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Abstract

Inhibition-stabilized networks (ISNs) are neural architectures with strong positive feedback among 

pyramidal neurons balanced by strong negative feedback from inhibitory interneurons, a circuit 

element found in the hippocampus and the primary visual cortex. In their working regime, ISNs 

produce damped oscillations in the γ-range in response to inputs to the inhibitory population. In 

order to understand the properties of interconnected ISNs, we investigated periodic forcing of 

ISNs. We show that ISNs can be excited over a range of frequencies and derive properties of the 

resonance peaks. In particular, we studied the phase-locked solutions, the torus solutions, and the 

resonance peaks. Periodically forced ISNs respond with (possibly multistable) phase-locked 

activity, whereas networks with sustained intrinsic oscillations respond more dynamically to 

periodic inputs with tori. Hence, the dynamics are surprisingly rich, and phase effects alone do not 

adequately describe the network response. This strengthens the importance of phaseamplitude 

coupling as opposed to phase-phase coupling in providing multiple frequencies for multiplexing 

and routing information.

1 Introduction

Oscillatory rhythms of neuronal populations are ubiquitous in the brain (see Buzsaki, 2004, 

for a review), but their functions are not yet established (Sejnowski & Paulsen, 2006). 

Gamma oscillations in the 30–80 Hz frequency band (Bartos, Vida, & Jonas, 2007) have 

been implicated in attention and memory (Yamamoto, Suh, Takeuchi, & Tonegawa, 2014), 

in coding information, and in communication between brain areas (Buzsaki & Chrobak, 

1995; Bichot, Rossi, & Desimone, 2005; Ray & Maunsell, 2011; Womelsdorf et al., 2012; 

Igarashi, Lu, Colgin, Moser, & Moser, 2014) and are abnormal in pathologies such as 

schizophrenia (Lewis, Hashimoto, & Volk, 2005), autism (Wright et al., 2012), and 

Parkinson’s disease (Hemptinne et al., 2013).

Gamma frequency oscillations are often coupled with oscillations at lower frequencies 

(Jensen & Colgin, 2007). For example, oscillating inputs to the hippocampus from the 

medial septum are in the theta frequency range (4–8 Hz). CA1 neurons in hippocampus also 
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receive inputs from the medial entorhinal cortex in the high gamma frequency range (60–80 

Hz) and inputs from the CA3 neuron in the low gamma frequency range (30–60 Hz) (Colgin 

et al., 2009). When neural networks in these different regions are coupled, there is an 

interplay between oscillations that are internally generated and those that arise from external 

inputs.

Analyzing these networks theoretically is difficult (Borisyuk, Borisyuk, Khibnik, & Roose, 

1995), even at the scale of neural populations, because the interplay of multiple frequencies 

may lead to chaotic behavior (Newhouse, Ruelle, & Takens, 1978). Large-scale network 

models of these oscillations also have large numbers of parameters, which are difficult to 

analyze (Vierling-Claassen, Siekmeier, Stufflebeam, & Kopell, 2008). However, this 

analysis can be more easily undertaken in models with fewer parameters and the intrinsic 

working regimes of the different neural populations are known. A good example of this is 

Tsodyks, Skaggs, Sejnowski, and Mc-Naughton (1997), which analyzed a neural model of 

hippocampal circuits forced by inputs from the medial septum (see Figure 1). This network 

consisted of two populations of interconnected neurons, excitatory and inhibitory, such that 

when the inhibitory connections are removed, the remaining excitatory network is unstable. 

Network stability was maintained by strong inhibitory connections, putting the network into 

a dynamical regime called an inhibition stabilized network (ISN). Recently, ISNs have been 

used to model the cortical visual area (Murphy & Miller, 2009; Ozeki, Finn, Schaffer, 

Miller, & Ferster, 2009; Jadi & Sejnowski, 2014a, 2014b; Rubin, Van Hooser, & Miller, 

2015), and they can also be found in studies where the ISN regime is not explicitly invoked 

(Kang, Shelley, Henrie, & Shapley, 2010; Akam, Oren, Mantoan, Ferenczi, & Kullmann, 

2012).

Two properties of these ISNs make them especially interesting. First, increasing the direct 

external input to the inhibitory interneurons causes the interneurons paradoxically to 

decrease their firing rates, and, second, the ISN operating regime supports intrinsic gamma 

oscillations.

The main objective of this article is to understand the amplification of gamma rhythms of 

networks driven by periodic external inputs when the gamma rhythm are generated 

resonantly within the circuitry of the network. To this end, we focus on the ISN, which, we 

will see, can be understood as damped oscillators. There are several reasons to perform this 

analysis in addition to the considerations already identified:

1. An extension of Tsodyks et al. (1997) is to assume that the hippocampus contains 

interconnected ISNs. As a first step toward the study of such networks, we can 

consider a feedforward chain of two ISNs and the even simpler case where the last 

ISN of the chain is periodically forced (by the first ISN)

2. ISNs have been shown to be relevant for the description of the local circuitry of V1 

(see the experimental papers by Ozeki et al., 2009, and Rubin et al., 2015): 

interconnected ISNs would then be adequate for the study of center/surround 

interactions.

3. It has been shown recently (Akam et al., 2012) that a firing rate model of CA3 

neuron with sustained oscillations can be used to fit the phase response curve 
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(PRC) of carbachol-induced oscillations as well as optogenetic stimulation. The 

PRC is a tool (Ermentrout & Terman, 2010) valid far from a bifurcation point. This 

suggests that the PRC is inadequate for the study of forced ISNs where phase-

amplitude coupling may arise (Aronson, Ermentrout, & Kopell, 1990).

Periodic forcing of neural oscillators is a well-studied paradigm, but most papers are not 

applicable to periodic forcing of ISN because they assume, first, that the oscillations are 

sustained (see, e.g., Neu, 1979; Ermentrout, 1981); second, that the forcing amplitude is 

small compared to the amplitude of the network oscillations; and the third concerns the 

forcing frequency ωF, which is off resonance with an intrinsic frequency ωH, that is, it is not 

related by a rational number. As a consequence, resonance effects are ignored (see, e.g., 

Hoppensteadt & Izhikevich, 1997).

One notable exception to the first assumption is Aronson et al. (1990), although resonance 

conditions were not addressed. These above assumptions naturally lead to the limited 

description of phase-locked (PL) solutions that are ωF-periodic solutions with constant 

amplitude. Hence, the only variable in these solutions is the relative phase between the 

forcing and the output, which is assumed to encode information. This scheme is called 

phase-phase coupling in the literature.

Here, we go beyond a phase description and look at how the amplitude of the response is 

affected by nonlinear resonance effects. The resonance effect in which a network with 

intrinsic frequency ωH displays a maximum in the amplitude of the response when the 

forcing frequency ωF is close to ωH has been known for some time. It was used recently in 

experiments (Cardin et al., 2009) to investigate the neural mechanism responsible for 

gamma oscillations in the barrel cortex. It has been used in Akam and Kullmann (2010) to 

show how to multiplex information and also in Paik and Glaser (2010) to show how the 

visual cortex can adjust its working regime to the frequency content of the thalamus inputs.

When the system is nonlinear, theory predicts that resonances appear at every rational ratio 

k/l of ωH/ωF, although in real oscillatory systems, the maximum and width of the resonance 

decrease with |k| + |l|: resonances occur only for frequency ratios 1/2, 1, and 2. The 

perturbation parameter  is a fundamental parameter for the description of 

the k:l resonance peak. Compared to linear resonance, many more new network responses 

can be produced. For subharmonic forcing ωF < ωH, the PL frequency is the same as the 

forcing frequency. For superharmonic forcing ωH > ωF, the periodic responses frequencies 

are a fraction of the forcing frequency , thereby producing again a phase-locked (to the 

input) solution. Hence, we will also call them PL. In addition, there can be multistability of 

PL and modulated responses with two intrinsic frequencies that we call torus solutions or 

quasiperiodic solutions. The resonance curve is then the amplitude of the response (PL/

torus) as a function of the forcing frequency ωF.

In earlier work along these lines (Pollina, Benardete, & Noonburg, 2003; Ledoux & Brunel, 

2011; Decker & Noonburg, 2012), the multistability of PL solutions was studied around the 

1:1 peak. One can find a resonance curve in the periodic forcing of spatially extended ISN 
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networks in Rule, Stoffregen, and Ermentrout (2011). Resonance effects in neural masses 

have also been studied in Spiegler, Knösche, Schwab, Haueisen, & Atay (2011), though 

without addressing dynamics. There are general limitations to the phase reset curve (PRC) 

as a description of neural oscillators; in particular, the size of the perturbation has to be 

small. For example in Wedgwood, Lin, Thul, and Coombes (2013), Morris-Lecar neurons 

forced by very brief periodic kicks produce chaotic responses that are captured by an 

adequate phase-amplitude description but not by a phase description alone.

Understanding the properties of the resonances of an oscillatory system is extremely 

difficult in general. Here, by looking at the ISN, which we show are tuned close to a Hopf 

bifurcation, we are able to understand thoroughly the possible network responses PL/torus. 

The periodic forcing of a Hopf bifurcation has been studied in Gambaudo (1985) for the 

responses near all strong resonances. However, the link to our model is buried in multiple 

changes of variables. Recently, the resonance curves were classified in Zhang and 

Golubitsky (2011) around the 1:1 resonance. One issue is that the authors focused solely on 

PL solutions and hence the torus solutions were not considered and the resonances curves 

are incomplete. A second issue is that they did not examine the stability of the PL responses, 

which limits the predictive power of the analysis. Here, we compute the changes of variables 

that provide the normal form as in Gambaudo (1985), and we also provide several formulas 

concerning the resonance curves. This is technical and lengthy but not too difficult (see the 

appendixes). This allows us to achieve a complete understanding of the resonance curves, 

which allowed us to recover some previous results (Zhang & Golubitsky, 2011).

Finally, we introduce a type of network similar to the ISN but that supports sustained 

oscillations (SO), for example, those that are induced by carbachol. The E-I network that we 

then consider can be tuned to either the ISN or the SO regime.

The plan of the study is as follows. After presenting the model and the general method, 

which is mainly the use of bifurcation theory, we study in detail the main resonances 1:1, 

1:2, 2:1 of an unforced E-I network in the ISN regime. In the discussion, we put these results 

into an experimental context.

2 Description of the Model and Definitions

We analyze a rate model with two populations of excitatory and inhibitory neurons (E-I 

network). More specifically, we consider a Wilson-Cowan model describing the firing rate 

of each population:

(2.1)

where S is the sigmoid function:
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The variables θE, θI describe the total presynaptic current onto each population, and τE, τI 

are the time constants of each population. Finally, the connections are such that JEE, JIE > 0, 

and JEI, JII < 0. The total presynaptic currents (θE (t), θI(t)) are supposed to be periodic 

functions of time with only one Fourier component:

(2.2)

where ε ≪ 1 is the (small) forcing amplitude and  is the forcing frequency. An important 

quantity is the perturbation. For a rational approximation of the ratio  where  is 

the gamma frequency of the rhythms generated by the E-I network, the perturbation is 

defined by

A phase-locked (PL) solution is a time-periodic network response of equation 2.1 with 

frequency ωF/l/2π, l > 0 integer, fraction of the forcing frequency. A quasiperiodic network 

response V(t), or torus solution, is a response with two frequency components V(t) = f (ω1t, 

ω2t) where f is 2π-periodic in each variable (see, for example, Figure 9, top).

3 Methods

This section introduces the parts of dynamical systems and bifurcation theory needed to 

understand the behaviors of network 2.1 when the forcing frequency ωF and the forcing 

amplitude ε are varied. The equations can be rewritten as V̇ = F(V, t, μ) where V = (E, I) and 

μ is the vector of parameters. When ε = 0, the system is autonomous and 

. We first choose μ so that the unforced network V̇ = F0(V, μ) is in an 

ISN regime and study the effect of forcing terms. In particular, we focus on the amplitudes 

of the time-periodic and quasiperiodic solutions of equation 2.1.

Recall that an equilibrium state is a pointVf where the vector field F0(·, μ) vanishes. A 

bifurcation occurs when there is a qualitative change in behavior or stability as the 

parameters μ are varied (for a more precise definition, see Guckenheimer & Holmes, 1983, 

and Kuznetsov, 2004). Bifurcations can be detected by looking at the stability of the 

equilibrium, which is stable if the eigenvalues of the Jacobian of F0 at (Vf, μ) have negative 

real parts. When μ is varied, the eigenvalues move in the complex plane, and when two 

complex conjugate eigenvalues cross the imaginary axis without vanishing for μ = μH, the 

system undergoes what is called a Hopf bifurcation signaling the appearance or 

disappearance of periodic solutions (modulo some nondegeneracy conditions). The set of 

bifurcation points partitions the parameter space in sets of similar local dynamics, called a 

bifurcation diagram. Close to a bifurcation point, the vector field F0 can be simplified by a 

change of variables into its normal form, which is the polynomial approximation with the 

fewest monomials.
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The analysis of the forced system proceeds by writing the activity as 

, that is, monomials 

. This expression is then substituted into V̇ = F(V, t, μ) to obtain 

a normal form, ż = αz + βz|z|2 + ⋯, which may depend on time. Note that when z = 0, the 

network response is an equilibrium, whereas when z(t) = z0, the network response is periodic 

in time. Finally, a periodic solution z(t) corresponds to a torus response of the network. 

Analysis of the differential equation in z with bifurcation theory allows us to predict the 

network responses and resonances.

3.1 ISNs Are Close to a Supercritical Hopf Bifurcation

The parameters of the model are chosen for the ISN regime, which exhibits damped 

oscillations in the gamma range. An ISN satisfies the following properties (Tsodyks et al., 

1997):

1. When the interpopulation connections JIE = JEI = 0 are zero, an equilibrium and, 

more precisely, a (stationary) excitatory firing rate Ef solution of Ef = S(JEEEf + 

θE), is unstable: −1 + JEES′(JEEEf + θE) > 0.

2. When the interpopulations connections are reestablished, there is a stable 

equilibrium (Ef, If) solution of (Ė = İ = 0) that is stable: all the eigenvalues of the 

Jacobian at (Ef, If) have negative real parts.

Assume that this is the same equilibrium, at some point between these two extremes, the 

eigenvalues ±iωH of the Jacobian at the equilibrium have zero real parts with nonzero 

imaginary parts and the network undergoes a Hopf bifurcation signaling the appearance or 

disappearance of -periodic solutions. (see Kuznetsov, 2004). Note that for an ISN, JEE is 

relatively small at point 1 above.

Remark 1—The fact that the eigenvalues of the Jacobian are complex and not real (hence 

zero) at the instability is not a restriction. Almost any perturbation of a network with real 

eigenvalues yields complex eigenvalues.

The Hopf bifurcations can then be found by varying the inputs θE and θI in equation 2.1 

(Wilson & Cowan, 1972; Borisyuk & Kirillov, 1992; Hoppensteadt & Izhikevich, 1997). 

The Hopf bifurcation curves (red) in the plane  are shown in Figure 2. The red-

shaded region in the left panel corresponds to the parameters where the E-I network 

produces sustained oscillations (SO) and the gray-shaded region corresponds to the ISN 

working regime with damped oscillations.

Close to the Hopf curves (red), there is a good polynomial approximation of equation 2.1, 

called the Hopf normal form, whose coefficients are important in determining how the E-I 

network responds to constant inputs .We will consider the case of the inhibitory 

current  as a parameter. More precisely, if ζ is the eigenvector of the Jacobian for the 

eigenvalue ıωH and
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(3.1)

where Ψ is a higher-order polynomial, then

(3.2)

where  and the h.o.t. of the polynomial in z are negligible. To 

completely characterize the behavior of the network, we need to compute the complex 

coefficients a, b as a function of the network parameters. Recall that the Hopf bifurcation is 

said to be supercritical when ℜb > 0 and subcritical when ℜb < 0. Computing the Lyapunov 

coefficient b and the linear coefficient a is difficult even when an analytical expression 

exists (see, e.g., Guckenheimer & Holmes, 1983; Kuznetsov, 2004). Hence, we compute 

them here numerically. In the right panel of Figure 2, we plot for each Hopf curve (dashed 

and continuous) the real part of b and the shear γ defined by

(3.3)

When equation 3.2 is expressed in polar coordinates, it is apparent that the shear acts on the 

phase variable, speeding up or slowing the phase as a function of the radius. Hence, it 

describes how the flow is distorted along the phase variable. Note that the shear becomes 

infinitely large when the network is close to the generalized Hopf points or the Bogdanov-

Takens points in the right panel of Figure 2.

For the network response to an inhibitory transient input to produce damped oscillations 

(Tsodyks et al., 1997), the working regime of the ISN should be close to a supercritical Hopf 

bifurcation. In contrast, close to a subcritical Hopf bifurcation with a bounded nonlinearity 

S(x), the bifurcation diagram of equation 2.1 resembles that of a class II neuron, which 

exhibits an undesirable bistability between large-amplitude oscillations and the constant 

solution rather than a damped oscillation in response to a transient inhibitory input.

Definition 1—We therefore assume that the ISN regime of a two-population network is 

close to a supercritical Hopf bifurcation where ℜb > 0.

The consequences of ℜb > 0 are most easily seen in polar coordinates for z. For , 

the stable response is given by , ω ≈ ωH, which are network 

sustained oscillations. For the other case, the stable response is z(t) = 0. Thus, the term 

 controls which regime the network is in, as summarized in Table 1.

Rephrasing these mathematical results, to be in an ISN regime an E-I network needs to be 

close to a Hopf bifurcation, effectively acting as a Stuart-Landan oscillator as described by 

the normal form in equation 3.2. The parameter  controls whether the network is in 

an ISN or SO regime.
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An example of the phase plane and nullclines for the unforced model in the two regimes ISN 

and SO is shown in Figure 3.

3.2 Numerical Study of the Phase-Locked Responses

We study the effect of driving the network described in the previous section with periodic 

inputs with forcing frequency  (see equation 2.1).

Definition 2—Ak:l resonance occurs when ωF is a rational fraction of ωH: 

For a given forcing amplitude, we computed numerically (using software Auto07p) the PL 

responses as function of the forcing frequency as shown in Figure 4. The stable responses 

are shown in black and the unstable ones in dashed gray.

In linear systems, periodic forcing close to the intrinsic frequency  leads to a large 

increase in the amplitude of the response characterized by a bell-shaped curve in the 

amplitude of the response versus forcing frequency called a resonance curve. This is seen in 

Figure 4 for ωF ≈ ωH.

Because the ISN is poised close to a Hopf bifurcation, several new phenomena arise. There 

are three additional peaks at ratios 3:1,2:1, and 1:2 and multistability (right panel of Figure 

4), as previously reported (Decker & Noonburg, 2012; Pollina et al., 2003).

Note that the analysis of the PL solutions fails to predict the network response for ωF ≈ 1.5 

ωH in the right panel of Figure 4 because the PL solutions are unstable. The stable network 

response is a torus solution.

When forced at frequency 2ωH/2π, the stable response of the network is a PL solution with 

frequency ; that is, there is period doubling in the response of the network. There are 

additional phenomena near ωF ≈ 2 ωH that will be explained more precisely in the following 

sections.

3.3 Theoretical Properties of the Network Resonances

In this section, we study the nonlinear resonance curves using the normal form 

approximation. Periodic forcing of a Hopf bifurcation has been systematically studied 

(Arnold, 1988; Gambaudo, 1985; Zhang & Golubitsky, 2011). The dynamics of the forced 

network response amplitude close to the k:l resonance is (Elphick, Iooss, & Tirapegui, 

1987):

(3.4)

where  is the perturbation parameter and
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(3.5)

where t → Ψ(·, ·, ·, t) is -periodic (see appendix A) and represents polynomials of order at 

least 2 whose contribution can be neglected because |z| ≪ 1. Note that the coefficients c1, c2 

have to be computed as functions of the network parameters ε, δω (see the appendixes) 

while the other coefficients are the same as in equation 3.2. The normal form, equation 3.4, 

describes the network response amplitude z as a dynamical object.

We will focus on the resonances 1:1, 1:2, and 2:1 for which l = 1, 1, 2 and use the 

perturbation parameter δω as a small parameter. By definition, around each resonance peak, 

the resonance curve is approximated by the function δω → |z| where z is solution of ż = 0 in 

equation 3.4.

The resonance curve near the resonance 1:1 was partially characterized in Zhang and 

Golubitsky (2011) and can be quite complicated. In the ISN regime only two types of 

resonance curves are possible (see Figure 11). However, Zhang and Golubitsky (2011) did 

not examine the stability of the PL solution. We propose to fill the gap in the following 

analysis. Here are some important properties of the main resonances that we prove in the 

following sections:

1. The maximum of the 1:1 peak is not centered on ωH when ℑ(b) ≠ 0.

2. There is multistability (and hysteresis near the peaks 1:1, 2:1) in the ISN regime if 

and only if the shear γ (see equation 3.3) satisfies . See section 3.4 and also 

Zhang and Golubitsky (2011) for a proof. An example of hysteresis is shown in 

Figure 5. If the forcing amplitude ε is too small, the multistable PL disappear.

3. If the forcing amplitude ε is large enough, the maximum M of the 1:1 resonance 

peak satisfies  where  (see Golubitsky, Shiau, 

Postlethwaite, & Zhang, 2009). As ε ≪ 1, it gives a very large amplification of the 

corresponding forcing frequency component. We plot the maximum of the 

resonance peaks 1:1, 1:2, 2:1 in log-log coordinates in Figure 6.

4. No torus responses are possible in the ISN regime near the 1:1 and 1:2 resonances.

Given these properties, it is straightforward to select a network that shows one of these 

features. For example, to have multistability, we need a large enough shear (see Figure 2, 

right, and Figure 4, right). For torus solutions, the network should be in the SO regime.

3.4 Case of 1:1 Resonance

How do the different PL solutions interact? Can the torus solution exist together with 

multistable PL solutions? Are there any other behaviors? We explore these questions for the 

1:1 resonance. The coefficients of the general normal form, equation 3.4, around the 

resonance 1:1 are given in appendix A:
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(3.6)

where . Recall that 

from definition 3.5 of z, the PLL solutions are equilibria solving

All possible responses of the forced network near the resonance 1:1 can be obtained by 

studying the dynamics generated by equation 3.6 as a function of the parameters ωF, ε, θ(0). 

There are at least three parameters—δθ(0), ε, and δω—which makes the analysis difficult. 

However, equation 3.6 can be further simplified using appropriate scaling t = αt′, z = βϒ 

(see appendix D), to an equation with two parameters:

(3.7)

where ϒ ∈ ℂ, ρ ≥ 0, τ ∈ ℝ ρ > 0 and

(3.8)

(see appendixes D and E). The complete bifurcation diagram of equation 3.7 can be found in 

Arnold (1988) and Gambaudo (1985). The case ε0 = −1, shown in Figure 7, is a torus 

solution (ϒ is time-periodic) when τ is sufficiently negative. The case  is 

shown in Figure 8, and the case  can be found in Gambaudo (1985).

3.5 Description of the Phase Diagram in the Case ε0 = 1

The equilibria of the phase diagrams in Figure 8 are marked with red dots and represent PL 

network responses. Time-periodic solutions correspond to the quasiperiodic network 

responses, such as the top one in Figure 9. Two curves are particularly interesting in Figure 

8: the curve of saddle-node bifurcations (blue), which signals the appearance or 

disappearance of equilibria (marked as red dots), and the Hopf bifurcation curve (red), 

which signals the appearance or disappearance of periodic orbits. The saddle-node curves 

give the parameter regions corresponding to multistable PL, such as phase diagram numbers 

3 and 11 in Figure 8.

Hence, between the phase diagrams 3 and 4, a torus response is created by a Hopf 

bifurcation. The period of the response amplitude increases without bound as the parameters 

go from the phase diagram 4 to 5 (or 11 to 9) to the homoclinic bifurcation curve. An 

example of such a phenomenon of a homoclinic response is shown in Figure 9.

Remark 2—Some effects are not captured by the normal form analysis. Along the Hopf 

curves, the frequency ωamp of the response amplitude tends to zero at the BT points and the 
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frequency ωamp can be such that  is rational, leading to Arnold tongues and possibly 

strong resonances. The same resonances can occur when going from the Hopf curves to the 

homoclinic curves. Hence, in phase diagrams 4 and 9 in Figure 8, there is a “torus break-

down” (see Kuznetsov, 2004), usually associated with chaotic behavior of equation 2.1 in 

which the torus solution becomes highly irregular.

3.5.1 Application to the Study of the Response: We now study the specific effects of the 

three parameters ε, ωF, δθ(0) on the response of the forced network. In appendix E, we show 

that the three parameters describe a curve given by the second equation in 3.8 in the plane 

(τ, ρ) which is parameterized by the perturbation parameter δω. They are plotted in Figures 7 

and 8 using dashed curves of equation. Recall that the resonance curve is given by RC : δω 

→ |z| where z is the solution of ż = 0 in equation 3.6. It can be solved by taking some norm 

in equation 3.6. Using the equivalent equation, 3.7, one sees that RC(−δ) = RC(δ) if the shear 

is zero: γ = 0. Computing the resonance curve amounts to computing the equilibria as a 

function of the perturbation. But we can also predict the dynamics corresponding to a 

particular value of the perturbation. Indeed, when the perturbation is varied, the couple (τ, ρ) 

describes a curve of the second equation in 3.8 in the bifurcation diagram that allows 

predicting the response of the forced network.

The two types of curves, depending on the network regime (ISN or SO), are shown in 

Figures 7 and 8. When the forcing frequency or the perturbation is varied, the value of 

 changes, which has the consequence of switching 

the possible response dynamics between Figures 7 and 8.

More precisely, if , the possible dynamics correspond to the one 

of Figure 7 whereas if , then the possible dynamics correspond to 

the one of Figure 8.

We next examine the working regimes for ISN and SO in more detail.

3.5.2 The ISN Regime: Recall that this case corresponds to ℜ(aδθ(0)) < 0 which forces 

 from the second equation in 3.8. When Figures 7 and 8 are used, the resonance curve 

never crosses the Hopf bifurcation curve, and the network cannot produce torus solutions 

(see appendix C). Also, if ℜ(aδθ(0)) ≈ 0, the resonance curve (dashed black) is almost 

vertical and intersects the Saddle-node bifurcation curve iff , that is, , 

the condition given in Zhang and Golubitsky (2011) ensuring multistability. Indeed, in this 

case, the resonance curve crosses the region labeled 3 in Figure 8, where two stable 

equilibria are present. The same occurs when the shear |γ| is increased. In the right panel of 

Figure 4,  using the numerical values of the shear given in Figure 2. Finally, if the 

forcing amplitude ε increases, the regime of multistable PL becomes larger (if ) 
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because the curve will shift from phase diagram 1 to phase diagram 3 (see the effect of the 

forcing amplitude ε on the curve in Figure 8). As a consequence, the only possible dynamics 

in the ISN regime are the ones labeled 1 and 3 in Figure 8.

Thus, the forced ISN network can only produce periodic responses and multistable periodic 

responses that we call PL solutions.

3.5.3 The SO Regime: The SO regime gives rise to a richer behavior than the ISN regime 

because  from the second equation in 3.8. In particular, the resonance curve can cross 

the Hopf curve, which generates torus solutions such as those in regions 2 and 4 in Figure 8. 

Reducing the forcing amplitude ε yields more dynamical effects as the resonance curve 

passes through all parts of the phase diagrams in Figure 8. It is, for example, straightforward 

to select an amplitude ε that produces an almost homoclinic response (green curve in Figure 

8) as in Figure 9, or multistability between PL and torus responses (e.g., phase diagram 6 of 

Figure 8), or large-amplitude torus responses as in phase diagrams 10 and 11. In contrast to 

the ISN regime, increasing the forcing amplitude leads to simpler dynamics.

Therefore, the SO regime can produce periodic responses, quasiperiodic responses, or even 

stranger behaviors like the one in Figure 9. Hence, the resonance curve is not enough to 

describe the dynamics (see the incomplete case in Figure 4, right, and one needs to at least 

compute and plot the quasiperiodic responses. This is done numerically in the section 3.8.

3.6 Case of the 2:1 Resonance

The shape of the resonances for the cases 1:1 and 2:1 are qualitatively similar (see equation 

3.4) because l = 1 in both cases. In particular, a necessary and sufficient condition for the 2:1 

resonance curve to display multistability is (see the study of the 1:1 resonance)

(3.9)

The dynamics are the same as in Figures 7 and 8, albeit occurring in a much narrower 

parameter region.

3.7 Case of the 1:2 Resonance

This case is different from the 1:1 and 2:1 resonances. Let us write the network response 

(E(t), I(t)) around the basal activity (Ef, If) as

(3.10)

where t → Ψ(·, ·, ·, t) is -periodic (see appendix A for an explanation) and represents a 

polynomial of order at least 2 whose contribution is negligable because |z| < < 1. The 

dynamics of the amplitude around the 1:2 peak is governed by
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(3.11)

where c2 is proportional to the forcing amplitude ε (see the appendix B). Unlike the previous 

cases, z = 0 is the solution of this equation corresponding to the network response (E(t), I(t)) 

= (Ef, If) + Ψ(0, 0, μ, t); the response frequency is . On the other hand, the nontrivial 

constant solutions in z correspond to PL responses at frequency , that is, half the forcing 

frequency from equation 3.10. Thus, the PL solution undergoes a period-doubling 

bifurcation around ωF ≈ 2ωH (see Figure 4).

The shape of the 1:2 resonance peak can be found by solving ż = 0 in the previous equation, 

which leads to a quadratic equation in |z|3 (see appendix F). It always has the qualitative 

shape shown in Figure 4. In appendixes F and G, we prove the following properties 

concerning the 1:2 peak:

1. The 1:2 resonance peak exists only if the forcing amplitude is large enough: 

.

2. The width W of the peak scales linearly with the forcing amplitude W ~ ε.

3. The height H of the peak scales linearly with the forcing amplitude H ~ ε.

4. In the ISN regime, quasiperiodic network responses are not possible.

We do not show all the possible responses for the 1:1 peak due to a lack of space. However, 

all of the responses in the ISN regime are listed in appendix G. In other words, the 1:2 case 

has the remarkable feature that when the ISN is forced at frequency ≈ , it has a periodic 

response with frequency . This could explain why this peak was not seen in Cardin et al. 

(2009), for example.

3.8 Completion of the Resonance Curves in the SO Regime

Our goal is now to complete the resonance curves (see Figure 4, right) in the SO regime by 

computing the torus solutions amplitudes. To this end, we use the software Knut (see 

Schilder, Osinga, & Vogt, 2005) to compute the torus solutions emerging from the Hopf 

bifurcations for equation 3.4. The torus solutions have two intrinsic frequencies , 

which generate the toroidal dynamics. When the rotation number ωapp/ωF is rational, the 

torus becomes a periodic solution: this happens at the tip of the Arnold tongues. In Figure 

10, we plot the PL amplitude and the torus amplitude as functions of the forcing frequency 

ωF. An example of torus response is shown in Figure 10, bottom left. A PL response is 

shown in Figure 10, top left. A PL solution (close to the peak 1:2) with frequency  and 

forcing frequency  is shown in Figure 10, bottom right; this is the period-doubling 

phenomenon that was examined earlier. Finally, we have also plotted, with triangles, points 
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where the rotation number is  (labeled R4),  (labeled R3) and  (labeled R2). An example 

of a PL solution with frequency ωF/3 is shown in Figure 10, bottom left. This solution is 

very unstable and requires careful adjustment of the forcing frequency; otherwise a torus 

solution appears.

4 Discussion

We have analyzed networks regimes that are important for understanding phase-amplitude 

coupling, which is relevant for communication between the hippocampus and the entorhinal 

cortex, for example (Jensen & Colgin, 2007; Igarashi et al., 2014). More precisely, we 

restricted our analysis to the periodic forcing of a specific class of inhibition-stabilized E-I 

networks, working close to a Hopf bifurcation. The results apply to a mean field description 

of a population of neurons, and as such, most of our results should carry over to spiking 

neural networks in an ISN regime. Also, the results are insensitive to synaptic delays (Roxin, 

Brunel, & Hansel, 2005; Coombes & Laing, 2008) as long as the network is close to a Hopf 

bifurcation.

Some predictions can be made based on the results of our analysis. First, ISNs require the 

tuning of an E-I network close to a Hopf bifurcation effectively acting as a Stuart-Landau 

oscillators. Working close to a Hopf bifurcation can lead to interesting phenomena that 

depend mainly on the value of the shear γ and whether the network is tuned to the ISN 

regime. In short, the ISN regime can produce only phase-locked solutions and hysteresis of 

phase-locked solutions when periodically forced. In contrast, networks that support 

sustained oscillations (such as the ones induced by carbachol in Akam et al., 2012) are likely 

to produce torus responses when periodically forced. The shear breaks the symmetry of the 

1:1 resonance peak (see section 3.5.1), which makes periodic forcing of neural networks a 

flawed tool to determine the intrinsic gamma frequency (Akam et al., 2012). An extreme 

example of this is shown in Figure 11, where the shear governs the emergence of 

multistability.

Another prediction of the resonance curve is that the main resonance peaks arise at , 1, 2 

times the network intrinsic frequency which reflects the large amplification of the input 

component located near these peaks (see Ray & Maunsell, 2011). One interesting fact is that 

the resonance curves of the ISN networks are more isolated because they cannot produce 

torus responses (compare Figure 10 with Figure 4, left). In particular, the ISN response to a 

broadband signal corresponds to a nonlinear and highly selective filter at 1, 2,  times its 

intrinsic frequency ωH. In comparison, the network with sustained oscillations will mix all 

frequency in a very complicated manner because of the torus responses.

We summarize these results in Figure 11 for the ISN regime and for two different ranges of 

shears (γ) that lead to the two different classes of resonance curves. The larger the shear 

, the larger the region of multistability. The first prediction is that in the ISN regime, 

the network response frequency is the same as the forcing frequency except near the 1:2 

peak, where it is half the forcing frequency. This period doubling phenomenon also works in 
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the case of a network that supports sustained oscillations. The second set of predictions 

concerns the scaling of the different peaks as functions of the forcing amplitude ε, as shown 

in Figure 11. As such, the resonance curve and the scaling of its peaks constitute an 

experimental indirect proof of an ISN working regime that can be tested using optogenetics 

experiments.

Most of these effects have been overlooked in studies focused on synchronization and phase 

locking (Hoppensteadt & Izhikevich, 1997; Izhikevich, 2007) with notable exceptions 

(Vierling-Claassen & Kopell, 2009). The widely used theory of weakly connected Hopf 

oscillations (WCHO) presented in Hoppensteadt and Izhikevich (1997, theorem 5.10) 

ignores resonance effects and considers only phase coupling. In our view, the resonant 

normal form is the one that should be perturbed using the perturbation δω when considering 

weakly connected oscillators, not the Hopf normal form used in Hoppensteadt and 

Izhikevich (1997). In particular, the normal form for the external forcing of WCHO 

(Hoppensteadt & Izhikevich, 1997, theorem 5.8) leads to the incorrect conclusion that the 

resonant frequency affects only linear terms (see equation 3.4).

In a more recent study (Ostojic, Brunel, & Hakim, 2009), the second resonance peak was 

missed because the authors consider an ansatz for the response at frequency 2ωH when the 

network is forced at 2ωH, whereas the maximum response amplitude occurs at frequency ωF 

based on our results. This was also overlooked in Cardin et al. (2009) because the authors 

extracted only from the network response, the frequency component around the forcing 

frequency ωF, possibly throwing away the main frequency component around ωF/2 when the 

forcing frequency is at twice the gamma-peak frequency. A recent computational study 

(Hahn, Bujan, Frégnac, Aertsen, & Kumar, 2014) seems to indicate the presence of the 

second resonance peak (see Figure 4.b in that paper). It would be interesting to understand 

the link with the ISN working regime used in this work.

Periodic forcing of a supercritical Hopf bifurcation for single neuron dynamics is rare and 

consequently has not been studied. Indeed, class II neurons work close to a subcritical Hopf 

bifurcation with a fold on the limit cycle branch (Izhikevich, 2007). This suggests that 

periodic forcing of the generalized Hopf bifurcation (also called a Bautin bifurcation) is 

relevant for resonance effects in class II neurons and should be more closely examined.

A central result of this study is that an ISN requires the network to be close to a Hopf 

bifurcation. Hence, the predicted properties of this working regime can be experimentally 

tested. The normal form method (Haragus & Iooss, 2011) can be applied to study networks 

close to other local bifurcations such as the Bogdanov-Takens bifurcation. In the study of 

periodic forcing and quasiperiodic forcing, we expect the general form of the resonance 

curves to remain if there is dominant frequency in the forcing (Saleh & Wagener, 2010).

As suggested in Golubitsky et al. (2009), feedforward chains of n ISN networks are highly 

selective to the forcing frequency as the maximum of the 1:1 peak, for the nth network, is 

ε1/3n (other peaks have similar power laws). Thus, these feedforward chains would be very 

useful for extracting frequency components of noisy inputs by working as nonlinear filters 
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and would be able, at the same time, to demultiplex the main components of the input. We 

plan to examine this effect in feedback networks.

We also plan to explore the effects of adding noise to the periodic forcing, which should 

exhibit stochastic resonance phenomena. Indeed, one of the first studies of stochastic 

resonance (Benzi, Sutera, & Vulpiani, 1981) considered the periodic forcing of a pitchfork 

bifurcation with noise perturbation, which led to multistability of PL solutions. When 

multistable PL solutions are perturbed with noise, they exhibit stochastic resonance. 

Similarly, the periodic forcing of the Hopf bifurcation with large enough shear should also 

exhibit multistability, which is the main ingredient in Benzi et al. (1981).
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Appendix A

Normal Form Computation of the 1:1 Resonance

Notation for hermitian scalar products for vectors and functions: 

and .

We call ζ and ζ* the eigenvector of the Jacobian and the Jacobian adjoint at the equilibrium, 

respectively, for the eigenvalues ıωH and −ıωH with the normalization 〈ζ, ζ*〉 = 1.

Proposition 1

The normal form of equation 2.1 for the 1:1 resonance is

plus additional terms o(|z|3 + |ε| + |z|(|ε| + |δθ |)) where  and b 

is defined in equation 3.2.

Proof

In order to apply the result (Haragus & Iooss, 2011, III.5.2), we need the forcing frequency 

to be constant. Hence, we start by rescaling the time variable , which yields
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where . The bifurcation parameters are μ = (θ(0), ε, ω) and the bifurcation point is 

, V = Vf. It follows that the Hopf frequency is 2π at the bifurcation point μ = 

μc. We write V(s) = Vf + υ0(s) + Ψ(υ0(s); θ(0), ε, ω, s) where 

 and Ψ is 2π-periodic in s. From Haragus and 

Iooss (2011, III.5.2), we have υ0(s) = A(s)ζ + c.c. and

where a(μc) = c(μc) = d(μc) = 0. As the expression G(V; μ, s) of  given by 

 satisfies ∂sG(V; μc, t) = 0, all the 

coefficients with an exponential factor vanish at μ = μc (see Haragus & Iooss, 2011, III.5.2), 

hence at order o(|A|3 + |μ| + |Aμ| + |A|),

Finally, writing A(s) = z(s)eıs, we find

We now compute the coefficients a(θ(0), ε, ω), c(θ(0), ε, ω) as a linear expression of the 

parameters  and also the coefficient b. First, Taylor-expand the function Ψ:

Using equation 5.5 in Haragus and Iooss (2011) for the normal form change of variable Ψ 

and Fourier series, we find

(A.1)

where . It is straightforward to check that the expression of b is the same as 

for the case of a regular Hopf bifurcation without forcing (Kuznetsov, 2004; Haragus & 

Iooss, 2011). Hence, we have
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Let  with . Indeed, the 

derivative with regard to ω vanishes at V = Vf, μ = μc, and this gives the coefficient

(A.2)

Let us focus now on the linear coefficient a(μ − μc)A. We start with the expression of G20,

which is time s independent. The equation for Ψ001 is

where L is the Jacobian at V = Vf. Using Fourier series  and 

, we find

From the expression of G20 and the scalar product 〈G20(ζ, Ψ001), ζ*〉per,2π in the expression 

of a(μ − μc), it appears that only the term  is nonvanishing. This 

gives . Also from the expression of G01,

This allows us to find an expression for a(μ − μc) using 〈Lζ, ζ* = ıωH:

Veltz and Sejnowski Page 18

Neural Comput. Author manuscript; available in PMC 2016 February 23.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



The second term is the same as for the case of no forcing (Kuznetsov, 2004; Haragus & 

Iooss, 2011); hence we find

where a is defined in equation 3.2. To sum up, we have found that

or

Coming back to the original time , we find

which gives at order o (|μ| + |μz|)

Appendix B

Normal Form Computation of the 1:2 Resonance

Proposition 2

The normal form for the 1:2 resonance is

where  and b is defined in 

equation 3.2.
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Proof

The proof in appendix A shows that we only need to consider the case ωF = 2ωH and 

incorporate the perturbation parameter ω as a linear term where . Hence,

which gives

where  and

Appendix C

Hopf Bifurcation Curve Near the 1:1 Resonance

Lemma 1

When , the resonance curve does not intersect the Hopf bifurcation curve.

Proof

In order to simplify, let us assume ℜb = 1 and write the 1:1 normal form (after a scaling in z 

to transform c2 → |c2|)

where we have written , and γ is the shear. The Hopf bifurcation 

curve is computed using two conditions (Kuznetsov, 2004) regarding the Jacobian L of the 

above dynamical system: det(L) > 0, tr(L) = 0, which satisfies

There is a solution ω if and only if λ(8|c2|2 − λ3) > 0. This condition is not satisfied when λ < 

0.
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Appendix D

Simplification of the 1:1 Normal Form

Lemma 2

If ℜb > 0, ℑb > 0 and , then the equation 

 is equivalent to the equation

(D.1)

where  and 

Proof

For the scaling: z → ze−iargc2, this implies c2 → |c2|. For the scaling: t → Rt and z → Az with 

appropriate A, R, this implies 

and .

Recall that cos arg(b) > 0 because the Hopf bifurcation is supercritical. Then 

. Expressions for τ and ρ follow accordingly:

Appendix E

Equation of the Resonance Curve in the Plane (τ, ρ)

Corollary 1

From appendix D, the parameters satisfy
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(E.1)

assuming that the Hopf bifurcation is supercritical (i.e., ℜ(b) > 0).

Proof

We first compute  and 

, which gives

Using the fact that ℜ(b) > 0 allows us to conclude the proof.

Appendix F

Properties of the PL Solutions Around the 1:2 Resonance

Lemma 3

We show here that the 1:2 resonance peak has the following properties:

1.
The peak exists if and only if , that is, if the forcing amplitude is 

large enough.

2.
The width at its base is . Hence, it scales as the amplitude ε since c2 

is proportional to the forcing amplitude.

3. Its height is .

Proof

Let us define  and . Using the scaling z → ze−iargc2/2, 

we can replace c2 by its modulus. PL solutions are solutions to the equation

which gives z = 0 or (1 + γ2)ϒ2 − 2(λ + ωγ)ϒ + (λ2 − |c2|2 + ω2) = 0, where  and 

. The width at its base given by the difference of the ω such that ϒ = 0 is the 

solution. These ω satisfy λ2 − |c2|2 + ω2, which gives the width . It is positive 

only if |c2|2 > λ2. Hence, this proves properties 1 and 2.
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From the implicit function theorem, the maximum ϒm of ϒ as function of ω occurs for a 

value ωm such that ωm = γ ϒm. Result 3 in lemma 3 follows by inserting this last expression 

in the quadratic equation: ϒm = λ + |c2| > 0.

Appendix G

Dynamics Around the 1:2 Resonance Peak

We characterize here the dynamics of the 1:2 resonance in the ISN regime, . We 

show that no torus solutions are possible and that there are one, three, or five PL solutions.

Lemma 4

In the ISN regime (i.e., when ), no torus solutions are possible. There are one, 

three, or five PL solutions.

Proof

We first simplify the 1:2 normal form using successive rescalings. Using the scaling z → 

ze−iargc2/2, we can replace c2 by its modulus. Then, using a real scaling , we can 

assume |b| = 1. Hence, we can assume that we have 

. Finally, using the scalings 

 and t → |c2|t, we arrive at the equation

where . A resonance curve parameterized by ωF 

describes a line in the plane (τ, σ) given by

Hence, in the ISN regime ), this line is below the Hopf curve (H), τ = γσ, in the 

parameter plane (see Gambaudo, 1985). This shows that the ISN regime can produce only 

the phase diagrams 1, 5, or 4 in Gambaudo (1985), all of which are composed solely of fixed 

points.
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Figure 1. 
Entrainment of theta activity in hippocampus by rhythmic inhibition of inhibitory 

interneurons.
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Figure 2. 
Bifurcation diagram of the E-I network. (Left) Hopf bifurcation curves (red) and Fold 

bifurcation curves (black) in the plane , generalized Hopf bifurcation point (GH), 

Bogdanov-Takens bifurcation point (BT), cusp bifurcation point (CP). (Right) Hopf normal 

form coefficient ℜ(b) (red) and shear γ (blue). The green curve equation is . Dashed 

and continuous curves correspond to the dashed and continuous Hopf curve, respectively, in 

the left panel. The ISN regions have a gray background. Parameters: JEE = 10, JEI = −12, JIE 

= 10, JII = −10, and τE/τI = 3/8. (Diagrams computed with the MatCont.)
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Figure 3. 
Phase-plane examples of the dynamics. Plot of the nullclines Ė = 0 (blue) and İ = 0 (green) 

in the ISN regime (left plot,  and ) and in the SO regime (right plot, 

 and ). Examples of two trajectories are shown in black with initial 

conditions indicated with a red dot. In the ISN regime, the convergence of the trajectory to 

the stable equilibrium is not shown completely for illustration reasons. In the SO regime, the 

trajectory converges to a limit cycle.
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Figure 4. 
Amplitude of the phase-locked solutions as a function of the forcing frequency. (Left) Plot 

of the amplitude of the PL solutions for the same network as in Figure 2 in the ISN regime; 

parameters are ε = 0.07, , and . (Right) 

Amplitude plot for parameters of the forcing current in the SO regime: ε = 0.11, , and 

. Black lines are stable; dashed gray lines are unstable. SNP: 

saddle node of periodic solution. NS: Neimark-Sacker bifurcation. PD: period doubling 

bifurcation.
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Figure 5. 
Example of a multistable response. Plot of the excitatory population response amplitude for 

ωF close to 0.853 ωH. Note that ωF is slowly modulated to show the change between the 

stable states in the multistability region of Figure 4 (right). The figure shows a jump 

between two PL solutions of different amplitudes.
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Figure 6. 
Power law for the maximum of the resonance peaks. Log of the resonance peak power for 

1:1, 1:2, 2:1 as a function of the log of the forcing amplitude ε. Network parameters as in 

Figure 4, right.
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Figure 7. 
Dynamics for the amplitude of the network response in the case ε0 = −1. Bifurcation 

diagram of equation 3.6 in the plane (τ, ρ). The dashed curves are the resonance curves 

parameterized by the perturbation δω (dashed for the ISN regime, dotted for the SO regime). 

Adapted from Gambaudo (1985).
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Figure 8. 

Dynamics for the amplitude of the network response in the case ε0 = 1, . 

Bifurcation diagram of equation 3.6 in the plane (τ, ρ). Red: curve of Hopf bifurcations. 

Blue: curve of saddle-node bifurcations. BT: Bogdanov-Takens bifurcation point. The 

dashed curves in black are the resonance curves parameterized by the perturbation δω 

(dashed for the ISN regime, dotted for the SO regime). The CP points have coordinates 

( ). The BT points have abscissa ± . Adapted from Gambaudo (1985). On the 

right, we show the link between the dynamics of the amplitude z(t) (or ϒ(t)) and E(t).
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Figure 9. 
Example of convergence to a homoclinic response. Plot of the excitatory response for 

different forcing frequencies. The forcing parameters are such that the dynamics is close to 

the homoclinic curve. Different parameters from Figure 4, right, are , ε = 

0.05.
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Figure 10. 
Example of resonance curve in the SO regime. Plot of the amplitude of the response as 

function of forcing frequency. The gray box shows one period of a periodic response. See 

the text for further explanation. Parameters: ε = 0.01, δθ(0) = −0.0018. Same network as in 

Figure 2. The torus solution is continued until the resonance R2 where the continuation fails. 

(Computed with Auto07p and Knut.)
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Figure 11. 
Plot of the resonance curves in the ISN regime for two different shears γ. The scaling of the 

width and amplitude of the peaks is indicated as a function of the forcing amplitude ε. The 

domain of multistability for  is a decreasing function of ε but an increasing function 

of γ. The amplitude of the 1:1 peak does not scale exactly as ε1/3 as indicated. For more 

details, see the text and appendix F.
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Table 1

Link between the E-I Network Working Regime with the Internal Parameters.

Regime Condition

ISN

SO
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