 
expression level. 

 

HNF4-alpha was linked to metformin secretory clearance  

A clinical analysis was performed on prioritized cis and trans eQTLs in 

healthy volunteers in order to investigate the role of these variants and 

transcription factors on relevant pharmacokinetic phenotypes. Of the 16 variants 

investigated, only one variant (rs2093248) had a significant association with the 

pharmacokinetics of metformin and a significant association with metformin 

secretory clearance (P < 0.05). A proposed pharmacological mechanism 

describing how this SNP may impact metformin pharmacokinetics is shown in 

Figure 3.5. 
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Figure 3.5. Proposed mechanism of an HNF4-alpha SNP effect on 
metformin secretory clearance.  
CLsr = secretory clearance of metformin. HNF4-alpha regulates a system of 
transporters expressed in the proximal tubule of the kidney (i.e. OCT1, MATE1, 
MATE2K), ultimately having a downstream impact on metformin 
pharmacokinetics (i.e. metformin secretory clearance). 

 

DISCUSSION 

This study explores the link between genetic variants and the gene 

expression levels of transporters involved in metformin disposition and 

elimination. It was hypothesized that this mechanistic relationship will ultimately 

influence the pharmacological variation of metformin. Two findings emerged from 

this analysis: 1) Genomic regions proximal to metformin transporters were linked 

to expression levels of SLC47A1, SLC22A3, and SLC22A2, with a potential 

transcription factor binding hypothesis and 2) Variants in transcription factor 
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HNF4-alpha were the most influential trans-eQTLs, correlating with expression 

level variation in both SLC47A1 and SLC22A1.  

From the cis-eQTL analysis, a total of 6 variants were significantly 

associated with the expression levels of SLC22A2, SLC22A3, and SLC47A1. 

Further investigation of these proximal genomic regions indicated transcription 

factors that may be novel regulatory factors of these genes. From this analysis, 

three cis regions less than 50 kb from SLC47A1 and hypothesized to play a 

mechanistic role were discovered. These regions also demonstrated differential 

binding of different transcription factors (e.g., Sox-5, GATA-1, SP1, and TATA). 

However, the pharmacological role of these transcription factors remains unclear. 

For example, TATA binding proteins are known to bind to a region of DNA 

typically found 30 base pairs upstream of a gene called the TATA box and may 

modulate expression of these genes. The variant rs2247436 is located in the 

intron of the SLC47A1 gene. This intronic region may be a site of heavy 

regulatory activity, as multiple transcription factors such as SP1, FOXA1, and 

FOXA2 may to bind to this particular DNA region21. Of these transcription factors, 

SP1 is of particular interest as it has been previously shown to modulate 

expression levels of MATE122. Additionally, we have shown in a previous study 

that the SP1 gene may modulate metformin pharmacodynamics and 

pharmacokinetics2. It is important to note that the same SP1 variants associated 

with metformin PK/PD are not linked to expression levels of metformin 

transporters in this study. Nevertheless, this is the first study to demonstrate a 
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mechanistic link between SP1 and gene expression levels of SLC47A1 through a 

cis-eQTL based hypothesis. 

Trans-eQTL analysis highlighted the potential importance of HNF4-alpha 

in regulating the expression levels of SLC22A1 and SLC47A1. A total of 2 

variants were significantly associated with the expression level of SLC22A1 and 

3 variants were associated with the expression level of SLC47A1. HNF4-alpha is 

a multifunctional transcription factor primarily expressed in the liver23. Mutations 

in HNF4-alpha have also been linked to T2D24. Literature evidence also suggests 

that HNF4-alpha is an important regulator of SLC22A1 (OCT1), and a key 

transporter in mediating the uptake of metformin into the liver, which is the 

primary site of action25. Similar to SP1, our lab has previously shown a link 

between HNF4-alpha and metformin pharmacokinetics and pharmacodynamics2.  

In this study, I provide eQTL-based support to further demonstrate the 

importance of this transcription factor on a cellular level. To investigate the 

clinical significance of these eQTLs in healthy volunteers, this particular variant 

was genotyped in healthy volunteers and a regression analysis was performed 

with metformin secretory clearance. Results indicated that the T allele of the 

eQTL rs2093248 was associated with a lower metformin secretory clearance in 

an additive manner. This directionality of the minor allele follows both 

mechanistic and pharmacological expectations as the T allele was linked to lower 

expression levels of SLC22A1. Although the expression of SLC22A1 in the 

proximal tubule of the kidney has not been confirmed, this analysis did show 

reasonable levels of this transporter in the kidney. Furthermore, the trans-eQTL 
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based analysis also provided a link between HNF4-alpha and SLC47A1, a 

transporter that has been well profiled in the kidney. A proposed mechanism by 

which a SNP in HNF4-alpha may influence metformin secretory clearance 

suggests that it does so through the modulation of gene expression levels of 

SLC22A1 and SLC47A1 in renal proximal tubule cells in the kidney. 

In summary, the discovery of kidney specific eQTLs of metformin 

transporters provided insight into important genomic regions and transcription 

factors that regulate gene expression levels. These key findings may ultimately 

affect the pharmacological outcome of patients on metformin therapy. 

Experimental validation and replication of such genomic regions and transcription 

factors are a critical next step that will detail our understanding of the underlying 

biology that governs metformin response variation. 
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Chapter 4 

A Longitudinal HbA1c Model Elucidates Genes Linked to Disease 

Progression on Metformin 

INTRODUCTION 

Metformin is the first line of therapy for treatment of type 2 diabetes (T2D) 

and is one of the most frequently prescribed drugs worldwide1–3. As the global 

incidence of T2D rapidly increases, the low cost of metformin makes this 

treatment option particularly attractive in developing nations. Understanding 

metformin’s efficacy in different patient populations with diverse genetic 

backgrounds will be critical in managing this deleterious metabolic disorder. 

Metformin lowers both basal and postprandial glucose in patients with T2D and 

works by inhibiting hepatic glucose production, reducing intestinal glucose 

absorption, and improving glucose uptake and utilization2,4.  Glycosylated 

hemoglobin (HbA1c) is formed through a non-enzymatic and irreversible reaction 

between hemoglobin and glucose; HbA1c is the primary surrogate biomarker for 

long-term glycemic control and drug response, reflecting the average glucose 

levels circulating in the blood over previous months5.  This biomarker has been 

shown to be more reliable than fasting plasma glucose in terms of assessing 

long-term efficacy (measured by mortality, cardiovascular related outcomes, etc.) 

due to the high diurnal variation associated with fasting plasma glucose. Several 

studies have shown that HbA1c is strongly linked to adverse T2D-related 

cardiovascular outcomes and mortality6–8. 
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Metformin response is highly variable; greater than 30% of patients taking 

metformin are considered non-responders and require other medication such as 

sulfonylureas and insulin instead of metformin. Baseline HbA1c levels vary 

significantly in the T2D population (5.5-15%)9,10. Most studies have been 

primarily focused on uncovering the effect of genetic variants in pharmacokinetic 

(PK) genes on static pharmacological phenotypes of metformin and fail to 

address the pleiotropic nature of metformin response2,10–14. One of the largest 

studies to date, which consisted of a genome-wide association study on 

metformin response in individuals from the United Kingdom, identified variants 

near the Ataxia Telangiectasia Mutated locus associated with the ability to 

achieve HbA1c below 7% in the first 18 months of metformin treatment15. 

Although significant, the dichotomous phenotype did not account for longitudinal 

fluctuations in the patient population. Although many studies have demonstrated 

associations between single nucleotide polymorphisms (SNPs) in biologically 

relevant genes with metformin PK and pharmacodynamics (PD), each variant 

only accounts for a small fraction of the variation in HbA1c levels.  

Additionally, there have been no studies on the effect of genetic and 

demographic variables on long-term changes of HbA1c in patients on metformin. 

These covariates may influence the drug’s efficacy or the patient’s underlying 

disease progression and once accounted for, may make it easier to detect 

responders and non-responders to metformin16. The traditional approach 

considers a glycemic HbA1c change from baseline to evaluate the effectiveness 

of the drug. This approach, however, effectively collapses the time dimension in 
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the data by disregarding the actual trajectory of biomarker and the disease status 

over time. As a result, it not only ignores crucial information on disease 

progression, but also lumps together the short-term effects of a treatment with 

the long-term effects on the disease.  

Longitudinal disease progression analysis allows for a quantitative 

assessment of drug treatment effect on the time-course of the 

disease/biomarker. Computational methods use mathematical models to 

describe or predict changes in the disease status as a function of time16. This is 

distinctly and clinically advantageous in that these methods allow researchers to 

understand the role of genes as well as any relevant demographic predictors on 

specific response curve characteristics (such as disease progression and the 

long-term dynamics of therapeutic effects). Non-linear Mixed Effect Analysis 

(NLME) is a very powerful statistical approach used for this longitudinal analysis. 

NLME effectively enhances the signal-to-noise ratio and enables the utility of all 

data points, irrespective of study design17,18,19.  

To date, current models that capture the time-course of HbA1c in relation 

to metformin therapy have been limited by small sample sizes and sparse 

measurements16,20,21. Furthermore, a comprehensive genetic analysis linking 

genetic variants to long-term HbA1c fluctuations has not yet been performed and 

consequently, there is no current knowledge regarding the influence of genetics 

on long-term HbA1c dynamics.   

The overall aim of this research is to explain the variance in long-term 

response, linking genes, demographics, and clinical factors to the upward 
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trajectory of HbA1c levels using a rich, long-term HbA1c dataset from patients on 

metformin (Figure 4.1). Ultimately, this research also aims to use this predictive 

model as a tool to better identify non-responders to metformin therapy early on 

during the course of treatment.  

 

Figure 4.1 Workflow of longitudinal modeling, genetic analysis and the 
potential clinical impact on individualizing metformin therapy. 
 

METHODS 

Patients with type 2 diabetes 

Diabetic patients of European American, African American, and Asian 

American ancestry were recruited into a multicenter retrospective study as 

described previously13,22. All patients were metformin-naive, had HbA1c levels 
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measured before and after initiation of metformin therapy (between 3 and 18 

months), and had a medication possession ratio greater than 80%. The 

institutional review boards (IRBs) of Marshfield Clinic Research Foundation, 

Kaiser Permanente Northern California, Kaiser Permanente South East, Georgia, 

and Vanderbilt approved this study and informed consent was obtained. In 

diabetic patients, metformin was administered for at least three months to 

achieve steady state. Patients were in the study for an average of 2.8 years 

(median = 1.43 years) with approximately 7.4 (median = 5) HbA1c samples 

obtained. The median metformin dose across the patient population was 1000 

mg (Table 4.1).  Patients were genotyped using an Illumina OmniExpress1.0 

genotyping array except for the samples from Kaiser Permanente Northern 

California, which were genotyped using Illumina OmniExpressExome at the 

RIKEN institute in Japan. Genotype data quality control was done using the 

standard protocol that has been previously described in other genome-wide 

association (GWA) studies. 

 

 

 

 

 

‘ 

 

 



 88 

 

Table 4.1 Baseline characteristics of patients with type 2 diabetes 

Clinical Site N 
Total patients 1056 
Kaiser South East Georgia 154 
Marshfield Clinic 150 
Vanderbilt 251 
Kaiser Northern California 501 
Categorical Variable N 
Males 415 
Females 641 
European Americans1 376 
African Americans 665 
Asian Americans and others 15 
Quantitative Variable Median (range) 
Age (years)  55 (23-90) 
Body weight (kg) 96 (34-212) 
Average serum creatinine (mg/dL) 0.91 (0.5-2.0) 
Baseline HbA1c (%) 7.6 (5.6-17.9) 
Metformin daily dose (mg) 1000 (200-2500) 
# HbA1c samples/patient 5 (1-45) 
Years on study 1.43 (0.28-13.5) 

1Ethnicities shown here are all self-reported.  
 

Development of mathematical model 

Patient data were analyzed using non-linear mixed effect modeling 

(NONMEM 7) with first order conditional estimation method with interaction 

(FOCE-I). Several semi-mechanistic approaches were explored to best describe 

the longitudinal HbA1c versus time profiles. Available PK information was taken 

into account in the model structure by investigating either surrogate exposure 
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(average serum creatinine level) or imputed exposure (based on individual 

metformin clearance values). Model selection was determined by using the 

objective function value (OFV, -2 times the log of the likelihood) and visual 

inspection of diagnostic plots. The selected longitudinal HbA1c profiles were 

described by the following equation:  

1
𝑑 𝐻𝑏𝐴1𝑐

𝑑𝑡 = 𝐾!" 𝑡 ∗ 1−𝑀𝑒𝑡𝑓    !""!#$ −   𝐾!"# ∗ 𝐻𝑏𝐴1𝑐 

where MetfEFFECT, and Kout represent metformin’s effect from baseline and the 

loss rate of HbA1c, respectively. KIN(t) represents the synthesis rate of HbA1c: a 

non-linear, time sensitive parameter dependent on the baseline synthesis rate 

and the extent of patient-specific disease progression. Patients with higher 

disease progression estimates will result in a faster synthesis rate of HbA1c. The 

effect of disease progression estimates on KIN(t) and longitudinal HbA1c levels 

can be visualized in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 



 90 

 

 

 

 

 

 

 

 

 
Figure 4.2 Model mechanics and interplay of disease progression, HbA1c 
synthesis rate and %HbA1c level over time.  
The mathematical relationship between the disease progression parameter and 
HbA1c levels are shown here. DP = Model based disease progression 
parameter. HbA1c synthesis rate = %HbA1c level/day. The red, blue and green 
highlight a disease progression parameter estimate of 500,180, and 50, 
respectively. The intuitive representation of these estimates is shown on the right 
plot. Simulated median HbA1c levels are plotted as a function of time and varying 
disease progression estimates. Hypothetic values of DP are visualized here on 
the time course of HbA1c.  
 
 

With this model structure, disease progression effectively captures the 

increased trajectory of HbA1c, which may result from the progression in diabetes 

or a reduction in the reversible effect of metformin. Between-subject variability 

(BSV) was estimated for baseline HbA1c, the magnitude of metformin’s effect, 

and the disease progression parameter. An additive and proportional estimate 

was used to characterize the residual error model. 
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Demographic analysis 

Using the mathematical model described above, an agnostic stepwise 

forward selection (P < 0.05) and backward elimination (P < 0.01) were applied to 

identify statistically significant demographic and clinical covariates on model 

parameter estimates, which helped guide the selection of the demographic-

corrected final model. The subsequent demographic-corrected mathematical 

model served as a basis to investigate the effect of genetic variants on the 

variance of long-term response.  

 

Selection of candidate genes 

A comprehensive list of candidate genes was selected using the GWAS 

Integrator tool on the HuGE Navigator23. The browser selected genes that were 

previously identified from a GWA study conferring risk to one or more T2D traits. 

Additionally, genes in metformin’s PK/PD pathway were also included, as 

highlighted in PharmGKB24. A final list consisting of 267 T2D-linked genes was 

selected for the genetic analysis. Genetic polymorphisms in a 50-kilobase region 

surrounding each gene were investigated on disease progression and other 

model parameters. 

 

Genetic analyses of model parameters 

A penalized regression-based approach called hyperlasso was 

implemented to statistically prioritize the variants associated with phenotypes 

outputted from the mathematical model (e.g. disease progression, metformin 
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effect, and baseline). This methodology was originally proposed by Hoggart et 

al., and is a generalization of Lasso25,26. The penalty parameter used for this 

analysis reflects the number of SNPs tested as well as the total sample size. 

Using hyperlasso is computationally inexpensive and is therefore suitable for 

large-scale genomic studies. Hyperlasso also considers linkage disequilibrium 

patterns across the tested variants and ultimately produces a list of statistically 

associated variants with limited correlation. The hyperlasso analysis was 

performed with and without the inclusion of self reported ethnicity as a covariate 

in the model. An additional regression analysis, assuming an additive genetic 

model, was performed on the variants identified by hyperlasso. Variants with less 

than a 5% minor allele frequency (MAF) and missing genotype call rates greater 

than 10% were excluded from this analysis.  

 

Model based genetic analysis of identified variants 

The top SNPs from hyperlasso were subsequently investigated in the 

developed mathematical model described above. Model based analyses are 

advantageous because they account for correlations across various model 

parameters as well as potential SNP/SNP interactions. Two key steps were taken 

to select the final mathematical model; (1) removal of non-significant SNPs, 

which resulted from a univariate analysis of each variant in the demographic-

adjusted mathematical model, and (2) removal of variants from the full genetic 

model that had very low, clinically irrelevant effect sizes. Goodness of fit plots 

and changes in the objective function value were evaluated to examine the 
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appropriateness of the final model with incorporated genetics. Simulations using 

this model were performed to predict the longitudinal impact of each SNP at 

various time points during therapy, as well as the impact of combinations of 

SNPs on long-term HbA1c levels.  

 

Functional annotation of top variants 

Upon obtaining the final variants identified from the concluding 

mathematical model (resulting from the hyperlasso and model-based 

methodology), we then determined whether the variants have potential regulatory 

functions by searching the following databases: Regulome database and NCBI 

eQTL. The steps were as follows: first, identify the SNPs in linkage disequilibrium 

(LD, with r2 ≥ 0.8) to the 9 variants using HaploReg v2 and reference populations 

for European (EUR) and African American (AFR)27; next, we determined whether 

the top variants and SNPs in LD are located in a regulatory region using 

RegulomeDB (this database is used as a resource to guide interpretation of 

regulatory variants). In addition, we also used the NCBI eQTL database to 

determine whether the top SNPs are linked to gene expression levels of 

pharmacologically relevant genes.       

 

RESULTS 

Summary of data  

Baseline characteristics of patients with T2D are summarized in Table 4.1. 

A total of 7822 HbA1c measurements from 1056 patients were used to develop a 
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mathematical model of longitudinal HbA1c levels. The average length of time that 

each patient was under study was 2.78 years (median of 1.43 years, range of 

0.28-13.5 years). Mean HbA1c samples provided per patient available for 

analysis was 7.5 (median of 5, range of 1-45). Of the 1056 patients, HbA1c 

measurements were available for 202 patients 5 years following metformin 

initiation, 123 patients 7 years after metformin initiation, and 28 patients 10 years 

after.  

 

Mathematical model development 

A turnover HbA1c model with a reversible metformin effect on the 

synthesis rate of HbA1c best characterized the data. The upward trajectory 

(disease progression) of HbA1c over time was modeled by implementing a 

separate compartment that represented the HbA1c synthesis rate: KIN(t). In the 

model structure, the KIN kinetics were influenced by the disease progression 

parameter. The disease progression parameter generates a nonlinear increase 

of KIN over time, especially with high estimates of disease progression. A time 

dependent increase in the HbA1c synthesis rate captured the upward HbA1c 

patterns observed in the data. Between-subject variability (BSV) was estimated 

for baseline HbA1c, the magnitude of metformin’s effect (an individual’s 

maximum HbA1c relative change from baseline), and disease progression. The 

inclusion of a full covariance block between all BSV parameters resulted in a 

significant improvement in the likelihood ratio. The selection of the model was 

based on the objective function value and visual predictive checks of the 
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longitudinal HbA1c data. Through simulations, the model predicts that the onset 

of disease progression for patients on metformin is approximately 321 days; at 

this point, levels increased at a rate of 0.1 HbA1c level [0.07%-0.13%] per year 

through the first three years. For patients not on metformin, the model predicts 

that HbA1c levels would increase at a steady state rate of approximately 0.16 

HbA1c level [0.08%-0.22%] per year. Mathematical model parameters along with 

clinically derived parameters are summarized in Table 4.2. 
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Table 4.2 Population pharmacodynamic model derived estimates and 
bootstrap results for model parameters 

Final Model Parameter Median (%RSE)1 
Median  
(90% CI)2 

Baseline HbA1c Level (%) 7.74 (1) 7.73 (7.6-7.8) 

Half life of effect (days) 40.9 (6) 
41.2  
(36.8-45.7) 

Metformin effect magnitude EFF 13.1% (5) 
13.0  
(12.1-14.4) 

Disease progression estimate DISPR3  
(All patients) 82.2 (67) 

75.3  
(32.6-249) 

Boxcox transformation parameter on 
Baseline 2.38 (9) 

2.41  
(1.99-2.78) 

Boxcox transformation parameter on 
DISPR -0.246 (15) 

-0.26  
(-0.31- -0.20) 

Between-subject variability (% variance) 

Between-subject variability (Baseline) 16.9 (3) 
16.6  
(15.9-17.8) 

Between-subject variability (Metformin 
Effect Magnitude METFEFF) 76.4 (4) 

75.9  
(71.7-81.6) 

Between-subject variability (Disease 
Progression DISPR) 324 (17) 

390  
(164-418) 

Covariance of parameters (%) 

Correlation Baseline- METFEFF 0.114 (1) 
0.11  
(0.101-0.136) 

Correlation Baseline-DISPR 0.033 (3.6) 
0.03  
(-0.07-0.14) 

Correlation DISPR- METFEFF 0.204 (21) 
0.31  
(-0.42-0.95) 

Residual error model 

Proportional error (%) 0.098 (3) 
0.098  
(0.092-0.101) 

Additive error 0.1 (FIXED) 0.1 (NA) 
Derived clinical parameters Simulated median (90% CI) 
Estimated onset of disease progression4 321 (309-332) days 
Estimated yearly rate of HbA1c increase on 
Metformin4 0.1 %HbA1c (0.07-0.13) 
Estimated yearly rate of HbA1c increase 
not on Metformin4 0.16 %HbA1c (0.08-0.22) 
1Typical value of parameter in final model. RSE= Relative standard error (%), 
also known as the precision of the parameter estimate.  
2Confidence interval for the population pharmacodynamic parameter following 
bootstrap results.  
Covariance of parameters are shown in untransformed format.  
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3DISPR is the disease progression model parameter that affects the synthesis 
rate of HbA1c and longitudinal HbA1c levels through the following equations. 
(1) DADT(A1) = KON*(1+DISPR) - KLOSS*A(1) and (2) DADT(A2) = A(1)*(1- 
METFEFF) - KOUT*A(2). Where A(1) represents the synthesis rate of HbA1c 
(KSYN), and A(2) represents HbA1c levels. 
4Yearly rate of HbA1c increase was based on simulated median yearly 
increase over the first three years following the onset of disease progression 
(i.e. 321 days). The median and 90%CI of the onset and yearly rate of HbA1c 
increase were calculated across simulations. For example, each simulation 
provided a median, which was then summarized across 1000 simulations.  

 

Final demographic/clinical covariate model 

A stepwise forward (p < 0.05) and backward (p < 0.01) unbiased selection 

process was performed to account for statistically significant predictors of 

baseline HbA1c, magnitude of metformin’s effect, and disease progression. As 

determined by model diagnostics, the demographic-corrected mathematical 

model adequately described the data (Figure 4.3). 
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Figure 4.3 Longitudinal HbA1c levels over time and model based visual 
predictive check.  
The plot to the left shows raw HbA1c observations over time. On the right plot, a 
visual predictive check is shown, where the solid black line highlights the median 
observed profiles. The shaded regions indicate the 95th and 5th percentiles (ends) 
and the range of median simulated profiles (center) of simulated predictions from 
the visual predictive check.   

 

Intuitively, average serum creatinine (a key surrogate for metformin drug 

exposure) was a significant predictor on MetfEFFECT, the model parameter that 

captured the magnitude of metformin’s effect from baseline, with an estimated 

effect size of 3% change per 0.1 mg/dL change in serum creatinine level. 

Performing simulations results in a 0.77-0.96 change in %HbA1c level from 

baseline (at 2 years) for patients with average serum creatinine levels ranging 

from 0.6-1.3 mg/dL. This response characteristic is anticipated pharmacologically 

as the average exposure of metformin is expected to increase by approximately 

(18%-20%) between this range of serum creatinine values (0.6-1.3 mg/dL) for 

males and females of age 50. 
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Additionally, body weight and clinical site were significant covariates on 

the MetfEFFECT model parameter. Body weight was estimated to result in a 6% 

decrease in metformin’s effect per 10-kilogram increase in body weight. This 

results in a 0.99% and 0.80% change in HbA1c level from baseline (at 2 years) 

for patients with body weights of 66 kg and 140 kg (5th and 95th percentile, 

respectively). For clinical site, Vanderbilt and Kaiser Georgia had a 16% and 

30% lower estimate on the metformin effect parameter when compared to Kaiser 

Northern California, respectively.  

Age was also a significant covariate on the disease progression 

parameter, with a negative correlation observed between age and disease 

progression. On average, the relative change in HbA1c at 2 years for patients 

between the ages of 49 and 64 years was predicted to fall between 0.76% and 

0.84%, respectively.  

 

Genetic analysis: hyperlasso methodology on model parameters 

A total of 267 genes were selected and approximately 12000 variants 

within a 50-kilobase region around each gene were extracted for analysis. Of the 

variants investigated, a total of 21 SNPs were linked to the disease progression 

parameter. Of the 21 variants, 5 were eliminated due to minor allele frequencies 

that were less than 5%. Of the remaining 16 variants, 11 were intronic 

[CSMD1(4), ADCY5(1), PRKAG(1), SLC22A2(1), EMILIN2(1), SULF1(1), 

FTO(1), WWOX(1)], 1 was missense [SREBF1], and 4 were located within 50 
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kilobases upstream or downstream of each gene [VPS13C(1), KCNK16(1), 

PPARG(1), FOXN3(1)].  

 

Genetic analysis: model-based approach for variant selection 

Of the prioritized 16 variants from hyperlasso, a model-based 

methodology was implemented to further filter SNPs for inclusion in the final 

mathematical model. In doing this, 8 SNPs were removed due to allelic effects 

that did not fulfill the defined criteria (see Methods). The 9 remaining variants 

were statistically significant in the model structure and collectively accounted for 

approximately one-third of the variability in the disease progression model 

parameter. Of the 9 variants, rs12907856 (VPS13C), rs2954625 (CSMD1), and 

rs3160009 (SLC22A2) individually accounted for approximately 6%, 5%, and 8% 

of the variability, respectively. The characteristics of each SNP are shown in 

Table 4.3.  
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In the final model, several simulations were performed to illustrate the potential 

clinical impact of each SNP on long-term HbA1c levels.  Figure 4.4 quantitatively 

summarizes the predicted effects of final model genetic and non-genetic factors 

on HbA1c levels. Hypothetical gene/gene interactions were also explored and the 

combinatorial effects of high risk SNPs in the CSMD1, WWOX, and SLC22A2 

genes are shown in Figure 4.5.  

 

Figure 4.4 Top genetic and demographic covariates on long term HbA1c 
levels.  
A. The effect of covariates on the simulated median (bands show 5th and 95th CI 
of simulated median) of HbA1c levels at the 1-year mark. B. The effect of 
covariates on the simulated median (5th and 95th CI of simulated median) of 
HbA1c levels at the 5-year mark. A normal individual here represents a 
hypothetical patient with no minor alleles of any of the identified variants with 
median age, body weight, and serum creatinine values. 
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Figure 4.5 Effect of SNP combinations in CSMD1, SLC22A2, and WWOX on 
the dynamics of HbA1c levels.  
A: Simulated median HbA1c levels (with 95% CI bands) over 5 years comparing 
carriers and non-carriers of CSMD1 minor (risk) alleles. B: Simulated median 
HbA1c levels over 5 years comparing carriers and non-carriers of 
SLC22A1/WWOX genes minor alleles. Blue shaded region with solid line: 
Simulated median for patients carrying no minor alleles with 5th and 95th 
confidence interval. Red/green shade with dashed line: Simulated median for 
patients carrying minor alleles of labeled gene(s) with 5th and 95th confidence 
interval of median. 
 

In the explorative studies, patients carrying one or more minor alleles of 

the identified variants in the CSMD1 gene (rs2617102 (C), rs2954625 (T)) were 

predicted to have significantly higher longitudinal HbA1c levels compared to 

patients not carrying any CSMD1 minor alleles or patients with homozygous 

rs3160009 TT (SLC22A2) and/or homozygous rs7500549 CC (WWOX) 

genotypes. 
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Functional annotation of top variants 

Three out of the nine variants (rs12907856, rs316009, and rs7159552) are 

located in LD to a regulatory region based on an algorithmic prediction by 

RegulomeDB28. In particular, rs316009 and rs7159552 are located in a 

transcription factor binding motif as identified by the ENCODE project29. The 

rs316009 variant is in LD to the nonsynonymous variant of SLC22A2 - rs316019 

- which is known to play a role in metformin pharmacokinetics,30,31,32. Another 

variant, rs6982250, is in an intronic region of SULF1. Several SNPs in SULF1 

have been associated with many phenotypes in the GWAS Catalog33 and one 

associated with fasting insulin-related traits34. 

 

DISCUSSION 

Previous pharmacogenetic studies of metformin response have focused 

on the effect of selected variants in relevant pharmacogenes on single-time point 

outcomes of metformin (i.e. HbA1c levels after 90 days, FPG levels, 

etc.)15,35,36,22. Long-term, time-dependent changes of HbA1c have been 

previously overlooked, resulting in a collapse of valuable information that may 

inform disease progression as well as temporal response patterns.  

In this study, we developed a longitudinal HbA1c model by leveraging a 

large T2D dataset and subsequently investigating the role of genetic and non-

genetic factors on the long-term dynamics of HbA1c following metformin 

initiation. Special focus was given to identifying the factors that are responsible 

for the long-term variance in HbA1c levels.  
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Three important findings emerged from this analysis: (i) a mathematical 

model incorporating disease progression and a reversible metformin effect best 

characterized the longitudinal HbA1c data in T2D Patients. (ii) The model 

presented herein predicted that the onset of disease progression for patients on 

metformin is approximately 321 days, at which point, levels to increase, on 

average, at a rate of 0.1% [0.04%-0.16%] HbA1c per year; HbA1c levels are 

expected to increase at a steady state rate of approximately 0.16% [0.08%-

0.22%] per year in patients not being treated with metformin. (iii) Nine variants in 

8 genes (of 267 genes interrogated) accounted for approximately one-third of the 

total estimated variability in the disease progression parameter. Variants in three 

of these genes (CSMD1, WWOX, and SLC22A2) were identified as significant 

influencers of disease progression on metformin therapy.  

The development of the final mathematical model resulted from the 

exploration of several approaches with various empirical and semi-mechanistic 

considerations. The structural parameters from the model were estimated with 

high precision. The between-subject variability estimates of baseline, metformin 

effect, and disease progression were also estimated with relatively high precision 

(3%, 4%, and 17% relative standard error (RSE), respectively). The high degree 

of parameter confidence was due to the abundance of available HbA1c data, 

which ultimately allows for the reliable assessment of clinical, demographic, and 

genetic covariates on disease progression. Disease progression (upward 

trajectory of HbA1c levels) is a function of both the patient’s underlying disease 

as well as the build up of metformin resistance. In order to differentiate between 



 
 
 

106 

the effects of a patient’s biology and a reduction of metformin’s reversible effect, 

it is necessary to model longitudinal HbA1c data prior to the administration of 

treatment; unfortunately, this was not possible in our analysis. The HbA1c model 

was however able to adequately predict the dynamics of HbA1c levels, capturing 

the long-term upward trend observed in this population. The ability to predict 

long-term HbA1c changes is especially valuable: the onset of disease 

progression and the rate of HbA1c increase were quantified for patients on 

metformin therapy (~0.1% increase per year for the first three years after 321 

days) due to the richness of HbA1c data available. This finding was particularly 

interesting in relation to the study by Winter et al. where the authors noted a 

slight rise in patients’ HbA1c levels during three preceding visits (between 200 

and 400 days after metformin initiation); however, they were unable to quantify 

this upward trend through their simulations – a limitation which resulted from the 

lack of longitudinal data points available after 400 days16.  In our analysis, the 

average length of time in the study was 1014 days and several HbA1c 

measurements were available to inform the progression of HbA1c up to 10 years 

so we were able to quantitate this trend with high precision. The robustness in 

the model also allowed for the simulation of patient-specific disease progression 

with the assumption of no drug on board (approximate increase of 0.16% in 

HbA1c per year). The ability to separate disease progression and metformin 

effect is based on early HbA1c data (up to 1 year following metformin initiation). 

The simulations of disease progression without drug on board were performed by 

removing metformin’s estimated effect on the HbA1c synthesis rate within the 
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model structure. The simulations demonstrate that on average, the disease 

progression in patients who are metformin-naive will occur faster than in patients 

taking metformin for several months. Comparing this estimate to existing 

literature is problematic since T2D progression is a gradual process that typically 

takes place over several years and thus allows only a small trajectory of change 

within the limited time frame available for most studies. In the few studies 

reported, the rate of HbA1c increase was estimated to be approximately 0.2% 

per year, a value consistent with our observations37.  

A stepwise multivariate analysis was performed to identify statistically 

significant demographic and clinical covariates on model parameters. Average 

serum creatinine level surfaced as a significant factor that influenced the 

magnitude of metformin’s effect. This finding was expected since average serum 

creatinine levels are considered a key surrogate for metformin exposure. Serum 

creatinine directly influences a patient’s creatinine clearance, which ultimately 

influences the exposure to metformin by affecting the apparent clearance. The 

effect of age was also noted and an inverse relationship was observed between 

age and the magnitude of disease progression. It is important to note that 

although age was statistically significant through a stepwise analysis, the effect 

size was fairly small and a reproduction of these results is required for 

confirmation. Previously, in a study by Williams et al., lower HbA1c levels were 

reported in African Americans compared to European American individuals38. In 

our analysis, however, there was no significant effect of self-reported ethnicity on 

any of the model features, including the disease progression parameter. 
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We used a multi-pronged genetic approach to prioritize influential variants 

on disease progression. Hyperlasso methodology was selected over a stepwise 

procedure, as well as several other algorithms, because the hyperlasso approach 

has been shown to be robust when many covariates are correlated, which is the 

case here with strong LD patterns in the genotype data. The final selection of 

variants is based on the performance of individual variants within the model 

structure so that the correlation across various model parameters may be taken 

into consideration. 

Nine of the variants investigated emerged as being potentially linked to the 

progression of HbA1c levels on metformin. Collectively, the variants accounted 

for approximately one-third of the variance in the disease progression model 

parameter. It was also observed that these genetic variants had larger effects on 

HbA1c levels than the demographic and clinical covariates identified from the 

stepwise analysis. 

Of the top genes, minor alleles of two SNPs (rs2617102, rs2954625) in 

the CSMD1 (CUB and Sushi multiple domains 1) gene had the strongest impact 

on disease progression. Although the pharmacological and biological mechanism 

remains unclear, CSMD1 has been previously linked to insulin sensitivity and 

lipid levels39,40. From this analysis, the CSMD1 variants may have a significant 

impact on longitudinal HbA1c levels, especially at the five-year mark when the 

simulated HbA1c improvement from baseline becomes quite low – especially for 

homozygous carriers (TT) of rs2617102. The simulated 5-year HbA1c level was 

very similar to baseline levels (Figure 4.3). Furthermore, the effect on HbA1c 
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levels at the 5-year mark is even more pronounced for hypothetical homozygous 

carriers of both CSMD1 SNPs and HbA1c levels are predicted to be higher than 

baseline levels.  

Minor alleles of SNPs in genes SLC22A2, WWOX, EMILIN2, and FOXN3 

were linked to more favorable trajectories (lower disease progression) of HbA1c 

levels compared to major allele carriers. Of these genes, SLC22A2 and WWOX 

(rs316009 (T) and rs7500549 (C)) showed the strongest effect. In contrast to 

homozygous carriers of CSMD1 risk alleles, homozygous carriers of both the 

SLC22A2 and WWOX SNPs were predicted to have a favorable outcome and 

maintain their peak HbA1c level improvement from baseline through 5 years 

following metformin initiation. The rs316009 variant is in LD to a nonsynonymous 

variant of SLC22A2 (rs316019), which is a SNP that has been previously shown 

to alter transporter function as well as modulate metformin pharmacokinetics.31,32 

Therefore, the clinical expectation that the reduced function rs316009 (T) allele 

would lead to a more favorable outcome is pharmacologically sound. OCT2 

(SLC22A2) is predominantly expressed at the basolateral membrane in distal 

renal tubules and is responsible for the uptake of metformin from circulation into 

renal epithelial cells, working in concert with other renal transporters to excrete 

metformin. Though functional studies have been controversial30, loss of 

transporter function is expected to increase plasma levels of metformin, 

potentially leading to a more favorable pharmacodynamic outcome and relatively 

lower HbA1c levels.  

Also of clinical interest, the gene WWOX has been previously associated 
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with several T2D traits including body weight, C-reactive protein, insulin, obesity, 

and lipid levels41. WWOX encodes for an enzyme that is found in all eukaryotes 

and has been biologically shown to play an important role in the regulation of a 

wide variety of cellular functions such as protein degradation, transcription, and 

RNA splicing. Unlike SLC22A2, a pharmacological mechanism for WWOX is not 

clear. However, the clinical impact (if replicated) would mean that carriers of the 

rs7500549 (C) allele would respond more favorably to metformin therapy. Future 

studies should focus on elucidating the biology of WWOX and replicating the 

genetic findings on disease progression. 

Overall, our study has successfully integrated powerful model-based 

approaches with genetic analyses to uncover genes linked to the progression of 

HbA1c on metformin therapy in a large T2D cohort. If replicated, these genetic 

findings may have a significant influence on T2D treatment strategy. Ultimately, 

the long-term goal of this research is to translate this refined mathematical model 

into clinical practice and enable clinicians to provide data-driven, personalized 

treatment advice to T2D patients based on genetics, demographics, and real-

time HbA1c measurements.  
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Chapter 5 

Summary and Conclusions 

 

Despite recent progress in determining the role of various demographic, 

clinical and genetic factors in metformin pharmacology, such factors only account 

for a small fraction of the overall variation (i.e., in drug exposure, HbA1c levels, 

etc.). Metformin is not metabolized and elimination is primarily mediated by active 

tubular secretion from the kidney. Membrane transporters expressed in various 

tissues are therefore expected to significantly impact metformin 

pharmacokinetics and response; numerous studies have been conducted over 

the years to investigate this concept. Previous research has shown that 

individuals carrying any of the reduced function OCT1 alleles demonstrate a 

higher area under the concentration–time curve (AUC), a higher maximum 

plasma concentration (Cmax), and an impaired glucose response compared to 

individuals carrying wild type alleles1. Genetic variants of OCT2 (c.596C>T, 

c602C>T, and c.808G>T (rs316019)) were associated with differences in 

pharmacokinetics2.  Although these studies have demonstrated significant 

associations with SNPs in transporters with metformin PK/PD, some of the data 

have not been replicated and each SNP only accounts for a small fraction of the 

variation in pharmacological phenotypes. This is not surprising considering 

metformin disposition is governed by a system of transporters rather than a 

single transporter. Furthermore, the pharmacological parameters (e.g., HbA1c 

levels) typically investigated are single-time point biomarkers that effectively 
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collapse critical information that may inform an individual’s response patterns. 

Novel approaches with biological and pharmacological considerations are 

required to explain a larger portion of this variability in metformin pharmacology 

and response.  

One such approach is to study gene expression modulators (transcription 

factors) that regulate the expression of multiple transporters involved in 

metformin disposition and elimination. This mechanistic concept is intuitive in that 

a loss or gain of transcription factor function may mediate the expression of many 

critical transporters that dictate the pharmacokinetics of the drug;  therefore a 

single variant in a transcription factor may have a subsequent downstream 

clinical impact on metformin pharmacology. As a result, genetic polymorphisms 

in these genes should influence this system with potentially stronger effect sizes 

than transporter variants on pharmacological phenotypes.  

Furthermore, studying the role of eQTLs on transcriptional regulation may 

lead to a deeper biological understanding of this mechanism. Genetic loci that 

mediate expression levels of crucial genes by altering either the expression or 

structure of a transcription factor - or by disrupting a DNA consensus motif that 

harbors preferential transcription factor binding - may provide a clear link 

between the underlying DNA mechanism and pharmacological outcome.  

Finally, the role of eQTLs, transporter variants, disease-based genetic 

variants, and demographic factors has not been assessed on long-term patient 

HbA1c changes. Novel approaches to explore long-term response variation of 

HbA1c will make detection of responders and non-responders to metformin 
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easier3. The overall goal of this dissertation was to combine model-based 

approaches with various genetic analyses techniques to describe, quantify, and 

further our understanding of the mechanism that governs the pleiotropic nature of 

metformin pharmacokinetics and pharmacodynamics. Below is a chapter-by-

chapter summary of the key findings and remaining challenges to be addressed 

in future studies. 

 

Chapter 2 

Studies described in chapter 2 focused on the roles of transcription factor 

variants in metformin pharmacokinetics and pharmacodynamics. As described, 

transcription factors may be considered as key nodes that modulate a system of 

transporters, leading to more pronounced changes in pharmacokinetics and 

pharmacodynamics. A list of transcription factor genes were prioritized 

accordingly based on the literature findings, which suggest that they regulate one 

or more metformin transporters. Genetic variants proximal to these transcription 

factors were then explored in T2D patients with genomic and HbA1c information. 

Variants found to be highly associated with relative changes in HbA1c levels 

were investigated for a pharmacokinetic mechanism using two approaches: first, 

an association with metformin secretory clearance in healthy volunteers and 

second, a pharmacokinetic model was developed in order to investigate the role 

of prioritized genetic variants on the overall exposure of metformin in the context 

of demographic variables. From this analysis, five variants in SP1 (a transcription 

factor that modulates the expression of SLC47A1 and SLC22A3) were 
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significantly associated with changes in treatment HbA1c (p < 0.01) and 

metformin secretory clearance (p < 0.05).  Population pharmacokinetic modeling 

further confirmed a 24% reduction in apparent clearance (increase in exposure) 

in homozygous carriers of one such variant, rs784888. Genetic variants in 

transcription factors PPAR-alpha and HNF4-alpha were significantly associated 

with HbA1c change only, but were not significantly associated with 

pharmacokinetics. This indicates that PPAR-alpha and HNF4-alpha transcription 

factors may be important in the pharmacodynamics of metformin and 

independent of a pharmacokinetic mechanism. 

 

Chapter 3 

In Chapter 3, the focus was shifted from exploring the clinical effects of 

transcription factor variants to investigating a plausible biological mechanism by 

which genetic variants may affect the pharmacological variation of metformin. 

The goal here was to profile SNPs linked to gene expression levels (eQTLs) of 

metformin transporter genes by performing a regression based analysis on 

profiled kidney tissue samples and subsequently investigating the clinical impact 

of the identified eQTLs in healthy volunteers with pharmacokinetic data.  

From the cis-eQTL based analysis, a total of 6 variants were significantly 

associated with the expression levels of SLC22A2, SLC22A3, and SLC47A1. 

Three cis regions less than 50 kb from SLC47A1 computationally demonstrated 

differential binding of transcription factors (e.g., Sox-5, GATA-1, SP1, and TATA). 

The variant rs2247436, which is located in an intron of the SLC47A1 gene, was 
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predicted to be in a hot spot of regulatory activity, as multiple transcription factors 

(such as SP1, FOXA1, and FOXA2) have a strong potential to bind to this 

particular DNA region4. Of these transcription factors, SP1 is of particular interest 

because this transcription factor was previously shown to modulate expression 

levels of MATE15. Furthermore, genetic variants in the SP1 locus were shown in 

chapter 2 to have a pharmacological impact on metformin pharmacokinetics and 

pharmacodynamics.  

The trans-eQTL analysis highlighted the potential importance of HNF4-

alpha on regulating the expression levels of SLC22A1 and SLC47A1. A total of 2 

HNF4-alpha variants were significantly associated with the expression level of 

SLC22A1 and 3 variants were associated with the expression level of SLC47A1.  

The T allele of one such variant, rs2093248, was significantly associated with a 

lower metformin secretory clearance in an additive manner. This directionality of 

the minor allele may be mechanistically and pharmacologically intuitive since the 

T allele was biologically linked to lower expression levels of SLC22A1. Although 

the expression of SLC22A1 on the proximal tubule of the kidney has not been 

confirmed, the analysis shows reasonable levels of this transporter in the kidney. 

Furthermore, the trans-eQTL based analysis provided a link between HNF4-

alpha and SLC47A1, a previously well-profiled transporter in the kidney. HNF4-

alpha is a multifunctional transcription factor primarily expressed in the liver but 

also expressed in the kidney6. Mutations in HNF4-alpha have also been linked to 

T2D; therefore, the findings described in this chapter align with prior knowledge 

of this transcription factor’s clinical role7. Finally, results from chapter 3 support 
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findings from chapter 2, which suggest that SNPs in HNF4-alpha are linked to 

metformin pharmacodynamics. In summary, kidney specific eQTLs of metformin 

transporters is demonstrated as a novel method to highlight important genomic 

regions and transcription factors regulating gene expression levels that may 

affect the pharmacological outcomes of a patient on metformin therapy.  

 

Chapter 4 

This final chapter addressed a limitation that many genetic studies have: 

the focus on single time-point biomarkers collapses crucial information that may 

effectively inform a patient’s response characteristics. Here, we developed a 

longitudinal mathematical model to characterize and quantify disease 

progression on metformin therapy using all HbA1c data available with the goal of 

explaining long-term HbA1c variability through the investigation of genetic, 

demographic, and clinical factors.  

From this analysis, a turnover HbA1c model with a reversible metformin 

effect on the synthesis rate of HbA1c best characterized the longitudinal data 

from T2D patients. The model predicts that the onset of disease progression for 

patients on metformin is approximately 321 days, at which point, levels increase 

at a rate of approximately 0.1% [0.04%-0.16% 95% confidence interval] HbA1c 

per year; HbA1c levels are expected to increase at a steady state rate of 

approximately 0.16% [0.08%-0.22%] per year in patients not being treated with 

metformin. A set of candidate genes was studied for effects on disease 

progression of patients on metformin.  Following the genetic analysis using 
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various approaches (e.g., HyperLasso, regression, model-based, etc.), the top 9 

variants accounted for approximately one third of the total variability in the 

disease progression model parameter, which was markedly higher than the 

significant demographic predictors. Two SNPs in CSMD1 (rs2617102, 

rs2954625) and one SNP in SLC22A2 (rs316009) surfaced as significantly 

influencing the long-term variance in HbA1c, with minor alleles leading to less 

and more favorable outcomes, respectively. 

 

Challenges and future direction 

The research presented herein leverages novel approaches to expand the 

current understanding of the factors that contribute to metformin response 

variability. This research furthers the current knowledge of the pharmacogenetic 

landscape by expanding the set of pharmacologically relevant genes from 

metformin transporters to transcription factors. Furthermore, a potential biological 

and pharmacokinetic basis for the identified associations is provided for 

transcription factors SP1, HNF4-alpha, and PPAR-alpha.  To build on this work, 

future research should focus on providing a mechanistic link between the 

transcription factors and the DNA binding domains proximal to the 

pharmacological/disease gene of interest. Moreover, determining whether the 

variants are truly causative (not in LD to a variant that is) will lead to evidence-

based pharmacogenetics with a strong biological rationale for the genetic factor 

at work. Through this research, a mathematical model that allows for the 

quantification of a robust phenotype of HbA1c and enables the exploration of 
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genetic and non-genetic factors on long-term response patterns in T2D patients 

was also produced. A disease gene (CSMD1) and a pharmacologically relevant 

transporter gene (SLC22A2) surfaced as significant influencers on long-term 

HbA1c variation. Future studies should focus on replication cohorts to 

recapitulate the genetic findings of CSMD1 and SLC22A2 and to characterize 

how the genes modulate response to metformin.  Though the role of SLC22A2 in 

metformin pharmacokinetics seems established, the transporter may also have 

other roles in response to metformin.  A mechanistic basis for CSMD1 on the 

progression of HbA1c will be necessary to understand the pharmacological effect 

of this variant on response to metformin. 

With interest in implementing true precision medicine growing, the 

research presented will prove beneficial for the T2D patient community. The 

ultimate goal of this dissertation research is to translate pharmacogenetic, model-

based findings into clinical practice so that clinicians may provide data-driven, 

personalized treatment advice to patients based on genetics, demographics, and 

real-time HbA1c measurements.  
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