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Abstract

SIBAR
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Hardware-software codesign, which implements a given specification with a set of system compo

nents such as ASICs and processors, includes several key tasks such as system component allocation,

functional partitioning, quality metrics estimation, and model refinement. In this work, we focus on

the model refinement task which transforms a specification from an original functional model to a re

fined implementation model. First, we categorize several commonly-used implementation models and

describe a set of refinement procedures to transform a specification to each of these implementation

models. We also present a set of experimental results to compare the implementation models and to

demonstrate how the proposed approach can be used to explore different implementation styles.
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1 Introduction

As behavioral synthesis and software design tools mature, design effort is shifting to hardware-

software codesign, which converts a system specification to a set of system components such as

ASICs and processors. The functionality in such a system is implemented either by physical compo

nents on the ASICs (often referred to as hardware) or by programs executing on the processors (often

referred to as software). Hardware-software codesign consists of a set of interdependent design tasks,

which include: (1) allocation of system components such as processors, ASICs, memories and buses,

to the design, (2) partitioning of the functional specification among the allocated components, such

that the imposed design constraints are met and the overall design cost is minimized, (3) estimation

of quality metrics such as performance, size, pins, power and cost, for different implementations, as

guidance for the partitioning process, and (4) refinement of the specification from a functional model

void of any implementation details into an implementation model that contains information about the

chosen allocation and partition.

The input to hardware-software codesign is a specification of the system under development. The

original model of the specification is often purely functional and does not contain any information as

to how the system is implemented. As the design proceeds, designers make certain decisions and add

implementation details during each design step. Often, following the allocation and partitioning tasks,

the specification is transformed into a mixed functional and structural model which consists of not

only the partitioned functionality but also the underlying architecture containing the allocated system

components. We call this mixed functional and structural model the implementation model of the

system. The implementation model, which is also the output of hardware-software codesign, possesses

the following characteristics: (1) it is functionally equivalent to the original model, (2) it has more

implementation details than the original model, and (3) it has a well-defined interface between the

partitioned functionality assigned to each ASIC or processor component.

In this paper we focus on the model refinement task, which transforms a specification from a

functional model to an implementation model. Model refinement is required after system partitioning

and it is important in hardware-software codesign for several reasons. First, it enables designers to

incorporate various design decisions into the specification so that the evolution of the design can

be documented. For example, when designers decide to partition a specification to several system

components, the refinement will update the specification to reflect which part of the functionality is

mapped to which component. Second, refinement makes various parts ofthe specification consistent by



interface insertion. For example, when a behavior in one partition wants to access a variable in another

partition, interconnections and communication protocols for this access will be defined and inserted

in the specification. Third, the interface design of the refinement makes the partitioned specification

simulatable, allowing the designer to verify the system's functional correctness after a design step.

Finally, since the refined specification is complete, it can serve as an input for functional verification,

behavioral synthesis or software compilation tools that may foUow hardware-software codesign.

Previous work in hardware-software codesign has been reported in various papers. Functional

partitioning among system components has been introduced for multiple ASICs and processors [1, 2,

3]. Issues for hardware-software partitioning have been discussed [4, 5], and prototype partitioning

systems have been developed [2, 6]. Estimation for specifications mapped to ASICs and processors

has been presented in [7, 8]. Simulation environments have been developed to encourage early system

simulation for functional verification [9,10]. An architectural template and tools environment for rapid

prototyping have also been suggested [11]. Although many issues such as partitioning, estimation,

simulation, and prototyping have been addressed, and the need for model refinement has also been

indicated in the above mentioned papers, to the best of our knowledge, no work has been reported on

how to perform model refinement.

The rest of the paper is organized as follows. First, we illustrate model refinement in the context

of hardware-software codesign. Following that, we categorize several commonly-used implementation

models. Then, we describe a set of refinement procedures that are used to transform a specification

to each of these implementation models. In Section 5, we present a set of experiments conducted to

compare these implementation models and, finally, we draw conclusions in Section 6.

2 Model Refinement

The input specification of hardware-software codesign is often void of any implementation information

and contains only functional objects such as behaviors, variables, and channels. A behavior is a piece

of systemfunctionality that can also be viewed as a piece of computation working on data represented

byvariables. Channels represent the data accesses from behaviors to variables or execution sequence

from behaviors to behaviors. Note that a channel here does not represent a physical communication

medium such as a bus. Instead, it indicates an abstract communication medium over which information

is transferred.

In our system, the input specification is described in a language called SpecCharts [12]. The Spec-



Charts language consists ofhierarchical sequential/concurrent behaviors with leafbehaviors consisting

of a set of VHDL sequential statements such as assignments, branching statements, and loops.

In the SpecCharts input specification, some functional objects such as behaviors and variables are

explicitly defined while other functional objects such as channels are implicit and can only be derived

from the specification. For example, in Figure 1(a), A, B, C are behaviors and x is a variable. The

channels between A and B as well as A and C, are derived from the execution sequence described

in the specification, i.e. A : {x > 1,B) and A : (x < 1,C), which indicates that after A finishes, if

condition x > 1 is true, B will be executed, otherwise, if condition x < 1 is true, C wiU be executed.

The channels between A and x as well as B and x, are derived from the assignments specified in

behavior A and B, i.e. x := 100 and x := x * 5, which indicate that behaviors A and B both access

variable x. Each input specification can be represented by an access graph (Figure 1(a)) that is

constructed from nodes representing behaviors or variables and from edges representing channels.

Suppose a designer wants to implement the specification of Figure 1(a) with an allocation of an

ASIC of size 10,000 gates and 75 pins, a processor of type Intel8086 and some buses between the

two for communication, as shown in Figure 1(b). After deciding on the allocation, the specification

is partitioned into 2 parts, one to be implemented on the processor FROC and the other on the

ASIC. The partitioning can be done either manually by the designers or automatically by partitioning

algorithms. In this paper we do not discuss how a designer selects a good allocation or chooses a

partition which best satisfies his/her constraints. For details on allocation and partitioning, pleaserefer

to [5]. Suppose the partition in which behaviors A and C are assigned to FROC and behavior B and

variable x are assigned to ASIC (Figure 1(c)) is the one selected by the designer. After partitioning,

the model refinement is required to transform the original specification into a refined specification

to reflect these allocation and partitioning decisions. For example, in Figure 1(d), a new behavior

B.CTRL, which is used to start the behavior B that is now on the ASIC, is added to the specifications

mapped to FROC. Behavior B on the ASIC is modified into a new behavior B-NEW, which waits

for behavior B.CTRL to start the execution of B and also informs BjCTRL of the completion of

B. The accesses of behaviors A and B to variable x also need to be updated. For example, instead

of directly reading from or writing to the variable x as written in the original specification, the read

and write operations of the variable x have to be substituted with receive/send protocols between

the behaviors and the memory module where the variable x resides. These send/receive protocols

are predefined methods of exchanging data over the bus. In Figure 1(d), channels that are going to

be replaced by protocols in the specification are indicated by dashed directed lines. Due to space



behavior SYSTEM Is sequential
variable x...

r specify sequentiallty V
A:(x> 1,8);
A:(x<1,C);

behavior A is SYSTEI
X := 100;

Bus
PHOC ASIC

behavior B is
X := X • 5;

behavior C Is

end; r SYSTEM V

Mapped
loPROC

behavior SYSTEM Is concurrent
r Definition of bus and protocols V
signal data, addr, start, ready...
procedure send_to_MEM{), recelve_from_MEM()...

r specify concurrency */
PROC:;
ASIC:;

behavior PROC Is sequential behavior ASIC is concurrent
r specify sequentiallty */ r specify concurrency */
A;(x> 1,B_CTRL); MEM:;
A:(x<1,C);

behavior A Is
send_to_MEM(x, 100)

behavior B_CTRL Is
/* communication to

start behavior B
In ASIC V

end;

behavior C Is

end;
end PROC;

behavior MEM Is
variable x...

behavior B_NEW Is
variable temp...

r waiting for B^CTRL to
start the execution

recefve_froni_MEM(x, temp);
temp := ternp *5;
send_to_MtM(x, temp);

/• teli B_CTRL that B Is finished V
end;

end ASiC;
end SYSTEM;

Mapped
to ASIC

I ! Bus ^l-'
!1mem ; :b_new|

;b_ctrlI4 ''—V-

• From original specification
inserted by refinement

Figure 1: An example of model refinement: (a) an input specification, (b) an allocation of two chips, ASICl
and ASIC2, (c) a partition with A and C on ASICl and B andx on ASIC2, (d) the refined specification for the
chosen allocation and partition.

limitation, we have not shown the refined specification of this example in detail. However, in later

sections, we wiU discuss the refinements omitted in Figure 1(d).

In comparison with the original specification, the refined specification incorporates more imple

mentation details. For example, the refined specification in Figure 1(d) shows that one processor and

one ASIC will be used for the implementation where A and C wiU be implemented on PROC and B

and Xon ASIC. Furthermore, it shows that variable x is mapped to a memory module on ASIC.

Channels between A and x and between B and x are implemented by the bus protocols. Channel

between A and B is implemented by some new behaviors as well as the bus protocols in the speci

fication. Although the refined specification does not represent a final implementation, it is one step



closer to the implementation than the original specification since it contains an emerging architecture

consisting of one processor, one ASIC and some buses, with the ASIC containing a memory module.

3 Implementation Models

The numbers and types of system components to be used in the design are determined during allo

cation. However, some necessary information for refinement, such as the mapping of a variable to

global space or local space and the protocols for communications, may still be missing. Therefore, the

next step consists ofselecting a model for communication amongst the processors, ASICs and memory

modules. Since various communication models are available, it is necessary to select the most suitable

one for a given application. For example, for a design with fewer accesses to global variables, often a

shared memory model may be more suitable than a message passing model since it is simpler and is

more eflRcient. However, for a design with frequent accesses to global variables, the shared memory

model may create a bottleneck in the bus or memory port that is used for communication.

To allow designers to select different communication models for different applications, we provide

various implementation models in which designers can select the number ofmemory ports, themapping

ofvariables to memory, and the communication protocols. First, the number ofmemory ports is often

decided based on the data access pattern and data access rate. For example, in a pipelined design, a

memory module often needs at least two ports to be able to store data from the previous stage and

feed data to the next stage at the same time. Second, the mapping of a variable to memory is often

decided by the number ofbehaviors that access the variable. When a variable is mapped to a global

memory, it is visible to all behaviors. When a variable is mapped to a local memory, it is visible

only to some behaviors. In such a case, other behaviors, which need to access the variable, have to

request the data stored in the local variable, possibly, through a bus interface. The global memory

is often used for the shared memory communication scheme while the local memory is often used in

the message passing communication scheme. Finally, the communication protocols are often decided

by the required data transfer rates on the buses. This has been discussed, in detail, in [13]. Next,

we present four implementation models that vary in these 3 important parameters: (1) number of

memory ports, (2) variable mapping styles, and (3) communication protocols.

We use an example to illustrate the four implementation models. The specification of the example,

shown in Figure 2, consists of four behaviors HI, 52, 53 and 54 and seven variables, vl to vl. The

specification has been partitioned among two components: a processor and an ASIC. Behavior 51



Figure 2: A specification with two partitions: processor and ASIC.

and B2 and variables vl to vA wiU be implemented on the processor component while behavior 53

and 54 and variables v5 to v7 will be implemented on the ASIC component. The accesses among

the behaviors and variables are represented by the directed arcs. There are some variables which

are accessed only by behaviors in the same partition as themselves. These variables are called local

variables. For example, variables nl, v2, v3 are local to 51 and 52, and i;6 is local to 53 and

54. There are some variables which are accessed by behaviors residing in different partitions. Those

variables are called global variables. For example, variables v4, v5 and v7 are global variables since

they are accessed by behaviors on both the ASIC and the processor. The four implementation models

are described as follows:

1. Modell: Single-port global memory only: In this model, shown in Figure 3(a)for the given

example, all variables are mapped to single-port global memories (Gmem). All behaviors access

the variables through a common global bus, 61. Therefore, the mciximum number of buses after

the refinement is 1.

2. Model2: Local memory -f single-port global memory: In this model (Figure 3(b)), all

local variables are mapped to local memories {Lmem) while all global variables are mapped

to global memories. Behaviors access the local variables through the local buses, 61 and 63.

Behaviors access the global variables through a common global bus, 62. Therefore, the maximum

number of buses after the refinement is p -f- 1 where p is the number of partitions.

3. Models: Local memory -f multiple-port global memory: In this model (Figure 3(c)),

aU local variables axe mapped to local memories while all global variables are mapped to global

memories. Behaviors access the local variables through the local buses, 61 and 66. Behaviors in

each partition access the global variables through a dedicated bus, such as 62, 63, 64 and 65 in



Processor Processor

b5 v5

Figure 3: Four different implementation models for the example: (a) Modell: single-port global memory
only, (b) Model2: local memory + single-port global memory, (c) ModelS: local memory -f multiple-port global
memory, (d) Model4: local memory -|- bus interface.

Figure 3(c). Therefore, the maximum number of buses after the refinement is p + px p where p

is the number of partitions. The maximum number of ports for each global memory is p.

4. Model4: Local memory + bus interface; In this model (Figure 3(d)), all variables are

mapped to local memories. Behaviors access the local variables through the local buses, 61 and

65. Behaviors access the global variables through the local buses or the bus interface if the

variables reside in other partition's local memory. Bus interface is in charge of transferring data

from the local memory to its buffer space through buses such as 62, 63 and 64. The maximum

number of buses after the refinement is 2 x p -|- 1 where p is the number of partitions.

In these implementation models, the global memories can havea different numberof ports, variables

can be mapped to local or global memories, and different bus protocols can be used for communication.

Depending on the application in hand, a designer can select the most suitable implementation model.

Although these four models do not represent all possible communication models, they cover important

communication schemes such as shared memory, message passing, and bus interface, and can therefore



be used for a wide range of applications.

4 Refinement Procedures

In order to convert a given partitioned specification to a selected implementation model, we need a set

of transformation procedures. Theseprocedures need to ensure that the refined implementation model

is functionally equivalent to the original one and that it also complies with the underlying architecture

that consists of the allocated system components. We categorize the transformation procedures into

three classes: (1) control-related refinement, (2) data-related refinement, and (3) architecture-related

refinement. We discuss each of these procedures in the following sections.

4.1 Control-related Refinement

B.start <-1
wait until B_done = 1

B_star1 B_NEW

loop
wait until B.start
original behavior B
B_done <-1

end loop

' B.start <-1 '
wait until B done = 1

wait until B^start s 1

Figure 4: Control-related refinement: (a) behavior B is moved to another partition, (b) refinement scheme
for a leaf behavior, (c) refinement scheme for a non-leaf behavior.

Control-related refinement is required to preserve the execution sequence of the specification when

behaviors are partitioned among different components. For example, in the partition of Figure 4(a),

where behaviors A and C are assigned to partition PI and behavior B is assigned to partition P2,

the specification needs to be modified to make sure that behavior B executes after behavior A and

behavior C executes after behavior B. To ensure the execution sequence in the refined specification,

two signals are introduced between the partitions to indicate the start and finish of behavior B. We

show two control-related refinement schemes which depend on whether the behavior being refined is

a leaf behavior or a non-leaf behavior.

In the refinement (Figure 4), the signals introduced are called Bstart and B-done. These two

signals are used for communication between behavior BjCTRL and B-NEW. Behavior BjCTRL is

a new behavior inserted in the place where behavior B previously resided, while behavior B-NEW is



the original behavior B with some additional code inserted at its beginning and end. In Figure 4(b),

the behavior BJ^EW is a leaf behavior with a loop inside its code. The beginning of the loop is

a statement which waits for signal Bstart. The end of the loop is a statement which sets signal

B.done. Between these two statements are the code of the original behavior B. In Figure 4(c), the

behavior BJVEW is a non-leaf behavior with a loop structure on its three sequential sub-behaviors.

One behavior waits for signal B.start, one behaviorsets signal B.done and one behavior is the original

behavior B. Since partitions PI and P2 correspond to two diflFerent components, behavior BJVEW

now executes concurrently with behaviors in PI. However the two signals introduced guard the

execution of behavior B so that it can only execute after A finishes and before C starts.

You may notice that there is little difference between Figures 4 (b) and (c). Behavior BJ^EW in

Figure 4 (b) is a leaf behavior while BJSIEW in Figure 4 (c) is a non-leaf behavior. If the behavior

moved to the other partition is a leafbehavior, either of the refinement schemes, shown in Figures 4(b)

and (c), can be used. However, if the behavior moved out is a non-leaf behavior, we can only use the

refinement scheme shown in Figure 4(c) since behavior B may have several sub-behaviors and we can

not enclose them in the loop shown in the leaf behavior, B-NEW, in Figure 4(b). We would also like

to add that, for a leaf behavior, the scheme shown in Figure 4 (b) is preferable since it is simpler and

has only one level of hierarchy as opposed to two levels in Figure 4(c).

4.2 Data-related Refinement

Data-related refinement is required to update the accesses to a variable when the variable and the

behavior which accesses the variable reside in different partitions. Consider the example in Figure 5.

Initially, behavior B and variable x are in the same partition. Therefore, behavior B can access x

directly by using its name, as shown in x := a: -h 5. Suppose behavior B and variable x are mapped to

different partitions, as shown in Figure 5(b). Since x is mapped to a memory module, the definition of

Xis no longer visible to behavior B. That is, behavior B can not directly access x by its name any more.

However, the signals or buses between the memory module in which x resides and the component on

which behavior B executes are visible to behavior B. Therefore, to access x, behavior B needs to use

a protocol to exchange data over the bus. Figure 5 (c) shows the data-related refinement which uses

a protocol to access a variable mapped to a memory. Now any access of x by P is substituted with a

protocol call which essentially consists of a sequence of bus-level transfers. A slave memory behavior.

Memory, is inserted to serve the data transfer upon the request from a master behavior. If there is



behavior B Is

X := X + 5:

Component

variable tmp...

MST_recelve(bus, x_addr, tmp);
temp := temp + 5;
MST_send(bus, x_addr, tmp);

MST_receive(bus, x_addr, tmp):

bus_start<- 1;
bus_addr <- x_addr;
bus_rd <-1;
wait until bus_done = 1;
tmp ;= bus_data;
bus_start <- 0;
bus_rd <- 0;

MST_send(bus, x_addr, tmp):

bus_star1 <-1;
bus_addr <- x_addr;
bus_data <- tmp;
bus_wr <-1;
wait until bus_done = 1;
bus_start <- 0;
bus_wr <- 0;

Component

Bus

B X

Memory

variable x...

loop
wait until bus_start = 1;

Ifbus_start = 1 and bus_rd = 1 and bus_addr = x_addr
then SLV_send(bus, x);

Ifbus_start = 1 and bus_wr = 1 and bus_addr = x_addr
then SLV_receive(bus, x);

end loop;

SLV_send(bus, x):

bus_data <- x;
bus_done <- 1;
wait until bus_start = 0;
bus_done <- 0;

SLV_recelve(bus, x):

X := bus_data;
bus_done <-1;
wait until bus_start = 0;
bus_done <- 0;

Figure 5: Data-related refinement for a behavior; (a) initial specification, (b) variable x is mapped to a
memory, (c) substitute data accesses with bus protocols, (d) an example of bus protocols.

a read request on the bus and the value on the address bus is the same as the address assigned to x,

the Memory behavior will put the value of x onto the bus. If there is a write request on the bus and

the value on the address bus is the same as the address assigned to x, the Memory will put the value

on the data bus to the x. The symbol x.addr in the specification denotes the address assigned to x

in the address space determined by the width of the address bus. For example, if the address bus has

four bits, xjaddr could be a value between 0 to 15. The variable tmp is introduced to store the value

of Xin behavior B temporarily. Note that, although the example in Figure5 (c) has only one variable

in the memory behavior, there could be more than one variable in the memory. In that case, each

variable wiU be assigned a different address in the address space. In addition the memory behavior

wiU contain definitions of these variables and send/receive protocols for each of these variables.

We use subroutines MST-receive, MSTsend, SLV^end and SLV-receive to encapsulate the



protocol details to exchange data between the master (MST) and slave (SLV) over the bus. Subroutine
MST.receive used by the master and SLV.send used by the slave form a protocol used to read the
value of the data. Subroutine MST.send and SLV.receive form a protocol used to write the value
of the data. Figure 5 (d) shows, in detail, a hand-shaking protocol for the communication. The bus

consists of four control lines {bus^tart, bus.done, bus.rd and bus.wr), an address bus {bus.addr),
and a data bus {bus.data). We see that the protocols exchange data by using a sequence of bus-level
transfers. Generally we can select different protocols to exchange data. When selecting adifferent bus
protocol, the content in the subroutines shown in Figure 5(d) wiU change correspondingly.

Figure 5 only shows the data-related refinement for leaf behaviors where the data access is inside
the behavior. However, for non-leaf behaviors, the data access may be present between behaviors,
as shown in the Figure 6(a). Behavior B has several sequential sub-behaviors, Bl, B2 and B3. The

execution sequence among them is defined by Bl : (x > l,B2)andB2 : {x > 5,H3), which indicates
that, when Bl finishes and condition x > 1is true, the control goes to execute B2, then after B2
finishes and condition x > 5is true, the control goes to execute B3. If variable x is mapped to a
memory location, we need to use protocols to access it. A variable imp is introduced to store the

value of Xtemporarily in the non-leaf behavior B. The protocols used to access x are inserted at the
end of the sub-behaviors Bl and B2 as shown in Figure 6(b) since the comparisons x > 1and x > 5
are done after Bl and B2 finish, respectively.

4.3 Architecture-related Refinement

Besides inserting control and data related refinement information in the specification, we need to
insert some other behaviors, such as bus arbiters or bus interfaces, to resolve bus access conflicts and
to facilitate data transfers. We call this type ofrefinement architecture-related refinement.

Bus arbiter

Abus arbiter is required when more than one behavior want to use the bus at the same time. Arbiter

insertion is illustrated by an example, shown in Figure 7, in which behaviors Bl and B2 access data

over the same bus. Behavior Bl reads data in variable xwhile behavior B2 reads data in variable y.
The arbiter behavior inserted for the bus is shown in Figure 7. Assume that behavior Bl has higher
priority than behavior B2 for data access over the bus. When behaviors Bl and B2 need to access

data through the bus, they each request access to the bus by asserting Req.l and Req.2, respectively.



behavior B is sequential
variable x...

B1: (x> 1. B2):
B2: (X> 5. B3);

behavior B1 is

end;

behavior B2 is

end;

behavior 63 is

Component

variable tmp...

B1: (tmp > 1, B2);
B2: (tmp > 5, B3);

behavior B1 is

MST_receive(bus,x_addr,tmp);
end;

behavior B2 is

loop
wait until bus.start s 1;

if bus.start = 1 and txjs^rd = 1 and bus.addr = x.addr
then SLV_send(bus, x);

Ifbus_start s i and bus_wr * 1 and bus_addr« x_addr
then SLV_receive(bus, x);

end loop;

MST_receive(bus,x_addr,tmp);
end;

behavior B3 is

end;

Figure 6: Data-related refinement for a non-leaf behavior; (a) variable x is mapped to a memory, (b) substitute
data accesses with bus protocols.

Componenti

B1

variable tmp...

Req_1 <= 1;
wait until Ack_1 = 1;
MST_receive(bus,x_addr,tmp};
Req_1 <= 0;

Component2

B2

variable tmp...

Req_2 <« 1:
wait until Ack_2 = 1;
MST_receive(bus,y_addr,tmp);
Req_2 <= 0;

Recu2
Ack_2

wait until (Req_1 = 1) or (Req.2 « 1);
if(Req.1 = 1)then
Ack.l a 1;
wait until Req.1 a 0;
Ack.l = 0;

elsif (Req.2 = 1) then
Ack.2= 1;
wait until (req.2 = 0);
Ack_2 <a 0;

end if;
end loop;

variable x ...

varlgUsley...
loop

wait until bus.start s 1;

If bus_start = 1 and bus_rd = 1 and bus.addr = x_addr
then SLV_send(bus, x);

If bus.start = 1 and bus.wr = 1 and bus.addr = x.addr
then SLV.receive(bus, x);

Hbus.start = 1 and bus.rd = 1 and bus.addr = y.addr
then SLV_send(bus. y);

if bus.start = 1 and bus.wr a 1 and bus.addr« y.addr
then SLV.receive(bus, y);

end loop;

Figure 7: Refined specification after insertion of an arbiter behavior for bus.



Bus arbiter behavior assigns bus access rights to Bl by asserting Ack.l. B2 is granted access to the

bus only when Bl is not simultaneously requesting access, and this is done by asserting Ack.2.

Bus interface

Componenti

variable Imp...

MST_receive(bus1 ,y_addr,tmp);

Busjntertace_1

variable buf1 ...

loop

if (bus1_statt/= 1) ttien
wait until (bus1_start= 1);

end if;

If(bus1_start = 1) and (bus1_addr = y_addr) ttien
MST_ receive(bus2, y_addr, buft);
MST_send(bus1, y_addr, buft);

end if;

end loop;

variable buf2...

loop

if (bus2_statt/= 1) then
wait until (bus2_start = 1);

end if;

if(bus2_start = 1) and (bus2_addr = y_addr) then
MST_receive(bus3, y_addr, buf2);
MST_send(bus2, y_addr, buf2);

end if;

end loop;

Components

variable y...
loop

wait until bus3_start = 1;

I if bus3_start = 1andbus3_rd = 1andbus3_addr =y_addr
then SLV_send(bus3, y);

ifbus3_start = 1 and bus3_wr = 1 and bus3_addr = y_addr
then SLV_receive(bus3, y);

end loop;

Figure 8: Refined specification after insertion of bus interface.

A bus interface is needed when the message passing scheme is used for communication. Bus interface

insertion is illustrated by an example, shown in Figure 8, in which behavior Bl on Componenti needs

to access a variable y stored in a local memory {LM2) on Component2. To read variable y, behavior

Bl will need a bus interface to transfer the data from the local memory LM2. The bus interface

behaviors inserted for this access are shown in Figure 8. Behavior Bl will request bus interface,

Bus.interface.l, to get data in x through bus, Busl. In turn BusJnterface-1 will ask bus interface

Bus.interface.2 for the data through bus, Bus2. Finally BusJnterface.2 will get data from LM2

through bus BusZ and pass it back to Bus.interface.l. Then, Bus.interface.l will pass the data back

to behavior Bl. Similarly, if behavior B2 wants to access some variables in local memory LMl, we

wiU add corresponding behaviors for the data transfers in Bus.interface.l and Bus.interface.2. Due

to space limitation, we have not shown these behaviors in Figure 8.



5 Experiments

We have implemented the model refinement task presented in this paper and incorporated it in the sys

tem design tool, SpecSyn [5, 12], which supports allocation, partitioning, and estimation for hardware-

software codesign. The model refinement allows designers to select different implementation models

for the partitioned specification. Once an implementation model is selected, the refinement wiU be

carried out automatically by performing the control-related, data-related and architecture-related re

finement procedures, as needed. The output of the refinement is a new specification which reflects the

underlying architecture and incorporates the selected communication interface among components.

We have conducted a set of experiments to study the characteristics of each implementation model.

We select an example of a real-time embedded medical system used to measure a patient's bladder

volume [8]. The system is described in SpecCharts with 16 behaviors and 14 variables. There are

52 data-access channels derived from the specification. Using the SpecSyn tool, we partition the

behaviors and variables among two system components to produce three types ofdesigns: (1) Design1:

the partition has an almost equal number of global variables and local variables, (2) Design2: the

partition has more local variables than global variables, (3) DesignS: the partition has more global

variables than local variables. Here global variables indicate variables that are accessed by behaviors

residing in different partitions, while local variables indicate variables that are accessed by behaviors

in the same partition, as defined in Section 3. Following the partitioning task, we refine each design

using the four implementation models described in Section 3. For each refinement, we obtain the

required bus transfer rate for each bus in the model. A higher bus transfer rate indicates a higher

bus cost and a potential source of bottleneck in the design. Hence, it is a good metric for evaluating

different communication models. The bus transfer rate is calculated as the sum of the channel transfer

rate of all channels mapped to the bus. The channel transfer rate is defined as the rate at which data

is sent during the lifetime of the behaviors communicating over the channel. Details for calculating

the channel transfer rate are given in [13]. The required bus transfer rates, in Mbits/second, obtained

for each design and model are shown in Figure 9. Please refer to Figure 3 to see the buses indicated

by bl, b2, b3, b4, b5, and b6 in each implementation model.

From the results we can observe the following phenomenon. For Designl, Models and ModelA are

preferable than Modell and Model2 because communication is more or less evenly distributed on all

the buses such that the maximum bus transfer rate required is lower. For the same design, in Modell

and Model2, communication is very heavy on the global bus (3636 Mbits/s for Modell and 2030



Bus transfer rate (MBits/Second)

Impl.
^(Jodels

Partitions'^^
Modell

b1

Model2

b1,b2, b3

Models

b1, b2, b3, b4, b5, b6
ModeM

b1, b2=b3=b4, b5

Design1

Local = Global
3636 853, 2030, 753 853, 480, 179, 640, 731, 753 1333, 910, 1393

Design2

Local > Global
3636 853,1580,1203 853, 179, 480, 281, 640, 1202 1352, 800, 1484

Designs

Local < Global
3636 42, 3576, 18 42,480, 990,640, 1466, 18 522, 2456, 658

Figure 9: Bus transfer rates in three designs and four models.

Mbits/s for Model2), and this creates hot spots or bottlenecks in the design, i.e., bus 61 in Modell

and bus 62 in Model2 are hot spots. For Design2, Model2^ Models, and ModelA are comparable and

are preferable to Modell since the maximum bus transfer rate is less than half that of Modell. For

Designs, Models is the best and ModelA is better than Modell and Model2 which have hot spots

in the design. Generally speaking, Modell is only suitable for designs with less communication since

the single bus existing in the model can quickly become a bottleneck in the design. For design with

more communication, Model2 is more suitable when the design has more local variables. When the

design has more global variables. Models or ModelA are preferable.

From the results we also see that in Modell, only one bus is required, but the bus transfer rate

required for that bus is very high. However, in Mode/2, Models or ModelA, the number of buses

required is more but the bus transfer rate required for each bus is less. In ModelA, besides buses,

bus interfaces are also required for the communication. Therefore, when considering design cost, we

need to take into account not only the number of buses, the bus transfer rate required for each bus,

but also the cost of bus interfaces. Another factor we need to consider in design cost is the number

of memories and the sizes of the memories required in each model. For example, in Modell and

ModelA, two memory modules are required. However, in Model2 and Models, four memory modules

are required.

In addition to the bus transfer rates, we also compare the size of the refined specification and

the CPU time, in seconds, required to obtain the refined specification on a SPARC5 workstation

(Figure 10). The size of the medical system's input specification is 226 lines. From the results we see

that the refined specification is as much as 11 to 19 times larger than the original specification.

The experiments demonstrate that it is necessary to explore different communication styles to

find the most suitable model for a design, since the selection is not only application dependent but

also design/partition dependent. The experiments also demonstrate that by using automatic model



Impl.
^-^..^odeU

Partitions''-^^

Deslgnl
Local = Global

De8lgn2

Local > Global

«lines In the refined speclflcatlon/CPU time for the refinement

Modell ModelZ Model3 ModeM

3057/37sec 2ei5/3Ssec 2630/33sec 3377/37sec

3057/37sec 2743/34sec 2630/33sec 2985/37sec

3057/37sec 3032/37sec 2635/37sec 4324/39sec

Figure 10: Size of the refined specification and CPU time to obtain it.

refinement, designers can achieve a 10 times productivity gain since they only need to write the

functional model but not the detailed implementation model.

6 Conclusions

We have presented the model refinement task which transforms a specification from an original func

tional model to a refined implementation model. In contrast to the original model, the refined model

has a weU-defined interface between the partitioned functionality and can, thus, serve as input to be

havioral synthesis or software design tools that foUow hardware-software codesign. We have proposed

four implementation models so that designers can explore different communication styles. As demon

strated in the experiments, different implementation models may be suitable for different designs and

designers need to select an implementation model based on design characteristics, such as the ratio of

global variables vs. local variables, or on design constraints, such as the maximum allowable bus trans

fer rate. Experiments also indicate that automatic model refinement can increase design productivity

by as much as 10 times.
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