
UCLA
UCLA Previously Published Works

Title
Competitive Swarm Optimizer with Mutated Agents for Finding Optimal Designs for
Nonlinear Regression Models with Multiple Interacting Factors.

Permalink
https://escholarship.org/uc/item/59c211rs

Journal
Memetic Computing, 12(3)

Authors
Zhang, Zizhao
Wong, Weng Kee
Tan, Kay

Publication Date
2020-09-01

DOI
10.1007/s12293-020-00305-6

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/59c211rs
https://escholarship.org
http://www.cdlib.org/

Competitive Swarm Optimizer with Mutated Agents for Finding
Optimal Designs for Nonlinear Regression Models with Multiple
Interacting Factors

Zizhao Zhanga, Weng Kee Wonga,*, Kay Chen Tanb

aDepartment of Biostatistics, University of California at Los Angeles, Los Angeles, California
90095-1772, U.S.A

bDepartment of Computer Science, City University of Hong Kong, Hong Kong

Abstract

This paper proposes a novel enhancement for Competitive Swarm Optimizer (CSO) by mutating

loser particles (agents) from the swarm to increase the swarm diversity and improve space

exploration capability, namely Competitive Swarm Optimizer with Mutated Agents (CSO-MA).

The selection mechanism is carried out so that it does not retard the search if agents are exploring

in promising areas. Simulation results show that CSO-MA has a better exploration-exploitation

balance than CSO and generally outperforms CSO, which is one of the state-of-the-art

metaheuristic algorithms for optimization. We show additionally that it also generally outperforms

swarm based types of algorithms and an exemplary and popular non-swarm based algorithm called

Cuckoo search, without requiring a lot more CPU time. We apply CSO-MA to find a c-optimal

approximate design for a high-dimensional optimal design problem when other swarm algorithms

were not able to. As applications, we use the CSO-MA to search various optimal designs for a

series of high-dimensional statistical models. The proposed CSO-MA algorithm is a general-

purpose optimizing tool and can be directly amended to find other types of optimal designs for

nonlinear models, including optimal exact designs under a convex or non-convex criterion.

Keywords

c-Optimal Design; D-Optimal Design; Large Scale Global Optimization; Optimal Exact Design;
Swarm Optimization

1 Introduction

Swarm algorithms are increasingly used in various disciplines to optimize different types of

problems. They are easy to implement and often able to find good quality solutions to

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-
terms-v1
*Corresponding author: wkwong@ucla.edu (Weng Kee Wong).

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept
up to date and so may therefore differ from this version.

HHS Public Access
Author manuscript
Memet Comput. Author manuscript; available in PMC 2021 September 01.

Published in final edited form as:
Memet Comput. 2020 September ; 12(3): 219–233. doi:10.1007/s12293-020-00305-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.springer.com/aam-terms-v1
https://www.springer.com/aam-terms-v1

complex optimization problems without many technical assumptions. For example, the

objective function does not need to be differentiable or separable. The flexibility of these

algorithms enables them to tackle different types of real-world optimization problems in

engineering and computer science, and increasingly in other disciplines as well.

Particle Swarm Optimization (PSO), proposed in [13], is one of the most well known swarm

algorithms inspired by nature. This simple algorithm is initiated by generating a swarm of

particles (candidate solutions) in the user-defined search space. Particles coordinate and

move to regions near the perceived optimum iteratively based on each particle’s historical

pathway and trajectory of the whole swarm. PSO has been applied successfully in many

fields, for example, in blind signal separation, power dispatch and model variable selection

[17, 23, 24, 59, 61]. The dimensions of these problems range from 5 to 30.

A limitation of PSO is that it can prematurely converge to a local optimum without having

adequately explored the search space [1, 15, 36, 38, 68]. An effective algorithm explores the

space sufficiently and has good exploitation properties to locate the optimum when it is in

the proximity. Frequently, a trade-off between the two competing objectives is required

because algorithms that are good at space exploration have limited resources to sufficiently

exploit promising areas where the optimum is and algorithms with aggressive exploitation

strategy can easily get stuck at a local optimum. [6, 67] showed that the premature

convergence issue of PSO is more problematic when there are many variables to optimize in

a high-dimensional space.

Many strategies have been proposed to improve PSO performance for tackling complicated

optimization problems. They include parameter adaptation [4, 49, 53, 54, 63], hybridization

with other optimization methods [20, 35, 47, 50] and swarm topological redesign [26, 27,

57, 71]. Simulations have shown that these amended PSO algorithms, among others,

perform better than the original version. One of the most effective enhancements is the

Competitive Swarm Optimizer (CSO), proposed by Cheng et al. (2015), to address the

premature convergence issues in PSO. CSO adopts a pairwise competition mechanism to

update particles at every iteration. Compared to PSO and most of its variants, CSO has a

simpler structure and its updating strategy has been shown to more effective. In particular,

many simulations using tests on a series of benchmark functions have shown that CSO can

find significantly better solutions than PSO and other EAs for different types of problems up

to 5000 dimensions [8, 39, 58, 76].

One way memetic algorithms work is by organically integrating local search strategies with

evolutionary global search methods to find a global optimum. Memetic computing has been

shown capable of solving complicated optimization problems with much less computing

resources [7, 28, 45] and is now extensively applied in many cutting-edge research [16, 25,

64, 78]. Our work hybridizes CSO with a local search to bring about a more effective search

for finding challenging optimal design problems in statistics.

More specifically, we proposes an enhancement of CSO by adding mutated agents (MA) to

CSO and refers the algorithm as CSO-MA. Mutated agents are randomly selected loser

particles from pairwise comparisons at each iteration in CSO-MA and they typically make

Zhang et al. Page 2

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the swarm more diversified and result in a more effective local space search that inspired by

memetic algorithms. An advantage of having mutated agents is that they do not disturb the

swarm’s movement if they cannot find promising areas. Using several test functions, our

simulation results show that CSO-MA tends to outperform CSO and this would in turn

imply that CSO-MA should also outperform many state-of-the-art EAs. As an application,

we apply CSO-MA to find c-optimal designs for estimating selected coefficients in high-

dimensional nonlinear regression models for count outcomes. The design methodology is

general and can be applied to other regression models and design criteria.

Section 2 reviews the Particle Swarm Optimization and Competitive Swarm Optimizer.

Section 3 describes how mutated agents we propose can potentially improve the algorithm’s

performance and introduces the new algorithm Competitive Swarm Optimizer with Mutated

Agents. In section 4, we conduct a simulation and compare performance of CSO-MA with

several of its competitors using benchmark functions up to 1000 dimensions. Our results

suggest CSO-MA generally outperforms other popular algorithms by a wide margin and able

to produce significantly better solutions. In Section 5, we apply CSO-MA to find various

types of optimal designs for nonlinear statistical models, including those that require about

100 or more variables to optimize. Not all our numerical results are reported for space

consideration and they all indicate that CSO-MA was effective in finding optimal designs

not yet known in the literature. Section 6 contains a summary.

2 Swarm Optimization

Throughout, we assume the objective function is f (x) and we want to solve the minimization

problem

min
x ∈ Ω

f(x),

where Ω ⊂ ℝD is a user-selected compact set and D is the number of variables to optimize in

the problem.

Most swarm algorithms initialize by generating at random a user-selected number of, say n,

particles as candidate solutions in Ω. These particles or points interact with one another and

update their positions by some rules. For instance, the swarm could move towards current

best particle positions or historically best areas by adding some random search at each

particle. Our interest is in swarm-based algorithms.

2.1 Particle Swarm Optimization and Its Variants

For classic PSO, after the user randomly generated a swarm of selected size, the algorithm

updates every particle xi by referring its historical movement information and temporary

global best solution. Every particle is assigned with a velocity vector v, which is also

randomly generated when initialization. Considering particle i at iteration t, it will change its

velocity vi
t + 1 and move to a new position xi

t + 1 by

Zhang et al. Page 3

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

vi
t + 1 = ωvit + β1R1 ⊗ pbestit − xit + β2R2 ⊗ gbestt − xit

and xi
t + 1 = xit + vi

t + 1,

where R1, R2 are random vectors whose elements are independently drawn from the

uniform distribution U(0, 1); operation ⊗ means element-wise multiplication; ω, β1, β2 are

parameters reflecting influence of different components on changing particle’s next step.

The best position that each particle has visited till iteration t is the personal best pbestit, i = 1,

· · · , n and the best position that the swarm of particles has ever reached till iteration t is the

global best gbestt. The term best refers to positions where the value of the objective function

or its fitness value is smallest. These two centers influence every particle’s movement. By

adding stochastic components R1 and R2 into the algorithm, these particles have a chance to

explore unseen areas where they might be able to capture better solutions.

How to tune parameters in a metaheuristic algorithm is a perennial issue. There are

recommendations on how to tune the parameters in PSO for a more effective search; some

examples are [5, 12, 53]. Some proposed that these parameters be modeled as a function of

the iteration number t or the recent best objective values or as topological distances among

the particles [14, 40]. Others argued for having a set of constant parameters, such as ω ∈
[0.8, 1.2], β1 = β2 = 2 and showed that they frequently worked well [13].

It is known that PSO is prone to premature convergence [21, 31, 79]. Typically, PSO does

the exploration in a few iterations and then proceeds to exploit [42], possibly resulting in a

decrease of the quality of the solution. This premature convergence phenomenon is likely

due to choice of tuning parameters or its strong connection with the two centers pbest and

gbest, which may be exerting undue influence and not changing frequently enough during

iterations, see, for example, [8, 43, 70].

2.2 Competitive Swarm Optimizer

[8] proposed CSO to tackle the premature convergence issue by recasting the updating

formulas. Like PSO, CSO first generates a swarm of n particles at positions x1, · · · , xn with

random velocities v1, · · · , vn in Ω. In each iteration, we randomly divide them into n
2 pairs

and compare their objective function values. We identify xit as winner and xjt as loser if these

two are competed at iteration t and f(xit) < f(xjt). Winner retains status quo and the loser

learns from the winner. The two defining equations for CSO are

vj
t + 1 = R1 ⊗ vjt + R2 ⊗ (xit − xjt) + ϕR3 ⊗ (xt − xjt)

and xj
t + 1 = xjt + vj

t + 1,

where R1, R2, R3 are all random vectors whose elements are drawn from U(0, 1); operation

⊗ also represents element-wise multiplication; vector xt is simply the swarm center at

iteration t; social factor ϕ controls the influence of the neighboring particles to the loser and

Zhang et al. Page 4

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a large value is helpful for enhancing swarm diversity (but possibly impacts convergence

rate). This process iterates until some stopping criteria are met.

There are 3 tuning parameters ω, β1, β2 in PSO and only one parameter ϕ in CSO,

suggesting that it is simpler to tune CSO. Further, the transitory data PSO needs to keep

track of are stored in a n × D matrix x, a n × D matrix v and a n × D matrix pbest whereas

CSO needs two of these implying that a smaller memory space is required to run CSO.

Simulation results have shown that CSO either outperforms or is competitive with many

state-of-the-art swarm algorithms, such as PSO with Constriction Factor (PSO-CO),

Gaussian Bare Bones PSO (GBBPSO), or Quantum PSO (QPSO). This conclusion was

arrived at after comparing CSO performance with state-of-the-art algorithms using a variety

of benchmark functions with dimensions up to 5000 [8, 39, 58, 75, 76, 77]. They showed

that CSO was frequently not only the winner but also required significantly less runtime.

CSO is relatively new but has many exciting applications. For example, [18] applied CSO to

select variables for high-dimensional classification models; [69] used CSO to study a power

system economic dispatch, which is typically a complex nonlinear multivariable strongly

coupled optimization problem with equality and inequality constraints, and [29] employed

CSO to find the optimal installation of multiple distributed generation units in radial

distribution network.

3 Competitive Swarm Optimizer with Mutated Agents

Genetic algorithm (GA) is another important branch of evolutionary algorithms. Almost all

versions of GA operate based on biological-inspired behaviors such as mutation, crossover

and selection to evolve better solutions [65]. There have been a lot of inspiring GA that

performed surprisingly well in various fields [11, 19, 32, 41].

We incorporate ideas from the genetic algorithm to enrich CSO and call the enhanced

version of CSO as Competitive Swarm Optimizer with mutated agents or, in short, CSO-

MA. After pairing up the swarm in groups of two at each iteration, we randomly choose a

loser particle p as an agent, randomly pick a variable indexed as q and then randomly change

the value of xpq to either xmaxq or xminq, where xmaxq and xminq represent, respectively,

the upper bound and lower bound of the q-th variable, respectively. This change is similar to

the “mutation” step in GA. A conservative mutation strategy is to randomly reassign each

loser particle to a random position on the boundary. If the current optimal value is already

close to the global optimum, this change will not hurt since we implement this experiment

on a loser particle, which is not already leading the movement of the whole swarm;

otherwise, this chosen agent restarts a journey from the boundary and has a chance to escape

from a local optimum.

We apply CSO-MA to minimize functions that are not necessarily separable or convex and

they may have multiple local optima. The computational complexity of CSO is O(nD), where

n is the swarm size and D is the dimension of the problem. Since our modification only adds

one coordinate mutation operation to each particle, its computational complexity is the same

as that of CSO, see section 4. Algorithm 1 displays a pseudo code of CSO-MA.

Zhang et al. Page 5

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1

The Pseudo Code for CSO-MA

A swarm of n particles.

x ← Randomly assign initial positions in space to particles.

v ← Randomly assign initial velocities to particles.

while not stopping criteria do

 Randomly divide the swarm into
n
2 pairs.

 for each pair do

 Compare their objective function values and set the one with smaller value as winner and the other as loser.

 Update loser particles.

 if xloser out of searching space then

 xloser ← position at boundary.

 end if

 Randomly choose a loser xp and a coordinate index q.

 Randomly change q-th variable of xp to either xmaxq or xminq, where xmaxq, xminq represent upper bound and
lower bound of q-th variable.

 end for

end while

3.1 Parameter Tuning

Tuning parameters is a perennial and critical issue for meta-heuristic algorithms because a

poor choice for them can result in very poor performance. Most of these algorithms have at

least two or three parameters, which makes a systematic understanding on how they interact

to impact the algorithm’s performance tricky. [8] provided a thorough experiment choosing

parameters for CSO to solve problems of different scales whose results clearly exhibited

parameters’ various influence.

We experimented with tuning values for CSO-MA’s parameters ϕ and swarm size n and

found that the original default values for the tuning parameters for CSO for ϕ and n can be

reliably transferred to CSO-MA; they are provided later on.In the next section, where we use

several benchmark functions to ascertain performance of CSO-MA, we vary the size of n to

determine whether the performance of the algorithms depend on the dimension of the

optimization problem. Simulations show that, under such a setup, a change of ±0.05 in the

value ϕ, as long as it is non-negative, does not affect CSO-MA’s performance. Our

experience is that our tuning parameters seem effective for the problems we tried and note

that when a parallel-computing program or machine is available to run the algorithm, a large

value of n should be used. In the next section, we also discuss whether it is helpful to have

the number of agents that mutate at each iteration as an additional parameter in CSO-MA

and whether it has an impact on the solution quality.

Zhang et al. Page 6

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 Simulation

We now use simulation to compare performance of CSO-MA with a few state-of-the-art

swarm based competitors using benchmark functions commonly used in the literature [62,

73, 74]. We also include a non-swarm based algorithm, Cuckoo search, in our comparison.

We use eight benchmark functions with different mathematical properties and consider cases

when they have dimensions D = 100, 500 and 1000. Functions f1, f2, f3 are the Schwefel

N.2.21 function (non-differentiable, non-separable), the Rosenbrock function (non-

separable), and the Sphere function. They are defined on the space [−100, 100]D, where D
refers to the dimension of the function. Function f4 is the Rastrigin function (multimodal)

and it is defined on [−5.12, 5.12]D. Function f5 is the Schwefel function (non-convex,

multimodal) and it is defined on [−500, 500]D. Function f6 is the Gramacy & Lee function

(non-convex, multimodal) and it is defined on [0.5, 2.5]D. Function f7 is the Griewank

function (non-convex, non-separable, multimodal), defined on [−600, 600]D. The last

function f8 is the Ackley function (non-convex, multimodal), defined on [−32, 32]D. Except

for the Gramacy & Lee function which has a global minimum of −0.869D, all other

functions have a global minimum of zero.

In addition to CSO, we compare CSO-MA algorithm with the following algorithms: (i) the

Modified CSO (MCSO) algorithm, which replaces the CSO’s pairwise competition strategy

by a triplet competition and is recognized as an improved CSO, (ii) the Cooperatively

Coevolving PSO 2 (CCPSO2) algorithm that uses a Cauchy and a Gaussian distribution for

sampling next-generation particles, respectively, at pbest and gbest [33], (iii) the Multilevel

Cooperative Coevolution (MLCC) designed to conduct a self-adaptive neighborhood search

for promising particles [73], (iv) the Separable Covariance Matrix Adaptation Evolution

Strategy (SEP-CMA-ES), which generates new candidate solutions by sampling around old

particles and the sampling covariance matrix is constructed by incorporating information

from the current solution [52], (v) the Efficient Population Utilization Strategy for PSO

(EPUS-PSO), which adjusts the population size according to the search results and (vi) the

Dynamic Multi-Swarm (DMS-PSO) that adopts a dynamically changing neighborhood

structure for each particle [22, 34]. The last algorithm that we include for comparison is the

Cuckoo search algorithm, which uses Levy flights and random walk to update new solutions

[72].

4.1 Simulation Setup

We followed recommendations for these choices from [8], which were based on a series of

tests. Specifically, when optimizing 100D problems, we set n = 100, ϕ = 0. For higher-

dimensional optimization problems, they recommended the choice for these tuning

parameters depend whether the objective function is separable or not. Specifically, for 500D
problems, they suggested n = 250, ϕ = 0.1 for separable functions and n = 250 and ϕ = 0.05

for non-separable functions; for 1000D problems, they suggested n = 500 and ϕ = 0.15 for

separable functions and n = 500 and ϕ = 0.10 for non-separable functions. Since CSO-MA

inherits the same particle updating strategy from CSO, we follow the tuning formula for

CSO and show that under the same parameter setup, the optimization performance of CSO-

MA is improved. For MCSO, the tuning values of the parameters come from Table 3 of [39].

Zhang et al. Page 7

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For other algorithms, similar simulations have been carried out in [8, 39] and we adopt the

same parameter tuning strategy there (we refer to the parameter setup for Cuckoo search

algorithm suggested in [72]). For all algorithms, we stop running their runtime if it requires

more than 5000D function evaluations, which was the guideline proposed in [60].

We implemented our algorithms using C++ on Xcode 9.0.1 and compiled them via GCC

7.2.0. The codes are available upon requests from the first author. All experiments were run

on Hoffman2 shared cluster housed at the University of California at Los Angeles. For each

function of a specific dimension, we ran each algorithm 25 independent times and recorded

all outcomes. The hardware employed is a 2.2 GHz Intel Xeon E5–2650v4 CPU and 8 GB

memory.

4.2 Simulation Results

Tables 1, 2 and 3 present means and standard deviations of the values of the objective

functions from our simulation. The bold numbers in each column represent the best

performing algorithm among the nine algoirthms for minimizing each of the eight

benchmark functions. Wilcoxon rank test, which is a nonparametric method to test whether

there is a significant difference between two sets of measurements, was then used to

compare performance of CSO-MA with other algorithms. At the 0.05 significance level, all

results from all tests were significant in all three tables, suggesting the algorithm with the

bold value finds a smaller objective function value then each of the other algorithms. The

last column in each table with the heading “w/t/l” displays the number of times CSO-MA

wins, ties and loses to the corresponding algorithm.

There is the celebrated “No Free Lunch” rule that says no algorithm can outperform all other

algorithms in all situations. An interesting interpretation of this theorem is recently available

in [37]. Table 4 ranks the ability of CSO-MA to minimize these benchmark functions

relative to other algorithms. For instance, when minimizing functions with D = 100, CSO-

MA has 3 times defeating over all other eight algorithms, 3 times over other seven

algorithms, 2 time over other six algorithms, etc., and we record such result as (3, 3, 2, …, 0)

corresponding to the header “Rank”, “Rank2”, etc. A smaller rank indicates that the

algorithm has a better minimization performance. We select algorithms that are best for

optimizing these functions but also algorithms that are consistently highly ranked. The last

column in the table displays the “Average Rank” and so indicates whether the algorithm can

stably solve different optimization tasks.

From the summary tables, we observe that CSO-MA outperforms the other algorithms for

minimizing function f1, f5 and f6 regardless of the dimension of the problem. For function f2

and f4, CSO-MA provides competitive results among all the algorithms. Although CSO-MA

did relatively poor minimizing functions f3, f7 and f8, its results are acceptable because these

solutions are within 10−3 units from the true optimum. One possible explanation is that for

these functions, CSO-MA sacrifices its ability to exploit at the expense of having the

mutated agents do more space exploration. A summary observation is that CSO-MA is the

most consistent optimizer among these algorithms since on average, it has the best

performances in terms of minimizing the objective functions regardless of the dimension of

Zhang et al. Page 8

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the problem, which is also confirmed by its average rank for minimizing the functions by the

various algorithms.

Other algorithms perform differently for each benchmark functions, which again confirms

the “No Free Lunch” rule. CSO, MLCC, CCPSO2 can consistently provide intermediate

results while MCSO’s outputs are not stable. EPUS-PSO, DMS-PSO and Cuckoo have a

relatively poor ability optimizing these commonly-used functions.

Throughout, we set 10−3 as the tolerance level and so solutions that are within ±10−3 from

the true “optimal” value are deemed optimal. Under this rounding setup, CSO-MA’s overall

performance relative to the other seven algorithms for optimizing the 24 benchmark

functions becomes more impressive with 131 wins, 37 ties, 0 loses compared to the earlier

more stringent criterion with 130 wins, 4 ties, 34 loses.

Additionally, we compare performance of CSO-MA with a recent state-of-the-art hybridized

version of cuckoo search and particle swarm optimization proposed by [9]. When this hybrid

algorithm is applied to to minimize 1000D f1 to f8, we obtain corresponding mean results of

5.47E+01, 3.26E+03, 2.50E-08, 2.33E+02, 2.15E+05, −3.79E+02, 7.54E-04 and 2.66E-01.

This shows that CSO-MA still outperofrms this hybrid PSO algorithm, which also has a

more complicated structure and more tuning parameters, making it is less friendly to use in

practice.

4.3 More Mutated Agents?

The change we make in CSO-MA algorithm is to randomly select an agent from the loser

list at every iteration and reassign it at random to a point on the boundary. Our results have

shown that this is an effective strategy. A natural question to ask is whether having more

mutated agents at every iteration will further enhance performance of CSO-MA.

To address this question, we keep the benchmark test configurations fixed and compare

CSO-MA results when m = 2, …, 10 versus the case when m = 1. The histogram in Figure 1

shows the number of times significantly improved results are obtained via the Wilcoxon test

for the 24 test cases when a larger value of m is used versus m =1. The top histogram (a)

shows different values of m and the bottom histogram (b) shows corresponding results when

m is expressed as a percentage of n. We observe from the two histograms results for the case

when m = 1 generally outperforms other cases and further, a larger value of m tends to

decrease the algorithm’s effectiveness. One explanation is that when m increases, there is

less balance between exploration and exploitation. In particular, a larger value of m
encourages the swarm to explore a larger area since more particles are assigned to random

positions on the boundary and so more likely to find a better solution. This follows from the

fact that for some optimization problems, like finding D-optimal designs to be discussed

later, support points tend to be at the boundary of the search space. However, with a larger

value of m, more particles mutate and this may make the swarm more difficult to exploit the

current promising area.

Our analysis of the differences between GA and CSO-MA is that the latter has in-built

features that likely explain its out-performance when compared with its other competitors.

Zhang et al. Page 9

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For example, GA requires that a part of offspring chromosomes to mutate and for CSO-MA,

there is only one mutation per iteration. This means that CSO-MA requires fewer number of

computational operations and so saves time. Further, if the size of the cohort/swarm or the

number of chromosomes is fixed, GA replaces existing “bad” chromosomes with newly-

mutated offspring chromosomes that may not identify more promising solutions, and also

loses all the information provided by the previous “bad” chromosomes. In contrast, the

amount of information lost by mutating particles, i.e. one particle and one coordinate per

iteration, in CSO-MA is relatively trivial.The upshot is that in CSO-MA, loser particles do

not lead the swarm movement, delay the movement speed, able to inform others of

unpromising areas and allow CSO-MA to explore new areas more effectively.

4.4 Swarm Diversity

Earlier work suggests that swarm diversity may affect the quality of a swarmn based

algorithm. Following [44], we use the swarm diameter as an index to measure the diversity

of a swarm. This index is defined by

Dia = max
(i ≠ j)

∑
r = 1

D
(xir − xjr)2,

where xir and xjr are, respectively, the rth component or dimension of the ith and jth particles.

When the swarm diversity index drops to zero, this implies that the search has ended and all

particles have converged to a single point. The swarm cannot revive and find a better

solution. On the contrary, as long as the swarm diversity is above a specific level, the swarm

has a chance to explore other areas of the space, which equals to mean that the terms xit − xjt

and xt − xjt could be nonzero.

Table 5 shows the swarm diameter Dia of CSO and CSO-MA at the start and at the end of

the search, with at a mid-way point as they iterate to minimize each of the benchmark

functions f4 to f8. These functions were chosen because they have multiple local minima and

their global minima are not located at or near the boundary of the search space. This means

that merely adopting the common practice of searching for a global optimum at or near the

boundary is not helpful, i.e., these functions are hard to optimize. Columns 4 and 6 display

the averaged values of these functions found at the 1st, 2500Dth and 5000Dth function

evaluation numbers, where D is the dimension of the function, and D = 100, 500 and 1000.

We note that CSO-MA has 10 wins, 3 ties and 2 loses compared with performance of CSO.

It appears that CSO-MA’s success in finding better solutions than CSO is due to its having a

more diverse swarm during the search process. CSO also seems to run out of energy midway

during its search whereas CSO-MA always keeps a dynamic and diversified swarm and

enables it to jump out of local optima. An asterisk in the last column indicates that the at the

end of the 5000D iterations, the optimized value by CSO-MA is significantly better than that

by CSO at the 0.05 significant level.

Zhang et al. Page 10

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We also measure the Dia’s for all other algorithms during the test as we implement on CSO

and CSO-MA. In short, all other algorithms we compare CSO-MA with, they cannot achieve

a similar swarm diversity level as CSO-MA has in the whole process of the test.

CSO-MA’s enhanced performance is not necessarily limited to optimizing multimodal

functions. We observe that results from CSO-MA for optimizing unimodal functions f1 to f3

are comparable to those from CSO. For space consideration, we do not display the Dia
patterns for optimizing the other functions, but note that they share a very similar pattern. In

real applications, the CPU time required to find the optimum is unknown and so it is

common to employ longer runs. The implication is that under such a circumstance, CSO-

MA has the potential of finding a better solution given a longer runtime compared to CSO.

[10] proposed a mutating-to-the-boundary strategy in an improved PSO algorithm called

Elastic Boundary for Particle Swarm Optimization (EBPSO). At each iteration of EBPSO, it

defines a elastic region given current global value. Then each particle is examined by a

criterion to determine whether it needs to fly to a boundary area of the elastic region

according to an updating function for space exploration. Compared to their algorithm

design, CSO-MA has a dominant advantage that at each iteration, only one particle needs to

be mutated (calculation complexity of the mutation step O(1)), while for EBPSO, all

particles have to be examined and some have to be mutated (calculation complexity of the

mutation step at least O(nD)). In the table 2 of [10], the mean results EBPSO obtained for

minimizing four benchmark functions are 5.05E-31, 5.26E-03, 3.98E-01 and 2.85E+00.

Under the same testing setup, CSO-MA’s mean results are 7.03E-55, 4.92E-07, 2.17E-06

and 1.90E-03. These results show that CSO-MA’s mutation strategy is more effective than

EBPSO.

4.5 Algorithm Speed

CSO-MA only adds a mutation operation on one particle per iteration and so the algorithmic

complexity does not change compared to the original CSO. Table 6 records average running

time for CSO and CSO-MA to minimize each function. The table shows that there is no

significant efficiency gap between them because, for the same function, both algorithms

require very similar CPU time.

The next section demonstrates that CSO-MA can find hard to find optimal designs for a

nonlinear regression model with multiple interacting factors. The purpose of the application

is to show CSO-MA can find the optimal design and other commonly used metaheuristic

algorithms cannot. We focus on an example but our experience is that CSO-MA can also

find other types of optimal designs for other nonlinear models as well. To this end, we first

provide a brief background on the fundamentals of constructing an optimal design.

Zhang et al. Page 11

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 Application: Locally c-Optimal Designs for High Dimensional Statistical

Models

5.1 Background

Optimal experiment design is an increasingly important sub-field in statistics in part due to

the rising experimental cost and the need to make statistical inference accurately and reliably

at minimum cost [66]. There are several design monographs of varying levels of

mathematical complexity and they include [3, 48]. [2] contains real optimal design problems

and their solutions, including one that involves an engineering problem of optimally

allocating wells in the Los Angeles basin.

We assume the statistical model has the form

Ey = f(x, θ), x ∈ Ω

where y is the response variable, f (x, θ) is the mean function with input vector x and θ ∈ ℝp

is the p-dimensional vector of model parameters.

Design problems arise early in the study and the concerns are how to select levels or

combination levels of the explanatory variables to observe the response y in some optimal

way. If there is a pre-determined N number of observations and a given objective for the

study, common design questions are the optimal number of design points k, their optimal

locations x1, x2, ··· , xk which are chosen from a user-selected design space Ω and the

optimal number of replications ni at xi, i = 1, …, k subject to n1 +…+nk = N. These are

optimal exact designs which are very difficult to find and study theoretically because they

usually require some number theory.

An alternative is to find optimal approximate designs where the optimal number of replicates

ni at xi in the exact designs are replaced by their optimal proportions wi, i = 1, …, k and

subject to wi + … + wk = 1. Doing so turns the problem into a convex optimization problem

for which there is a general framework to find and verify optimality of a design. We denote

such an approximate design by η = (x1, x2, · · ·, xk; w1, w2, · · · ,wk).

The worth of a design is usually measured by its Fisher information matrix I(η, θ), which is

the negative of the expectation of the second derivatives of the total log-likelihood function

with respect to the model parameters. For nonlinear models, the information matrix depends

on the unknown parameters which we want to estimate. One way to overcome this problem

is to assume nominal parameter values are available, either from similar studies or an

expert’s opinion. Optimal designs are then found by replacing the unknown parameters in

the information matrix by their nominal values so that direct optimization becomes possible.

The resulting designs are locally optimal and are implemented to generate data from which

parameters are re-estimated. The procedure repeats with the hope that the estimates will

stabilize after a couple of iterations.

Many design criteria are formulated as a scalar concave function of the information matrix.

For example, a locally D-optimal design maximizes log{det(I(η, θ))} for a given nominal

Zhang et al. Page 12

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

value θ. Another design criterion is c—optimality, which is used to estimate a function of

the model parameters as accurately as possible. For a given nominal θ value, a locally c—

optimal design minimizes the asymptotic variance of the estimated quantity of interest;

equivalently, it maximizes —cTI−1 (η, θ)c, where c is an user-specified column vector. In

either case, the optimization is over all approximate designs on Ω.

A benefit of working with approximate designs and concave objective functions is that there

are equivalence theorems for confirming optimality of an approximate design among all

designs. For example, given a nominal value for the p × 1 vector θ, arguments based on

directional derivatives show that an approximate design η is locally D-optimal if and only if

for x ∈ Ω,

SD(η, x) = ∂f(x, θ)T
∂θ I−1(η, θ)∂f(x, θ)

∂θ − p ≤ 0,

with equality at the support points of η. Likewise, η is locally c-optimal if and only if for x
∈ Ω,

Sc(η, x) = [∂f(x, θ)T
∂θ I−1(η, θ)c]2 − cTI−1(η, θ)c ≤ 0,

with equality at the support points of η. If an approximate design is not optimal, its

proximity to the optimum can be measured via an efficiency lower bound [46]. For example,

for D-optimality, a direct deduction from the equivalence theorem shows that if the

maximum value of the sensitivity function SD(η, x) over the design space is a positive

number α, the D-efficiency of the approximate design η is at least e−α/p.

In practice, we evaluate the worth of an approximate design by finding the maximum value

α of its sensitivity function over the design space. This is another sub-optimization task and

typically easier to maximize compared to finding an optimal design because a lot fewer

number of variables are involved. For instance, if the model has three additive factors,

optimizing the sensitivity function is a three-dimensional optimization problem; in contrast,

determining the optimal design is a (4k – 1)-dimensional optimization problem, where k is at

least 4 and equal the number of support points of the optimal design.

To check whether the CSO-MA generated design is optimal, we examine whether the

sensitivity function is bounded above by 0 and attains 0 at all design points. If the model has

only one or two factors, a plot of the sensitivity function across the design space may suffice.

For example, Figure 2 displays the sensitivity function of a CSO-generated design for

estimating the slope in a negative binomial model with logarithm dose as the only factor and

it confirms its optimality. However, when there are three or more factors, the plot is harder to

appreciate visually.

We next tackle the task of finding c-optimal approximate designs for a negative binomial

models with multiple interacting explanatory factors. This is a challenging design problem

as it involves many variables to optimize. In the statistical literature, we were only able to

Zhang et al. Page 13

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

locate only one design paper that finds locally D-optimal design for a two-parameter

negative binomial model [51]. In what is to follow, we apply CSO-MA to search for an

optimal design using Matlab 2018a.

5.2 Negative Binomial Regression Model

Negative binomial regression models extend the commonly used Poisson regression models

by accommodating for over-dispersed or under-dispersed data. They model the mean of a

count outcome y and its relationship with a vector of independent variables x as follows:

E(y) = exTθ and Var(y) = exTθ(1 + aexTθ) .

Here a is the dispersion parameter; if a > 0, the variance exceeds the mean and the data is

over-dispersed and if a < 0, the data is under-dispersed.

There is little work on constructing optimal designs for the negative binomial model,

especially where the model has several interacting factors. The most recent work is from

[51], where they derived locally c-optimal approximate designs for two-factor negative

binomial models given a series of specific conditions. As an illustrative example, suppose

we want to find a locally c-optimal design for estimating the second parameter in a negative

binomial model with the logarithm dose of a drug as the only factor. We assume a = 3, the

log dose of the drug is between [−3, 5] and the nominal values are θ = (0.5, 1.7)T. We set c =

(0, 1)T, applied CSO-MA. It converged in 0.05s to the design supported at points −0.637 and

5.000 with weights 0.560 and 0.440 respectively. Figure 2 displays the sensitivity function of

this design and confirms its optimality. The criterion value of the c-optimal design is 0.483.

5.3 Locally Optimal Approximate Designs for a High-Dimensional Negative Binomial
Model

The model of interest is a negative binomial model for a five-factor negative binomial model

with all pairwise interactions and the outcome is a count variable. From the design

perspective, this is a high-dimensional regression model with 16 parameters and the design

problem has a total of 96 variables to optimize if the optimal design is supported at 16

points; otherwise, the number of variables in the optimization problem can increase

substantially. We scale each factor values to between −1 and 1 and so the design space is

[−1, 1]5.

Table 7 displays four sets of randomly generated nominal values for the model parameters

and each is drawn from U(−2, 2). We implemented CSO, MCSO, PSO and DE for

comparison purposes and initiated them using 200 candidate solutions. Parameter tuning

strategies for these optimizers followed the suggestions in [8, 39, 53, 56] and CSO-MA

shared the same parameter setup with CSO. The problem we need to solve has dimension (5

+ 1)k where k is theoretically larger than 16. We started the search with k = 20 and results

show that the optimal designs can be found under this setup. Hence, our optimization

problem has 120 variables to optimize. For CSO, we set parameter ϕ = 0.05; ϕ1 = 0.05, ϕ2 =

0.05 for MCSO; w = 0.8, β1 = β2 =2 for PSO and CR = 0.3, F = 0.75 for DE.

Zhang et al. Page 14

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To fix ideas, suppose a = 0.2 and we are interested in estimating θ2. We set c = (0, 0, 1, 0, · ·

· , 0)T. To find an optimal design for estimating this coefficient, we ran each of the four

algorithms 10 times and compare their values of the c-optimality criterion. The stopping

criterion was still the “5000D” function evaluation rule described previously. Using CSO-

MA’s results as a reference, we calculated relative efficiencies of designs found by the other

four algorithms. Table 8 summarizes the results and suggests that CSO-MA consistently

finds designs with much higher efficiencies than other algorithms for the negative binomial

models.

5.4 A Locally D-Optimal Exact Design for Logistic Model with a Single Factor

CSO-MA is a flexible algorithm and can also find optimal exact designs for nonlinear

models. We recall there is no general theory to confirm optimality of an exact design and so

we show an example where the CSO-MA generated design outperforms an optimal exact

design found by a popular algorithm in the design literature.

The Fedorov exchange algorithm is a common method for finding optimal approximate

designs in the statistical community; see Fedorov (1972). It requires that the objective

function be differentiable and it finds the optimal design by adding one or more points at

each iteration to the current design to form a new design for the next iteration. The common

problem is that clusters of points are formed around the support points and they need to be

collapsed into single points periodically. The algorithm can be mathematically proven to

converge to the optimal design but it is frequently slow and becomes ineffective when the

model is nonlinear and has several interacting factors.

Some have attempted to tweak the algorithm to find optimal exact designs. For example,

[30] modified the algorithm to find a six-point locally D-optimal exact design on the design

space [−1, 1]2 for a logistic model containing an intercept, two factors, two second-order

terms and one interaction term using the following nominal values for the parameters: θ0 =
−1, θ1 = 2, θ2 = 0.5, θ3 = 2, θ4 = 0.1, θ5 = 0.01. They reported that the six-point D—

optimal exact design η is supported at (−1.00, 1.00), (1.00, −1.00), (−1.00, −0.70), (0.06,

0.07), (1.00, −0.03) and (0.14, 1.00).

We applied CSO-MA and the generated 6-point D-optimal exact design η* is supported at

(−1.00, 1.00), (−1.00, −1.00), (−0.06, −1.00), (0.37, 1.00), (0.61, 1.00) and (0.71, 0.00). A

direct calculation shows that the design η has a D-efficiency of only 72% relative to η* and

further, CSO-MA completed the search in less than 1 second. This shows that one should be

careful to claim optimality of optimal exact designs because (i) they can be very difficult and

time-consuming to determine and (ii) the claimed optimal design could be wrong as is in the

case just mentioned.

6 Summary

Earlier results from the literature have shown that CSO (i) frequently experiences fewer

premature convergence issues and avoids a common problem with PSO when the

optimization problem is high-dimensional, and (ii) tends to outperform other state-of-the

swarm algorithms. We incorporate mutated agents in the CSO algorithm and show that

Zhang et al. Page 15

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CSO-MA enhances its swarm diversity in the search for the global optimum. This

modification further improves CSO’s exploration-exploitation balance. Numerical results

showed that this enhancement increases CSO-MA’s ability to tackle high-dimensional and

complicated optimization problems successfully without requiring a lot of extra runtime.

Our applications of CSO-MA to find c-optimal approximate designs for the high

dimensional negative binomial models and the D-optimal exact designs for the logistic

models demonstrate the effectiveness of CSO-MA to solve difficult optimal design

problems. Our experience is that CSO-MA can be used to find various types of optimal

designs for other nonlinear regression models with several interacting factors. For space

consideration, we omit details.

Metaheuristics and memetic computing are continuously developed to solve increasingly

difficult optimization problems. For example, a most recently developed improved swarm-

based algorithm called variable-size cooperative coevolutionary particle swarm optimization

was proposed for feature selection on high-dimensional data [55]. Many disciplines have

benefited from metaheuristics and memetic computing, but the extent varies considerably

from field to field. For disciplines where they are under-used, it is likely because the

disciplines are less informed about the power, flexibility and utility of metaheuristics and

memetic computing to solve complicated large scale optimization problems.

Some of our future work is to apply memetic computing to construct more challenging

different types of optimal experimental designs for more complicated statistical models,

such as random effects models or hierarchical models with various correlation structures and

the models have more interacting explanatory variables. The design criterion may be non-

differentiable, such as for finding a standardized maximin design, that requires solving a

multi-level nested optimization problem. We are also interested to find Bayesian optimal

designs that incorporate prior information of the model parameters at the design stage or find

multiple-objective optimal designs, where some criteria are more important than others. We

believe CSO-MA, singly or when appropriately hybridized with another metaheuristic

algorithm, has potential for solving challenging and high-dimensional optimization

problems in public health and medical studies.

Acknowledgements

Both Wong and Zhang were partially supported by a grant from the National Institute of General Medical Sciences
of the National Institutes of Health under Award Number R01GM107639. The contents are solely the responsibility
of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

1. Bansal Jagdish Chand, Singh PK, Saraswat Mukesh, Verma Abhishek, Jadon Shimpi Singh, and
Abraham Ajith. Inertia weight strategies in particle swarm optimization. In Nature and Biologically
Inspired Computing (NaBIC), 2011 Third World Congress on, pages 633–640. IEEE, 2011.

2. Berger MPF and Wong WK. Applied optimal designs. Jonh Wiley & Sons, Chichester, West Sussex,
UK, 2005.

3. Berger MPF and Wong WK. An introduction to optimal designs for social and biomedical research.
Jonh Wiley & Sons, Chichester, West Sussex, UK, 2009.

Zhang et al. Page 16

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Campos Mauro, Krohling Renato A, and Enriquez Ivan. Bare bones particle swarm optimization
with scale matrix adaptation. IEEE Transactions on Cybernetics, 44(9):1567–1578, 2014. [PubMed:
25137686]

5. Carlisle Anthony and Dozier Gerry. Adapting particle swarm optimization to dynamic
environments. In International Conference on Artificial Intelligence, volume 1, pages 429–434,
2000.

6. Chen Wei-Neng, Zhang Jun, Lin Ying, Chen Ni, Zhan Zhi-Hui, Chung Henry Shu-Hung, Li Yun,
and Shi Yu-Hui. Particle swarm optimization with an aging leader and challengers. IEEE
Transactions on Evolutionary Computation, 17(2):241–258, 2013.

7. Chen Xianshun, Ong Yew-Soon, Lim Meng-Hiot, and Tan Kay Chen. A multi-facet survey on
memetic computation. IEEE Transactions on Evolutionary Computation, 15(5):591–607, 2011.

8. Cheng Ran and Jin Yaochu. A competitive swarm optimizer for large scale optimization. IEEE
Transactions on Cybernetics, 45(2):191–204, 2015. [PubMed: 24860047]

9. Chi Rui, Su Yi-xin, Zhang Dan-hong, Chi Xue-xin, and Zhang Hua-jun. A hybridization of cuckoo
search and particle swarm optimization for solving optimization problems. Neural Computing and
Applications, 31(1):653–670, 2019.

10. Chi Yuhong, Sun Fuchun, Jiang Langfan, Yu Chunming, and Zhang Ping. Elastic boundary for
particle swarm optimization. In International Conference in Swarm Intelligence, pages 125–132.
Springer, 2012.

11. Deb Kalyanmoy, Pratap Amrit, Agarwal Sameer, and Meyarivan TAMT. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

12. Eberhart Russ C and Shi Yuhui. Comparing inertia weights and constriction factors in particle
swarm optimization. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on,
volume 1, pages 84–88. IEEE, 2000.

13. Eberhart Russel C and Kennedy James. Particle swarm optimization. In Proceedings of the IEEE
International Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

14. Eberhart Russell C and Shi Yuhui. Comparison between genetic algorithms and particle swarm
optimization. In International Conference on Evolutionary Programming, pages 611–616.
Springer, 1998.

15. Gang Ma, Wei Zhou, and Xiaolin Chang. A novel particle swarm optimization algorithm based on
particle migration. Applied Mathematics and Computation, 218(11):6620–6626, 2012.

16. Gao Liang, Qian Weirong, Li Xinyu, and Wang Junfeng. Application of memetic algorithm in
assembly sequence planning. The International Journal of Advanced Manufacturing Technology,
49(9–12):1175–1184, 2010.

17. Ghamisi Pedram and Benediktsson Jon Atli. Feature selection based on hybridization of genetic
algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters,
12(2):309–313, 2015.

18. Gu Shenkai, Cheng Ran, and Jin Yaochu. Feature selection for high-dimensional classification
using a competitive swarm optimizer. Soft Computing, 22(3):811–822, 2018.

19. Haupt Randy L. and Haupt Sue Ellen. Practical genetic algorithms. John Wiley & Sons, 2004.

20. Higashi Natsuki and Iba Hitoshi. Particle swarm optimization with gaussian mutation. In Swarm
Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE, pages 72–79. IEEE, 2003.

21. Luo Wenguang Ye Hongtao and Li Zhenqiang. Convergence analysis of particle swarm optimizer
and its improved algorithm based on velocity differential evolution. Computational Intelligence
and Neuroscience, 2013:7, 2013.

22. Hsieh Sheng-Ta, Sun Tsung-Ying, Liu Chan-Cheng, and Tsai Shang-Jeng. Solving large scale
global optimization using improved particle swarm optimizer. In Evolutionary Computation, 2008.
CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, pages
1777–1784. IEEE, 2008.

23. Ishaque Kashif and Salam Zainal. A deterministic particle swarm optimization maximum power
point tracker for photovoltaic system under partial shading condition. IEEE Transactions on
Industrial Electronics, 60(8):3195–3206, 2013.

Zhang et al. Page 17

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

24. Ishaque Kashif, Salam Zainal, Amjad Muhammad, and Mekhilef Saad. An improved particle
swarm optimization (pso)-based mppt for pv with reduced steady-state oscillation. IEEE
Transactions on Power Electronics, 27(8):3627–3638, 2012.

25. Kalantzis Georgios, Apte Aditya, Radke Richard, and Jackson Andrew. A reduced order memetic
algorithm for constraint optimization in radiation therapy treatment planning. In 2013 14th ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pages 225–230. IEEE, 2013.

26. Kennedy James. Small worlds and mega-minds: effects of neighborhood topology on particle
swarm performance. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3, pages 1931–1938. IEEE, 1999.

27. Kennedy James and Mendes Rui. Population structure and particle swarm performance. In
Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2, pages
1671–1676. IEEE, 2002.

28. Krasnogor Natalio and Smith James. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488,
2005.

29. Kumarappan N and Arulraj R. Optimal installation of multiple dg units using competitive swarm
optimizer (cso) algorithm. In Evolutionary Computation (CEC), 2016 IEEE Congress on, pages
3955–3960. IEEE, 2016.

30. Lall Shwetank, Jaggi Seema, Varghese Eldho, Varghese Cini, and Bhowmik Arpan. An algorithmic
approach to construct d-optimal saturated designs for logistic model. Journal of Statistical
Computation and Simulation, 88(6):1191–1199, 2018.

31. Larsen RB, Jouffroy J, and Lassen B. On the premature convergence of particle swarm
optimization. In 2016 European Control Conference (ECC), pages 1922–1927, 6 2016.

32. Leung Yiu-Wing and Wang Yuping. An orthogonal genetic algorithm with quantization for global
numerical optimization. IEEE Transactions on Evolutionary Computation, 5(1):41–53, 2001.

33. Li Xiaodong and Yao Xin. Cooperatively coevolving particle swarms for large scale optimization.
IEEE Transactions on Evolutionary Computation, 16(2):210–224, 2012.

34. Liang Jane-Jing and Suganthan Ponnuthurai N. Dynamic multi-swarm particle swarm optimizer
with local search. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 1,
pages 522–528. Ieee, 2005.

35. Liu Bo, Wang Ling, Jin Yi-Hui, Tang Fang, and Huang De-Xian. Improved particle swarm
optimization combined with chaos. Chaos, Solitons & Fractals, 25(5):1261–1271, 2005.

36. Liu Chen, Du Wen-Bo, and Wang Wen-Xu. Particle swarm optimization with scale-free
interactions. PloS One, 9(5):e97822, 2014. [PubMed: 24859007]

37. McDermott J. When and why metaheuristics researchers can ignore “no free lunch” theorems. SN
Computer Science, page In press, 2020.

38. Meng Ke, Wang Hong Gang, Dong ZhaoYang, and Wong Kit Po. Quantum-inspired particle
swarm optimization for valve-point economic load dispatch. IEEE Transactions on Power
Systems, 25(1):215–222, 2010.

39. Mohapatra Prabhujit, Das Kedar Nath, and Roy Santanu. A modified competitive swarm optimizer
for large scale optimization problems. Applied Soft Computing, 59:340–362, 2017.

40. Moore Jacqueline and Chapman Richard. Application of particle swarm to multiobjective
optimization. Department of Computer Science and Software Engineering, Auburn University, 32,
1999.

41. Morris Garrett M, Goodsell David S, Halliday Robert S, Huey Ruth, Hart William E, Belew
Richard K, Olson Arthur J, et al. Automated docking using a lamarckian genetic algorithm and an
empirical binding free energy function. Journal of Computational Chemistry, 19(14):1639–1662,
1998.

42. Nakisa Bahareh, Rastgoo Mohammad Naim, Norodin Md Jan, et al. Balancing exploration and
exploitation in particle swarm optimization on search tasking. Research Journal of Applied
Sciences, Engineering and Technology, 8(12):1429–1434, 2014.

Zhang et al. Page 18

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

43. Nezami Omid Mohamad, Bahrampour Anvar, and Jamshidlou Paria. Dynamic diversity
enhancement in particle swarm optimization (ddepso) algorithm for preventing from premature
convergence. Procedia Computer Science, 24:54–65, 2013.

44. Olorunda Olusegun and Engelbrecht Andries P. Measuring exploration/exploitation in particle
swarms using swarm diversity. In 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pages 1128–1134. IEEE, 2008.

45. Ong Yew-Soon, Lim Meng-Hiot, Zhu Ning, and Wong Kok-Wai. Classification of adaptive
memetic algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 36(1):141–152, 2006.

46. Pázman Andrej. Foundations of optimum experimental design, volume 14. Springer, 1986.

47. Pehlivanoglu Y Volkan. A new particle swarm optimization method enhanced with a periodic
mutation strategy and neural networks. IEEE Transactions on Evolutionary Computation,
17(3):436–452, 2013.

48. Pukelsheim Friedrich. Optimal design of experiments. SIAM, 2006.

49. Ratnaweera Asanga, Halgamuge Saman K, and Watson Harry C. Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on
Evolutionary Computation, 8(3):240–255, 2004.

50. Robinson Jacob, Sinton Seelig, and Rahmat-Samii Yahya. Particle swarm, genetic algorithm, and
their hybrids: optimization of a profiled corrugated horn antenna. In Antennas and Propagation
Society International Symposium, 2002. IEEE, volume 1, pages 314–317. IEEE, 2002.

51. Rodríguez-Torreblanca C and Rodríguez-Díaz JM. Locally d-and c-optimal designs for poisson
and negative binomial regression models. Metrika, 66(2):161–172, 2007.

52. Ros Raymond and Hansen Nikolaus. A simple modification in cma-es achieving linear time and
space complexity. In International Conference on Parallel Problem Solving from Nature, pages
296–305. Springer, 2008.

53. Shi Yuhui and Eberhart Russell C. Parameter selection in particle swarm optimization. In
International Conference on Evolutionary Programming, pages 591–600. Springer, 1998.

54. Shi Yuhui and Eberhart Russell C. Fuzzy adaptive particle swarm optimization. In Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on, volume 1, pages 101–106. IEEE, 2001.

55. Song Xian-fang, Zhang Yong, Guo Yi-nan, Sun Xiaoyan, and Wang Yong-li. Variable-size
cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional
data. IEEE Transactions on Evolutionary Computation, 14(8):1–14, 2019.

56. Storn Rainer and Price Kenneth. Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359, 1997.

57. Suganthan Ponnuthurai N. Particle swarm optimiser with neighbourhood operator. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 3, pages 1958–1962.
IEEE, 1999.

58. Sun Chaoli, Ding Jinliang, Zeng Jianchao, and Jin Yaochu. A fitness approximation assisted
competitive swarm optimizer for large scale expensive optimization problems. Memetic
Computing, pages 1–12, 2016.

59. Sun Jun, Palade Vasile, Wu Xiao-Jun, Fang Wei, and Wang Zhenyu. Solving the power economic
dispatch problem with generator constraints by random drift particle swarm optimization. IEEE
Transactions on Industrial Informatics, 10(1):222–232, 2014.

60. Tang Ke, Yáo Xin, Suganthan Ponnuthurai Nagaratnam, MacNish Cara, Chen Ying-Ping, Chen
Chih-Ming, and Yang Zhenyu. Benchmark functions for the cecâĂŹ2008 special session and
competition on large scale global optimization. Nature Inspired Computation and Applications
Laboratory, USTC, China, 24, 2007.

61. Taormina Riccardo and Chau Kwok-Wing. Datadriven input variable selection for rainfall-runoff
modeling using binary-coded particle swarm optimization and extreme learning machines. Journal
of Hydrology, 529:1617–1632, 2015.

62. Tian Jing, Yu Weiyu, and Xie Shengli. An ant colony optimization algorithm for image edge
detection. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 751–756. IEEE, 2008.

Zhang et al. Page 19

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

63. Trelea Ioan Cristian. The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters, 85(6):317–325, 2003.

64. Valenzuela Jorge and Smith Alice E. A seeded memetic algorithm for large unit commitment
problems. Journal of Heuristics, 8(2):173–195, 2002.

65. Whitley Darrell. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

66. Willan Andrew R and Pinto Eleanor M. The value of information and optimal clinical trial design.
Statistics in Medicine, 24(12):1791–1806, 2005. [PubMed: 15806619]

67. Worasucheep C. A particle swarm optimization for high-dimensional function optimization. In
ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics,
Computem, Telecommunications and Information Technology, pages 1045–1049, May 2010.

68. Xinchao Zhao. A perturbed particle swarm algorithm for numerical optimization. Applied Soft
Computing, 10(1):119–124, 2010.

69. Xiong Guojiang and Shi Dongyuan. Orthogonal learning competitive swarm optimizer for
economic dispatch problems. Applied Soft Computing, 2018.

70. Xu Gang, Wu Zhi-Hua, and Jiang Mei-Zhen. Premature convergence of standard particle swarm
optimisation algorithm based on markov chain analysis. International Journal of Wireless and
Mobile Computing, 9(4):377–382, 2015.

71. Yang Qiang, Chen Wei-Neng, Gu Tianlong, Zhang Huaxiang, Yuan Huaqiang, Kwong Sam, and
Zhang Jun. A distributed swarm optimizer with adaptive communication for large-scale
optimization. IEEE Transactions on Cybernetics, 2019.

72. Yang Xin-She and Deb Suash. Cuckoo search via lévy flights. In 2009 World congress on nature &
biologically inspired computing (NaBIC), pages 210–214. IEEE, 2009.

73. Yang Zhenyu, Tang Ke, and Yao Xin. Multilevel cooperative coevolution for large scale
optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 1663–1670. IEEE, 2008.

74. Yang Zhenyu, Tang Ke, and Yao Xin. Self-adaptive differential evolution with neighborhood
search. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on, pages 1110–1116. IEEE, 2008.

75. Zhang Qiang, Cheng Hui, Ye Zhencheng, and Wang Zhenlei. A competitive swarm optimizer
integrated with cauchy and gaussian mutation for large scale optimization. In Control Conference
(CCC), 2017 36th Chinese, pages 9829–9834. IEEE, 2017.

76. Zhang Wen-Xiao, Chen Wei-Neng, and Zhang Jun. A dynamic competitive swarm optimizer
based-on entropy for large scale optimization. In Advanced Computational Intelligence (ICACI),
2016 Eighth International Conference on, pages 365–371. IEEE, 2016.

77. Zhou Jianhong, Fang Wei, Wu Xiaojun, Sun Jun, and Cheng Shi. An opposition-based learning
competitive particle swarm optimizer. In Evolutionary Computation (CEC), 2016 IEEE Congress
on, pages 515–521. IEEE, 2016.

78. Zibakhsh A and Saniee Abadeh M. Gene selection for cancer tumor detection using a novel
memetic algorithm with a multi-view fitness function. Engineering Applications of Artificial
Intelligence, 26(4):1274–1281, 2013.

79. Zitzler Eckart, Deb Kalyanmoy, and Thiele Lothar. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000. [PubMed:
10843520]

Zhang et al. Page 20

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
The number of significantly better results found by the algorithm using different m values

compared to using m = 1 for optimizing the 24 benchmark functions. Parameter n denotes

the swarm size.

Zhang et al. Page 21

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
The sensitivity function of the c-optimal design for a one-factor negative binomial model on

the design space x ∈ [−3, 5] with a = 3, θ = (0.5, 1.7)T and c = (0, 1)T. The plot confirms

optimality of the CSO-generated design supported at −0.637 and 5.000.

Zhang et al. Page 22

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 23

Ta
b

le
 1

Pe
rf

or
m

an
ce

s
of

 th
e

ni
ne

 a
lg

or
ith

m
s

fo
r

m
in

im
iz

in
g

th
e

ei
gh

t 1
00

D
 b

en
ch

m
ar

k
fu

nc
tio

ns
. T

he
 v

al
ue

s
in

 th
e

la
st

 c
ol

um
n

“w
/t

/l”
 s

ho
w

s
th

e
nu

m
be

r
of

tim
es

 C
SO

-M
A

 w
in

s
(s

ig
ni

fi
ca

nt
ly

 b
et

te
r)

, t
ie

s
(i

ns
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e)

 a
nd

 lo
se

s
(s

ig
ni

fi
ca

nt
ly

 w
or

se
)

to
 o

th
er

 a
lg

or
ith

m
s

us
in

g
th

e
W

ilc
ox

on
 r

an
k

te
st

at
 th

e
0.

05
 s

ig
ni

fi
ca

nc
e

le
ve

l.
T

he
 b

ol
d

nu
m

be
rs

 in
di

ca
te

 r
es

ul
ts

 f
or

 th
e

be
st

 p
er

fo
rm

in
g

al
go

ri
th

m
 a

m
on

g
th

e
ni

ne
 f

or
 m

in
im

iz
in

g
ea

ch
 o

f
th

e
be

nc
hm

ar
k

fu
nc

tio
ns

.

f 1
f 2

f 3
f 4

f 5
f 6

f 7
f 8

w
/t

/l

C
SO

M
ea

n
1.

37
E

+
01

1.
18

E
+

02
2.

05
E

−
72

5.
29

E
+

01
6.

30
E

+
03

−
7.

15
E

+
01

2.
22

E
−1

6
4.

44
E

−1
5

5/
2/

1

St
d

de
v

2.
25

E
+

00
1.

03
E

+
01

2.
42

E
−

73
1.

78
E

+
00

1.
31

E
+

02
1.

07
E

+
00

0.
00

E
+0

0
0.

00
E

+0
0

C
SO

-M
A

M
ea

n
8.

67
E

−0
3

9.
05

E
+

01
1.

88
E

−
33

5.
33

E
−

06
8.

15
E

+0
2

−8
.6

9E
+0

1
2.

22
E

−1
6

4.
44

E
−1

5
–

St
d

de
v

2.
08

E
−0

4
3.

60
E

+
00

3.
57

E
−

35
1.

52
E

−
06

1.
59

E
+0

1
2.

27
E

−0
1

0.
00

E
+0

0
0.

00
E

+0
0

M
C

SO
M

ea
n

5.
22

E
+

00
8.

97
E

+
01

7.
11

E
−7

8
9.

28
E

+
01

7.
14

E
+

03
−

7.
03

E
+

01
2.

22
E

−1
6

4.
44

E
−1

5
5/

2/
1

St
d

de
v

9.
07

E
−

01
2.

33
E

+
00

3.
56

E
−7

8
8.

01
E

−
01

2.
05

E
+

02
1.

33
E

+
00

0.
00

E
+0

0
0.

00
E

+0
0

C
C

PS
O

2
M

ea
n

7.
11

E
+

00
4.

21
E

+
02

7.
56

E
−

14
3.

88
E

−
02

3.
62

E
+

03
−

6.
25

E
+

01
3.

41
E

−
03

1.
61

E
−

13
8/

0/
0

St
d

de
v

7.
68

E
+

00
8.

72
E

+
01

3.
41

E
−

14
1.

98
E

−
01

4.
19

E
+

02
6.

68
E

+
00

1.
42

E
−

02
5.

20
E

−
12

M
L

C
C

M
ea

n
3.

44
E

+
01

1.
52

E
+

02
5.

29
E

−
14

4.
65

E
−1

3
1.

12
E

+
03

−
8.

07
E

+
01

1.
59

E
−

12
1.

06
E

−
12

7/
0/

1

St
d

de
v

8.
70

E
+

00
5.

34
E

+
01

2.
35

E
−

14
9.

15
E

−1
4

8.
36

E
+

01
3.

72
E

−
01

7.
77

E
−

13
9.

24
E

−
15

SE
P-

C
M

A
-E

S
M

ea
n

5.
15

E
+

01
4.

88
E

+0
0

7.
44

E
−

14
2.

93
E

+
02

2.
65

E
+

03
−

7.
88

E
+

01
3.

50
E

−
03

2.
06

E
+

01
6/

0/
2

St
d

de
v

1.
91

E
+

01
1.

53
E

+0
0

9.
06

E
−

15
4.

76
E

+
01

2.
49

E
+

02
3.

02
E

+
00

1.
71

E
−

02
8.

53
E

−
03

E
PU

S-
PS

O
M

ea
n

2.
24

E
+

01
4.

75
E

+
03

9.
02

E
−

01
4.

55
E

+
02

5.
79

E
+

03
−

6.
74

E
+

01
2.

99
E

−
01

2.
05

E
+

00
8/

0/
0

St
d

de
v

1.
11

E
+

00
3.

80
E

+
02

8.
29

E
−

02
1.

04
E

+
01

9.
53

E
+

01
3.

21
E

−
01

2.
30

E
−

02
2.

20
E

−
01

D
M

S-
PS

O
M

ea
n

6.
24

E
+

00
2.

86
E

+
02

1.
05

E
−

20
1.

73
E

+
02

2.
66

E
+

03
−

7.
21

E
+

01
6.

52
E

−
10

5.
49

E
−

13
8/

0/
0

St
d

de
v

5.
22

E
−

01
3.

18
E

+
01

6.
61

E
−

22
3.

52
E

+
01

1.
66

E
+

02
1.

98
E

+
00

2.
21

E
−

11
9.

86
E

−
14

C
uc

ko
o

M
ea

n
3.

45
E

+
01

6.
57

E
+

02
8.

54
E

−
01

4.
22

E
+

02
4.

13
E

+
03

−
4.

74
E

+
01

3.
62

E
−

01
7.

62
E

+
00

8/
0/

0

St
d

de
v

1.
17

E
+

00
4.

95
E

+
01

1.
06

E
−

02
1.

42
E

+
01

1.
53

E
+

03
4.

33
E

+
00

7.
72

E
−

04
3.

29
E

−
01

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 24

Ta
b

le
 2

Pe
rf

or
m

an
ce

s
of

 th
e

ni
ne

 a
lg

or
ith

m
s

fo
r

m
in

im
iz

in
g

th
e

ei
gh

t 5
00

D
 b

en
ch

m
ar

k
fu

nc
tio

ns
. T

he
 v

al
ue

s
in

 th
e

la
st

 c
ol

um
n

“w
/t

/l”
 s

ho
w

s
th

e
nu

m
be

r
of

tim
es

 C
SO

-M
A

 w
in

s
(s

ig
ni

fi
ca

nt
ly

 b
et

te
r)

, t
ie

s
(i

ns
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e)

 a
nd

 lo
se

s
(s

ig
ni

fi
ca

nt
ly

 w
or

se
)

to
 o

th
er

 a
lg

or
ith

m
s

us
in

g
th

e
W

ilc
ox

on
 r

an
k

te
st

at
 th

e
0.

05
 s

ig
ni

fi
ca

nc
e

le
ve

l.
T

he
 b

ol
d

nu
m

be
rs

 in
di

ca
te

 r
es

ul
ts

 f
or

 th
e

be
st

 p
er

fo
rm

in
g

al
go

ri
th

m
 a

m
on

g
th

e
ni

ne
 f

or
 m

in
im

iz
in

g
ea

ch
 o

f
th

e
be

nc
hm

ar
k

fu
nc

tio
ns

.

f 1
f 2

f 3
f 4

f 5
f 6

f 7
f 8

w
/t

/l

C
SO

M
ea

n
4.

58
E

+
01

4.
80

E
+

02
1.

92
E

−
66

1.
58

E
+

02
4.

94
E

+
04

−
2.

89
E

+
02

4.
44

E
−1

6
8.

88
E

−1
5

4/
0/

4

St
d

de
v

9.
47

E
+

00
5.

29
E

+
00

3.
99

E
−

67
8.

31
E

+
00

7.
53

E
+

02
6.

33
E

+
00

0.
00

E
+0

0
0.

00
E

+0
0

C
SO

-M
A

M
ea

n
6.

88
E

+0
0

6.
99

E
+

02
5.

34
E

−
03

3.
84

E
+

01
2.

10
E

+0
4

−3
.5

0E
+0

2
6.

88
E

−
05

4.
40

E
−

04
-

St
d

de
v

9.
41

E
−0

1
4.

52
E

+
00

7.
11

E
−

04
2.

07
E

+
00

4.
25

E
+0

2
1.

62
E

+0
0

8.
73

E
−

07
2.

12
E

−
05

M
C

SO
M

ea
n

8.
34

E
+

01
9.

35
E

+
02

1.
42

E
−8

3
8.

57
E

+
02

5.
67

E
+

04
−

2.
43

E
+

02
1.

23
E

−
02

1.
53

E
−

14
6/

0/
2

St
d

de
v

4.
42

E
+

00
1.

30
E

+
01

7.
62

E
−8

5
1.

19
E

+
01

4.
07

E
+

03
8.

11
E

+
00

3.
24

E
−

03
5.

69
E

−
15

C
C

PS
O

2
M

ea
n

6.
32

E
+

01
7.

55
E

+
02

6.
19

E
−

11
4.

04
E

+
00

4.
65

E
+

04
−

3.
15

E
+

02
1.

06
E

−
03

4.
32

E
−

13
5/

0/
3

St
d

de
v

5.
22

E
+

00
4.

57
E

+
00

3.
69

E
−

12
5.

29
E

−
01

7.
66

E
+

02
6.

03
E

+
00

2.
16

E
−

03
5.

57
E

−
14

M
L

C
C

M
ea

n
7.

05
E

+
01

9.
14

E
+

02
3.

64
E

−
13

2.
02

E
−1

1
4.

77
E

+
04

−
2.

69
E

+
02

2.
15

E
−

13
4.

21
E

−
13

4/
0/

4

St
d

de
v

5.
82

E
+

00
7.

61
E

+
01

6.
28

E
−

14
3.

05
E

−1
1

2.
78

E
+

03
1.

01
E

+
01

2.
45

E
−

13
3.

94
E

−
13

SE
P-

C
M

A
-E

S
M

ea
n

6.
05

E
+

01
2.

87
E

+0
2

2.
33

E
−

14
2.

22
E

+
03

3.
54

E
+

04
−

2.
73

E
+

02
8.

06
E

−
04

3.
00

E
+

01
6/

0/
2

St
d

de
v

1.
00

E
+

00
2.

75
E

+0
1

3.
28

E
−

15
1.

57
E

+
02

4.
29

E
+

02
2.

10
E

+
00

2.
90

E
−

03
4.

31
E

−
01

E
PU

S-
PS

O
M

ea
n

4.
40

E
+

01
5.

63
E

+
04

8.
22

E
+

00
4.

03
E

+
03

7.
62

E
+

04
−

2.
85

E
+

02
5.

95
E

−
02

5.
56

E
−

01
8/

0/
0

St
d

de
v

5.
51

E
−

01
4.

14
E

+
03

2.
01

E
+

00
1.

12
E

+
02

1.
62

E
+

03
3.

07
E

+
00

3.
99

E
−

03
2.

04
E

−
02

D
M

S-
PS

O
M

ea
n

7.
35

E
+

01
2.

85
E

+
04

5.
27

E
−

06
4.

29
E

+
03

4.
30

E
+

04
−

2.
88

E
+

02
1.

57
E

−
05

8.
59

E
+

00
6/

0/
2

St
d

de
v

4.
00

E
+

00
9.

14
E

+
02

8.
86

E
−

08
7.

02
E

+
01

9.
35

E
+

02
7.

00
E

+
00

2.
46

E
−

06
4.

33
E

−
01

C
uc

ko
o

M
ea

n
6.

03
E

+
01

4.
27

E
+

04
3.

27
E

+
00

6.
67

E
+

02
6.

09
E

+
04

−
1.

66
E

+
02

7.
02

E
+

00
2.

54
E

+
01

8/
0/

0

St
d

de
v

2.
47

E
+

00
1.

03
E

+
03

1.
02

E
+

00
2.

11
E

+
01

1.
44

E
+

02
3.

57
E

+
00

4.
19

E
−

01
1.

16
E

+
00

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 25

Ta
b

le
 3

Pe
rf

or
m

an
ce

s
of

 th
e

ni
ne

 a
lg

or
ith

m
s

fo
r

m
in

im
iz

in
g

th
e

ei
gh

t 1
00

0D
 b

en
ch

m
ar

k
fu

nc
tio

ns
. T

he
 v

al
ue

s
in

 th
e

la
st

 c
ol

um
n

“w
/t

/l”
 s

ho
w

s
th

e
nu

m
be

r
of

tim
es

 C
SO

-M
A

 w
in

s
(s

ig
ni

fi
ca

nt
ly

 b
et

te
r)

, t
ie

s
(i

ns
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e)

 a
nd

 lo
se

s
(s

ig
ni

fi
ca

nt
ly

 w
or

se
)

to
 o

th
er

 a
lg

or
ith

m
s

us
in

g
th

e
W

ilc
ox

on
 r

an
k

te
st

at
 th

e
0.

05
 s

ig
ni

fi
ca

nc
e

le
ve

l.
T

he
 b

ol
d

nu
m

be
rs

 in
di

ca
te

 r
es

ul
ts

 f
or

 th
e

be
st

 p
er

fo
rm

in
g

al
go

ri
th

m
 a

m
on

g
th

e
ni

ne
 f

or
 m

in
im

iz
in

g
ea

ch
 o

f
th

e
be

nc
hm

ar
k

fu
nc

tio
ns

.

f 1
f 2

f 3
f 4

f 5
f 6

f 7
f 8

w
/t

/l

C
SO

M
ea

n
2.

80
E

+
01

1.
45

E
+

03
7.

50
E

−
02

1.
60

E
+

02
2.

38
E

+
05

−
3.

69
E

+
02

1.
30

E
−

02
4.

90
E

−
01

8/
0/

0

St
d

de
v

3.
62

E
+

00
1.

94
E

+
02

2.
09

E
−

05
4.

16
E

+
01

3.
81

E
+

03
3.

54
E

+
00

2.
64

E
−

04
6.

68
E

−
03

C
SO

-M
A

M
ea

n
2.

01
E

+0
1

1.
19

E
+0

3
4.

70
E

−
03

1.
53

E
+

02
9.

95
E

+0
4

−4
.9

8E
+0

2
1.

24
E

−
02

3.
01

E
−

03
-

St
d

de
v

8.
27

E
−0

1
9.

12
E

+0
1

5.
90

E
−

04
6.

31
E

+
00

1.
88

E
+0

3
9.

84
E

−0
1

2.
62

E
−

04
9.

40
E

−
05

M
C

SO
M

ea
n

8.
17

E
+

01
2.

03
E

+
03

2.
97

E
−

66
2.

34
E

+
03

1.
35

E
+

05
−

4.
07

E
+

02
2.

85
E

−1
5

1.
24

E
+

00
6/

0/
2

St
d

de
v

3.
59

E
−

01
3.

02
E

+
01

9.
94

E
−

68
2.

64
E

+
01

1.
11

E
+

04
6.

00
E

+
00

1.
61

E
−0

5
3.

72
E

−
01

C
C

PS
O

2
M

ea
n

7.
45

E
+

01
1.

33
E

+
03

5.
29

E
−

13
3.

05
E

−
01

2.
45

E
+

05
−

3.
57

E
+

02
3.

00
E

+
00

1.
06

E
−1

2
5/

0/
3

St
d

de
v

3.
98

E
+

00
1.

17
E

+
02

9.
54

E
−

14
2.

60
E

−
01

9.
33

E
+

02
1.

07
E

+
00

8.
22

E
−

01
3.

77
E

−1
3

M
L

C
C

M
ea

n
8.

99
E

+
01

1.
82

E
+

03
8.

45
E

−
13

3.
66

E
−1

0
1.

88
E

+
05

−
3.

46
E

+
02

4.
18

E
−

07
1.

06
E

−
12

4/
0/

4

St
d

de
v

2.
65

E
+

00
1.

53
E

+
02

4.
67

E
−

14
4.

92
E

−1
1

4.
87

E
+

03
9.

06
E

+
00

2.
47

E
−

13
4.

82
E

−
13

SE
P-

C
M

A
-E

S
M

ea
n

4.
22

E
+

01
2.

12
E

+
03

5.
92

E
−

11
5.

60
E

+
03

2.
25

E
+

05
−

3.
11

E
+

02
3.

66
E

−
04

3.
42

E
+

01
6/

0/
2

St
d

de
v

5.
07

E
+

00
7.

93
E

+
01

4.
41

E
−

13
2.

17
E

+
02

9.
45

E
+

03
3.

77
E

+
00

1.
08

E
−

05
2.

26
E

+
00

E
PU

S-
PS

O
M

ea
n

5.
13

E
+

01
9.

66
E

+
04

3.
98

E
+

02
4.

57
E

+
03

6.
60

E
+

05
−

2.
56

E
+

02
7.

44
E

+
00

1.
56

E
+

01
8/

0/
0

St
d

de
v

1.
07

E
+

00
1.

08
E

+
03

1.
77

E
+

01
1.

49
E

+
02

1.
15

E
+

04
3.

03
E

+
00

9.
62

E
−

01
1.

07
E

+
00

D
M

S-
PS

O
M

ea
n

9.
15

E
+

01
5.

74
E

+
04

3.
29

E
−

03
3.

83
E

+
03

7.
75

E
+

05
−

3.
03

E
+

02
4.

11
E

+
00

1.
10

E
+

01
7/

0/
1

St
d

de
v

3.
44

E
−

01
1.

55
E

+
03

3.
12

E
−

05
9.

54
E

+
01

9.
29

E
+

03
8.

07
E

+
00

5.
50

E
−

01
4.

82
E

−
01

C
uc

ko
o

M
ea

n
8.

26
E

+
01

9.
02

E
+

04
2.

34
E

+
01

2.
54

E
+

03
8.

66
E

+
05

−
1.

47
E

+
02

1.
62

E
+

01
4.

60
E

+
01

8/
0/

0

St
d

de
v

2.
06

E
+

00
2.

63
E

+
02

5.
52

E
−

01
3.

06
E

+
01

1.
11

E
+

04
2.

98
E

+
00

5.
10

E
−

01
1.

66
E

+
00

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 26

Ta
b

le
 4

T
he

 n
um

be
r

of
 ti

m
es

 o
n

al
go

ri
th

m
s’

 r
an

ks
 w

he
n

m
in

im
iz

in
g

f 1
 to

 f 8
 (

D
 =

 1
00

, 5
00

, 1
00

0)
. A

 s
m

al
le

r
ra

nk
 v

al
ue

 in
di

ca
te

s
a

be
tte

r
m

in
im

iz
at

io
n

pe
rf

or
m

an
ce

 o
f

th
e

al
go

ri
th

m
 o

pt
im

iz
in

g
th

e
sp

ec
if

ic
 f

un
ct

io
n.

N
um

be
r

of
 t

im
es

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
4

R
an

k
5

R
an

k
6

R
an

k
7

R
an

k
8

R
an

k
9

A
ve

ra
ge

 R
an

k

D
 =

 1
00

C
SO

0
3

0
2

2
0

0
1

0
3

C
SO

-M
A

3
3

2
0

0
0

0
0

0
1

M
C

SO
1

4
0

0
1

1
0

0
1

2

C
C

PS
O

2
0

0
1

2
1

1
2

1
0

6

M
L

C
C

1
2

0
1

2
1

1
0

0
3

SE
P-

C
M

A
-E

S
1

0
2

0
0

1
2

0
2

7

E
PU

S-
PS

O
0

0
0

0
0

1
3

1
3

8

D
M

S-
PS

O
0

0
1

3
2

2
0

0
0

5

C
uc

ko
o

0
0

0
0

0
1

0
5

2
9

D
 =

 5
00

C
SO

2
2

2
1

0
1

0
0

0
1

C
SO

-M
A

3
0

2
1

1
0

1
0

0
1

M
C

SO
1

1
0

0
0

2
2

1
1

6

C
C

PS
O

2
0

2
0

3
1

2
0

0
0

3

M
L

C
C

1
1

1
1

2
0

2
0

0
4

SE
P-

C
M

A
-E

S
1

1
1

0
2

1
1

0
1

5

E
PU

S-
PS

O
0

1
0

0
1

1
0

2
3

8

D
M

S-
PS

O
0

0
2

1
0

1
2

1
1

7

C
uc

ko
o

0
0

0
1

1
0

0
4

2
9

D
 =

 1
00

0

C
SO

0
1

2
2

2
0

1
0

0
5

C
SO

-M
A

4
0

2
1

0
1

0
0

0
1

M
C

SO
2

2
0

0
3

1
0

0
0

2

C
C

PS
O

2
1

3
0

1
1

2
0

0
0

4

M
L

C
C

2
1

2
1

1
0

0
1

0
2

SE
P-

C
M

A
-E

S
0

0
2

2
0

2
0

1
1

6

E
PU

S-
PS

O
0

0
0

1
0

0
2

3
2

8

D
M

S-
PS

O
0

0
0

0
1

1
4

1
1

7

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 27

N
um

be
r

of
 t

im
es

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
4

R
an

k
5

R
an

k
6

R
an

k
7

R
an

k
8

R
an

k
9

A
ve

ra
ge

 R
an

k

C
uc

ko
o

0
0

0
0

0
1

1
2

4
9

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 28

Ta
b

le
 5

A
ve

ra
ge

 s
w

ar
m

 d
ia

m
et

er
 m

ea
su

re
d

at
 th

e
(1

st
, 2

50
0D

th
, 5

00
0D

th
)

fu
nc

tio
n

ev
al

ua
tio

ns
 w

he
n

C
SO

 a
nd

 C
SO

-M
A

 a
re

 a
pp

lie
d

to
 m

in
im

iz
e

th
e

be
nc

hm
ar

k

fu
nc

tio
ns

 f 4
 to

 f 8
, w

hi
ch

 a
ll

ha
ve

 m
an

y
lo

ca
l m

in
im

a.
 T

he
 “

C
SO

’s
 R

es
ul

ts
”

an
d

“C
SO

-M
A

’s
 r

es
ul

ts
”

co
lu

m
ns

 d
is

pl
ay

 th
e

op
tim

al
 v

al
ue

s
of

 th
e

fu
nc

tio
ns

fo
un

d
by

 C
SO

 a
nd

 C
SO

-M
A

 w
he

n
it

te
rm

in
at

es
 a

t t
he

 5
00

0D
th

 e
va

lu
at

io
n.

 A
n

as
te

ri
sk

 in
di

ca
te

s
th

e
al

go
ri

th
m

 h
as

 p
er

fo
rm

ed
 s

ig
ni

fi
ca

nt
ly

 b
et

te
r

th
e

ot
he

r

at
 th

e
α

=
 0

.0
5

si
gn

if
ic

an
ce

 le
ve

l.

F
un

ct
io

n
D

im
en

si
on

C
SO

’s
 D

ia
C

SO
’s

 R
es

ul
ts

C
SO

-M
A

’s
 D

ia
C

SO
-M

A
’s

 R
es

ul
ts

D
 =

 1
00

(5
0.

40
, 0

.0
0,

 0
.0

0)
5.

29
E

+
01

(5
2.

61
, 6

.8
5,

 5
.3

0)
5.

33
E

−
06

*

f 4
D

 =
 5

00
(1

03
.7

3,
 0

.0
0,

 0
.0

0)
1.

58
E

+
02

(1
03

.7
6,

 5
.2

1,
 5

.2
6)

3.
84

E
+

01
*

D
 =

 1
00

0
(1

43
.1

8,
 0

.0
0,

 0
.0

0)
1.

60
E

+
02

(1
43

.9
2,

 3
.4

8,
 6

.5
2)

4.
16

E
+

01
*

D
 =

 1
00

(4
87

8.
05

, 0
.0

0,
 0

.0
0)

6.
30

E
+

03
(4

87
1.

30
, 9

14
.0

8,
 9

65
.5

9)
1.

31
E

+
02

*

f 5
D

 =
 5

00
(1

00
69

.2
9,

 0
.0

0,
 0

.0
0)

4.
94

E
+

04
(1

00
57

.3
0,

 9
05

.3
6,

 1
06

1.
22

2)
7.

53
E

+
02

*

D
 =

 1
00

0
(1

40
47

.7
2,

 0
.0

0,
 0

.0
0)

2.
38

E
+

05
(1

40
51

.9
5,

 6
04

.0
2,

 7
98

.3
7)

3.
81

E
+

03
*

D
 =

 1
00

(9
.8

7,
 0

.0
0,

 0
.0

0)
−

7.
15

E
+

01
(9

.7
5,

 0
.6

3,
 1

.9
7)

−
8.

69
E

+
01

*

f 6
D

 =
 5

00
(1

9.
98

, 0
.0

0,
 0

.0
0)

−
2.

89
E

+
02

(1
9.

62
, 1

.3
7,

 0
.6

7)
−

3.
50

E
+

02
*

D
 =

 1
00

0
(2

7.
84

, 0
.0

0,
 0

.0
0)

−
3.

69
E

+
02

(2
8.

11
, 1

.1
2,

 1
.0

9)
−

4.
98

E
+

02
*

D
 =

 1
00

(5
82

9.
34

, 0
.0

0,
 0

.0
0)

2.
22

E
−

16
(5

81
6.

03
, 7

45
.0

5,
 6

11
.2

9)
2.

22
E

−
16

f 7
D

 =
 5

00
(1

21
96

.0
4,

 0
.0

0,
 0

.0
0)

4.
44

E
−

16
*

(1
22

30
.4

1,
 7

08
.3

4,
 7

15
.5

1)
6.

88
E

−
05

D
 =

 1
00

0
(1

67
50

.8
2,

 0
.0

0,
 0

.0
0)

1.
30

E
−

02
(1

67
79

.2
2,

 6
81

.0
6,

 7
20

.3
3)

1.
24

E
−

02

D
 =

 1
00

(3
15

.3
9,

 0
.0

0,
 0

.0
0)

4.
44

E
−

15
(3

18
.0

9,
 4

4.
81

, 4
4.

29
)

4.
44

E
−

15

f 8
D

 =
 5

00
(6

55
.3

4,
 0

.0
0,

 0
.0

0)
8.

88
E

−
15

*
(6

39
.7

4,
 3

9.
53

, 4
1.

36
)

4.
40

E
−

04

D
 =

 1
00

0
(8

93
.2

7,
 0

.0
0,

 0
.0

0)
4.

90
E

−
01

(8
85

.8
7,

 4
3.

27
, 4

3.
41

)
3.

01
E

−
03

*

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 29

Ta
b

le
 6

R
un

tim
e

fo
r

C
SO

 a
nd

 C
SO

-M
A

 c
om

pl
et

in
g

50
00

D
 e

va
lu

at
io

ns
 o

n
be

nc
hm

ar
k

fu
nc

tio
ns

. A
ve

ra
ge

 r
es

ul
ts

 a
re

 g
iv

en
 b

as
ed

 o
n

25
 in

de
pe

nd
en

t r
un

s
fo

r
ea

ch

fu
nc

tio
n.

10
0D

50
0D

10
00

D

C
SO

C
SO

-M
A

C
SO

C
SO

-M
A

C
SO

C
SO

-M
A

f 1
3.

0s
3.

1s
94

.5
s

92
.6

s
41

2.
3s

41
7.

1s

f 2
6.

6s
6.

6s
18

0.
4s

18
1.

9s
74

6.
2s

75
8.

6s

f 3
3.

0s
2.

9s
92

.9
s

86
.3

s
41

1.
7s

42
0.

2s

f 4
9.

2s
9.

1s
24

7.
8s

24
9.

0s
99

8.
0s

10
25

.5
s

f 5
6.

2s
6.

2s
16

5.
6s

16
5.

0s
72

3.
5s

73
4.

6s

f 6
9.

7s
9.

7s
24

5.
2s

26
0.

1s
10

40
.5

s
10

52
.1

s

f 7
10

.1
s

10
.0

s
26

5.
0s

27
1.

4s
11

44
.2

s
11

50
.3

s

f 8
9.

5s
9.

9s
25

7.
7s

25
5.

2s
10

53
.1

s
10

64
.7

s

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 30

Table 7

Four simulated sets of values for θ0, θ1, ···, θ15, each drawn from U(−2, 2) randomly for the negative binomial

models with 5 factors and all pairwise interactions.

θ θ0, θ1, θ2, ···, θ14, θ15

θ1 (1.03, 0.50, 0.75, 1.25, 0.80, 0.50, 1.80, −0.40, −1.00, 1.65, 0.65, 1.10, 1.30, 0.40, −0.20, 0.55)T

θ2 (0.09, −0.42, 1.13, 0.29, −0.20, −0.11, 1.40, 0.60, 0.58, −0.25, −0.35, 1.52, 1.01, 0.60, −0.07, 0.09)T

θ3 (−1.12, −0.66, 1.50, 0.14, −0.08, −1.01, 1.65, −0.03, 1.74, 0.62, −0.12, −0.68, −1.71, 0.40, 0.95, −1.89)T

θ4 (0.29, −0.20, −0.33, 1.54, 1.22, 0.44, 1.03, 0.71, −0.55, −0.29, 1.55, −0.47, 0.56, −1.30, 0.17, 0.66)T

Memet Comput. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 31

Ta
b

le
 8

M
ea

n
c-

op
tim

al
ity

 c
ri

te
ri

on
 v

al
ue

s
of

 th
e

de
si

gn
s

ge
ne

ra
te

d
by

 th
e

fi
ve

 a
lg

or
ith

m
s

af
te

r
50

00
D

 f
un

ct
io

n
ev

al
ua

tio
ns

 f
or

 th
e

ne
ga

tiv
e

bi
no

m
ia

l r
eg

re
ss

io
n

m
od

el
s

w
ith

 f
iv

e
fa

ct
or

s
an

d
al

l p
ai

rw
is

e
in

te
ra

ct
io

ns
. T

he
 c

-e
ff

ic
ie

nc
y

of
 e

ac
h

de
si

gn
 r

el
at

iv
e

to
 th

e
C

SO
-M

A
 g

en
er

at
ed

 d
es

ig
n

is
 in

 p
ar

en
th

es
es

. T
he

 la
st

ro
w

 r
ec

or
ds

 a
ve

ra
ge

 r
un

tim
e

fo
r

ea
ch

 a
lg

or
ith

m
.

P
SO

C
SO

D
E

M
C

SO
C

SO
-M

A

θ 1
−

0.
56

 (
63

%
)

−
0.

38
 (

93
%

)
−

0.
52

 (
65

%
)

−
0.

45
 (

85
%

)
−

0.
35

θ 2
−

0.
64

 (
74

%
)

−
0.

41
 (

94
%

)
−

0.
57

 (
71

%
)

−
0.

51
 (

90
%

)
−

0.
36

θ 3
−

0.
90

 (
80

%
)

−
0.

74
 (

97
%

)
−

0.
80

 (
78

%
)

−
0.

79
 (

92
%

)
−

0.
68

θ 4
−

0.
49

 (
72

%
)

−
0.

33
 (

87
%

)
−

0.
44

 (
69

%
)

−
0.

47
 (

80
%

)
−

0.
29

T
im

e
73

.9
 s

67
.0

s
82

.1
s

77
.4

s
68

.5
s

Memet Comput. Author manuscript; available in PMC 2021 September 01.

	Abstract
	Introduction
	Swarm Optimization
	Particle Swarm Optimization and Its Variants
	Competitive Swarm Optimizer

	Competitive Swarm Optimizer with Mutated Agents
	Algorithm 1
	Parameter Tuning

	Simulation
	Simulation Setup
	Simulation Results
	More Mutated Agents?
	Swarm Diversity
	Algorithm Speed

	Application: Locally c-Optimal Designs for High Dimensional Statistical Models
	Background
	Negative Binomial Regression Model
	Locally Optimal Approximate Designs for a High-Dimensional Negative Binomial Model
	A Locally D-Optimal Exact Design for Logistic Model with a Single Factor

	Summary
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

