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Abstract

Associative learning and memory, i.e., learning and remembering the associations between 

environmental stimuli, self-generated actions, and outcomes such as rewards or punishments, 

are critical for the well-being of animals. Hence, the neural mechanisms underlying these 

processes are extensively studied using behavioral tasks in laboratory animals. Traditionally, these 

tasks have been controlled using commercial hardware and software, which limits scalability 

and accessibility due to their cost. More recently, due to the revolution in microcontrollers 

or microcomputers, several general-purpose and open-source solutions have been advanced for 

controlling neuroscientific behavioral tasks. While these solutions have great strength due to their 

flexibility and general-purpose nature, for the same reasons, they suffer from some disadvantages 

including the need for considerable programming expertise, limited online visualization, or slower 

than optimal response latencies for any specific task. Here, to mitigate these concerns, we present 

an open-source behavior controller for associative learning and memory (B-CALM). B-CALM 

provides an integrated suite that can control a host of associative learning and memory behaviors. 

As proof of principle for its applicability, we show data from head-fixed mice learning Pavlovian 

conditioning, operant conditioning, discrimination learning, as well as a timing task and a choice 

task. These can be run directly from a user-friendly Graphical User Interface (GUI) written in 

MATLAB that controls many independently running Arduino Mega microcontrollers in parallel 

(one per behavior box). In sum, B-CALM will enable researchers to execute a wide variety of 

associative learning and memory tasks in a scalable, accurate, and user-friendly manner.
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Introduction

Many motivated behaviors require animals to learn and remember the associations 

between environmental cues, actions, and/or rewarding/punishing outcomes. Hence, the 

study of associative learning and memory is a cornerstone of psychology and behavioral 

neuroscience. An investigation of these behaviors requires a scalable, accurate, and cost-

effective behavior control system (hardware and software) that can interface with brain 

recording and manipulation. These systems should have sub millisecond timing accuracy, be 

flexible enough to control multiple behaviors, and ideally be easy to set up for users without 

extensive technical and programming expertise. However, combining flexibility, scalability, 

affordability, and ease-of-use in a single behavioral control system remains challenging.

Historically, the most common solution to this problem has been to use proprietary 

commercial control systems. While these systems are accurate, modular, and easy to 

set up, they are expensive. The high cost of these systems limits their scalability to 

conduct many behavioral experiments in parallel and increases the barrier to adoption. 

Further, troubleshooting may require specialist support, which can be challenging during 

time-sensitive experiments.

To avoid using costly proprietary systems, many labs develop their own custom software 

and hardware setups. A common approach has been based on National Instruments data 

acquisition cards and software (Labview) (e.g., Elliott et al., 2007; Kim et al., 2015; 

Mohebi et al., 2019; Nikbakht and Diamond, 2021), or real-time operating systems (e.g., 

Brunton et al., 2013; Jaramillo and Zador, 2011; Poddar et al., 2013). However, these require 

considerable in-house technical expertise to develop and implement. With the advent of 

easily customizable microcontrollers (e.g., Arduino or Pyboard) (e.g. Belsey et al., 2020; 

D’Ausilio, 2012; Namboodiri et al., 2019; Schultz and van Vugt, 2016; Toda et al., 2017; 

Woods et al., 2020) or microcomputers (Raspberry Pi), multiple general-purpose and open-

source behavioral control systems have recently been developed. A few examples include 

Bpod (SanWorks LLC) (Solari et al., 2018), Autopilot (Saunders and Wehr, 2019), and 

pyControl (Akam et al., 2021). These systems are highly flexible and powerful and provide 

nice solutions for expert programmers to develop their own custom tasks. Nevertheless, 

they have some limitations resulting from their general-purpose design. First, their general-

purpose design, while providing flexibility, limits response latencies. Second, they are not 

set up to directly run the gamut of associative learning and memory tasks, thereby requiring 

considerable programming experience and time commitment to develop a fully functional 

controller for multiple associative learning and memory tasks. Third, they either do not 

provide quick visual summaries of behavioral performance during data acquisition or require 

considerable additional programming to this end.

To solve these problems, we provide an open-source behavioral control system using a 

low-cost Arduino Mega 2560 board interfacing with a MATLAB Graphical User Interface 

(GUI). This system allows a single standard computer to control multiple behavior boxes 

in parallel, with each box running an independent experiment (one Arduino Mega 2560 per 

behavior box). Our system contains three main components (Figure 1): (1) the MATLAB 

GUI, (2) Arduino Mega 2560 and electronic circuit setup, and (3) the behavioral box setup. 
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User interactions are done solely through the GUI to minimize operational complexity. Task 

commands, such as file loading and parameter setup, are inputted through the GUI (Figure 

2) and subsequently transmitted to the Arduino Mega 2560 via a USB serial connection. 

As the Arduino Mega 2560 executes the task based on the appropriately loaded control 

program, it conveys information to the computer and these task details are plotted in real 

time on the GUI (Figure 2).

We first show that the timing accuracy and response latency of the system is much 

smaller than a millisecond—the typical fastest timescale of neuronal activity change. To 

illustrate the functionality of the system, we trained head-fixed mice to perform five 

standard associative learning tasks including Pavlovian conditioning, operant conditioning, 

discrimination learning, peak interval timing, and a two-option choice task. Each of these 

tasks is introduced in detail below.

Pavlovian conditioning: Environmental cues and contexts can influence our behavior when 

they become predictive of future outcomes such as rewards or punishments. The learning 

of such cue-outcome associations is fundamental for successful reward seeking. These 

processes can also result in maladaptive memories in neuropsychiatric disorders such as 

addiction or post-traumatic stress disorder. For example, individuals with substance use 

disorders may treat physical items such as needles and less tangible sensory features of 

previous drug usage locations as drug-associated stimuli, prompting behaviors such as 

craving and relapse (Goldstein and Volkow, 2002; MacNiven et al., 2018; Perry et al., 2014). 

Despite the ubiquity of such learning and memory, the brain mechanisms that contribute to 

them remain to be fully worked out. Hence, Pavlovian conditioning tasks are widely used to 

study associative learning and memory.

Operant conditioning: Also known as instrumental learning, operant conditioning is a form 

of learning in which animals increase or decrease the rate of performance of actions if an 

appetitive or aversive stimulus is contingent on that action. If the outcome is the receipt of 

a reward, or the avoidance of a punishment, the action is reinforced, whereas if the outcome 

is the avoidance of a reward, or the receipt of a punishment, the action is progressively 

suppressed. Common operant conditioning paradigms in rodents train animals using lever 

pressing or entries to a nosepoke in freely moving preparations (e.g., Matikainen-Ankney 

et al., 2021). In head-fixed mice, animals have been trained to perform actions such as 

licking, lever pressing, joystick manipulation, or turning a wheel (Burgess et al., 2017; 

Gordon-Fennell et al., 2023; Livneh et al., 2017; The International Brain Laboratory et al., 

2021; Vollmer et al., 2020; Yttri and Dudman, 2016).

Discrimination learning: In real life, actions often result in outcomes only if performed after 

specific environmental cues. Such behavior requires discrimination learning. The cue in such 

cases is often called a discriminative stimulus (DS) as it signals that performing a specific 

action immediately following the cue can result in an outcome. In principle, animals can 

be trained on this task by initially learning an operant response, followed by learning to 

produce the operant response to a specific cue, or by transitioning from learning a Pavlovian 

cue-outcome association to discriminative learning (Crouse et al., 2020; Ghazizadeh et al., 

2012; K Namboodiri and Stuber, 2021; Richard et al., 2016).
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Peak interval timing: Studies investigating reward-based behavior do not often consider the 

role of time perception, even though time perception is fundamental to behavior production 

in every task we have discussed so far. A common behavioral task to study timing behavior 

is the peak-interval timing task, which is a variation of a fixed interval operant task with 

“peak” reward omission trials that test if the animal learns the expected delay to rewards 

(Matell and Portugal, 2007; Roberts, 1981). This has recently been modified to a Pavlovian 

version in which head-fixed mice learn a fixed delay between rewards and their timing 

behavior is measured on some probe trials without rewards (known as peak trials) (Toda et 

al., 2017).

Two-option choice task: Though each of the above tasks has a component of decision-

making (when and whether to perform an action), they do not directly evaluate decisions 

between alternative actions. A common approach to this end is to study two-option choice 

tasks in which animals choose between two possible outcomes (Herrnstein, 1961). For 

instance, animals can choose between different rewards of varying reward magnitude 

or quality (e.g., apple juice versus orange juice, or alcohol versus sucrose), probability 

(often referred to as a two-armed bandit task), or delays (intertemporal choice tasks), or 

combinations of these variables in tasks such as a delay discounting task (Ainslie and 

Herrnstein, 1981; Ainslie, 1974; Chung and Herrnstein, 1967).

We provide the code and documentation to implement these and other tasks (Table 

1), and all supporting information for hardware and software setup (https://github.com/

namboodirilab/B-CALM). In combination, these tools will enable researchers to execute 

a wide variety of associative learning and memory tasks in a scalable, accurate and user-

friendly manner. Thus, we believe that our system provides a valuable addition to the space 

of open-source behavioral control systems.

Methods:

Data and Code availability:

All supporting information is available on the Namboodiri lab GitHub page (https://

github.com/namboodirilab/B-CALM).

Experimental subjects and surgery

The behavioral tasks described in this paper used adult wild type C57BL6/J mice from 

Jackson Laboratories. Mice were 8-9.5 weeks of age at the time of surgery and 10-12 

weeks at the commencement of behavioral experiments. Specifically, we ran 8 male and 

3 female mice on the Pavlovian conditioning task, 3 male and 4 female mice on the 

sequential conditioning task, 5 female mice on the operant conditioning task, 6 mice on the 

discrimination learning task (n=2 from Pavlovian group, n=4 from operant group), 4 female 

mice on the choice task, and 5 male mice on the interval timing task. All experimental 

procedures were approved by the Institutional Animal Care and Use Committee at UCSF. 

8-week-old mice were anesthetized with isoflurane (~1.5%) and then held in a stereotaxic 

apparatus (David Kopf Instruments). Mice were kept on a heating pad to maintain warmth, 

ophthalmic ointment was applied to protect the eyes, and pedal reflex was checked prior 
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to surgery. Analgesia was used upon the start of the surgery and also during post-operative 

care (lidocaine 1mg/kg, carprofen 5 mg/kg, and buprenorphine 0.1 mg/kg). A custom-made 

stainless-steel head-fixation ring was implanted on the skull using dental cement. Animals 

were carefully monitored for 3 days post-surgery.

Behavioral apparatus

Arduino Mega 2560 is a single board microcontroller equipped with 54 digital inputs/output 

pin and 16 analog input pins and can interface with other electronic devices. Our control 

system utilizes an Arduino Mega 2560 board in each behavioral box. Here, we have a single 

standard computer controlling multiple Arduinos at once. Each Arduino Mega 2560 board is 

connected to the computer via separate USB cables, meaning that multiple behavior boxes 

can be controlled in parallel.

In this system, Arduino digital pins are directly connected to a breadboard using wrapping 

wires, which helps build all the essential circuits needed for hardware such as lick spout 

detectors, speakers, LED lights, solenoids, lasers, and more. The wires are connected to a 

breakout terminal block that is glued onto the outside of a plastic box holding the Arduino 

and breadboard. Pins in the breadboard (BB1660T, BusBoard Prototype Systems) can then 

be connected to their corresponding slots on the interior portion of the breakout terminal. 

From here, all hardware can be connected to the appropriate terminal slots on the exterior 

portion of the box. All detailed instructions with photo illustrations are provided on the 

lab GitHub page in the “circuit schematic.pdf” document (https://github.com/namboodirilab/

B-CALM/blob/main/circuit%20schematic.pdf).

We decided to build long-term stable designs using breadboards, stable breakout pins and 

wire wrapping, instead of printed circuit boards. This is primarily to allow flexibility of 

circuit modifications, while retaining stability (see the circuit schematic file on the lab 

GitHub page for more details). If a hardware is no longer functional, the user can easily 

replace it with a new hardware. Furthermore, depending on a user’s research interests, the 

design of a behavioral task can be modified by simply connecting additional input hardware. 

As such, only external connections need to be changed—everything inside the box remains 

the same. This helps to ensure that all wire connections inside the box stay intact and stable, 

which allows for long-term use. Since digital signal changes in a behavior controller only 

occurs in the millisecond range, stray capacitances on a breadboard are not of much concern. 

Lastly, the breadboard listed above has high quality clips and is highly reliable in the long 

term.

To control the behavioral tasks, we set up our hardware to include two separate 

piezo buzzers/speakers (with different resonant frequencies: 2.56kHz/8kHz) (1739/1740, 

Adafruit), three lick tubes (left, right, center; center lick tube can deliver two different 

liquids if needed) with three lick detector circuits (licks on the left lick tube are registered 

as “lick1s”; licks on the right lick tube are registered as “lick2s”; licks on the center lick 

tube are registered as “lick3s”) (Slotnick, 2009), one fluid delivery solenoid (003-0257-900, 

Parker Hannifin) for the center lick tube (our default center solenoid is set as solenoid3), 

two extension/retraction solenoids for the side lick tubes (TAU0730TM-14,Chaocheng 

Technology), and two LEDs (PWDIODE-30-Blue, ToToT). All detailed instructions for 
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setting up hardware in the GUI parameters, full parameters explanation, and task running 

overview is provided on the lab GitHub page in the “Task running overview.pdf” document 

(https://github.com/namboodirilab/B-CALM/blob/main/Task%20running%20overview.pdf). 

All equipment was set up on a custom-designed head-fixation platform. The position 

of all lick tubes was controlled precisely in three dimensions, using combinations 

of Thorlabs positioning systems (MS1S, Thorlabs). Based on our experience, such 

precise placement of lick tubes is essential for repeatable and stable behavior in these 

tasks (see https://github.com/namboodirilab/B-CALM/blob/main/head_fixed_setup/Head-

fixed%20stage%20setup%20overview.pdf for more information on lick tube placement). 

All apparatus was placed in a sound proofing box (1430-MGY, Tennsco) and covered 

with sound proofing foam (B08HCTMPDX, Acoustic Foam). A detailed parts list and 

set of instructions for building the hardware setup is provided on the lab GitHub page 

in the “Head-fixed stage setup overview.pdf” document (https://github.com/namboodirilab/

B-CALM/blob/main/head_fixed_setup/Head-fixed%20stage%20setup%20overview.pdf).

Graphical User Interface

User interactions are done solely through the MATLAB GUI to minimize operational 

complexity and optimize experimental flexibility. This user-friendly GUI allows the set-up 

of behavior parameters and visualization of behavioral performance to be performed in 

one convenient setting (Figure 2). We decided to use MATLAB instead of an open-source 

language such as Python to allow for backward compatibility and long-term stability of the 

code without continuous codebase maintenance.

To activate the GUI, the user must first select a vacant Arduino board. Here, we refer 

to this as “COMX,” where COM stands for communication port and X corresponds to 

the board being used. The next steps include choosing the desired behavioral experiment 

mode, uploading the respective Arduino file to that board, and linking the serial 

connection between the computer and Arduino board (Figure 2A). This allows commands 

from MATLAB to be sent to the Arduino. Detailed instructions to upload the correct 

Arduino file based on the experiment mode is provided on the lab GitHub page in the 

“Task running overview.pdf” document (https://github.com/namboodirilab/B-CALM/blob/

main/Task%20running%20overview.pdf).

The corresponding areas in the GUI used in defining task parameters will activate and 

allow for variable specification (Figure 2B). For instance, a random rewards task (e.g., 15% 

sucrose reward delivered based on a truncated Poisson process with a 12 s mean interval) 

will use the section titled “Background rewards.” These rewards are labeled background 

rewards because they can be delivered during the background inter-trial interval of trial-

based experiments. The amount of reward given is based on the background solenoid’s open 

time, a parameter that the user must define prior to the start of the task. All time values used 

are in units of milliseconds.

Next, the user can send all task parameters to the Arduino by clicking the “Send” button 

(Figure 2F). After sending the parameters, the user can ensure hardware functionality by 

testing them before initiating the experiment (Figure 2C). For example, pressing on “Test 

CS1” will turn on the CS1 cue for one second (this set length of time is not modifiable 
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through the GUI but can be changed in the Arduino task scripts if needed). Moreover, 

pressing on “Manual” under Solenoid3, which is the default solenoid connected to the 

sucrose reward delivery system, allows the user to prime animal subjects with sucrose 

rewards before starting the behavioral session. The “Start” button launches the task (Figure 

2F), and then the Arduino will carry out the operation and activate hardware accordingly 

based on the task design.

As the behavioral task is in progress, the Arduino records all events detected by the 

hardware system and sends them back with timestamps to the GUI. Live events (e.g., 

number of auditory or light cues presented, licks performed, solenoid openings, etc.) 

are counted and displayed in real time on the GUI, along with its corresponding plot 

legends (Figure 2D, E, G). The real-time plotting can be observed for each behavioral box 

simultaneously across independent GUIs controlling each box.

Once a behavioral session is over, pressing “Unlink” (Figure 2A) will unlink the serial 

connection between the computer and Arduino board. As such, the user will then be able to 

select a different Arduino board (if needed) or continue with the same board, choose either 

the same experiment mode or another one, upload the same Arduino file or another Arduino 

file, and link the serial connection once again to initiate the next session.

A MATLAB file is automatically generated at the end of a session (even when there 

are errors). The filename contains the subject’s name, experiment mode, and date/time 

information. When the session ends, the data file saves and stores two variables: (1) params; 

which contains all task parameters for the session, and (2) eventlogs; which records all 

event identifiers, timestamps, and an additional flag (0 or 1) for each event. This item flag 

indicates 1) reward delivery status of all solenoid events: 0 means reward delivery; 1 means 

no actual reward is delivered, or, 2) cue order index for trials with two cues: 0 indicates 

the first cue, 1 indicates the second cue. All the information necessary for data analysis is 

accessible through these two variables to simplify data handling.

Training procedure

Animals were water deprived prior to the commencement of behavioral training. We targeted 

to maintain body weights at a stable level of 85-88% of their pre-deprivation weight. To 

this end, animals were provided supplemental water in addition to the sucrose earned during 

behavioral sessions. The amount of supplemental water given to each animal was adjusted 

daily to maintain their weights around 85-88% of pre-deprivation weight. Prior to both the 

Pavlovian and operant conditioning tasks, animals were first trained to lick on the lick tube 

delivering sucrose. This is achieved by delivering random Poisson trains of 15% sucrose 

drops (measuring 3 μL, this is calibrated combining the height of the sucrose syringe and 

the solenoid open time) with a mean inter-reward interval of 12 s for a total of 100 rewards 

(i.e., approximately 20-minute sessions) for at least two consecutive days. After the animals 

successfully learned to lick on the lick tube by performing more than 1000 licks per session, 

they were considered ready to progress to the actual behavioral tasks.

For Pavlovian conditioning, mice were trained to lick in response to an auditory conditioned 

stimulus predictive of sucrose reward (CS+), but not to another auditory stimulus that 
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predicted the absence of sucrose reward (CS−). CS+ and CS− tones were either a 12 kHz 

continuous tone or a 3kHz pulsed tone. To control for cue identity bias, we assigned the 12 

kHz stimulus as CS+ for half of the mice and the 3 kHz stimulus as CS+ for the other half. 

Each session included a total of 100 trials (50 CS+, 50 CS−), all of which were presented 

in pseudo-random order. A trace interval of 1 s followed the offset of the auditory cues (2 

s) until either sucrose reward delivery or omission. There was an exponentially distributed 

intertrial interval of 30 s in addition to a fixed reward consumption time of 3 s. Each session 

lasted approximately one hour. Each animal ran for one session per day, with occasional 

breaks on weekends. For the Pavlovian conditioning data shown in Figure 4D, five animals 

on average took 11.8 days to be fully trained, at which point they licked in anticipation of 

sucrose for CS+ cues only. Six animals were separately run for ten days with 100 CS+ trials 

per day (no CS− trials) (Figure 4E). For sequential conditioning, we followed previously 

described methods (Jeong et al., 2022). These data are the same as those shown for the 

control animals in Figure 6 of Jeong et al., 2022. Please note that the training protocol 

described here has been improved upon recently (Burke et al. 2023).

For the operant task, we trained side licks as the operant action. Importantly, to ensure that 

the operant action is separable from a consummatory action, we trained animals to lick 

on a side lick tube (which never delivers any outcome) to obtain rewards on a center lick 

tube (Figure 4G). Our setup allows the conditioning to be run using fixed ratio (side lick 

a fixed number of times to get reward from center tube), random ratio (side lick results in 

reward at a given probability), fixed interval (first side lick after an interval expires from 

previous reward results in reward), random interval (first side lick after an unpredictable 

interval expires from previous reward results in reward), or combinations of these schedules. 

Progressive ratio schedule is also possible. For the data shown here, head-fixed animals 

were first trained on a fixed ratio (FR) 1 task, which they learned in a few minutes. Next, 

the fixed ratio criterion was systematically extended to FR 5. The average training length 

across five animals was approximately six days. Lastly, we performed a single random ratio 

5 task to check whether mice performed operant licking despite uncertainty in the reward 

contingency.

As a proof of principle that B-CALM can control discrimination learning experiments, 

we trained two separate groups of mice following prior training on either Pavlovian 

conditioning or operant conditioning (Figure 5A, B). After the two groups learned their 

initial task, all mice were given the complete discrimination learning task. In this task, mice 

needed to perform the side operant lick after an auditory cue to receive reward in the middle 

lick tube. Since the operant group animals first learned to perform the side lick to acquire 

rewards, they had to then learn to perform this licking action after an auditory cue to obtain 

reward in the full task. Contrastingly, the Pavlovian group was initially trained to associate 

an auditory cue with reward and then were subsequently trained that these cue presentations 

must be followed by the operant lick to receive reward. To ensure that they knew the action 

of side licking, we performed one to two sessions of operant conditioning on these mice 

after they fully learned the Pavlovian association.

The task itself consisted of three stages: (1) Initial respective tasks: Pavlovian or operant. (2) 

Side lick tube extension on the discriminative stimulus indicating reward availability (DS+ 
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cue), after which mice had to lick once to obtain reward. Tube extension trainings were done 

using an incremental scale, by placing the extended lick tube zero, half or more than a full 

tongue width (~4-5 mm) away from the center lick tube. The side tube extension initially 

covered the middle lick tube, so mice will lick both tubes simultaneously when licking the 

center lick tube. In the following days, we pulled back the side tube such that tube extension 

is eventually at least one tongue width away from the center (i.e., mice had to lick sideways 

to make contact on the side lick tube). (3) Full task; side lick tube extended on both DS+ 

and DS− cues at the furthest extension. Reward was given only if the FR lick requirement 

was met in response to DS+. No reward was given after DS− cues regardless of action. On 

average, the Pavlovian group took approximately 31 days and the operant group animals 

took 23.5 days to be fully trained on the task.

For interval timing task, we started our mice with a 10 s fixed-time-schedule at 100% 

probability, where 15% sucrose solution (3 μL) was delivered every 10 s for 150 trials. On 

average, training took ten days (Figure 6A). After animals showed high anticipatory licking 

in this condition, we followed with a 10 s fixed-time-schedule at 80% probability (reward 

omitted on 20% of trials; also known as peak trials) for approximately eight days. This was 

done to measure the animals’ internal timing of when reward would be delivered. When 

animals demonstrated comparable levels of anticipatory licking for this condition on both 

rewarded and unrewarded trials, we then proceeded to test three fixed-time-schedules of 7.5 

s at 80% probability, 15 s at 80% probability, and 5 s at 80% probability. On average, five 

animals took 13 days total to perform at comparable levels of licking on both rewarded and 

unrewarded trials during the above three fixed-time-schedules.

In rodent models of two-option choice tasks, it is important to ensure that animals do not 

have an intrinsic bias towards one or the other action regardless of their outcomes. Hence, 

here we validated a proof of concept for a two-option choice task (Figure 7A). In our task, 

mice received a fixed amount of reward at 1 s delay after licking a side lick tube and 

received varying amounts of reward at 1 s delay after licking the opposite side lick tube 

(Figure 7B). Rewards were always delivered from the center lick tube. In the first phase 

of the choice task, mice underwent training to lick to either side of the lick tube, using a 

variable ratio 5 schedule for two days each. This training was necessary to ensure that mice 

learned the association between licking on either side of lick tubes and receiving rewards. 

Once mice learned successfully to lick on both sides, they were trained on a fixed left trial 

session and a fixed right trial session on alternating days for a total of four days (two fixed 

left days and two fixed right days). On the fixed left trials, reward given after licking on 

the left lick tube was always 2.5 μL (30 ms solenoid open time), and reward given after 

licking on the right lick tube varied between 0 to 5 μL (0 to 60 ms solenoid open time). 

The opposite was true for the fixed right trials, so licking on the right lick tube always 

resulted in 2.5 μL of reward and licking on the left lick tube resulted in reward ranging 

from 0 to 5 μL. This allowed us to gauge whether mice will choose the side that delivers 

the larger reward regardless of whether it is left or right, and fixed or variable. Because it 

took mice a few trials to realize that a new condition was being presented during a session 

(e.g., switch from 10 ms open time to 50 ms open time), we established a minimum of 30 

rewards total for each condition/block on the variable side. During each training session (one 

per day), there were approximately 210 trials. We analyzed choice data based on the last ten 
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trials of a block. Since we validated this task to show no side preference in mice and clear 

sensitivity to reward magnitude, the task can be modified to add different probability, delay, 

or identities of rewards in the future.

Data analysis

All data were analyzed using custom written MATLAB scripts based on the log of individual 

events and their timestamps. All experimental parameters were extracted from the saved 

MATLAB file for each session. These timestamps were used to plot peri-stimulus time 

histograms (PSTHs) of licking behavior. For testing differences in lick count, we used 

one-tailed or two-tailed paired t test, depending on the hypothesis.

Results

Response Latency, timing accuracy, and parallel execution:

An important consideration for a successful behavioral control system is the input-output 

latency (e.g., the delay in delivering a reward after an action that should immediately 

result in a reward; see Methods for the electronic circuit and behavioral box setup). To 

quantitatively measure the input-output response latency of our system, we first tested the 

latency of producing an event (turn on solenoid) after the detection of an external event 

(licking action) in our setup. To detect the input and output events, we used an oscilloscope 

(SDS1202X-E, Siglent Technologies) and measured the voltage pulse generated from a 

mouse lick and the solenoid onset for a reward triggered immediately after the lick (Figure 

3A). This was measured to be approximately 5 μs. Next, to measure timing accuracy, we 

delivered the reward at a fixed delay after lick detection. This delay was set to either 100, 

500 or 1000 μs. In all cases, the mean timing error was less than 20 μs (Figure 3B). These 

measurements are consistent with the high timing accuracy of Arduino boards (D’Ausilio, 

2012).

Next, we tested the signal transmission reliability and timing accuracy to validate our 

system’s ability to run multiple Arduino Mega 2560 setups simultaneously using a single 

computer. Here, six Arduino boards connected to the same computer separately passed 500 

pings from 0s to 1500s at a period of three seconds. We found that all Arduino boards 

successfully communicated each of the 500 pings and the percentage of data drops was 0% 

(Figure 3C). Next, we checked the difference in recorded timestamps in MATLAB between 

each consecutive ping. We found this number to be an average of zero but with a spread 

less than 20 μs. Overall, these results demonstrate that our behavioral setup is reliable and 

accurate in its timing and data communication.

For neuroscience related behavioral control, it is essential to have the behavior control be 

synchronized with external data acquisition hardware. To demonstrate this, we tested the 

system’s ability to interface with an external fiber photometry system. We approached this 

by sending TTL pulses of aperiodic behavioral events (here, random reward deliveries) from 

the Arduino to the external acquisition system and record the timestamps of the same events 

separately using the clocks of Arduino Mega board and the external acquisition system 

(Figure 3D). We then aligned those timestamps in post-processing by performing a linear 
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transformation of the timestamps of the external acquisition system to match the Arduino 

clock (Figure 3E). This approach is generalizable to synchronization with other systems.

Application examples

In the following sections, we describe and demonstrate how our system successfully runs 

a variety of commonly used behavioral paradigms for studying associative learning and 

memory. The first task we ran was Pavlovian conditioning (Fanselow and Wassum, 2016; 

Pavlov, 1927). Specifically, we ran trace conditioning with a one second trace interval (delay 

conditioning requires a simple change in task parameters). The second task was operant 

conditioning (Staddon and Cerutti, 2003; Thorndike, 1898). Currently, our setup can run 

fixed ratio, random ratio, fixed interval, random interval, or mixtures of these schedules. It 

can also run progressive ratio schedules. The third task was one in which animals performed 

discrimination learning. In this task, the animals had to perform an action after sensing a 

cue to obtain a reward. The fourth task we studied was a recently proposed variation of a 

peak interval timing task, which allowed us to measure time perception (Toda et al., 2017). 

Lastly, we also show data from a two-option choice task in which mice chose one of two 

actions with the more preferred outcome. Since our setup can deliver multiple different 

outcomes, it can be used to control task variants involving different types of rewards or a 

reward and punishment (quinine) (K Namboodiri et al., 2021), or orally consumable drugs 

such as alcohol (Laguesse et al., 2017) or fentanyl (Monroe and Radke, 2021).

Though our software and hardware interface can be modified for head-fixed or freely 

moving experiments, we chose to demonstrate its utility using head-fixed behaviors since 

these behaviors can be combined with advanced imaging approaches such as multiphoton 

calcium imaging (Namboodiri et al., 2019; Otis et al., 2017; Woods et al., 2020). Further, 

head-fixed designs allow better control of the sensory environment of animals, thereby 

reducing behavioral variability for these associative learning and memory tasks. In the 

sections below, we present results from the five types of tasks discussed above.

Pavlovian conditioning:

Here, we show that B-CALM can control Pavlovian conditioning experiments in 

head-fixed mice (Figure 4A). Animals successfully learned the task and showed high 

anticipatory licking between the CS+-reward interval (Figure 4A–E). Our setup allows 

us to vary the delay to rewards, cue duration, probability of reward, present multiple cue-

outcome associations, deliver a punishment (quinine) instead of reward, reduce cue-reward 

contingency by delivering unpredictable rewards during the intertrial interval, or have two 

cues within a single trial (e.g., second order conditioning, blocking). For instance, animals 

acquired sequential Pavlovian conditioning (Figure 4F) (reproduced from control animals 

shown in Figure 6 of Jeong et al., 2022). Further, by systematically varying the ITI, we 

found that behavioral learning exhibits temporal scaling with respect to the ITI, such that the 

overall learning rate can be faster than ten trials (Burke et al., 2023).

Operant conditioning:

As proof of principle, we collected data from mice performing fixed ratio (FR5) and random 

ratio (RR5) schedules (Figure 4G, H). For the FR5 schedule, all four animals showed an 
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increase in overall lick rate, demonstrating learning of the FR5 schedule. For the RR5 

schedule, overall lick rate reduced but remained positive (Figure 4H).

Discrimination learning:

Both groups eventually performed the discrimination learning task appropriately, licking at 

a high rate on the side lick tube (operant licking) only following DS+, but not DS− (Figure 

5C, D).

Interval timing task:

We implemented a previously established modification of a peak interval timing task in 

B-CALM (Figure 6A) and tested whether mice learn 5 s, 7.5 s, 10 s, and 15 s intervals. We 

found that they distinguished all intervals in their licking patterns on peak trials (Figure 6B, 

C).

Choice task:

We tested the reward magnitude on the variable side at which mice chose both sides equally. 

To control for side preference, we performed multiple repeats with each side lick tube being 

chosen as the fixed reward side. In both cases, we found that mice chose both sides equally 

when the reward magnitudes were equal (Figure 7C). Given the success of this task, our 

system can be used to test more choice conditions with varying reward magnitude, type, 

delay and/or probability by modifying the available parameters.

Discussion

The neural basis for associative learning and memory is a topic of great interest to 

many neuroscience and psychology laboratories. Hence, there is need for a user-friendly, 

affordable, flexible, and scalable system to control common behavioral tasks involving 

associative learning and memory. These tasks are routinely performed using proprietary 

hardware and software. However, these systems are expensive, costing tens of thousands 

of dollars. More recently, a lot of open-source behavioral control systems have been 

developed (e.g., BPod, PyControl, and Autopilot). When self-assembled, the cost of each 

of these systems is close to an order of magnitude lower than proprietary systems. For 

the specific electronic hardware configuration that we chose in our own studies, the cost 

is even lower than the above open-source control systems. A single BCALM controller 

system that produced the results described above had a total hardware cost including 

the Arduino/circuit board setup and electronic hardware of $303 (Table 2). The details 

of the circuit building and cost information for other parts is provided in the “circuit 

schematic.pdf” document on the lab GitHub page (https://github.com/namboodirilab/B-

CALM/blob/main/circuit%20schematic.pdf). This low cost allows us to control many 

behavioral experiments in parallel at an affordable price and keeps the system affordable 

for smaller labs and institutions. The cost of the custom designed head-fixed setup 

parts is shown in https://github.com/namboodirilab/B-CALM/blob/main/head_fixed_setup/

Head-fixed%20stage%20setup%20overview.pdf, and is specific to two-photon microscopy 

(Namboodiri et al., 2019; Otis et al., 2017).
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A major advantage of our system when compared to other open-source behavioral 

control systems is that we have already established the software and codebase for 

numerous associative learning and memory tasks (Table 1, see the detailed descriptions 

and parameter settings of the possible tasks in the “Task running overview.pdf” document 

provided on the lab GitHub page https://github.com/namboodirilab/B-CALM/blob/main/

Task%20running%20overview.pdf; all tested tasks scripts are available on the lab GitHub 

page task code folder https://github.com/namboodirilab/B-CALM/tree/main/task%20codes). 

Further, our system includes a user-friendly GUI for setting experiment parameters and 

plotting real-time data during the experiment. On the other hand, other systems, owing 

to their general and flexible design, need to be custom written for each application, 

or require additional work to establish online data visualization for quickly evaluating 

task performance. While this is eminently doable, it requires considerable programming 

experience. In our experience, there are a few major advantages of online visualization 

of task performance. These are: 1) the GUI provides an animal’s up-to-date performance 

on any day, and thereby lets the user decide when an animal reaches a certain behavioral 

criterion, 2) the online visualization of timestamps lets the user immediately verify that the 

task parameters are correct, and 3) the online visualization across multiple behavior boxes in 

parallel allows quick testing of new behavioral tasks and rapid online modification of task 

parameters during initial task development.

The number of external connections of our system is only limited by the number of channels 

available on an Arduino Mega, which has 54 digital input/output pins, 16 analog input/

output pins, and 4 UARTs (hardware serial ports). Considering the large ecosystem of 

shields currently available for the Arduino, our system can in principle be expanded to 

control more complex tasks than the ones presented here.

Despite these advantages, our system has some limitations. Currently, we do not directly 

allow the control of arbitrary hardware, other than those taking a TTL input to turn 

on or off. Thus, our system is not currently built to play arbitrary auditory or visual 

stimuli. A possible solution to this problem is to interface with other controllers (e.g., other 

Arduino boards) that deliver the stimuli. For instance, a recent publication used an Arduino 

system to control an LED panel to deliver arbitrary visual stimuli (Swanson et al., 2021). 

Similarly, multiple hobby projects demonstrate the playback of notes in songs using an 

Arduino microcontroller, thereby providing a general solution for a large space of auditory 

stimuli. Second, as currently built, we have not interfaced our system with live video 

recording. This can be fixed by using cameras with external TTL triggers or an application 

programming interface. Lastly, our system is not currently built to integrate multiple 

separate microcontrollers/processors for the same task with online feedback control. For 

instance, Autopilot can interface with multiple Raspberry Pis coordinating together to 

measure many sensors and control multiple actuators, handle video streams, and perform 

real-time closed-loop experimental control. While our system can do closed-loop control 

(e.g., deliver reward upon detection of licks), it is not currently built to do this at scale using 

multiple data streams.

In conclusion, we present a behavior controller for associative learning and memory tasks 

in the laboratory. All materials necessary for building our system (hardware and software 
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information), instructions for building, list of possible tasks that can be run, and analysis 

codes are available on the lab GitHub page (https://github.com/namboodirilab/B-CALM/

tree/main/data%20analysis%20codes). Our system can be directly implemented by users 

studying standard associative learning and memory tasks with minimal adaptations. Expert 

programmers can design arbitrarily complex experiments using our general programming 

logic since all codes are open source. Hence, we believe that our system is a valuable 

addition to the open-source toolkit available to a behavioral neuroscientist (White et al., 

2019).
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Figure 1. Control setup for B-CALM.
A computer running a MATLAB Graphical User Interfa (GUI) interacts with multiple 

independently running Arduino Mega microcontrollers (one per behavior box) that each 

get hooked up to various sensors or actuators to perform standard associative learning and 

memory tasks.
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Figure 2. Screenshot of the GUI.
A. This section selects the Arduino to be controlled, which is displayed as the serial port 

available to connect (“COM3” in this case). “Link” opens the serial connection between 

MATLAB and Arduino and “Unlink” disconnects this serial connection. “Experiment 

Mode” sets the type of experiment that should be currently run and allows automatically 

uploading the corresponding Arduino compiled hex file to the corresponding Arduino board. 

B. Setting of all the task parameters. Detailed instructions for setting up different parameters 

is provided in the “Task running overview.pdf” document in the lab GitHub page (https://

github.com/namboodirilab/B-CALM/blob/main/Task%20running%20overview.pdf). C. Test 

buttons to test all hardware components. D. Example plot of licking patterns in a Pavlovian 

task. Each lick is shown by a tick mark, each CS1 (CS+) is shown by the green tick mark, 

and each solenoid (reward) is shown by the orange tick mark. The animal shows anticipatory 

licking after CS1 trials, but not CS2 (CS−) trials. The lines at the top of the raster 

indicate the peri-stimulus time histogram of licking for CS1 and CS2 trials, with each one 

normalized to its maximum value. E. Legend for plot shown in D. F. File name for saving. 

The date and time are automatically appended following the text entered here. Additional 

buttons allow interfacing with the Arduino to send parameters, start the experiment, or stop 

the experiment (not shown here since it is hidden once task is completed). G. Live counters 

for the various events in the session.
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Figure 3. Characterization of the response latency and timing accuracy.
A. Setup for measuring response latency between a lick and the immediately triggered 

reward. We used an oscilloscope to measure the latencies. On low zoom (middle), both lick 

and reward produce stable square pulses. However, on high zoom (bottom graph), the lick 

event produces short pulses of electrical activity immediately after lick detection due to 

noise. The latency to reward was measured from the first lick induced pulse as shown here. 

B. Response latency and timing accuracy when reward was triggered 0, 100, 500 or 1000 

μs after lick detection. Error bars are standard error of the mean. C. System does not drop 
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any pings when running six boxes in parallel and has low response latencies across all boxes. 

D. Schematic for synchronization of behavioral control with an example external acquisition 

system (here, Doric fiber photometry console). We send a TTL output from B-CALM for 

any set of aperiodic behavioral events (here, reward deliveries) as a TTL input to the external 

acquisition system. Thus, the timestamps for the same events are recorded both by the 

Arduino Mega clock in B-CALM and the external acquisition system clock. These events 

can then be aligned post-hoc using a linear transformation. E. Example timestamps from 

the same TTL events recorded on the B-CALM clock (black lines), external acquisition 

system clock (blue lines), and after transforming the external acquisition clock timestamps 

to match the B-CALM clock (red lines). Over the period of ~ 1000s, the two clocks drift 

from each other, as can be seen the timestamps from the last two trials (bottom row). The 

synchronization is thus necessary to align events across both clocks.
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Figure 4. Associative learning and memory tasks for Pavlovian (A-F) or operant (G-H) learning 
in head-fixed mice.
A. Schematic of head-fixed mouse performing a Pavlovian conditioning task. All error 

bars or shaded errors are the standard error of the mean. B. Timeline of differential trace 

conditioning. C. Raster plot of individual licks during CS+ and CS− trials, showing the 

trial-averaged lick rate from one example mouse. D. Average PSTH across all animals (n=5), 

with lighter colored lines showing the data from individual animals, showing anticipatory 

licking only after CS+ cue before reward delivery (paired t test t = 11.6235, two-tailed 

p = 3.13x10−04). E. Learning curve for a separate cohort of animals trained on a trace 

conditioning task with the cue lasting 0.25 s, and a trace interval of 1 s. F. Learning curve 

for another cohort of animals trained on a sequential conditioning task (reproduced from 

control animals shown in Figure 6 of Jeong et al., 2022). G. Task schematic for operant 

conditioning. Mice had to lick on a left lick tube to obtain rewards from the center lick tube. 

H. The average operant lick rate (Hz) during fixed ratio 5 schedule on first day and last day 

(paired t test t=−2.0588, one-tailed p = 0.0658), or a single random ratio session.
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Figure 5. Discrimination learning task.
A. For the discrimination learning task, the left lick tube was retractable and could 

be in either a retracted or an extended position. B. Three phases of training during 

the discrimination learning task. In the first phase, animals started in either Pavlovian 

conditioning (n=2 mice) or operant conditioning (n=4 mice). In the second phase, the left 

lick tube was extended and available for licking only during the cue-outcome delay (3 s) 

after the discriminative stimulus predictive of reward (DS+). Licking on the left lick tube 

during this 3s period delivered reward 3s after DS+ onset. In the third phase, the left lick 

tube was available after both DS+ and DS−. Licking after DS− resulted in no rewards. C. 
Raster plot and peri-stimulus time histogram (PSTH) for operant left licking and Pavlovian/ 

consummatory center licking from one example animal (the animal was required to make 3 

operant licks to obtain reward after DS+). D. Average operant licking after DS+ and DS− 

trials. All animals show more operant licking to DS+ than DS− (paired t test t(5) = 4.3411, 

one-tailed p = 0.0037).
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Figure 6. Peak interval timing task.
A. Schematic for the peak interval task. During initial shaping, rewards were given 10 s 

apart from each other at 100% probability. In the final task, 20% of the rewards were 

omitted, allowing a chance to measure whether licking “peaked” at the expected reward 

time (which would signal that animals learn the expected reward time). B. Data from an 

example animal. (Left) Licking time locked to reward receipt, showing anticipatory licking 

prior to reward receipt. (Right) Licking time locked to reward omission, showing licking 

around expected reward time. Peak lick rate occurs close to reward omission time. C. 
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Lick rate normalized to peak lick rate averaged across all animals (n=5) for reward receipt 

(left) and omission (right) for 4 different time intervals. Animals showed clearly distinct 

licking patterns for each of the four intervals. Indeed, they exhibited unbiased timing during 

omission trials for 5 s (t = −0.5349, two-tailed p = 0.5989), 7.5 s (t = −0.3688, two-tailed p = 

0.715), and 10 s (t = −0.6893, two-tailed p = 0.4947); though, licking peaked with an earlier 

bias for the 15 s interval (t = −1.4968, two-tailed p = 0.1398).
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Figure 7. Two-option choice task.
A. Schematic of hardware setup for the two-option choice task. Animals could lick to either 

the left or right lick tube to obtain corresponding rewards in the middle lick tube. B. As 

a proof of principle and validation, we varied reward magnitude associated with licking 

either the left or the right side to test whether animals chose both at an equal proportion 

when the corresponding reward magnitudes were equal. To control for side preference, we 

did two separate experiments per mouse: one in which reward associated with left lick tube 

was fixed and the other in which reward associated with the right was fixed. C. Proportion 
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of trials in a block (last 10 trials of each condition) that animals chose for the side with 

varying reward (when either the left or right side was the fixed reward side). Dark line 

shows average across animals and light lines show individual animals (n=4). For left-side 

fixed trials, when the right-side reward magnitude equals zero, the percentages of choosing 

the right side for individual animals were 15.9220%, 25.5296%, 19.0540%, and 20.0412%. 

The slope for the percentage of choosing right side as right-side reward magnitude increases 

for individual animals were 12.4511, 12.8431, 12.7527, and 12.9779 (paired t-test t (3) = 

114.1708, one-tailed p = 1.4814x10−6). For right-side fixed trials, when the left side reward 

magnitude equals zero, the percentages of choosing the left side for individual animals were 

21.8771%, 25.0001%, 19.7624%, and 13.6347%. The slope for the percentage of choosing 

the left side as its reward magnitude increases for individual animals were 12.1770, 8.5213, 

12.3994, and 13.9000 (paired t-test t (3) =10.2881, one-tailed p = 0.0020). Thus, the choices 

of the animals were sensitive to the reward magnitudes and there was little side bias in 

choices.
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Table 1.

Short summary of possible tasks capable of being run by B-CALM. See codes and task descriptions in the 

Github page linked above. Any of the operant action listed can be provided as an input to BCALM using a 

TTL pulse that turns on at the moments of action performance.

Task Max # of 
different stimuli Stimulus Type Operant Action Inter-trial interval

Pavlovian delay/trace 
conditioning 4 sound/light/both N/A

exponentially distributed; uniformly 
distributed; “trial-less” (Jeong et al., 
2022)

Operant conditioning N/A N/A lick/nosepoke/lever 
press

fixed/variable ratio; fixed/variable 
interval; progressive ratio

Discrimination learning 4 sound/light/both lick/nosepoke/lever 
press

exponentially distributed; uniformly 
distributed

Random rewards N/A N/A N/A Exponentially or uniformly distributed 
inter-reward intervals

Interval timing task N/A N/A N/A fixed inter-reward interval with 
omissions

Ramp timing task 4 sound/light/both lick/nosepoke/lever 
press

exponentially distributed; uniformly 
distributed (Namboodiri et al., 2015)

Choice tasks 
(delay/probability/effort 
discounting; two-armed 

bandit)

2 sound/light/both lick/nosepoke/lever 
press

exponentially distributed; uniformly 
distributed

Matched-to-sample task 4+4 (second cues) sound/light/both lick/nosepoke/lever 
press

exponentially distributed; uniformly 
distributed
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Table 2.

Summary table for the cost of one BCALM controller system that can reproduce the behavioral results 

presented here. See https://github.com/namboodirilab/B-CALM/blob/main/head_fixed_setup/Head-

fixed%20stage%20setup%20overview.pdf for additional parts unrelated to the controller.

System Item Name Vendor/manufacturer part # Quantity per 
system Unit Cost ($)

Single processor Arduino Mega 2560 board Arduino A000067 1 40.3

Circuit board Circuit breadboard BB1660T 1 15

Reward delivery (1)

Solenoid Parker 003-0257-900 1 108

5.6 kΩ resistor MBB02070C5601FCT00 1 0.27

TIP120 STMicroelectronics TIP120 1 0.75

Single diode 1N4001DITR-ND 1 0.22

Lick detector (3)

10 MΩ resistor YAGEO CFR-25JB-52-10M 6 0.1

47 kΩ resistor Vishay Beyschlag/Draloric/BC 
Components MBB02070C4702FCT00 3 0.27

10 kΩ resistor Vishay Beyschlag/Draloric/BC 
Components MBB02070C1002FRP00 3 0.03

Reed relay Excel Cell Electronics EDR2D1A0500Z 3 3.19

2N222 transistor MCIGICM 3145241 3 0.035

Schmitt trigger TEXAS INSTRUMENTS CD40106BE 1 0.933

2.2 kΩ resistor Vishay Beyschlag/Draloric/BC 
Components MBB02070C2201FCT00 2 0.26

Power MOFSET Adafruit 355 2 1.75

Speaker (2)

Resistor kit E-Projects A-0005-A02 1 16.66

Large enclosed piezo w/
Wires Adadruit 1739 1 0.95

Small enclosed piezo w/
Wires Adadruit 1740 1 0.95

Light (2)

200 Ω resistor From the above resistor kit 2 NA

Pre Wired-LED Diodes 
Light 5mm-Blue ToToT PWDIODE-30-Blue 2 0.253

Power Supply

24V/2A Power adapter Tri-Mag, LLC L6R48-240 1 19.11

12V/2A power adapter Tri-Mag, LLC L6R24-120 1 9.74

9V/1A power adapter Tri-Mag, LLC L6R12H-090 1 7.62

Female DC power adapter Adafruit 368 2 2.00

USB A-B 2.0 Cable Qualtek 3021001-03 1 2.63

Necessary circuit 
elements

Solid-core wire spool Adafruit 290 5 colors x 25 ft 2.95

Wire-Wrapping 30AWG 
wires CECOMINOD035080 1 10.99

Jumper wire kit (M to M) EDGELEC ED-DP_L15_M-M_120pcs 1 set per length 7.49

Screw terminal block Molex 0393570006 7 1.86

Header pin strip Harwin M20-9990646 8 0.165

Alligator clips MCIGICM test lead-10 4 0.499
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System Item Name Vendor/manufacturer part # Quantity per 
system Unit Cost ($)

Enclosure for circuit 
setup Plastic box 14090MDT 1 12.48

Software MATLAB license Mathworks 1 variable

Approximate total cost for a complete controller system used for obtaining the results presented here
$303 + 
MATLAB 
license cost
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