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Abstract Unprecedented growth of East Asian economies has led to increases of anthropogenic
pollutants in the regional atmosphere. This pollutant burden is transported into the global atmosphere
and is a significant source of intercontinental and transboundary anthropogenic pollution. This work analyzes
pollution transport into the western Pacific associated with the dispersion of East Asian pollution during
Northern Hemisphere winter. To examine transport characteristics, we use chemical and dynamical data sets
obtained during the CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign,
conducted from Guam during January-February 2014. We identify that the evolution of shear lines from
decaying cold fronts and their southward advancement facilitates polluted air transport into low latitudes of
the Western Pacific Ocean. Observations from two cases of shear line passage are analyzed. The result shows
that this transport process significantly elevates anthropogenic trace gases in the marine boundary layer
and lowermost free troposphere up to 3-4 km. Results of our analysis show that chemical influence of the
shear line on the background tropical marine atmosphere varies as a function of pollution source, intensity,
shear line strength, and the speed of advancement, as well as local background conditions. To quantify the
contribution of shear-line-related transport, we introduce an index, the Anthropogenic Enhancement
Factor (AEF), defined as a fractional change in mixing ratio of a gas brought about by the advancing front. This
index shows that the most significant enhancements are for species with photochemical lifetimes
comparable to their transport times from source regions.

1. Introduction

Rapid industrialization and economic development in East Asia has been associated with a significant
increase in air pollution and deterioration of local air quality. Atmospheric pollutants transported across
the region also have become a significant source of intercontinental and cross-border anthropogenic pollu-
tion (Akimoto et al., 1996; Barletta et al., 2005, 2009; Lam et al., 2005; Lin, Fiore, Cooper, et al., 2012; Lin, Fiore,
Horowitz, et al., 2012; Wang et al., 2014). The increasing potential of eastern and southeastern Asian regions
to impact air quality locally and remotely has long been recognized. For example, the Pacific Exploratory
Mission (PEM) WEST studies in the early 1990s were conducted to assess the chemistry of Asian pollution out-
flow into the relatively unperturbed background of the North Pacific atmosphere (Hoell et al, 1996).
Investigators observed strong chemical signatures associated with oil and gas processing, various combus-
tion sources, and industrial activities (Blake et al., 1996). Subsequent campaigns explored the chemical char-
acteristics, geographic range, and impact of East Asian emissions on the background atmosphere. These
include studies of the tropical and South Pacific (PEM-Tropics in 1996 and 1999), tropical and subtropical wes-
tern Pacific Rim region (TRACE-P in 2001, BIBLE in 1998-2000, and PEACE A/B in 2002), trans-Pacific transport
toward the Americas (INTEX-B, 2001), and others, which have all confirmed the persistent outflow of East
Asian emissions into the background atmosphere (Blake et al., 2003). Some report increasing emissions of
various pollutant gases related to rapidly accelerating economic growth (Bo et al., 2008; Hilboll et al., 2013;
Kurokawa et al., 2013; Lin, 2012; Richter et al., 2005; Tanimoto et al., 2008, 2009).

Long range transport of pollution plumes from East Asia, supplemented by contributions from Europe and
North America during boreal winter and spring (Pochanart et al., 2004; Wild & Akimoto, 2001), has also
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received attention related to their potential for contributing to enhanced tropospheric ozone along the
west coast of the United States during Northern Hemisphere spring/summer (Cooper et al., 2010; Jacob
et al., 1999; Jaffe et al, 1999; Jaffe, Price, et al., 2003; Lin, Fiore, Cooper, et al., 2012; Lin, Fiore,
Horowitz, et al., 2012). The springtime transport across the Pacific is also recognized as a major pathway
for Asian dust dispersion (Jaffe, McKendry, et al., 2003; Price et al., 2003). Less attention has been directed
to transport from Asia during other seasons, including equatorward transport into the deep tropics during
the winter monsoon (Pochanart et al., 2004).

Winter meteorology in East Asia is dominated by the episodic incursions of cold air masses from Siberia into
the Philippine and South China Seas. These cold surges (also referred to as pressure surges) result from the per-
iodic drift of the Siberian-Mongolian anticyclone, affected by the passage of midlatitude synoptic waves
(Compo et al., 1999; Pochanart et al., 2004). In the winter phase, cold surface temperatures give rise to stable
low-level inversions that result in capping of the boundary layer. In this flow regime wet deposition is almost
completely absent, which allows regional pollution to build up in the lower troposphere.

As the cold air surges are carried east-southeastward across East Asia and into the western Pacific by the pre-
vailing westerlies, low-level pollutants originating over the continent are advected equatorward, with the
strongest surges observed to advance as far south as 15°N (Compo et al., 1999; Phadnis, 2002; Lawrence &
Lelieveld, 2010). As the cold air advances southward, heating from the ocean surface reduces the thermal gra-
dient across the frontal boundary. By the time that air reaches tropical latitudes all that remains of the surface
front is a wind shift referred to as a shear line. North of the shear line the formerly cold air mass should still
contain the diluted pollutants entrained as the air crossed the source regions of East Asia. Anomalous clima-
tology, such as resulting from large-scale climatic oscillations (e.g., ENSO) via perturbations of the mean wind
fields, can also stimulate interhemispheric transport across the Intertropical Convergence Zone (ITCZ),
entraining the pollution even further south (Avery et al.,, 2001).

This paper examines the atmospheric chemistry associated with these wintertime cold surges that are trans-
ported into the tropical Western Pacific. This work for the first time relates shear line development and evolu-
tion to transport of East Asian pollution into the deep tropics and attempts to quantify the effects that this
transport has on the chemical composition of the troposphere in the Tropical Western Pacific (TWP).

2. The CONTRAST Experiment, Measurements and Analysis Tools
2.1. Introduction to CONTRAST

The CONvective TRansport of Active Species in the Tropics (CONTRAST) project was an airborne research
campaign that took place in January-February 2014 using the National Science Foundation/National
Center for Atmospheric Research (NCAR) research aircraft Gulfstream-V to investigate the role of convective
transport in Tropical Tropopause Layer (TTL) chemistry and to measure horizontal and vertical distributions of
short-lived species in the TWP (Pan et al., 2017). Operations were conducted out of Guam (13.48°N, 144.8°E),
which enabled sampling of large spatial range and wide variety of photochemical environments associated
with regions of deep convection to the south of Guam and the polar jet to the north.

A total of 13 research flights were performed as a part of the CONTRAST experiment. The flights covered the
altitude range between 100 m above sea level up to 15 km, and the geographic area between 20°S- 40°N and
~130-160°E. In addition, sampling was performed during transit flights between mainland United States to
Guam and from Guam to Hawaii (Figure 1, left).

The instrument payload on the GV included a range of chemical, aerosol, and radiative instrumentation (Pan
et al,, 2017). The trace gas data relevant to this paper are from a subset of the payload and include measure-
ments of reactive trace gases from a canister-based sampling system (the Advanced Whole Air Sampler
[AWAS]), and an online in situ gas chromatograph/mass spectrometer Trace Organic Gas Analyzer (TOGA).
We also use the high time resolution measurements of carbon monoxide (CO), methane, and actinic flux.

2.2, Organic Trace Gases

The AWAS is a canister-based gas sampling system that collects 60 samples per flight. Samples are com-
pressed into previously evacuated 1.3 L electropolished stainless steel canisters and pressurized to
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Figure 1. Horizontal (left) and vertical (right) view of CONTRAST flight tracks from research flights 1-16. Circles in both
panels represent AWAS sampling locations from research flights 5-16. Research flights RFO5 and RF06 are highlighted in
blue and red, respectively.

approximately 3 atmospheres using 2 x2 stage metal bellows compressors. Sample collection time in-flight
ranges from 3 to 4 s at lowest flights altitudes (~100 m above sea level) to approximately 40 s at 14.5 km.

Samples were analyzed following each flight using gas chromatography with three different detection tech-
nigues: mass spectrometry (GC-MS), flame ionization (GC-FID), and electron capture (GC-ECD) to determine
the mixing ratios of a large number of trace species. The analytical system was set up in a portable laboratory
facility in Guam. Precision and accuracy of measured tracers vary between 2% to 20% depending on the indi-
vidual compound and its concentration. Detection limits are typically in the sub-ppt to ppt level. Calibration is
based on in-house and commercially prepared standards (Flocke et al., 1999; Schauffler et al., 1999). Andrews
et al. (2016) discuss comparisons of trace gases measured during CONTRAST from different instruments
and platforms.

TOGA is an in situ GC-MS (Apel et al., 2015). TOGA performs simultaneous measurements of all targeted gases
approximately every 2 min with sample collection time of 35 s. During CONTRAST, sample volume was typi-
cally 33 ml. It uses a shock-mounted Agilent Technologies 5973 quadrupole MS system, with a modified
three-stage pumping system (Apel et al., 2015). The GC is fitted with a Restek MXT-624 column (I.D. = 0.18 um,
length = 8 m). TOGA uses in-flight Zero Air/Calibration System (ZA/CS) with custom built catalytic zero air
generator. Standard reference gases are from Apel-Riemer, Inc,, or are prepared in-house.

TOGA precision and accuracy are compound dependent and ranges from 50% for organic nitrates to 15% for
nonmethane hydrocarbons (NMHCs). Limits of detection vary from sub-ppt for NMHCs to 20 ppt for acetone
and methanol.

2.3. Other Measurements

CO was measured with the NCAR Aero-Laser 5002 VUV Fluorescence with a combined uncertainty estimated
at (2 ppbv + 5%) at the 2o confidence level (similar to Gerbig et al., 1999). Methane was measured by a
Picarro G1301-f Methane/Carbon Dioxide real time flight analyzer, which is based on Wavelength-Scanned
Cavity Ring Down Spectroscopy with a reported 1-c precision of 3 ppbv CH,4 for a 0.2-s integration time.
Actinic flux, between 280 and 600 nm, used in the calculation of photolysis frequencies in this analysis,
was measured by the High-performance Instrumented Airborne Platform for Environmental Research
(HIAPER) Atmospheric Radiation Package - Actinic Flux (HARP-AF) instrument (Shetter & Mdiller, 1999) with
a 6s duty cycle.

2.4. Satellite Data and Meteorological Analysis

The primary weather forecasting and analysis tools employed during CONTRAST were geostationary satellite
products and numerical model output, both of which were obtained from the EOL CONTRAST field catalog
for postproject analysis. The Japanese Meteorological Agency’s MTSAT-2 (Himawari-7) provides imagery
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from the visible, infrared, and water vapor channels. Observations of low cloud boundaries were often
employed to indicate the locations of the shear lines and their progress.

Forecast plots from the National Center for Environmental Prediction’s Global Forecast System (NCEP GFS;
National Oceanic and Atmospheric Administration [NOAA] 2003) were generated at NCAR 4-time daily during
CONTRAST using the 0.5-degree gridded pressure-level output. Forecast plots of surface winds, surface latent
heat fluxes, and temperature were able to depict the evolution of the shear lines. In addition, numerical fore-
casts from the Advanced Weather Research and Forecasting model (henceforth ARW, WRF; Skamarock et al.,
2008) were produced at NCAR using a 15-km grid. The higher spatial and temporal resolution of the ARW
forecasts were able to resolve many of the shear lines observed during the campaign.

For our analysis we also use CO measurements obtained from the Measurements of Pollution in the
Troposphere (MOPITT) instrument deployed on National Aeronautics and Space Administration (NASA)'s
TERRA EOS satellite. We use Version 7 Level 3 data consisting of monthly and daily surface retrievals (com-
bined: day and night) of CO mixing ratios from both Near and Thermal Infrared Radiances with spatial resolu-
tion of 1° x 1°,

2.5. Trajectory Calculations

To calculate air mass back trajectories, we use the 3-D Lagrangian particle advection model based on
Bowman (1993) and Bowman and Carrie (2002), which is driven by 3-D winds taken from Operational
Global Analysis data set supplied by NCEP. It is gridded on 1° X 1° horizontal resolution, generated once every
6 hr, and is available on 26 pressure levels from 1,000 to 10 mb.

Using this model, we have calculated 10-day back-trajectories (utilizing 48-time steps per day) for air masses
measured on two selected flights, research flight #5 (RF05, 22 January) and research flight #6 (RF06, 25
January). Results of this analysis will be presented in section 4.2 to illustrate transport pathways of reactive
tracers sampled on the north side on the shear lines during these flights.

2.6. Photochemical Calculations

Mixing ratios of reactive gases emitted into the atmosphere decline as a result of atmospheric photochemical
reactions, deposition to the surface, and mixing with background air. Separating the effects of mixing and
photochemistry on the chemical evolution of an air mass is difficult to determine from mixing ratio measure-
ments of a single gas (McKeen et al., 1996; McKeen & Liu, 1993; Parrish et al., 1992). However, effects of trans-
port and dilution can be minimized by using trace gas ratios (Parrish et al., 2007; Roberts et al.,, 1984). The
accurate calculation of photochemical age is predicated on a number of factors: (1) both compounds must
have common anthropogenic sources with a single characteristic emission ratio, (2) species must be intro-
duced into the air mass at the same time and removed via pseudo-first-order decay kinetics, (3) background
concentrations of the trace gas in the tropospheric air must be comparatively low, and (4) the relative rates of
chemical removal of the species in the hydrocarbon (HC) pair must be significantly different.

If these in the ratio between two chemical species can be related to the photochemical age of the air mass via
the following relationship (equation (1)):

-tz o(8). ()

where
At =is the photochemical age;
ky = rate constant for OH oxidation of compound x;
[OH] = average OH radical concentration;
[A], [Bl = atmospheric mixing ratios of two species, where t = 0 represents mixing ratios of gases

at the source.

A few important caveats to this approach include the uncertainties related to source mixing ratios of the cho-
sen chemical species (Factor 1), as well as the assumption of the negligible effects of mixing and dilution.
While uncertainty due to Factor 1 might be minimized by averaging regional data, additional information
in the form of back trajectory analysis, for example, might help in explaining differences in separate cases
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of long-range transport (i.e., based on the air mass trajectory for isolated cases of long-range transport using
regional averages may not be an appropriate metric). Similarly, effects of mixing and dilution cannot be com-
pletely ignored either. McKeen and Liu (1993) demonstrated that atmospheric mixing significantly affects not
just individual chemical species, but ratios of chemical species as well, and ratios themselves therefore repre-
sent the combined effects of photochemistry and mixing (see section 4.2.1. for further discussion).

HC species with lifetimes characteristic of regional (<4 days) and intercontinental (<30 days) transport time
scales are the most suitable chemical tracers for the method described above. For example, toluene and ben-
zene satisfy the constraints of the method by sharing common anthropogenic origins (related to incomplete
fuel and industrial combustion and solvent evaporation) (Apel et al.,, 2010, 2012; Barletta et al., 2009; Blake
et al., 2003), following the same first-order gas-phase kinetics with their primary oxidation mechanism being
reaction with hydroxyl radical (Wang et al., 2013; Wu et al., 2014), and reacting at rates significantly different
from each other. For CONTRAST conditions, the photochemical lifetimes are approximately 2 days for toluene
(T) and 10 days for benzene (B). Light alkane pairs of faster reacting HCs, such as the C4/Cs, Cs/Cs, and Cg/Cs
with approximate lifetimes of C; = 13 days, C4 = 6 days, C5 = 3 days, and Cg = 2 days can also be used, espe-
cially for transport timescales of 1-1.5 weeks.

Based on our assessment of the available measurements over source regions in question, we chose T/B and
Cs/C3 HC pairs for our analysis. Rate constants used in the calculation are from Perry et al. (1977), Atkinson
(2003, 2007), and Burkholder et al. (2015) and were adjusted to modeled temperature utilizing back trajectory
data with the assumption of 24 hr average hydroxyl radical concentration of 10 to account for latitudinal gra-
dients of OH during boreal winter, ranging from 0.7 x 10° to 3 x 10° (Carpenter et al,, 2014; Patra et al., 2014).

3. Observations
3.1. Meteorological Background of Two Selected Flights

Products from NCAR MMM WRF-ARW (supplemented by products from Taiwan’s Central Weather Bureau
operational Advanced Research WRF; Skamarock et al., 2008) and local satellite images were used for forecast
and flight planning during the campaign. The specific products used to trace the evolution of the shear lines
and depict their location at the time of sampling include Surface Latent Heat Flux and Surface Wind products
at 20-km horizontal resolution, the ARW Surface Latent Heat Flux and Surface wind and Temperature pro-
ducts at 15-km resolution, and a series of MTSAT-2 Channel-1 Visible images.

We will concentrate on two research flights of CONTRAST field campaign that sampled chemical gradients
associated with two consecutive shear line passages through the research domain; these are designated
RFO5 (22 January 2014) and RF06 (25 January 2014). The surface cold front that evolved into the shear line
sampled during RFO5 moved off the Asian continent late on 17 January. A surface cyclone along the front
deepened rapidly as it moved from 33°N, 145°E on 18 January to near 45°N, and 175°E on the 20 January
(not shown). The strong northerlies west of the cyclone helped drive the cold air mass southward to near
20°N late on 19 January (Figure 2; left panels) As the surface low continued eastward on 21 January remnants
of the cold front persisted as a weak, shear line extending from the Philippines to the center of the surface
low, with winds on the north side of the shear line from the east-northeast at 10-15 m/s and from the east
at 5 to 10 m/s south of the shear line (Figure S2c). Convection associated with a tropical disturbance moved
from southeast to northwest over Guam late on 21 January and interacted with the shear line north of Guam.
The shear line persisted at 0 UTC on 22 January, approximately 6 hr in advance of sampling; however, it had
weakened with winds diminishing to about 5-10 m/s in most areas (not shown).

The shear line associated with RF06 evolved similarly to the RFO5 case but was more intense. As a surface
cyclone traversed Japan on 20 January, it trailed a cold front from near 38°N,145°E to 25°N, and 120°E. As
the surface cyclone moved east-northeast it deepened rapidly and drove the cold air southeastward across
the west Pacific toward Guam. By 0 UTC 23 January the cold front started making its way into the research
domain. The leading edge of the cold air mass retained frontal characteristics including temperature
decreases and a pronounced shift in the wind direction and much stronger wind velocities between 15
and 20 m/s just northwest of Guam.

By 0 UTC 24 January southward progress of the front had slowed north of Guam as it transitioned to a shear
line. The shear line was characterized by 10-15 m/s surface winds to the north of the line and a well-defined
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Figure 2. Japanese Meteorological Agency's (left) MTSAT-2 visible channel imagery for (top left) the 19 January and (bottom left) the 25 January showing the
organization of shear lines sampled during RFO5 and RF06, respectively, with corresponding horizontal surface wind speeds calculated from the 15-km

resolution NCAR/MMM WRF-ARW at the top right (RFO5) and bottom right (RF06). Approximate shear line locations are indicated with red dashed lines; Guam is
marked with a star. The two bottom panels show the state of the shear line sampled during RF06 an hour before interception on the 25 January, while the top panels
show shear line organization 3 days prior to RF05 sampling on the 22 January, when the shear line sampled during RF05 was most organized. The purple line in the
NCAR/MMM WRF-ARW images is the Oakland FIR boundary.

horizontal directional wind shift. On 25 January the shear line persisted just north of Guam, with winds in 15—
20 m/s range. The location of the shear line was also evident from MTSAT-2 visible channel imagery, where
the boundary can be recognized from the presence of cumulus congestus produced as a result of frontal
convective lifting (Figure 2; bottom right panel).

3.2. Chemical Measurements

The 717 whole air samples collected during research flights 05-16 along with vertical distribution of those
samples are presented in Figure 1 (no data is available for RFO1-RF04 due to sample inlet problems).
Highest density of sampling occurred between ~4-20°N (Pan et al,, 2017) and ~135-155°E; however, higher
altitude excursions north and south also allowed sampling of the polar jet ~40°N and Southern Hemispheric
tropical air masses ~20°S. Table S3 and Figure 3 (collapsed subset) show mixing ratios of selected trace gases
(including mean, median, and standard deviation) obtained from AWAS, TOGA, and Aerolaser 5002 (CO)
instruments. Measurements are averaged in 2-km vertical bins, from boundary layer (<2 km) to the lower-
most TTL (above 14 km). We compare those measurements to the data collected during phase B of the
PEM-WEST (P-WB) experiment (February-March 1994) and TRACE-P (T-P) campaign (February-April 2001)
that also surveyed a portion of the Western Pacific, however with efforts largely concentrated in the area
nearer to the Pacific Rim region (Blake et al., 2001). We only select P-WB and T-P measurements that overlap
with the CONTRAST research domain.
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Figure 3. Vertical profiles of selected volatile organic compounds measured during PEM-West B (grey), TRACE-P (red), and CONvective TRansport of Active Species in
the Tropics (CONTRAST) (green). Profiles are plotted in 2-km altitude bins (large filled circles), with small open circles showing all measurements taken within spe-
cified research domain. Horizontal bars represent one standard deviation of the averages within each vertical 2-km bin.

In comparison to previous measurements carried out in the TWP, in particular T-P, on average, CONTRAST
sampled cleaner air masses. Median mixing ratios of oxygenated volatile organic compounds (OVOCs)
encountered during CONTRAST (excluding formaldehyde) were significantly lower throughout the entire tro-
pospheric column, with CONTRAST measurements averaging 10 times lower than T-P in some free tropo-
sphere (FT) measurements. Boundary layer NMHC measurements during CONTRAST were slightly lower
than P-WB values, while FT values were about twice as low and ~1.5 times lower in the region above 8 km.
T-P values on the other hand were on average ~2 times higher than during CONTRAST throughout the entire
tropospheric column. Measurements of aromatic HCs (benzene and toluene) were also generally lower in
CONTRAST samples.

In comparing CONTRAST to P-WB and T-P, we observed significantly lower mixing ratios of a number of
chlorinated solvents (e.g., carbon tetrachloride [CCl4], methyl chloroform [CH5CCls], and tetrachloroethylene
[C,Cl,]) and CFCs and Halons (e.g., CFC-11 and Halon-1211), mostly resulting from phasing out the
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production of these substances under the Montreal Protocol and decreased use. Mixing ratios of a number of
hydrochlorofluorocarbons(HCFCs; HCFC-22, HCFC-141b, and HCFC-142b) and long-lived CFCs (e.g., CFC-114)
however have been steadily increasing in the TWP from 2000 to 2014. Thesetrends are consistent with sur-
face mixing ratios of these gases measured at ESRL and AGAGE stations, though AGAGE data show a small
decrease in CFC-114 (0.3 ppt) from 2004 to 2017 (Prinn et al.,, 2000). For CONTRAST, measurements are in rea-
sonable agreement with the NOAA ESRL GMD station data in Mauna Loa, Hawaii (MLO), and Guam (GMI),
especially for halocarbons. Shorter lived HC data obtained during CONTRAST are on the lower range of
MLO and GMI measurements (Helmig et al.,, 2017).

While on average CONTRAST observed lower mixing ratios of many trace gases compared to earlier mea-
surements in the region, a significant variability in tracer mixing ratios was observed in the course of the
campaign. In Figure 4, we compare the vertical profiles of five volatile organic compounds (VOCs) and CO
from all measurements reported for CONTRAST (AWAS: RF05-RF16; TOGA: RF02-RF16; and CO: RF03-RF16)
to vertical distributions of the same tracers observed during the two flights featuring shear line passages
(RFO5 and RF06). A selected subset of gases, including toluene (C;Hg), n-pentane (n-CsH;,), benzene
(CeHe), chlorobenzene (CgHsCl), ethane (C;Hg), CO, methyl bromide (CH3Br), and CFC-11 (CCI5F), were cho-
sen to represents a wide variety of anthropogenic source types and lifetimes. Relative to the rest of the
CONTRAST data set, measurements obtained during RFO5 and RFO06 clearly represent some of the highest
mixing ratios measured during the campaign, particularly in the lower troposphere. Tracers showing great-
est enhancements are those associated with industrial activities, including metal degreasing, petroleum
refining, and synthesis manufacturing (solvents and non-methane volatile organic compounds), inefficient
combustion of bio-fuels and fossil fuels (NMHCs and OVOCs), and general urban emissions (HCs, CO, etc.).
These increased mixing ratios during RFO5 and RF06 highlight the potential importance of the shear lines
as the boundary of a polluted, continental air mass. Gradual change of tracer profile shapes as a function
of their atmospheric lifetime is also a notable feature, with longer lived species exhibiting more uniform
vertical distributions.

4, Analyses
4.1. Trace Gas Data

A wide variety of chemical tracers can be used to investigate potential origins and photochemical processing
of air masses transported to a remote location. During transport physical processes of convection and mixing
with ambient air, wet/dry deposition, and secondary photochemical production progressively modify the
chemical makeup of the air mass. To interpret the chemical signatures within an air mass, it is best to examine
a wide variety of species while considering effects of both, transport and photochemistry. While emissions of
trace gases of both natural and anthropogenic origin contribute to the composition of remote air masses, we
limit our analysis here mostly to trace gases produced anthropogenically, omitting analysis of biogenic tra-
cers with predominantly terrestrial and/or oceanic sources. The set of anthropogenic trace gases considered
here provides the clearest contrast between their well-defined sources and the remote atmosphere of the
TWP. (See Table S1 for full list of tracers used in the analysis.)

In the first part of the discussion we examine vertical profiles of trace gases from two selected flights (RFO5
and RF06) that are associated with air mass transport and focus on enhancements in mixing ratios of anthro-
pogenic tracers in the boundary layer and lower FT (up to ~4 km). For each of the flight profiles, we use a suite
of organic trace gases to demonstrate the contrast between the relatively unperturbed, aged air characteris-
tic of tropical Pacific atmosphere, and the polluted air transported to the region.

Two groups of comparisons are made to help quantify the trace gas enhancements associated with the
migrating shear lines. Figure 5 shows the first group of comparisons using probability density functions of
six selected trace gas data in the lowermost 4 km. In Figure 5, the RFO5 and RFO6 measurements in the pro-
files ahead of the shear lines (designated as reference profiles) are compared to all CONTRAST measurement
within lowermost 4 km. This comparison is made to provide a qualitative perspective of the amount of the
selected species in the reference profiles in RFO5 and RF06 relative to the TWP background. These species
are selected to represent a wide spectrum of atmospheric lifetimes (from 2 to 3 days for toluene to just under
a year for methyl bromide) to demonstrate a likely lifetime dependence in the enhancements. Despite the
fact that number of data points available from RFO5 exceeded that of RF06, all distributions show a
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Figure 4. Vertical profiles of selected volatile organic compounds and CO during the CONvective TRansport of Active Species in the Tropics (CONTRAST) research
campaign. Highlighted data are from RFO5 (blue) and RFO06 (red). The filled circles represent data collected using Advanced Whole Air Sampler (AWAS) instru-
ment, the open circles are from Trace Organic Gas Analyzer (TOGA) instrument. Carbon monoxide profiles represent high-frequency data set from the CO-VUV
instrument at 1-s resolution.

consistent trend for defining the background conditions: RFO5 shows peaks at lower mixing ratios compared
to the entire campaign data, while RF06 data are shifted to higher mixing ratios. In the case of RF05, averaged
measurements from profiles taken in front of the disintegrating shear line (south of the shear line) were
among the lowest collected during the research campaign and therefore could be considered as a proxy
for near background tropospheric values of the TWP, during CONTRAST mission period.

The second group of comparisons is shown in Figure 6, where the profiles of benzene and toluene measured
ahead and behind the shear lines are compared for RFO5 and RF06, respectively. The large differences in the
mixing ratios of both tracers between the polluted and the reference profiles in the lowermost 4 km highlight
the significant pollution transport associated with the migrating shear lines.

When comparing the two flights, the RF05 is found to contain lower mixing ratios of anthropogenic tracers
overall than the measurements in RF06, but the ratio of polluted to background trace gas concentrations were
higher during RF05 (see section 4.3; Figure 3s).

Although not shown in figures, high mixing ratios of CO (in excess of 125 ppbv) and anthropogenic trace
gases north of the shear line in both RFO5 and RF06 represented the most polluted conditions during the
entire campaign. For example, mixing ratios of NMHCs during RF06 were the highest measured in the
entire domain. Similar trend can be observed in mixing ratios halocarbons originating from solvent
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Figure 5. Probability density function plotted for selected volatile organic compounds and carbon monoxide. Data in gray represent all CONvective TRansport of
Active Species in the Tropics measurements under 4 km, while blue and red represent RF05 and RF06 reference profile (background) measurements (similarly

<4 km), respectively.

evaporation, e.g., tetrachloroethylene (C,Cl;), 1, 2-dichloroethane [C,H4Cl;], chlorobenzene [CgHsCl],
carbon tetrachloride [CCl4], and methylene chloride [CH,Cl,], with values measured during RF06 and
RFO5 being highest of the campaign for the first 3 compounds listed.

Significant enhancements of OVOC tracers strongly correlated with both NMHCs and CO north of the shear
line in RFO5 and RF06 were also observed, suggesting continental and predominantly industrial and urban
emission sources (Ashfold et al., 2015; Gregory et al., 1996; McCulloch et al., 1999).

Overall, the anthropogenic emission tracer enhancements observed during CONTRAST were found predomi-
nately in the shorter lived (lifetimes of days to a few months) gases. Longer lived trace gases maintained a
uniform vertical profile, with no measurable enhancements in the lower troposphere. This behavior will be
analyzed in more detail in section 4.3.

4.2, Results of Photochemical Age Calculations, Back Trajectory Analysis, and Wintertime
MOPITT Data

In this section we combine the results of kinematic back trajectory analysis and calculations of photochemical
ages to characterize air masses sampled during RF05 and RF06 and to identify potential locations of source
emissions. We will first assess the impact of the well-organized shear line sampled during RF06, where mea-
sured concentrations of trace gases significantly exceeded those during RF05, followed by a discussion of
impacts that shear line passages have on the background conditions characteristic of Western Pacific atmo-
sphere, using the RF0O5 case as an example.

For the necessary starting conditions of our photochemical age calculations, we use a combination of VOC
data from a variety of locations throughout China, Japan, and South Korea, including ESRL station data. We
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Figure 6. Vertical profiles of benzene and toluene mixing ratios for flights (top) RF05 and (bottom) RF06. Measurements on
the south (unpolluted) side of the migrating shear line are plotted in green symbols. The black symbols are
measurements from the north (polluted) side of the shear line. Advanced Whole Air Sampler (AWAS) data are plotted in
filled circles, and Trace Organic Gas Analyzer (TOGA) data are shown as open circles. The error bars show the reported
uncertainties.

choose only winter and early spring season measurements to represent source emission ratios for our calcu-
lations (see Table S5 for full description of source mixing ratios).

4.2.1. Analysis of the Chemical Enhancements and Photochemical Age Calculations for RFO5 and RF06
As noted earlier, vertical profiles north of the advancing shear line during RF06 displayed marked increases
in mixing ratios of reactive trace gases in the lowest altitudes (>800 hPa; <2 km; Figures 6c and 6d). Air in
this lower altitude region featured an average 14-fold increase in mixing ratios of NMHCs, 5-fold increase
in mixing ratios of aromatic HCs, a 2-fold increase in mixing ratios of OVOCs, and further and variable
increases in other tracers associated with anthropogenic emissions (Table S2) compared with background
conditions ahead of the shear line. Similar to RF06, on the north side of the dissipating shear line bound-
ary during RF05, enhancements in pollutant trace gases in the lowermost parts of the profile (>700 hPa;
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TaI?Ie1 . . ) <2.5-3 km) were observed (Figures 6a and 6b). Chemical gradients
Estimates of the Photochemical Ages of the Air Masses Intercepted on the North Side across the shear line boundary during RFO5 were stronger than

f the Shear Line During Flights RFO5 and RF06
SIS el B R an those observed during RF06 (30-time average increase in NMHC

Research flight 5 Research flight 6 mixing rations, 10-time increase in aromatic HCs, and 4-time
Source CsHg/CgHg n-Cs/C3  CyHg/CeHs  n-Cs/Cs increase for OVOCs), despite the fact that concentrations of tracers
- on the north side of the front were lower than during RF06. The
China diff hemical gradi bserved in th fligh
Barletta et al. (2005) 56 39 ifferent chemical gradients we observed in the two flights are
Zhang et al. (2012) 55 3.9 related to the meteorological conditions represented by the
Li et al. (2014) 32 1.5 reference profiles in the two flights. South of the dissipating
Lietal. 2015) 54 83 38 5.7 frontal boundary during RFO5 was an area of active convection.
e > S5 During RFO5 a weak cross-equatorial flow was established with
Jia et al. (2016) 35 9.9 1.9 74 h | ind ili . h h h f
Zhang et al. (2017) 38 21 southeasterly winds prevailing in the area where the reference
Liu et al. (2017) 48 59 3.2 33 profile was sampled. Embedded in that flow, a mesoscale
Gao et al. (2018) 5.8 7.0 4.1 44 convective system was moving over Guam with ozone showing

4710 78£17 31£10 52+18 strong signs of convective control (Pan et al, 2015). These

LE[EEIT conditions led to a very well mixed reference profile typical of the
Kagawa et al. (2005) 49 3.0 ical h Ref al led duri
Ohura et al. (2006) 8.7 70 remote tropical atmosphere. Reference profiles sampled during
Shirai et al. (2007) 83 6.0 6.7 35 RF06, on the other hand, still contained diluted pollutants in the
Morino et al. (2011) 9.7 4.1 8.1 1.5 BL and lowermost FT left over from previous shear line passage
Uchiyama et al. (2015) 74 5.7 on the 22 January.
77+18 4113 59+19 25+14
South Korea For each flight, we use measurements of toluene, benzene, pro-
Na et al. (2002) 6.7 10.2 5.1 7.6 pane, and n-pentane on the north side of the advancing front
Lee et al. (2005) 8.3 6.6 averaged over lowermost 1 km (<900 hPa), where the largest
i @, (AU 22 e enhancements were observed, to represent mixing ratios at
Byeon et al. (2010) 5.7 40 i -t ired i i (1) (secti 25). R Its of th
Anmyeon-do (AMY), 8.0 35 ime = t, rf.-qunre in equa |qn section 2.5). es.u s of these
ESRL 2014 photochemical age calculations are presented in Table 1.
Tae-ahn Peninsula (TAP), 11.0 8.6 Calculations suggest a faster transport of pollutants from the
ESRL 2014 source of emission in the case of RF06, compared to the RFO5,

7617 9.7+16 59+17 6.6 +2.7

with photochemical age of 4.8 + 1.6 and 7.0 £ 1.8 days for RF06
70+ 18 4.8 £ 1.6 days

and RFO5, respectively.

Note. Calculations are based on toluene/benzene (T/B) and n-pentane/propane . .
(n-C5/C3) ratios, using combinations of wintertime volatile organic compound It should be pointed out that calculated photochemical ages vary

measurements from China, Japan, and South Korea for starting mixing ratios. regionally due to the differences in estimated source emissions
from China, Japan, and South Korea. T/B source ratios over China
are systematically lower (~1), than those based on data from
South Korea (~4) and Japan (~6), which in turn results in differences in calculated photochemical ages.
The same is true for n-Cs/Cs calculations with ratios being lowest for sources in Japan (0.09), slightly
higher based on source mixing ratios measured in China (0.1), and highest over South Korea (0.3).
This regional variability of source composition and uncertainty in specific source regions contributes
uncertainty to the calculated photochemical ages, as mentioned in section 2.6.

As well as the uncertainties in the source mixing ratios, the influences of mixing and dilution cannot be
completely eliminated. Three different scenarios should generally be considered: (1) injection of freshly
emitted HCs into the air parcel from other sources during transport, (2) mixing with background air,
and (3) dilution with air, containing partially aged HCs. Based on the back trajectory analysis, scenario
(1) is unlikely, as in case of both flights air parcels rapidly move away from the continental landmass,
and continue on the trajectory away from major source regions. Options (2) and (3) on the other hand
present more likely scenarios. In both cases, dilution by more aged HCs will cause photochemical clocks
since the last encounter with a fresh source to run faster, affecting more reactive HC to the lesser extent
than the more reactive one out of the pair (Parrish et al, 1992). Parrish et al. (2007) showed that the
evolution of ratios of fast reacting alkanes (Cs5-Cg) resulted in strongly kinetic behavior, while aromatic
ratio relationships showed rather strong deviations from it, attributed to the effects of mixing. This
implies that the photochemical age calculations based on the T/B benzene ratio may contain a stronger
mixing bias, compared to the calculation utilizing Cs/C3 HC pair, but in both cases estimated ages would
be shorter times if mixing parameterization is included.
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4.2.2. Back Trajectory Analysis and Consistency With MOPITT Observations

Differences in mixing ratios across the shear line boundaries observed during both flights suggested different
origins of the air masses to the north and south of the shear line, as well as within the profile itself. The cal-
culated back trajectories for RF05 and RF06, generated between the surface and 10 hPa at 5-s intervals, are
presented in Figure 7.

For RF06, back trajectories generated along the flight track within the vertical profiles north of the shear
line (17°N, 138°E) confirmed different air mass histories for samples below 800 hPa (where enhancements
of reactive trace gases were observed) and the FT above 3 km, which closely approximated background
levels. In the RF06 case three different pathways can be identified. The first pathway includes parcels
arriving at the flight track at 400 hPa and above which seem to originate at <400 hPa over portions of
continental Southeast Asia and <250 hPa over tropical western and central Pacific. The second pathway
includes parcels arriving at the flight track between 750-400 hPa from W-NW. These parcels also show
anticorrelated CO and ozone, which suggests some degree of mixing with stratospheric air. Finally, the
third pathway contains air parcels sampled below 800 hPa. These parcels are embedded in the midtropo-
spheric westerly flow carried over from central and northern Asia, as shown by the 7-day (and 10-day)
back trajectory analysis (see Figure S3. for extended 10-day back trajectories). These trajectories reach
the nearest potential source region in Japan at -3 days. From Japan, the air mass rapidly proceeds toward
the tropics, wrapping around an intensifying anticyclone to the west.

Back trajectory analysis for the chemically perturbed profile during RFO5 follows a generally similar flow pat-
tern to RF06 (with the exception midtropospheric parcels between 400 and 700 hPa passing over India in
RF06). Trajectories for RFO5 can be divided into two categories based on their source region. Trajectories gen-
erated for air parcels sampled at <700 hPa represent a portion of air with a clear marine source, originating
from the MBL and lower (>500 hPa; <5 km) FT of the central Pacific. This air had been trapped in a persistent
surface anticyclone and was convectively uplifted with the passing mesoscale convective system. Parcels ori-
ginating >700 hPa in the measurement profile represent surface continental sources. Based on the trajectory
model, parcels originate at high levels (<500 hPa) in areas of northern and central Asia, as well as the area
north of Japan over the Sea of Okhotsk. As trajectories are carried with the north-westerly flow, they start des-
cending toward the surface (>600 hPa; <3.2 km), while approaching heavily industrialized areas of NE China,
North and South Korea, and southern and central Japan approximately 6 days before sampling during RF05.
At T-5 days, trajectories from central Asia merge with trajectories from the Sea of Okhotsk just off the coast of
Japan, and they make their way to the research domain over the next 4 days, being steered by eastward mov-
ing low and high pressure systems.

Areas of East Asia where trajectories interact with the continental landmass, also corresponds with the high
levels of CO from MOPITT observations from >900 hPa. CO mixing ratios are in the 130-200 ppbv range over
central and northern Japan and further west over southern Siberia toward Kazakhstan, as well as well in
excess of 200 ppbv in the regions around NE China, and SE Russia, where parcel trajectories are indicated
to flow within the lower FT, below 500-600 hPa (Figure 8).

Summarizing dynamical and photochemical data sets from the two flights, we observe similar patterns of
air mass movement with consistent origins and sources in urbanized areas of eastern and northern Asia.
The different impact between the two cases appears to be modulated by the speed and strength of shear
line progression. Both dynamical and chemical analyses of the RFO6 data indicated a quicker transport of
polluted air toward the tropical western Pacific. The faster transport explains the higher mixing ratios of
the reactive gases that were measured, as the air mass had less time for photochemical degradation
and mixing.

4.3. Relationship Between Transport Time and Enhancement Factor of Trace Gases

In this section we use the trace gas observations from RF05 and RF06 to investigate a relationship between the
chemical gradients of reactive trace gases across the frontal boundary, their photochemical lifetimes, and the
calculated transport times from their emission sources. To accomplish this, we introduce the notion of an
Anthropogenic Enhancement Factor (AEF), defined as a fractional change in mixing ratio of a trace gas
between environments that are affected versus unaffected by the shear line. The AEF is calculated by
equation (2):
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Figure 7. Seven-day back trajectories for RFO5 (top) and 3-day back trajectories for RF06 (bottom) from locations along the flight profiles on the north side of the
shear line, color-coded by the initial pressure during the profile measurement. Top panel for each set of trajectories shows the altitude-longitude sections, with
the same color coding. Right side panels on each illustrate the latitude pressure cross sections. The trajectories displayed are computed every 5 s along the flight
track, and every third trajectory is plotted (see supporting information Figure S2 for longer-period back trajectories).
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Figure 8. Measurements of Pollution in the Troposphere (MOPITT) retrieved surface layer (>900 hPa) mixing ratios (day
and night combined) from January 2014, utilizing both thermal and near-infrared radiances (Deeter et al., 2017). Mixing
ratios in excess of 400 ppbv over industrialized areas of eastern and southeastern Asia, with areas to the north, east, and
west in the 200-ppbv range.

(No— Ny
AEF_( " ) @

where:
Np - mixing ratio of a gas behind the shear line (polluted side of the frontal boundary);
Nf - mixing ratio of a gas in front of the shear line (unaffected environment).

For this analysis we are only concerned with gases having predominantly anthropogenic sources, with low
secondary production potential (OVOCs are rejected on this basis). We group these gases into lifetime ranges
and then average the calculated enhancement factor across all gases assigned to the same lifetime bin.
Despite the meteorologically driven differences between the two flights, we are assuming 7.0 + 2.0 day trans-
port from source to the location of the measurement for RFO5 and 4.7 + 1.9 days for RF06, as established ear-
lier using calculations of photochemical aging, though trajectory calculations suggest a potentially younger
age for RF06 of approximately 3 days. The overestimate from our photochemical clock approach is expected
to result from mixing of the gases in the polluted air mass with nonzero background concentrations (as dis-
cussed in section 4.2.1).

Both cases show a unimodal distribution with well-distinguished peaks. RF06 shows highest AEFs for tracers
with photochemical lifetimes between 3 and 4 days, and the RFO5 AEF distribution maximizes for compounds
with lifetimes of 5-6 days (Figure 9), falling within a range suggested by both back trajectory model and che-
mical estimates of the age.

The AEF distribution has useful and interesting information. For both flights, the peak of the AEF distribution
does not fall on the very short or very long-lived species. It is clear that the AEFs will maximize very early in the
transport history for trace gases with short lifetimes and will remain small for trace gases with long lifetimes
and relatively small emissions. For those with medium lifetimes (days to weeks), however, the AEFs will
depend on emission intensity, transit time, and definition of Ny (mixing ratio of a trace gas in the background
atmosphere, here represented by the measurement ahead of the advancing front).

With an appropriate choice of Ny, in a theoretical case utilizing an idealized photochemical loss function, the
above relationship results in an AEF of any particular trace gas maximizing at a transport time similar to the
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Figure 9. Anthropogenic Enhancement Factor (AEF, as defined in section 5.3) for flights RF05 (top) and RF06 (bottom) as a
function of photochemical lifetimes of a selected subset of trace species.

photochemical lifetime of the gas in the atmosphere. This relationship seems to be critically dependent of the
prescribed values for background, as choice of a background that results from just long photochemical decay
does not produce the observed relationship. As has been shown from other studies of VOC ratios and
photochemical ages (Johnston et al., 2002; McKeen & Liu, 1993; Parrish et al.,, 1992, 2007), loss of a trace
gas in the atmosphere combines mixing with background air plus photochemical processing, and the low
mixing ratio end-member (background) is typically some concentration higher than 0. Thus, the
background concentration is controlled from a variety of mixing processes and photochemical loss.

The above result, showing agreement between photochemical age calculations, back trajectory analysis and
AEF distribution peak demonstrates applicability of this theoretical concept to the real atmosphere, making it
a potentially useful tool to assess impact of pollution plumes on the remote atmosphere.

5. Summary, Conclusions, and Broader Implications

Analysis of data collected during CONTRAST campaign provided the opportunity to study pathways of East
Asian pollution transport into the deep tropics during boreal winter. During two flights of the CONTRAST
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research campaign (RFO5 and RF06) two consecutive shear line passages were observed, which were marked
by significant increases of mixing ratios of anthropogenic tracers in the lowermost altitudes of the measure-
ment profiles taken north of the advancing shear line.

Profile measurement taken on the north side of the stalled shear line (17°N, 138°E) during RF06 featured
very sharp gradients in trace gas mixing ratios across the shear line boundary with enhancements
confined to the lowermost troposphere (~2,000 m or >800 hPa). The most pronounced gradients were
in mixing ratios of NMHCs, OVOCs, and a number of short-lived chlorinated solvents, all of which are
identified as signatures of urban and industrial pollution. Backward trajectories calculated for this flight
indicate that the emissions that contributed to the enhanced mixing ratios are most likely from indus-
trialized areas of continental East Asia and northern Japan (~3-day transit time) and northeast Asia
(>4.0-day transit time), and also possibly including emissions over central Siberia toward Europe
(>10 days). The photochemical age of the intercepted air mass calculated using two different HC pairs
was estimated to be on the order of 48 + 1.6 days, in reasonable agreement with the back
trajectory model.

Chemical tracer measurements taken during RFO5 also saw marked enhancements of the mixing ratios of
reactive trace gases in the lowermost part of the profile taken on the north side of the deteriorating front
(<700 hPa), albeit mixing ratios measured were significantly lower compared to RF06. We attribute this to
the fact that two shear line passages represent two different stages of the shear line evolution and overall
strength of the front. Back trajectory analysis and photochemical age calculations indicate longer transport
time from both the dynamical (~7 days until continental encounter) and chemical (photochemical day
equivalent of 7.0 + 1.8 days) data sets. Back trajectories in the case of RF05 similarly suggested influences
from urbanized areas of continental East and northeast Asia (North and South Korea, E-NE China, and
Mongolia) and Japan. Additionally, use of TERRA MOPITT instrument TIR/NIR January surface layer CO mixing
ratios confirmed the hypothesis of mixing with anthropogenically influenced air based on the surface CO
mixing ratios in the region well in excess of 150ppbv.

To quantify the contribution of transported anthropogenic tracers associated with migrating shear lines, we
have defined an index, AEF, which represents the fractional change of a chemical species following each
shear-line passage. This index shows a strong relationship with reactive trace gases photochemical lifetime
and appears to have a unimodal distribution, which maximizes around the estimated photochemical life-
times comparable to the transport duration as established using dynamical and chemical approaches. This
relationship provides a useful diagnostic tool in studying atmospheric transport processes and should be
examined in future studies.

These results document a mechanism of transport of anthropogenic pollution from midlatitudes of East Asia
into the tropics during Northern Hemisphere winter. Together with previously published work (Ashfold et al.,
2015; Lelieveld et al., 2001; Martin et al., 2002; Pochanart et al., 2004), we show influences of pollution origi-
nating over South and South-East Asia on both the Indian Ocean and the North Pacific. This implies a large
spatial influence of the emissions originating over different parts of Asia on regional and global air quality.
The mechanism discussed in this paper implies extensive (due to high frequency of shear line passages;
Compo et al, 1999) transport of such pollution toward cleaner regions of Tropical Western Pacific, when
extensive convective activity can deliver these pollutants directly into the TTL (Aschmann et al., 2009;
Ashfold et al., 2012; Tissier & Legras, 2016; Pan et al., 2017).
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