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Competitive Swarm Optimizer with Mutated Agents for Finding 
Optimal Designs for Nonlinear Regression Models with Multiple 
Interacting Factors

Zizhao Zhanga, Weng Kee Wonga,*, Kay Chen Tanb

aDepartment of Biostatistics, University of California at Los Angeles, Los Angeles, California 
90095-1772, U.S.A

bDepartment of Computer Science, City University of Hong Kong, Hong Kong

Abstract

This paper proposes a novel enhancement for Competitive Swarm Optimizer (CSO) by mutating 

loser particles (agents) from the swarm to increase the swarm diversity and improve space 

exploration capability, namely Competitive Swarm Optimizer with Mutated Agents (CSO-MA). 

The selection mechanism is carried out so that it does not retard the search if agents are exploring 

in promising areas. Simulation results show that CSO-MA has a better exploration-exploitation 

balance than CSO and generally outperforms CSO, which is one of the state-of-the-art 

metaheuristic algorithms for optimization. We show additionally that it also generally outperforms 

swarm based types of algorithms and an exemplary and popular non-swarm based algorithm called 

Cuckoo search, without requiring a lot more CPU time. We apply CSO-MA to find a c-optimal 

approximate design for a high-dimensional optimal design problem when other swarm algorithms 

were not able to. As applications, we use the CSO-MA to search various optimal designs for a 

series of high-dimensional statistical models. The proposed CSO-MA algorithm is a general-

purpose optimizing tool and can be directly amended to find other types of optimal designs for 

nonlinear models, including optimal exact designs under a convex or non-convex criterion.

Keywords

c-Optimal Design; D-Optimal Design; Large Scale Global Optimization; Optimal Exact Design; 
Swarm Optimization

1 Introduction

Swarm algorithms are increasingly used in various disciplines to optimize different types of 

problems. They are easy to implement and often able to find good quality solutions to 
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complex optimization problems without many technical assumptions. For example, the 

objective function does not need to be differentiable or separable. The flexibility of these 

algorithms enables them to tackle different types of real-world optimization problems in 

engineering and computer science, and increasingly in other disciplines as well.

Particle Swarm Optimization (PSO), proposed in [13], is one of the most well known swarm 

algorithms inspired by nature. This simple algorithm is initiated by generating a swarm of 

particles (candidate solutions) in the user-defined search space. Particles coordinate and 

move to regions near the perceived optimum iteratively based on each particle’s historical 

pathway and trajectory of the whole swarm. PSO has been applied successfully in many 

fields, for example, in blind signal separation, power dispatch and model variable selection 

[17, 23, 24, 59, 61]. The dimensions of these problems range from 5 to 30.

A limitation of PSO is that it can prematurely converge to a local optimum without having 

adequately explored the search space [1, 15, 36, 38, 68]. An effective algorithm explores the 

space sufficiently and has good exploitation properties to locate the optimum when it is in 

the proximity. Frequently, a trade-off between the two competing objectives is required 

because algorithms that are good at space exploration have limited resources to sufficiently 

exploit promising areas where the optimum is and algorithms with aggressive exploitation 

strategy can easily get stuck at a local optimum. [6, 67] showed that the premature 

convergence issue of PSO is more problematic when there are many variables to optimize in 

a high-dimensional space.

Many strategies have been proposed to improve PSO performance for tackling complicated 

optimization problems. They include parameter adaptation [4, 49, 53, 54, 63], hybridization 

with other optimization methods [20, 35, 47, 50] and swarm topological redesign [26, 27, 

57, 71]. Simulations have shown that these amended PSO algorithms, among others, 

perform better than the original version. One of the most effective enhancements is the 

Competitive Swarm Optimizer (CSO), proposed by Cheng et al. (2015), to address the 

premature convergence issues in PSO. CSO adopts a pairwise competition mechanism to 

update particles at every iteration. Compared to PSO and most of its variants, CSO has a 

simpler structure and its updating strategy has been shown to more effective. In particular, 

many simulations using tests on a series of benchmark functions have shown that CSO can 

find significantly better solutions than PSO and other EAs for different types of problems up 

to 5000 dimensions [8, 39, 58, 76].

One way memetic algorithms work is by organically integrating local search strategies with 

evolutionary global search methods to find a global optimum. Memetic computing has been 

shown capable of solving complicated optimization problems with much less computing 

resources [7, 28, 45] and is now extensively applied in many cutting-edge research [16, 25, 

64, 78]. Our work hybridizes CSO with a local search to bring about a more effective search 

for finding challenging optimal design problems in statistics.

More specifically, we proposes an enhancement of CSO by adding mutated agents (MA) to 

CSO and refers the algorithm as CSO-MA. Mutated agents are randomly selected loser 

particles from pairwise comparisons at each iteration in CSO-MA and they typically make 
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the swarm more diversified and result in a more effective local space search that inspired by 

memetic algorithms. An advantage of having mutated agents is that they do not disturb the 

swarm’s movement if they cannot find promising areas. Using several test functions, our 

simulation results show that CSO-MA tends to outperform CSO and this would in turn 

imply that CSO-MA should also outperform many state-of-the-art EAs. As an application, 

we apply CSO-MA to find c-optimal designs for estimating selected coefficients in high-

dimensional nonlinear regression models for count outcomes. The design methodology is 

general and can be applied to other regression models and design criteria.

Section 2 reviews the Particle Swarm Optimization and Competitive Swarm Optimizer. 

Section 3 describes how mutated agents we propose can potentially improve the algorithm’s 

performance and introduces the new algorithm Competitive Swarm Optimizer with Mutated 

Agents. In section 4, we conduct a simulation and compare performance of CSO-MA with 

several of its competitors using benchmark functions up to 1000 dimensions. Our results 

suggest CSO-MA generally outperforms other popular algorithms by a wide margin and able 

to produce significantly better solutions. In Section 5, we apply CSO-MA to find various 

types of optimal designs for nonlinear statistical models, including those that require about 

100 or more variables to optimize. Not all our numerical results are reported for space 

consideration and they all indicate that CSO-MA was effective in finding optimal designs 

not yet known in the literature. Section 6 contains a summary.

2 Swarm Optimization

Throughout, we assume the objective function is f (x) and we want to solve the minimization 

problem

min
x ∈ Ω

f(x),

where Ω ⊂ ℝD is a user-selected compact set and D is the number of variables to optimize in 

the problem.

Most swarm algorithms initialize by generating at random a user-selected number of, say n, 

particles as candidate solutions in Ω. These particles or points interact with one another and 

update their positions by some rules. For instance, the swarm could move towards current 

best particle positions or historically best areas by adding some random search at each 

particle. Our interest is in swarm-based algorithms.

2.1 Particle Swarm Optimization and Its Variants

For classic PSO, after the user randomly generated a swarm of selected size, the algorithm 

updates every particle xi by referring its historical movement information and temporary 

global best solution. Every particle is assigned with a velocity vector v, which is also 

randomly generated when initialization. Considering particle i at iteration t, it will change its 

velocity vi
t + 1 and move to a new position xi

t + 1 by
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vi
t + 1 = ωvit + β1R1 ⊗ pbestit − xit + β2R2 ⊗ gbestt − xit

and xi
t + 1 = xit + vi

t + 1,

where R1, R2 are random vectors whose elements are independently drawn from the 

uniform distribution U(0, 1); operation ⊗ means element-wise multiplication; ω, β1, β2 are 

parameters reflecting influence of different components on changing particle’s next step. 

The best position that each particle has visited till iteration t is the personal best pbestit, i = 1, 

· · · , n and the best position that the swarm of particles has ever reached till iteration t is the 

global best gbestt. The term best refers to positions where the value of the objective function 

or its fitness value is smallest. These two centers influence every particle’s movement. By 

adding stochastic components R1 and R2 into the algorithm, these particles have a chance to 

explore unseen areas where they might be able to capture better solutions.

How to tune parameters in a metaheuristic algorithm is a perennial issue. There are 

recommendations on how to tune the parameters in PSO for a more effective search; some 

examples are [5, 12, 53]. Some proposed that these parameters be modeled as a function of 

the iteration number t or the recent best objective values or as topological distances among 

the particles [14, 40]. Others argued for having a set of constant parameters, such as ω ∈ 
[0.8, 1.2], β1 = β2 = 2 and showed that they frequently worked well [13].

It is known that PSO is prone to premature convergence [21, 31, 79]. Typically, PSO does 

the exploration in a few iterations and then proceeds to exploit [42], possibly resulting in a 

decrease of the quality of the solution. This premature convergence phenomenon is likely 

due to choice of tuning parameters or its strong connection with the two centers pbest and 

gbest, which may be exerting undue influence and not changing frequently enough during 

iterations, see, for example, [8, 43, 70].

2.2 Competitive Swarm Optimizer

[8] proposed CSO to tackle the premature convergence issue by recasting the updating 

formulas. Like PSO, CSO first generates a swarm of n particles at positions x1, · · · , xn with 

random velocities v1, · · · , vn in Ω. In each iteration, we randomly divide them into n
2  pairs 

and compare their objective function values. We identify xit as winner and xjt  as loser if these 

two are competed at iteration t and f(xit) < f(xjt). Winner retains status quo and the loser 

learns from the winner. The two defining equations for CSO are

vj
t + 1 = R1 ⊗ vjt + R2 ⊗ (xit − xjt) + ϕR3 ⊗ (xt − xjt)

and xj
t + 1 = xjt + vj

t + 1,

where R1, R2, R3 are all random vectors whose elements are drawn from U(0, 1); operation 

⊗ also represents element-wise multiplication; vector xt is simply the swarm center at 

iteration t; social factor ϕ controls the influence of the neighboring particles to the loser and 
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a large value is helpful for enhancing swarm diversity (but possibly impacts convergence 

rate). This process iterates until some stopping criteria are met.

There are 3 tuning parameters ω, β1, β2 in PSO and only one parameter ϕ in CSO, 

suggesting that it is simpler to tune CSO. Further, the transitory data PSO needs to keep 

track of are stored in a n × D matrix x, a n × D matrix v and a n × D matrix pbest whereas 

CSO needs two of these implying that a smaller memory space is required to run CSO.

Simulation results have shown that CSO either outperforms or is competitive with many 

state-of-the-art swarm algorithms, such as PSO with Constriction Factor (PSO-CO), 

Gaussian Bare Bones PSO (GBBPSO), or Quantum PSO (QPSO). This conclusion was 

arrived at after comparing CSO performance with state-of-the-art algorithms using a variety 

of benchmark functions with dimensions up to 5000 [8, 39, 58, 75, 76, 77]. They showed 

that CSO was frequently not only the winner but also required significantly less runtime.

CSO is relatively new but has many exciting applications. For example, [18] applied CSO to 

select variables for high-dimensional classification models; [69] used CSO to study a power 

system economic dispatch, which is typically a complex nonlinear multivariable strongly 

coupled optimization problem with equality and inequality constraints, and [29] employed 

CSO to find the optimal installation of multiple distributed generation units in radial 

distribution network.

3 Competitive Swarm Optimizer with Mutated Agents

Genetic algorithm (GA) is another important branch of evolutionary algorithms. Almost all 

versions of GA operate based on biological-inspired behaviors such as mutation, crossover 

and selection to evolve better solutions [65]. There have been a lot of inspiring GA that 

performed surprisingly well in various fields [11, 19, 32, 41].

We incorporate ideas from the genetic algorithm to enrich CSO and call the enhanced 

version of CSO as Competitive Swarm Optimizer with mutated agents or, in short, CSO-

MA. After pairing up the swarm in groups of two at each iteration, we randomly choose a 

loser particle p as an agent, randomly pick a variable indexed as q and then randomly change 

the value of xpq to either xmaxq or xminq, where xmaxq and xminq represent, respectively, 

the upper bound and lower bound of the q-th variable, respectively. This change is similar to 

the “mutation” step in GA. A conservative mutation strategy is to randomly reassign each 

loser particle to a random position on the boundary. If the current optimal value is already 

close to the global optimum, this change will not hurt since we implement this experiment 

on a loser particle, which is not already leading the movement of the whole swarm; 

otherwise, this chosen agent restarts a journey from the boundary and has a chance to escape 

from a local optimum.

We apply CSO-MA to minimize functions that are not necessarily separable or convex and 

they may have multiple local optima. The computational complexity of CSO is O(nD), where 

n is the swarm size and D is the dimension of the problem. Since our modification only adds 

one coordinate mutation operation to each particle, its computational complexity is the same 

as that of CSO, see section 4. Algorithm 1 displays a pseudo code of CSO-MA.
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Algorithm 1

The Pseudo Code for CSO-MA

A swarm of n particles.

x ← Randomly assign initial positions in space to particles.

v ← Randomly assign initial velocities to particles.

while not stopping criteria do

 Randomly divide the swarm into 
n
2  pairs.

 for each pair do

  Compare their objective function values and set the one with smaller value as winner and the other as loser.

  Update loser particles.

  if xloser out of searching space then

   xloser ← position at boundary.

  end if

  Randomly choose a loser xp and a coordinate index q.

  Randomly change q-th variable of xp to either xmaxq or xminq, where xmaxq, xminq represent upper bound and 
lower bound of q-th variable.

 end for

end while

3.1 Parameter Tuning

Tuning parameters is a perennial and critical issue for meta-heuristic algorithms because a 

poor choice for them can result in very poor performance. Most of these algorithms have at 

least two or three parameters, which makes a systematic understanding on how they interact 

to impact the algorithm’s performance tricky. [8] provided a thorough experiment choosing 

parameters for CSO to solve problems of different scales whose results clearly exhibited 

parameters’ various influence.

We experimented with tuning values for CSO-MA’s parameters ϕ and swarm size n and 

found that the original default values for the tuning parameters for CSO for ϕ and n can be 

reliably transferred to CSO-MA; they are provided later on.In the next section, where we use 

several benchmark functions to ascertain performance of CSO-MA, we vary the size of n to 

determine whether the performance of the algorithms depend on the dimension of the 

optimization problem. Simulations show that, under such a setup, a change of ±0.05 in the 

value ϕ, as long as it is non-negative, does not affect CSO-MA’s performance. Our 

experience is that our tuning parameters seem effective for the problems we tried and note 

that when a parallel-computing program or machine is available to run the algorithm, a large 

value of n should be used. In the next section, we also discuss whether it is helpful to have 

the number of agents that mutate at each iteration as an additional parameter in CSO-MA 

and whether it has an impact on the solution quality.
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4 Simulation

We now use simulation to compare performance of CSO-MA with a few state-of-the-art 

swarm based competitors using benchmark functions commonly used in the literature [62, 

73, 74]. We also include a non-swarm based algorithm, Cuckoo search, in our comparison.

We use eight benchmark functions with different mathematical properties and consider cases 

when they have dimensions D = 100, 500 and 1000. Functions f1, f2, f3 are the Schwefel 

N.2.21 function (non-differentiable, non-separable), the Rosenbrock function (non-

separable), and the Sphere function. They are defined on the space [−100, 100]D, where D 
refers to the dimension of the function. Function f4 is the Rastrigin function (multimodal) 

and it is defined on [−5.12, 5.12]D. Function f5 is the Schwefel function (non-convex, 

multimodal) and it is defined on [−500, 500]D. Function f6 is the Gramacy & Lee function 

(non-convex, multimodal) and it is defined on [0.5, 2.5]D. Function f7 is the Griewank 

function (non-convex, non-separable, multimodal), defined on [−600, 600]D. The last 

function f8 is the Ackley function (non-convex, multimodal), defined on [−32, 32]D. Except 

for the Gramacy & Lee function which has a global minimum of −0.869D, all other 

functions have a global minimum of zero.

In addition to CSO, we compare CSO-MA algorithm with the following algorithms: (i) the 

Modified CSO (MCSO) algorithm, which replaces the CSO’s pairwise competition strategy 

by a triplet competition and is recognized as an improved CSO, (ii) the Cooperatively 

Coevolving PSO 2 (CCPSO2) algorithm that uses a Cauchy and a Gaussian distribution for 

sampling next-generation particles, respectively, at pbest and gbest [33], (iii) the Multilevel 

Cooperative Coevolution (MLCC) designed to conduct a self-adaptive neighborhood search 

for promising particles [73], (iv) the Separable Covariance Matrix Adaptation Evolution 

Strategy (SEP-CMA-ES), which generates new candidate solutions by sampling around old 

particles and the sampling covariance matrix is constructed by incorporating information 

from the current solution [52], (v) the Efficient Population Utilization Strategy for PSO 

(EPUS-PSO), which adjusts the population size according to the search results and (vi) the 

Dynamic Multi-Swarm (DMS-PSO) that adopts a dynamically changing neighborhood 

structure for each particle [22, 34]. The last algorithm that we include for comparison is the 

Cuckoo search algorithm, which uses Levy flights and random walk to update new solutions 

[72].

4.1 Simulation Setup

We followed recommendations for these choices from [8], which were based on a series of 

tests. Specifically, when optimizing 100D problems, we set n = 100, ϕ = 0. For higher-

dimensional optimization problems, they recommended the choice for these tuning 

parameters depend whether the objective function is separable or not. Specifically, for 500D 
problems, they suggested n = 250, ϕ = 0.1 for separable functions and n = 250 and ϕ = 0.05 

for non-separable functions; for 1000D problems, they suggested n = 500 and ϕ = 0.15 for 

separable functions and n = 500 and ϕ = 0.10 for non-separable functions. Since CSO-MA 

inherits the same particle updating strategy from CSO, we follow the tuning formula for 

CSO and show that under the same parameter setup, the optimization performance of CSO-

MA is improved. For MCSO, the tuning values of the parameters come from Table 3 of [39]. 
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For other algorithms, similar simulations have been carried out in [8, 39] and we adopt the 

same parameter tuning strategy there (we refer to the parameter setup for Cuckoo search 

algorithm suggested in [72]). For all algorithms, we stop running their runtime if it requires 

more than 5000D function evaluations, which was the guideline proposed in [60].

We implemented our algorithms using C++ on Xcode 9.0.1 and compiled them via GCC 

7.2.0. The codes are available upon requests from the first author. All experiments were run 

on Hoffman2 shared cluster housed at the University of California at Los Angeles. For each 

function of a specific dimension, we ran each algorithm 25 independent times and recorded 

all outcomes. The hardware employed is a 2.2 GHz Intel Xeon E5–2650v4 CPU and 8 GB 

memory.

4.2 Simulation Results

Tables 1, 2 and 3 present means and standard deviations of the values of the objective 

functions from our simulation. The bold numbers in each column represent the best 

performing algorithm among the nine algoirthms for minimizing each of the eight 

benchmark functions. Wilcoxon rank test, which is a nonparametric method to test whether 

there is a significant difference between two sets of measurements, was then used to 

compare performance of CSO-MA with other algorithms. At the 0.05 significance level, all 

results from all tests were significant in all three tables, suggesting the algorithm with the 

bold value finds a smaller objective function value then each of the other algorithms. The 

last column in each table with the heading “w/t/l” displays the number of times CSO-MA 

wins, ties and loses to the corresponding algorithm.

There is the celebrated “No Free Lunch” rule that says no algorithm can outperform all other 

algorithms in all situations. An interesting interpretation of this theorem is recently available 

in [37]. Table 4 ranks the ability of CSO-MA to minimize these benchmark functions 

relative to other algorithms. For instance, when minimizing functions with D = 100, CSO-

MA has 3 times defeating over all other eight algorithms, 3 times over other seven 

algorithms, 2 time over other six algorithms, etc., and we record such result as (3, 3, 2, …, 0) 

corresponding to the header “Rank”, “Rank2”, etc. A smaller rank indicates that the 

algorithm has a better minimization performance. We select algorithms that are best for 

optimizing these functions but also algorithms that are consistently highly ranked. The last 

column in the table displays the “Average Rank” and so indicates whether the algorithm can 

stably solve different optimization tasks.

From the summary tables, we observe that CSO-MA outperforms the other algorithms for 

minimizing function f1, f5 and f6 regardless of the dimension of the problem. For function f2 

and f4, CSO-MA provides competitive results among all the algorithms. Although CSO-MA 

did relatively poor minimizing functions f3, f7 and f8, its results are acceptable because these 

solutions are within 10−3 units from the true optimum. One possible explanation is that for 

these functions, CSO-MA sacrifices its ability to exploit at the expense of having the 

mutated agents do more space exploration. A summary observation is that CSO-MA is the 

most consistent optimizer among these algorithms since on average, it has the best 

performances in terms of minimizing the objective functions regardless of the dimension of 
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the problem, which is also confirmed by its average rank for minimizing the functions by the 

various algorithms.

Other algorithms perform differently for each benchmark functions, which again confirms 

the “No Free Lunch” rule. CSO, MLCC, CCPSO2 can consistently provide intermediate 

results while MCSO’s outputs are not stable. EPUS-PSO, DMS-PSO and Cuckoo have a 

relatively poor ability optimizing these commonly-used functions.

Throughout, we set 10−3 as the tolerance level and so solutions that are within ±10−3 from 

the true “optimal” value are deemed optimal. Under this rounding setup, CSO-MA’s overall 

performance relative to the other seven algorithms for optimizing the 24 benchmark 

functions becomes more impressive with 131 wins, 37 ties, 0 loses compared to the earlier 

more stringent criterion with 130 wins, 4 ties, 34 loses.

Additionally, we compare performance of CSO-MA with a recent state-of-the-art hybridized 

version of cuckoo search and particle swarm optimization proposed by [9]. When this hybrid 

algorithm is applied to to minimize 1000D f1 to f8, we obtain corresponding mean results of 

5.47E+01, 3.26E+03, 2.50E-08, 2.33E+02, 2.15E+05, −3.79E+02, 7.54E-04 and 2.66E-01. 

This shows that CSO-MA still outperofrms this hybrid PSO algorithm, which also has a 

more complicated structure and more tuning parameters, making it is less friendly to use in 

practice.

4.3 More Mutated Agents?

The change we make in CSO-MA algorithm is to randomly select an agent from the loser 

list at every iteration and reassign it at random to a point on the boundary. Our results have 

shown that this is an effective strategy. A natural question to ask is whether having more 

mutated agents at every iteration will further enhance performance of CSO-MA.

To address this question, we keep the benchmark test configurations fixed and compare 

CSO-MA results when m = 2, …, 10 versus the case when m = 1. The histogram in Figure 1 

shows the number of times significantly improved results are obtained via the Wilcoxon test 

for the 24 test cases when a larger value of m is used versus m =1. The top histogram (a) 

shows different values of m and the bottom histogram (b) shows corresponding results when 

m is expressed as a percentage of n. We observe from the two histograms results for the case 

when m = 1 generally outperforms other cases and further, a larger value of m tends to 

decrease the algorithm’s effectiveness. One explanation is that when m increases, there is 

less balance between exploration and exploitation. In particular, a larger value of m 
encourages the swarm to explore a larger area since more particles are assigned to random 

positions on the boundary and so more likely to find a better solution. This follows from the 

fact that for some optimization problems, like finding D-optimal designs to be discussed 

later, support points tend to be at the boundary of the search space. However, with a larger 

value of m, more particles mutate and this may make the swarm more difficult to exploit the 

current promising area.

Our analysis of the differences between GA and CSO-MA is that the latter has in-built 

features that likely explain its out-performance when compared with its other competitors. 
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For example, GA requires that a part of offspring chromosomes to mutate and for CSO-MA, 

there is only one mutation per iteration. This means that CSO-MA requires fewer number of 

computational operations and so saves time. Further, if the size of the cohort/swarm or the 

number of chromosomes is fixed, GA replaces existing “bad” chromosomes with newly-

mutated offspring chromosomes that may not identify more promising solutions, and also 

loses all the information provided by the previous “bad” chromosomes. In contrast, the 

amount of information lost by mutating particles, i.e. one particle and one coordinate per 

iteration, in CSO-MA is relatively trivial.The upshot is that in CSO-MA, loser particles do 

not lead the swarm movement, delay the movement speed, able to inform others of 

unpromising areas and allow CSO-MA to explore new areas more effectively.

4.4 Swarm Diversity

Earlier work suggests that swarm diversity may affect the quality of a swarmn based 

algorithm. Following [44], we use the swarm diameter as an index to measure the diversity 

of a swarm. This index is defined by

Dia = max
(i ≠ j)

∑
r = 1

D
(xir − xjr)2,

where xir and xjr are, respectively, the rth component or dimension of the ith and jth particles.

When the swarm diversity index drops to zero, this implies that the search has ended and all 

particles have converged to a single point. The swarm cannot revive and find a better 

solution. On the contrary, as long as the swarm diversity is above a specific level, the swarm 

has a chance to explore other areas of the space, which equals to mean that the terms xit − xjt

and xt − xjt  could be nonzero.

Table 5 shows the swarm diameter Dia of CSO and CSO-MA at the start and at the end of 

the search, with at a mid-way point as they iterate to minimize each of the benchmark 

functions f4 to f8. These functions were chosen because they have multiple local minima and 

their global minima are not located at or near the boundary of the search space. This means 

that merely adopting the common practice of searching for a global optimum at or near the 

boundary is not helpful, i.e., these functions are hard to optimize. Columns 4 and 6 display 

the averaged values of these functions found at the 1st, 2500Dth and 5000Dth function 

evaluation numbers, where D is the dimension of the function, and D = 100, 500 and 1000. 

We note that CSO-MA has 10 wins, 3 ties and 2 loses compared with performance of CSO. 

It appears that CSO-MA’s success in finding better solutions than CSO is due to its having a 

more diverse swarm during the search process. CSO also seems to run out of energy midway 

during its search whereas CSO-MA always keeps a dynamic and diversified swarm and 

enables it to jump out of local optima. An asterisk in the last column indicates that the at the 

end of the 5000D iterations, the optimized value by CSO-MA is significantly better than that 

by CSO at the 0.05 significant level.
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We also measure the Dia’s for all other algorithms during the test as we implement on CSO 

and CSO-MA. In short, all other algorithms we compare CSO-MA with, they cannot achieve 

a similar swarm diversity level as CSO-MA has in the whole process of the test.

CSO-MA’s enhanced performance is not necessarily limited to optimizing multimodal 

functions. We observe that results from CSO-MA for optimizing unimodal functions f1 to f3 

are comparable to those from CSO. For space consideration, we do not display the Dia 
patterns for optimizing the other functions, but note that they share a very similar pattern. In 

real applications, the CPU time required to find the optimum is unknown and so it is 

common to employ longer runs. The implication is that under such a circumstance, CSO-

MA has the potential of finding a better solution given a longer runtime compared to CSO.

[10] proposed a mutating-to-the-boundary strategy in an improved PSO algorithm called 

Elastic Boundary for Particle Swarm Optimization (EBPSO). At each iteration of EBPSO, it 

defines a elastic region given current global value. Then each particle is examined by a 

criterion to determine whether it needs to fly to a boundary area of the elastic region 

according to an updating function for space exploration. Compared to their algorithm 

design, CSO-MA has a dominant advantage that at each iteration, only one particle needs to 

be mutated (calculation complexity of the mutation step O(1)), while for EBPSO, all 

particles have to be examined and some have to be mutated (calculation complexity of the 

mutation step at least O(nD)). In the table 2 of [10], the mean results EBPSO obtained for 

minimizing four benchmark functions are 5.05E-31, 5.26E-03, 3.98E-01 and 2.85E+00. 

Under the same testing setup, CSO-MA’s mean results are 7.03E-55, 4.92E-07, 2.17E-06 

and 1.90E-03. These results show that CSO-MA’s mutation strategy is more effective than 

EBPSO.

4.5 Algorithm Speed

CSO-MA only adds a mutation operation on one particle per iteration and so the algorithmic 

complexity does not change compared to the original CSO. Table 6 records average running 

time for CSO and CSO-MA to minimize each function. The table shows that there is no 

significant efficiency gap between them because, for the same function, both algorithms 

require very similar CPU time.

The next section demonstrates that CSO-MA can find hard to find optimal designs for a 

nonlinear regression model with multiple interacting factors. The purpose of the application 

is to show CSO-MA can find the optimal design and other commonly used metaheuristic 

algorithms cannot. We focus on an example but our experience is that CSO-MA can also 

find other types of optimal designs for other nonlinear models as well. To this end, we first 

provide a brief background on the fundamentals of constructing an optimal design.
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5 Application: Locally c-Optimal Designs for High Dimensional Statistical 

Models

5.1 Background

Optimal experiment design is an increasingly important sub-field in statistics in part due to 

the rising experimental cost and the need to make statistical inference accurately and reliably 

at minimum cost [66]. There are several design monographs of varying levels of 

mathematical complexity and they include [3, 48]. [2] contains real optimal design problems 

and their solutions, including one that involves an engineering problem of optimally 

allocating wells in the Los Angeles basin.

We assume the statistical model has the form

Ey = f(x, θ), x ∈ Ω

where y is the response variable, f (x, θ) is the mean function with input vector x and θ ∈ ℝp

is the p-dimensional vector of model parameters.

Design problems arise early in the study and the concerns are how to select levels or 

combination levels of the explanatory variables to observe the response y in some optimal 

way. If there is a pre-determined N number of observations and a given objective for the 

study, common design questions are the optimal number of design points k, their optimal 

locations x1, x2, ··· , xk which are chosen from a user-selected design space Ω and the 

optimal number of replications ni at xi, i = 1, …, k subject to n1 +…+nk = N. These are 

optimal exact designs which are very difficult to find and study theoretically because they 

usually require some number theory.

An alternative is to find optimal approximate designs where the optimal number of replicates 

ni at xi in the exact designs are replaced by their optimal proportions wi, i = 1, …, k and 

subject to wi + … + wk = 1. Doing so turns the problem into a convex optimization problem 

for which there is a general framework to find and verify optimality of a design. We denote 

such an approximate design by η = (x1, x2, · · ·, xk; w1, w2, · · · ,wk).

The worth of a design is usually measured by its Fisher information matrix I(η, θ), which is 

the negative of the expectation of the second derivatives of the total log-likelihood function 

with respect to the model parameters. For nonlinear models, the information matrix depends 

on the unknown parameters which we want to estimate. One way to overcome this problem 

is to assume nominal parameter values are available, either from similar studies or an 

expert’s opinion. Optimal designs are then found by replacing the unknown parameters in 

the information matrix by their nominal values so that direct optimization becomes possible. 

The resulting designs are locally optimal and are implemented to generate data from which 

parameters are re-estimated. The procedure repeats with the hope that the estimates will 

stabilize after a couple of iterations.

Many design criteria are formulated as a scalar concave function of the information matrix. 

For example, a locally D-optimal design maximizes log{det(I(η, θ))} for a given nominal 
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value θ. Another design criterion is c—optimality, which is used to estimate a function of 

the model parameters as accurately as possible. For a given nominal θ value, a locally c—

optimal design minimizes the asymptotic variance of the estimated quantity of interest; 

equivalently, it maximizes —cTI−1 (η, θ)c, where c is an user-specified column vector. In 

either case, the optimization is over all approximate designs on Ω.

A benefit of working with approximate designs and concave objective functions is that there 

are equivalence theorems for confirming optimality of an approximate design among all 

designs. For example, given a nominal value for the p × 1 vector θ, arguments based on 

directional derivatives show that an approximate design η is locally D-optimal if and only if 

for x ∈ Ω,

SD(η, x) = ∂f(x, θ)T
∂θ I−1(η, θ)∂f(x, θ)

∂θ − p ≤ 0,

with equality at the support points of η. Likewise, η is locally c-optimal if and only if for x 
∈ Ω,

Sc(η, x) = [∂f(x, θ)T
∂θ I−1(η, θ)c]2 − cTI−1(η, θ)c ≤ 0,

with equality at the support points of η. If an approximate design is not optimal, its 

proximity to the optimum can be measured via an efficiency lower bound [46]. For example, 

for D-optimality, a direct deduction from the equivalence theorem shows that if the 

maximum value of the sensitivity function SD(η, x) over the design space is a positive 

number α, the D-efficiency of the approximate design η is at least e−α/p.

In practice, we evaluate the worth of an approximate design by finding the maximum value 

α of its sensitivity function over the design space. This is another sub-optimization task and 

typically easier to maximize compared to finding an optimal design because a lot fewer 

number of variables are involved. For instance, if the model has three additive factors, 

optimizing the sensitivity function is a three-dimensional optimization problem; in contrast, 

determining the optimal design is a (4k – 1)-dimensional optimization problem, where k is at 

least 4 and equal the number of support points of the optimal design.

To check whether the CSO-MA generated design is optimal, we examine whether the 

sensitivity function is bounded above by 0 and attains 0 at all design points. If the model has 

only one or two factors, a plot of the sensitivity function across the design space may suffice. 

For example, Figure 2 displays the sensitivity function of a CSO-generated design for 

estimating the slope in a negative binomial model with logarithm dose as the only factor and 

it confirms its optimality. However, when there are three or more factors, the plot is harder to 

appreciate visually.

We next tackle the task of finding c-optimal approximate designs for a negative binomial 

models with multiple interacting explanatory factors. This is a challenging design problem 

as it involves many variables to optimize. In the statistical literature, we were only able to 
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locate only one design paper that finds locally D-optimal design for a two-parameter 

negative binomial model [51]. In what is to follow, we apply CSO-MA to search for an 

optimal design using Matlab 2018a.

5.2 Negative Binomial Regression Model

Negative binomial regression models extend the commonly used Poisson regression models 

by accommodating for over-dispersed or under-dispersed data. They model the mean of a 

count outcome y and its relationship with a vector of independent variables x as follows:

E(y) = exTθ and Var(y) = exTθ(1 + aexTθ) .

Here a is the dispersion parameter; if a > 0, the variance exceeds the mean and the data is 

over-dispersed and if a < 0, the data is under-dispersed.

There is little work on constructing optimal designs for the negative binomial model, 

especially where the model has several interacting factors. The most recent work is from 

[51], where they derived locally c-optimal approximate designs for two-factor negative 

binomial models given a series of specific conditions. As an illustrative example, suppose 

we want to find a locally c-optimal design for estimating the second parameter in a negative 

binomial model with the logarithm dose of a drug as the only factor. We assume a = 3, the 

log dose of the drug is between [−3, 5] and the nominal values are θ = (0.5, 1.7)T. We set c = 

(0, 1)T, applied CSO-MA. It converged in 0.05s to the design supported at points −0.637 and 

5.000 with weights 0.560 and 0.440 respectively. Figure 2 displays the sensitivity function of 

this design and confirms its optimality. The criterion value of the c-optimal design is 0.483.

5.3 Locally Optimal Approximate Designs for a High-Dimensional Negative Binomial 
Model

The model of interest is a negative binomial model for a five-factor negative binomial model 

with all pairwise interactions and the outcome is a count variable. From the design 

perspective, this is a high-dimensional regression model with 16 parameters and the design 

problem has a total of 96 variables to optimize if the optimal design is supported at 16 

points; otherwise, the number of variables in the optimization problem can increase 

substantially. We scale each factor values to between −1 and 1 and so the design space is 

[−1, 1]5.

Table 7 displays four sets of randomly generated nominal values for the model parameters 

and each is drawn from U(−2, 2). We implemented CSO, MCSO, PSO and DE for 

comparison purposes and initiated them using 200 candidate solutions. Parameter tuning 

strategies for these optimizers followed the suggestions in [8, 39, 53, 56] and CSO-MA 

shared the same parameter setup with CSO. The problem we need to solve has dimension (5 

+ 1)k where k is theoretically larger than 16. We started the search with k = 20 and results 

show that the optimal designs can be found under this setup. Hence, our optimization 

problem has 120 variables to optimize. For CSO, we set parameter ϕ = 0.05; ϕ1 = 0.05, ϕ2 = 

0.05 for MCSO; w = 0.8, β1 = β2 =2 for PSO and CR = 0.3, F = 0.75 for DE.
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To fix ideas, suppose a = 0.2 and we are interested in estimating θ2. We set c = (0, 0, 1, 0, · · 

· , 0)T. To find an optimal design for estimating this coefficient, we ran each of the four 

algorithms 10 times and compare their values of the c-optimality criterion. The stopping 

criterion was still the “5000D” function evaluation rule described previously. Using CSO-

MA’s results as a reference, we calculated relative efficiencies of designs found by the other 

four algorithms. Table 8 summarizes the results and suggests that CSO-MA consistently 

finds designs with much higher efficiencies than other algorithms for the negative binomial 

models.

5.4 A Locally D-Optimal Exact Design for Logistic Model with a Single Factor

CSO-MA is a flexible algorithm and can also find optimal exact designs for nonlinear 

models. We recall there is no general theory to confirm optimality of an exact design and so 

we show an example where the CSO-MA generated design outperforms an optimal exact 

design found by a popular algorithm in the design literature.

The Fedorov exchange algorithm is a common method for finding optimal approximate 

designs in the statistical community; see Fedorov (1972). It requires that the objective 

function be differentiable and it finds the optimal design by adding one or more points at 

each iteration to the current design to form a new design for the next iteration. The common 

problem is that clusters of points are formed around the support points and they need to be 

collapsed into single points periodically. The algorithm can be mathematically proven to 

converge to the optimal design but it is frequently slow and becomes ineffective when the 

model is nonlinear and has several interacting factors.

Some have attempted to tweak the algorithm to find optimal exact designs. For example, 

[30] modified the algorithm to find a six-point locally D-optimal exact design on the design 

space [−1, 1]2 for a logistic model containing an intercept, two factors, two second-order 

terms and one interaction term using the following nominal values for the parameters: θ0 = 
−1, θ1 = 2, θ2 = 0.5, θ3 = 2, θ4 = 0.1, θ5 = 0.01. They reported that the six-point D— 

optimal exact design η is supported at ( −1.00, 1.00), (1.00, −1.00), (−1.00, −0.70), (0.06, 

0.07), (1.00, −0.03) and (0.14, 1.00).

We applied CSO-MA and the generated 6-point D-optimal exact design η* is supported at 

(−1.00, 1.00), (−1.00, −1.00), (−0.06, −1.00), (0.37, 1.00), (0.61, 1.00) and (0.71, 0.00). A 

direct calculation shows that the design η has a D-efficiency of only 72% relative to η* and 

further, CSO-MA completed the search in less than 1 second. This shows that one should be 

careful to claim optimality of optimal exact designs because (i) they can be very difficult and 

time-consuming to determine and (ii) the claimed optimal design could be wrong as is in the 

case just mentioned.

6 Summary

Earlier results from the literature have shown that CSO (i) frequently experiences fewer 

premature convergence issues and avoids a common problem with PSO when the 

optimization problem is high-dimensional, and (ii) tends to outperform other state-of-the 

swarm algorithms. We incorporate mutated agents in the CSO algorithm and show that 
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CSO-MA enhances its swarm diversity in the search for the global optimum. This 

modification further improves CSO’s exploration-exploitation balance. Numerical results 

showed that this enhancement increases CSO-MA’s ability to tackle high-dimensional and 

complicated optimization problems successfully without requiring a lot of extra runtime.

Our applications of CSO-MA to find c-optimal approximate designs for the high 

dimensional negative binomial models and the D-optimal exact designs for the logistic 

models demonstrate the effectiveness of CSO-MA to solve difficult optimal design 

problems. Our experience is that CSO-MA can be used to find various types of optimal 

designs for other nonlinear regression models with several interacting factors. For space 

consideration, we omit details.

Metaheuristics and memetic computing are continuously developed to solve increasingly 

difficult optimization problems. For example, a most recently developed improved swarm-

based algorithm called variable-size cooperative coevolutionary particle swarm optimization 

was proposed for feature selection on high-dimensional data [55]. Many disciplines have 

benefited from metaheuristics and memetic computing, but the extent varies considerably 

from field to field. For disciplines where they are under-used, it is likely because the 

disciplines are less informed about the power, flexibility and utility of metaheuristics and 

memetic computing to solve complicated large scale optimization problems.

Some of our future work is to apply memetic computing to construct more challenging 

different types of optimal experimental designs for more complicated statistical models, 

such as random effects models or hierarchical models with various correlation structures and 

the models have more interacting explanatory variables. The design criterion may be non-

differentiable, such as for finding a standardized maximin design, that requires solving a 

multi-level nested optimization problem. We are also interested to find Bayesian optimal 

designs that incorporate prior information of the model parameters at the design stage or find 

multiple-objective optimal designs, where some criteria are more important than others. We 

believe CSO-MA, singly or when appropriately hybridized with another metaheuristic 

algorithm, has potential for solving challenging and high-dimensional optimization 

problems in public health and medical studies.
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Fig. 1. 
The number of significantly better results found by the algorithm using different m values 

compared to using m = 1 for optimizing the 24 benchmark functions. Parameter n denotes 

the swarm size.
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Fig. 2. 
The sensitivity function of the c-optimal design for a one-factor negative binomial model on 

the design space x ∈ [−3, 5] with a = 3, θ = (0.5, 1.7)T and c = (0, 1)T. The plot confirms 

optimality of the CSO-generated design supported at −0.637 and 5.000.
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Table 7

Four simulated sets of values for θ0, θ1, ···, θ15, each drawn from U(−2, 2) randomly for the negative binomial 

models with 5 factors and all pairwise interactions.

θ θ0, θ1, θ2, ···, θ14, θ15

θ1 (1.03, 0.50, 0.75, 1.25, 0.80, 0.50, 1.80, −0.40, −1.00, 1.65, 0.65, 1.10, 1.30, 0.40, −0.20, 0.55)T

θ2 (0.09, −0.42, 1.13, 0.29, −0.20, −0.11, 1.40, 0.60, 0.58, −0.25, −0.35, 1.52, 1.01, 0.60, −0.07, 0.09)T

θ3 (−1.12, −0.66, 1.50, 0.14, −0.08, −1.01, 1.65, −0.03, 1.74, 0.62, −0.12, −0.68, −1.71, 0.40, 0.95, −1.89)T

θ4 (0.29, −0.20, −0.33, 1.54, 1.22, 0.44, 1.03, 0.71, −0.55, −0.29, 1.55, −0.47, 0.56, −1.30, 0.17, 0.66)T
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