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ABSTRACT OF THE DISSERTATION

The Brown Measure of Non-Hermitian Sums

of Atomic Operators

by

Max Sun Zhou

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Dimitri Y. Shlyakhtenko, Chair

Let (M, τ) be a tracial von Neumann algebra. For X ∈ (M, τ), the Brown measure of X is a

complex probability measure supported on the spectrum of X. It is the spectral measure when

X is normal and the empirical spectral distribution when X is a random matrix. We consider

operators of the form X = p+ iq, where p, q ∈ (M, τ) are Hermitian, freely independent, and

the spectral distributions of p and q consist of finitely many atoms. There is an associated

random matrix model Xn = Pn+ iQn, where Pn, Qn ∈Mn(C) are independently Haar-rotated

Hermitian matrices.

Using a Hermitization technique, we will compute the Brown measure of X = p+ iq when

the spectral distributions of p and q are 2 atoms and prove the convergence of the empirical

spectral distribution of Xn to the Brown measure of X when the law of Pn converges to the

law of p and the law of Qn converges to the law of q.

For the general case, we will relate the operator-valued Cauchy transform from the

mathematical literature to the Quaternionic analogue of the Cauchy transform in the physics

literature. When X = p + iq for p, q ∈ (M, τ) Hermitian and freely independent, the

Quaternionic Cauchy transform provides heuristics for the boundary and support of the

Brown measure of X. We verify these heuristics when the spectral distributions of p and q
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are 2 atoms, and show that in general, the heuristic implies that the boundary of X = p+ iq

is an algebraic curve. We conclude by discussing the atoms of the Brown measure.
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CHAPTER 1

Background material

In this chapter, we will review the background material needed to define the Brown measure

and prove our results about it. The three major topics to be discussed are (tracial) von

Neumann algebras, non-commutative laws/random matrices, and free probability.

1.1 von Neumann algebras

In this section, we introduce the definition of von Neumann algebras and discuss traces. This

material is summarized from [SZ79] and [AP].

Let H be a Hilbert space with inner product ⟨·, ·⟩. We will assume that the inner product

is conjugate linear in the second variable.

Let x be a linear operator from H to H. Then, let ∥x∥ be the usual operator norm of a

linear operator between normed vector spaces,

∥x∥ = sup
ξ∈H
∥ξ∥=1

∥xξ∥ . (1.1)

In general, ∥x∥ may be infinite.

Let B(H) be the set of bounded linear operators from H to itself, where the operator

norm is finite. For x ∈ B(H), there exists a unique x∗ ∈ B(H), defined by the equation:

⟨xξ, η⟩ = ⟨ξ, x∗η⟩, ξ, η ∈ H. (1.2)

The operator x∗ is called the adjoint of x.
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Then, B(H) is a Banach ∗-algebra with the following operations:

• The sum x+ y is the usual sum of linear operators.

• The product xy is the usual composition of linear operators.

• The norm ∥x∥ is the usual operator norm (which is finite).

• The adjoint x∗ is the usual adjoint operator.

We define an element p ∈ B(H) to be a projection if p2 = p and p = p∗. We highlight

that all of the projections we consider are orthogonal projections.

Consider the following topologies on B(H):

• The norm topology (or strong topology) on B(H) is the topology induced by the

metric

d(x, y) = ∥x− y∥ . (1.3)

Hence, a net (xi)i∈I converges to x if and only if (∥xi − x∥)i∈I converges to 0.

• The strong operator topology (or s.o. topology or s.o.t) on B(H) is the locally

convex topology induced by the seminorms:

pξ(x) = ∥xξ∥ , ξ ∈ H. (1.4)

Hence, a net (xi)i∈I converges to x if and only if (xiξ)i∈I converges to xξ for every

ξ ∈ H.

• The weak operator topology (or w.o. topology or w.o.t) on B(H) is the locally

convex topology induced by the seminorms:

ωξ,η(x) = |⟨xξ, η⟩| , ξ, η ∈ H. (1.5)

Hence, a net (xi)i∈I converges to x if and only if (⟨xiξ, η⟩)i∈I converges to ⟨xiξ, η⟩ for

every ξ, η ∈ H.

2



We state some well-known facts about these topologies:

Proposition 1.1. Let B(H) be the set of bounded linear operators on a Hilbert space H.

• In general, the norm topology is strictly finer than the strong operator topology and the

strong operator topology is strictly finer than the weak operator topology.

• A linear functional on B(H) is w.o. continuous if and only if it is s.o. continuous.

• A convex subset of B(H) is w.o. closed if and only if it is s.o. closed.

• For a subspace M ⊂ B(H), a linear functional on M is w.o. continuous if and only if

it is s.o. continuous.

• The unit ball in B(H) is compact with respect to the w.o. topology.

Define M ⊂ B(H) to be a ∗-subalgebra if M is a subalgebra of B(H) (i.e. a subset closed

under multiplication and addition that contains 0) that is closed under the ∗ operation. Now,

we proceed to define C*-algebras and von Neumann algebras:

Definition 1.2. • M ⊂ B(H) is a C*-algebra if M is a ∗-subalgebra that is closed in

the norm topology of B(H).

• M ⊂ B(H) is a von Neumann algebra (or W*-algebra) if M is a ∗-subalgebra

that contains 1 and is closed in the strong operator topology of B(H).

Note that since the norm topology is finer than the s.o. topology, then every von Neumann

algebra is a C*-algebra. There are examples that disprove the converse (ex. the set of compact

operators on an infinite dimensional Hilbert space H). Also note that since M is convex,

then it is equivalent to define von Neumann algebras as those *-subalgebras that are closed

in the w.o topology.

For C*-algebras, there is a completely abstract definition (i.e. with no mention of B(H)):

Definition 1.3. An abstract C*-algebra is a Banach algebra (i.e. a complete normed

vector space with a norm that satisfies ∥xy∥ ≤ ∥x∥ ∥y∥) that has an involution ∗ that is

3



conjugate linear, (xy)∗ = y∗x∗, and satisfies the C* identity:

∥x∗x∥ = ∥x∥2 . (1.6)

The Gelfand-Naimark theorem states that an abstract C*-algebra is isometrically isomor-

phic to a concrete C*-algebra (i.e. a norm-closed *-subalgebra of B(H)). The heart of the

proof of this theorem is the Gelfand-Naimark-Siegel (GNS) construction.

There is a similar abstract definition of a von Neumann algebra (originally proved in

[Sak56]):

Definition 1.4. An abstract von Neumann algebra is a C*-algebra M where M is the

dual space of some separable Banach space M∗.

We will not use this characterization of von Neumann algebras and instead always view

them as subalgebras of B(H).

A practical difficulty in determining whether or not a ∗-subalgebra of B(H) is actually a

von Neumann algebra is determining its s.o.-closure (or equivalently, w.o.-closure). The von

Neumann bicommutant theorem makes the following connection between the topology and

algebraic structure of B(H):

Theorem 1.5. Let M be a *-subalgebra of B(H). The closure of M in the s.o. topology is

equal to the closure of M in the w.o. topology, and these are equal to the bicommutant M ′′ of

M .

Now, we examine the abelian C*-algebras and von Neumann algebras to give a heuristic

for the difference between C*-algebras and von Neumann algebras.

Let X be a locally compact Hausdorff space. Let C0(X) be the space of continuous

complex-valued functions on X that vanish at infinity. C0(X) is a C*-algebra with the usual

functional addition/multiplication, f ∗ = f , and supremum norm. Note that C0(X) is norm

closed. Let Cc(X) be the space of compactly supported continuous complex-valued functions

on X. Cc(X) is a C*-subalgebra of C0(X).
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The Gelfand representation gives an (isometric) isomorphism between any abelian C*-

algebra and C0(X) for some locally compact Hausdorff space X. Further, the C*-algebra is

unital if and only if X is compact, in which case C0(X) = Cc(X).

For the analogous theorem for abelian von Neumann algebras, consider (X,µ) a σ-finite

measure space. Then, L∞(X,µ) acts on the Hilbert space L2(X,µ) by left multiplication.

L∞(X,µ) is a von Neumann algebra with the usual functional addition/multiplication, f ∗ = f

and the L∞ norm. The fact that L∞(X,µ) is closed in the s.o. topology can be verified by

hand or follows from von Neumann’s bicommutant theorem and the fact that the commutant

of L∞(X,µ) is itself.

Every abelian von Neumann algebra on a separable Hilbert space is isometrically isomor-

phic to L∞(X,µ), where (X,µ) is a standard measure space.

This gives the heuristic that C*-algebras are analogous to continuous functions, while von

Neumann algebras are analogous to bounded measurable functions.

If von Neumann algebras are analogous to bounded measurable functions, then there

should be a way to recover the analogue of the measure. In the case of L∞(X,µ), we recover

the measure through the integration of characteristic functions χE, where E is a measurable

subset of X. Note that the χE are exactly the Hermitian projections in L∞(X,µ). The

analogy to this is the trace on certain von Neumann algebras.

First, we define some types of linear functionals on a von Neumann algebra M :

Definition 1.6. Let φ be a linear functional on M ⊂ B(H).

• φ is positive if φ(x∗x) ≥ 0 for x ∈M .

• φ is a state if φ is positive and φ(1) = 1.

• φ is faithful if φ(x∗x) = 0 implies x = 0.

• φ is a trace if φ is positive and φ(xy) = φ(yx) for all x, y ∈M .

• If φ is a trace and a state, we call φ a tracial state.

5



Recall that a linear functional φ on M is positive if and only if φ is bounded with

∥φ∥ = φ(1). Hence, a positive linear functional φ is a state if and only if ∥φ∥ = 1.

Note that the integral on L∞(X,µ) is a state when µ is a positive measure and is a state

when µ is a probability measure. The analogue of the countable additivity axiom for measures

is countable additivity:

Definition 1.7. Let M ⊂ B(H) be a von Neumann algebra. A positive linear functional φ

is completely additive if for every family {pi : i ∈ I} of mutually orthogonal projections in

M , φ(
∑

i pi) =
∑

i φ(pi).

There is a more typical continuity condition that is the analogue of the monotone

convergence theorem:

Definition 1.8. Let M ⊂ B(H) be a von Neumann algebra. A positive linear functional φ

is normal if for every bounded increasing net (xi)i∈I of positive elements in M , φ(supi xi) =

supi φ(xi).

Recall that the element supi xi ∈M since it is the s.o. limit of xi.

It turns out that normality and complete additivity are equivalent and can also be viewed

as a continuity condition:

Proposition 1.9. Let φ be a positive linear functional on a von Neumann algebra M ⊂ B(H).

The following conditions are equivalent:

• φ is normal.

• φ is completely additive.

• The restriction of φ to the unit ball of M is w.o. continuous.

• The restriction of φ to the unit ball of M is s.o. continuous.

Thus, as a generalization of measure spaces, we will work with tracial von Neumann

algebras:

6



Definition 1.10. Let M ⊂ B(H) be a von Neumann algebra with a normal, faithful, tracial

state τ . Then, we call the pairing (M, τ) a tracial von Neumann algebra and we just

refer to τ as the trace.

On (M, τ), τ also acts as a generalization of the dimension function for finite vector spaces.

For instance, for projections p, q ∈M ⊂ B(H), let p∨ q be the projection onto pH + qH and

let p ∧ q be the projection onto pH ∩ qH. Then, p ∧ q, p ∨ q ∈M and we have the following

formula:

τ(p ∨ q) = τ(p) + τ(q)− τ(p ∧ q) . (1.7)

This is a generalization of the following formula for finite-dimensional vector subspaces V,W :

dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ) . (1.8)

Similarly, there is a generalization of the rank-nullity theorem: Let x ∈M ⊂ B(H). If n(x)

is the projection onto ker(x) and l(x) is the projection onto im(x), then

τ(n(x)) + τ(l(x)) = 1 . (1.9)

A von Neumann algebra M is finite if every isometry is unitary, i.e. for v ∈M if v∗v = 1,

then vv∗ = 1. It is clear that vv∗ is a projection. When M has a tracial state, then M is

finite: τ(1− vv∗) = 1− τ(vv∗) = 1− τ(v∗v) = 1− τ(1) = 0 and 1− vv∗ ≥ 0, so 1− vv∗ = 0,

i.e. vv∗ = 1.

For the converse, a von Neumann algebra M is a factor if the center of M is only C.

Then, a finite factor has a unique normal, faithful, tracial state. Finite factors that have

a minimal non-zero projection are just Mn(C) (with the normalized trace τ = tr/n being

the unique trace). Those finite factors that do not have a minimal projection are called II1

factors .

Finally, we consider the GNS construction applied to the trace τ on (M, τ). Then, the

sesquilinear form ⟨a, b⟩ = τ(b∗a) is actually an inner product, so we may complete M with

7



respect to this inner product to form the Hilbert space L2M . M is a dense subset of L2M .

Further, M acts faithfully on L2M by left multiplication, and left multiplication is a bounded

operator on L2M . Hence, M can be thought of as a subset of B(L2M). Moreover, in this

situation, this subset of M in B(L2M) is s.o. closed, and hence is a von Neumann algebra

on B(L2M).

1.2 Functional calculus and the spectral theorem

In this section, we describe various forms of the functional calculus and the spectral theorem.

These will be used extensively in the rest of the paper. This material is summarized from

[Con90], [SZ79], [AP], and [Shl].

First, we recall the definition of the spectrum of an operator and some basic facts:

Definition 1.11. Let H be a Hilbert space. The spectrum of an operator x ∈ B(H) is the

set

σ(x) = {z ∈ C : z − x is not invertible} . (1.10)

The following Proposition lists some basic facts about σ(x):

Proposition 1.12. Let H be a Hilbert space and let x ∈ B(H).

• σ(x) is a non-empty, compact subset of C.

• lim
n→∞

∥xn∥1/n = supλ∈σ(x) |λ|. This quantity is called the spectral radius of x and will

be denoted |σ(x)|.

• If x is normal, then |σ(x)| = ∥x∥.

• If x is Hermitian, then σ(x) ⊂ R.

• If x is positive, then σ(x) ⊂ [0,∞).

The most basic functional calculus is the continuous functional calculus for Hermitian

elements. It can be stated on the level of C*-algebras. This is another instance of the heuristic

8



that C*-algebras are analogous to continuous functions.

For any X ⊂ C, let C(X) be the set of complex-valued continuous functions on X. Recall

that C(X) is a C*-algebra with the usual functional addition/multiplication, f ∗ = f , and

supremum norm.

The continuous functional calculus follows from the observation that σ(p(x)) = p(σ(x))

for any polynomial p:

Theorem 1.13. Let x ∈ B(H) be a Hermitian operator. There exists a unique ∗-algebra

homomorphism taking f ∈ C(σ(x)) to f(x) ∈ B(H), such that:

1. If f is a polynomial, f(λ) = anλ
n + · · ·+ a0, then f(x) = anx

n + · · ·+ a0.

2. ∥f(x)∥ = ∥f∥.

This map is an isometric ∗-isomorphism between C(σ(x)) and the C*-algebra generated by x

and 1 in B(H), C∗({x, 1}).

Let x ∈ (M, τ) where x is Hermitian. From the continuous functional calculus, the map

taking f ∈ C(σ(x)) to τ(f(x)) is a continuous linear functional. It is also easy to check

that this linear functional is positive and takes 1 to 1. Hence, it corresponds to a Borel

probability measure on σ(x) ⊂ C, µx. This measure is called the spectral measure of x.

For f ∈ C(σ(x)),

τ(f(x)) =

∫
σ(x)

f(t) dµx(t) . (1.11)

Next, we proceed to examine the Borel functional calculus. For X ⊂ C, let B(X) be the set

of bounded Borel functions f : X → C. The continuous functional calculus can be extended

to the Borel functional calculus by considering the following continuous linear functionals on

C(σ(x)):

C(σ(x)) ∋ f 7→ ⟨f(x)ξ, η⟩, ξ, η ∈ H . (1.12)

From the Riesz-Markov representation theorem, this map corresponds to integration by a

Borel measure µξ,η on C(σ(x)). From the continuous functional calculus, ∥µξ,η∥ ≤ ∥ξ∥ ∥η∥.
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Hence, for any f ∈ B(σ(x)), we may define ⟨f(x)ξ, η⟩ by integration with respect to µξ,η.

For fixed f , this is a bounded sesquilinear form on H, and hence f(x) is given by a unique

operator in B(H). The Borel functional calculus satisfies the following properties:

Theorem 1.14. Let x ∈ B(H) be a Hermitian operator. There exists a unique ∗-algebra

homomorphism taking f ∈ B(σ(x)) to f(x) ∈ B(H) such that:

1. This map extends the continuous functional calculus.

2. If f, fn ∈ B(σ(x)), supn ∥fn∥ < ∞ and fn → f pointwise, then fn(x) → f(x) in the

s.o. topology on B(H).

This map takes the C*-algebra B(σ(x)) into the von Neumann algebra generated by {x} in

B(H).

Recall that any f ∈ B(σ(x)) is a pointwise limit of a sequence of uniformly bounded

continuous functions. Also, recall that τ is continuous with respect to the s.o. topology on

bounded subsets of M . Then, by taking limits, we see that the following formula holds for

all f ∈ B(σ(x)):

τ(f(x)) =

∫
σ(x)

f(t) dµx(t) . (1.13)

In the case of the continuous functional calculus, there is a more general functional calculus

for normal elements. It follows from the fact that if x ∈ B(H) is normal, then C∗({x, 1}) is

an abelian C*-algebra, and hence is isomorphic to C(X), where X is a compact Hausdorff

space. Then, the spectrum of any f ∈ C(X) is just f(X) and the continuous functional

calculus just corresponds to the composition of functions. Thus, we have the continuous

functional calculus for normal operators:

Theorem 1.15. Let x ∈ B(H) be a normal operator. There exists a unique ∗-algebra

homomorphism taking f ∈ C(σ(x)) to f(x) ∈ B(H) such that:

1. If f is a polynomial in z and z, f(z, z) = a00 + a10z + a01z + · · · + anmz
nzm, then

f(x, x∗) = a00 + a10x+ a01x
∗ + · · ·+ anmx

n(x∗)m.
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2. ∥f(x, x∗)∥ = ∥f∥.

This map is an isometric ∗-isomorphism between C(σ(x)) and the C*-algebra generated by x

and 1 in B(H), C∗({x, 1}).

We can extend the continuous functional calculus to the analogous Borel functional

calculus that is valid on the von Neumann algebra generated by x. We also have the similar

spectral measure µx that is now a complex probability measure supported on σ(x) ⊂ C,

where for all f ∈ B(σ(x)),

τ(f(x)) =

∫
σ(x)

f(t) dµx(t) . (1.14)

Our final functional calculus is the analytic functional calculus. Let x ∈ B(H) and let

A(σ(x)) be the set of all complex analytic functions defined on a neighborhood of σ(x). For

f ∈ A(σ(x)), let γ1, . . . , γk be closed, rectifiable Jordan curves such that the interiors of these

curves are disjoint, the unions of the interiors of these curves contain σ(x), and the closure

of this region is in the domain of f . Let Γ = {γ1, . . . , γk}. Then, it is possible to define the

following operator-valued integral as the limit of norm-convergent Riemann sums:

f(x) =
1

2πi

∫
Γ

f(z)(ζ − x)−1 dz . (1.15)

From an operator-valued version of Cauchy’s theorem, f(x) is independent of the curve γ.

Then, we have the following analytic functional calculus:

Theorem 1.16. Let x ∈ B(H). There exists a unique algebra homomorphism taking

f ∈ A(σ(x)) to f(x) ∈ B(H) such that:

1. If f is a polynomial, f(z) = anz
n + · · ·+ a0, then f(x) = anx

n + · · ·+ a0.

2. If fn, f ∈ A(σ(x)) and fn → f locally uniformly, then fn(x) → f(x) in norm.

Note that the uniqueness statement follows from Runge’s approximation theorem. When

x is Hermitian, then the analytic functional calculus is just the restriction of the continuous

functional calculus to A(σ(x)).
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Since the operator-valued integral is norm-convergent, then in (M, τ),

τ(f(x)) = τ

[
1

2πi

∫
Γ

f(z)(z − x)−1 dz

]
=

1

2πi

∫
Γ

f(z)τ [(z − x)−1] dz . (1.16)

Now, we briefly mention the spectral theorem. There is a notion of a projection-valued

measure where the measurable sets in a measure space correspond to projections in B(H),

for a Hilbert space H. Similar axioms hold for these projections as for measurable sets in a

measure space. Then, we have the following spectral theorem:

Theorem 1.17. Let x ∈ B(H) where x is Hermitian. Then, there exists a projection-valued

measure Et for which:

x =

∫
σ(x)

t dEt . (1.17)

The integration in the spectral theorem is the operator-valued analogue to the Riemann-

Stieltjes integral. It is also possible to make sense of the following identity for f ∈ C(σ(x)):

f(x) =

∫
σ(x)

f(t) dEt . (1.18)

In particular, if x ∈ (M, τ), then τ(Et) is just a Borel measure, and then we recover the

spectral measure:

τ(f(x)) =

∫
σ(x)

f(t) dτ(Et) . (1.19)

1.3 Non-commutative probability spaces and random matrices

In this section, we define non-commutative probability spaces, the law of elements in a

non-commutative probability space, and what it means to converge in law. We will introduce

and discuss random matrices in each of these contexts. This material is summarized from

[AGZ10], [Tao12], and [Shl].

First, we define a non-commutative probability space:

Definition 1.18. A non-commutative probability space is a pair (A, ϕ), where A is a

12



unital *-algebra and ϕ : A → C is a linear functional where ϕ(1) = 1. The elements of the

non-commutative probability space (A, ϕ) are called non-commutative random variables.

This definition is very general: it does not impose any positivity/continuity conditions on

ϕ or any closure conditions on A (i.e. that A is norm closed or s.o. closed). It does not even

impose any boundedness conditions on A.

As in the case of tracial von Neumann algebras, we will highlight some of the aspects of

non-commutative probability spaces that are a generalization of concepts for the commutative

probability space L∞(X,µ).

Consider the following examples of non-commutative probability spaces:

• Let (X,µ) be a probability space. Then, taking A = L∞(X,µ) and ϕ to be integration

with respect to µ makes (L∞(X,µ), dµ) a non-commutative probability space. Then,

the non-commutative probability space (L∞(X,µ), dµ) consists of bounded random

variables on the probability space (X,µ). Recall in this situation that (L∞(X,µ), dµ)

is also a tracial von Neumann algebra acting on the Hilbert space L2(X,µ).

• Instead of taking A = L∞(X,µ) in the previous example, we can take A = L∞−(X,µ) =⋂
p≥1 L

p(X,µ). A is an algebra and taking ϕ to be integration with respect to µ

makes (A, ϕ) a non-commutative probability space. This space consists of more general

unbounded random variables on (X,µ) where integration still makes sense. In particular,

if we consider A to act on L2(X,µ), these are potentially unbounded operators and

hence do not form a von Neumann algebra. In our situation, all of our operators are

bounded, so we will not deal with these issues.

• In general, for a tracial von Neumann algebra (M, τ), A = M and ϕ = τ is a non-

commutative probability space.

• Analogous to the example of bounded random variables, we can consider random

matrices : Let (X,µ) be a probability space. Then, consider n×n matrices with entries

in L∞(X,µ), Mn(L
∞(X,µ)). This is a von Neumann algebra acting on H = L2(X,µ)⊕n
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and it is tracial with τ = Eµ[
1
n
tr]. Hence, n× n random matrices on (X,µ) is a non-

commutative probability space with ϕ = τ .

• Note that instead of taking bounded matrices, we can consider matrices with entries

in L∞−(X,µ). ϕ = Eµ[
1
n
tr] is still well-defined and makes A =Mn(L

∞−(X,µ)) a non-

commutative probability space. Again, for our thesis, we will only deal with bounded

random matrices.

Next, we consider the law of a family of non-commutative random variables. Let J be

a subset of N and let C⟨Xi, Xi : i ∈ J⟩ denote the set of polynomials in non-commutative

variables Xi, Xi, i ∈ J .

Definition 1.19. Let (A, ϕ) be a non-commutative probability space. Let {ai}i∈J ⊂ A. The

law of {ai}i∈J is the map µ{ai}i∈J
: C⟨Xi, Xi : i ∈ J⟩ → C given by:

µ{ai}i∈J
(P ) = ϕ(P ({ai, a∗i }i∈J)) . (1.20)

Consider the following examples of non-commutative laws:

• Consider a probability space (X,µ) and the non-commutative probability space

(L∞(X,µ), dµ). Let f ∈ L∞(X,µ). Then, for a polynomial P = P (z, z),

µf (P ) =

∫
X

P (f, f ∗) dµ =

∫
f(X)

P (z, z) df∗(µ) , (1.21)

where f∗(µ) is the pushforward measure of µ under f . As f ∈ L∞(X,µ), then f∗(µ)

is a compactly supported probability measure. From the Stone-Weierstrass theorem,

polynomials in z and z are dense in C(f(X)), and hence µf(P ) uniquely determines

the measure df∗(µ). Hence, the non-commutative law of f corresponds to the classical

law of f .

• Consider (Mn(C), 1
n
tr) and Xn ∈Mn(C) where Xn is Hermitian. Let λ1, . . . , λn be the

eigenvalues of Xn. Then, computing the (normalized) traces in an orthogonal eigenbasis
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of Xn, it is clear that

µXn(x
k) = τ(Xk

n) =
1

n

n∑
i=1

λki . (1.22)

Letting

ν =
1

n

n∑
i=1

δλi
, (1.23)

then in general, for a polynomial P (t),

µXn(P ) =
1

n
tr(P (Xn)) =

1

n

n∑
i=1

P (λi) =

∫
R
P (t) dν . (1.24)

The law of Xn corresponds with ν, where ν is the spectral measure ofXn in (Mn(C), 1
n
tr).

For a normal Xn ∈Mn(C), the exact same formula for ν uniquely satisfies the following

equation for polynomials in z, z:

µXn(P ) ==
1

n
tr(P (Xn, X

∗
n)) =

1

n

n∑
i=1

P (λi, λi) =

∫
C
P (z, z) dν , (1.25)

so again the law of Xn is ν, the spectral measure of Xn in (Mn(C), 1
n
tr).

• For a normal random matrix Xn ∈Mn(L
∞(X,µ)), we can consider the random eigen-

value distribution ν : (X,µ) → P(C) given by:

ν =
n∑

i=1

δλi
. (1.26)

Since Xn is uniformly bounded, then ν is almost surely supported on a compact set,

K. Then, the map taking f(z, z) ∈ C(K) to Eµ

[∫
K
f(z, z) dν

]
is a bounded linear

functional, and hence is represented by a compactly supported measure ν. By integrating
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the formula for deterministic matrices with respect to µ,

µXn(P ) = τ(P (Xn, X
∗
n))

= Eµ

[
1

n
tr(P (Xn, X

∗
n))

]
= Eµ

[∫
C
P (z, z) dν

]
=

∫
C
P (z, z) dν .

(1.27)

Thus, the law of Xn is ν, the spectral measure of the random matrix Xn with respect

to Eµ[
1
n
tr].

Motivated by the examples, we define the empirical spectral distribution of a random

matrix:

Definition 1.20. Let Xn ∈ Mn(L
∞−(X,µ)) be a random matrix. Let λ1, . . . , λn be the

random eigenvalues of Xn (repeated with algebraic multiplicity). Then, the empirical

spectral distribution (ESD) of Xn is the random probability measure µXn : (X,µ) → P(C)

given by:

µXn =
1

n

n∑
i=1

δλi
. (1.28)

When Xn ∈Mn(L
∞(X,µ)), then µXn is almost surely supported on some compact K ⊂ C.

Recall if Xn is normal that µXn is the spectral measure of Xn with respect to τ = Eµ[
1
n
tr].

For an arbitrary Xn ∈ Mn(L
∞−(X,µ)), we still always have the formulas for analytic

polynomials P (z):

1

n
tr(P (Xn)) =

1

n

n∑
i=1

P (λi) =

∫
C
P (z) dµXn . (1.29)

In this special case, the moments still determine the empirical spectral distribution, since

the coefficients of the characteristic polynomial are determined by the power sums of the

eigenvalues (from Newton’s identities). This formula also holds when P (z) is replaced by a

rational function with poles off of σ(x). Applying Runge’s approximation theorem, we see

that the equation also holds for any f ∈ A(σ(x)), where f(x) is defined using the analytic

16



functional calculus.

Now, we define what it means for a sequence of family of non-commutative random

variables to converge in law:

Definition 1.21. Let (A, ϕ) and (An, ϕn), n ∈ N be non-commutative probability spaces. Let

{ani }i∈J be a sequence of elements of An. Then, {ani }i∈J converges in law to {ai}i∈J if and

only if for all P ∈ C⟨Xi, X
∗
i : i ∈ J⟩,

lim
n→∞

µ{ani }i∈J
(P ) = µ{ai}i∈J

(P ) . (1.30)

Consider the following examples of the convergence of non-commutative laws:

• Consider the non-commutative probability space (L∞(X,µ), dµ), and f, fn ∈ L∞(X, dµ).

Then, µfn converges to µf if for all polynomials P = P (z, z),

∫
f(Xn)

P (z, z) d(fn)∗(µ) = µfn(P ) → µf (P ) =

∫
f(X)

P (z, z) df∗(µ) . (1.31)

if f(Xn), f(X) ⊂ K for some compact K ⊂ C, then this is equivalent to the con-

vergence of (fn)∗(µ) to f∗(µ) in the vague topology. Hence, the convergence of the

non-commutative law of fn to f is exactly the convergence of the classical law of fn to

f .

• Consider normal random matrices Xn ∈ Mn(L
∞(X,µ)) and a normal operator x ∈

(M, τ). Then, µXn converges to µx if for all polynomials P = P (z, z)

∫
C
P (z, z) dµXn = µXn(P ) → µx(P ) =

∫
C
P (z, z) dµx . (1.32)

If Xn, x are uniformly bounded, then µXn , µx are supported on some compact set K ⊂ C

and this is equivalent to the convergence of measures in the vague topology , i.e.∫
C f dµXn →

∫
C f dµx for all f ∈ Cc(C).
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1.4 Convergence in law: Hermitian random matrices

Recall that we are interested in the convergence of the laws (i.e. empirical spectral distributions

µXn) of random matrices Xn. But, we would like to not only discuss convergence in the

expectation of these laws (i.e. the µXn), but also in probability and almost surely. In this

section, we define and study these concepts for Hermitian Xn. This material is summarized

from [AGZ10] and [Tao12].

Definition 1.22. Let Xn ∈Mn(L
∞(X,µ)), where (X,µ) is a probability space. Let µXn be

the empirical spectral distribution of Xn. Let µ be a complex probability measure. Then,

• Xn converges to µ in expectation if µXn converges to µ in the vague topology.

• Xn converges to µ in probability if for every f ∈ Cc(C),
∫
C f dµXn converges to∫

C f dµ in probability.

• Xn converges to µ almost surely if for every f ∈ Cc(C),
∫
C f dµXn converges to∫

C f dµ almost surely.

When the Xn are Hermitian random matrices and µ is a real probability measure, then

we consider the vague convergence on Cc(R) instead of Cc(C).

As in the case of classical random variables,

almost sure convergence =⇒ convergence in probability

convergence in probability =⇒ convergence in expectation .
(1.33)

In practice, for many random matrix models, these three convergences of the ESDs coincide,

due to concentration of measure phenomena.

We describe 2 general methods for proving the convergence of the empirical spectral distri-

butions of Hermitian random matrices, one of which we will adapt to prove the convergence

of the law of a non-Hermitian random matrix model.
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1.4.1 Moment method

Recall that for compactly supported real measures µ, the moments mk =
∫
R t

k dµ determine

the measure. Further, if µn, µ are real measures that are all supported on a compact set

K ⊂ R, then the convergence of the moments of µn to µ implies the convergence of µn to µ in

the vague topology. Both of these facts follow from the Weierstrass approximation theorem.

This motivates the following Proposition generalizing this to the convergence of random

measures. In particular, this can be applied to empirical spectral distributions of random

matrices. Here we consider the simplest case, where measures are all supported on a compact

set. In general, for potentially unbounded random matrix models, one needs some quantitative

estimates on the tightness of the measures to turn the convergence of the moments into the

vague convergence on R.

Proposition 1.23. Let µn be a sequence of random probability measures on R and let µ

be a deterministic probability measure. Assume that µn, µ are almost surely supported on a

compact set K ⊂ R. For every k ∈ N, let

mn,k =

∫
R
tk dµn(t)

mk =

∫
R
tk dµ(t) .

(1.34)

Then,

1. If E[mn,k] → mk as n→ ∞ for every k ∈ N, then µn → µ in expectation.

2. If mn,k → mk in probability as n→ ∞ for every k ∈ N, then µn → µ in probability.

3. If mn,k → mk almost surely as n→ ∞ for every k ∈ N, then µn → µ almost surely.

Proof. 1. For the first point, note that

E[mn,k] =

∫
R
tk dµn(t) . (1.35)
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Since the µn are almost surely supported on K, then so are µn. Then, the result follows

from the convergence of moments of µn to µ.

2. By approximating any f ∈ C(K) uniformly by polynomials, it suffices to prove the

convergence in probability for polynomials. Any polynomial P (t) is a linear combination

of the tk, and since the mn,k converge to mk in probability, then

∫
R
P (t) dµn(t) →

∫
R
P (t) dµ(t) (1.36)

in probability also.

3. Let f ∈ C(K) and consider polynomials Pm(t) such that ∥f − Pm∥L∞(K) < 1/m. Then,

since Pm are linear combination of the tk, then

∫
R
Pm(t) dµn(t) →

∫
R
Pm(t) dµ(t) (1.37)

almost surely. On the measure 1 set where these integrals converge for all m, then by

approximating f with Pm, we see that

∫
R
f(t) dµn(t) →

∫
R
f(t) dµ(t) . (1.38)

We observe that the second condition in Proposition 1.23 is equivalent to the variances of

mn,k converging to 0 as n→ ∞, for any k ∈ N.

1.4.2 Stieltjes transform

For the second method, we consider the Stieltjes transform (also called the Cauchy transform

) of a real probability measure µ:

Definition 1.24. Let µ be a probability measure on R. Then, the Stieltjes transform
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(also called Cauchy transform) of µ is the function Gµ : C \ supp(µ) → C given by:

Gµ(z) =

∫
R

1

z − t
dµ(t) . (1.39)

We list some of the well-known facts about Gµ in the following Proposition:

Proposition 1.25. Let Gµ be the Stieltjes transform of µ. Then,

• Gµ is analytic on C \ supp(µ).

• Let H±(C) be the upper/lower half-planes of C. Then, Gµ : H± → H∓. In particular,

Gµ(z) ∈ R if and only if z ∈ R \ supp(µ).

• Gµ(z) = Gµ(z) for z ∈ C \ supp(µ).

• |Gµ(z)| ≤ 1
|Im(z)| .

• Gµ is analytic on C \ supp(µ).

• µ is compactly supported, Gµ(z) has the following Laurent series expansion for |z| >

supλ∈supp(µ) |λ|:

Gµ(z) =
∞∑
n=0

(∫
R
tn dµ(t)

)
z−n−1 . (1.40)

Thus, for compact measures, the Stieltjes transform of a measure µ contains the same

information as the moments of µ.

We highlight one special fact about the Stieltjes transform. For z = a+ ib, note that

Im
1

z − t
= − b

(t− a)2 + b2
. (1.41)

Recall that the Poisson kernel on the upper half-plane is given by:

Pb(a) =
1

π

b

a2 + b2
, b > 0 . (1.42)
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Combining these two facts shows that

− 1

π
ImGµ(a+ ib) = (µ ∗ Pb)(a) . (1.43)

Recall that Pb are approximations to the identity as b→ 0+, so then

lim
b→0+

− 1

π
ImGµ(·+ ib) = µ (1.44)

in the vague topology on R.

By exploiting the conjugate symmetry of Gµ, we can also write this in terms of the

discontinuity of Gµ across R:

lim
b→0+

−Gµ(·+ ib)−Gµ(· − ib)

2πi
= µ (1.45)

in the vague topology on R.

Additionally, there is an explicit formula for intervals ([MS17], Theorem 6):

Proposition 1.26. For a, b ∈ R and a < b,

lim
y→0+

∫ b

a

− 1

π
ImGµ(x+ iy) dx = µ((a, b)) +

1

2
µ({a}) + 1

2
µ({b}) . (1.46)

The analogous result to the moment method is the following result about the Stieltjes

transforms ([Tao12], Exercise 2.4.10):

Proposition 1.27. Let µn be a sequence of random probability measures on R, and let µ be

a deterministic probability measure. Then,

1. µn converges in expectation to µ if and only if EGµn(z) converges to Gµ(z) for every z

in the upper half-plane.

2. µn converges in probability to µ if and only if Gµn(z) converges in probability to Gµ(z)

for every z in the upper half-plane.
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3. µn converges almost surely to µ if and only if Gµn(z) converges almost surely to Gµ(z)

for every z in the upper half-plane.

Sketch of Proof. Make the randomness of the µn explicit by letting µn : (Ω,P) → P(R).

For the “only if” directions, note that (z − ·)−1 is not a compactly supported function

on R but is bounded uniformly by |Imz|−1. So, we need to use the appropriate quantitative

statements of tightness of the µn in each case. We state the appropriate tightness conditions

in each case:

1. For every ϵ > 0, there exists a compact set Kϵ such that for every n, EP(µn(R\Kϵ)) < ϵ.

2. For every ϵ, δ > 0 there exists a compact set Kϵ so that for all n sufficiently large,

P(µn(Kϵ) < 1− ϵ) < δ.

3. For every m, there exists a Km such that on a measure 1 set,

lim infn→∞ µn(Km) > 1− 1/m.

For the “if” directions, recall that for f ∈ Cc(R), f ∗ Pb → f uniformly on R as b→ 0+.

Then, ∫
R
f dµ ≈

∫
R
f ∗ Pb dµ = − 1

π

∫
R
Gµ(a+ ib)f(a)da , (1.47)

and similarly for µn. Then, we apply Fubini’s theorem to change the conditions on the

pointwise convergence in z to pointwise convergence in ω. Finally, we use the bound

|Gµ(a+ ib)| ≤ b−1 to argue the convergence of the integrals

1

π

∫
R
Gµn(a+ ib)f(a)da→ 1

π

∫
R
Gµ(a+ ib)f(a)da . (1.48)

We will adapt the Stieltjes transform method to complex measures in Proposition 6.3 by

considering a different function.
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1.5 Free probability

In this section, we discuss the definition of free independence and its applications to random

matrices. This material is summarized from [AGZ10], [MS17], and [Shl].

Recall that in the classical probability space (X,µ), two random variables x1 and x2

are independent if for all integrable f1, f2 : X → C, E(f1(x1)f2(x2)) = E(f(x1))E(f(x2)).

Equivalently, for all f1, f2 : X → C such that E(f1(x1)) = E(f2(x2)) = 0, E(f1(x1)f2(x2)) = 0.

In a tracial von Neumann algebra (M, τ), the expectation becomes τ and functions f1(x1),

f2(x2) just become elements of the algebra generated by x1 and x2. This motivates the

following definition of free independence of subalgebras in a non-commutative probability

space:

Definition 1.28. Let (A, ϕ) be a non-commutative probability space, and let {Ai}i∈I be a

family of unital subalgebras of A. {Ai}i∈I are freely independent if for any aj ∈ Ak(j)

with k(j) ̸= k(j + 1), j = 1, . . . , n = 1 and ϕ(ai) = 0, then

ϕ(a1 . . . , an) = 0 . (1.49)

Let r, (mk)1≤k≤r be positive integers. The sets {X1,p, . . . , Xmp,p}1≤p≤r of non-commutative

random variables are free if the algebras they generate are free.

If {Ai} are freely independent and generate the algebra A, then ϕ
∣∣
A
is determined by

ϕ
∣∣
Ai
.

In particular, we are interested in the case that (A, ϕ) is a tracial von Neumann algebra

(M, τ). In this situation, this condition can be extended to von Neumann subalgebras Ai (i.e.

s.o. closures of the Ai) using the normality of τ .

In classical probability theory, one can create independent random variables by forming

the product of probability spaces. There is a similar construction in non-commutative

probability, where we may form the free product of (Ai, ϕi), i = 1, . . . , k, (A, ϕ). (A, ϕ)

contains embedded copies of (Ai, ϕi) that are free. In particular, for tracial von Neumann
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algebras (Mi, τi), we may form a tracial von Neumann algebra (M, τ) that has embedded

copies of (Mi, τi).

1.5.1 Free probability transforms

Before considering some consequences of free independence, we define some transforms of

real measures similar to the Stieltjes transform. For a Hermitian x ∈ (M, τ), we will abuse

notation by using the subscript x to denote the integral transform with respect to the spectral

measure µx: for example, Gx means the Stieltjes transform of the spectral measure µx.

Consider the Stieltjes transform Gµ(z) when µ is a compactly supported probability

measure on R. It is clear that

lim
|z|→∞

zGµ(z) = 1 . (1.50)

Since Gµ is analytic outside of a large disk centered at 0, then Fµ(z) = Gµ(1/z) is analytic on

a punctured disk centered at 0 and can be analytically continued to have Fµ(0) = 0. Then,

Fµ has a simple zero at 0, and hence Fµ is invertible in a neighborhood of 0. This implies

that Gµ is invertible in a neighborhood of infinity.

Hence, we may consider the R-transform of a measure µ:

Definition 1.29. Let µ be a compactly supported probability measure on R. The R-

transform of µ is the function

Rµ(w) = G⟨−1⟩
µ (w)− 1

w
, (1.51)

which is defined in a neighborhood of 0 in C.

Computation using Fµ shows that Rµ is analytic in a neighborhood of 0, as the 1/w is

exactly the pole of G
⟨−1⟩
µ at w = 0.

For non-compactly supported measures µ, then G
⟨−1⟩
µ can still be defined on wedge-shaped

domains containing 0 ([MS17], Theorem 33), but we will not need this fact.

Similar to the Stieltjes transform, we can define ψµ:
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Definition 1.30. Let µ be a probability measure on [0,∞). Let supp(µ)−1 = {1/x : x ∈

supp(µ)}. Define ψµ : C \ supp(µ)−1 → C by:

ψµ(z) =

∫
R

tz

1− tz
dµ(t) . (1.52)

We list some well-known properties of ψµ in the following Proposition:

Proposition 1.31. Let ψµ be as above. Then,

• ψµ(0) = 0.

• ψµ is analytic on C \ supp(µ)−1.

• ψµ(z) = ψµ(z) for all z ∈ C \ supp(µ)−1.

• Let H±(C) be the upper/lower half-planes of C. If µ({0}) < 1, then ψµ : H±(C) →

H±(C). In particular, ψµ(z) ∈ R if and only if z ∈ R \ supp(µ)−1.

• If µ is compactly supported, then Gµ(z) has the following Taylor series expansion for

|z| < infλ∈supp(µ)−1 |λ|:

ψµ(z) =
∞∑
n=1

(∫
R
tn dµ(t)

)
zn . (1.53)

We highlight the following equation, valid for z ∈ C \ supp(µ):

Gµ(z) =
1

z

(
ψµ

(
1

z

)
+ 1

)
. (1.54)

To consider the inverse of ψµ at z = 0, note that

ψ′(0) =

∫
R
t dµ(t) . (1.55)

As long as µ({0}) < 1, then ψµ is invertible in a neighborhood of 0. In this situation, define

the following functions:

26



Definition 1.32. Let µ be a compactly supported probability measure on [0,∞) such that

µ({0}) < 1. Then, ψµ is invertible in a neighborhood of 0 in C. Define

χµ(w) = ψ⟨−1⟩
µ (w)

Sµ(w) = χµ(w)
w + 1

w
.

(1.56)

Sµ is called the S-transform of µ.

In particular, since χµ(0) = 0 then Sµ is well-defined in a neighborhood of 0.

1.5.2 Free additive and multiplicative convolution

In this section, we describe the free additive and multiplicative convolution and the free

addition/multiplication laws.

First, we define the additive/multiplicative convolution for general non-commutative

probability spaces:

Definition 1.33. Let (A, ϕ) be a non-commutative probability space and a, b ∈ A with laws

µa, µb, respectively. If a and b are freely independent, then the free additive convolution

of a and b is the law of a+ b, denoted µa ⊞ µb. The free multiplicative convolution of a

and b is the law of ab, denoted µa ⊠ µb.

We are interested in the situation where (A, ϕ) = (M, τ) and when x, y ∈ (M, τ) are

Hermitian. In this case the laws of x and y are the spectral measures µx, µy ∈ P(R). Then,

µx ⊞ µy is the spectral measure of x+ y when x and y are free.

Note that for x and y Hermitian, xy is not generally Hermitian. For the free mul-

tiplicative convolution consider x, y ∈ (M, τ) that are both positive operators (so then

µx, µy ∈ P([0,∞))). Then, the law of xy can be identified with the law of x1/2yx1/2, which is

Hermitian. Hence µx ⊠ µy is the spectral measure of x1/2yx1/2, which is also a measure on

[0,∞).

Then, the free additive (resp. multiplicative) convolution satisfies the following addition
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(resp. multiplication) laws:

Theorem 1.34. Let x, y ∈ (M, τ) be Hermitian and freely independent. Where the functions

are defined,

Rx⊞y(z) = Rµx(z) +Rµy(z) . (1.57)

If x, y are positive, then where the functions are defined,

Sx⊠y(z) = Sµx(z)Sµy(z) . (1.58)

1.5.3 Asymptotic freeness

The connection between random matrices and free probability is that the empirical spectral

distributions of several standard random matrix models become asymptotically free. First,

we define what it means for non-commutative random variables to be asymptotically free:

Definition 1.35. A sequence of non-commutative random variables ({ani }i∈J)n∈N in non-

commutative probability spaces (An, ϕn) is asymptotically free if it converges in law to some

non-commutative random variables {ai}i∈J in a non-commutative probability space (A, ϕ),

where {ai}i∈J are free. A collection of subalgebras {An
i }i∈J ⊂ An is asymptotically free if for

every ani ∈ An
i , ({ani }i∈J)n∈N is asymptotically free.

Specifically, we will consider (An, ϕn) to be (Mn(L
∞(X,µ)),Eµ[

1
n
tr]). In analogy to

convergence in probability and convergence almost surely, we would like to define what it

means to be asymptotically free in probability and almost surely asymptotically free:

Definition 1.36. Let ({Xn
i }i∈J)n∈N be a sequence of random matrices in

(Mn(L
∞(X,µ)),Eµ[

1
n
tr]). Then, ({Xn

i }i∈J)n∈N is almost surely asymptotically free (resp.

asymptotically free in probability) if there exists freely independent non-commutative

random variables {ai}i∈J in some non-commutative probability space (A, ϕ), where for every

non-commutative polynomial P ∈ C⟨Xi, X
∗
i : i ∈ J⟩,

1

n
trP ({Xn

i , (X
n
i )

∗}i∈J) → ϕ(P ({ai, a∗i }i∈J)) (1.59)

28



almost surely (resp. in probability).

A collection of subalgebras {An
i }i∈J ⊂Mn(L

∞(X,µ)) is almost surely asymptotically free

(resp. asymptotically free in probability) if for every Xn
i ∈ An

i , ({ani }i∈J)n∈N is almost surely

asymptotically free (resp. asymptotically free in probability).

One example of asymptotic freeness of a certain random matrix model that will be relevant

later on is the following ([AGZ10], Theorem 5.4.10):

Theorem 1.37. Let {Dn
i }1≤i≤p be deterministic Hermitian matrices in

(Mn(C), 1
n
tr) with uniformly bounded eigenvalues whose law converges to the law of {Di}1≤i≤p

in a non-commutative probability space (A, ϕ). Let {Un
i }1≤i≤p be independent random unitary

matrices, distributed by the Haar measure, independent from {Dn
i }1≤i≤p. Then, the ∗-

subalgebras U n
i generated by the matrices Un

i and the subalgebra Dn generated by {Dn
i }1≤i≤p

are asymptotically free (resp. almost surely asymptotically free). The limit law of {Un
i , (U

n
i )

∗}

is {U,U∗}, where τ((UU∗ − 1)2) = 0, τ(Un) = τ((U∗)n) = δ0(n).
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CHAPTER 2

Outline of results

In this chapter, we describe the central problem of the thesis and outline the remaining

sections.

We consider operators of the form X = p+ iq, where p, q ∈ (M, τ) are Hermitian, freely

independent, and their spectral measures are atomic, i.e.

µp = a1δα1 + · · ·+ akδαk

µq = b1δβ1 + · · ·+ blδβl
,

(2.1)

where αi, βj ∈ R, ai, bj ≥ 0, and a1 + · · ·+ ak = b1 + · · · bl = 1.

When the αi are distinct and ai > 0, we say that p has k atoms. Similarly, when the βj

are distinct and bi > 0, we say that q has l atoms. When p and q are not constants, then

X = p+ iq is not normal. We deduce this in Corollary 4.16.

There is a corresponding random matrix model Xn. To define Xn, first define the following:

• Let Hn denote the Haar measure on the unitary group U(n) ⊂Mn(C).

• Let {Un, Vn} be a sequence of independent, Hn-distributed matrices.

• Let P ′
n, Q

′
n ∈Mn(C) be deterministic, Hermitian, and

µP ′
n
= (a1)nδ(α1)n + · · ·+ (ak)nδ(αk)n

µQ′
n
= (b1)nδ(β1)n + · · ·+ (bl)nδ(βl)n ,

(2.2)

where (αi)n, (βj)n ∈ R, (ai)n, (bj)n ≥ 0, and (a1)n + · · ·+ (ak)n = (b1)n + · · · (bl)n = 1.
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Let

Pn = UnP
′
nU

∗
n

Qn = VnQ
′
nV

∗
n .

(2.3)

Thus, Pn, Qn ∈ Mn(C) are independently Haar-rotated Hermitian matrices with the same

distributions as P ′
n, Q

′
n. Note that µPn and µQn are deterministic probability measures on R.

We define our random matrix model Xn ∈Mn(C) as:

Xn = Pn + iQn . (2.4)

We summarize the definition of Xn by the following:

Definition 2.1. The random matrix model Xn = Pn + iQn, where Pn, Qn ∈ Mn(C) are

independently Haar-rotated Hermitian matrices with spectral measures

µPn = (a1)nδ(α1)n + · · ·+ (ak)nδ(αk)n

µQn = (b1)nδ(β1)n + · · ·+ (bl)nδ(βl)n ,
(2.5)

where (αi)n, (βj)n ∈ R, (ai)n, (bj)n ≥ 0, and (a1)n + · · ·+ (ak)n = (b1)n + · · · (bl)n = 1.

When Pn, Qn are not constant, then Xn = Pn + iQn is normal with probability 0. This is

proven in Proposition 5.2

We give examples of some Mathematica plots of the empirical spectral distributions of

the Xn for different µp, µq and some deterministic Un, Vn:
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Figure 2.1: ESD of Xn = Pn + iQn

µPn = (2/5)δ0 + (3/5)δ1
µQn = (1/5)δ0 + (4/5)δ1

n = 1000

Figure 2.2: ESD of Xn = Pn + iQn

µPn = (1/4)δ−1 + (1/5)δ0 + (11/20)δ1
µQn = (1/2)δ0 + (1/2)δ1

n = 10000
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Figure 2.3: ESD of Xn = Pn + iQn

µPn = (1/4)δ−1 + (1/5)δ0 + (11/20)δ1
µQn = (1/2)δ−1 + (1/4)δ0 + (1/4)δ1

n = 10000

We are interested in understanding the Brown measure of the X = p + iq and its

relationship with the empirical spectral distributions of the Xn. We will formally define

the Brown measure in the next chapter. For this outline, it suffices to know that for any

X ∈ (M, τ), the Brown measure of X is a complex probability measure that is supported on

σ(X). The Brown measure of X agrees with the spectral measure of X when X is normal

and with the empirical spectral distribution of X if X = Xn is a random matrix.

The Brown measure was first introduced in [Bro86]. The first interesting explicit compu-

tations for the Brown measure of non-trivial operators were provided in [HL00]. This class of

operators is called “R-diagonal operators” and includes Voiculescu’s circular operator. The

circular law in [TV10] and the single ring theorem in [GKZ11] showed that the limit of the

ESDs of these random matrix models is the Brown measure of the natural limit operator

from free probability.

In general, the limit of the ESDs of random matrices is not the Brown measure of the

limit operator (see (Chapter 11, Exercise 5 in [MS17]) for a simple example where this does
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not hold). But, in [Śn02] it was shown that any random matrix model Xn that converges in

law to x can be perturbed in such a way where the new random matrix model still converges

in law to x and the new ESDs converge to the Brown measure of X. Thus, we expect that in

most cases, the Brown measure is the limit of the ESDs.

The explicit computation of the Brown measure of different families of operators arising

from free probability is an active area of research. These computations are interesting in

their own right, as they are difficult and the resulting measures are often complicated but

have interesting properties (ex. the Brown measure of the R-diagonal operators from [HL00]

are supported on a single ring and are rotationally symmetric). More importantly, they

provide the candidate limits for the ESDs of these random matrix models, although there have

been relatively few results on the convergence of the ESDs to these Brown measures besides

deductions from the single ring theorem and the circular law (for a recent generalization

of the single ring theorem, see [HZ23b]). Finally, the motivation for the computation of

the Brown measure has led to the development of new techniques in operator-valued free

probability (see [BSS18], [BMS17] ) and an application of stochastic PDEs to free probability

(see [Hal21]).

The operators we consider are distinctly different from other examples where the Brown

measure has been explicitly computed, as they are made from purely atomic operators. Other

operators considered in the past have been created from other operators (from products or

non-Hermitian sums) where at least one has Brown measure that is atomless (ex. circular

operator, semicircular operator, Haar unitary).

For our operators X = p+ iq, when either p or q is constant (i.e. real) then X is normal

so that the Brown measure of X is just the spectral measure of X. When p and q have 2

atoms, we can explicitly compute the Brown measure of X. In this case, the Brown measure

of X is supported on hyperbolas. These seem to be one of few explicit computations of the

Brown measure that have 1-dimensional support (besides Hermitian/normal operators and

Haar unitaries). We also determine some interesting properties, such as the exact support of

the Brown measure on the hyperbolas and the weights/positions of the atoms.
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Consider our random matrix model Xn when Pn converges in law to p and Qn converges

in law to q. Then, p and q have finitely many atoms. Making p and q freely independent, then

X = p+ iq is one of the operators we consider. From the asymptotic freeness of independent

Haar unitaries from Hermitian matrices (Theorem 1.37), the law of Xn converges to the law

of X. From the previous discussion, we expect that the empirical spectral distribution of

Xn converges to the Brown measure of X. We can prove this when Pn and Qn each have at

most 2 atoms, using the geometry of the support of the Brown measures. This provides one

of the relatively few non-trivial examples where the convergence of the ESDs to the Brown

measure can be proven.

In the general case of many atoms, we use a technique from the physics literature using a

quaternionic analogue of the Stieltjes transform. By a simple change of coordinates, we can

relate this Quaternionic Green’s function from the physics literature to the operator-valued

Cauchy transform in the mathematics literature, which has been used in analyzing the Brown

measure (see [BSS18], [BMS17]).

The benefit of using the Quaternionic Green’s function is the algebraic structure of

the domain and range being quaternions, which allows for explicit computations with the

representation of quaternions as a subalgebra of complex 2× 2 matrices. In particular, for

X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent, there are formulas for

the Quaternionic Green’s function in terms of the (complex) Stieltjes transforms of p and q.

In the physics literature, the use of the Quaternionic Green’s function is oftentimes not

mathematically rigorous but is useful as a guiding heuristic. In this area, formal arguments

from the physics literature often are eventually made mathematically rigorous (ex. the limit

of the Ginibre ensemble introduced in [Gin65] was made rigorous in [Meh67] and the single

ring theorem introduced in [FZ97a] was made rigorous in [GKZ11]). In our situation, there

are heuristics for how to determine the boundary of the Brown measure and the support of

the Brown measure for X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent.

In [JN04], the authors showed that the heuristic produces the correct results for several

examples, including the circular operator.
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We will verify these heuristics in the case when p and q have 2 atoms. In the general case

when p and q have finitely many atoms, we will show that the heuristic about the boundary

of the Brown measure implies that the boundary of the Brown measure is an algebraic curve

and provide an algorithm to compute a non-zero polynomial that defines the algebraic curve.

The implications of these heuristics are not surprising: in other examples where the Brown

measure has been computed, the support of the Brown measure is on a set defined by an

inequality involving the trace of some relevant quantity (see [HL00], [Zho22], [BYZ24] for

some examples). In our situation, the Stieltjes transforms of p and q are rational functions, so

it is not surprising that the support and the boundary of the Brown measure are determined

by algebraic functions. We conclude with a discussion of the atoms of the Brown measure of

X and their relation to the Quaternionic Green’s function using the analysis from [BSS18].

Several classes of operators that have been previously considered in the literature are of

the form X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent (for example,

[BL01], [Ho22], [HZ23a]). We would be interested in seeing if the explicit computations using

the Quaternionic Green’s function can recover the Brown measure in these situations, or at

least the boundary/support of the Brown measure. In [HH22], the authors verified that these

heuristics recovered the boundary and support of the Brown measure for the operators they

considered. In particular, we have discussed the heuristic about the support of the Brown

measure with another author, and it is an open problem to determine if this heuristic always

holds.

We briefly mention that there is another method that has been recently developed for

analyzing the Brown measure of non-Hermitian operators X ∈ (M, τ) that come from free

probability (see [Hal21] for an introduction to the technique). It involves introducing a time

parameter in the operator X = Xt and letting Xt be a free Brownian motion with an initial

condition. Then, fϵ from (3.38) now also depends on t. If one can derive a stochastic partial

differential equation involving fϵ,t(z) and understand the solutions of this equation as ϵ→ 0+,

then by taking Laplacians, one can understand the Brown measure of Xt. We were unable to

apply this method, as we could not find a stochastic PDE for a suitable Xt for our situation.
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We give an outline of the remaining chapters of the thesis:

• Chapter 3: We define the Brown measure of X and prove some basic properties.

• Chapter 4: We compute the Brown measure of X = p+ iq when p and q have 2 atoms.

• Chapter 5: We provide some facts about the random matrices Xn and their empirical

spectral distributions.

• Chapter 6: We show that when p and q have 2 atoms, the empirical spectral distribution

of Xn converges to the Brown measure of X.

• Chapter 7: We describe the quaternionic method of computing the Brown measure and

provide the heuristics in determining the boundary and support of the Brown measure

for X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent.

• Chapter 8: We compute the relevant functions for the quaternionic method forX = p+iq

when p and q have 2 atoms.

• Chapter 9: We consider the heuristic in determining the boundary of the Brown measure

of X = p + iq, where p, q ∈ (M, τ) are Hermitian and freely independent. First, we

verify the heuristic when p and q have 2 atoms. Then, we show that the heuristic

implies the boundary of the Brown measure lies on algebraic curves and explicitly

provide an algorithm to compute a non-zero polynomial defining the curve.

• Chapter 10: We consider the heuristic in determining the support of the Brown measure

of X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent. We verify the

heuristic holds when p and q have 2 atoms with equal weights.

• Chapter 11: We discuss the atoms of the Brown measure in the context of the quater-

nionic Green’s function and earlier results.
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CHAPTER 3

The Brown measure

In this chapter, we define the Brown measure and review some properties about it. Much of

this material is taken from [MS17], [Tao12], [HS07].

First, we need to define a generalization of the determinant for tracial von Neumann

algebras.

3.1 The Fuglede-Kadison determinant

In [FK52], Fuglede and Kadison defined a positive, normalized determinant for elements

in a general tracial von Neumann algebra (M, τ). It is referred to as the Fuglede-Kadison

determinant. We motivate this definition by first considering (deterministic) matrices Xn ∈

Mn(C).

We wish to define the determinant of a matrix Xn in terms of the trace, as the analogue of

this is available in a tracial von Neumann algebra. As the trace is the sum of the eigenvalues

while the determinant is the product of the eigenvalues, it is natural to consider the logarithm

and exponential of a matrix.

Recall for a positive invertible matrix Xn ∈Mn(C), logXn is well-defined. When Xn is

diagonal with entries λ1, . . . , λn, logXn is diagonal with entries log λ1, . . . , log λn. In general,

if Xn = VnDnV
∗
n for a unitary Vn and diagonal Dn, then logXn = Vn logDnV

∗
n . Note that

the existence of logXn also follows from the continuous functional calculus.
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For positive matrices Xn,

tr(logXn) = log(detXn) . (3.1)

To generalize this formula, we will need to use the functional calculus to make sense of

logXn. The easiest situation would be if Xn is positive, as then log x is well-defined on the

spectrum of Xn. Then, our determinant will only be a positive determinant (defined on

positive elements and taking positive values).

In the case of matrices, for a general matrix Xn, we can consider the positive matrix

|Xn| = (X∗
nXn)

1/2. When Xn is invertible,

tr log(|Xn|) = tr log((X∗
nXn)

1/2) = log(det(X∗
nXn)

1/2) = log |detXn| . (3.2)

The formula still holds when Xn is not invertible, as both sides are −∞.

Recall the analogous trace to the tracial von Neumann algebra is the normalized trace

1
n
tr. Thus, we can recover the normalized positive determinant:

exp

(
1

n
tr log(|Xn|)

)
= |det(Xn)|1/n . (3.3)

Note that this normalized determinant has the advantage that it scales linearly when Xn

is multiplied by a constant. This is necessary in the general situation as the von Neumann

algebra is normalized to have “dimension” (i.e. trace) 1.

On a general tracial von Neumann algebra (M, τ), we define the Fuglede-Kadison deter-

minant in the analogous way:

Definition 3.1. Let x ∈ (M, τ). Let µ|x| be the spectral measure of |x| = (x∗x)1/2. Then, the

Fuglede-Kadison determinant of x, ∆(x), is given by:

∆(x) = exp

[∫ ∞

0

log t dµ|x|(t)

]
. (3.4)
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We make a few notes about the definition:

• When x = Xn ∈ (Mn(C), 1
n
tr), then ∆(x) = |det(Xn)|1/n.

• When x is invertible (with bounded inverse), then σ(|x|) ⊂ [c,∞) for some c > 0, so

then ∆(x) is finite and non-zero.

• When x not invertible, since x is bounded, then log+ t is always integrable. Thus, the

integral of log t makes sense, even if it could be infinite. To compute the integral in

practice, we can consider fϵ(t) = log(t+ ϵ) for ϵ > 0. The fϵ are continuous on [0,∞)

and decrease to log(t), so

lim
ϵ→0+

τ(log(|x|+ ϵ)) = lim
ϵ→0+

∫ ∞

0

log(t+ ϵ) dµ|x|(t) =

∫ ∞

0

log t dµ|x|(t) . (3.5)

We could also choose gϵ(t) = χ[ϵ,∞) log(t), but these do not have the differentiability

properties of the fϵ that we will need later.

• In practice, it is easier to work with |x|2 = x∗x instead of its square root. Observe that

µ|x|2 is just the pushforward measure of µ|x| under t
2, since for continuous f on [0,∞),

∫ ∞

0

f(t2) dµ|x|(t) = τ(f(|x|2)) =
∫ ∞

0

f(t) dµ|x|2(t) . (3.6)

Note that we have used that the functional calculus respects composition of functions.

Then, x with bounded inverse we immediately obtain the formula:

∫ ∞

0

log t dµ|x|(t) =
1

2

∫ ∞

0

log t dµ|x|2(t) . (3.7)

In the general case, we consider the fϵ as before and let ϵ → 0+ to obtain the same

formula.

In [FK52], several properties of this determinant are proved. We list some of them here:

Proposition 3.2. Let x ∈ (M, τ) and let ∆(x) be the Fuglede-Kadison determinant of x.

Call x regular if it has bounded inverse in M . Then, the determinant satisfies the following:
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• ∆(x) ≤ |σ(x)| and ∥x−1∥−1 ≤ ∆(x) for regular x.

• ∆(λx) = |λ|∆(x) for λ ̸= 0.

• ∆(x∗) = ∆(x) = ∆(x∗x)1/2.

• ∆(xy) = ∆(x)∆(y) for regular x, y.

• ∆(x−1) = ∆(x)−1 for regular x.

• ∆(x) ≥ ∆(y) if x ≥ y ≥ 0.

• lim sup
n→∞

∆(xn) ≤ ∆(x) when xn converges to x uniformly.

• lim
n→∞

∆(xn) = ∆(x) if xn ≥ x ≥ 0 and xn converges to x uniformly.

3.2 Construction of the Brown measure

In this subsection, we motivate and define the Brown measure of an operator x ∈ (M, τ).

For motivation, we again consider Xn ∈ (Mn(C), 1
n
tr). Let λ1, . . . , λn ∈ C be the

eigenvalues of Xn. Recall that the empirical spectral distribution of Xn is

µXn =
1

n

n∑
i=1

δλi
. (3.8)

To recover this from ∆(Xn), consider for z ∈ C, the following equalities:

log∆(z −Xn) =
1

n
tr log(|z −Xn|) =

1

n
log |det(z −Xn)| =

1

n

n∑
i=1

log |z − λi| . (3.9)

Recall that as distributions on D(C),

1

2π
∇2 log |· − λ| = δλ . (3.10)
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Then, we recover µXn by:

µXn =
1

2π
∇2 log∆(z −Xn) . (3.11)

Note that we recovered the empirical spectral distribution of Xn with only the computation

of the positive determinant of |z −Xn|. The key reason why this worked is that the absolute

value of the product of the eigenvalues of Xn is equal to the product of the singular values of

Xn.

In a general von Neumann algebra, we will construct the Brown measure of x ∈ (M, τ)

with the same formula,

µx =
1

2π
∇2 log∆(z − x) . (3.12)

We need to check that this construction defines a probability measure. For this, consider

fϵ(z) : C → R for ϵ > 0, given by:

fϵ(z) =
1

2
τ [log((z − x)∗(z − x) + ϵ)] . (3.13)

Note that

fϵ(z) =
1

2

∫ ∞

0

log(t2 + ϵ) dµ|z−x|(t) . (3.14)

so then for every z ∈ C, as ϵ→ 0+, fϵ(z) decreases to log∆(z − x).

We claim that fϵ(z) is subharmonic on C for every ϵ > 0. We first observe the following

Lemma:

Lemma 3.3. Let x ∈ (M, τ) and z ∈ C. Define xz = z − x. Then, for every n ∈ N,

∂

∂z
τ [(x∗zxz)

n] = nτ
[
(x∗zxz)

n−1x∗z
]

∂

∂z
τ [(x∗zxz)

nx∗z] =
n∑

i=0

τ
[
(xzx

∗
z)

n−i(x∗zxz)
i
]
.

(3.15)
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Proof. For h ∈ C, observe the following equalities:

xz+h − xz = h

x∗z+h − x∗z = h∗

x∗z+hxz+h − x∗zxz = h∗xz+h + x∗zh .

(3.16)

For the first derivative, note that for n = 0 the result is trivial. For n ≥ 1, rewrite the

difference quotient:

(x∗z+hxz+h)
n − (x∗zxz) =

n−1∑
i=0

(x∗zxz)
i
[
x∗z+hxz+h − x∗zxz

]
(x∗z+hxz+h)

n−i−1. (3.17)

By using the formula for x∗z+hxz+h − x∗zxz for each derivative and using the cyclic property of

τ , we see that

∂

∂x
τ [(x∗zxz)

n] =
n−1∑
i=0

τ
[
(x∗zxz)

i(xz + x∗z)(x
∗
zxz)

n−i−1
]

= nτ
[
(x∗zxz)

n−1(xz + x∗z)
] (3.18)

∂

∂(iy)
τ [(x∗zxz)

n] =
n−1∑
i=0

τ
[
(x∗zxz)

i(−xz + x∗z)(x
∗
zxz)

n−i−1
]

= nτ
[
(x∗zxz)

n−1(−xz + x∗z)
]
.

(3.19)

Averaging these two quantities gives the first derivative.

For the second derivative, the formula for n = 0 follows from x∗z+h − x∗z = h∗. For n ≥ 1,

rewrite the difference quotient:

(x∗z+hxz+h)
nx∗z+h − (x∗zxz)x

∗
z

=

(
n−1∑
i=0

(x∗zxz)
i
[
x∗z+hxz+h − x∗zxz

]
(x∗z+hxz+h)

n−i−1x∗z+h

)
+

(x∗zxz)
n(x∗z+h − x∗z).

(3.20)
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By using the formula for x∗z+hxz+h − x∗zxz for each derivative, we see that

∂

∂x
τ [(x∗zxz)

nx∗z]

=

(
n−1∑
i=0

τ
[
(x∗zxz)

i(xz + x∗z)(x
∗
zxz)

n−i−1x∗z
])

+ τ [(x∗zxz)
n] .

(3.21)

∂

∂(iy)
τ [(x∗zxz)

nx∗z]

=

(
n−1∑
i=0

τ
[
(x∗zxz)

i(−xz + x∗z)(x
∗
zxz)

n−i−1x∗z
])

− τ [(x∗zxz)
n] .

(3.22)

Taking half of the difference between these two and using the cyclic property of τ ,

∂

∂z
τ [(x∗zxz)

nx∗z] =

(
n−1∑
i=0

τ
[
(x∗zxz)

ixz(x
∗
zxz)

n−i−1x∗z
])

+ τ [(x∗zxz)
n]

=

(
n−1∑
i=0

τ
[
(xzx

∗
z)

n−i(x∗zxz)
i
])

+ τ [(x∗zxz)
n]

=
n∑

i=0

τ
[
(xzx

∗
z)

n−i(x∗zxz)
i
]
.

(3.23)

Proposition 3.4. Define xz = z − x. For ϵ > 0, let fϵ : C → R where

fϵ(z) =
1

2
τ [log(x∗zxz + ϵ)] . (3.24)

Then,
∂

∂z
fϵ(z) =

1

2
τ
[
(x∗zxz + ϵ)−1x∗z

]
∂2

∂z∂z
fϵ(z) =

ϵ

2
τ
[
(xzx

∗
z + ϵ)−1(x∗zxz + ϵ)−1

]
.

(3.25)

Thus, fϵ(z) is subharmonic on C.

Proof. We first verify the equations for |ϵ| > ∥x∗zxz∥, Re(ϵ) > 0. In this case, letting log be
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the principal branch of the logarithm defined on C \ (−∞, 0],

log(x∗zxz + ϵ) = log(ϵ) + log

(
1 +

x∗zxz
ϵ

)
. (3.26)

Then, the following power series representation is absolutely convergent:

log

(
1 +

x∗zxz
ϵ

)
=

∞∑
n=1

(−1)n−1

n

(
x∗zxz
ϵ

)n

. (3.27)

Thus, we may take the trace of both sides:

τ

[
log

(
1 +

x∗zxz
ϵ

)]
=

∞∑
n=1

(−1)n−1

n

τ [(x∗zxz)
n]

ϵn
. (3.28)

A standard result in the interchange of sum and derivative ([Rud76], Theorem 7.17) shows

that the term-by-term derivative on the right-hand side is valid if the resulting sum is locally

uniformly convergent. Thus, from Lemma 3.3,

∂

∂z
τ [log(x∗zxz + ϵ)] =

∞∑
n=1

(−1)n−1

ϵn
τ
[
(x∗zxz)

n−1x∗z
]

=
∞∑
n=0

(−1)n

ϵn+1
τ [(x∗zxz)

nx∗z] .

(3.29)

Observe that the following power series formula is valid:

ϵ(x∗zxz + ϵ)−1 =
∞∑
n=0

(−1)n
(
x∗zxz
ϵ

)n

. (3.30)

Recognizing this expression in the derivative, we see that

∂

∂z
fϵ(z) =

1

2

∂

∂z
τ [log(x∗zxz + ϵ)] =

1

2
τ
[
(x∗zxz + ϵ)−1x∗z

]
. (3.31)

To compute the second derivative, we differentiate both sides of (3.29) term-by-term using

Lemma 3.3. Again, the term-by-term differentiation of the sum is valid because the resulting
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sum is locally uniformly convergent:

∂2

∂z∂z
τ [log(x∗zxz + ϵ)] =

∞∑
n=0

(−1)n

ϵn+1

(
n∑

i=0

τ
[
(xzx

∗
z)

n−i(x∗zxz)
i
])

. (3.32)

Observe that the following power series formula is valid:

ϵ2(xzx
∗
z + ϵ)−1(x∗zxz + ϵ)−1 =

∞∑
n=0

(−1)n

ϵn

(
n∑

i=0

(xzx
∗
z)

n−i(x∗zxz)
i

)
. (3.33)

Recognizing this expression in the derivative, we see that

∂2

∂z∂z
fϵ(z) =

1

2

∂2

∂z∂z
τ [log(x∗zxz + ϵ)] =

ϵ

2
τ
[
(xzx

∗
z + ϵ)−1(x∗zxz + ϵ)−1

]
. (3.34)

To extend these formulas for all Re(ϵ) > 0, we use analyticity of both sides of these equations

for Re(ϵ) > 0. As an example, consider the argument for ∂
∂x
fϵ(z): Fix z = x + iy. For

Re(ϵ) > 0 and |ϵ| sufficiently large, the following formula holds:

fϵ(z) = fϵ(iy) +

∫ x

0

∂

∂x
fϵ(z)

∣∣∣∣
z=t+iy

dt

= fϵ(iy) +

∫ x

0

1

2
τ
[
(x∗zxz + ϵ)−1(xz + x∗z)

]∣∣
z=t+iy

dt .

(3.35)

From the power series representations of log and (A+ ·)−1, the both sides of this equation

are analytic for Re(ϵ) > 0. Since this identity holds for |ϵ| > ∥x∗zxz∥, the the identity holds

for all Re(ϵ) > 0. To show that fϵ is subharmonic,

∇2fϵ(z) = 4
∂2

∂z∂z
fϵ(z) = 2ϵ τ

[
(xzx

∗
z + ϵ)−1(x∗zxz + ϵ)−1

]
≥ 0 . (3.36)

This last quantity is non-negative, being the trace of a product of 2 positive operators. As

this expression is continuous in z, fϵ is subharmonic.

We return to showing that µx = 1
2π
∇2 log∆(z − x) defines a positive measure. As

fϵ(z) decreases to log∆(z − x) and the fϵ(z) are subharmonic, then log∆(z − x) is either

46



subharmonic or −∞. But, for |z| > ∥x∥, log∆(z − x) > −∞, so then log∆(z − x) is

subharmonic.

In particular, log∆(z − x) ∈ L1
loc(C), and since fϵ(z) decrease to log∆(z − x), then fϵ(z)

converges to log∆(z − x) in L1
loc(C). Hence, as distributions, fϵ(z) converges to log∆(z − x).

This implies that ∇2fϵ(z) converges to ∇2 log∆(z−x). As ∇2fϵ(z) are positive distributions,

then so is ∇2 log∆(z − x). This implies that 1
2π
∇2 log∆(z − x) is a positive measure, as

desired. Thus, we may define the Brown measure as follows:

Definition 3.5. Let x ∈ (M, τ). Then, the Brown measure of x is defined as:

µx =
1

2π
∇2 log∆(z − x) . (3.37)

Using the fϵ, the Brown measure can be computed as the distributional limit:

µx = lim
ϵ→0+

1

2π
∇2fϵ(z) = lim

ϵ→0+

ϵ

π
τ
[
(xzx

∗
z + ϵ)−1(x∗zxz + ϵ)−1

]
. (3.38)

3.3 Properties of the Brown measure

First, we consider some examples of the Brown measure:

• When Xn ∈Mn(C), then µXn is the empirical spectral distribution of Xn. Thus, the

notation for Brown measure is consistent with the previous notation for empirical

spectral distributions. When Xn is random, the same is true.

• When x ∈ (M, τ) is Hermitian, let µ be the spectral measure of x. Then,

fϵ(z) =
1

2
τ [log((z − x)∗(z − x) + ϵ)] =

1

2

∫
R
log(|z − t|2 + ϵ) dµ(t) . (3.39)

Since fϵ(z) decreases to log∆(z − x), then

log∆(z − x) =

∫
R
log |z − t| dµ(t) . (3.40)
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Taking the Laplacian of the right-hand side with respect to z shows that the Brown

measure of x is equal to the spectral measure of x. The same argument holds when x is

normal. Thus, the notation for Brown measure is consistent with the previous notation

for spectral measures.

• When f ∈ (L∞(X,µ), dµ), then

fϵ(z) =
1

2
τ [log((z − f)∗(z − f) + ϵ)] =

1

2

∫
X

log(|z − f(x)|2 + ϵ) dµ(x) , (3.41)

so then

log∆(z − x) =

∫
X

log |z − f(x)| dµ(x) =
∫
C
log |z − w| df∗(µ)(w). (3.42)

Hence, the Brown measure of f is the pushforward measure f∗(µ).

At this point, we know that the Brown measure is a positive measure, but it still needs

to be verified that the Brown measure is a probability measure. It also turns out that the

Brown measure is supported on σ(X), just like the spectral measure of a normal operator.

First, we highlight the following Lemma:

Lemma 3.6. Let x ∈ (M, τ) and z ∈ C. For ϵ > 0, let fϵ : C → [−∞,∞) where

fϵ(z) =
1

2
τ [log((z − x)∗(z − x) + ϵ)] . (3.43)

Suppose that z /∈ σ(x). Then, as ϵ → 0+, we have the following convergences locally

uniformly:

∂

∂z
fϵ(z) →

1

2
τ
[
(z − x)−1

]
∂2

∂z∂z
fϵ(z) → 0 .

(3.44)

Thus, for z ̸∈ σ(x),
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∂

∂z
log∆(z − x) =

1

2
τ
[
(z − x)−1

]
∂2

∂z∂z
log∆(z − x) = 0 .

(3.45)

Proof. Define xz = z − x. For the convergence of the first derivative, using the formula in

Proposition 3.4,

∂

∂z
fϵ(z)−

1

2
τ
[
(z − x)−1

]
=

1

2

(
τ
[
(x∗zxz + ϵ)−1x∗z

]
− τ

[
x−1
z

])
=

1

2

(
τ
[
x−1
z (x∗zxz + ϵ)−1x∗zxz

]
− τ

[
x−1
z (x∗zxz + ϵ)−1(x∗zxz + ϵ)

])
= − ϵ

2
τ
[
x−1
z (x∗zxz + ϵ)−1

]
.

(3.46)

To bound the absolute value of the final expression, note that for any ϵ > 0,

∣∣τ [x−1
z (x∗zxz + ϵ)−1

]∣∣ ≤ ∥∥x−1
z

∥∥∥∥(x∗zxz + ϵ)−1
∥∥ ≤

∥∥x−1
z

∥∥∥∥(x∗zxz)−1
∥∥ . (3.47)

This last expression is locally bounded, so then the convergence in the first derivative is

locally uniform for z ̸∈ σ(x). The formula for the first derivative follows from a standard

result about the interchange of the limit and derivative ([Rud76], Theorem 7.17).

For the second derivative, from the formula in Proposition 3.4,

∂2

∂z∂z
fϵ(z) =

ϵ

2
τ
[
(xzx

∗
z + ϵ)−1(x∗zxz + ϵ)−1

]
. (3.48)

To bound this in absolute value, consider the following inequalities:

∣∣τ [(xzx∗z + ϵ)−1(x∗zxz + ϵ)−1
]∣∣ ≤ ∥∥(xzx∗z + ϵ)−1

∥∥∥∥(x∗zxz + ϵ)−1
∥∥

≤
∥∥(xzx∗z)−1

∥∥∥∥(x∗zxz)−1
∥∥ . (3.49)

This final quantity is locally bounded, so then the convergence in the second derivative is

locally uniform for z ̸∈ σ(x). The formula follows again from the result about the interchange
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of the limit and derivative.

Now, we will show that µx is a compactly supported probability measure and µx recovers

the moments of x.

Proposition 3.7. Let x ∈ (M, τ). Let µx be the Brown measure of x. Then, supp(µx) ⊂ σ(x).

Let U be a neighborhood of σ(x). If f : U → C is an analytic function, then

τ(f(x)) =

∫
C
f(z) dµx(z) . (3.50)

In particular, for all n ∈ N,
τ(xn) =

∫
C
zn dµx(z)

τ((x∗)n) =

∫
C
zn dµx(z)

(3.51)

and µx is a probability measure.

Proof. From Lemma 3.6, when z ̸∈ σ(x), then µx = 1
2π
∇2 log∆(z−x) is zero in a neighborhood

of z. Hence, supp(µx) ⊂ σ(x).

Choose a compact set K such that the interior of K contains σ(x) and K ⊂ U and K

has piecewise smooth boundary. Choose g ∈ Cc(C) so that g(z) = f(z) on K.

Then, ∫
C
f(z) dµx(z) =

∫
C
g(z) dµx(z) = lim

ϵ→0+

1

2π

∫
C
g(z)∇2fϵ(z) dz . (3.52)

From Lemma 3.6, on supp(f) \K, ∇2fϵ(z) → 0 uniformly as ϵ→ 0+. Hence,

lim
ϵ→0+

1

2π

∫
C
g(z)∇2fϵ(z) dz = lim

ϵ→0+

1

2π

∫
K

g(z)∇2fϵ(z) dz

= lim
ϵ→0+

1

2π

∫
K

f(z)∇2fϵ(z) dz .

(3.53)
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Recall that ∇2 = 4 ∂2

∂z∂z
and ∂

∂z
f(z) = 0. Thus,

1

2π

∫
K

f(z)∇2fϵ(z) dz =
2

π

∫
K

f(z)
∂2

∂z∂z
fϵ(z) dz

=
2

π

∫
K

∂

∂z

(
f(z)

∂

∂z
fϵ(z)

)
dz .

(3.54)

From Green’s theorem,

2

π

∫
K

∂

∂z

(
f(z)

∂

∂z
fϵ(z)

)
dz =

1

πi

∮
∂K

f(z)
∂

∂z
fϵ(z) dz . (3.55)

From Lemma 3.6, ∂
∂z
fϵ(z) → 1

2
τ [(z − x)−1] uniformly on ∂DR, so putting all of these steps

together, ∫
C
f(z) dµx(z) =

1

2πi

∮
∂K

f(z) τ [(z − x)−1] dz . (3.56)

From the analytic functional calculus,

1

2πi

∮
∂K

f(z) τ [(z − x)−1] dz = τ

[
1

2πi

∮
∂K

f(z)(z − x)−1 dz

]
= τ(f(x)) . (3.57)

The moment formula follows from considering f(z) = zn. The ∗-moment formula follows

from conjugating the moment formula. The fact that µx is a probability measure follows

from considering the 0-th moment.

Note that the fact that the Brown measure recovers the moments of x generalizes the fact

for empirical spectral distributions of (random) matrices.

Now, we consider the function: L : C → C given by:

L(z) =

∫
C
log |z − w| dµx(w) . (3.58)

Since µx is a compactly supported probability measure, L ∈ L1
loc(C). This follows from the

fact that log |· − w| ∈ L1
loc(C) uniformly for w in a compact set. Thus, L is a well-defined
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distribution and since 1
2π
∇2 log |· − w| = δw, then

1

2π
∇2L(z) = µx . (3.59)

so that on C,

∇2(log∆(z − x)− L(z)) = 0 . (3.60)

From Weyl’s lemma, this implies that

log∆(z − x) = L(z) + u(z) =

∫
C
log |z − w| dµx(w) + u(z) . (3.61)

for some harmonic function u : C → R. Note that this is exactly the factorization in the

Riesz representation theorem for subharmonic functions.

Now, we proceed to show that u(z) = 0 so that log∆(z − x) = L(z).

We need the following general lemma about subharmonic functions ([HS07], Lemma 2.10):

Lemma 3.8. Let g : C → [−∞,∞) be a subharmonic function. For r > 0, define:

m(g, r) =
1

2π

∫ 2π

0

g(reiθ) dθ

M(g, r) = sup
|z|=r

g(z) .
(3.62)

Then,

g(0) = lim
r→0

m(g, r) = lim
r→0

M(g, r) . (3.63)

Proof. Clearly m(g, r) ≤M(g, r). Since g is subharmonic, g(0) ≤ m(g, r). Hence, for r > 0,

g(0) ≤ m(g, r) ≤M(g, r) . (3.64)

Since upper semicontinuous functions attain their maxima on compact sets, M(g, r) = g(zr)
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for some zr ∈ C where |zr| = r. Since g is upper semicontinuous, then

lim sup
r→0

M(g, r) = lim sup
r→0

g(zr) ≤ g(0) . (3.65)

The result follows by considering lim supr→0 and lim infr→0 of m(g, r) and M(g, r).

Next, we analyze log∆(z − x) and L(z) in a neighborhood of ∞:

Lemma 3.9. Let x ∈ (M, τ) and µx be the Brown measure of x. Define g, h : C → [−∞,∞)

by:

g(z) = log∆(1− xz)

h(z) =

∫
C
log |1− zw| dµx(w) .

(3.66)

Then, g and h are subharmonic on C and

log∆(z − x) = log |z|+ g

(
1

z

)
L(z) = log |z|+ h

(
1

z

)
.

(3.67)

Proof. Note that it suffices to prove the result for g(z) since h(z) is just the specific case

where (M, τ) = (L∞(C, µx), dµx) with the random variable f(w) = w.

Recall that for ϵ > 0, fϵ : C → R given by

fϵ(z) =
1

2
τ [log((z − x)∗(z − x) + ϵ)] . (3.68)

is subharmonic. Define

gϵ(z) =
1

2
τ
[
log((1− xz)∗(1− xz) + ϵ |z|2)

]
. (3.69)

Then, for z ̸= 0,

fϵ(z) = log |z|+ gϵ

(
1

z

)
. (3.70)

Since log |z| is harmonic on C\{0}, then gϵ(1/z) is subharmonic on C\{0}, i.e. ∇2gϵ(1/z) ≥ 0.
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By changing variables in the Laplacian in polar coordinates, we conclude that ∇2gϵ(z) ≥ 0,

so that gϵ(z) is subharmonic. Finally, gϵ(z) decreases to g(z) so that g(z) is subharmonic.

By taking |z| → ∞ and using Lemmas 3.8 and 3.9, we see that L(z), log∆(z − x) =

O(log |z|).

Hence, u(z) = log∆(z−x)−L(z) = O(log |z|). Now, we observe that a harmonic function

with this growth condition is constant:

Lemma 3.10. Suppose that u : C → R is harmonic and u(z) ≤ a |log |z|| + b for some

a, b > 0. Then, u is constant.

Proof. By considering ũ = u−b
a
, we may assume that u(z) ≤ |log |z||. Let f be the entire

function where Ref(z) = u(z). Then, for g(z) = exp(f(z)),

|g(z)| = exp(Ref(z)) = exp(u(z)) ≤ exp(|log |z||) = max(|z| , |z|−1) . (3.71)

For |z| ≥ 1, |g(z)| ≤ |z|, so g(z) is a linear polynomial. But, g(z) does not have a zero, so

g(z) must be constant. This implies that f(z) is constant, and hence u(z) is constant.

Thus, it suffices to show that this constant is 0. We do that in the following Proposition:

Proposition 3.11. Let x ∈ (M, τ) and µx be the Brown measure of x. Then, for z ∈ C,

log∆(z − x) =

∫
C
log |z − w| dµx(w) . (3.72)

The Brown measure µx is the unique complex measure to satisfy this equation.

Proof. Let u : C → R be given by u(z) = log∆(z − x)− L(z). Thus far we have shown that

u(z) = c for some c ∈ R. From Lemma 3.8,

u(z) = log∆(z − x)− L(z) = g

(
1

z

)
− h

(
1

z

)
. (3.73)
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Using the notation of Lemma 3.8,

c = m(u, r) = m(g, 1/r)−m(h, 1/r) . (3.74)

Taking r → ∞ and applying Lemma 3.8,

lim
r→∞

m(g, 1/r) = g(0) = 0

lim
r→∞

m(h, 1/r) = h(0) = 0 .
(3.75)

Hence, c = 0.

Uniqueness follows from taking Laplacians of both sides.

As a corollary, we obtain a result about the pushforward of the Brown measure under

polynomials:

Corollary 3.12. Let x ∈ (M, τ) and consider a polynomial p(z). Then, the Brown measure

of p(x) is the pushforward of the Brown measure of x under p, i.e.

µp(x) = p∗(µx) . (3.76)

Proof. From Proposition 3.11, it suffices to show that for all z ∈ C,

log∆(z − x) =

∫
C
log |z − p(w)| dµx(w) . (3.77)
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Let z − p(w) = c
∏n

i=1(ri − w). Then, the following equalities verify the identity:

∫
C
log |z − p(w)| dµx(w) =

∫
C
log

∣∣∣∣∣c
n∏

i=1

(ri − w)

∣∣∣∣∣ dµx(w)

= log |c|+
n∑

i=1

∫
C
log |ri − w| dµx(w)

= log∆(c) +
n∑

i=1

log∆(ri − x)

= log

(
∆(c)

n∏
i=1

∆(ri − x)

)

= log∆

(
c

n∏
i=1

(ri − w)

)
= log∆(z − p(w)) .

(3.78)

For the final result in this chapter, we will deduce that the Brown measure of the

operators we consider, X = p+ iq from (2.1), is contained in the convex hull of the points

{αi + iβj : 1 ≤ i ≤ k, 1 ≤ j ≤ l}, i.e. the rectangle:

R = {z = x+ iy : x ∈ [min
i
αi,max

i
αi], y ∈ [min

i
βi,max

i
, βi]} . (3.79)

This follows from the following general Proposition:

Proposition 3.13. Let x ∈ (M, τ), where x = p + iq for p, q Hermitian. Let I, J ⊂ R be

closed intervals such that σ(p) ⊂ I and σ(q) ⊂ J . Let R = {z = x+ iy : x ∈ I, y ∈ J}. Then,

σ(x) ⊂ R. Thus, the Brown measure of x is supported on R.

Proof. Let λ = λ1 + iλ2 where λ1, λ2 ∈ R. Suppose that λ ̸∈ R. Let xλ = x − λ. We will

show that xλ is invertible.

From the polar decomposition and functional calculus, it suffices to show that x∗λxλ is
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invertible, i.e. x∗λxλ ≥ c for some c > 0. Let M ⊂ B(H). Then, x∗λxλ ≥ c is equivalent to

∥xλ(ξ)∥2 = ⟨x∗λxλξ, ξ⟩ ≥ c ∥ξ∥2 , ξ ∈ H . (3.80)

We proceed to show inf |ξ|=1 ∥xλ(ξ)∥ ≥ c for some c > 0.

For this, note that for ξ ∈ H where |ξ| = 1,

∥xλ(ξ)∥ ≥ |⟨xλ(ξ), ξ⟩|

= |⟨((p− λ1) + i(q − λ2)) ξ, ξ⟩|

= |⟨(p− λ1)ξ, ξ⟩+ i⟨(q − λ2)ξ, ξ⟩| .

(3.81)

As p and q are Hermitian, then ⟨(p− λ1)ξ, ξ⟩, ⟨(q − λ2)ξ, ξ⟩ ∈ R. Without loss of generality,

assume that λ1 ̸∈ I. Then, either p− λ1 ≥ c or p− λ1 ≤ −c for some c > 0. In either case,

|⟨(p− λ1)ξ, ξ⟩| ≥ c and hence

|⟨(p− λ1)ξ, ξ⟩+ i⟨(q − λ2)ξ, ξ⟩| ≥ |⟨(p− λ1)ξ, ξ⟩| ≥ c . (3.82)

Thus, inf |ξ|=1 ∥xλ(ξ)∥ ≥ c, so that xλ is invertible, as desired.
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CHAPTER 4

Brown measure of X = p + iq

In this chapter, we compute the Brown measure of X = p+ iq, where p and q are Hermitian,

freely independent, and have at most 2 atoms, i.e.

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(4.1)

where a, b ∈ [0, 1] and α, α′, β, β′ ∈ R. When either p or q is a constant, then X is normal,

so the Brown measure of X is just the spectral measure of X. Thus, we will assume

throughout this section that a, b ∈ (0, 1), α ̸= α′, and β ̸= β′.

Recall the Brown measure of X is defined as:

µ =
1

2π
∇2 log∆(z −X) =

1

2π
∇21

2

∫ ∞

0

log(x) dνz(x) , (4.2)

where νz is the spectral measure of Hz(X) = (z −X)∗(z −X).

To compute the Brown measure, we need to complete the following steps:

1. Compute νz.

2. Compute log∆(z −X) = 1
2

∫∞
0

log(x) dνz(x).

3. Compute µ = 1
2π
∇2 log∆(z −X).

First, we need to describe some results about the tracial von Neumann algebra generated

by two projections. This is described in the next section.
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4.1 The von Neumann algebra generated by two projections

We summarize the results from ([Voi99], Section 12) that describe the tracial von Neumann

algebra generated by two projections.

Let (M, τ) be the von Neumann algebra generated by two projections p and q.

Consider the following elements of M :

e00 = (1− p) ∧ (1− q)

e01 = (1− p) ∧ q

e10 = p ∧ (1− q)

e11 = p ∧ q

e = 1− (e00 + e01 + e10 + e11) .

(4.3)

These elements are central, mutually orthogonal projections and

e00 + e01 + e10 + e11 + e = 1 . (4.4)

If we consider the matrix of m ∈ M with respect to the eij, e (i.e. the 5 × 5 matrix with

entries of the form fmf ′ where f, f ′ ∈ {ei,j, e}), then this matrix is diagonal. Further, the 4

diagonal terms eijmeij are constants. Hence, the only interesting part of M is the subalgebra

eMe. In particular,

p = p ∧ (1− q) + p ∧ q + epe = e10 + e11 + epe

q = (1− p) ∧ q + p ∧ q + eqe = e01 + e11 + eqe .
(4.5)

When e ̸= 0, consider (eMe, τ
∣∣
eMe

) as a von Neumann subalgebra with identity e and

τ
∣∣
eMe

(eme) = τ(eme)
τ(e)

. Then,

(eMe, τ
∣∣
eMe

) ∼=
(
M2 (L

∞((0, 1), ν∗)) ,Eν∗ [
1

n
tr]

)
. (4.6)
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where ν∗ is a Borel measure on (0, 1).

For any m ∈M , let m̃ = eme ∈ eMe. The isomorphism has the following correspondence

between m̃ ∈ eMe and matrix-valued functions of t ∈ (0, 1):

p̃↔

 t (t− t2)1/2

(t− t2)1/2 1− t


q̃ ↔

1 0

0 0

 .

(4.7)

The measure ν∗ is recovered by noting that for the central element x = pqp+ (1− p)(1−

q)(1− p) = 1− p− q + pq + qp,

x̃↔

t 0

0 t

 . (4.8)

Hence, ν∗ is the spectral measure of the element x̃ in (eMe, τ
∣∣
eMe

).

Observe that with the change of variables t = cos2 θ, θ ∈ (0, π/2),

p̃ = Rθq̃R
−1
θ , (4.9)

where Rθ ∈M2(C) is the rotation matrix with angle θ.

In practice, we will work with θ instead of t. Let (cos2)−1 : [0, 1] → [0, π/2] be the inverse

of cos2 : [0, π/2] → [0, 1] and consider the measure ν on (0, π/2) given by:

ν =
(
(cos2)−1

)
∗ (ν

∗) . (4.10)

Then, we will use the isomorphism:

(eMe, τ
∣∣
eMe

) ∼=
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1

n
tr]

)
. (4.11)

Let us highlight a few facts about the algebra generated by 2 projections:
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First, we explain why in the matrix algebras the domains are open instead of closed. This

is because of the following fact:

Lemma 4.1. The measure ν∗ does not have atoms at 0 or 1, i.e. ν∗({0, 1}) = 0. This is

equivalent to ν not having atoms at 0 or π/2.

Proof. Let p̃ = epe and q̃ = eqe. Since e commutes with p and q, p̃ = p ∧ e and q̃ = q ∧ e.

Consider τ((q̃p̃q̃)n) → τ(p̃ ∧ q̃) = τ(e ∧ (p ∧ q)) as n → ∞. Recall that e and p ∧ q are

mutually orthogonal, so τ(e ∧ (p ∧ q)) = 0. Under the isomorphism, computation shows that

τ((q̃p̃q̃)n) =

∫ 1

0

tn dν∗(t) . (4.12)

As n→ ∞ the integral on the right-hand side decreases to ν∗({1}). Hence, ν∗({1}) = 0.

A similar argument considering τ(((1− q̃)(p̃)(1− q̃))n) → τ((1− q̃) ∧ p̃) using that e and

(1− q) ∧ p are mutually orthogonal shows that ν∗({0}) = 0.

Finally, we note that from the definition of pushforward measure, ν∗({0, 1}) = ν({0, π/2}).

Next, we note that on eMe, epe and eqe have trace 1/2. While this is also easy to see

from the isomorphism, it follows from e being mutually orthogonal to all of the eij:

Lemma 4.2. Let τ be the trace on eMe. Then, τ(epe) = τ(eqe) = 1/2.

Proof. If this is false, then we may choose one of epe or 1− epe and one of eqe or 1− eqe

so that the sum of the traces is greater than 1. Without loss of generality assume that

τ(epe) + τ(eqe) > 1. Since e commutes with p and q, epe = p ∧ e and eqe = q ∧ e. Then,

from the parallelogram law, we have the following contradiction:

0 = τ(e ∧ (p ∧ q)) = τ(epe ∧ eqe) = τ(epe) + τ(eqe)− τ(epe ∨ eqe)

≥ τ(epe)− τ(eqe)− 1 > 0 .
(4.13)
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4.2 Computation of Brown measure of X (up to ν and weights)

In this subsection, we consider an arbitrary X = p+ iq where p, q are Hermitian

and each have 2 atoms, i.e. we do not assume that p and q are freely independent.

Since p and q each have 2 atoms, then p and q are affine transformations of two projections.

Then, we can use the isomorphism in Section 4.1 to compute the Brown measure of p+ iq.

In this section, we will describe the Brown measure as a convex combination of 4 atoms

and another probability measure, µ′. The measure µ′ depends on the measure ν in the

isomorphism (eMe, τ
∣∣
eMe

) ∼=
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
. The weights in the convex

combination are τ(eij), τ(e) from the previous section. We will determine the Brown measure

up to determining the weights τ(eij), τ(e) and the measure ν. These will depend on the joint

law of p and q. In the next subsection, we will compute these quantities when p and q are

freely independent.

For the computation, fix the projections p′ and q′. We will use the following definition

frequently:

Definition 4.3. Let p, q ∈ (M, τ) be Hermitian with laws:

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(4.14)

Let p′, q′ ∈ (M, τ) be the following projections:

p′ = χ{α′}(p)

q′ = χ{β′}(q) .
(4.15)

As a consequence,

1− p′ = χ{α}(p)

1− q′ = χ{β}(q) .
(4.16)
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Hence,

p = α(1− p′) + α′p′ = (α′ − α)p′ + α

q = β(1− q′) + β′q′ = (β′ − β)q′ + β
(4.17)

or equivalently

p′ =
p− α

α′ − α

q′ =
q − β

β′ − β
.

(4.18)

Throughout this section we will use the notation of Section 4.1 with the general

pair of projections (p, q) replaced by the projections (p′, q′).

With this notation, observe that

e00 = χ{α}(p) ∧ χ{β}(q)

e01 = χ{α}(p) ∧ χ{β′}(q)

e10 = χ{α′}(p) ∧ χ{β}(q)

e11 = χ{α′}(p) ∧ χ{β′}(q)

e = 1− (e00 + e01 + e10 + e11) .

(4.19)

To compute the Brown measure of X, recall we need to first compute νz, the spectral measure

of Hz(X) = (z −X)∗(z −X).

The result of the computation is the following:

Proposition 4.4. If e = 0,

νz = τ(e00)δ|z−(α+iβ)|2 + τ(e01)δ|z−(α+iβ′)|2 + τ(e10)δ|z−(α′+iβ)|2 + τ(e11)δ|z−(α′+iβ′)|2 . (4.20)

If e ̸= 0, there exists continuous functions σz,1, σz,2 : (0, π/2) → [0,∞) such that σz,1(θ), σz,2(θ)

are the singular values of the element of
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
corresponding to

e(z − (p+ iq))e ∈ (eMe, τ
∣∣
eMe

).
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Then,

νz = τ(e00)δ|z−(α+iβ)|2 + τ(e01)δ|z−(α+iβ′)|2 + τ(e10)δ|z−(α′+iβ)|2+

τ(e11)δ|z−(α′+iβ′)|2 + τ(e)
(σ2

z,1)∗(ν) + (σ2
z,2)∗(ν)

2
.

(4.21)

Proof. Let Hz = Hz(X) = (z −X)∗(z −X). Since the eij, e are central, mutually orthogonal

projections that sum to 1, then

(Hz)
n = (e00 + e01 + e10 + e11 + e)(Hz)

n(e00 + e01 + e10 + e11 + e)

= e00(Hz)
ne00 + e01(Hz)

ne01 + e10(Hz)
ne10 + e11(Hz)

ne11 + e(Hz)
ne

= (e00Hze00)
n + (e01Hze01)

n + (e10Hze10)
n + (e11Hze11)

n + (eHze)
n .

(4.22)

Taking traces of both sides,

τ((Hz)
n)

= τ((e00Hze00)
n) + τ((e01Hze01)

n)+

τ((e10Hze10)
n) + τ((e11Hze11)

n) + τ((eHze)
n) .

(4.23)

From the definitions of the eij,

(e00Hze00)
n = (|z − (α + iβ)|2)ne00

(e01Hze01)
n = (|z − (α + iβ′)|2)ne01

(e10Hze10)
n = (|z − (α′ + iβ)|2)ne10

(e11Hze11)
n = (|z − (α′ + iβ′)|2)ne11 .

(4.24)
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Combining the previous two equations,

τ((Hz)
n) = τ(e00)(|z − (α + iβ)|2)n

+ τ(e01)(|z − (α + iβ′)|2)n

+ τ(e10)(|z − (α′ + iβ)|2)n

+ τ(e11)(|z − (α′ + iβ′)|2)n

+ τ(e)τ
∣∣
eMe

((eHze)
n) .

(4.25)

The right-hand side is the n-th moment of the following convex combination of probability

measures:

τ(e00)δ|z−(α+iβ)|2 + τ(e01)δ|z−(α+iβ′)|2+

+ τ(e10)δ|z−(α′+iβ)|2 + τ(e11)δ|z−(α′+iβ′)|2 + τ(e)µeHze ,
(4.26)

where µeHze is the spectral measure of eHze in
(
eMe, τ

∣∣
eMe

)
.

As moments determine compact measures on R, then this is νz.

If e = 0, then νz is the desired convex combination of atoms.

If e ̸= 0, consider µeHze using the isomorphism described in Section 4.1, i.e. we proceed

by assuming that (eMe, τ
∣∣
eMe

) =
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
.

For any m ∈M , let m̃ = eme ∈ eMe. Then, H̃z = (z − (p̃+ iq̃))∗(z − (p̃+ iq̃)).

Now, we claim that it is possible to choose continuous functions σz,1(θ), σz,2(θ) that are

the singular values of (z − (p̃+ iq̃)) = e(z − (p+ iq))e for θ ∈ (0, π/2). First, note that from

the expressions for p̃′, q̃′ in Section 4.1 that H̃z is continuous in θ. Hence, the characteristic

polynomial of H̃z is a monic polynomial with coefficients that are continuous in θ. From

the quadratic formula, the eigenvalues of H̃z have expressions in terms of the coefficients

of the characteristic polynomial of H̃z. As H̃z are positive operators, then the eigenvalues

are real, i.e. the discriminant of the characteristic polynomial is non-negative. Hence, the

two branches of the square root of the discriminant are continuous in θ. Thus, we may

choose continuous expressions for the two eigenvalues of H̃z. Taking square roots of these

two non-negative continuous functions produces σz,1(θ), σz,2(θ).
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Thus,

τ
∣∣
eMe

((H̃z)
n) =

∫ π/2

0

1

2
tr((H̃z)

n) dν(θ)

=

∫ π/2

0

(σ2
z,1(θ))

n + (σ2
z,2(θ))

n

2
dν(θ) .

(4.27)

The right-hand side is the n-th moment of the following measure:

(σ2
z,1)∗(ν) + (σ2

z,2)∗(ν)

2
. (4.28)

Since moments determine compact measures on R, then

µeHze =
(σ2

z,1)∗(ν) + (σ2
z,2)∗(ν)

2
. (4.29)

By combining this with (4.26), we get the desired result:

νz = τ(e00)δ|z−(α+iβ)|2 + τ(e01)δ|z−(α+iβ′)|2 + τ(e10)δ|z−(α′+iβ)|2+

τ(e11)δ|z−(α′+iβ′)|2 + τ(e)
(σ2

z,1)∗(ν) + (σ2
z,2)∗(ν)

2
.

(4.30)

As an intermediate step in computing the Brown measure of X, we compute log∆(z−X):

Proposition 4.5. If e = 0,

log∆(z −X) =
1

2

∫ ∞

0

log(x) dνz(x)

= τ(e00) log |z − (α + iβ)|

+ τ(e01) log |z − (α + iβ′)|

+ τ(e10) log |z − (α′ + iβ)|

+ τ(e11) log |z − (α′ + iβ′)| .

(4.31)

If e ̸= 0, there exists continuous functions λ1, λ2 : (0, π/2) → C such that λ1(θ), λ2(θ) are the

eigenvalues of the element of
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
corresponding to e(p+ iq)e ∈
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(eMe, τ
∣∣
eMe

)

Let A = α′ − α and B = β′ − β and
√
z denote the principal branch of the square root

defined on C \ (−∞, 0). Then,

λ1(θ) =


α + α′

2
+ i

β + β′

2
− 1

2

√
A 2 − B2 + 2iA B cos(2θ) when |A | ≥ |B|

α + α′

2
+ i

β + β′

2
− i

2

√
B2 − A 2 − 2iA B cos(2θ) when |A | < |B|

(4.32)

λ2(θ) =


α + α′

2
+ i

β + β′

2
+

1

2

√
A 2 − B2 + 2iA B cos(2θ) when |A | ≥ |B|

α + α′

2
+ i

β + β′

2
+
i

2

√
B2 − A 2 − 2iA B cos(2θ) when |A | < |B| .

(4.33)

Then,

log∆(z −X) =
1

2

∫ ∞

0

log(x) dνz(x)

= τ(e00) log |z − (α + iβ)|

+ τ(e01) log |z − (α + iβ′)|

+ τ(e10) log |z − (α′ + iβ)|

+ τ(e11) log |z − (α′ + iβ′)|

+ τ(e)

∫ π/2

0

log |z − λ1(θ)|+ log |z − λ2(θ)|
2

dν(θ) .

(4.34)

Proof. When e = 0, the formula for log∆(z −X) follows easily from Proposition 4.4.

For e ̸= 0, from Proposition 4.4, for any continuous f : [0,∞) → C,

∫ ∞

0

f(x) dνz(x) = τ(e00)f(|z − (α + iβ)|2)

+ τ(e01)f(|z − (α + iβ′)|2)

+ τ(e10)f(|z − (α′ + iβ)|2)

+ τ(e11)f(|z − (α′ + iβ′)|2)

+ τ(e)

∫ ∞

0

f(x) d

(
(σ2

z,1)∗(ν) + (σ2
z,2)∗(ν)

2

)
.

(4.35)
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Rewriting the final integral using the change of variables formula,

∫ ∞

0

f(x) d

(
(σ2

z,1)∗(ν) + (σ2
z,2)∗(ν)

2

)
=

1

2

(∫ ∞

0

f(x) d(σ2
z,1)∗(ν) +

∫ ∞

0

f(x)(σ2
z,2)∗(ν)

)
=

1

2

(∫ π/2

0

f(σ2
z,1(θ)) dν(θ) +

∫ π/2

0

f(σ2
z,2(θ)) dν(θ)

)

=
1

2

∫ π/2

0

f(σ2
z,1(θ)) + f(σ2

z,2(θ)) dν(θ) .

(4.36)

Let fn(x) = log(x + 1/n)/2 for n = 1, 2, . . .. Then, fn : [0,∞) → R are continuous and

decrease to log(x)/2. Applying two previous equations for f = fn and using the monotone

convergence theorem to take the limit as n→ ∞,

log∆(z −X) =
1

2

∫ ∞

0

log(x) dνz(x)

= τ(e00) log |z − (α + iβ)|

+ τ(e01) log |z − (α + iβ′)|

+ τ(e10) log |z − (α′ + iβ)|

+ τ(e11) log |z − (α′ + iβ′)|

+
τ(e)

2

∫ π/2

0

log(σ2
z,1(θ)) + log(σ2

z,2(θ))

2
dν(θ) .

(4.37)

For the rest of the proof, assume that (eMe, τ
∣∣
eMe

) =
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
.

Recall that σz,1(θ), σz,2(θ) are the singular values of e(z −X)e. Then, the integrand of

68



the final integral can be simplified as:

log(σ2
z,1(θ)) + log(σ2

z,2(θ))

2
=

log(σ2
z,1(θ)σ

2
z,2(θ))

2

=
log(det((e(z −X)e)∗e(z −X)e))

2

=
log(|det((e(z −X)e))|2)

2

= log |det((e(z −X)e))|

= log |det(z − eXe)| .

(4.38)

Given that we can verify the formulas for λ1(θ), λ2(θ), then z − λ1(θ), z − λ2(θ) are the

eigenvalues for z − eXe. Thus, combining the previous two equations,

∫ π/2

0

log(σ2
z,1(θ)) + log(σ2

z,2(θ))

2
dν(θ)

=

∫ π/2

0

log |det(z − eXe)| dν(θ)

=

∫ π/2

0

log |z − λ1(θ)|+ log |z − λ2(θ)| dν(θ) .

(4.39)

Substituting this expression into (4.37) produces the desired formula for log∆(z −X).

We return to verifying the formulas for λ1(θ), λ2(θ). Straightforward computation shows

that the characteristic polynomial of eXe ∈
(
M2 (L

∞((0, π/2), ν)) ,Eν [
1
n
tr]
)
is:

p(λ) = λ2 − ((α + α′) + i(β + β′))λ+

(
αα′ − ββ′ +

i

2
((α + α′)(β + β′)− A B cos(2θ))

)
.

(4.40)

The eigenvalues of eXe are:

α + α′

2
+ i

β + β′

2
± 1

2

√
A 2 − B2 + 2iA B cos(2θ) . (4.41)

where the square root is any branch of the square root.

When |A | ≥ |B|, then Re(A 2 − B2 + 2iA B cos(2θ)) ≥ 0 and the expression for the

eigenvalues of e(p+ iq)e is continuous and well-defined if we take the square root to be the
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principal branch of the square root. This gives the formulas for λ1(θ), λ2(θ) for |A | ≥ |B|.

When |A | < |B|, then ±i
√

B2 − A 2 − 2iA B cos(2θ) are also expressions for the square

roots of A 2 − B2 + 2iA B cos(2θ), where the square root is the principal branch of the

square root. Since |A | < |B|, then Re(B2 −A 2 − 2iA B cos(2θ)) > 0 and this expression is

continuous and well-defined.. This gives the formulas for λ1(θ), λ2(θ) for |A | < |B|.

Finally, we compute the Brown measure of X, µ = 1
2π
∇2 log∆(z −X) in the following

Proposition:

Proposition 4.6. Let µ be the Brown measure of X. If e = 0,

µ =
1

2π
∇2 log∆(z −X)

= τ(e00)δα+iβ + τ(e01)δα+iβ′ + τ(e10)δα′+iβ + τ(e11)δα′+iβ′ .

(4.42)

If e ̸= 0, let λ1, λ2 : (0, π/2) → C be as in Proposition 4.5. Then,

µ =
1

2π
∇2 log∆(z −X)

= τ(e00)δα+iβ + τ(e01)δα+iβ′ + τ(e10)δα′+iβ + τ(e11)δα′+iβ′

+ τ(e)µ′ ,

(4.43)

where

µ′ =
(λ1)∗(ν) + (λ2)∗(ν)

2
. (4.44)

Additionally, µ′({α + iβ, α′ + iβ, α + iβ′, α′ + iβ′}) = 0.

Proof. If e = 0, the result follows from directly applying 1
2π
∇2 log |· − λ| = δλ to the expression

for log∆(z −X) in Proposition 4.5.
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If e ̸= 0, we take the distributional Laplacian of the result from Proposition 4.5:

1

2π
∇2 log∆(z −X) =

1

2π
∇21

2

∫ ∞

0

log(x) dνz(x)

=
1

2π
∇2

(
τ(e00) log |z − (α + iβ)|

+ τ(e01) log |z − (α + iβ′)|

+ τ(e10) log |z − (α′ + iβ)|

+ τ(e11) log |z − (α′ + iβ′)|

+ τ(e)

∫ π/2

0

log |z − λ1(θ)|+ log |z − λ2(θ)|
2

dν(θ)

)
.

(4.45)

As in the case when e = 0, applying 1
2π
∇2 log |· − λ| = δλ directly to the first 4 atomic terms

of log∆(z −X) produces the weighted sum of the 4 atoms in µ.

To apply 1
2π
∇2 log |· − λ| = δλ for the final integral, we apply Fubini’s theorem. Consider

f ∈ C∞
c (C). Since log |z − w| ∈ L1

loc(C) for all w ∈ C, then we may apply Fubini’s theorem

for i = 1, 2:

⟨f, 1

2π
∇2

∫ π/2

0

log |z − λi(θ)| dν(θ)⟩

= ⟨∇2f,
1

2π

∫ π/2

0

log |z − λi(θ)| dν(θ)⟩

=

∫
C
∇2f(z)

(
1

2π

∫ π/2

0

log |z − λi(θ)| dν(θ)

)
dλ(z)

=

∫ π/2

0

(∫
C

1

2π
∇2f(z) log |z − λi(θ)| ddλ(z)

)
dν(θ)

=

∫ π/2

0

f(λi(θ)) dν(θ) .

(4.46)

Hence, for i = 1, 2,
1

2π
∇2

∫ π/2

0

log |z − λi(θ)| dν(θ) = (λi)∗(ν) . (4.47)

Thus, the Laplacian of the integral is:

1

2π
∇2

∫ π/2

0

log |z − λ1(θ)|+ log |z − λ2(θ)|
2

dν(θ) =
(λ1)∗(ν) + (λ2)∗(ν)

2
= µ′. (4.48)
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Combining this with the atomic terms gives the desired Brown measure for X.

For the final note, it follows from Lemma 4.1 and the fact that λi({0, π/2}) = {α+ iβ, α′+

iβ, α + iβ′, α′ + iβ′} that

µ′({α + iβ, α′ + iβ, α + iβ′, α′ + iβ′}) = ν({0, π/2}) = 0 . (4.49)

Even though the weights τ(eij), τ(e) and the measure ν have not been determined yet,

we can already say something about the support of the Brown measure in general.

First, we prove a lemma about a relevant hyperbola and rectangle:

Lemma 4.7. Let α, α′, β, β′ ∈ R, where α ̸= α′ and β ̸= β′. Let A = α′−α and B = β′−β.

Let

H =

{
z = x+ iy ∈ C :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
A 2 − B2

4

}
R = {z = x+ iy ∈ C : x ∈ [α ∧ α′, α ∨ α′], y ∈ [β ∧ β′, β ∨ β′]} .

(4.50)

The equation of H is equivalent to:

(x− α)(x− α′) = (y − β)(y − β′) . (4.51)

The equation of H in coordinates

x′ = x− α + α′

2

y′ = y − β + β′

2

(4.52)

is

(x′)2 − A 2

4
= (y′)2 − B2

4
. (4.53)

It follows that for (x, y) ∈ H,

(x, y) ∈ R ⇐⇒ (4.53) ≤ 0 ⇐⇒ x ∈ [α ∧ α′, α ∨ α′] or y ∈ [β ∧ β′, β ∨ β′] . (4.54)
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Similarly,

(x, y) ∈
◦
R ⇐⇒ (4.53) < 0 ⇐⇒ x ∈ (α ∧ α′, α ∨ α′) or y ∈ (β ∧ β′, β ∨ β′) . (4.55)

Alternatively, the equation of the hyperbola is:

Re

((
z − α + α′

2
− i

β + β′

2

)2
)

=
A 2 − B2

4
. (4.56)

If z ∈ H, then z ∈ R if and only if∣∣∣∣∣Im
((

z − α + α′

2
− i

β + β′

2

)2
)∣∣∣∣∣ ≤ |A B|

2
. (4.57)

Proof. The equivalent equations for the hyperbola are straightforward to check.

The equivalences for the closed conditions follow from the following equivalences and the

equation of the hyperbola in x′, y′ coordinates

(x, y) ∈ R ⇐⇒ (x′)2 − A 2

4
≤ 0 and (y′)2 − B2

4
≤ 0 (4.58)

(x′)2 − A 2

4
≤ 0 ⇐⇒ |x′| ≤ |A |

2
⇐⇒ x ∈ [α ∧ α′, α ∨ α′]

(y′)2 − B2

4
≤ 0 ⇐⇒ |y′| ≤ |B|

2
⇐⇒ y ∈ [β ∧ β′, β ∨ β′] .

(4.59)

The equivalences for the open conditions follow from similar equivalences with the closed

conditions replaced by open conditions.

The last equation of the hyperbola follows from direct computation. For the inequality of

the rectangle, observe that

Im

((
z − α + α′

2
− i

β + β′

2

)2
)

= 2x′y′ . (4.60)

73



In light of what was previously shown,

x′y′ ≤ |A B|
4

=⇒ x′ ≤ |A |
2

or y′ ≤ |B|
2

=⇒ z ∈ R . (4.61)

Conversely,

z ∈ R =⇒ x′ ≤ |A |
2

and y′ ≤ |B|
2

=⇒ x′y′ ≤ |A B|
4

. (4.62)

Now, we will show that the support of the Brown measure is contained in H ∩R:

Corollary 4.8. Let A = α′ − α and B = β′ − β.

The continuous functions λ1, λ2 : [0, π/2] → C in Proposition 4.5 parameterize the

intersection of the hyperbola

H =

{
z = x+ iy ∈ C :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
A 2 − B2

4

}
(4.63)

with the rectangle

R = {z = x+ iy ∈ C : x ∈ [α ∧ α′, α ∨ α′], y ∈ [β ∧ β′, β ∨ β′]} . (4.64)

When |A | ≥ |B|, λ1 parameterizes the left component of H ∩ R and λ2 parameterizes the

right component of H ∩ R. When |A | < |B|, λ1 parameterizes the bottom component of

H ∩R and λ2 parameterizes the top component of H ∩R.

The support of the Brown measure is contained in H ∩R.

Proof. From Lemma 4.7, z = x+ iy is on H ∩R if and only if

(
z − α + α′

2
− i

β + β′

2

)2

=
A 2 − B2 + 2iA B cos(2θ)

4
for θ ∈ [0, π/2] . (4.65)

Note that λ1(θ), λ2(θ) are exactly the solutions to this equation. Hence, the λi(θ) parameterize

the intersection of the hyperbola and rectangle.
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For the cases of λi parameterizing the left/right or top/bottom components, it is easy

to see from the formulas that the λi map into the left/right or top/bottom components,

and since the λi(θ) parameterize all of H ∩R, then the λi have to parameterize the entire

left/right or top/bottom components.

As the λi parameterize H ∩R, then µ′ is supported on H ∩R. The 4 atoms in the Brown

measure are on (∂R) ∩H (at the 4 corners of the rectangle).

Thus, we conclude that the Brown measure is supported on H ∩R.

Motivated by the hyperbola and rectangle appearing in Corollary 4.8, we introduce the

definition of the hyperbola and rectangle associated with X:

Definition 4.9. Let p, q ∈ (M, τ) be Hermitian with laws:

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(4.66)

Let A = α′ − α and B = β′ − β.

The hyperbola associated with X is

H =

{
z = x+ iy ∈ C :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
A 2 − B2

4

}
. (4.67)

The rectangle associated with X is

R = {z = x+ iy ∈ C : x ∈ [α ∧ α′, α ∨ α′], y ∈ [β ∧ β′, β ∨ β′]} . (4.68)

While the weights τ(eij), τ(e) are as of yet undetermined in the case p and q are free, there

are some general relationships between the weights and traces of the spectral projections of p

and q:

Proposition 4.10. Let µ be the Brown measure of X and let µ′ be as in Proposition 4.6.
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Then, the µ′ measure of each of the two components of H∩R is equal to 1/2. Additionally,

τ
(
χ{α}(p)

)
= µ({α + iβ, α + iβ′}) + τ(e)/2

τ
(
χ{α′}(p)

)
= µ({α′ + iβ, α′ + iβ′}) + τ(e)/2

τ
(
χ{β}(q)

)
= µ({α + iβ, α′ + iβ}) + τ(e)/2

τ
(
χ{β′}(q)

)
= µ({α + iβ′, α′ + iβ′}) + τ(e)/2 .

(4.69)

If |A | ≥ |B|, the Brown measure of the left component of H ∩ R is τ(χ{α∧α′}(p)) and the

Brown measure of the right component of H ∩R is τ(χ{α∨α′}(p)).

If |A | < |B|, the Brown measure of the bottom component of H ∩R is τ(χ{β∧β′}(q)) and

the Brown measure of the top component of H ∩R is τ(χ{β∨β′}(q)).

Proof. Recall that

µ′ =
(λ1)∗(ν) + (λ2)∗(ν)

2
, (4.70)

where ν is a probability measure on (0, π/2). From Corollary 4.8, the λi each parameterize

one of the components of H ∩R. Hence, the µ′ measure of each component of H ∩R is 1/2.

For the equations of the traces of spectral projections of p and q, we will just prove the

first equation, the others are similar. From (4.19),

χ{a}(p) = e00 + e01 + eχ{a}(p)e . (4.71)

From Proposition 4.6, µ({α + iβ}) = τ(e00) and µ({α + iβ′}) = τ(e01). From Lemma 4.2,

τ(eχ{a}(p)e) = τ(e)/2. The desired equation follows from taking the trace of the equation

and using these facts.

For the last point, we consider the Brown measure of the left component of H ∩R when
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|A | ≥ |B| as the other cases are similar. Let L be this left component. Then,

µ(L) = µ({α ∧ α′ + iβ, α ∧ α′ + iβ′}) + τ(e)µ′(L)

= µ({α ∧ α′ + iβ, α ∧ α′ + iβ′}) + τ(e)/2

= τ(χ{α∧α′}(p)) .

(4.72)

4.3 Computation of ν and weights

In this section, we will determine the weights τ(eij), τ(e) and the measure ν in Proposition

4.6 under the assumption that p and q are freely independent.

We will use the functions ψµ, χµ, and Sµ that were introduced in Section 1.5.1. Recall

that for x ∈ (M, τ), we will use ψx, χx, and Sx to denote the respective functions with respect

to µx, the spectral measure of x.

Recall that the measure ν and the weights τ(eij), τ(e) are computed in terms of projections

p′, q′ where

p′ = χ{α′}(p)

q′ = χ{β′}(q) .
(4.73)

Since p and q are freely independent, then p′ and q′ are also freely independent. This along

with the traces τ(p′) = 1− a and τ(q′) = 1− b determine the joint law of p′, q′.

For notational convenience, in this section we will consider two general projec-

tions p and q that are freely independent and τ(p) = a, τ(q) = b for some a, b ∈ (0, 1).

This is a natural continuation of Section 4.1. It is easy to translate the results in

this section to the p′, q′ in Section 4.2.
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Recall from Section 4.1 that the weights τ(eij), τ(e) are:

τ(e00) = τ((1− p) ∧ (1− q))

τ(e01) = τ((1− p) ∧ q)

τ(e10) = τ(p ∧ (1− q))

τ(e11) = τ(p ∧ q)

τ(e) = 1− (τ(e00) + τ(e01) + τ(e10) + τ(e11)) .

(4.74)

Recall from Section 4.1 that when e ̸= 0, ((0, π/2), ν) is the pushforward measure of

((0, 1), ν∗) under the inverse of of cos2(θ) and ν∗ is the spectral measure of exe, where

x = pqp+ (1− p)(1− q)(1− p).

Since τ((pqp)n) → τ(p∧ q) as n→ ∞, then understanding the laws of pqp and (1− p)(1−

q)(1− p) are relevant for computing both ν and the weights τ(eij), τ(e). The first step to

this is computing the relevant free probability functions:

Proposition 4.11. Let p, q ∈ (M, τ) be two freely independent projections with τ(p) = a,

τ(q) = b, a, b ∈ (0, 1). Then,

ψp(z) =
az

1− z
ψq(z) =

bz

1− z

χp(w) =
w

w + a
χq(w) =

w

w + b

(4.75)

χpqp(w) =
w(1 + w)

(w + a)(w + b)
. (4.76)

Let

f(z) = 1 + (4ab− 2(a+ b))z + (a− b)2z2 . (4.77)

Then, ψpqp, ψ(1−p)(1−q)(1−p) are analytic on C \ [1,∞) and

ψpqp(z) =
1− (a+ b)z −

√
f(z)

2(z − 1)

ψ(1−p)(1−q)(1−p)(z) =
1− (2− a− b)z −

√
f(z)

2(z − 1)
,

(4.78)
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where
√
f(z) is an analytic branch of the square root of f(z) on C \ [1,∞) where

√
1 = +1.

In particular, the root(s) of f(z) are in [1,∞) and are distinct when f is quadratic.

Proof. The formula for ψp follows from

µp = (1− a)δ0 + aδ1 (4.79)

and similarly for ψq. Since ψp, ψq are linear fractional transformations, the formulas for their

inverses (χp, χq, respectively) are easily computed.

Since p and q are freely independent, then the formula for χpqp follows from the multi-

plicativity of the S-transform and its relationship with χ.

Since ∥pqp∥ ≤ 1 then µpqp is supported on [0, 1]. So, the formula

ψpqp(z) =

∫ ∞

0

tz

1− tz
dµpqp(t) =

∫ 1

0

tz

1− tz
dµpqp(t) (4.80)

defines an analytic function for z ∈ C \ [1,∞).

To compute the formula for ψpqp, recall that ψpqp = χ−1
pqp in a neighborhood of 0. Then,

z = χpqp(w) =
w(1 + w)

(w + a)(w + b)
(4.81)

if and only if

z(w + a)(w + b) = w(1 + w) . (4.82)

This is clearly true for w ̸= −a,−b and the latter equation is not satisfied for w = −a,−b ∈

(−1, 0) at any z.

This last equation is true if and only if

(z − 1)w2 + (z(a+ b)− 1)w + zab = 0 . (4.83)

Fixing a z and solving for w, then from the quadratic formula and simplifying, we obtain
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the desired formula for ψpqp. The sign of the square root follows from the general fact that

ψµ(0) = 0.

The formula for ψ(1−p)(1−q)(1−p) follows from the formula for ψpqp and noting that 1− p

and 1− q are freely independent projections with traces τ(p) = 1− a, τ(q) = 1− b. Observe

that f(z) is invariant under changing the pair (a, b) to (1− a, 1− b).

Finally, note that the
√
f(z) in both ψpqp and ψ(1−p)(1−q)(1−p) are identical since they are

defined on the domain C \ [1,∞) and agree at z = 0.

The fact that f(z) has root(s) in [1,∞) follows from the fact that
√
w is not analytic in

any neighborhood of 0, so the root(s) of f cannot be on C \ [1,∞).

For distinctness of the roots when f is quadratic, the discriminant is 16ab(1−a)(1−b) > 0

for a, b ∈ (0, 1).

Now, we proceed to determine τ(eij), τ(e). First, we need the following Lemma ([MS17],

Proposition 8):

Lemma 4.12. Let µ be a finite measure on the real line and s ∈ R. For a sequence zn → s

non-tangentially to R, (zn − s)Gµ(zn) → µ({s}).

Proof. Let zn = xn + iyn. The condition that zn → s non-tangentially to R is equivalent to

|(xn − s)/yn| ≤M for some M . In particular, yn ̸= 0.

Computation shows that

(zn − s)Gµ(zn) =

∫ ∞

−∞

zn − s

zn − t
dµ(t) . (4.84)

Let fn : R → C where

fn(t) =
zn − s

zn − t
. (4.85)

Note that fn(s) = 1 for all n and lim
n→∞

fn(t) = 0 for all t ̸= s. It suffices to show that the fn(t)

are uniformly bounded, as then the result follows from the bounded convergence theorem.
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First, rewrite fn(t):

fn(t) =
zn − s

zn − t
=

(xn − s) + iyn
(xn − t) + iyn

=
(xn − s)/yn + i

(xn − t)/yn + i
. (4.86)

Since |(xn − s)/yn + i| ≤ |(xn − s)/yn|+ 1 = 1 +M and |(xn − t)/yn + i| ≥ 1,

|fn(t)| =
|(xn − s)/yn + i|
|(xn − t)/yn + i|

≤ 1 +M

1
= 1 +M . (4.87)

as desired.

Next, we determine τ(eij), τ(e) using the free independence of p and q:

Proposition 4.13. Let p, q ∈ (M, τ) be two freely independent projections with τ(p) = a,

τ(q) = b, a, b ∈ (0, 1). Then,

τ(e00) = τ((1− p) ∧ (1− q)) = max(0, (1− a) + (1− b)− 1)

τ(e01) = τ((1− p) ∧ q) = max(0, (1− a) + b− 1)

τ(e10) = τ(p ∧ (1− q)) = max(0, a+ (1− b)− 1)

τ(e11) = τ(p ∧ q) = max(0, a+ b− 1)

τ(e) = 1− (τ(e00) + τ(e01) + τ(e10) + τ(e11)) .

(4.88)

Proof. By replacing p with 1− p and/or q with 1− q, it suffices to just prove

τ(p ∧ q) = max(0, a+ b− 1) . (4.89)

Recall that τ((pqp)n) → τ(p∧ q) as n→ ∞. Since xn → χ{1}(x) on [0, 1] and σ(pqp) ⊂ [0, 1],

then τ((pqp)n) → µpqp({1}). Hence,

τ(p ∧ q) = µpqp({1}) . (4.90)

We proceed to use Proposition 4.11 and Lemma 4.12 to determine µpqp({1}).
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In general, for z ∈ C \ σ(pqp),

Gpqp(z) =
1

z

(
ψpqp

(
1

z

)
+ 1

)
. (4.91)

From Proposition 4.11, the right-hand side of this equation is:

1

z

(
ψpqp

(
1

z

)
+ 1

)
=
z + (a+ b− 2) + z

√
f(1/z)

2z
. (4.92)

and is defined on C \ [0, 1]. Since σ(pqp) ⊂ [0, 1], then Gpqp is also defined on C \ [0, 1], so

then the following equality holds for z ∈ C \ [0, 1]:

Gpqp(z) =
z + (a+ b− 2) + z

√
f(1/z)

2z(z − 1)
. (4.93)

Thus, we may use this formula and Lemma 4.12 to obtain:

µpqp({1}) = lim
z→1

(z − 1)Gpqp(z)

= lim
z→1

z + (a+ b− 2) + z
√
f(1/z)

2z

=
a+ b− 1 + |a+ b− 1|

2

= max(0, a+ b− 1) .

(4.94)

Proposition 4.13 can be summarized by: “free projections intersect as little as possible.”

For τ(p∧ q) = max(0, a+ b− 1), the term max(0, a+ b− 1) is just the minimum trace of the

intersection between two projections p and q where of τ(p) = a and τ(q) = b:

Recall from the parallelogram law that for projections p, q ∈ (M, τ),

τ(p ∧ q) = τ(p) + τ(q)− τ(p ∨ q) ≥ τ(p)− τ(q)− 1 = a+ b− 1 . (4.95)

As τ(p ∧ q) ≥ 0, then for any projections p, q ∈ (M, τ), τ(p ∧ q) ≥ max(0, a+ b− 1).
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As a corollary, we will no longer need to consider the possibility that e = 0:

Corollary 4.14. Let p, q ∈ (M, τ) be two freely independent projections. Then, e = 0 if and

only if one of p, 1− p, q, 1− q is 0.

Proof. If one of p, 1− p, q, 1− q is 0, then it is clear that e = 0.

Suppose that none of p, 1− p, q, 1− q is 0. Then, we may apply Proposition 4.13. As τ is

faithful, it suffices to conclude that τ(e) = 0.

Consider the expressions of a and b in Proposition 4.13. Observe that the expressions

inside τ(e00) and τ(e11) are negatives of each other and hence

τ(e00) + τ(e11) = max(0,−(a+ b− 1)) + max(0, a+ b− 1) = |a+ b− 1| . (4.96)

Similarly,

τ(e01) + τ(e10) = max(0, b− a) + max(0, a− b) = |a− b| . (4.97)

Thus,

τ(e) = 0 ⇐⇒ |a+ b− 1|+ |a− b| = 1 . (4.98)

By considering the four cases of |a+ b− 1| = ±(a + b − 1) and |a− b| = ±(a − b), we see

that |a+ b− 1|+ |a− b| = 1 if and only if one of p, 1− p, q, 1− q is 0. Hence, τ(e) ̸= 0.

As a further corollary, we see that X = p+ iq is not normal:

Corollary 4.15. Let p, q ∈ (M, τ) be two freely independent projections with τ(p) = a,

τ(q) = b, a, b ∈ (0, 1). Then, X = p+ iq is not normal.

Proof. It suffices to show that p and q do not commute. For this, recall that p and q commute

if and only if pq = p ∧ q. Applying this to the other three pairs of commuting projections,

(1− p, q), (p, 1− q), and (1− p, 1− q), then (1− p)q = (1− p) ∧ q, p(1− q) = p ∧ (1− q),

and (1− p)(1− q) = (1− p) ∧ (1− q).
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Thus if p and q commute, the following equalities hold:

1 = (p+ (1− p))(q + (1− q))

= pq + (1− p)q + p(1− q) + (1− p)(1− q)

= p ∧ q + (1− p) ∧ q + p ∧ (1− q) + (1− p) ∧ (1− q) .

(4.99)

In the notation of the projections eij, e, this means that e = 0. From Corollary 4.14, this

cannot happen if a, b ∈ (0, 1). Thus, X = p+ iq is not normal.

We can now deduce that in general, when p and q have finitely many atoms, X = p+ iq

is not normal unless p or q is constant:

Corollary 4.16. Let X = p+ iq, where p, q ∈ (M, τ) are Hermitian, freely independent, and

their spectral measures are atomic i.e.

µp = a1δα1 + · · ·+ akδαk

µq = b1δβ1 + · · ·+ blδβl
,

(4.100)

where αi, βj ∈ R, ai, bj ≥ 0, and a1 + · · ·+ ak = b1 + · · · bl = 1.

Then, X is normal if and only if one of p or q is constant.

Proof. Suppose that p has k atoms and q has l atoms, so that ai, bj > 0 for all i, j.

Recall that two Hermitian operators p, q ∈ (M, τ) commute if and only if all of their

spectral projections commute. Thus, X is normal if and only if χ{αi}(p) and χ{βj}(q) commute.

But if one of these pairs commutes, then from Corollary 4.15, one of ai = 0, 1 or bj = 0, 1

must hold. Since ai, bj > 0, then either ai = 1 or bj = 1. This means that either p = αi or

q = βj. Hence, if X is normal, then one of p or q is constant. The converse is obviously

true.

Returning to the case when p and q have 2 atoms, we proceed to compute ν with

the knowledge that e ̸= 0. This requires computing ν∗, the spectral measure of exe in
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(eMe, τ
∣∣
eMe

), where x = pqp+ (1− p)(1− q)(1− p), and then pushing forward the measure

under the inverse of cos2 onto (0, π/2). The result of the computation is the following:

Proposition 4.17. Let p, q ∈ (M, τ) be two freely independent projections with τ(p) =

a, τ(q) = b, a, b ∈ (0, 1). Let f : R → R be given by:

f(x) = 1 + (4ab− 2(a+ b))x+ (a− b)2x2 . (4.101)

The measure ν on (0, π/2) is a probability measure with density with respect to Lebesgue

measure θ:
dν

dθ
=

2

π

1

τ(e)
Im
(√

f(sec2 θ)
)
cot(θ) , (4.102)

where the square root of a negative number is on the positive imaginary axis.

Proof. To compute ν∗, first note that

pqp = p ∧ q + e(pqp)e

(1− p)(1− q)(1− p) = (1− p) ∧ (1− q) + e((1− p)(1− q)(1− p))e .
(4.103)

Taking n-th powers of each side,

(pqp)n = (p ∧ q)n + (e(pqp)e)n

((1− p)(1− q)(1− p))n = ((1− p) ∧ (1− q))n + (e(1− p)(1− q)(1− p)e)n.
(4.104)

Computing ψe(pqp)e, ψe(1−p)(1−q)(1−p)e in (eMe, τ
∣∣
eMe

) and using the power series expansions

of general ψµ, then in a neighborhood of 0,

ψpqp(z) = ψp∧q(z) + τ(e)ψe(pqp)e(z)

ψ(1−p)(1−q)(1−p)(z) = ψ(1−p)∧(1−q)(z) + τ(e)ψe(1−p)(1−q)(1−p)e(z) .
(4.105)

Since the spectra of pqp, e(pqp)e, (1−p)(1−q)(1−p), e(1−p)(1−q)(1−p)e, p∧q, (1−p)∧(1−q)

are all contained in [0, 1], then this equality holds on C \ [1,∞).
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From Corollary 4.14, e ̸= 0, so

ψe(pqp)e(z) =
ψpqp(z)− ψp∧q(z)

τ(e)

=
ψpqp(z)

τ(e)
− τ(p ∧ q)

τ(e)

z

1− z

ψe(1−p)(1−q)(1−p)e(z) =
ψ(1−p)(1−q)(1−p)(z)− ψ(1−p)∧(1−q)(z)

τ(e)

=
ψ(1−p)(1−q)(1−p)(z)

τ(e)
− τ((1− p) ∧ (1− q))

τ(e)

z

1− z
.

(4.106)

Since e is central and x = pqp+ (1− p)(1− q)(1− p), then for n ≥ 1,

(exe)n = (e(pqp)e)n + (e(1− p)(1− q)(1− p)e)n. (4.107)

From Proposition 4.11, in (eMe, τ
∣∣
eMe

),

ψexe(z) = ψe(pqp)e(z) + ψe(1−p)(1−q)(1−p)e(z)

=
1

τ(e)

(
ψpqp(z) + ψ(1−p)(1−q)(1−p)(z)

)
− τ(p ∧ q)

τ(e)

z

1− z
− τ((1− p) ∧ (1− q))

τ(e)

z

1− z

=
1

τ(e)

(
−1−

√
f(z)

z − 1

)
− τ(p ∧ q) + τ((1− p) ∧ (1− q))

τ(e)

z

1− z
,

(4.108)

where

f(z) = 1 + (4ab− 2(a+ b))z + (a− b)2z2. (4.109)

From Proposition 4.11,
√
f(z) is analytic on C \ [1,∞), so this formula for ψexe is valid on

C \ [1,∞).
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Hence, the following formula for Gν∗ = Gexe is valid on C \ [0, 1]:

Gν∗(z) = Gexe(z)

=
1

z

(
ψexe

(
1

z

)
+ 1

)
=

1

τ(e)

√
f(1/z)

z − 1
− 1

τ(e)z
− τ(p ∧ q) + τ((1− p) ∧ (1− q))

τ(e)

1

z(z − 1)
.

(4.110)

Recall that ν∗ is supported on [0, 1]. We observe that the measure ν∗ has no atoms: For

t ∈ (0, 1), this follows from Lemma 4.12 and computing that lim
z→t

(z − t)Gν∗(z) = 0. Recall

from Section 4.1 that ν∗({0, 1}) = 0 is true in general. Hence, ν∗ has no atoms.

Thus, we may recover the measure completely with the formula:

lim
y→0+

∫ b

a

− 1

π
ImGν∗(x+ iy) dµ(x) = ν∗((a, b)) +

1

2
(ν∗({a}) + ν∗({b}))

= ν∗([a, b]) .

(4.111)

where a, b ∈ (0, 1).

On compact subsets of (0, 1), Gν∗(x+ iy) is uniformly bounded as y → 0+. Given that

the following pointwise limit exists for x ∈ (0, 1):

lim
y→0+

− 1

π
ImGν∗(x+ iy) , (4.112)

then this limit will be the density of ν∗ with respect to the Lebesgue measure.

Using the formula for Gν∗(z), we notice that for any x ∈ (0, 1), only one term is non-zero

in this limit:

lim
y→0+

− 1

π
ImGν∗(x+ iy) = lim

y→0+

1

π
Im

(
1

τ(e)

√
f(1/(x+ iy))

1− (x+ iy)

)

=
1

πτ(e)

lim
y→0+

Im
√
f(1/(x+ iy))

1− x
.

(4.113)
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We proceed by showing lim
y→0+

Im
√
f(1/(x+ iy)) exists. It suffices to show the following limit

exists:

lim
z→t

Im(z)<0

g(z) , (4.114)

where t ∈ (0, 1) and g is defined an analytic on the lower half-plane and g(z)2 = f(z). First,

note that for any sequence zn → t, g(zn) is bounded, because g(zn)
2 = f(zn). Considering a

convergent subsequence where g(znk
) converges, then if g(znk

) → s, then s2 = lim
nk→∞

g(znk
)2 =

lim
nk→∞

f(znk
) = f(t). Hence, g(znk

) converges to a square root of f(t). When f(t) = 0 this is

enough to prove the desired limit. When f(t) ̸= 0, we consider if there are two sequences in

the lower half-plane, zn, z
′
n → t, where g(zn), g(z

′
n) converge to the different square roots of

f(t). Taking derivatives of g(z)2 = f(z), then 2g(z)g′(z) = f ′(z). As |f ′(z)| is bounded from

above and |g(z)| bounded from below near t where f(t) ̸= 0, then |g′(z)| is bounded from

above near t. Then, g(z) is Lipschitz near t. Thus, g(zn), g(z
′
n) converging to different square

roots is a contradiction.

Since the measure is positive, then lim
y→0+

Im
√
f(1/(x+ iy)) has to be non-negative, at

least Lebesgue almost everywhere t ∈ (0, 1). It is possible to extend this to all t ∈ (0, 1) by

noting this set of t is dense and using g being Lipschitz near t where f(t) ̸= 0.

Thus, for x ∈ (0, 1),

dν∗

dλ
=

1

πτ(e)

Im
√
f(1/x)

1− x
, (4.115)

where the square root of a negative number is on the positive imaginary axis.

By applying the change of variables formula, the measure ν on (0, π/2) is given by:

dν

dθ
=

2

π

1

τ(e)
Im
(√

f(sec2 θ)
)
cot θ . (4.116)

Note that this is a probability measure, being the spectral measure of a non-zero element of

eMe.
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4.4 The Brown measure of X

By combining Propositions 4.6 and 4.17, we can determine the Brown measure of X when p

and q have 2 atoms:

Theorem 4.18. Let p, q ∈ (M, τ) be Hermitian, freely independent and

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ ,
(4.117)

where a, b ∈ (0, 1), α ̸= α′, β ̸= β′, and α, α′, β, β′ ∈ R.

Let

ϵ00 = max(0, a+ b− 1)

ϵ01 = max(0, a+ (1− b)− 1)

ϵ10 = max(0, (1− a) + b− 1)

ϵ11 = max(0, (1− a) + (1− b)− 1)

ϵ = 1− (ϵ00 + ϵ01 + ϵ10 + ϵ11) .

(4.118)

Then, ϵ > 0.

Let A = α′ − α and B = β′ − β and
√
z denote the principal branch of the square root

defined on C \ (−∞, 0). Then,

λ1(θ) =


α + α′

2
+ i

β + β′

2
− 1

2

√
A 2 − B2 + 2iA B cos(2θ) when |A | ≥ |B|

α + α′

2
+ i

β + β′

2
− i

2

√
B2 − A 2 − 2iA B cos(2θ) when |A | < |B|

(4.119)

λ2(θ) =


α + α′

2
+ i

β + β′

2
+

1

2

√
A 2 − B2 + 2iA B cos(2θ) when |A | ≥ |B|

α + α′

2
+ i

β + β′

2
+
i

2

√
B2 − A 2 − 2iA B cos(2θ) when |A | < |B| .

(4.120)

Let f : R → R be given by:

f(x) = 1 + (4ab− 2(a+ b))x+ (a− b)2x2 . (4.121)
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Let ν be a probability measure on (0, π/2) with density with respect to Lebesgue measure θ:

dν

dθ
=

2

π

1

ϵ
Im
(√

f(sec2 θ)
)
cot(θ) , (4.122)

where the square root of a negative number is on the positive imaginary axis.

Let µ′ be a complex probability measure given by:

µ′ =
(λ1)∗(ν) + (λ2)∗(ν)

2
. (4.123)

Then, the Brown measure of X = p+ iq is:

µ = ϵ00δα+iβ + ϵ01δα+iβ′ + ϵ10δα′+iβ + ϵ11δα′+iβ′ + ϵµ′ . (4.124)

Proof. The Theorem follows from combining several previous results:

The general form of µ is given in Proposition 4.6. The τ(eij), e are relabeled as ϵij, ϵ

in light of Proposition 4.13 and interchanging general p, q for p′ = χ{α′}(p), q
′ = χ{β′}(q).

Additionally, the fact that ϵ ̸= 0 comes from Corollary 4.14. Finally, the measure ν comes

from Proposition 4.17 (after switching p, q for p′, q′).

We observe that the measure ν is only dependent on the weights of the measures of p

and q (i.e. a and b), and the “shape” of the measure (positions of the atoms and λi) is only

dependent on the positions of the atoms p and q (i.e. α, α′, β, β′)

We will use the definition of µ′ from Theorem 4.18 for what follows:

Definition 4.19. Let X = p+ iq, where p, q ∈ (M, τ) are Hermitian, freely independent, and

have 2 atoms. Define µ′ to be the measure as in 4.18.

Now, we make some observations about the Brown measure of p + iq in the following

Corollaries. First, we consider the atoms of the Brown measure:

Corollary 4.20. Let µ be the Brown measure of p+ iq where p and q have 2 atoms. Then,
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1. µ′ does not have atoms.

2. µ is never atomic.

3. µ can have atoms only at the points α + iβ, α′ + iβ, α + iβ′, α′ + iβ′.

4. µ has no atoms at α+ iβ and α′ + iβ′ if and only if a+ b = 1. If a+ b ̸= 1, then µ has

exactly 1 atom at either α + iβ or α′ + iβ′, with size |a+ b− 1|.

5. µ has no atoms at α+ iβ′ and α′ + iβ if and only if a = b. If a ̸= b, then µ has exactly

1 atom at either α + iβ′ or α′ + iβ, with size |a− b|.

6. µ has 0, 1, or 2 atoms. µ has 0 atoms if and only if a = b = 1/2. µ has 1 atom if and

only if one of a+ b = 1 or a = b. µ has 2 atoms if and only if a+ b ̸= 1 and a ̸= b.

7. Changing a 7→ 1− a and/or b 7→ 1− b permutes the ϵij.

Proof. 1. ν is absolutely continuous and λi are injective, so (λi)∗(ν) does not have atoms.

Hence, µ′ does not have atoms.

2. Since ϵ ̸= 0, then µ′ ̸= 0, so µ is never atomic

3. Since µ′ does not have atoms, the only atoms of µ can occur at the points α + iβ, α′ +

iβ, α + iβ′, α′ + iβ′.

4. Note that

ϵ00 + ϵ11 = max(0,−(a+ b− 1)) + max(0, a+ b− 1) = |a+ b− 1| . (4.125)

Hence, when a + b = 1, ϵ00 + ϵ11 = 0 so µ has no atoms at α + iβ and α′ + iβ′. If

a+ b ̸= 1, then only one of a+ b− 1 and −(a+ b− 1) is positive and equal to |a+ b− 1|

and hence one of ϵ00, ϵ11 is equal to |a+ b− 1|.

5. Follows similarly to 4, with the equation

ϵ01 + ϵ10 = max(0, b− a) + max(0, a− b) = |a− b| . (4.126)
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6. Directly follows from 4. and 5.

7. Follows directly from the formulas for the ϵij.

Now, we consider the symmetries of µ′:

Corollary 4.21. Let µ be the Brown measure of p+ iq where p and q have 2 atoms

1. Swapping the roles of p and q fixes ν.

2. Changing one of a 7→ 1− a or b 7→ 1− b changes ν by changing θ → π/2− θ. These

correspond changing p 7→ α + α′ − p and q 7→ β + β′ − q, respectively.

3. Changing both a 7→ 1 − a and b 7→ 1 − b fixes ν. This corresponds to changing

both p 7→ α + α′ − p and q 7→ β + β′ − q. This amounts to changing p + iq 7→

(α + α′) + i(β + β′)− (p+ iq).

Proof. 1. Swapping the roles of p and q amounts to swapping a and b in the formula for

f(x). But, the formula for f(x) is symmetric with respect to a, b, so ν is fixed.

2. Since f is symmetric with respect to changing a and b, it suffices to check just a 7→ 1−a.

Denote f by fa,b to refer to the coefficients. For this, we just need to check the identity:

√
f1−a,b(sec2 θ) cot θ =

√
fa,b(csc2 θ) tan θ (4.127)

for θ ∈ (0, π/2). As cot θ, tan θ > 0 for θ ∈ (0, π/2), it is equivalent to check

f1−a,b(sec
2 θ) cot2 θ = fa,b(csc

2 θ) tan2 θ . (4.128)

Checking this identity is a straightforward calculation.

3. Follows from applying 2. twice.
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Figure 4.1 illustrates the behavior in Corollary 4.21 where the Brown measure of X = p+iq

is approximated by the ESD of Xn = Pn + iQn. Note the symmetry between the two ESDs.

(a) ESD of Xn = Pn + iQn

µPn = (4/5)δ0 + (1/5)δ9/10
µQn = (1/5)δ0 + (4/5)δ1

n = 1000

(b) ESD of Xn = Pn + iQn

µPn = (1/5)δ0 + (4/5)δ9/10
µQn = (1/5)δ0 + (4/5)δ1

n = 1000

Figure 4.1: ESDs for Corollary 4.21

Finally, we consider when the density of µ′ extends all the way to the 4 corners of the

intersection of the hyperbola with the boundary of the rectangle:

Corollary 4.22. Let µ be the Brown measure of p+ iq where p and q have 2 atoms

1. µ′ has density extending to α′ + iβ and α + iβ′ if and only if a = b.

2. µ′ has density extending to α + iβ and α′ + iβ′ if and only if a = 1− b.

3. µ′ has density extending to all 4 corners of the intersection of the hyperbola with the

boundary of the rectangle if and only if a = b = 1/2. Hence, the support of µ is equal to

H ∩R if and only if a = b = 1/2.

Proof. Let A = α′ − α and B = β′ − β.
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1. For z = α′ + iβ, α + iβ′,

(
z − α + α′

2
− i

β + β′

2

)2

=
A 2 − B2 − 2iA B

4
. (4.129)

Hence, z = λi(π/2).

Thus, it is equivalent to determine for which a, b the measure ν has density approaching

π/2. Note that ν has density approaching π/2 if and only if f(sec2 θ) < 0 for θ → π/2−.

Note that lim
θ→π/2−

sec2 θ = ∞. Recall that f(z) is a polynomial of degree at most 2. If f is

quadratic, then lim
z→∞

f(z) = ∞, so then ν does not have density approaching π/2. Hence,

we must have a = b. Conversely, if a = b, then f(z) = 1 + 4(a2 − a)z = 1 + 4(a− 1)az,

and the linear term has negative coefficient for a ∈ (0, 1). Thus, f(z) < 0 as z → ∞

and ν has density approaching π/2.

2. For z = α + iβ, α′ + iβ′,

(
z − α + α′

2
− i

β + β′

2

)2

=
A 2 − B2 + 2iA B

4
. (4.130)

Hence, z = λi(0).

Thus, it is equivalent to determine for which a, b the measure ν has density approaching

0. Note that ν has density approaching 0 if and only if f(sec2 θ) < 0 for θ → 0+. Since

lim
θ→0+

sec2 θ = 1, then we need that f(x) < 0 for x→ 1+. Since f(1) = (a+ b− 1)2, then

f(1) = 0, i.e. a = 1− b. Conversely, if a = 1− b, then f(1) = 0 and since f is either

quadratic with positive leading coefficient or f is linear with negative slope, then f

must be negative to the right of 1. Note that in the case where f is quadratic, f cannot

have a double root at 1 (from Proposition 4.11).

3. Follows from 1. and 2.

Figure 4.2 illustrates the behavior in Corollary 4.22 where the Brown measure of X = p+iq
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is approximated by the ESD of Xn = Pn + iQn, for a deterministic Pn, Qn ∈Mn(C). The left

ESD does not have density approaching the corners of R, but the right ESD does.

(a) ESD of Xn = Pn + iQn

µPn = (9/10)δ0 + (1/10)δ4/5
µQn = (1/2)δ0 + (1/2)δ1

n = 1000

(b) ESD of Xn = Pn + iQn

µPn = (4/5)δ0 + (1/5)δ9/10
µQn = (1/5)δ0 + (4/5)δ1

n = 1000

Figure 4.2: ESDs for Corollary 4.22

Finally, we conclude that the Brown measure of X = p+ iq uniquely determines the laws

of p and q. Here we allow p and q to be possibly constant.

Corollary 4.23. Let p, q ∈ (M, τ) be Hermitian and freely independent and

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(4.131)

where a, b ∈ [0, 1] and α, α′, β, β′ ∈ R. Let µ be the Brown measure of X = p+ iq. Then, the

assignment (µp, µq) 7→ µ is 1 to 1.

Proof. From Corollary 4.20, µ is atomic if and only if one of p or q is constant. In this case,

it is easy to determine the weights and atoms of both µp and µq from µ.

Thus, we may consider µ which is the Brown measure of X = p+ iq where p and q are

not constant.
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First, we show that µ determines the positions of the atoms of p and q. Since the support

of µ′ on H ∩R contains at least 5 points, then the equation of H is uniquely determined. If

a = b or a+ b = 1, then from Corollary 4.22, we can determine the positions of the atoms of

p and q. Thus, assume that a ̸= b and a+ b ̸= 1. From Corollary 4.20, µ has 2 atoms at the

points {α + iβ, α′ + iβ, α + iβ′, α′ + iβ′}. From these two points, at least 3 of α, α′, β, β′ are

determined. To determine the last one, we can use the equation of the hyperbola and look at

either the coefficient of x or y. Thus, µ determines the positions of the atoms of p and q.

We can determine the weights of the atoms of p and q directly from Proposition 4.10.
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CHAPTER 5

The random matrix model Xn

In this chapter, we discuss some of the properties of the random matrix model Xn = Pn+ iQn,

especially their empirical spectral distributions. In the case when Pn, Qn have 2 atoms, we

will provide the counterparts of Corollaries 4.20, 4.21, and 4.22.

We first need the following Lemma describing the dimension of the intersection of Haar-

rotated subspaces:

Lemma 5.1. Let Pn, Qn ∈Mn(C) be independently Haar-rotated projections. Then, τ(Pn ∧

Qn) = max(0, τ(Pn) + τ(Qn)− 1) with probability 1.

Proof. We may assume that Pn = UnP
′
nU

∗
n and Qn = VnQ

′
nV

∗
n , where P

′
n, Q

′
n ∈ Mn(C) are

deterministic projections. In particular, we may assume that Q′
n is the diagonal matrix with

all 1’s coming before 0’s on the diagonal. By conjugating by U∗
n, we can reduce to the case

where Pn = P ′
n is deterministic and Qn is as before.

Let W = Pn Cn and let V = QnCn. It suffices to show that dim(V +W ) is as large as

possible with probability 1, i.e. dim(V +W ) = min(n, dim(V ) + dim(W )) with probability 1.

For this, it suffices to show that if W is a subspace of Cn, V is a span of the first m columns

of a Haar-distributed unitary, and dim(W ) ≤ n−m, then V ∩W = {0} with probability 1.

We recall the following process that produces a Haar-distributed unitary Vn (see [Mec19],

Chapter 1): Pick the first column of Vn uniformly from the sphere Sn−1 ⊂ Cn, call it v1.

Having chosen the first k columns v1, . . . , vk, choose the (k + 1)-th column vk+1 uniformly

from Sn−1 ∩ span(v1, . . . , vk)
⊥, which can be identified with Sn−k−1.

We return to showing that V ∩W = {0} with probability 1. Let Vn be a Haar distributed
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unitary and Vnei = vi, so that V = span{v1, . . . , vm}. We proceed by induction on dim(V ) =

m, 1 ≤ m ≤ n. For m = 1, dim(W ) ≤ n − 1. Then, V ∩ W ≠ {0} would mean that

v1 ∈ W ∩ Sn−1. Note that W ∩ Sn−1 can be identified with S dim(W )−1, a sphere of smaller

dimension. Since v1 is chosen uniformly from Sn−1, this happens with probability 0. For the

inductive step, suppose V = span{v1, . . . , vm+1}. From the case m = 1, the first vector v1

intersects W with probability 0. Now, consider the projection of Cn onto (v1)
⊥. If W ′ is the

image ofW under this projection, then dim(W ′) = dim(W ) with probability 1 (when v1 ̸∈ W ).

The projection reduces the dimension of Cn to n−1. Then, the process of choosing the columns

v2, . . . , vm+1 reduces to the case where dim(V ) = m and dim(W ′) ≤ n−(m+1) = (n−1)−m

inside Cn−1. Thus, with probability 1, span(v2, . . . , vm+1) ∩W ′ = {0}. Hence, V ∩W = {0}

with probability 1.

Note that the result in Lemma 5.1 is the same as the analogous quantities for freely

independent projections in Proposition 4.13.

We now show that the random matrices Xn = Pn + iQn are normal with probability 0,

except in the obvious cases when Pn or Qn are constant:

Proposition 5.2. Let Xn = Pn+ iQn, where Pn, Qn ∈Mn(C) are independently Haar-rotated

Hermitian matrices with distributions

µPn = (a1)nδ(α1)n + · · ·+ (ak)nδ(αk)n

µQn = (b1)nδ(β1)n + · · ·+ (bl)nδ(βl)n ,
(5.1)

where (αi)n, (βj)n ∈ R, (ai)n, (bj)n ≥ 0, and (a1)n + · · ·+ (ak)n = (b1)n + · · · (bl)n = 1. If µPn,

µQn are not constant, then Xn is normal with probability 0.

Proof. First, we recall some general facts: Hermitian operators p, q ∈ (M, τ) commute if and

only if all of their spectral projections commute. If p, q are projections, then p and q commute

if and only if pq = p ∧ q. Applying this to the other three pairs of commuting projections,

(1− p, q), (p, 1− q), and (1− p, 1− q), then (1− p)q = (1− p) ∧ q, p(1− q) = p ∧ (1− q),

and (1− p)(1− q) = (1− p) ∧ (1− q).
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Thus, if p and q commute, the following equalities hold:

1 = (p+ (1− p))(q + (1− q))

= pq + (1− p)q + p(1− q) + (1− p)(1− q)

= p ∧ q + (1− p) ∧ q + p ∧ (1− q) + (1− p) ∧ (1− q) .

(5.2)

Hence, if p, q ∈ B(H), then we have the orthogonal decomposition:

H = (p ∧ q)H ⊕ ((1− p) ∧ q)H ⊕ (p ∧ (1− q))H ⊕ ((1− p) ∧ (1− q))H . (5.3)

Returning to the Proposition, without loss of generality, assume that (a1)n = mini(ai)n

and (b1)n = minj(bj)n. If Pn and Qn commute, then p = χ{(α1)n}(Pn) and q = χ{(β1)n}(Qn)

commute. Note that τ(p) = (a1)n and τ(q) = (b1)n. Since Pn and Qn are not constant and

(a1)n, (b1)n are minimal, then (a1)n, (b1)n ∈ (0, 1/2]. Applying Lemma 5.1, p ∧ q = 0 with

probability 1. Let W = qCn and V = pCn. From the orthogonal decomposition of Cn by

commuting projections, W ⊂ V ⊥. Since τ(q) ̸= 0, then W contains a non-zero vector v that

is uniformly distributed on Sn−1. Applying Lemma 5.1, v ∈ W with probability 0. Hence, p

and q commute with probability 0. Thus, Pn and Qn commute with probability 0, and we

conclude Xn is normal with probability 0.

Now, we consider the case when Pn and Qn have 2 atoms. In this case, we will use the

following notation:

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n
,

(5.4)

for an, bn ∈ (0, 1), αn ̸= α′
n, βn ̸= β′

n, and αn, α
′
n, βn, β

′
n ∈ R.
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P̃n = Pn −
αn + α′

n

2

Q̃n = Qn −
βn + β′

n

2

X̃n = P̃n + iQ̃n

An = α′
n − αn

Bn = β′
n − βn .

(5.5)

Analogous to H and R from Definition 4.9, let Hn and Rn be the hyperbola and rectangle

associated with Xn:

Definition 5.3. Let Pn, Qn ∈Mn(C) be Hermitian with laws:

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n
.

(5.6)

Let An = α′
n − αn and Bn = β′

n − βn.

The hyperbola associated with Xn is

Hn =

{
z = x+ iy ∈ C :

(
x− αn + α′

n

2

)2

−
(
y − βn + β′

n

2

)2

=
A 2

n − B2
n

4

}
. (5.7)

The rectangle associated with Xn is

Rn = {z = x+ iy ∈ C : x ∈ [αn ∧ α′
n, αn ∨ α′

n], y ∈ [βn ∧ β′
n, βn ∨ β′

n]} . (5.8)

We will show that the empirical spectral distribution of Xn is supported on Hn ∩Rn.

First, we consider X̃n
2:

Proposition 5.4. X̃n
2 is normal and

Re(X̃n
2) =

A 2
n − B2

n

4∥∥∥Im(X̃n
2)
∥∥∥ ≤ |AnBn|

2
.

(5.9)
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If ρ is an eigenvalue of X̃n
2 then

Re(ρ) =
A 2

n − B2
n

4

|Im(ρ)| ≤ |AnBn|
2

.

(5.10)

Proof. Observe that P̃n
2 = A 2

n /4 and Q̃n
2 = B2

n/4.

Hence,

X̃n
2 = (P̃n + iQ̃n)

2

= (P̃n
2 − Q̃n

2) + i(P̃nQ̃n + Q̃nP̃n)

=
A 2

n − B2
n

4
+ i(P̃nQ̃n + Q̃nP̃n) .

(5.11)

As P̃nQ̃n + P̃nQ̃n is Hermitian then

Re(X̃n
2) =

A 2
n − B2

n

4

Im(X̃n
2) = P̃nQ̃n + Q̃nP̃n .

(5.12)

Note that from the spectra of P̃n, Q̃n that
∥∥∥P̃n

∥∥∥ = |An| /2 and
∥∥∥Q̃n

∥∥∥ = |Bn| /2. Hence,

∥∥∥Im(X̃n
2)
∥∥∥ =

∥∥∥P̃nQ̃n + Q̃nP̃n

∥∥∥
≤
∥∥∥P̃n

∥∥∥∥∥∥Q̃n

∥∥∥+ ∥∥∥Q̃n

∥∥∥∥∥∥P̃n

∥∥∥
=

|AnBn|
2

.

(5.13)

Since Re(X̃n) is a constant, then clearly it commutes with Im(X̃n) and it follows that X̃n is

normal. Hence, X̃n is diagonalizable and its eigenvalues are of the form ρ = ρ1 + iρ2, where

ρ1 is an eigenvalue of Re(X̃n) and ρ2 is an eigenvalue of Im(X̃n). Thus,

Re(ρ) =
A 2

n − B2
n

4

|Im(ρ)| ≤
∥∥∥Im(X̃n)

∥∥∥ ≤ |AnBn|
2

.

(5.14)
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We conclude that the eigenvalues of Xn = Pn + iQn lie on Hn ∩Rn.

Proposition 5.5. The eigenvalues of Xn lie on Hn ∩Rn.

Proof. If λ is an eigenvalue for Xn = Pn + iQn, then(
λ− αn + α′

n

2
− i

βn + β′
n

2

)2

. (5.15)

is an eigenvalue for X̃n
2. Hence, from Proposition 5.4,

Re

((
λ− αn + α′

n

2
− i

βn + β′
n

2

)2
)

=
A 2

n − B2
n

4∣∣∣∣∣Im
((

λ− αn + α′
n

2
− i

βn + β′
n

2

)2
)∣∣∣∣∣ ≤ |AnBn|

2
.

(5.16)

From Lemma 4.7, λ ∈ Hn ∩Rn.

The symmetries described in Corollary 4.21 are trivial for the empirical spectral dis-

tributions of Xn, as they correspond to replacing Pn (resp. Qn) by αn + α′
n − Pn (resp.

βn + β′
n −Qn).

We introduce the following notation for the eigenspaces of a (random) matrix Yn ∈Mn(C):

Definition 5.6. Let Yn ∈Mn(C). Define the following:

• Let Eλ(Yn) be the λ-eigenspace for Yn, i.e. Eλ(Yn) = ker(Yn − λIn).

• Let Vλ(Yn) be the generalized λ-eigenspace for Yn, i.e. Eλ(Yn) =
⋃

k≥0 ker((Yn −

λIn)
k) = ker((Yn − λIn)

n).

In general, we allow for Eλ(Yn) = {0} or Vλ(Yn) = {0}, but if we specifically say that λ is an

eigenvalue, then it is implied that Eλ(Yn) ̸= {0} (and hence Vλ(Yn) ̸= {0}).
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For the atoms of Xn, the following result shows the restriction of the empirical spectral

distribution of Xn to ∂Rn is atomic, with the weight of the atoms corresponding to the

dimension of the intersection of randomly rotated eigenspaces of Pn and Qn. This behavior

matches the result of Corollary 4.20 about the Brown measure of X = p+ iq when p and q

have 2 atoms.

Proposition 5.7. Let Xn = Pn+iQn, where Pn, Qn are independently Haar-rotated Hermitian

matrices with distributions:

µPn = (a1)nδ(α1)n + · · ·+ (ak)nδ(αk)n

µQn = (b1)nδ(β1)n + · · ·+ (bl)nδ(βl)n ,
(5.17)

where (αi)n, (βj)n ∈ R, (ai)n, (bj)n ≥ 0, and (a1)n+ · · ·+(ak)n = (b1)n+ · · · (bl)n = 1. Further,

assume that the (αi)n (resp. (βj)n) are distinct and the (ai)n, (bj)n > 0.

Let imin, imax be indices such that (αimin
)n = mini(αi)n and (αimax)n = maxi(αi)n. Similarly,

let jmin, jmax be indices such that (βjmin
)n = minj(βj)n and (βjmax)n = maxj(βj)n. Then, the

empirical spectral distribution of Xn on ∂Rn is:

l∑
j=1

max(0, (aimin
)n + (bj)n − 1)δ(αimin

)n+i(bj)n+

l∑
j=1

max(0, (aimax)n + (bj)n − 1)δ(αimax )n+i(bj)n+

k∑
i=1

max(0, (ai)n + (bjmin
)n − 1)δ(αi)n+i(bjmin

)n+

k∑
i=1

max(0, (ai)n + (bjmax)n − 1)δ(αi)n+i(bjmax )n
.

(5.18)

Proof. First, we will show the only eigenvalues of Xn on ∂Rn are of the form (αi)n + i(βj)n,

and E(αi)n+i(βj)n(Xn) = E(αi)n(Pn)∩E(βj)n(Qn). Let v be a unit eigenvector for an eigenvalue

λ ∈ ∂Rn. Let λ = λ1 + iλ2, where λ1, λ2 ∈ R. Consider the following equalities:

λ1 + iλ2 = ⟨λv, v⟩ = ⟨(Pn + iQn)v, v⟩ = ⟨Pnv, v⟩+ i⟨Qnv, v⟩ . (5.19)
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Since Pn, Qn are Hermitian, then λ1 = ⟨Pnv, v⟩ and λ2 = ⟨Qnv, v⟩. Since λ ∈ ∂Rn, then one of

λ1 or λ2 is an extremal eigenvalue for Pn or Qn, respectively. Without loss of generality assume

that λ1 is an extremal eigenvalue for Pn. Then, ⟨Pnv, v⟩ = λ1 implies that Pnv = λ1v. Hence,

Qnv = λ2v. Thus, we conclude that Eλ(Xn) ⊂ Eλ1(Pn) ∩ Eλ2(Qn). The reverse inclusion is

always true, so we have equality. Since λ1 = (αi)n and λ2 = (βj)n, then λ = (αi)n + i(βj)n.

To compute the dimension of E(αi)n+i(βj)n(Xn) = E(αi)n(Pn)∩E(βj)n(Qn), we may assume

that Pn = UnP
′
nU

∗
n and Qn = VnQ

′
nV

∗
n , where P ′

n, Q
′
n are deterministic and Un, Vn are

independent Haar-distributed unitaries. Then, E(αi)n(Pn) = UnE(αi)n(P
′
n) and E(βj)n(Qn) =

VnE(βj)n(Q
′
n). From Lemma 5.1,

dim(E(αi)n+i(βj)n(Xn)) = max(0, dim(E(αi)n(P
′
n)) + dim(E(βj)n(Q

′
n))− n) . (5.20)

Dividing by n and using the definition of the (ai)n, (bj)n verifies the weights of the eigenvalues

in the empirical spectral distribution.

For the counterpart of Corollary 4.22, we will use the following description of two

subspaces in terms of their principal angles (for more information about these angles, see

[BG73], Introduction).

Proposition 5.8. Let V,W be two subspaces of Cn, where dim(V ) = k, dim(W ) = l, and

k ≤ l. Then, there exists {v1, . . . , vk}, {w1, . . . , wl} ⊂ Cn and 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2,

such that:

1. {v1, . . . , vk} are an orthogonal basis for V .

2. {w1, . . . , wl} are an orthogonal basis for W .

3.

⟨vi, wj⟩ =

cos θi i = j

0 i ̸= j .
(5.21)

For any other such decomposition, the θi are the same. These angles are called the

principal angles between V and W .
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Suppose that θm = 0 and θm+1 > 0 (or m = n). Then, dim(V ∩W ) = m.

Conversely, for any 1 ≤ m ≤ k ≤ l ≤ n such that k+ l−m ≤ n and θ1 = · · · = θm = 0 <

θm+1 ≤ · · · ≤ θk ≤ π/2, there exists subspaces V,W ⊂ Cn that satisfy the previous properties.

Proof. Let Pn be a n× k matrix whose columns form an orthogonal basis for V and let Qn

be a n × l matrix whose columns form an orthogonal basis for W . Consider the singular

value decomposition of Q∗
nPn. First, ∥Q∗

nPn∥ ≤ 1, since for ξ ∈ Ck, η ∈ Cl such that

∥ξ∥ = 1, ∥η∥ = 1, |⟨Q∗
nPnξ, η⟩| = |⟨Pnξ,Qnη⟩| ≤ ∥Pnξ∥ ∥Qnη∥ = |ξ| |η| = 1. Hence, we may

parameterize the singular values of Q∗
nPn by cos θ1, . . . , cos θk, where 0 ≤ θ1 ≤ θ2 ≤ · · · ≤

θk ≤ π/2.

From the singular value decomposition, there exists an orthogonal basis {v′1, . . . , v′k} ⊂ Ck

and an orthogonal set {w′
1, . . . , w

′
k} ⊂ Cl such that:

Q∗
nPnv

′
i = cos(θi)w

′
i . (5.22)

By adding w′
k+1, . . . , w

′
l to complete the orthogonal set to a basis of Cl, then taking vi = Pnv

′
i

and wj = Qnw
′
j satisfies the desired properties for vi and wj.

For any other such decomposition of V and W , {ṽ1, . . . , ṽk} and {w̃1, . . . , w̃l}, let P̃n be

the matrix whose columns are the ṽi and let Q̃n be the matrix whose columns are the w̃j.

Then, P̃n = PnU for some unitary U ∈ U(k) and Q̃n = QnV for some unitary V ∈ U(l).

Thus, the singular values of Q∗
nPn and the singular values of Q̃∗

nP̃n are identical. As the

singular values of each matrix are the cosines of the principal angles from their respective

decompositions, then we conclude that the principal values are unique to the pair V,W .

Next, we show that V ∩W = span{v1, . . . , vm} = span{w1, . . . , wm}. First, since ∥vi∥ =

∥wi∥ = 1 and ⟨vi, wi⟩ = 1 for i ≤ m, then vi = wi. Now, consider an element in V ∩W ,

a1v1 + · · ·+ akvk = b1w1 + · · ·+ blwl . (5.23)

By dotting both sides of the equation with vi, ai = bi cos θi for i ≤ k. By dotting both sides
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of the equation with wj, aj cos θj = bj for j ≤ k and bj = 0 for j > k. For m < i ≤ k,

ai = bi cos θi = ai cos
2 θi and cos θi ∈ [0, 1) implies that ai = bi = 0. Thus, V ∩ W =

span{v1, . . . , vm} = span{w1, . . . , wm}.

For the converse statement, let {e1, . . . , en} be an orthogonal basis for Cn. Let vi = ei for

i = 1, . . . , k, and let

wj =


ej j = 1, . . . ,m

cos θjej + sin θjej+k−m j = m+ 1, . . . , k

ej+k−m j = k + 1, . . . , l

(5.24)

Choosing V = span(v1, . . . , vn) andW = span(w1, . . . , wl) satisfies the desired properties.

Now, we can discuss the analogue of Corollary 4.22 when Pn and Qn have 2 atoms. The

fact that the Brown measure of X usually does not extend to the corners of the rectangle R

is a phenomenon that only appears in the limit: the empirical spectral distributions of Xn

always have full support on Hn ∩Rn:

Proposition 5.9. Let Xn = Pn+iQn, where Pn, Qn are independently Haar-rotated Hermitian

matrices with distributions:

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n
,

(5.25)

for an, bn ∈ (0, 1), αn ̸= α′
n, βn ̸= β′

n, and αn, α
′
n, βn, β

′
n ∈ R.

The support of Xn is Hn ∩Rn.

Proof. First, we will show that for any θ ∈ (0, π/2), there exists deterministic Pn, Qn with

distributions

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n
,

(5.26)

where Xn = Pn + iQn has eigenvalues λ1(θ), λ2(θ) from Proposition 4.5.

Since an, bn > 0, then from Proposition 5.8, there exists subspaces V,W where dim(V ) =
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n(1− an), dim(W ) = n(1− bn), and θ is one of the principal angles between V and W . We

may choose Pn, Qn so that P ′
n = χ{α′

n}(Pn) and Q
′
n = χ{β′

n}(Qn) are the projections onto V

and W , respectively. Let v ∈ V , w ∈ W be from the decomposition from Proposition 5.8

such that ⟨v, w⟩ = cos θ. Then, P ′
n and Q′

n fix U = span(v, w), and hence so do Pn, Qn, and

Xn = Pn + iQn. We claim that the restriction of Xn to U has eigenvalues λ1(θ), λ2(θ). The

restriction of P ′
n to U is the projection onto v and the restriction of Q′

n to U is the projection

onto w. By conjugating by a unitary, we may assume that v = (cos θ, sin θ) and w = (1, 0).

In this situation, the matrices of P ′
n and Q′

n with respect to the standard basis are exactly

those of p̃ and q̃ from Section 4.1. Then, the computations proceed identically as in the proof

of Proposition 4.5 to show that the eigenvalues of Xn on U are λ1(θ), λ2(θ).

We return to the situation where Xn is the random matrix model. From Corollary 4.8,

λ1, λ2 : [0, π/2] → C parameterize Hn ∩Rn. Note that λ1, λ2 map {0, π/2} to the 4 corners

of Rn. Let µn be the empirical spectral distribution of Xn. It suffices to show that for any

neighborhood U of λ1(θ) or λ2(θ), θ ∈ (0, π/2), µn(U) > 0.

For this, let Pn = UnP
′
nU

∗
n, Qn = VnQ

′
nV

∗
n , where P

′
n, Q

′
n are deterministic and Un, Vn

are independent Haar-distributed unitaries. Then, there exists a point where Un, Vn make

Xn = Pn + iQn have eigenvalue λ1(θ). As (Un, Vn) 7→ Xn is continuous, then for positive

probability neighborhoods of Un and Vn, Xn has an eigenvalue in U . Hence, µn(U) > 0.
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CHAPTER 6

Convergence of ESD of Xn to Brown measure of X

In this chapter, we consider the convergence of empirical spectral distributions of Xn when

Pn and Qn have at most 2 atoms.

If the law of Pn converges to the law of some Hermitian p ∈ (M, τ), then µp is supported

on at most 2 points: if the support of µp contained more points, we get a contradiction by

testing the convergence on non-negative compactly supported continuous functions that are

1 on sufficiently small neighborhoods of each of these points. The same result holds if the

law of Qn converges to the law of q. By considering the joint law of Pn and Qn, then we will

show the joint law of p is q is that they are freely independent.

Hence, we consider as in the previous section X = p+iq ∈ (M, τ), where p, q are Hermitian

and freely independent, with

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ ,
(6.1)

where a, b ∈ [0, 1] and α, α′, β, β′ ∈ R.

The main result of this chapter is: if the law of Pn converges to the law of p and the law

of Qn converges to the law of q, then the empirical spectral distribution of Xn converges to

the Brown measure of X.

Theorem 6.1. Consider the random matrix model Xn = Pn + iQn, where Pn, Qn ∈Mn(C)

are independently Haar-rotated Hermitian matrices with distributions with at most 2 atoms.

Suppose that the law of Pn converges to the law of p and the law of Qn converges to the law

of q. Let p, q ∈ (M, τ) where p and q are freely independent. Then, the empirical spectral

distribution of Xn converges almost surely in the vague topology to the Brown measure of
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X = p+ iq.

Recall that p and q have at most 2 atoms. If p and q each have 2 atoms, the condition that

the law of Pn converges to p and the law of Qn converges to q is equivalent to the positions

and weights of the atoms of Pn and Qn converging to the position and weights of the atoms

of p and q. Then, we may assume that αn → α, βn → β, α′
n → α′, β′

n → β′, an → a, and

bn → b. Hence, for n sufficiently large, Pn and Qn also have 2 atoms.

We will spend the vast majority of our effort dealing with the situation when p and q

each have 2 atoms. The situation where either p or q is constant (and hence real numbers)

are special cases that can be handled individually by analyzing limiting cases of the Brown

measure. We will prove the intermediate results exclusively in the case where p and q have 2

atoms (resp. Pn and Qn have 2 atoms), even if the results can be generalized for the case

when p or q is constant (resp. Pn or Qn is constant).

Once we prove Theorem 6.1, we can deduce the following converse result:

Theorem 6.2. Consider the random matrix model Xn = Pn + iQn, where Pn, Qn ∈Mn(C)

are independently Haar-rotated Hermitian matrices with distributions with at most 2 atoms.

Suppose that the empirical spectral distribution of Xn converges in probability in the vague

topology to some deterministic probability measure µ. Then, the law of Pn converges to the

law of p and the law of Qn converges to the law of q for some p, q ∈ (M, τ) where p and q are

freely independent. Hence, µ is the Brown measure of X = p+ iq.

Note that in Theorem 6.2 the hypothesis that the limit measure is a probability measure

is essential to keep the atoms from running off to infinity. For instance, if Qn = 0 and

µPn = aδ0+(1− a)δn for a ∈ (0, 1), then µn = µPn → aδ0, which is not a probability measure.

6.1 Outline of proof of convergence

In this section, we describe the strategy for proving Theorem 6.1. This strategy is well-known

and has been used in [TV10], [GKZ11] to prove analogous convergence results for the limit
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laws of various non-Hermitian random matrix models. In [TV10], [GKZ11] the limit measures

were Brown measures of operators in a tracial von Neumann algebra, and our case is similar.

The Brown measure of the operator which is the natural limit of the random matrix model is

the typical candidate for the limit measure.

We recall from Proposition 1.27 that if µn is a sequence of random probability measures

on R and µ is a deterministic measure, then the convergence of µn to µ is equivalent to the

convergence of the Stieltjes transforms Gµn to Gµ.

We wish to use a function with similar properties to the Stieltjes transform when the

measures are complex instead of real (i.e. the random matrices are not necessarily Hermitian).

Call this function Lµ, where µ is a complex measure. We are looking for an Lµ that has the

following properties:

• µ can be recovered from Lµ.

• Convergence of Lµn to Lµ implies convergence of µn to µ.

• The convergence Lµn to Lµ can be proven in practice, where µ is the Brown measure of

an operator.

Since the case where µ are real measures is well-understood, then ideally Lµ could be

related to a real measure.

One such Lµ is the logarithmic potential Lµ : C → C, given by:

Lµ(z) =

∫
C
log |z − w| dµ(w) . (6.2)

In general, recall from Proposition 3.11 that if µ is the Brown measure of X, then

Lµ(z) = log∆(z −X) . (6.3)

In particular, this holds for a random matrix Xn and its empirical spectral distribution µXn .
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When µ is a compactly supported probability measure, Lµ ∈ L1
loc(C). When µ is

the empirical spectral distribution of a random matrix, this follows from the fact that

log |· − w| ∈ L1
loc(C) for any w ∈ C. In general Lµ ∈ L1

loc(C) follows from the fact that

log |· − w| ∈ L1
loc(C) uniformly for w in a compact set.

In particular, Lµ is a well-defined distribution and since 1
2π
∇2 log |· − w| = δw, then

1

2π
∇2Lµ = µ , (6.4)

so we can recover µ from Lµ.

Thus, if we can show the limit:

Lµn(z) → Lµ(z) , (6.5)

then we should be able to take Laplacians and conclude that µn → µ. The following

Proposition ( [Tao12], Theorem 2.8.3) makes this precise:

Proposition 6.3. Let µn be a sequence of random probability measures on C and suppose

that µ is a deterministic probability measure on C. Assume that µn, µ are almost surely

supported on some compact set. Suppose for Lebesgue almost every z ∈ C, Lµn(z) → Lµ(z)

almost surely (resp. in probability). Then, µn converges almost surely (resp. in probability)

in the vague topology.

Proof. Let λ be the Lebesgue measure on C. Make the randomness of µn explicit, so that

µn : (Ω,P) → P(C). Let µn, µ be almost surely supported on K ′.

Recall that Lµn , Lµ ∈ L1
loc(C). We will need something slightly stronger, say Lµn , Lµ ∈

L2
loc(C) uniformly almost surely, i.e. for any compact set K ⊂ C, ∥Lµn∥L2(K) , ∥Lµ∥L2(K) ≤M

for some M > 0, almost surely.
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From Minkowski’s integral inequality:

∥Lµ(z)∥L2(K) =

(∫
K

|Lµ(z)|2 dλ(z)
)1/2

=

(∫
K

(∫
K′

log |z − w| dµ(w)
)2

dλ(z)

)1/2

≤
∫
K′

(∫
K

log |z − w|2 dλ(z)
)1/2

dµ(w) .

(6.6)

We have a similar inequality where µ is replaced by µn. The uniform bound follows by noting

that log |· − w| ∈ L2(K) uniformly as w ranges over K ′.

First, we consider the almost sure convergence. To determine the convergence of µn in

the vague topology, it suffices to prove convergence for f ∈ C∞
c (C): For arbitrary f ∈ Cc(C),

we may take a sequence fk → f uniformly, where fk ∈ C∞
c (C). Then, on the measure 1 set

where ⟨fk, µn⟩ → ⟨fk, µ⟩ for all k, a standard ϵ/3 argument shows that ⟨f, µn⟩ → ⟨f, µ⟩.

For f ∈ C∞
c (C), since 1

2π
∇2Lµn(z) = µn, then ⟨f, µn⟩ = ⟨ 1

2π
∇2f, Lµn⟩ and similarly for µ.

Hence, it suffices to prove that ⟨f, Lµn⟩ → ⟨f, Lµ⟩ almost surely for f ∈ C∞
c (C). For this, it

suffices to prove that for any K ⊂ C, Lµn → Lµ in L1(K) almost surely.

Now, we claim that for almost every ω ∈ Ω, Lµn(z) → Lµ(z) for almost every z ∈ K.

This amounts to switching the “almost every” quantifiers in the hypothesis. This follows

from the following application of Fubini’s theorem:

0 =

∫
C
P ({ω ∈ Ω : Lµn(z) ̸→ Lµ(z)}) dλ(z)

= (P× λ) ({(ω, z) ∈ (Ω,C) : Lµn(z) ̸→ Lµ(z)})

=

∫
Ω

λ ({z ∈ C : Lµn(z) ̸→ Lµ(z)}) dω .

(6.7)

We return to showing that Lµn → Lµ in L1(K) almost surely. Consider an ω such that

Lµn(z) → Lµ(z) for almost every z ∈ K. Let fn = |Lµn(z)− Lµ(z)|, so our goal is to show
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that fn → 0 in L1(K). For M > 0, consider:

fn = min(fn,M) + (fn −M)χf>M(z) . (6.8)

For any M > 0, the first term goes to 0 in L1(K) as n→ ∞ from the bounded convergence

theorem.

For the second term,∫
K

(fn −M)χfn>M(z) dλ(z) ≤
∫
fn>M

fn dλ(z)

≤
∫
fn>M

fn
fn
M

dλ(z)

≤ 1

M
∥fn∥L2(K)

≤
∥Lµn∥L2(K) + ∥Lµ∥L2(K)

M
.

(6.9)

Thus, choosing M sufficiently large and taking n→ ∞ shows that Lµn → Lµ in L1(K).

Next, we consider the convergence in probability. First, we note it suffices to prove the

convergence for f ∈ C∞
c (C). For arbitrary g ∈ Cc(C), let f ∈ C∞

c (C) so that ∥f − g∥∞ ≤ ϵ/3.

Then,

{ω : |⟨g, µn⟩ − ⟨g, µ⟩| > ϵ} ⊂ {ω : |⟨f, µn⟩ − ⟨g, µn⟩| > ϵ/3}

∪ {ω : |⟨f, µn⟩ − ⟨f, µ⟩| > ϵ/3}

∪ {ω : |⟨f, µ⟩ − ⟨g, µ⟩| > ϵ/3} .

(6.10)

But, two of the sets are empty, so then

P({ω : |⟨g, µn⟩ − ⟨g, µ⟩| > ϵ}) ≤ P({ω : |⟨f, µn⟩ − ⟨f, µ⟩| > ϵ/3}) . (6.11)

so the weak convergence of ⟨f, µn⟩ → ⟨f, µ⟩ implies the weak convergence of ⟨g, µn⟩ → ⟨g, µ⟩.

For f ∈ C∞
c (C), since 1

2π
∇2Lµn(z) = µn, then ⟨f, µn⟩ = ⟨ 1

2π
∇2f, Lµn⟩ and similarly for µ.

Hence, it suffices to prove that ⟨f, Lµn⟩ → ⟨f, Lµ⟩ in probability for f ∈ C∞
c (C).

We again need a Fubini argument to switch the quantifiers of ω ∈ Ω and z ∈ C in the
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hypothesis. Let f be supported on compact K ⊂ C. Fix ϵ > 0 and consider the following

application of Fubini’s theorem:∫
K

P({ω ∈ Ω : |Lµn(z)− Lµ(z)| > ϵ}) dλ(z)

= (P× λ)({(ω, z) ∈ (Ω, K) : |Lµn(z)− Lµ(z)| > ϵ})

=

∫
Ω

λ({z ∈ K : |Lµn(z)− Lµ(z)| > ϵ}) dω .

(6.12)

As n→ ∞ the integrand of the first integral goes to 0. Hence, from the bounded convergence

theorem, the integral goes to 0. For ω ∈ Ω, let Kn,ϵ = {z ∈ K : |Lµn(z)− Lµ(z)| > ϵ}. As

∥λ(Kn,ϵ)∥L1(Ω) → 0 as n→ ∞ then for any δ > 0, P({ω ∈ Ω : λ(Kn,ϵ) > δ}) → 0 as n→ ∞.

Consider an ω ∈ Ω such that λ(Kn,ϵ) ≤ δ. Then, the following inequalities hold:

∫
K

|f(z)(Lµn(z)− Lµ(z))| dλ(z)

=

∫
Kn,ϵ

|f(z)(Lµn(z)− Lµ(z))| dλ(z) +
∫
K\Kn,ϵ

|f(z)(Lµn(z)− Lµ(z))| dλ(z)

≤ ∥f∥L∞(K)

∫
K

|Lµn(z)− Lµ(z)|χKn,ϵ(z) dλ(z) + ϵ

∫
K\Kn,ϵ

|f(z)| dλ(z)

≤ ∥f∥L∞(K) ∥Lµn(z)− Lµ(z)∥L2(K) λ(Kn,ϵ)
1/2 + ϵ ∥f∥L1(K)

≤ ∥f∥L∞(K) (∥Lµn(z)∥L2(K) + ∥Lµ(z)∥L2(K))δ
1/2 + ϵ ∥f∥L1(K) .

(6.13)

Thus, the weak convergence follows by choosing ϵ, δ sufficiently small and taking n→ ∞.

Thus, in order to prove the convergence of µn to µ, it suffices to show for almost every

z ∈ C

Lµn(z) → Lµ(z) . (6.14)

almost surely.

From Lµn(z) = log(∆(z −Xn)) and Lµn(z) = log(∆(z −X)), to prove Theorem 6.1, it

suffices to show the following convergence of integrals for almost every z ∈ C and almost
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surely:
1

2

∫ ∞

0

log x dνn,z(x) →
1

2

∫ ∞

0

log x dνz(x) . (6.15)

In general, the strength of the convergence of these integrals (i.e. whether the convergence is

in probability or almost surely) determines the strength of the convergence of µn to µ.

Note also that we have reduced the problem of the convergence of the law of a non-

Hermitian Xn to the convergence in law of the Hermitian Hz(Xn) = (z −Xn)
∗(z −Xn) for

z ∈ C. Thus, we may employ Hermitian techniques to calculate the limit and identify an X

for which νz is the spectral measure for Hz(X) = (z −X)∗(z −X).

There is usually already a candidate X ∈ (M, τ) where the laws νn,z → νz for z ∈ C. In

this case, this X = p+ iq, where p and q are as in Chapter 4. This comes from Theorem 1.37

about the asymptotic freeness of independent Hermitian operators and Haar unitaries.

The main difficulty in justifying the convergence of the integrals is the fact that log x is

not continuous at 0: log x→ −∞ as x→ 0−. So, the logarithmic integrals may not converge

if the measures νn,z have too much mass near 0. Note that the measure νn,z is supported on

[σmin(z −Xn)
2, ∥z −Xn∥], so in order to prove the convergence of the logarithmic integrals,

it suffices bound the minimum singular value from below.

In practice, this is the most difficult part of these convergence arguments. In our situation,

we use the geometry of the support of the Brown measure of X (see Corollary 4.8).

Thus, given we can complete the following steps:

1. Find a suitable X ∈ (M, τ) so that for almost every z ∈ C, νn,z → νz almost surely in

the vague topology.

2. Bound the minimum singular value of z −Xn from below to justify the convergence

1

2

∫ ∞

0

log x dνn,z(x) →
1

2

∫ ∞

0

log x dνz(x) . (6.16)

for almost every z ∈ C almost surely.
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then we can conclude that µn → µ, where µ is the Brown measure of X.

6.2 The law νz

In this section, we assume that p and q have 2 atoms, i.e.

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(6.17)

where a, b ∈ (0, 1), α ̸= α′, β ̸= β′, and α, α′, β, β′ ∈ R. We have the convergences αn → α,

βn → β, α′
n → α′, β′

n → β′, an → a, and bn → b.

Let νn,z be the spectral measure of Hz(Xn) = (z−Xn)
∗(z−Xn) and let νz be the spectral

measure of Hz(X) = (z −X)∗(z −X). We will show that the laws νn,z converge to νz

This fact follows from Theorem 1.37, which we apply to observe the following Proposition:

Proposition 6.4. The joint law of Pn, Qn in
(
Mn(C),E

[
1
n
tr
])

(resp.
(
Mn(C), 1

n
tr
)
) is asymptotically free (resp. almost surely asymptotically free), converg-

ing to the law of two free Hermitian operators p, q ∈ (M, τ) where

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(6.18)

Proof. Recall that Pn = UnP
′
nU

∗
n, Qn = VnQ

′
nV

∗
n , where Un, Vn are independent Haar-

distributed unitaries and P ′
n, Q

′
n are deterministic, Hermitian, and

µP ′
n
= anδαn + (1− an)δα′

n

µQ′
n
= bnδβn + (1− bn)δβ′

n
.

(6.19)

Because of the invariance property of the Haar measure, any choice of the P ′
n, Q

′
n gives the
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same law for Xn. Thus, let P
′
n, Q

′
n be given by:

P ′
n = (α′

n − αn)P̃n + αn

Q′
n = (β′

n − βn)Q̃n + βn ,
(6.20)

where P̃n is the matrix of the projection onto the first n(1− an) standard basis vectors of Cn

and Q̃n is the matrix of the projection onto the first n(1− bn) standard basis vectors of Cn.

Then, τ(P̃n) = 1− an, τ(Q̃n) = 1− bn and

P̃n = P̃n ∧ Q̃n + P̃n ∧ (1− Q̃n)

Q̃n = P̃n ∧ Q̃n + (1− P̃n) ∧ Q̃n

(6.21)

τ(P̃n ∧ Q̃n) = min(τ(P̃n), τ(Q̃n))

τ(P̃n ∧ (1− Q̃n)) = τ(P̃n)− τ(P̃n ∧ Q̃n)

τ((1− P̃n) ∧ Q̃n) = τ(Q̃n)− τ(P̃n ∧ Q̃n)

τ((1− P̃n) ∧ (1− Q̃n)) = 1−max(τ(P̃n), τ(Q̃n)) .

(6.22)

The projections P̃n ∧ Q̃n, P̃n ∧ (1 − Q̃n), (1 − P̃n) ∧ Q̃n, (1 − P̃n) ∧ (1 − Q̃n) are mutually

orthogonal and sum to 1. Hence, their joint law converges to the joint law of mutually

orthogonal projections e11, e10, e01, e00 that sum to 1, where

τ(e11) = min(1− a, 1− b)

τ(e10) = 1− a−min(1− a, 1− b)

τ(e01) = 1− b−min(1− a, 1− b)

τ(e00) = 1−max(1− a, 1− b) .

(6.23)
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By forming the variables:

p̃ = e11 + e10

q̃ = e11 + e01

p′ = (α′ − α)p̃+ α

q′ = (β′ − β)q̃ + β .

(6.24)

then it follows that the law of P ′
n, Q

′
n converges to the law of p′, q′, where

µp′ = aδα + (1− a)δα′

µq′ = bδβ + (1− b)δβ′ .
(6.25)

Since P ′
n, Q

′
n are deterministic, then they are independent from Un, Vn. Further, ∥P ′

n∥ =

max(αn, α
′
n) and ∥Q′

n∥ = max(βn, β
′
n) and since these sequences converge, then ∥P ′

n∥, ∥Q′
n∥

are uniformly bounded. Hence, from Theorem 1.37, the law of P ′
n, Q

′
n becomes (almost surely)

asymptotically free from Un, Vn. Let u, v be the limit variables for Un, Vn. It is easy to check

that p = up′u∗ and vq′v∗ are freely independent. Hence, the joint law of Pn, Qn converges to

the law of p, q, where p and q are free and

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(6.26)

As a direct corollary, we observe the following:

Corollary 6.5. Let νn,z be the spectral measure of Hz(Xn) = (z −Xn)
∗(z −Xn) and let νz

be the spectral measure of Hz(X) = (z −X)∗(z −X). For every z ∈ C, νn,z converges to νz

almost surely in the vague topology.

Proof. This follows from Proposition 6.4 and noting that the convergence of the laws almost

surely implies convergence of the µn almost surely.
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6.3 Bounds on the minimum singular value

Recall that for our random matrix model, Xn = Pn + iQn, where Pn, Qn ∈ Mn(C) are

Hermitian and

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n
,

(6.27)

where an, bn ∈ [0, 1], and α, α′
n, βn, β

′
n ∈ R. In this section, we will assume that Pn and Qn

have 2 atoms, so that an, bn ∈ (0, 1) and αn ̸= α′
n, βn ̸= β′

n.

Recall the following notation from Chapter 5:

P̃n = Pn −
αn + α′

n

2

Q̃n = Qn −
βn + β′

n

2

X̃n = P̃n + iQ̃n

An = α′
n − αn

Bn = β′
n − βn .

(6.28)

In this section, we will bound the minimum singular value of z −Xn from below. We

could use the principal angles between two subspaces from Chapter 5 to obtain the bound,

but we provide a different proof that analyzes the restriction of X to the eigenspaces of X̃n
2.

First, we examine the relationship between the (generalized) eigenspaces of Xn and X̃n
2

to see that Xn is almost diagonalizable:

Proposition 6.6. Let ρ ∈ C. If ρ ̸= 0, let

λ+(ρ) =
αn + α′

n

2
+ i

βn + β′
n

2
+
√
ρ

λ−(ρ) =
αn + α′

n

2
+ i

βn + β′
n

2
−√

ρ ,

(6.29)
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where
√
ρ is a chosen square root of ρ. Then,

Eρ(X̃n
2) =


Eλ+(ρ)(Xn) + Eλ−(ρ)(Xn) ρ ̸= 0

Vαn+α′
n

2
+i

βn+β′n
2

(Xn) ρ = 0 .
(6.30)

Further,

Vαn+α′
n

2
+i

βn+β′n
2

(Xn) = ker

((
Xn −

αn + α′
n

2
− i

βn + β′
n

2

)2
)
. (6.31)

Proof. Since X̃n
2 and Xn commute, then Xn fixes the Eρ(X̃n

2).

Consider Xn

∣∣
Eρ(X̃n

2)
: Eρ(X̃n

2) → Eρ(X̃n
2). Then, Xn

∣∣
Eρ(X̃n

2)
satisfies the polynomial

p(x) =

(
x− αn + α′

n

2
− i

βn + β′
n

2

)2

− ρ . (6.32)

When ρ ̸= 0, p(x) is separable with roots λ+(ρ), λ−(ρ). Hence,

Eρ(X̃n
2) = Eλ+(ρ)

(
Xn

∣∣
Eρ(X̃n

2)

)
+ Eλ−(ρ)

(
Xn

∣∣
Eρ(X̃n

2)

)
. (6.33)

For ρ = 0,

0 = p
(
Xn

∣∣
Eρ(X̃n

2)

)
=

(
Xn

∣∣
Eρ(X̃n

2)
− αn + α′

n

2
− i

βn + β′
n

2

)2

. (6.34)

Hence,

E0(X̃n
2) = ker

((
Xn

∣∣
E0(X̃n

2)
− αn + α′

n

2
+ i

βn + β′
n

2

)2
)

= Vαn+α′
n

2
+i

βn+β′n
2

(
Xn

∣∣
E0(X̃n

2)

)
.

(6.35)

Recall from Proposition 5.4 that X̃n
2 is normal so that ⊕ρEρ(X̃n

2) is an orthogonal decom-

position of the domain of Xn. For ρ ̸= 0, the λ+(ρ), λ−(ρ) are distinct and not equal to
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αn+α′
n

2
+ iβn+β′

n

2
. Hence,

Eλ+(ρ)

(
Xn

∣∣
Eρ(X̃n

2)

)
= Eλ+(ρ)(Xn)

Eλ−(ρ)

(
Xn

∣∣
Eρ(X̃n

2)

)
= Eλ−(ρ)(Xn)

Vαn+α′
n

2
+i

βn+β′n
2

(
Xn

∣∣
E0(X̃n

2)

)
= Vαn+α′

n
2

+i
βn+β′n

2

(Xn) .

(6.36)

Since X̃n
2 is normal (Proposition 5.4), then ⊕ρEρ(X̃n

2) is an orthogonal decomposition

of the domain of z −Xn. Thus, in order to bound σmin(z −Xn) from below, it suffices to

bound σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
from below. No meaningful bound can be given when z is an

eigenvalue of Xn, as this is exactly when σmin(z−Xn) = 0. Hence, it suffices to consider when

z is not an eigenvalue of Xn. Then, the following Proposition bounds σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
from below when z is not an eigenvalue of Xn. The idea is to consider z −Xn on invariant

subspaces with small dimension.

Proposition 6.7. Let z ∈ C. Consider ρ ∈ C that is an eigenvalue of X̃n
2. For ρ ̸= 0, let

λ+(ρ) =
αn + α′

n

2
+ i

βn + β′
n

2
+
√
ρ

λ−(ρ) =
αn + α′

n

2
+ i

βn + β′
n

2
−√

ρ ,

(6.37)

where
√
ρ is a chosen square root of ρ.

Suppose that z is not an eigenvalue of Xn

∣∣
Eρ(X̃n

2)
. Then, the minimum singular value of

(z −Xn)
∣∣
Eρ(X̃n

2)
is bounded from below by the following:

σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
≥



min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥∥(z −Xn)
∣∣
Eρ(X̃n

2)

∥∥∥ ρ ̸= 0

∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥∥(z −Xn)
∣∣
E0(X̃n

2)

∥∥∥ ρ = 0 .

(6.38)
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Proof. Recall that

σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
= min

ζ∈Eρ(X̃n
2)

ζ ̸=0

∥(z −Xn)(ζ)∥
∥ζ∥

. (6.39)

First, consider if ρ ̸= 0. From Proposition 6.6, Eρ(X̃n
2) = Eλ+(ρ)(Xn) + Eλ−(ρ)(Xn). Let

V = Eλ+(ρ)(Xn), W = Eλ−(ρ)(Xn). Then,

min
ζ∈Eρ(X̃n

2)
ζ ̸=0

∥(z −Xn)(ζ)∥
∥ζ∥

= min
v∈V,w∈W
(v,w) ̸=(0,0)

∥(z −Xn)(v + w)∥
∥v + w∥

. (6.40)

Fix some v ∈ V,w ∈ W . Let U = span(v, w). Then, z −Xn fixes U . We proceed to show

that

σmin

(
(z −Xn)

∣∣
U

)
≥ min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥(z −Xn)

∣∣
U

∥∥ . (6.41)

Note that
∥∥(z −Xn)

∣∣
U

∥∥ ̸= 0 since z is not an eigenvalue of (z −Xn)
∣∣
U
. If either v = 0 or

w = 0, then (z −Xn)
∣∣
U
= z − λ+(ρ) or (z −Xn)

∣∣
U
= z − λ−(ρ). Without loss of generality

assume that (z −Xn)
∣∣
U
= z − λ+(ρ). Then, the following verifies (6.41):

σmin

(
(z −Xn)

∣∣
U

)
= |z − λ+(ρ)|

=
|z − λ+(ρ)|2∥∥(z −Xn)

∣∣
U

∥∥
≥ min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥(z −Xn)

∣∣
U

∥∥ .

(6.42)

If v ̸= 0 and w ̸= 0 then dim(U) = 2 and the eigenvalues of (z −Xn)
∣∣
U
are z−λ+(ρ), z−λ−(ρ).

Since the absolute value of the product of the eigenvalues of (z −Xn)
∣∣
U
is equal to the product

of the singular values of (z −Xn)
∣∣
U
, then

|z − λ+(ρ)| |z − λ−(ρ)| = σ1((z −Xn)
∣∣
U
)σ2((z −Xn)

∣∣
U
)

=
∥∥(z −Xn)

∣∣
U

∥∥σmin

(
(z −Xn)

∣∣
U

)
.

(6.43)
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Hence,

σmin

(
(z −Xn)

∣∣
U

)
=

|z − λ+(ρ)| |z − λ−(ρ)|∥∥(z −Xn)
∣∣
U

∥∥
≥ min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥(z −Xn)

∣∣
U

∥∥ .

(6.44)

Thus, in all cases of dim(U), (6.41) holds. The following inequalities complete the proof in

the case where ρ ̸= 0:

min
v∈V,w∈W
(v,w)̸=(0,0)

∥(z −Xn)(v + w)∥
∥v + w∥

≥ min
v∈V,w∈W
(v,w)̸=(0,0)

min
ζ∈U
ζ ̸=0

∥(z −Xn)(ζ)∥
∥ζ∥

= min
v∈V,w∈W
(v,w)̸=(0,0)

σmin

(
(z −Xn)

∣∣
U

)
≥ min

v∈V,w∈W
(v,w)̸=(0,0)

min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥(z −Xn)
∣∣
U

∥∥
≥ min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥∥(z −Xn)

∣∣
Eρ(X̃n

2)

∥∥∥ .

(6.45)

Next, consider if ρ = 0. For ζ ∈ E0(X̃n
2), let V = span(ζ, X̃nζ). Since E0(X̃n

2) = ker(X̃n
2),

then X̃n fixes V , so z −Xn also fixes V . We proceed to show that:

σmin

(
(z −Xn)

∣∣
V

)
=

∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥(z −Xn)
∣∣
V

∥∥ . (6.46)

Note that
∥∥(z −Xn)

∣∣
V

∥∥ ̸= 0 since z is not an eigenvalue of (z −Xn)
∣∣
V
. If X̃nζ = 0, then

(z −Xn)
∣∣
V
= z − αn+α′

n

2
− iβn+β′

n

2
. In this case, the equality clearly holds.

If X̃nζ ̸= 0, then dim(V ) = 2. The only eigenvalue of (z −Xn)
∣∣
V
is z − αn+α′

n

2
− iβn+β′

n

2
.

Since the absolute value of the product of the eigenvalues of (z −Xn)
∣∣
V

is equal to the

product of the singular values of (z −Xn)
∣∣
V
, then

∣∣∣∣z − αn + α′
n

2
− i

βn + β′
n

2

∣∣∣∣2 = σ1((z −Xn)
∣∣
V
)σ2((z −Xn)

∣∣
V
)

=
∥∥(z −Xn)

∣∣
V

∥∥σmin

(
(z −Xn)

∣∣
V

)
.

(6.47)

123



Rearranging this produces (6.46). Hence, in all cases of dim(V ), (6.46) holds. The following

inequalities complete the proof in the case where ρ = 0:

min
ζ∈Eρ(X̃n

2)
ζ ̸=0

∥(z −Xn)(ζ)∥
∥ζ∥

≥ min
ζ∈Eρ(X̃n

2)
ζ ̸=0

min
v∈V
v ̸=0

∥(z −Xn)(v)∥
∥v∥

= min
ζ∈Eρ(X̃n

2)
ζ ̸=0

σmin((z −Xn)
∣∣
V
)

= min
ζ∈Eρ(X̃n

2)
ζ ̸=0

∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥(z −Xn)
∣∣
V

∥∥
≥

∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥∥(z −Xn)
∣∣
E0(X̃n

2)

∥∥∥ .

(6.48)

Both of the inequalities in the above chain are actually equalities, but we will not need this

fact.

We conclude by unifying the cases ρ ̸= 0 and ρ = 0 in Proposition 6.7 and presenting a

bound on the entire domain of z −Xn for all z ∈ C:

Theorem 6.8. Let z ∈ C. The minimum singular value of z −Xn satisfies the following

inequality:

σmin(z −Xn) ≥
dist(z,Hn ∩Rn)

2

∥z −Xn∥
. (6.49)

Proof. If z is an eigenvalue of Xn, then the left-hand side of the inequality is 0 and from

Proposition 5.5 the right-hand side of the inequality is also 0. Thus, we may assume that z is

not an eigenvalue of Xn.

Consider ρ ∈ C that is an eigenvalue for X̃n
2. Since z is not an eigenvalue for Xn, then z
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is not an eigenvalue of Xn

∣∣
Eρ(X̃n

2)
. Hence, from Proposition 6.7,

σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
≥



min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥∥(z −Xn)
∣∣
Eρ(X̃n

2)

∥∥∥ ρ ̸= 0

∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥∥(z −Xn)
∣∣
E0(X̃n

2)

∥∥∥ ρ = 0 .

(6.50)

Now, we proceed to make these estimates independent of ρ.

If ρ ̸= 0, recall from Proposition 6.6 that Eρ(X̃n
2) = Eλ+(ρ)(Xn) + Eλ−(ρ)(Xn). Since ρ is

an eigenvalue of X̃n
2 then at least one of λ+(ρ), λ−(ρ) is an eigenvalue for Xn

∣∣
Eρ(X̃n

2)
. From

Proposition 5.5, any eigenvalue of Xn is on Hn ∩Rn. Hence,

dist(z,Hn ∩Rn) ≤ min (|z − λ+(ρ)| , |z − λ−(ρ)|)

≤
∥∥∥(z −Xn)

∣∣
Eρ(X̃n

2)

∥∥∥
≤ ∥z −Xn∥ .

(6.51)

Since z is not an eigenvalue of Xn, then ∥z −Xn∥ ̸= 0 and thus the following inequalities

hold:
min (|z − λ+(ρ)| , |z − λ−(ρ)|)2∥∥∥(z −Xn)

∣∣
Eρ(X̃n

2)

∥∥∥ ≥ dist(z,Hn ∩Rn)
2

∥z −Xn∥
. (6.52)

If ρ = 0, recall from Proposition 6.6 that E0(X̃n
2) = Vαn+α′

n
2

+i
βn+β′n

2

(Xn) so that
αn+α′

n

2
+iβn+β′

n

2

is an eigenvalue for Xn

∣∣
E0(X̃n

2)
. From Proposition 5.5, any eigenvalue of Xn is on Hn ∩Rn.

Hence,

dist(z,Hn ∩Rn) ≤
∣∣∣∣z − αn + α′

n

2
− i

βn + β′
n

2

∣∣∣∣
≤
∥∥∥(z −Xn)

∣∣
E0(X̃n

2)

∥∥∥
≤ ∥z −Xn∥ .

(6.53)

Since z is not an eigenvalue of Xn, then ∥z −Xn∥ ̸= 0 and thus the following inequalities
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hold: ∣∣∣z − αn+α′
n

2
− iβn+β′

n

2

∣∣∣2∥∥∥(z −Xn)
∣∣
Eρ(X̃n

2)

∥∥∥ ≥ dist(z,Hn ∩Rn)
2

∥z −Xn∥
. (6.54)

We conclude that for any ρ that is an eigenvalue for X̃n
2,

σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
≥ dist(z,Hn ∩Rn)

2

∥z −Xn∥
. (6.55)

Since X̃n
2 is normal (Proposition 5.4), then ⊕ρEρ(X̃n

2) is an orthogonal decomposition of

the domain of z −Xn. Hence,

σmin(z −Xn) = min
{ρ:Eρ(X̃n

2 )̸={0}}
σmin

(
(z −Xn)

∣∣
Eρ(X̃n

2)

)
≥ min

{ρ:Eρ(X̃n
2 )̸={0}}

dist(z,Hn ∩Rn)
2

∥z −Xn∥

=
dist(z,Hn ∩Rn)

2

∥z −Xn∥
.

(6.56)

6.4 Proofs of convergence and converse

In this section, we complete the proof of Theorem 6.1 and then deduce Theorem 6.2.

Proof of Theorem 6.1. Let

µPn = anδαn + (1− an)δα′
n

µQn = bnδβn + (1− bn)δβ′
n

(6.57)

for an, bn ∈ [0, 1], αn, α
′
n, βn, β

′
n ∈ R.

Let µn be the empirical spectral distribution of Xn.
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Recall that µp and µq have at most 2 points in their supports, so then

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(6.58)

for a, b ∈ [0, 1], α, α′, β, β′ ∈ R.

First, we consider the case where p and q have 2 atoms, i.e. (a, b) ∈ (0, 1) and α ̸= α′,

β ̸= β′.

In this situation, using the convergence µPn → µp on non-negative f ∈ Cc(R) that is

supported on a neighborhood of α and f(α) = 1, then an atom of µPn converges to α. A

similar argument shows that an atom of µPn converges to α′. By choosing f to be 1 on

neighborhoods of α and α′, we see that the weights of the atoms of Pn converge to the weights

of the corresponding atoms of p. Thus, we may assume that αn → α, βn → β, α′
n → α′,

β′
n → β′, an → a, and bn → b.

Recall that we need to complete the following steps to complete the proof of Theorem 6.1

when p and q have 2 atoms:

1. Find a suitable X ∈ (M, τ) so that for almost every z ∈ C, νn,z → νz almost surely in

the vague topology.

2. Bound the minimum singular value of z −Xn from below to justify the convergence

1

2

∫ ∞

0

log x dνn,z(x) →
1

2

∫ ∞

0

log x dνz(x) . (6.59)

for almost every z ∈ C almost surely.

The first step was completed in Corollary 6.5, where we identified X = p + iq, where

p, q ∈ (M, τ) were Hermitian, freely independent, and

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ .
(6.60)
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For the second step, it suffices to prove the convergence of the logarithmic integrals for

z ̸∈ H ∩R, where H and R are the hyperbola and rectangle associated with X = p+ iq. Fix

a z ̸∈ H ∩R. Let Hn and Rn be the hyperbola and rectangle associated with Xn.

From the triangle inequality, for arbitrary z ∈ C, the following inequality holds:

dist(z,H ∩R) ≤ dist(z,Hn ∩Rn) + sup
w∈Hn∩Rn

dist(w,H ∩R) . (6.61)

Hence,

dist(z,Hn ∩Rn) ≥ dist(z,H ∩R)− sup
w∈Hn∩Rn

dist(w,H ∩R) . (6.62)

As n→ ∞, supw∈Hn∩Rn
dist(w,H ∩R) → 0. This can be seen by using the parameterization

of Hn∩Rn, H∩R in Corollary 4.8 and comparing the points on Hn∩Rn, H∩R with the same

θ. Since z ̸∈ H ∩R, then dist(z,H ∩R) > 0. So, for n sufficiently large, dist(z,Hn ∩Rn) > δ

for some δ > 0.

Since ∥Xn∥ ≤ ∥Pn∥+ ∥Qn∥ = max(αn, α
′
n) + max(βn, β

′
n) and the sequences all converge,

then the Xn are uniformly bounded. Hence, the z −Xn are uniformly bounded.

Combining these two facts and Theorem 6.8, then for n sufficiently large, σmin(z−Xn) > δ

almost surely, for some δ > 0. As Hz(Xn) = (z −Xn)
∗(z −Xn) are uniformly bounded, then

for n sufficiently large, νn,z is almost surely supported on [δ,M ] for some M > 0.

By applying the convergence νn,z → νz in the vague topology to f ∈ Cc([0,∞)) where

f ≡ 0 on [δ,M ], we see that νz is also supported on [δ,M ].

Hence, we may choose f ∈ Cc([0,∞)) such that f(x) = log(x) on [δ,M ], so that the

logarithmic integrals converge almost surely:

1

2

∫ ∞

0

log x dνn,z(x) =
1

2

∫ ∞

0

f(x) dνn,z(x) −→

1

2

∫ ∞

0

f(x) dνz(x) =
1

2

∫ ∞

0

log x dνz(x) .

(6.63)

This completes the proof in the case where p and q both have 2 atoms.

Next, we consider the case where p, q ∈ R. By applying the convergence µPn → µp = δp
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on f that is 1 on small a neighborhood of p and supported on a slightly larger neighborhood,

we see that the sum of the weights of the atoms of Pn in any neighborhood U converges to 1

as n→ ∞. The same result applies for Qn and q with neighborhood V . Let n be sufficiently

large so that the sum of the weights of the atoms of Pn in U is larger than 1− ϵ and the sum

of the weights of the atoms of Qn in V is larger than 1 − ϵ. If αn, α
′
n ∈ U and βn, β

′
n ∈ V ,

then µn is supported on U × V , so µn(U × V ) = 1 and it is clear that µn tends to δp+iq. In

the other case, suppose that αn ∈ U but α′
n ̸∈ U . Then, an = τ(χ{αn}(Pn)) > 1− ϵ, so then

from the parallelogram law,

µn({αn + iβn}) = τ(χ{αn}(Pn) ∧ χ{βn}(Qn))

= τ(χ{αn}(Pn)) + τ(χ{βn}(Qn))− τ(χ{αn}(Pn) ∨ χ{βn}(Qn))

> (1− ϵ) + τ(χ{βn}(Qn))− 1

= τ(χ{βn}(Qn))− ϵ

= µQn({βn})− ϵ .

(6.64)

Similarly, µn({αn + iβ′
n}) > µQn({β′

n})− ϵ. Then, the µn-measure of the atom(s) of {αn +

iβn, αn + iβ′
n} in U × V has measure greater than 1− 3ϵ, so again µn tends to δp+iq.

Finally, the case where exactly one of p and q is constant follows in a similar manner.

Suppose that q has 2 atoms and p ∈ R. Then b ∈ (0, 1), β ≠ β′, bn → b, βn → β, and β′
n → β′.

For the case that both atoms of Pn are in a small neighborhood of p, the branches of Hn ∩Rn

are in small neighborhoods of {p+ iβ, p+ iβ′}, and from Proposition 4.10 these branches have

the appropriate measures µQn({βn}) = bn and µQn({β′
n}) = 1− bn so that µn tends towards

µ = bδβ + (1− b)δβ′ . For the case that αn is in a small neighborhood of p and µPn({αn}) ≈ 1,

then we use the previous argument to show that the µn({αn + iβn}) ≈ µQn({βn}) and

µn({αn + iβ′
n}) ≈ µQn({β′

n}).

Now, we prove the converse result, Theorem 6.2:

Proof of Theorem 6.2. Let µn be the empirical spectral distribution of Xn.
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The majority of the proof is spent showing that µn converges vaguely to a probability

measure µ, then µPn and µQn are tight, i.e. for any subsequence of these sequences, there

exists a further subsequence that converges in the vague topology.

Having shown this, the conclusion follows by passing to subsequences, using Theorem 6.1,

and using that the Brown measure of X = p+ iq determines µp and µq (Corollary 4.23).

Now, it suffices to show a subsequence of µn has µPnk
and µQnk

converge.

First, if the atoms of Pn and Qn, αn, α
′
n, βn, β

′
n are uniformly bounded then we may

extract a convergent subsequence where all atoms and weights an, bn ∈ [0, 1] converge. Then,

it is clear that Pnk
and Qnk

converge in the vague topology.

Thus, we may assume that (αn, α
′
n, βn, β

′
n) ∈ R4 is not uniformly bounded. By passing

to a subsequence, we may assume that ∥(αn, α
′
n, βn, β

′
n)∥ → ∞. Also assume without loss of

generality that |αn| = max(|αn| , |α′
n| , |βn| , |β′

n|). We proceed to show that an, the weight of

αn in µPn , converges to 0.

Let X ′
n = Xn/αn, so that X ′

n = P ′
n + iQ′

n, where P
′
n = Pn/αn, Q

′
n = Qn/αn. Then, the

atoms of P ′
n are at 1, α′

n/αn with respective weights an, 1− an and the atoms of Q′
n are at

βn/αn, β
′
n/αn with respective weights bn, 1− bn. By construction, the atoms of P ′

n, Q
′
n are in

[−1, 1]. Let µ′
n be the empirical spectral distribution of X ′

n.

Since µ is a probability measure and µn → µ in probability in the vague topology, then

we deduce that for every ϵ > 0 and δ > 0 there exists a compact set Kϵ ⊂ C such that

µ(Kϵ) > 1− ϵ and for n sufficiently large, P(µn(Kϵ) > 1− ϵ) > 1− δ.

Now, note that µ′
n(

1
αn
Kϵ) = µn(Kϵ). For any neighborhood U of 0 in C, we may choose n

sufficiently large to that 1
αn
Kϵ ⊂ U . Hence, for n sufficiently large, P(µ′

n(U) > 1− ϵ) > 1− δ.

This implies that µ′
n converges to δ0 in probability.

Any subsequence of X ′
n has a convergent subsequence where the atoms and weights of

P ′
nk
, Q′

nk
converge. From Theorem 6.1, this implies that µ′

nk
converges almost surely to µ′,

the Brown measure of X ′ = p′ + iq′, where µP ′
nk

converges to µp′ and µQ′
nk

converges to µq′ .

Hence, µ = δ0. Since the assignment (µp′ , µq′) 7→ µ′ is 1-1, then p = q = 0. Hence, µPnk
→ δ0.
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This implies that µPn → δ0. For this to happen, the weight of the atom at 1, an, has to

tend to 0. Thus we conclude that if (αn, α
′
n, βn, β

′
n) ∈ R4 is not uniformly bounded then the

weight of one of these atoms goes to 0.

Without loss of generality, let us keep assuming that an → 0. If α′
n is not bounded, then

by passing a subsequence where |α′
n| → ∞, then the atoms α′

n + iβn and α′
n + iβ′

n go to

∞. As the weight of αn in Pn tends to 1, then from the previous argument, the measure

of the atoms α′
n + iβn and α′

n + iβ′
n tends to 1. Then the limit measure has to be µ = 0, a

contradiction. Hence, α′
n is bounded, and by passing to a subsequence we may assume that

α′
n → α′. Thus, µPn → δα′ for some α′ ∈ R.

Now, we proceed to show that µQn is a tight sequence of measures. Since µn → µ in

probability and µ is a probability measure, then for any ϵ > 0, we may choose Kϵ so that

for all n sufficiently large, P(µn(Kϵ) > 1− ϵ) > 0. Also assume n is sufficiently large so that

an < ϵ. Hence,

µn({α′
n + iβn}) = τ(χ{α′

n}(Pn) ∧ χ{βn}(Qn))

= τ(χ{α′
n}(Pn)) + τ(χ{βn}(Qn))− τ(χ{α′

n}(Pn) ∨ χ{βn}(Qn))

= (1− an) + τ(χ{βn}(Qn))− τ(χ{α′
n}(Pn) ∨ χ{βn}(Qn))

> (1− ϵ) + τ(χ{βn}(Qn))− 1

= τ(χ{βn}(Qn))− ϵ

= µQn({βn})− ϵ

= bn − ϵ .

(6.65)

Similarly, µn({α′
n+ iβn}) > (1−bn)− ϵ. Thus, for ϵ < 1/3, at least one of α′

n+ iβn, α
′
n+ iβn is

in Kϵ. Let Cϵ be the projection of Kϵ onto the y coordinate. If both α′
n + iβn, αn + iβn ∈ Kϵ,

then µQn(Cϵ) > 1 − 2ϵ. Assume that α′
n + iβn ̸∈ Kϵ. Then, with positive probability,

µn(Kϵ) > 1− ϵ, so µn({α′
n + iβn}) < ϵ. This implies that bn < 2ϵ, so that µQn(Cϵ) > 1− 2ϵ.

Hence, Qn is tight.

Then, by passing to subsequences, using Theorem 6.1, and using that the Brown measure
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of X = p+ iq determines µp and µq, then we conclude that the law of Qn converges to the

law of q. Using that the law of Pn converged to δα′ , then this completes the proof.
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CHAPTER 7

Quaternions and Quaternionic Green’s function

In this chapter, we introduce the Quaternions and the Quaternionic Green’s function for an

arbitrary X ∈ (M, τ). Then, we will discuss how this relates to the Brown measure of X. We

will give an outline of how to compute this function when X = p+ iq, where p, q ∈ (M, τ) are

Hermitian and freely independent. Finally, we provide the heuristics describing the boundary

and support of the Brown measure of X = p + iq in terms of the Quaternionic Green’s

function.

7.1 Quaternions and notation

In this section, we will set the notation for the quaternions and list some basic facts.

The Quaternions is a real 4-dimensional algebra generated by the elements 1, i, j, k,

with the relations

i2 = j2 = k2 = ijk = −1 . (7.1)

A general quaternion Q can be written as:

Q = x0 + x1i+ x2j + x3k, x0, x1, x2, x3 ∈ R . (7.2)

From physics, the Pauli matrices in M2(C) are defined by:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (7.3)
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It is easy to see that iσ1, iσ2, and iσ3 have the desired relations of the quaternionic generators

i, j, and k. The subalgebra of M2(C) these elements and the identity matrix generate is

4-dimensional over R and hence is a representation of the quaternions. Explicitly, we have

the following definitions for the quaternions that will be used for the rest of the thesis:

Definition 7.1. The quaternions are the real subalgebra ofM2(C) consisting of the following

matrices:

H =

Q =

A iB

iB A

 : A,B ∈ C

 . (7.4)

In terms of the coefficients xi in (7.2),

A = x0 + ix3 B = x1 + ix2, x0, x1, x2, x3 ∈ R . (7.5)

The coefficients xi are called the real coefficients of Q and A, B are the complex

coefficients of Q.

We will refer to the real numbers in the quaternions as the subset where x1 = x2 = x3 = 0

(i.e. A ∈ R and B = 0). Similarly, we will refer to the complex numbers in the quaternions

as the subset where x1 = x2 = 0 (i.e. B = 0).

We highlight the fact that the quaternions are not a complex algebra, since the center of

H is R and not C. In particular, this means H is not a von Neumann algebra.

There are some relevant operations on quaternions:

• the inverse of a quaternion is just the matrix inverse.

• The conjugate of a quaternion Q = x0 + x1i+ x2j + x3k is Q = x0 − x1i− x2j − x3k.

In the matrix representation of Q, this corresponds to the matrix Q∗.

• The norm of a quaternion, |Q|, is defined by:

|Q| = (QQ)1/2 =
√
x20 + x21 + x22 + x23 (7.6)
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and is equal to the square root of the determinant of Q. From the multiplicative

property of the determinant, it easily follows that |Q1Q2| = |Q1| |Q2| for quaternions

Q1, Q2.

• The norm on quaternions induces a metric, and when we speak of the convergence of

a sequence of quaternions Qk → Q, it is with respect to this metric.

Every quaternion Q is diagonalizable with eigenvalues

g = x0 + i
√
x21 + x22 + x23

g = x0 − i
√
x21 + x22 + x23 .

(7.7)

From the (7.7), we observe the following facts:

• The eigenvalues of Q come in conjugate pairs.

• The eigenvalues of Q are distinct if and only if Q ̸∈ R.

• The eigenvalues of Q are real if and only if Q ∈ R.

• |g|2 = detQ = |Q|2 (so |g| = |Q|) and det(Q) = |A|2 + |B|2.

In what follows, it is convenient to define gI to be the eigenvalue of Qi with non-negative

imaginary part. Using the notation in (7.4) and (7.5),

Qi =

 iA B

−B −iA

 =

 iA i(iB)

i(iB) iA

 . (7.8)

Hence,

gI = −x3 + i
√
x22 + x21 + x20 . (7.9)

Remark 7.2. Given a quaternion Q, our convention (unless stated otherwise) will be to use

g (resp gI) to denote the eigenvalue of Q (resp. Qi) with non-negative imaginary part, i.e.

as in (7.7) and (7.9).
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It is easy to see directly from formulas that |g| =
∣∣gI∣∣. This also follows from the fact

that gI is an eigenvalue of Qi and |i| = 1. There is another condition between g and gI that

is evident from the formulas:
∣∣Re(gI)∣∣ ≤ Im(g). These conditions characterize g and gI , as

discussed in the following Proposition:

Proposition 7.3. Let z, w ∈ C such that

• Im(z) ≥ 0.

• Im(w) ≥ 0.

• |z| = |w|.

• |Re(w)| ≤ Im(z).

Then, (z, w) = (g, gI) for some Q ∈ H. The converse is also true. In polar coordinates where

z = reiθ and w = seiϕ, r, s ≥ 0, θ, ϕ ∈ [0, 2π), the conditions become:

• θ ∈ [0, π].

• ϕ ∈ [0, π].

• r = s.

• ϕ ∈ [|π/2− θ| , π − |π/2− θ|].

Proof. Let Re(z) = x0, Re(w) = −x3, for some x0, x3 ∈ R. Since |Re(w)| ≤ Im(z) and

Im(z) ≥ 0, then we may choose x1, x2 ∈ R such that Im(z) =
√
x21 + x22 + x23. From

|z| = |w| and Im(w) ≥ 0, then Im(w) =
√
x22 + x21 + x20. Hence, (z, w) = (g, gI) for

Q = x0+x1i+x2j+x3k. The converse and the polar coordinates condition are straightforward

to check.

We also record the following observations about when g, gI ∈ R implies that Q ∈ R or

Q ∈ iR:
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Proposition 7.4. For Q ∈ H, g ∈ R implies that Q ∈ R and gI ∈ R implies that Q ∈ iR.

But, gI ∈ iR does not imply that Q ∈ R. But, Q ∈ C and gI ∈ iR does imply that Q ∈ R.

Proof. The first statements about g ∈ R and gI ∈ R follow from the fact that Q has real

eigenvalues if and only if Q ∈ R (and similarly for Qi). If Q = i, then gI ∈ iR but Q ̸∈ R.

If Q ∈ C, then gI is either ig or ig depending on the sign of Im(ig), and so gI ∈ iR implies

g ∈ R, and hence Q ∈ R.

The conventions Im(g) ≥ 0 and Im(gI) ≥ 0 are useful for some general computations, but

it has a drawback: if Q ∈ C, then the eigenvalue g may not be equal to Q: g = Q when

Im(Q) ≥ 0 and g = Q otherwise. Similarly, Qi ∈ C, but we can only conclude that either

gI = Qi or gI = Qi.

But, many of the complex-valued functions of g we will consider arise from context as

functions of a quaternion Q. This means that these functions only depend on the set of

eigenvalues of Q, i.e. these functions are invariant under changing g and g. We record the

following Lemma for these situations:

Lemma 7.5. Let Q ∈ C, g (resp. g) as in (7.7) (resp. (7.9), and f1, f2 : C → C where

f1(g) = f1(g) f2(g) = f2(g) . (7.10)

Then,

f1(g) = f1(Q) f2(g
I) = f2(Qi) . (7.11)

In particular, when we evaluate f1 and f2 at g and gI respectively, we may assume that g = Q

and gI = ig.

Proof. Recall that g = Q when Im(Q) ≥ 0 and g = Q otherwise. Since f1(g) = f1(g), in

either case f1(g) = f1(Q). Similar logic shows that f2(g
I) = f2(Qi). Hence, for purposes of

evaluating f1(g) and f2(g
I), we may assume that g = Q and gI = Qi = ig.

We also record the following fact about the convergence of quaternions to a real number:
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Lemma 7.6. Let Qk be a sequence of quaternions where the eigenvalues of Qk converge to

some real number g ∈ C. Then, Qk converges to g ∈ C.

Proof. Let gk, gk be the eigenvalues of Qk, where

gk = (x0)k + i
√

(x1)2k + (x2)2k + (x3)2k . (7.12)

gk converges to a real t ∈ R if and only if (x1)k → 0, (x2)k → 0, (x3)k → 0, and (x0)k → t.

This implies that Qk converges to t.

7.2 Quaternionic Green’s function

In this section, we will define the Quaternionic Green’s function of an arbitrary X ∈ (M, τ)

in terms of the operator-valued Cauchy transform. It generalizes the Stieltjes transform

from Section 1.4.2 by considering a non-Hermitian operator and being a function defined on

quaternions. The term “Quaternionic Green’s function” comes from the physics literature (see

[BS15], [JN04], [JN06], [FZ97b], and [JNP97]), and we will use it instead of “Quaternionic

Stieltjes transform/Cauchy transform.” In the mathematics literature, this method was first

suggested in [Gir84] and is now commonly known as the Hermitization method ([BSS18],

[GKZ11]). Applied to a specific problem, it is known as the linearization trick ([BMS17]).

We will briefly define the relevant concepts in operator-valued free probability and then

apply them in our situation (summarized from ([MS17], Chapters 9, 10) and ([AP], Chapter 9)

). We will only consider the case of a von Neumann algebra, but there is a more general notion

of an operator-valued probability space that generalizes the non-commutative probability

spaces from Section 1.3. Then, we will show how to pass from the conventions in the

mathematics literature to the conventions in the physics literature in our setup.

First, we define the conditional expectation on von Neumann algebras:

Definition 7.7. Let M be a von Neumann algebra and B a von Neumann subalgebra. A

conditional expectation from E to B is a linear map E : M → B that satisfies the
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following properties:

1. If x ≥ 0, then E(x) ≥ 0.

2. E(b) = b for b ∈ B.

3. E(b1xb2) = b1E(x)b2 for b1, b2 ∈ B, x ∈M .

We will refer to (M,E,B) as an operator-valued probability space.

When (M, τ) is a tracial von Neumann algebra and B = C, we can take E = τ .

In general, when (M, τ) is a tracial von Neumann algebra and B is a von Neumann

subalgebra, there exists a unique conditional expectation E :M → B such that τ ◦ E = τ .

Recall that L2M is the Hilbert space obtained by completing M with respect to the inner

product ⟨a, b⟩ = τ(b∗a). Then, this conditional expectation E is the restriction to M of the

orthogonal projection from L2M onto L2B.

Note that this generalizes the conditional expectation in the classical probability spaceM =

L∞(X,A, µ), where A is the σ-algebra of µ-measurable sets. In this case, B = L∞(X,B, µ),

where B is a sub σ-algebra of A, and the conditional expectation is the restriction to M of

the orthogonal projection of L2M = L2(X,A, µ) onto L2B = L2(X,B, µ).

As in the case when B = C, there is a notion of freeness with respect to E:

Definition 7.8. Let (M,E,B) be an operator-valued probability space. Let {Ai}i∈I be a

family of von Neumann subalgebras of M that each contain B. Then, {Ai}i∈I are freely

independent with amalgamation over B if for any aj ∈ Ak(j) with k(j) ̸= k(j + 1),

j = 1, . . . , n = 1 and E(ai) = 0, then

E(a1 . . . , an) = 0 . (7.13)

Let r, (mk)1≤k≤r be positive integers. The sets {X1,p, . . . , Xmp,p}1≤p≤r of non-commutative

random variables are free with amalgamation over B if the algebras they generate with

B are free.
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Now, we define the operator-valued Cauchy transform and consider its domain of definition.

Recall that the usual complex-valued Cauchy transform for a Hermitian x ∈ (M, τ) is a

complex analytic function Gx : C \ R → C \ R given by:

Gx(z) = τ
[
(z − x)−1

]
. (7.14)

Letting H+(C) be the upper half-plane and H−(C) be the lower half-plane, then in particular,

Gx : H+(C) → H−(C).

We can generalize the complex-valued Cauchy transform by considering a Cauchy transform

that takes values in a subalgebra B ⊂M , where τ is replaced by the conditional expectation

E. We state the definition of the operator-valued Cauchy transform and some facts about it:

Definition 7.9. Let (M,E,B) be an operator-valued probability space. For x ∈ (M, τ), let

Im(x) = x+x∗

2i
. Let the operator upper/lower half-planes be:

H+(B) = {x ∈ B : Im(x) > 0}

H−(B) = {x ∈ B : Im(x) < 0} .
(7.15)

Let x ∈ (M, τ) where x is Hermitian. Then, the operator-valued Cauchy transform

GX : H+(B) → H−(B) is given by:

GX(b) = E
[
(b−X)−1

]
. (7.16)

Further, the function GX is Fréchet differentiable on H+(B).

Analogous to the complex-valued case, there is also an operator-valued R-transform:

Definition 7.10. Let (M,E,B) be an operator-valued probability space. Let x ∈ (M, τ)

where x is Hermitian.

Then for b ∈ H+(B) in a neighborhood of infinity, Gx(b) is invertible. Thus, for c ∈ H−(B)
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in a neighborhood of 0, we may define the operator-valued R-transform

Rx(c) = G⟨−1⟩
x (c)− c−1 . (7.17)

Finally, the connection between the freeness and the R-transform in the operator-valued

case is the operator-valued addition law:

Theorem 7.11. Let (M,E,B) be an operator-valued probability space, and let x, y ∈

(M,E,B) be Hermitian and freely independent with amalgamation over B. Where the

functions are defined,

Rx+y(c) = Rx(c) +Ry(c) . (7.18)

Now, we introduce the setup in the mathematical literature to our problem of determining

the Brown measure of X = p + iq: Let (M, τ) be a tracial von-Neumann algebra. Then,(
M2(M), τ

[
1
2
tr
])

is another tracial von-Neumann algebra. The unique trace-preserving

conditional expectation fromM2(M) ontoM2(C) is the block trace : bTr :M2(M) →M2(C),

given by:

bTr

m11 m12

m21 m22

 =

τ(m11) τ(m12)

τ(m21) τ(m22)

 . (7.19)

Thus, we will work in the operator-valued probability space (M2(M), bTr,M2(C)). We

will use ∼ over the notation coming from the mathematics literature, then drop it for the

corresponding objects from the physics literature.

Let X ∈M . Then, consider

X̃ =

 0 X

X∗ 0

 ∈M2(M) . (7.20)

Note that X̃ is Hermitian, so we may consider the operator-valued Cauchy transform

GX̃ : H+(M2(C)) → H−(M2(C)) given by:

GX̃(Q̃) = bTr[(Q̃− X̃)−1] , (7.21)
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where Q̃ ∈ H+(M2(C)).

We consider Q̃ ∈M2(C) of the form:

Q̃ =

iB A

A iB

 , A,B ∈ C. (7.22)

Then,

Im(Q̃) =

Re(B) 0

0 Re(B)

 (7.23)

and hence Q̃ ∈ H+(M2(C)) when Re(B) > 0.

To pass from the mathematics notation to the physics notation, let J ∈ M2(C) be the

following matrix:

J =

0 1

1 0

 . (7.24)

Note that J2 = I, so that J = J−1. Then, let the corresponding physics quantities be:

X = X̃J =

X 0

0 X∗

 ∈M2(M)

Q = Q̃J =

A iB

iB A

 ∈M2(C) .

(7.25)

Note that Q is exactly the general form of a quaternion from (7.4). Then, we can define the

Quaternionic Green’s function by:

GX(Q) = bTr[(Q−X)−1] . (7.26)

The Quaternionic Green’s function GX(Q) and operator-valued Cauchy transform GX̃(Q̃) are

related by the following formula:

GX(Q) = J GX̃(Q̃) . (7.27)
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From general facts about the operator-valued Cauchy transform, we know that GX(Q) is

well-defined for B > 0 and maps into J H−(M2(C)). But, we can say more: GX(Q) is defined

for quaternions Q where B ̸= 0, and in this case GX(Q) is a quaternion:

To check that Q − X is invertible when B ̸= 0, first let XA = A − X. Note that for

any A,B ∈ C where B ̸= 0, (XA)
∗XA + |B|2 ≥ |B|2 > 0, and hence is invertible. The same

applies for XA(XA)
∗ + |B|2.

Direct computation shows that a left inverse of Q−X is:

((XA)
∗XA + |B|2)−1(XA)

∗ −iB((XA)
∗XA + |B|2)−1

−iB(XA(XA)
∗ + |B|2)−1 (XA(XA)

∗ + |B|2)−1XA

 . (7.28)

Similarly, a right inverse of Q−X is:

(XA)
∗(XA(XA)

∗ + |B|2)−1 −iB((XA)
∗XA + |B|2)−1

−iB(XA(XA)
∗ + |B|2)−1 XA((XA)

∗XA + |B|2)−1

 . (7.29)

These two are the same and define a two-sided inverse given that we can verify the following

equations:

((XA)
∗XA + |B|2)−1(XA)

∗ = (XA)
∗(XA(XA)

∗ + |B|2)−1

(XA(XA)
∗ + |B|2)−1XA = XA((XA)

∗XA + |B|2)−1 .
(7.30)

These two equations can be verified by multiplying on the left and right by (XA)
∗XA + |B|2

and XA(XA)
∗ + |B|2 to clear the inverses.

Next, we observe that GX(Q) is a quaternion. This is equivalent to the following equations:

τ [(XA)
∗XA + |B|2)−1(XA)

∗] = τ [XA((XA)∗XA + |B|2)−1]

τ [((XA)
∗XA + |B|2)−1] = τ [(XA(XA)

∗ + |B|2)−1] .
(7.31)

The first equation follows from using the tracial property of τ and noting that the traces of

an adjoint pair of operators are conjugate. The second equation follows from the fact that

the spectral measures of (XA)
∗XA and XA(XA)

∗ are the same and applying the continuous
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functional calculus.

When B = 0 in the quaternion Q, then Q = A ∈ C and

GX(Q) = GX(A) = τ [(A−X)−1] , (7.32)

and this formula is well-defined even for non-Hermitian X when A ̸∈ σ(X). We will discuss

the restriction of GX to C in a later section.

Thus, we have the following definition of the Quaternionic Green’s function:

Definition 7.12. Let X ∈ (M, τ). For A ∈ C, let XA = A−X. Then, the Quaternionic

Green’s function GX : H \ σ(X) → H is given by:

GX(Q) = bTr[(Q−X)−1]

= bTr


A iB

iB A

−

X 0

0 X∗

−1


=

τ [((XA)
∗XA + |B|2)−1(XA)

∗] −iB τ [((XA)
∗XA + |B|2)−1]

−iB τ [((XA)
∗XA + |B|2)−1] τ [XA((XA)

∗XA + |B|2)−1]

 .

(7.33)

Let H+ be the upper Quaternionic half-plane (and H− be the lower Quaternionic

half-plane):

H+ = {Q ∈ H : B > 0}

H− = {Q ∈ H : B < 0} .
(7.34)

Note that the Quaternionic upper/lower half-planes are not the operator upper/lower half-

planes of M2(C) restricted to H.

As a generalization of the fact that the complex Cauchy transform swaps the upper/lower

half-planes, it is easy to see from the formula for GX that:

GX : H± → H∓ . (7.35)
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Similarly, as a consequence of the formula for GX and (7.30) there is a generalization of the

conjugate symmetry of the complex Cauchy transform:

GX∗(Q∗) = GX(Q)
∗ . (7.36)

Now, we provide the relevant formulas relating the Inverse Quaternionic Green’s function

with the inverse operator-valued Cauchy transform and the Quaternionic R-transform with

the operator-valued R-transform. These formulas follow directly from (7.25) and (7.27):

Definition 7.13. Let X ∈ (M, τ). The Inverse Quaternionic Green’s function,

BX = G⟨−1⟩
X , is defined for quaternions W ∈ J H−(M2(C)) in a neighborhood of 0. Its

relationship with the inverse operator-valued Cauchy transform G⟨−1⟩
X̃

is:

BX(W ) = G⟨−1⟩
X (W ) = G⟨−1⟩

X̃
(J W ) J. (7.37)

The Inverse Quaternionic R-transform, RX, is defined for quaternionsW ∈ J H−(M2(C))

in a neighborhood of 0. Its relationship with the inverse operator-valued Cauchy transform

RX̃ is:

RX(W ) = G⟨−1⟩
X (W )−W−1 = RX̃(J W )W. (7.38)

We conclude that there is an addition law for the Quaternionic R-transform:

Proposition 7.14. Let x, y ∈ (M, τ) be freely independent. For quaternionsW ∈ J H−(M2(C))

in a neighborhood of 0,

Rx+y(W ) = Rx(W ) +Ry(W ) . (7.39)

Proof. Consider the operator-valued probability space (M2(M), bTr,M2(C)). If x and y are

free in (M, τ), then it is easy to see that x̃ and ỹ are free with amalgamation over M2(C).

Hence, from the operator-valued addition law,

Rx̃+ỹ(c) = Rx̃(c) +Rỹ(c) , (7.40)

145



and this identity holds for c ∈ H−(M2(C)) in a neighborhood of 0. Then, for quaternions

W ∈ J H−(M2(C)) in a neighborhood of 0,

Rx+y(W ) = Rx̃+ỹ(J W )W

= Rx̃(J W )W +Rỹ(J W )W

= Rx(W ) +Ry(W ) .

(7.41)

7.3 Quaternionic Green’s function and Brown measure

There is a strong analogy between the Quaternionic Green’s function for an arbitrary

X ∈ (M, τ) and the usual complex Cauchy transform for a Hermitian x ∈ (M, τ). Recall

that the key utility of Gx is that the spectral measure of x is a distributional limit of the

Cauchy transform approaching the real axis:

µx = lim
b→0+

− 1

π
ImGµ(·+ ib) . (7.42)

To complete the analogy, we describe how to recover the Brown measure of X as a limit

of the Quaternionic Green’s function approaching the complex plane.

First, let F : H → H capture the first part of the quaternion, i.e. for a quaternion Q as in

(7.4), F (Q) = A.

For z ∈ C and ϵ > 0, consider the quaternion

zϵ =

z iϵ

iϵ z

 ∈ H. (7.43)

Then,

F (GX(zϵ)) = τ [((Xz)
∗Xz + ϵ2)−1(Xz)

∗] = 2
∂

∂z
fϵ2(z) , (7.44)
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where fϵ2 : C → R is from Proposition 3.4, given by:

fϵ2(z) =
1

2
τ
[
log(X∗

zXz + ϵ2)
]
. (7.45)

Then, from (3.38), the Brown measure of X, µX , is given by the following distributional limit:

µX = lim
ϵ→0+

1

π

∂

∂z
F (GX(zϵ)) . (7.46)

In the mathematics notation, z̃ϵ = zϵ J ∈ H+(M2(C)) for ϵ > 0 and we can recover the Brown

measure from a similar formula in terms of the operator-valued Cauchy transform as ϵ→ 0+.

7.4 Outline for computing Inverse Quaternionic Green’s function

for X = p+ iq

We return to the situation where X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely

independent. Consider the operator-valued probability space (M2(M), bTr,M2(C)) and the

following elements of M2(M):

p =

p 0

0 p

 iq =

iq 0

0 −iq

 . (7.47)

From the addition law for the Quaternionic R-transform,

RX(Q) = Rp(Q) +Riq(Q) . (7.48)

In terms of the Inverse Quaternionic Green’s function,

BX(Q) = Bp(Q) + Biq(Q)−Q−1 . (7.49)

In this section, we will outline how to obtain expressions for Bp(Q) and Biq(Q), and hence

how to obtain an expression for BX(Q).
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The computations in this section are taken from ([JN04], Section 4), so we will justify the

domains where the computations make sense and state their results.

7.4.1 (Inverse) Quaternionic Green’s function at a complex number

In this section, we make some observations about the restriction of the (Inverse) Quaternionic

Green’s function of an arbitrary X ∈ (M, τ) to the complex numbers.

Recall that the Cauchy transform of a Hermitian x ∈ (M, τ) has Gx(z) ∈ R if and only if

z ∈ R \ σ(x). We generalize this fact for GX:

Let X ∈ (M, τ) and consider a complex number quaternion, z ∈ C \ σ(X). From the

definition of the Quaternionic Green’s function,

GX(z) = τ [(z −X)−1] . (7.50)

Note that this is the same formula for the Cauchy transform GX(z), except X is potentially

non-Hermitian. Even though X is not necessarily Hermitian, this function is defined and

analytic for z ̸∈ σ(X). In this context, we will refer to this function as the complex Green’s

function (or Holomorphic Green’s function , as used in [JN04]) of X and still use the

notation GX . The significance of the term “Holomorphic Green’s function” will be discussed

in a later section.

Conversely, consider GX(Q) for Q ∈ H \C, i.e. B ̸= 0. The off-diagonal term of GX(Q) is:

−iB τ [((XA)
∗XA + |B|2)−1] , (7.51)

where XA = A−X. If B ̸= 0, then this term is non-zero. Hence,

GX(Q) ∈ C ⇐⇒ Q ∈ C , (7.52)

and in this case GX(z) = GX(z).
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When X is non-Hermitian, GX(z) still satisfies zGX(z) → 1 as |z| → ∞. In particular,

GX is still invertible in a neighborhood of infinity, and its inverse is defined in a neighborhood

of 0. Let BX = G
⟨−1⟩
X . Let BX : V → H. For Q ∈ V ,

BX(Q) ∈ C ⇐⇒ Q = GX(BX(Q)) ∈ C . (7.53)

Let U, V ⊂ H be domains where GX : U → V , BX : V → U , BX◦GX = idU , and GX◦BX = idV .

Then, for z ∈ U ∩ C and w ∈ V ∩ C,

GX(BX(w)) = GX(BX(w)) = w

z = BX(GX(z)) = BX(GX(z)) .
(7.54)

Hence, BX is an inverse for GX on U ∩ C, so BX = BX on U ∩ C.

We summarize all of this in the following Proposition:

Proposition 7.15. Let X ∈ (M, τ). Then, GX(Q) ∈ C if and only if Q ∈ C \ σ(X). For

z ∈ C \ σ(X),

GX(z) = GX(z) . (7.55)

Let BX = G
⟨−1⟩
X and let BX = G⟨−1⟩

X . Let BX : V → H. Then, BX(Q) ∈ C if and only if

Q ∈ V ∩ C. For w ∈ V ∩ C,

BX(w) = BX(w) . (7.56)

7.4.2 (Inverse) Quaternionic Green’s function for a Hermitian operator

In this section, we describe how to compute the Quaternionic Green’s Function for a Hermitian

H ∈ (M, τ), GH, in terms of the usual Cauchy transform GH . Using analogous computations,

we will determine where the Inverse Green’s Function for H, BH, is well-defined and compute

BH in terms of the inverse of the usual Cauchy transform, BH = G
⟨−1⟩
H .
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To compute GH(Q), recall when Q = g ∈ C \ σ(H),

GH(g) = GH(g) . (7.57)

For an arbitrary quaternion Q ̸∈ R, we may diagonalize Q by:

Q = S−1gS , (7.58)

where

S =

 iB g − A

g − A iB

 . (7.59)

Since H is Hermitian, then H commutes M2(C). This combined with the bimodularity of

bTr shows that

GH(Q) = GH(S
−1gS) = S−1GH(g)S . (7.60)

Note that since Q ̸∈ R, then g ̸∈ R, so GH(g) is well-defined.

Thus, we can express GH(Q) in terms of Q and GH(g). The result of the computation is:

GH(Q) =

γH(g)1− γ′H(g)Q
∗ Q ̸∈ R

GH(g) Q = g ∈ C \ σ(H) ,
(7.61)

where

γH(g) =
gGH(g)− gGH(g)

g − g

γ′H(g) =
GH(g)−GH(g)

g − g
.

(7.62)

It is straightforward to check that both formulas for GH(Q) agree for Q ∈ C \ R.

While the computation is carried out with the convention that Im(g) ≥ 0, γH and γ′H

only depends on the set of eigenvalues of Q since γH(g) = γH(g) and γ
′
H(g) = γ′H(g). Finally,

note that γH , γ
′
H are real-valued.

We observe the properties GH(g) = GH(g) and GH(Q) = S−1GH(g)S lead to the following
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coordinate-free characterization of GH that will be useful in defining BH. We will use the

notation for eigenspaces of matrices from Definition 5.6.

Proposition 7.16. Let H ∈ (M, τ) be Hermitian. Let Q ∈ H be a quaternion such that

Q ̸∈ σ(X). Then, GH : H \ σ(X) → H is defined by the property that

EGH(g)(GH(Q)) = Eg(Q) . (7.63)

Proof. First, note that the definition is well-defined, i.e. that GH is 1-1 on the set of

eigenvalues of Q. When Q ∈ R, then there is only one eigenvalue. When Q ̸∈ R, then Q

has two eigenvalues g, g ∈ C \ R. Then, since GH(g) ∈ R if and only if g ∈ R \ σ(H), then

GH(g) = GH(g) ̸= GH(g). As Q is a quaternion, it is diagonalizable, and hence this property

defines GH(Q).

This leads to a coordinate-free definition of BH = G⟨−1⟩
H and a domain where it is defined.

Then, the analogous computations as for GH(Q) gives an explicit formula for BH in terms of

Q and BH(g). The results of this are summarized in the following Proposition:

Proposition 7.17. Let H ∈ (M, τ) be Hermitian. Let BH : U → C be the inverse of

GH , where U is an open neighborhood of 0 that is fixed under complex conjugation. Then,

BH = G⟨−1⟩
H is defined on HU = {Q ∈ H : g ∈ U} and BH is defined by the property that:

EBH(g)(BH(Q)) = Eg(Q) . (7.64)

In particular, BH(g) = BH(g) for g ∈ U and BH(Q) = S−1BH(Q)S for Q ∈ HU , S ∈ GL2(C).

BH is continuous on HU and an explicit formula for BH is given by:

BH(Q) =

βH(g)1− β′
H(g)Q

∗ Q ̸∈ R

BH(x0)1 Q = x01 ∈ R ,
(7.65)
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where

βH(g) =
gBH(g)− gBH(g)

g − g

β′
H(g) =

BH(g)−BH(g)

g − g
.

(7.66)

Finally, βH(g) = βH(g), β
′
H(g) = β′

H(g), and βH , β
′
H are real-valued.

Proof. First, note that we may extend the domain of BH to one that is fixed by complex

conjugation, because of the conjugate symmetry of GH .

The definition is well-defined because BH is 1-1 on the set of eigenvalues of Q. When

Q ∈ R, there is only one eigenvalue. When Q ̸∈ R, then Q has two eigenvalues g, g ∈ C \ R.

Then, since BH(g) ∈ R implies that g ∈ R. As BH(Q) is diagonalizable, then this defines

BH(Q).

This definition gives an inverse for GH, since

Eg(GH(BH(Q))) = EGH(BH(g))(GH(BH(Q)))

= EBH(g)(BH(Q))

= Eg(Q) .

(7.67)

implies that GH(BH(Q)) = Q and similar equalities show that BH(GH(Q)) = Q.

For g ∈ H+(C) ∩ U ,
EBH(g)(BH(g)) = Eg(g) = e1

EBH(g)(BH(g)) = Eg(g) = e2 .
(7.68)

so then BH(g) = BH(g). When g ∈ H−(C)∩U , e1 and e2 are swapped in the above equalities.

For S ∈ GL2(C) and Q ∈ HU ,

EBH(g)(BH(S
−1QS)) = Eg(S

−1QS)

= S−1Eg(Q)

= S−1EBH(g)(BH(Q))

= EBH(g)(S
−1BH(Q)S) .

(7.69)
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As BH(Q) is diagonalizable, then BH(S
−1QS) = S−1BH(Q)S.

For continuity of BH, let Qn → Q, where Qn, Q ∈ HU .

If Q ∈ R, then gn, gn → g = Q ∈ R and BH(gn), BH(gn) → BH(g) = BH(Q) ∈ R. Hence,

the eigenvalues of BH(Qn) converge to BH(Q), and from Lemma 7.6, this implies that BH(Qn)

converges to BH(Q) = BH(Q).

If Q ̸∈ R, then gn → g, gn → g, and the diagonalizing transforms for Qn,

Sn =

 iBn gn − An

gn − An iBn

 (7.70)

converge to S, the diagonalizing transform for Q. Then, using the conjugation property of

BH shows that BH(Qn) converges to BH(Q).

The explicit formula for BH follows from the analogous computation as for GH. The

properties for βH , β
′
H are self-evident.

7.4.3 (Inverse) Quaternionic Green’s function and multiplication by a complex

number

In this section, we consider an arbitrary X ∈ (M, τ). For c ∈ C, we compare GcX with GX,

and similarly BcX with BX.

For c = 0 and Q ∈ H \ {0},

GcX(Q) = G0(Q) = Q−1 . (7.71)

For c ̸= 0 and Q ∈ H \ σ(cX) = H \ (cσ(X)),

GcX(Q) = GX

(
1

c
Q

)
1

c
. (7.72)

The order of multiplication is important, as the quaternion Q may not commute with c ∈ C.
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This generalizes the formula for the complex Green’s function,

GcX(z) =
1

c
GX

(
1

c
z

)
. (7.73)

The formula for the inverse Green’s function BcX can be obtained by inverting this formula.

This is summarized in the following Proposition:

Proposition 7.18. Let X ∈ (M, τ) and let BX : V → H, where V ⊂ H.

For c = 0, BcX : H \ {0} → H and

BcX(Q) = Q−1 . (7.74)

For c ̸= 0, BcX : V
(
1
c

)
→ H, and

BcX(Q) = cBX(Qc) . (7.75)

Proof. The result for c = 0 follows from G0X = Q−1, so we consider c ̸= 0.

Let U, V ⊂ H be domains where GX : U → V , BX : V → U , BX ◦ GX = idU , and

GX ◦ BX = idV . From (7.72), GcX : c U → V
(
1
c

)
. Similarly, defining BcX(Q) = cBX(Qc)

shows that BcX : V
(
1
c

)
→ c U and it is straightforward to check that BcX ◦ GcX = idc U , and

GcX ◦ BcX = idV ( 1
c)
.

For the complex BcX , there is a similar formula:

BcX(z) = cBX(cz) . (7.76)

This can be proved analogously from the formula for the complex Green’s function.

154



7.4.4 Inverse Quaternionic Green’s function for X = p+ iq

We summarize how to compute BX when X = p+ iq, where p, q ∈ (M, τ) are Hermitian and

freely independent. Recall the definition of gI from (7.9).

From the addition law for the Quaternionic R-transform, and Proposition 7.18,

BX(Q) = Bp(Q) + Biq(Q)−Q−1

= Bp(Q) + iBq(Qi)−Q−1 .
(7.77)

Let Bp : U → C and Bq : V → C. Then, the right-hand side of (7.77) is well-defined for

g ∈ U , gI ∈ V .

Using (7.65) to rewrite Bp and Bq when g, gI ̸∈ R,

BX(Q) = βp(g) + βq(g
I)i−

(
β′
p(g) + β′

q(g
I) +

1

detQ

)
Q∗ . (7.78)

Expanding this completely,

BX(Q) = BX

A iB

iB A

 =

k + ik′ − lA liB

liB k − ik′ − lA

 , (7.79)

where

k = βp(g)

k′ = βq(g
I)

l = β′
p(g) + β′

q(g
I) +

1

detQ
.

(7.80)

We conclude this section by making some observations:

• k, k′, and l are real-valued.

• The addition law (7.49) defines BX and works for all Q in the domain of BX, but the

expanded formula (7.79) only works when g, gI ̸∈ R.

• We can apply Lemma 7.5 to βp, βq, β
′
p, β

′
q, which are all real-valued and respect conju-
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gation. Then, when evaluating these functions at some Q ∈ C, we can assume that

g = Q and gI = ig in (7.78) and (7.79).

• Due to the presence of Bq(Qi) in (7.75), it does not follow that BX(S
−1QS) =

S−1BX(Q)S as in the case when X is Hermitian. In particular, BX is not determined

by how it acts on diagonal (i.e. complex) quaternions. Further, it is not necessarily

true like in the Hermitian case that the eigenvalues of BX are just BX(g), BX(g).

In summary, we will complete the following steps to compute BX:

1. Compute Bp (resp. Bq).

2. Use (7.66) to compute βp, β
′
p (resp. βq, β

′
q).

3. Use (7.65) to compute Bp (resp. Bq).

4. Use (7.75) to compute Biq.

5. Use (7.79) to compute BX.

7.5 Heuristics for the support and boundary of the Brown measure

In this section, we provide the heuristics for the boundary and support of the Brown measure

of X = p+ iq when p, q ∈ (M, τ) are Hermitian and freely independent.

Recall that the Brown measure of X ∈ (M, τ) can be defined by:

µX = lim
ϵ→0+

1

π

∂

∂z
F (GX(zϵ)) . (7.81)

Let X = p+ iq where p, q are Hermitian and freely independent. Consider z ∈ C such that

GX(zϵ) is in the domain of BX for all sufficiently small ϵ > 0.

Let

GX(zϵ) =

Aϵ iBϵ

iBϵ Aϵ

 , (7.82)
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where Aϵ and Bϵ are implicitly understood to depend on z. We wish to analyze GX(zϵ) as

ϵ→ 0+.

From the free independence of p and q and the Quaternionic addition law, it is more

natural to consider BX. If GX(zϵ) is in the domain of BX, then

BX (Qϵ) = zϵ (7.83)

has the unique solution of

Qϵ = GX(zϵ) . (7.84)

Since we can explicitly compute BX, then we can use (7.83) to understand GX(zϵ). Note that

we can always use (7.79) to expand BX(Qϵ): if Qϵ has gϵ ∈ R or gIϵ ∈ R, then Qϵ ∈ C and

from Proposition 7.15, BX(Qϵ) ∈ C, a contradiction to ϵ > 0.

By expanding the left-hand side of (7.83) with (7.79), the equation for the off-diagonal

terms is:

l(Qϵ)iBϵ = iϵ . (7.85)

As ϵ→ 0+, then either lϵ = l(Qϵ) is small or Bϵ is small. If we consider a sequence of ϵk to 0,

we may extract a subsequence where either lϵk = l(Qϵk) converges to 0 or Bϵk converges to 0.

To understand the situation heuristically, assume that

lim
ϵ→0+

Qϵ = Q =

A iB

iB A

 . (7.86)

Then, either

lim
ϵ→0+

Bϵ = B = 0 or lim
ϵ→0+

lϵ = 0 . (7.87)

Assume it is possible to interchange the limit and derivative in (7.81). Then,

µX =
1

π

∂

∂z
F (Q) . (7.88)
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If BX is defined and continuous at Q, then

z = lim
ϵ→0+

zϵ = lim
ϵ→0+

BX(Qϵ) = BX(Q) . (7.89)

Thus,

GX(z) = Q , (7.90)

so that B = 0. As GX is holomorphic at z, then

∂

∂z
F (Q) =

∂

∂z
GX(z) = 0 . (7.91)

Our first heuristic is that whenever B = 0 (i.e. not just in the continuous case), the Brown

measure has zero density at z. Then, the Brown measure is supported on the set where

B ̸= 0. We also must consider the case where Qϵ has no limit as ϵ → 0+. We state the

heuristic formally:

Heuristic 7.19. Let p, q ∈ (M, τ) where p and q are Hermitian and freely independent. Then,

the support of the Brown measure of X = p+ iq is the closure of the set of z ∈ C such that:

lim
ϵ→0+

GX(zϵ) =

A iB

iB A

 (7.92)

for some B ̸= 0 or where the limit does not exist.

We can verify this heuristic when p and q have 2 atoms that have equal weights (Theorem

10.1).

For the second heuristic, first note that:

lim
ϵ→0+

Bϵ = B ̸= 0 =⇒ lim
ϵ→0+

lϵ = 0 . (7.93)

Hence, given the first heuristic, the support of the Brown measure should also be contained

in the closure of the set of z ∈ C where limϵ→0+ lϵ = 0. But, it could be possible that this
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set has non-empty intersection with the set of z ∈ C where B = 0, where the measure has

zero density. In particular, when BX is continuous at Q, then the intersection of these sets

corresponds to a second order zero in the off-diagonal terms of (7.79). Our second heuristic

is that the intersection of these two sets is the boundary of the Brown measure:

Heuristic 7.20. Let p, q ∈ (M, τ) where p and q are Hermitian and freely independent. Then,

the boundary of the Brown measure of X = p+ iq is the closure of the intersection of the set

of z ∈ C such that:

lim
ϵ→0+

GX(zϵ) = Q ∈ C (7.94)

with the set of z ∈ C such that limϵ→0+ lϵ = 0.

In ([JN04], Section 6), the authors verify the boundary heuristic for some random matrix

models. With some restrictions on z, we will see that the intersection of the sets corresponds

to the solutions of a system of equations. When p and q have 2 atoms, Proposition 9.2 states

that its closure is the boundary (i.e. support) of µ′.

When p and q have an arbitrary number of atoms, Mathematica simulations suggest that

the solution set to the system of equations contains the boundary of the Brown measure.

When p and q have generic positions of atoms and weights, this solution set is an algebraic

curve. We will provide an algorithm to produce a non-zero polynomial whose zero set contains

this solution set. This is the content of Theorem 9.3.

We can now explain the terminology of the “Holomorphic Green’s function” for GX(z).

Consider z ∈ C where the following limit exists:

lim
ϵ→0+

GX(zϵ) =

A(z) iB(z)

iB(z) A(z)

 . (7.95)

When B(z) = 0 and BX is defined and continuous at the limit point, recall that A(z) = GX(z).

Hence, the Holomorphic Green’s function is the limit of the Quaternionic Green’s

function towards the complex plane where the resulting complex function is holomorphic.

When B(z) ̸= 0, then from Heuristic 7.19, the Brown measure of X is not zero in a
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neighborhood of z, so then A(z) is not holomorphic in a neighborhood of z. This limit is the

Non-Holomorphic Green’s function .

Remark 7.21. We will use the following conventions throughout Chapters 9 and 10:

• Quantities that depend on a continuous limit as ϵ→ 0+ and are in the context of (7.83)

have a subscript ϵ.

• Quantities that depend on a sequence ϵk → 0+ and are in the context of (7.83) have a

subscript ϵk.

• Quantities that are just general sequences with no implicit context have a subscript k.

• Unless specified otherwise, p, q, and X are implied to mean the specific case of p, q

Hermitian and freely independent with 2 atoms, and X = p+ iq.

• General sequences of quaternions Qk are implied to be in the domain of BX.
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CHAPTER 8

Computing BX for X = p + iq

In this chapter, we follow the outline for computing BX when p and q have 2 atoms.

Recall that we may assume that:

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ ,
(8.1)

for a, b ∈ (0, 1), αn, α
′
n, βn, β

′
n ∈ R, α ̸= α′, and β ̸= β′.

8.1 Notation and conventions

Let us highlight some notation and conventions we will use for the rest of the thesis:

The notation
√
z will always denote the principal square root, defined on C \ (−∞, 0) and

taking
√
1 = +1.

We will also use the following definitions:

Definition 8.1. Let Dp, Dq be the following polynomials:

Dp(w) = ((α′ − α)w + (1− 2a))2 + 4a(1− a)

Dq(w) = ((β′ − β)w + (1− 2b))2 + 4b(1− b) .
(8.2)
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Definition 8.2. Let Ip, Iq be the following subsets of C:

Ip =

{
−1− 2a

α′ − α
+ iy : |y| >

2
√
a(1− a)

|α′ − α|

}

Iq =

{
−1− 2b

β′ − β
+ iy : |y| >

2
√
b(1− b)

|β′ − β|

}
.

(8.3)

8.2 Auxiliary functions

Before computing the relevant functions, we will prove some lemmas about some related

functions:

Lemma 8.3. For w ∈ C \ Ip, let

f(w) =
√
Dp(w) . (8.4)

Then, f is continuous on C \ Ip and analytic on C \ Ip.

Let sgn(x) = x/ |x| for x ∈ R \ {0}.

Let w0 ∈ Ip.

If w approaches w0 from the right, then

lim
w→w+

0

f(w) = sgn(Im(w0))i
√

−Dp(w0) . (8.5)

If w approaches w0 from the left, then

lim
w→w−

0

f(w) = −sgn(Im(w0))i
√

−Dp(w0) . (8.6)

Proof. Note that f is a composition of the principal square root with Dp(w). Dp(w) is well-

defined and continuous everywhere, the principal square root is well-defined and continuous

except at C \ (−∞, 0) and analytic on C \ (−∞, 0]. The limit to some w ∈ (−∞, 0) from

above is +
√
−wi and the limit from below is −

√
−wi.
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Hence, f is defined and continuous except when:

Dp(w) = ((α′ − α)w + (1− 2a))2 + 4a(1− a) ∈ (−∞, 0)

⇐⇒ ((α′ − α)w + (1− 2a))2 ∈ (−∞,−4a(1− a))

⇐⇒ (α′ − α)w + (1− 2a) ∈
{
iy : |y| > 2

√
a(1− a)

}
⇐⇒ (α′ − α)w ∈

{
−(1− 2a) + iy : |y| > 2

√
a(1− a)

}
⇐⇒ w ∈

{
−1− 2a

α′ − α
+ iy : |y| >

2
√
a(1− a)

|α′ − α|

}
⇐⇒ w ∈ Ip .

(8.7)

For analyticity,

D−1
p ({0}) =

{
−1− 2a

α′ − α
± i

2
√
a(1− a)

|α′ − α|

}
, (8.8)

so we just need to remove those two points from the domain to make f analytic.

For the last points on limits approaching w0, it follows from casework considering cases of

sgn(α′ − α), sgn(Im(w0)), and w approaching w0 from the left or right. Let us just verify the

case when sgn(α′ − α) = sgn(Im(w0)) = +1 and w approaches w0 from the right.

Then, (α′ − α)w + (1− 2a) approaches (α′ − α)w0 + (1− 2a) ∈ iR from the right. Since

Im((α′−α)w0+(1−2a)) > 0, then Dp(w) approaches Dp(w0) ∈ (−∞, 0) from above. Finally,

taking square roots, f(w) approaches i
√

−Dp(w0) (from the right).

Lemma 8.4. For w ∈ C \ (Ip ∪ R), let

f(w) =

√
Dp(w)−

√
Dp(w)

w − w
=

Im
(√

Dp(w)
)

Im(w)
. (8.9)

The formula for f is continuous on C \ (Ip ∪ R) and can be extended continuously to R by:

f(t) =
(α′ − α)((α′ − α)t+ (1− 2a))√

Dp(t)
. (8.10)

Let w0 ∈ Ip.
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If w approaches w0 from the right, then

lim
w→w+

0

f(w) =

√
−Dp(w0)

|Im(w0)|
. (8.11)

If w approaches w0 from the left, then

lim
w→w−

0

f(w) = −
√
−Dp(w0)

|Im(w0)|
. (8.12)

Proof. From Lemma 8.3 and the fact that Ip is fixed by complex conjugation,
√
Dp(w),√

Dp(w) are defined and continuous except on Ip. Since the denominator vanishes on R, the

expression for f is valid and continuous on C \ (Ip ∪ R).

Consider w ∈ C \ (Ip ∪ R) approaching some t ∈ R.

As Dp is a polynomial with real coefficients, from the property of the principal square

root, √
Dp(w) =

√
Dp(w) =

√
Dp(w) . (8.13)

Hence,

f(w) =
Im
(√

Dp(w)
)

Im(w)
. (8.14)

By taking real parts of
(√

Dp(w)
)2

= Dp(w),

2Re

(√
Dp(w)

)
Im

(√
Dp(w)

)
= Im(Dp(w))

= Im(((α′ − α)w + (1− 2a))2 + 4a(1− a))

= Im(((α′ − α)w + (1− 2a))2)

= 2Re((α′ − α)w + (1− 2a)) Im((α′ − α)w + (1− 2a))

= 2((α′ − α)Re(w) + (1− 2a))(α′ − α)Im(w) .

(8.15)
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Dividing both sides by 2 Im(w),

Re

(√
Dp(w)

) Im
(√

Dp(w)
)

Im(w)
= ((α′ − α)Re(w) + (1− 2a))(α′ − α) . (8.16)

As w → t ∈ R, Dp(w) converges to Dp(t) ≥ 4a(1−a) > 0 since a ∈ (0, 1). Thus, it is possible

to divide both sides by Re
(√

Dp(w)
)
for w sufficiently close to t. Then,

f(w) =
(α′ − α)((α′ − α)Re(w) + (1− 2a))

Re
(√

Dp(w)
) . (8.17)

Finally, taking w → t ∈ R,

lim
w→t

f(w) =
(α′ − α)((α′ − α)t+ (1− 2a))√

Dp(t)
. (8.18)

This final expression is continuous on R, so f may be extended continuously to R by this

expression.

For the final limits towards Ip, using (8.14) and Lemma 8.3,

lim
w→w±

0

f(w) = lim
w→w±

0

Im
(√

Dp(w)
)

Im(w)

= ±
sgn(Im(w0))

√
−Dp(w0)

Im(w0)

= ±
√
−Dp(w0)

|Im(w0)|
.

(8.19)

Lemma 8.5. For w ∈ C \ (Ip ∪ R), let

f(w) =
w
√
Dp(w)− w

√
Dp(w)

w − w
=

Im(w
√
Dp(w))

Im(w)
, (8.20)
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The formula for f is continuous on C \ (Ip ∪ R) and can be extended continuously to R by:

f(t) =
−(1− 2a)(α′ − α)t− 1√

Dp(t)
. (8.21)

Let w0 ∈ Ip.

If w approaches w0 from the right, then

lim
w→w+

0

f(w) = −
(1− 2a)

√
−Dp(w0)

(α′ − α) |Im(w0)|
. (8.22)

If w approaches w0 from the left, then

lim
w→w−

0

f(w) =
(1− 2a)

√
−Dp(w0)

(α′ − α) |Im(w0)|
. (8.23)

Hence, f extends continuously to Ip if and only if a = 1/2, in which case letting f ≡ 0 on Ip

makes f continuous on C.

Proof. From Lemma 8.3 and the fact that Ip is fixed by complex conjugation,
√
Dp(w),√

Dp(w) are defined and continuous except on Ip. Since the denominator vanishes on R, the

expression for f is valid and continuous on C \ (Ip ∪ R).

Consider w ∈ C \ (Ip ∪ R) approaching some t ∈ R.

As Dp is a polynomial with real coefficients, from the property of the principal square

root, √
Dp(w) =

√
Dp(w) =

√
Dp(w) . (8.24)

Hence,

f(w) =
Im(w

√
Dp(w))

Im(w)
. (8.25)

166



Expanding the numerator,

Im

(
w
√
Dp(w)

)
= Im(w)Re

(√
Dp(w)

)
+Re(w)Im

(√
Dp(w)

)
= −Im(w)Re

(√
Dp(w)

)
+Re(w)Im

(√
Dp(w)

)
.

(8.26)

Dividing both sides by Im(w),

f(w) = −Re

(√
Dp(w)

)
+

Re(w)Im
(√

Dp(w)
)

Im(w)
. (8.27)

The right-hand side contains the function in Lemma 8.4. As this function has a continuous

extension to R, taking the limit as w → t ∈ R and simplifying yields:

lim
w→t

f(w) = −
√
Dp(t) +

t(α′ − α)((α′ − α)t+ (1− 2a))√
Dp(t)

=
−(1− 2a)(α′ − α)t− 1√

Dp(t)
.

(8.28)

This expression is continuous on R, so f may be extended continuously to R by this expression.

For the limits as w approaches w0 ∈ Ip, note that

lim
w→w0

Re

(√
Dp(w)

)
= 0 lim

w→w0

Re(w) = −1− 2a

α′ − α
. (8.29)

Applying Lemma 8.4 to (8.27) produces:

lim
w→w±

0

f(w) = lim
w→w±

0

−Re

(√
Dp(w)

)
+ lim

w→w±
0

Re(w) lim
w→w±

0

Im
(√

Dp(w)
)

Im(w)

= 0− 1− 2a

α′ − α
lim

w→w±
0

Im
(√

Dp(w)
)

Im(w)

= ∓
(1− 2a)

√
−Dp(w0)

(α′ − α) |Im(w0)|
.

(8.30)

The left/right limits are negatives of each other, so they are equal if and only if both are
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zero. As Dp(w0) < 0 for w0 ∈ Ip, the limits are zero if and only if a = 1/2. In this situation,

defining f ≡ 0 on Ip makes f continuous on all of C.

8.3 Computing BX

In this section, we follow the steps described in Section 7.4 to compute BX. Since the

computations for {Bp, βp, β
′
p,Bp} and {Bq, βq, β

′
q,Bq} are analogous, for these functions, we

will just prove and state the results for p.

The first step is to compute Bp:

Proposition 8.6. For w ∈ C \ (Ip ∪ {0}), define

Bp(w) =
α + α′

2
+

1 +
√
Dp(w)

2w
. (8.31)

For z in a neighborhood of infinity, Bp(w) = G
⟨−1⟩
p (w) = z. Further, Bp is continuous on

C \ (Ip ∪ {0}) and analytic on C \ (Ip ∪ {0}).

Let w0 ∈ Ip.

If w approaches w0 from the right, then

lim
w→w+

0

Bp(w) =
α + α′

2
+

1 + sgn(Im(w0))i
√
−Dp(w0)

2w0

. (8.32)

If w approaches w0 from the left, then

lim
w→w−

0

Bp(w) =
α + α′

2
+

1− sgn(Im(w0))i
√
−Dp(w0)

2w0

. (8.33)

Additionally,

lim
w→0

|Bp(w)| = ∞ . (8.34)

Proof. As

µp = aδα + (1− a)δα′ , (8.35)
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then the complex Green’s function for p is given by:

w = Gp(z) = τ [(z − p)−1] =
a

z − α
+

1− a

z − α′ . (8.36)

Recall that in general, Gp(z) is invertible in a neighborhood of ∞. To invert Gp(z), note that

(8.36) holds if and only if

w(z − α)(z − α′) = a(z − α′) + (1− a)(z − α) . (8.37)

This is true for z ̸= α, α′ and the polynomial equation is not satisfied at z = α, α′ at any w.

Hence, the solutions to the polynomial equation are solutions to w = Gp(z) for all z ∈ C.

The polynomial equation can be rewritten:

wz2 − (w(α + α′) + 1)z + (wαα′ + αα′ + (1− a)α) = 0 . (8.38)

Fixing a w and solving for z, then from the quadratic formula and simplifying,

z =
α + α′

2
+

1±
√

((α− α′)w + (1− 2a))2 + 4a(1− a)

2w

=
α + α′

2
+

1±
√
Dp(w)

2w
.

(8.39)

To determine the sign of the square root of the inverse defined for z in a neighborhood of

infinity, note that for lim|z|→∞Gp(z) = 0. When the sign is −, the quotient involving the

square root is 1/2 times the derivative of
√
Dp(w) at w = 0, which is finite as w → 0. Hence,

the inverse of Gp(z) for z in a neighborhood of ∞ must take the + sign. Hence,

Bp(w) =
α + α′

2
+

1 +
√
Dp(w)

2w
(8.40)

and

lim
w→0

|Bp(w)| = ∞ . (8.41)
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From Lemma 8.3, the formula in (8.39) is defined and continuous on C \ (Ip ∪ {0}) and

analytic on C \ (Ip ∪ {0}). As this set is connected and the formula forms an inverse of Gp(z)

for z in a neighborhood of infinity, then this formula is an inverse for Gp(z) on its domain.

Hence,

Bp(w) =
α + α′

2
+

1 +
√
Dp(w)

2w
. (8.42)

From Lemma 8.3, Bp and the fact that Bp is an inverse for Gp in a neighborhood of w = 0,

then Bp is defined and continuous on C \ (Ip ∪ {0}) and analytic on C \ (Ip ∪ {0}). The

left/right limits of Bp can also be computed using Lemma 8.3.

Next, we compute βp, β
′
p and determined the domains where they are well-defined and

continuous. The results for βq, β
′
q are completely analogous.

Proposition 8.7. For w ∈ C \ (Ip ∪ R),

βp(g) =
α + α′

2
+

1

2

√
Dp(g)−

√
Dp(g)

g − g
. (8.43)

βp can be extended to be continuously to R by:

βp(t) =
α + α′

2
+

1

2

(α′ − α)((α′ − α)t+ (1− 2a))√
Dp(t)

. (8.44)

Let g0 ∈ Ip.

If g approaches g0 from the right, then

lim
g→g+0

βp(g) =
α + α′

2
+

√
−Dp(g0)

2 |Im(g0)|
. (8.45)

If g approaches g0 from the left, then

lim
g→g−0

βp(g) =
α + α′

2
−
√
−Dp(g0)

2 |Im(g0)|
. (8.46)
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Proof. Computation using (7.66) and Proposition (8.6) yields

βp(g) =
α + α′

2
+

1

2

√
Dp(g)−

√
Dp(g)

g − g
. (8.47)

Everything else follows from the fact that

βp(g) =
α + α′

2
+

1

2
f(g) , (8.48)

where f is from Lemma 8.4

Proposition 8.8. For w ∈ C \ (Ip ∪ R),

β′
p(g) =

1

2 |g|2

(
−1 +

g
√
Dp(g)− g

√
Dp(g)

g − g

)
. (8.49)

β′
p can be extended continuously to R \ {0} by:

β′
p(t) =

1

2t2

(
−1 +

−(1− 2a)(α′ − α)t− 1√
Dp(t)

)
. (8.50)

At g = 0,

lim
g→0

β′
p(g) = −∞ . (8.51)

Let g0 ∈ Ip.

If g approaches g0 from the right, then

lim
g→g+0

β′
p(g) =

1

2 |g0|2

(
−1−

(1− 2a)
√
−Dp(g0)

(α′ − α) |Im(g0)|

)
. (8.52)

If g approaches g0 from the left, then

lim
g→g−0

β′
p(g) =

1

2 |g0|2

(
−1 +

(1− 2a)
√

−Dp(g0)

(α′ − α) |Im(g0)|

)
. (8.53)

171



β′
p can be extended continuously to Ip if and only if a = 1/2, in which case on Ip,

β′
p(t) = − 1

2 |g|2
. (8.54)

Proof. Computation using (7.66) and Proposition (8.6) yields

β′
p(g) =

1

2 |g|2

(
−1 +

g
√
Dp(g)− g

√
Dp(g)

g − g

)
. (8.55)

Most of the claims for the domains where β′ is well-defined and continuous follows from the

fact that

β′
p(g) =

1

2 |g|2
(−1 + f(g)) , (8.56)

where f is from Lemma 8.5.

The only extra complication is g = 0. For this, we use Lemma 8.5 to see that the limit of

the term of β′
p(g) inside the parentheses is:

lim
g→0

−1 +
g
√
Dp(g)− g

√
Dp(g)

g − g
= −1 +

−(1− 2a)(α′ − α)t− 1√
Dp(t)

∣∣∣∣∣
t=0

= −1 +
−1√
Dp(0)

.

(8.57)

This final quantity is negative, so β′
p(g) → −∞ as g → 0. Hence, g = 0 is not in the domains

of definition and continuity for βp.

The left and right limits towards some g0 ∈ Ip follow directly from Lemma 8.5.

Next, we compute Bp and Biq and determine the domains where they are well-defined

and continuous. In particular, these domains agree with the ones from Propositions 7.17 and

7.18.

When we refer to Bp (resp Biq) being continuous for g ∈ S for some S ⊂ C, it meant

to be understood as Bp (resp Biq) being continuous for quaternions Q where its eigenvalue

g ∈ S. The well-definedness and continuity of Bp(Q) depends mainly on the well-defined and
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continuous of βp, β
′
p at g. This is summarized in the following Proposition:

Proposition 8.9. For Q ∈ H such that g ∈ C \ (Ip ∪ {0}),

Bp(Q) =


Bp(g0) Q = g0 ∈ C

βp(g)− β′
p(g)Q

∗ Q ̸∈ R ,
(8.58)

where

Bp(g0) =
α + α′

2
+

1 +
√
Dp(g0)

2g0

βp(g) =


α + α′

2
+

1

2

√
Dp(g)−

√
Dp(g)

g − g
g ∈ C \ (Ip ∪ R)

α + α′

2
+

1

2

(α′ − α)((α′ − α)t+ (1− 2a))√
Dp(t)

g = t ∈ R

β′
p(g) =


1

2 |g|2

(
−1 +

g
√
Dp(g)− g

√
Dp(g)

g − g

)
g ∈ C \ (Ip ∪ R)

1

2t2

(
−1 +

−(1− 2a)(α′ − α)t− 1√
Dp(t)

)
g = t ∈ R \ {0} .

(8.59)

Then, Bp is continuous on this subset of H and in no larger domain, and

lim
Q→0

|Bp(Q)| = ∞ . (8.60)

Proof. The formulas follow from (7.65), (7.66) and Propositions 8.7 and 8.8.

For the continuity points of Bp, it follows from the formulas for βp and β′
p that Bp is

well-defined and continuous for g ∈ C \ (Ip ∪ R). From Propositions 8.7 and 8.8, Bp does

have a limit as g approaches a non-zero real number. But, Bp is already defined on R \ {0}.

It is a straightforward computation to verify that:

lim
Q→g0∈R\{0}

Bp(Q) = lim
g→g0

βp(g)− β′
p(g)Q

∗ = Bp(g0) , (8.61)

so that Bp is continuous on C \ (Ip ∪ {0}).
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To analyze Bp(Q) as Q→ 0, recall from Proposition 7.17 that the eigenvalues of Bp(Q)

are Bp(g), Bp(g). As Q→ 0, g → 0. From Proposition 8.6, as g → 0, |Bp(g)| → ∞. Hence,

the eigenvalues of Bp(Q) diverge to ∞. Hence, as Q→ 0, |Bp(Q)| → ∞.

To analyze the limit as Q approaches Q0 where g tends to g0 ∈ Ip, it suffices to consider

the difference between the left and right limits as g approaches g0 ∈ Ip for Bp:

lim
g→g+0

Bp(Q)− lim
g→g−0

Bp(Q) . (8.62)

From Propositions 7.17, 8.7, and 8.8, the diagonal term of this difference is:

√
−Dp(g0)

|Im(g0)|
+

(1− 2a)
√

−Dp(g0)

(α′ − α) |g0|2 |Im(g0)|
A =

√
−Dp(g0)

|Im(g0)|

(
1 +

1− 2a

α′ − α

A

|g0|2

)
=

√
−Dp(g0)

|Im(g0)|

(
1− Re(g0)

|g0|
A

|g0|

)
.

(8.63)

The factor in front of the last term is non-zero, so it suffices to analyze when the term inside

the parentheses is zero. It is clear that Re(g0) ≤ |g0|, with equality occurring only when g0 is

real. Recall that g0 =
√
|A|2 + |B|2, so |A| ≤ |g0|. Hence, the term inside the parentheses can

be zero only when g0 is real. As Ip ∩ R = ∅, this quantity is non-zero, so Bp is discontinuous

at Ip.

The results for Biq follow immediately from Propositions 7.18 and 8.9:

Proposition 8.10. For Q ∈ H such that gI ∈ C \ (Ip ∪ {0}),

Biq(Q) =


iBq(ig0) Qi = ig0 ∈ C

iβq(g
I)− β′

q(g
I)Q∗ Qi ̸∈ R ,

(8.64)
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where

Bq(ig0) =
β + β′

2
+

1 +
√
Dq(ig0)

2ig0
,

βq(g
I) =


β + β′

2
+

1

2

√
Dq(gI)−

√
Dq(gI)

gI − gI
gI ∈ C \ (Ip ∪ R)

β + β′

2
+

1

2

(β′ − β)((β′ − β)t+ (1− 2b))√
Dq(t)

gI = t ∈ R

β′
q(g

I) =



1

2 |gI |2

−1 +
gI
√
Dq(gI)− gI

√
Dq(gI)

gI − gI

 gI ∈ C \ (Iq ∪ R)

1

2t2

(
−1 +

−(1− 2b)(β′ − β)t− 1√
Dq(t)

)
gI = t ∈ R \ {0} .

(8.65)

Then, Biq is continuous on this subset of H and in no larger domain, and

lim
Q→0

|Biq(Q)| = ∞ . (8.66)

All that is left is to determine a formula for BX and determine the domains where it is

defined and continuous.

First, let us state the formula and domains of well-definedness and continuity of the

complex Green’s function BX :

Proposition 8.11. For w ∈ C such that w ̸∈ Ip and iw ̸∈ Iq and w ̸= 0,

BX(w) =
α + α′

2
+ i

β + β′

2
+

√
Dp(w) +

√
Dq(iw)

2w
(8.67)

is analytic. Further, BX cannot be continuously extended to any larger domain. Additionally,

lim
w→0

wBX(w) = 1 . (8.68)
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Proof. From the addition law for the Quaternionic R-transform,

BX(Q) = Bp(Q) + Biq(Q)−Q−1 . (8.69)

Using Proposition 7.15 to restrict this formula w ∈ C (and taking note of the domains of Bp

and Biq from Propositions 8.9 and 8.10), then

BX(w) = Bp(w) + iBq(iw)− w−1 , (8.70)

Then, the formula follows from Proposition 8.6.

For continuity and analyticity, we need to check what happens if w ∈ Ip and iw ∈ Iq, in

case the discontinuities of
√
Dp(w) and

√
Dq(iw) cancel out.

We may choose different sequences approaching w such that all four combinations of limits

from applying Lemma 8.3 to p and q are possible:

α + α′

2
+ i

β + β′

2
± i

√
−Dp(w)

2w
± i

√
−Dq(iw)

2w
. (8.71)

Setting pairs of these expressions equal to each other, then for BX to be continuous at w,

−Dp(w) = −Dq(iw) = 0 . (8.72)

But this is impossible for w ∈ Ip and iw ∈ Iq.

Hence, when w ∈ Ip and iw ∈ Iq, BX is discontinuous at w.

The limit follows from the fact that BX is defined in a punctured neighborhood centered

at 0 and

lim
|z|→∞

GX(z) = 0

lim
|z|→∞

zGX(z) = 1 .
(8.73)
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The addition law (7.49) and Propositions 8.9 and 8.10 imply that BX is defined and

continuous where g ̸∈ Ip ∪ {0} and gI ̸∈ Iq ∪ {0}. In order to show that this domain is the

maximal domain of definition for BX, we need to analyze the following limits more carefully:

1. g → 0 (and hence gI → 0).

2. g → g0 ∈ Ip and gI → gI0 ∈ Iq (in case the discontinuities of Bp and Biq to cancel each

other out).

We will use (7.79) when gI , g ̸∈ R. In particular, we need to first analyze l = l(g, gI):

Proposition 8.12. Let Sp, Sq be the following subsets of C:

Sp =


Ip ∪ {0} a ̸= 1

2

{0} a =
1

2

Sq =


Iq ∪ {0} b ̸= 1

2

{0} b =
1

2
.

(8.74)

For Q ∈ H such that g ∈ C \ (Sp ∪ R) or gI ∈ C \ (Sq ∪ R),

l(Q) = l(g, gI) =
1

2 |g|2

g√Dp(g)− g
√
Dp(g)

g − g
+
gI
√
Dq(gI)− gI

√
Dq(gI)

gI − gI

 . (8.75)

Then, l can be extended to be continuous at Q ∈ H such that g ∈ C \ Sp or gI ∈ C \ Sq and

in no larger domain and

lim
g,gI→0

|g|2 l(g, gI) = −2 . (8.76)

Proof. For g ∈ C \ (Ip∪R) and gI ∈ C \ (Ip∪R), using the definition of l(Q) and Proposition

8.8 yields (8.75).

From Lemma 8.5, the formula for l can be continuously extended to at least when

g ∈ C \ Sp and gI ∈ C \ Sq. If exactly one of g ∈ Sp or gI ∈ Sq then the limit also will not
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exist, as l will be a sum of two terms, one where the limit exists and one where the limit

doesn’t.

Thus, we just need to consider what happens when:

1. g → 0 (and hence gI → 0).

2. g → g0 ∈ Sp \ {0} and gI → gI0 ∈ Sq \ {0}. Note that this only makes sense when

a ̸= 1/2 and b ̸= 1/2, in which case we may assume g0 ∈ Ip and gI0 ∈ Iq.

For the first case when g → 0 (and gI → 0), using Lemma 8.5, the term inside the

parentheses in (8.75) tends towards

− 1√
Dp(0)

− 1√
Dq(0)

= −1− 1 = −2 . (8.77)

Hence, as g → 0, |g|2 l(g, gI) → −2, so l(g, gI) → −∞.

For the second case when g0 ∈ Ip and gI0 ∈ Iq, recall that

g0 = x0 + i
√
x21 + x22 + x23

gI0 = −x3 + i
√
x22 + x21 + x20 ,

(8.78)

By choosing if x0 is approached from left or right and if x3 is approached from left or right,

all four combinations of limits from applying Lemma 8.5 to p and q are possible:

±
(1− 2a)

√
−Dp(g)

(α′ − α) |Im(g)|
±

(1− 2b)
√

−Dq(gI)

(β′ − β) |Im(gI)|
. (8.79)

By setting pairs of these expressions equal to each other, then for the limit to exist,

(1− 2a)
√

−Dp(g)

(α′ − α) |Im(g)|
=

(1− 2b)
√

−Dq(gI)

(β′ − β) |Im(gI)|
= 0 . (8.80)

However, this can only happen if a = b = 1/2, a contradiction.

We conclude this section by proving the result for BX(Q):

178



Theorem 8.13. For Q ∈ H such that g ̸∈ Ip ∪ {0} and gI ̸∈ Iq ∪ {0},

BX(Q) = BX

A iB

iB A

 =

k + ik′ − lA liB

liB k − ik′ − lA

 , (8.81)

where

k = βp(g)

k′ = βq(g
I)

l = β′
p(g) + β′

q(g
I) +

1

detQ
.

(8.82)

and βp(g), βq(g) are defined in Proposition 8.9, and l is defined in Proposition 8.12.

BX is continuous on this subset of H and in no larger domain, and

lim
Q→0

|BX(Q)| = ∞ . (8.83)

Proof. Recall that all that remains is to examine the limit of BX(Q) when g, g
I approaches

the following limits:

1. g → 0 (and hence gI → 0).

2. g → g0 ∈ Ip and gI → gI0 ∈ Iq (in case the discontinuities of Bp and Biq to cancel each

other out).

For the first limit, when g ∈ R or gI ∈ R, then either Q ∈ R or Q ∈ iR, and we can apply

Proposition 8.11 to see that |BX(Q)| → ∞. When g, gI ̸∈ R, then we can use (7.79). From

Proposition 8.7, k and k′ have limits as g, gI → 0. Hence, it suffices to consider the limit:

lim
Q→0

 lA −liB

−liB lA

 = lim
Q→0

l

 A −iB

−iB A

 = lim
Q→0

lQ∗. (8.84)
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Taking quaternionic norms and using Proposition 8.12,

lim
Q→0

|lQ∗| = lim
Q→0

∣∣∣∣l |Q|2 Q∗

|Q|2

∣∣∣∣ = lim
Q→0

∣∣l |Q|2∣∣ ∣∣∣∣ Q∗

|Q|2

∣∣∣∣ = lim
Q→0

2

|Q|
= ∞ . (8.85)

Hence, lim
Q→0

|BX(Q)| = ∞.

Finally, consider if Q approaches Q0 where g0 ∈ Ip and gI0 ∈ Iq.

From the addition law and Proposition 7.18,

BX(Q) = Bp(Q) + iBq(Qi)−Q−1 . (8.86)

Recall that:

g0 = x0 + i
√
x21 + x22 + x23

gI0 = −x3 + i
√
x22 + x21 + x20 ,

(8.87)

By choosing if x0 is approached from left or right and if x3 is approached from left or right,

all four combinations of left/right limits are possible for choices as Q approaches Q0:

lim
Q→Q0

BX(Q) = lim
g→g±0

Bp(Q) + i lim
gI→gI±0

Bq(Qi)−Q−1
0 . (8.88)

By setting pairs of these expressions equal to each other, then for the limit to exist:

lim
g→g+0

Bp(Q)− lim
g→g−0

Bp(Q) = 0

lim
gI→gI+0

Bq(Qi)− lim
g→gI−0

Bq(Qi) = 0 .
(8.89)

From (8.63) in the proof of Proposition 8.9, this cannot happen when g0 ∈ Ip or gI0 ∈ Iq.

Hence, BX is discontinuous for g ∈ Ip ∪ {0} or gI ∈ Iq ∪ {0}.

180



CHAPTER 9

Boundary of the Brown measure

In this Chapter, we consider Heuristic 7.20 about the boundary of the Brown measure of

X = p+ iq where p, q ∈ (M, τ) are Hermitian and freely independent.

First, we restrict to only considering certain z that satisfy some continuity conditions.

Then, we will verify that the heuristic is almost true in the case when p and q have 2 atoms:

the closure of the intersection of the sets in the heuristic is the boundary (i.e. support) of µ′.

The main result of this section is that for X = p+ iq, where p, q have arbitrarily many

atoms, the intersection of the two sets in the heuristic is an algebraic curve. Mathematica

computations of the empirical spectral distributions of Xn suggest that this algebraic curve

contains the boundary of the Brown measure of X.

9.1 General p and q

We first consider a general X = p+ iq, where p, q are Hermitian and freely independent.

With some restrictions on z, we first present a computation that characterizes the z where

both lϵ → 0 and Bϵ → 0:

We only consider z ∈ C where:

1. lim
ϵ→0

GX(zϵ) = lim
ϵ→0

Qϵ = Q for some Q ∈ H.

2. BX and all related functions are defined and continuous in a neighborhood of Q.

3. g, gI ̸∈ R (i.e. Q ̸∈ R ∪ iR).
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The first condition is the continuity assumption made in stating the heuristic. The second

condition is needed to use BX. The third condition is relevant in order to use (7.79). In

general, since we are taking closures of the intersection of {z : lϵ → 0} and {z : Bϵ → B = 0},

the third condition should not be significant in recovering almost all of the boundary of

the Brown measure. In the case when p and q have two atoms, this condition causes our

computation to not recover the atoms of the measure.

The first and second conditions allow us to pass to the limit to see that:

BX(Q) = lim
ϵ→0+

BX(Qϵ) = lim
ϵ→0+

zϵ = z . (9.1)

By passing to the limit, the condition lϵ → 0 implies that l(Q) = 0.

The conditions Bϵ → 0 and g, gI ̸∈ R imply that Q ∈ C \ (R ∪ iR).

First, we assume Q ∈ H where l(Q) = 0 and BX(Q) = z. Let z = x + iy. The third

assumption allows us to apply (7.79) to BX(Q) = z, which yields:

x = k = βp(g) =
gBp(g)− gBp(g)

g − g

y = k′ = βq(g
I) =

gIBq(g
I)− gIBq(gI)

g − gI
.

(9.2)

Let m describe the intercept of the (complex) line passing through (g, gBp(g)) and (g, gBp(g)),

i.e.

gBp(g) = xg +m

gBp(g) = xg +m.
(9.3)

Conjugating the first equation and comparing with the second equation shows that m ∈ R.

Noting that Bp(g) = Bp(g) and g ̸= 0, then:

x = βp(g) ⇐⇒ Bp(g) = x+
m

g
for some m ∈ R . (9.4)
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Similarly, letm′ describe the intercept of the line passing through (gI , gBq(g
I)) and (gI , gIBq(gI)):

gIBq(g
I) = ygI +m′

gIBq(gI) = ygI +m′ .
(9.5)

Similar arguments show:

y = βq(g
I) ⇐⇒ Bq(g

I) = y +
m′

gI
for some m′ ∈ R . (9.6)

Referring to our original definitions of βp and l in (7.66) and (7.80),

l =
Bp(g)−Bp(g)

g − g
+
Bq(g

I)−Bq(gI)

g − gI
+

1

|g|2
. (9.7)

Inserting the two equations (9.4) and (9.6) into this expression and simplifying shows that

l = 0 ⇐⇒ m+m′ = 1 . (9.8)

Recall that we assumed initially that g, gI ̸∈ R, i.e. Q ̸∈ R ∪ iR. Hence,

BX(Q) = z for Q ∈ H \ (R ∪ iR) where l(Q) = 0

⇐⇒

Bp(g) = x+
m

g

Bq(g
I) = y +

1−m

gI
for some m ∈ R .

(9.9)

Heuristic 7.19 suggests that the closure of the set of z that satisfy this system of equations

should contain the support of the Brown measure of X.

If we impose the additional condition that B = 0, then Q ∈ C. Applying Lemma 7.5 to

Bp(g)− (x+m/g) and Bq(g
I)− (y + (1−m)/gI), we may assume that Q = g and gI = ig.
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Then,

BX(g) = z for g ∈ C \ (R ∪ iR) where l(g) = 0

⇐⇒

Bp(g) = x+
m

g

Bq(ig) = y +
1−m

ig
for some m ∈ R .

(9.10)

Thus, Heuristic 7.20 with the continuity assumptions suggests that the closure of the set of z

that satisfy this system of equations should be the boundary of the Brown measure of X.

The support of a general measure on C is 2-dimensional and the boundary of the support

of a general measure is 1-dimensional. This agrees with the dimensions of generic solutions to

systems of equations with the same number of equations and variables as in (9.9) and (9.10):

Applying Gp to both sides in (9.9), and using
∣∣gI∣∣2 = |g|2, the following system of equations

contains the solutions to (9.9):

g = Gp

(
x+

m

g

)
gI = Gq

(
y +

1−m

gI

)
|g|2 =

∣∣gI∣∣2 .
(9.11)

This is a system of 5 real equations (taking the real/imaginary parts of the first two equations)

with 7 real variables (g, gI ∈ C, x, y,m ∈ R). Thus, we expect in general the solution set to

be 2-dimensional over R, like the support of a generic measure on C.

Adding the condition B = 0, then the system of equations (9.10) is equivalent to:

g = Gp

(
x+

m

g

)
gI = Gq

(
y +

1−m

gI

)
gI = ig .

. (9.12)

This system of equations has one more real equation than the previous system, with 6 real
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equations with 7 real variables. So, the solution set is a subset of the previous solution set

and we expect it to be 1-dimensional over R, like the boundary of the support of a generic

measure on C.

9.2 When p and q have 2 atoms

We apply the computation of the previous section to the case when p and q have 2 atoms.

Our results are that the z that solve the system of equations in (9.9) is a set that is contained

in the intersection of the hyperbola and open rectangle associated with X = p + iq (from

Definition 4.9). It is unclear whether this set is actually the support of the Brown measure

or not, we will discuss the difficulties in determining this. But, adding the extra condition

B = 0 to produce the system of equations in (9.10) does recover the support of µ′. We will

also discuss the atoms of the Brown measure of X.

First, we consider the z that solve the system of equations in (9.9):

Proposition 9.1. Let X = p + iq, where p, q ∈ (M, τ) are Hermitian, freely independent,

and have 2 atoms, i.e.

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ ,
(9.13)

where a, b ∈ (0, 1), αn, α
′
n, βn, β

′
n ∈ R, α ̸= α′, and β ̸= β′.

The set of z ∈ C such that

BX(Q) = z (9.14)

for some Q ∈ H \ (R ∪ iR) where l(Q) = 0 is contained in the intersection of the hyperbola

and open rectangle associated with X.
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Proof. Applying Gp to both sides in (9.9) produces the equivalent system of equations:

g = Gp

(
x+

m

g

)
gI = Gq

(
y +

1−m

gI

)
.

(9.15)

From simplifying these rational expressions and using the formulas for Gp and Gq (see (8.36)),

these equations are equivalent to:

(x− α)(x− α′)g2 + [(x− α)(m− (1− a)) + (x− α′)(m− a)]g +m2 −m = 0

(y − β)(y − β′)(gI)2 − [(y − β)(m− b) + (y − β′)(m− (1− b))]gI +m2 −m = 0 .
(9.16)

We proceed to show that these two equations are quadratic equations with real coefficients

and a non-zero constant term: Note that Q ̸∈ (R ∪ iR) if and only if g, gI ̸∈ R. Then, g and

gI and their conjugates also satisfy their respective equations, so the polynomials have two

distinct roots. The only other possibility besides the polynomials being quadratic is that

they are the zero polynomial. Without loss of generality, consider the first polynomial. The

degree 2 term being zero implies that x = α or x = α′. The constant term being zero implies

that m = 0 or m = 1. But then, this implies that the linear term is non-zero, a contradiction.

Then, from |g|2 =
∣∣gI∣∣2,

m2 −m

(x− α)(x− α′)
=

m2 −m

(y − β)(y − β′)
. (9.17)

As g ̸= 0, then m2 −m ̸= 0 (i.e. m ̸= 0, 1), so:

(x− α)(x− α′) = (y − β)(y − β′) . (9.18)

From Lemma 4.7, this is equivalent to the equation of the hyperbola.

Finally, we will verify that z = x+ iy lies in the open rectangle associated with X. The

first expression in (9.16) viewed as a polynomial in g has two roots at g ̸= g. Hence, the
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discriminant is negative:

0 > ((x− α)(m− (1− a)) + (x− α′)(m− a))2 − 4(x− α)(x− α′)(m2 −m)

= (α′ − α)2m2 + 2(α′ − α)[2(a− 1/2)x+ (α(1− a)− α′α)]m+

+ (x− (α(1− a) + α′a))2 .

(9.19)

Viewed as a polynomial in m over R, this final expression attains a negative value at some

real m. Hence, there must be two distinct real roots, so the discriminant is positive:

0 < −16(1− a)a(x− α)(x− α′)(α′ − α)2 . (9.20)

As a ∈ (0, 1), then

(x− α)(x− α′) < 0 , (9.21)

i.e. x ∈ (α ∧ α′, α ∨ α′). From Lemma 4.7, z = x+ iy lies on the open rectangle associated

with X. Hence, we conclude that when z = BX(Q) for a quaternion Q ̸∈ R ∪ iR such that

l(Q) = 0, z lies on the intersection of the hyperbola and open rectangle.

From Corollary 4.22, the intersection of the hyperbola with the open rectangle is contained

in the support of the Brown measure only if a = b = 1/2, so in general, the set in Proposition

9.1 only contains the support of µ′.

The potential atoms of the Brown measure, {α+ iβ, α′ + iβ, α+ iβ′, α′ + iβ′} correspond

to the two equations in (9.16) becoming linear equations. This can be viewed as a degenerate

situation. Even if we allow solutions where g, gI ∈ R, these two linear equations are not

satisfied, since it would require both g, gI ∈ R. This degeneracy of the 4 corners of the Brown

measure also appears when we examine the heuristic for the support of the Brown measure

(Proposition 10.12).

In order to determine the precise set of z for which the condition in Proposition 9.1 holds,

we need to not only analyze individually which x (resp. y) have the discriminants of the

quadratic equations in g (resp. gI) attain a negative value at a real m, but we need to find
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an m that simultaneously works for both equations. We also need to analyze which g, gI

that solve the equations actually come from a Q (recall from Proposition 7.3 that it not

sufficient that |g|2 =
∣∣gI∣∣). Finally, we need to eliminate those x (resp y) where g ∈ Ip (resp

gI ∈ Iq), as the original equations are not defined for those g, gI . In general, this turns out

to be difficult, but if we intersect with the condition that B = 0, then we recover almost all

of the boundary of the Brown measure:

Proposition 9.2. Let X = p + iq, where p, q ∈ (M, τ) are Hermitian, freely independent,

and have 2 atoms, i.e.

µp = aδα + (1− a)δα′

µq = bδβ + (1− b)δβ′ ,
(9.22)

where a, b ∈ (0, 1), αn, α
′
n, βn, β

′
n ∈ R, α ̸= α′, and β ̸= β′.

The set of z ∈ C such that

BX(g) = z (9.23)

for some g ∈ C \ (R ∪ iR) where l(g) = 0 is equal to the support of the Brown measure of

X with at most finitely many points removed. The closure of this set is the support of µ′ in

Theorem 4.18.

Proof. Let

A = α′ − α

B = β′ − β

x′ = x− α + α′

2

y′ = y − β + β′

2

m̃ = m− 1/2

ã = a− 1/2

b̃ = b− 1/2 .

(9.24)
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Since the set in the Proposition is a subset of the set in Proposition 9.1, from Lemma 4.7,

H = (x′)2 − A 2

4
= (y′)2 − B2

4
< 0 . (9.25)

Apply Gp and Gq to the equations in (9.10) to obtain the equivalent equations:

g = Gp

(
x+

m

g

)
ig = Gq

(
y +

1−m

ig

)
.

(9.26)

Recall that the set in the Proposition is equal to the set of z = x+ iy such that there exists

g ∈ C \ (R ∪ iR), m ∈ R that satisfy these equations.

From simplifying these rational expressions and using the formulas for Gp and Gq (see

(8.36)), these equations are equivalent to:

(x− α)(x− α′)g2 + [(x− α)(m− (1− a)) + (x− α′)(m− a)]g +m2 −m = 0

−(y − β)(y − β′)g2 − [(y − β)(m− b) + (y − β′)(m− (1− b))]ig +m2 −m = 0 .
(9.27)

In the new variables, the previous two quadratic equations are:

H g2 + (2x′m̃+ A ã)g + m̃2 − 1/4 = 0

−H g2 − (2y′m̃− Bb̃)ig + m̃2 − 1/4 = 0 .
(9.28)

As g ̸= g are solutions to the first equation, then

m̃2 − 1/4 = H |g|2 < 0 . (9.29)

Taking the sum and difference of the equations in (9.28) and letting z′ = x′ + iy′ produces

189



the equivalent system of equations:

(2z′m̃+ A ã+ iBb̃)g + 2(m̃2 − 1/4) = 0

2H g2 + (2z′m̃+ A ã− iBb̃)g = 0 .
(9.30)

The second equation can be factored:

g(2H g + (2z′m̃+ A ã− iBb̃)) = 0 . (9.31)

Then, (9.30) has a solution for some g ∈ C \ (R ∪ iR), m̃ ∈ R if and only if the following

system of linear equations has a solution for some g ∈ C \ (R ∪ iR), m̃ ∈ R:

(2z′m̃+ A ã+ iBb̃)g + 2(m̃2 − 1/4) = 0

2H g + (2z′m̃+ A ã− iBb̃) = 0 .
(9.32)

By taking the determinant of the associated 2× 2 matrix, this system has a solution for some

g ∈ C, m̃ ∈ R if and only if

∣∣∣∣∣z′m̃+
A ã− iBb̃

2

∣∣∣∣∣
2

= H (m̃2 − 1/4) (9.33)

for some m̃ ∈ R.

We proceed to show that the z ∈ C where there exists a m̃ ∈ R that solves this equation

is a set whose closure is the support of µ′. Afterwards, we will consider the possibilities where

g ∈ R ∪ iR, g ∈ Ip, or ig ∈ Iq.

Expanding out the absolute value in the previous equation,

(
x′m̃+

A ã

2

)2

+

(
y′m̃− Bb̃

2

)2

= H (m̃2 − 1/4) . (9.34)
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Rewriting as a polynomial in m̃,

((x′)2 + (y′)2 − H )m̃2 + (A ãx′ − Bb̃y′)m̃+
A 2ã2 + B2b̃2 + H

4
= 0 . (9.35)

There is an m̃ ∈ R that solves this if and only if the discriminant is non-negative. Simplifying

the discriminant using (9.25),

0 ≤ (A ãx′ − Bb̃y′)2 − ((x′)2 + (y′)2 − H )(A 2ã2 + B2b̃2 + H )

= −(x′)2(y′)2 − 2abA Bx′y′ − A 2B2(4a2 + 4b2 − 1)

16
.

(9.36)

Define the new variables:

x̃ =
x′

A

ỹ =
y′

B
.

(9.37)

The previous inequality is equivalent to:

(x̃ỹ)2 + 2ãb̃(x̃ỹ) +
4ã2 + 4b̃2 − 1

16
≤ 0 . (9.38)

We now show that this condition along with z = x + iy being on the intersection of the

hyperbola with the open rectangle is equivalent to the following condition:

From Theorem 4.18, the support µ′ is the closure of the set of z ∈ C on the hyperbola

such that:

Im

((
z − α + α′

2
− i

β + β′

2

)2
)

=
A B cos(2θ)

2
, (9.39)

where θ ∈ (0, π/2) satisfies

f(sec2(θ)) ≤ 0 , (9.40)

where

f(t) = (a− b)2t2 + (4ab− 2(a+ b))t+ 1 . (9.41)

From Lemma 4.7, for z = x+ iy on the hyperbola, (9.39) is equivalent to being on the open
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rectangle. The condition can be rewritten in the new variables as:

4x̃ỹ = cos(2θ) . (9.42)

Next, by using the new variables,

f(t) = (ã− b̃)2t2 + (4ãb̃− 1)t+ 1 . (9.43)

From the double-angle formula,

sec2(θ) =
1

cos2(θ)
=

2

1 + cos(2θ)
=

2

1 + 4x̃ỹ
. (9.44)

Combining these final two expressions, a straightforward computation shows that f(sec2(θ)) ≤

0 is equivalent to (9.38). Hence, the closure of the z = x + iy on the intersection of the

hyperbola and open rectangle and satisfying (9.38) is the support of µ′.

Finally, we need to remove the z ∈ C where there exists a g ∈ R ∪ iR, g ∈ Ip, or ig ∈ Iq

that solves (9.32). It suffices to remove solutions where Im(g) = c or Re(g) = c for some

c ∈ R. We claim that for any c ∈ R this removes only finitely many points. Since the support

of µ′ has no isolated points, then the closure of the set is still the support of µ′. We will

prove the case where Im(g) = c, the case where Re(g) = c is similar.

If there exists a g solving (9.32), then since H < 0 and m̃2 − 1/4 < 0 (from (9.29)) so

there are 2 equations for g:

−
z′m̃+ A ã−iBb̃

2

H
= g = − m̃2 − 1/4

z′m̃+ A ã+iBb̃
2

. (9.45)

Using the first equation,

Im(g) = c ⇐⇒ H c = −y′m̃+
Bb̃

2
. (9.46)

We may assume without loss of generality that y′ ̸= 0, as we can remove the finitely many
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points where this occurs on the hyperbola. Then, rewriting the final expression as m̃ in terms

of y′,

m̃ =
1

y′

(
Bb̃

2
− H c

)
= −y′c+ 1

y′

(
Bb̃

2
+

B2c

4

)
. (9.47)

Using that

x′ = ±
√

A 2 − B2

4
+ (y′)2

H = (y′)2 − B2

4
,

(9.48)

we can rewrite (9.34) in terms of y′ and then manipulate the expression to see that y′ is a

root of a rational equation. We claim that this rational equation is non-zero, so then there

are only finitely many y′ that solve this equation. Hence, when we remove Im(g) = c for

some c, we only remove finitely many points.

If (9.34) and (9.46) hold, then the following equation also holds:

(
H (m̃2 − 1/4)− (H c)2 − (x′m)2 − A 2ã2

4

)2

− (x′m̃A ã)2 = 0 . (9.49)

For c ̸= 0, by rewriting x′, H, m̃ in terms of y′ using the previous equations, then the left-hand

side is a rational expression in y′. The highest degree term is (y′)8 with coefficient c4, so the

rational expression is non-zero.

If c = 0, the highest degree term on the left-hand side is (y′)4 with coefficient 1/16, so the

rational expression is non-zero.

We conclude that when we remove the possible solutions of (9.45) where g ∈ R ∪ iR,

g ∈ Ip, or ig ∈ Iq only removes finitely many points. Hence, it does not affect the closure of

the set.

When a = b = 1/2 (equivalently, ã = b̃ = 0), we conclude from Proposition 9.2 and

Corollary 4.22 that the closure of the set in Proposition 9.1 is also the support of µ′ (which is

also the support of the Brown measure in this case). It is also easy to check directly (9.16)

can be solved with m = 1/2 for all z on the support of the Brown measure. Note that in

these solutions g, gI ∈ iR, so these are not the same solutions for Proposition 9.2.
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9.3 When p and q have finitely many atoms

Recall that our heuristic from (9.10) is that the boundary of the Brown measure of X = p+ iq

is the closure of the set of z = x+ iy for which there exists g ∈ C \ (R∪ iR) and m ∈ R such

that the following system of equations is satisfied:

Bp(g) = x+
m

g

Bq(ig) = y +
1−m

ig
.

(9.50)

In Proposition 9.2, we verified this claim was almost true when p and q have two atoms (the

set was missing the atoms of the Brown measure).

Next, consider X = p+ iq where p and q have arbitrarily many atoms. Let

µp = a1δα1 + · · ·+ anδαn

µq = b1δβ1 + · · ·+ bkδβk
,

(9.51)

where αi, βj ∈ R, ai, bj ≥ 0 and a1 + · · · + an = b1 + · · · + bk = 1. It is significant to what

follows that we do not assume the αi (resp. βj) are distinct.

Let

α = (α1, . . . , αn)

β = (β1, . . . , βk)

a = (a1, . . . , an)

b = (b1, . . . , bk)

(9.52)

be shorthand for the positions and weights of the atoms in the measures.

The (complex) Green’s functions for p and q are:

Gp(z) =
a1

z − α1

+ · · ·+ an
z − αn

Gq(z) =
b1

z − β1
+ · · ·+ bk

z − βk
.

(9.53)
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Applying Gp and Gq, an equivalent system of equations is:

Gp

(
x+

m

g

)
= g

Gq

(
y +

1−m

ig

)
= ig .

(9.54)

Let

Ωp,q = {z = x+ iy ∈ C : there exists g ∈ C \ (R ∪ iR),m ∈ R satisfying (9.54)} . (9.55)

From (9.10), Ωp,q is heuristically understood to be the boundary of the Brown measure of

X = p+ iq.

The main result of the section is the following:

Theorem 9.3. Fix a, b. Then, for Lebesgue almost every (α,β) ∈ Rn × Rk = Rn+k, Ωp,q

lies on a real algebraic curve, i.e. Ωp,q lies in the zero set of some non-zero two-variable

polynomial with real coefficients. In particular, we provide an explicit algorithm to produce

such a polynomial.

The proof is split up into the following parts:

1. State the algorithm to find the two-variable polynomial whose zero set contains Ωp,q.

2. Check the algorithm does indeed produce a two-variable polynomial whose zero set

contains Ωp,q.

3. Prove that in the generic situation, this algorithm produces a non-zero polynomial.

First, we provide some figures generated using Mathematica comparing the empirical

spectral distribution of a deterministic Xn = Pn + iQn with the sets Ωp,q and the algebraic

curve the algorithm produces.
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(a) ESD of Xn vs. Ωp,q from (9.55) (b) ESD of Xn vs. algebraic curve

Figure 9.1: Xn = Pn + iQn

µPn ≈ (1/3)δ−1 + (1/3)δ0 + (1/3)δ1
µQn = (1/2)δ0 + (1/2)δ1

n = 10000

9.3.1 Algorithm

In this section, we will state the algorithm that produces a two-variable polynomial whose

zero set contains Ωp,q.

First, the system of equations defining Ωp,q, (9.54), can be written as a system of polynomial

equations:

n∏
i=1

(g(x− αi) +m)−
n∑

i=1

(
ai
∏
s ̸=i

(g(x− αs) +m)

)
= 0

l∏
j=1

(ig(y − βj) + 1−m)−
n∑

j=1

(
bj
∏
s̸=j

(ig(y − βs) + 1−m)

)
= 0 .

(9.56)

Next, we recall the resultant of two polynomials and some basic properties:

Definition 9.4. Let A(x) = anx
n+an−1x

n−1+ · · ·+a0 and B(x) = bkx
k+ bk−1x

k−1+ · · ·+ b0

be one-variable polynomials with coefficients in a commutative ring R. The resultant of A

and B, Res(A,B), is the determinant of the (n+ k)× (n+ k) Sylvester matrix:
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Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an bk

an−1 an bk−1 bk

an−2 an−1
. . . bk−2 bk−1

. . .

...
... an

...
... bk

a0 a1
... b0 b1

...

a0
. . .

... b0
. . .

...

. . . a1
. . . b1

a0 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.57)

Suppose that R is an integral domain. Then, it makes sense to talk about the roots of

A(x) and B(x) in some algebraically closed field containing R.

We state the following well-known result:

Proposition 9.5. Let ai, bj ∈ R, where R is an integral domain. Let λi, µj be the roots of

A(x) = anx
n+an−1x

n−1+ · · ·+a0 and B(x) = bkx
k+bk−1x

k−1+ · · ·+b0 in some algebraically

closed field containing R, respectively.

A(x) = an(x− λ1) · · · (x− λn)

B(x) = bk(x− µ1) · · · (x− µk) .
(9.58)

Then,

Res(A,B) = aknb
n
k

∏
1≤i≤n
1≤j≤k

(λi − µj) . (9.59)

A corollary of this result is:

Corollary 9.6. Let ai, bj ∈ R, where R is an integral domain. Let A(x) = anx
n+ an−1x

n−1+

· · ·+ a0 and B(x) = bkx
k + bk−1x

k−1 + · · ·+ b0. Then, A and B have a common root in some

algebraically closed field containing R if and only if Res(A,B) = 0.

We can now state the algorithm to produce the two-variable polynomial:
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Algorithm 9.7. The following algorithm takes p, q as in (9.51) and produces a two-variable

real polynomial f(x, y):

1. Take the resultants of the polynomials in (9.56) with respect to g. Let f1(m,x, y) be this

resultant.

2. Divide f1(m,x, y) by mn−1(m − 1)k−1. Let f2(m,x, y) be the result of this, so that

f2(m,x, y)m
n−1(m− 1)k−1 = f1(m,x, y).

3. Take the real and imaginary parts of f2(m,x, y) assuming that m,x, y ∈ R. This

produces real polynomials Ref2(m,x, y) and Imf2(m,x, y).

4. Take the resultant of Ref2(m,x, y) and Imf2(m,x, y) with respect to m. Return this

polynomial as f(x, y), a real two-variable polynomial.

This idea of reducing the number of variables in a system of polynomial equations by

taking resultants is not new (see [Sti] for a description of the technique), but the main issue

is that by computing resultants one may introduce too many new solutions in the system. In

particular, we wish to avoid the situation that the resultant is the zero polynomial, which

gives no information about the solutions of the original system.

The second step of dividing by mn−1(m − 1)k−1 avoids the resultant being the zero

polynomial (in general). There is also the detail that x, y,m are real variables, but g is

complex and we start with two complex equations in (9.56). This is handled by taking Ref2

and Imf2 in Step 3.

9.3.2 Proof of correctness for algorithm

Now, we will prove that Algorithm 9.7 produces a polynomial whose zero set contains Ωp,q.

Consider z0 = x0+iy0 ∈ Ωp,q where (x0, y0, g0,m0) solves (9.56). Recall that x0, y0,m0 ∈ R

and g0 ∈ C \ (R ∪ iR).

In Step 1, substitute x = x0, y = y0 and m = m0 into the polynomials in (9.56) and treat

them as polynomials in g. Then, these polynomials both have a root at g = g0, so their
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resultant with respect to g must be zero. Hence, f1(m0, x0, y0) = 0.

In Step 2, we must show thatmn−1(m−1)k−1 divides f1(m,x, y) and also that f2(m0, x0, y0) =

0. Supposing we have proven the first statement, the second statement follows immediately

from the fact that m0 ̸= 0, 1:

If m0 = 0, then the first equation in (9.54) is Gp(x0) = g0 for x0 ∈ R, so then g0 ∈ R,

a contradiction. Similarly, if m0 = 1, the second equation is Gq(y0) = ig0 for y0 ∈ R, so

g0 ∈ iR, a contradiction.

The fact that mn−1(m− 1)k−1 divides f1(m,x, y) depends on the following Lemma:

Lemma 9.8. As elements of Z[a0, . . . , an, b0, . . . , bk,m], mn−1(m−1)k−1 divides the following

determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an bk

an−1
. . . bk−1

. . .

an−2m an bk−2(m− 1) bk
...

...
...

...

a0m
n−1(m− 1)

... b0(m− 1)k−1m
...

. . . a1m
n−2 . . . b1(m− 1)k−2

a0m
n−1(m− 1) b0(m− 1)k−1m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.60)

More precisely, this is the determinant of the matrix obtained from the Sylvester matrix for

A(x) = anx
n + an−1x

n−1 + · · ·+ a0 and B(x) = bkx
k + bk−1x

k−1 + · · ·+ b0 with the following

changes:

1. Replace all ai with aim
n−1−i for i = 1, . . . , n− 1.

2. Replace all bi with bi(m− 1)k−1−i for i = 1, . . . , k − 1.

3. Replace all a0 with a0m
n−1(m− 1).

4. Replace all b0 with b0(m− 1)k−1m.
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Proof. As the polynomial ring is a unique factorization domain and m, m− 1 are primes, it

suffices to check that mn−1 and (m− 1)k−1 each individually divide the determinant.

We will just prove that mn−1 divides the determinant, as the other case can be obtained

from switching the roles of A and B and using m′ = 1−m instead of m

Consider the terms that come from evaluating the determinant using the Leibniz formula.

To show that mn−1 divides the determinant, it suffices to check that mn−1 divides any term

that is a product of some non-zero entries of the matrix.

To simplify matters, consider only the power ofm in each coordinate, i.e. it suffices to check

that mn−1 divides the non-zero terms of the Leibniz formula in the following determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

1
. . . 1

. . .

m 1 1 1
...

...
...

... 1
...

... 1
...

...

mn−2 ... m 1
...

mn−1 mn−3 . . . 1 1

. . . mn−2 m 1

mn−1 m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.61)

The proof follows by induction on n (with k fixed). The base case n = 1 is trivial as mn−1 = 1.

For the inductive step, suppose that the claim has been verified for n− 1 and consider the

statement for n. Any term in the Leibniz formula where one of the mn−1 terms is part of the

product is clearly divisible by mn−1.

Hence, it suffices to consider only those terms in the Leibniz formula that are a product

of matrix entries that are not mn−1. This corresponds to changing all instances of mn−1 to 0

and looking for terms in the Leibniz formula that are products of non-zero entries of this new
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matrix: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

1
. . . 1

. . .

m 1 1 1
...

...
...

... 1
...

... 1
...

...

m−2 ... m 1
...

0 mn−3 . . . 1 1

. . . mn−2 m 1

0 m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.62)

In this new matrix, there is only one non-zero entry in the last row, the lower right m. Hence,

all non-zero terms in the Leibniz formula for the new matrix are equal to m multiplied with

a non-zero term in the Leibniz formula for the (n+ k − 1)× (n+ k − 1) minor of the first

n+ k − 1 rows and columns: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

1
. . . 1

. . .

m 1 1 1
...

...
...

...
...

... 1
...

mn−2 ... m 1

. . . mn−3 . . . 1

mn−2 m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.63)

This (n + k − 1) × (n + k − 1) minor is just the original matrix in (9.61) but with n − 1

instead of n. Hence, from induction, all non-zero terms in the Leibniz formula for this matrix

are divisible by mn−2. Once this is multiplied by the lower right m, then all of these terms

are divisible by mn−1, as desired.

Now, we can prove thatmn−1(m−1)k−1 divides f1(m,x, y), which completes the verification
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of Step 2 of the algorithm:

Proposition 9.9. Let f1(m,x, y) be the resultant of the polynomials in (9.56) with respect to

g. Then, mn−1(m− 1)k−1 divides f1(m,x, y) in C[m,x, y].

Proof. Consider the two polynomials in (9.56): For the first polynomial, the first term is

homogeneous in g and m with degree n and the second term is homogeneous in g and m

with degree n− 1. Similarly, for the second polynomial, the first term is homogeneous in g

and 1−m with degree k and the second term is homogeneous in g and 1−m with degree

k − 1. Thus, by expanding the products in g and factoring out m and m− 1 respectively,

these polynomials can be written respectively as:

pn(x,m)gn + pn−1(x,m)gn−1 + pn−2(x,m)mgn−2+

+ pn−3(x,m)m2gn−3 · · ·+ p0(x,m)mn−1

qk(y,m)gk + qk−1(y,m)gk−1 + qk−2(y,m)(1−m)gk−2+

+ qk−3(x,m)(1−m)2gk−3 · · ·+ q0(y,m)(1−m)k−1.

(9.64)

for some complex polynomials pi(x,m), qi(y,m).

Using that a1 + · · ·+ an = b1 + · · ·+ bk = 1, then p0(x,m) = m− 1 and q0(y,m) = −m.

The resultant of these polynomials with respect to g is exactly the determinant in Lemma

9.8 with a0 = 1, b0 = (−1)k, ai = pi(x,m) for i = 1, . . . , n and bi = qi(y,m) for i = 1, . . . , k.

Hence, mn−1(m− 1)k−1 divides f1(m,x, y) in C[m,x, y].

Returning to the verification of the algorithm, consider Step 3. f2(m0, x0, y0) = 0 is

equivalent to Ref2(m0, x0, y0) = Imf2(m0, x0, y0) = 0.

Treating Ref2(m,x0, y0) and Imf2(m,x0, y0) as polynomials in m, then these polynomials

have a common root at m = m0. Hence, the resultant of these two polynomials vanishes in

m vanishes at (x0, y0). This completes the proof of the correctness of the algorithm.
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9.3.3 A specific case

In order to prove Theorem 9.3 for the generic case, we first apply the algorithm in the specific

case where α = (0, . . . , 0) ∈ Rn and β = (0, . . . , 0) ∈ Rk. We will see that in this case, the

algorithm produces a non-zero polynomial:

Proposition 9.10. The algorithm for any a, b and α = 0, β = 0 produces a non-zero

polynomial.

Proof. For any a and b, (9.56) is:

0 = (gx+m)n − (gx+m)n−1 = (gx+m)n−1(gx+m− 1)

0 = (igy + 1−m)k − (igy + 1−m)k−1 = (igy + 1−m)k−1(igy −m) .
(9.65)

Step 1 of the algorithm is taking the resultant of the polynomials in (9.65) with respect to g.

From continuity, it suffices to take the resultant when x ̸= 0 and y ̸= 0. In this situation, we

can factor the polynomials:

(gx+m)n−1(gx+m− 1) = xn
(
g +

m

x

)n−1
(
g +

m− 1

x

)
(igy + 1−m)k−1(igy −m) = (iy)k

(
g − i(1−m)

y

)k−1(
g +

im

y

)
.

(9.66)
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From Proposition 9.5,

f1(m,x, y) = xnk(iy)nk
(
m

x
+
i(1−m)

y

)(n−1)(k−1)(
m

x
− im

y

)n−1

×(
m− 1

x
+
i(1−m)

y

)k−1(
m− 1

x
− im

y

)
= (imy + (m− 1)x)(n−1)(k−1)(imy +mx)n−1×

(i(m− 1)y + (m− 1)x)k−1(i(m− 1)y +mx)

= mn−1(m− 1)k−1(imy + (m− 1)x)(n−1)(k−1)(x+ iy)n−1×

(x+ iy)k−1(i(m− 1)y +mx)

= mn−1(m− 1)k−1(x+ iy)n+k−2×

((m− 1)x+ imy)(n−1)(k−1)(mx+ i(m− 1)y) .

(9.67)

In Step 2 of the algorithm, we divide f1(m,x, y) by m
n−1(m− 1)k−1. This is easy to do from

the final expression for f1(m,x, y):

f2(m,x, y) = (x+ iy)n+k−2((m− 1)x+ imy)(n−1)(k−1)(mx+ i(m− 1)y) . (9.68)

In Step 3 of the algorithm, we compute Ref2(m,x, y) and Imf2(m,x, y) assuming m,x, y ∈ R.

In Step 4, we compute the resultant of these two real polynomials in m, resulting in a

polynomial in x and y. We will not compute these explicitly, but just argue that the result

of the algorithm is a non-zero polynomial.

First, consider a general f2(m,x, y) ∈ C[m,x, y]:

f2(m,x, y) =
∑
j,k,l

cj,k,lm
jxkyl , cj,kl ∈ C . (9.69)
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The result of applying Step 3 of the algorithm to f2(m,x, y) is:

Ref2(m,x, y) =
∑
j,k,l

Re(cj,k,l)m
jxkyl

Imf2(m,x, y) =
∑
j,k,l

Im(cj,k,l)m
jxkyl .

(9.70)

Thus, the following equalities hold as polynomials in C[m,x, y]:

f2(m,x, y) = Ref2(m,x, y) + i Imf2(m,x, y)

f2(m,x, y) = Ref2(m,x, y)− i Imf2(m,x, y) ,
(9.71)

where f2(m,x, y) ∈ C[m,x, y] is computed assuming that m,x, y ∈ R.

In Step 4, we compute the resultant of Ref2(m,x, y) and Imf2(m,x, y) with respect to

m and this is the result of the algorithm. This resultant vanishes at (x0, y0) if and only if

there is some m0 ∈ C such that Ref2(m0, x0, y0) = Imf2(m0, x0, y0) = 0. This happens if and

only if there is some m0 ∈ C such that f2(m0, x0, y0) = f2(m,x0, y0) = 0. Hence, it suffices

to show there exists (x0, y0) ∈ R where there does not exist m ∈ C such that:

0 = f2(m,x0, y0)

= (x0 + iy0)
n+k−2((m− 1)x0 + imy0)

(n−1)(k−1)(x0m+ i(m− 1)y0)

0 = f2(m,x0, y0)

= (x0 − iy0)
n+k−2((m− 1)x0 − imy0)

(n−1)(k−1)(x0m− i(m− 1)y0) .

(9.72)

As f2 and f2 are factored, it is easy to see that

f2(m,x0, y0) = 0 ⇐⇒ x0 = y0 = 0 or m =
x0

x0 + iy0
or m =

iy0
x0 + iy0

f2(m,x0, y0) = 0 ⇐⇒ x0 = y0 = 0 or m =
x0

x0 − iy0
or m =

−iy0
x0 − iy0

.
(9.73)
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Consider x0 + iy0 = eiθ. Then,

x0
x0 + iy0

= cos θe−iθ ,
iy0

x0 + iy0
= i sin θe−iθ = sin θei(π/2−θ)

x0
x0 − iy0

= cos θeiθ ,
−iy0

x0 − iy0
= −i sin θeiθ = sin θei(θ−π/2) .

(9.74)

The roots of f2(m,x0, y0) and f2(m,x0, y0) occur at angles −θ, π/2 − θ, θ, θ − π/2. When

θ ∈ (0, π/4), these four angles are all distinct because θ − π/2 < −θ < θ < π/2 − θ.

Thus, f2(m,x0, y0) and f2(m,x0, y0) cannot have a common root, and we conclude that the

algorithm produces a non-zero polynomial in this instance.

9.3.4 Extending to generic case

We are now ready to prove Theorem 9.3:

Proof of Theorem 9.3. We have already presented the algorithm and proved that it does

produce a real two-variable that vanishes on Ωp,q.

All that is left to prove is that for any fixed a, b, for Lebesgue almost every (α,β) ∈ Rn×Rk,

the polynomial from the algorithm is non-zero.

First, change coordinates as follows:

Let Sn−1 and Sk−1 be the unit spheres in Rn and Rk:

Sn−1 = {u ∈ Rn : ∥u∥ = 1}

Sk−1 = {v ∈ Rk : ∥v∥ = 1} .
(9.75)

Consider the map ϕ : [0,∞)× Sn−1 × [0,∞)× Sk−1 → Rn × Rk given by:

ϕ ((r,u, s,v)) = (ru, sv) . (9.76)

Endow [0,∞) × Sn−1 × [0,∞) × Sk−1 with the product of the Lebesgue measures on the

intervals and the normalized spherical measures and endow Rn ×Rk with the usual Lebesgue
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measure. From the Change of Variables formula, ϕ maps sets of measure 0 to sets of measure 0.

Hence, it suffices to prove the generic statement of the Theorem in the (r,u, s,v) coordinates.

It suffices to show that for any a, b and (u,v) ∈ Sn−1 × Sk−1 and Lebesgue almost every

(r, s) ∈ [0,∞)× [0,∞), the algorithm applied to a, b,α = ru,β = sv produces a non-zero

polynomial.

Fix a, b and (u,v) ∈ Sn−1×Sk−1. It is straightforward to check that if we consider α and

β as functions of r and s, respectively: α(r) = ru, β(s) = sv, then the algorithm produces

a real polynomial in x, y, r, s. Additionally, doing the algorithm and evaluation at a specific

r = r0, s = s0 commute.

Hence, the algorithm produces a polynomial p(x, y, r, s), where from Proposition 9.10,

p(x, y,0,0) is a non-zero polynomial.

Viewing p(x, y, r, s) as a polynomial in x, y with coefficients in R[r, s], we see that there is at

least one coefficient that is not the zero polynomial. As the zero set of any non-zero polynomial

in R[r, s] is Lebesgue measure 0, then for Lebesgue almost every (r, s) ∈ [0,∞) × [0∞),

p(x, y, r, s) has a non-zero coefficient. Hence, for almost every r, s, the result of the algorithm

is a non-zero polynomial.
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CHAPTER 10

Support of the Brown measure

In this chapter, we consider Heuristic 7.19 about the support of the Brown measure of

X = p+ iq, where p, q ∈ (M, τ) are Hermitian and freely independent.

The main result of this chapter is that in the case when p, q have 2 atoms that have equal

weights, then X = p+ iq satisfies this property when we restrict to points where we can use

BX:

Theorem 10.1. Suppose that p, q ∈ (M, τ) are Hermitian, freely independent operators such

that their spectral measures are:

µp = (1/2)δα + (1/2)δα′

µq = (1/2)δβ + (1/2)δβ′

(10.1)

for some α ̸= α′, β ̸= β′ ∈ R.

Considering only points z ∈ C where GX(zϵ) is in the domain of BX for sufficiently small

ϵ > 0, the support of the Brown measure of X = p+ iq is the closure of the set of z such that

lim
ϵ→0+

GX (zϵ) =

A iB

iB A

 (10.2)

for some B ̸= 0 or where the limit does not exist.

Recall that from Corollary 4.22 we know what the support of the Brown measure of X is
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in this situation, it is the intersection of the hyperbola{
z = x+ iy :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
(α′ − α)2 − (β′ − β)2

4

}
(10.3)

with the rectangle

{z = x+ iy : x ∈ [α ∧ α′, α ∨ α′], y ∈ [β ∧ β′, β ∨ β′]} . (10.4)

Remark 10.2. In the following sections comprising the proof of Theorem 10.1, we will

assume z ∈ C is as described in the Theorem: GX(zϵ) is in the domain of BX for sufficiently

small ϵ > 0.

We give a brief outline of the proof:

Fix some z and consider a sequence ϵk → 0+. Recall that we use the notation Qϵ = GX(zϵ).

There are some preliminary steps to reduce to the case where Qϵk → Q ∈ H, Q ̸= 0. This is

discussed in the next section.

After passing to a subsequence, the following two cases follow from (7.85):

1. There exists a sequence ϵk → 0+ where lϵk → 0.

2. There exists a sequence ϵk → 0+ where Bϵk → 0.

We will classify which z is in each of these two cases: these cases impose conditions on the

limit Q, which in turn impose conditions on z. Note that BX may not be well-defined and/or

discontinuous at Q. The proof of Theorem 10.1 follows once all of these cases are understood.

Before we continue, let us highlight that letting a = b = 1/2 in Definitions 8.1 and 8.2

makes Dp, Dq, Ip, and Iq particularly simple:

Dp(w) = ((α′ − α)w)2 + 1

Dq(w) = ((β′ − β)w)2 + 1 .
(10.5)
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Ip =

{
iy : |y| > 1

|α′ − α|

}
Iq =

{
iy : |y| > 1

|β′ − β|

}
.

(10.6)

In particular, observe that Ip, Iq ⊂ iR.

Additionally, the hyperbola will always mean (10.3), and the rectangle will always

mean (10.4).

10.1 Preliminary reductions

In this section, we will reduce to the case where Qϵk converges to some Q ∈ H, Q ̸= 0.

For a general sequence {Qk}, there are three cases:

1. The sequence {Qk} is not bounded.

2. The sequence {Qk} converges to 0.

3. The sequence {Qk} is bounded but does not converge to 0.

By bounded/unbounded, we refer to the boundedness/unboundedness of the quaternionic

norm.

In the third case, we may just pass to a subsequence where Qk → Q, where Q ≠ 0, which

is what we desired.

The second case is not possible, for Qk = Qϵk as from Theorem 8.13,

|z| = lim
k→∞

|zϵk | = lim
k→∞

|BX(Qϵk)| = ∞ . (10.7)

Thus, all that remains is the first case, where we may pass to a subsequence and assume that

|Qk| → ∞. This is the subject of the following Proposition:

Proposition 10.3. Consider a sequence {Qk} ⊂ H where |Qk| → ∞ and BX(Qk) converges.

Then, BX(Qk) converges to one of: {α + iβ, α + iβ′, α′ + iβ, α′ + iβ′}.
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Proof. From (7.49) and |Qk| → ∞ implying
∣∣Q−1

k

∣∣→ 0, it suffices to analyze

lim
k→∞

Bp(Qk) lim
k→∞

Biq(Qk) . (10.8)

Using Proposition 7.18 and noting that |Qki| = |Qk|, then it suffices just to analyze the first

limit and apply the result to the second limit.

We proceed to show that there exists a subsequence Qkj where Bp(Qkj ) converges to one of

α, α′. From Lemma 7.6, it suffices to show that the eigenvalues of Bp(Qkj ), Bp(gkj ), Bp(gkj ) =

Bp(gkj) converge to one of α, α′.

Since |Qk| → ∞, then |gk| → ∞ also. From the expression for Bp, (Proposition 8.6),

lim
k→∞

Bp(gk) = lim
k→∞

α + α′

2
+

1 +
√
Dp(gk)

2gk

=
α + α′

2
+ lim

k→∞

√
(α′ − α)2g2k + 1

2gk
.

(10.9)

The square of the quantity inside the final limit is:

(α′ − α)2g2k + 1

4g2k
, (10.10)

which converges to (α′−α)2/4 as k → ∞. Hence, we may choose a subsequence gkj such that

lim
j→∞

√
(α′ − α)2g2kj + 1

2gkj
= ±α

′ − α

2
. (10.11)

Then,

lim
j→∞

Bp(gkj) =
α + α′

2
± α′ − α

2
, (10.12)

i.e. Bp(gkj) converges to one of α, α′. Hence, Bp(Qkj) converges to one of α, α′.

By applying the same argument to Biq(Qk), there exists a subsequence kjl where BX(Qkjl
)

converges to one of {α + iβ, α + iβ′, α′ + iβ, α′ + iβ′}. Hence, BX(Qk) also converges to one

of {α + iβ, α + iβ′, α′ + iβ, α′ + iβ′}.
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Thus, for what follows, we may assume that we are considering a sequence Qk → Q and

Q ̸= 0.

We return to the original dichotomy, which follows from (7.85):

1. There exists a sequence ϵk → 0+ where lϵk → 0.

2. There exists a sequence ϵk → 0+ where Bϵk → 0.

10.2 lk → 0

In this section, we determine the z such that there exists a sequence ϵk → 0+ where

Qϵk → Q ̸= 0 and lϵk → 0.

We summarize the results of the three cases when lk → 0:

1. If BX is discontinuous at Q, then BX(Qk) converges to z on the intersection of the

hyperbola with the open rectangle. (Proposition 10.4)

2. If BX is continuous at Q:

(a) If g ∈ R or gI ∈ R, then l(Qk) ̸→ 0. (Proposition 10.5)

(b) If g ̸∈ R and gI ̸∈ R, then BX(Qk) → BX(Q) = z, which is on the intersection of

the hyperbola with the open rectangle. (Proposition 10.6)

For the first case, we have the following result:

Proposition 10.4. If Qk converges to Q ̸= 0, lk → 0, and BX is discontinuous at Q, then

one of the following is true:

1. gk → Ip and gIk → Iq.

2. gk → Ip and gIk → Iq.
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In either case, BX(Qk) converges to z = x+ iy on the intersection of the hyperbola

H =

{
z = x+ iy :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
(α′ − α)2 − (β′ − β)2

4

}
(10.13)

with the open rectangle

◦
R = {z = x+ iy : x ∈ (α ∧ α′, α ∨ α′), y ∈ (β ∧ β′, β ∨ β′)} . (10.14)

Proof. From Theorem 8.13, if BX is discontinuous at Q, then either gk converges to Ip or gIk

converges to Iq. We will prove the second case, the first case is similar.

Recall that for gk, g
I
k ̸∈ R,

lk =
1

2 |gk|2

gk√Dp(gk)− gk
√
Dp(gk)

gk − gk
+
gIk
√
Dq(gIk)− gIk

√
Dq(gIk)

gIk − gIk

 , (10.15)

and there exists continuous extensions in the case where gk ∈ R \ {0} or gIk ∈ R \ {0} (see

Proposition 8.12).

If gIk converges to Iq, then from Lemma 8.5, the second term inside the parenthesis

converges to 0. As lk → 0, then the first term inside the parentheses (or its continuous

extension to R) also must converge to 0:

l̃(gk) =


gk
√
Dp(gk)− gk

√
Dp(gk)

gk − gk
gk ̸∈ R

−1√
Dp(gk)

gk ∈ R
−→ 0 . (10.16)

Let gk converge to g ̸= 0. From Lemma 8.5, l̃ is continuous on C \ {0} when a = 1/2. Hence,

l̃(g) = 0. We proceed to show that g ∈ Ip by considering what happens if g ∈ C \ Ip:

If g ∈ R, then

l̃(g) =
−1

Dp(g)
< 0 . (10.17)
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If g ∈ C \ (R ∪ Ip), then consider the following equivalences:

l̃(g) = 0 ⇐⇒ Im

(
g
√
Dp(g)

)
= 0

⇐⇒ g
√
Dp(g) = t, t ∈ R

⇐⇒ |g|2
√
Dp(g) = tg

⇐⇒
√
Dp(g) =

t

|g|2
g

=⇒ (α′ − α)2g2 + 1 =
t2

|g|4
g2

⇐⇒ g2 =
1

t2

|g|4 − (α′ − α)2
.

(10.18)

The denominator in the last term is non-zero, or else the equality in the previous line is

incorrect. Thus, for l̃(g) = 0, g2 ∈ R. As we assumed g ̸∈ R, then g ∈ iR. Since we assumed

g ̸∈ Ip, then g = iy for some y ∈ R \ {0}, y < 1/ |α′ − α|. But, for such a g, Dp(g) > 0, so

Im

(
g
√
Dp(g)

)
= −

√
Dp(iy)y ̸= 0 . (10.19)

Hence, l̃(g) ̸= 0.

Similar analysis switching p, g for q, gI shows that there are two possibilities:

1. gk → Ip and gIk → Iq.

2. gk → Ip and gIk → Iq.

In either situation, gk, g
I
k converge to iR, so that in the real coefficients of Qk, (x0)k → 0

and (x3)k → 0. In particular, from (7.7) and (7.9) this implies that gk and gIk both converge

to some it, t > 0. Since lk → 0, then using (7.79),

lim
k→∞

BX(Qk) = lim
k→∞

βp(gk) + iβq(g
I
k) . (10.20)

From Lemma 8.7, depending on if gk and gIk approach it from the left or right, all 4 limits
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are possible:

lim
k→∞

BX(Qk) = lim
k→∞

βp(gk) + iβq(g
I
k)

=

(
α + α′

2
±
√

−Dp(it)

2t

)
+ i

(
β + β′

2
±
√
−Dp(it)

2t

)
.

(10.21)

Hence, if the limit is z = x+ iy, then

x =
α + α′

2
±
√
−Dp(it)

2t

y =
β + β′

2
±
√

−Dq(it)

2t
.

(10.22)

Finally, we check that this z is on the intersection of the hyperbola and the open rectangle.

For the hyperbola equation:

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=

(√
−Dp(it)

2t

)2

−

(√
−Dq(it)

2t

)2

=

(√
(α′ − α)2t2 − 1

2t

)2

−

(√
(β′ − β)2t2 − 1

2t

)2

=
(α′ − α)2t2 − 1

4t2
− (β′ − β)2t2 − 1

4t2

=
(α′ − α)2 − (β′ − β)2

4
.

(10.23)
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For the rectangle condition, from Lemma 4.7 it suffices to check x ∈ (α ∧ α′, α ∨ α′):

∣∣∣∣x− α + α′

2

∣∣∣∣ =
√
−Dp(it)

2t

=

√
(α′ − α)2t2 − 1

2t

=

√
(α′ − α)2t2 − 1

4t2

=

√
(α′ − α)2

4
− 1

4t2

<

√
(α′ − α)2

4

=
|α′ − α′|

2
.

(10.24)

Now, consider the case where BX is continuous at Q and g ∈ R or gI ∈ R. We can rule

out this case from happening, so we can use (7.79) to analyze the general case:

Proposition 10.5. If Qk converges to Q ̸= 0, BX is continuous at Q, and g ∈ R or gI ∈ R,

then lk ̸→ 0.

Proof. The cases g ∈ R and gI ∈ R are similar, so we will just prove the case when g ∈ R.

From Proposition 8.12 and Lemma 8.5, l can be extend continuously to (g, gI) and lk converges

to l(g, gI):

l(g, gI) =
1

2 |g|2

(
−1√
Dp(g)

+
Im(gI

√
Dq(gI))

Im(gI)

)
. (10.25)

From Lemma 7.5, we can just assume that gI = ig for the purpose of evaluating l:

l(g, gI) = l(g, ig) =
1

2 |g|2

(
−1√
Dp(g)

+
Im(ig

√
Dq(ig))

Im(ig)

)
. (10.26)

Since BX is continuous at Q, gI ̸∈ Iq, so ig ̸∈ Iq. Combining this with g ∈ R, then Dq(ig) ≥ 0,

and
Im(ig

√
Dq(ig))

Im(ig)
= −

√
Dq(ig) ≤ 0 . (10.27)
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Therefore,

l(g, ig) ≤ 1

2 |g|2

(
−1√
Dp(g)

)
< 0 . (10.28)

For the final case, consider the following Proposition:

Proposition 10.6. If Qk converges to Q ̸= 0, lk → 0, and BX is continuous at Q, then

BX(Qk) converges to BX(Q) = z = x+ iy on the intersection of the hyperbola

H =

{
z = x+ iy :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
(α′ − α)2 − (β′ − β)2

4

}
(10.29)

with the open rectangle

◦
R = {z = x+ iy : x ∈ (α ∧ α′, α ∨ α′), y ∈ (β ∧ β′, β ∨ β′)} . (10.30)

Proof. Since BX is continuous at Q, then

lim
k→∞

BX(Qk) = BX(Q) . (10.31)

Since Q ̸= 0, then from Proposition 8.12, l is continuous at Q, so

l(Q) = lim
k→∞

lk = 0 . (10.32)

From Proposition 10.5, since lk → 0, then g, gI ̸∈ R, i.e. Q ̸∈ R ∪ iR.

Hence, (7.79) applies and shows that BX = z for some z ∈ C.

Applying Proposition 9.1 completes the proof.
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10.3 Bk → 0

In this section, we determine the z such that there exists a sequence ϵk → 0+ where

Qϵk → Q ̸= 0 and Bϵk → 0, i.e. Q ∈ C.

We summarize the results of the two cases when Bk → 0:

1. If BX is continuous at Q, then BX(Qk) → BX(Q) = z, and whenever z is on the

hyperbola, z is not in the rectangle. (Proposition 10.7)

2. If BX is discontinuous at Q, then BX(Qk) does not converge to a z on the hyperbola.

(Proposition 10.10)

Recall that g ∈ C ⊂ H is a continuity point of BX if and only if g ̸∈ Ip ∪ {0} and

gI ̸∈ Iq ∪ {0}.

For the first case, we have the following result:

Proposition 10.7. If Qk converges to Q ∈ C where Q ̸= 0 and BX is continuous at Q, then

BX(Qk) converges to BX(Q) = z = x+ iy such that:

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
(α′ − α)2 − (β′ − β)2

4
, (10.33)

then ∣∣∣∣(x− α + α′

2

)(
y − β + β′

2

)∣∣∣∣ > (α′ − α)(β′ − β)

4
. (10.34)

In particular, this implies that z is not on the intersection of the hyperbola and rectangle.

Proof. Since BX is continuous at Q, then BX(Qk) → BX(Q). Since Q ∈ C, then BX(Q) =

z ∈ C also. Let Q = g ∈ C.

Applying the addition law (7.49),

z = BX(g) = Bp(g) + iBq(ig)−
1

g
. (10.35)
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Hence,

z = BX(g)

= Bp(g) + iBq(ig)−
1

g

=

(
α + α′

2
+

1 +
√

(α′ − α)2g2 + 1

2g

)
+

i

(
β + β′

2
+

1 +
√

(β′ − β)2(ig)2 + 1

2ig

)
− 1

g

=
α + α′

2
+ i

β + β′

2
+

√
(α′ − α)2g2 + 1

2g
+

√
1− (β′ − β)2g2

2g
.

(10.36)

We proceed to show that if z lies on the hyperbola in (10.3), then z lies outside of the

rectangle in (10.4).

Let

A = α′ − α

B = β′ − β .
(10.37)

From Lemma 4.7, the equation of the hyperbola for z = x+ iy can be written as

Re

((
z − α + α′

2
− i

β + β′

2

)2

− A 2 − B2

4

)
= 0 . (10.38)

For z = x+ iy on the hyperbola, z is on the rectangle if and only if∣∣∣∣∣Im
((

z − α + α′

2
− i

β + β′

2

)2

− A 2 − B2

4

)∣∣∣∣∣ ≤ A B

2
. (10.39)

The relevant quantity can be simplified to:

(
z − α + α′

2
− i

β + β′

2

)2

− A 2 − B2

4
=

1 +
√

A 2g2 + 1
√

1− B2g2

2g2
(10.40)

Hence, the hyperbola equation is:

Re

(
1 +

√
A 2g2 + 1

√
1− B2g2

2g2

)
= 0 , (10.41)
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i.e.
1 +

√
A 2g2 + 1

√
1− B2g2

2g2
= η , (10.42)

for some η ∈ iR.

For z on the hyperbola, z is on the rectangle when∣∣∣∣∣1 +
√

A 2g2 + 1
√
1− B2g2

2g2

∣∣∣∣∣ ≤ A B

2
. (10.43)

Simplifying (10.42) further, z is on the hyperbola if and only if

√
A 2g2 + 1

√
1− B2g2 = 2g2η − 1 , (10.44)

Squaring both sides and rearranging, g must satisfy:

0 = g2((4η2 − A 2B2)g2 − (4η + (A 2 − B2))) . (10.45)

As g ̸= 0, then:

g2 =
4η + (A 2 − B2)

4η2 + A 2B2
. (10.46)

All steps were reversible except for the step where both sides were squared. We proceed to

determine which values of η make (10.41) true, and show for these η, (10.43) is not satisfied.

Computation shows that the relevant quantities in (10.42) are:

A 2g2 + 1 =
(A 2 + 2η)2

4η2 + A 2B2

1− B2g2 =
(B2 − 2η)2

4η2 + A 2B2
.

(10.47)

To take the square root of these quantities, consider the following cases for η ∈ iR:

1. |η| < A B/2, i.e. |Im(η)| ≤ A B/2.

2. |η| > A B/2, i.e. Im(η) > A B/2 or Im(η) < −A B/2.
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For the first case, note that the denominator in (10.47) is positive and A 2 + 2η,B2 − 2η

are in the right half-plane, so

√
A 2g2 + 1 =

A 2 + 2η√
4η2 + A 2B2√

1− B2g2 =
B2 − 2η√
4η2 + A 2B2

.

(10.48)

Hence,
1 +

√
A 2g2 + 1

√
1− B2g2

2g2
=

A 2B2 + (B2 − A 2)η

4η + (A 2 − B2)
. (10.49)

If A 2 − B2 = 0, then
A 2B2 + (B2 − A 2)η

4η + (A 2 − B2)
=

A 2B2

4η
. (10.50)

For any η ∈ iR, this quantity is purely imaginary, and so z lies on the hyperbola. But, for

|η| < A B/2, |A 2B2/(4η)| > A B/2, so z is not on the rectangle.

If A 2 − B2 ̸= 0, the right-hand side in (10.49) is purely imaginary when:

−4 Im(η)

A 2B2
=

A 2 − B2

(B2 − A 2) Im(η)
, (10.51)

i.e. when Im(η) = ±A B/2. This is impossible for |η| < A B/2, so z is not on the hyperbola.

Thus, when |η| < A B/2, it is impossible for z to be on both the hyperbola and rectangle.

For |η| > A B/2, first consider when Im(η) > A B/2. Then, the denominator in (10.47)

is negative, A 2 + 2η is in the first quadrant, and B2 − 2η is in the fourth quadrant, so

√
A 2g2 + 1 =

−i(A 2 + 2η)√
−4η2 − A 2B2√

1− B2g2 =
i(B2 − 2η)√
−4η2 − A 2B2

.

(10.52)

When Im(η) < −A B/2, the denominator in (10.47) is negative, A 2 + 2η is in the fourth
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quadrant, and B2 − 2η is in the first quadrant, so

√
A 2g2 + 1 =

i(A 2 + 2η)√
−4η2 − A 2B2√

1− B2g2 =
−i(B2 − 2η)√
−4η2 − A 2B2

.

(10.53)

In either case, when |η| > A B/2,

1 +
√

A 2g2 + 1
√
1− B2g2

2g2
=

4η2 + η(A 2 − B2)

4η + (A 2 − B2)
= η . (10.54)

From (10.46), the denominator 4η+(A 2−B2) is zero exactly when g = 0, which is impossible,

so this expression makes sense. Thus, for all η where |η| > A B/2, z is on the hyperbola.

But, since |η| > A B/2, then (10.43) does not hold and z is not on the rectangle.

Finally, consider when Qk converges to Q ∈ C, Q ̸= 0, such that Q is not a continuity

point of BX. Assuming that Q = g and gI = ig, this happens when either g ∈ Ip or ig ∈ Iq,

i.e. g ∈ iR ∪ R. Then, in the addition law (7.49), one of Bp or Biq is continuous. We can

handle the other term with the following general Lemma:

Lemma 10.8. Let p ∈ (M, τ) be Hermitian and consider a sequence {Qk} ⊂ H such that

Qk → Q ∈ C, where Q ̸= 0 either satisfies Q ∈ C \ R or Bp is continuous at Q. Then,

lim
k→∞

Bp(Qk) =

z 0

0 z

 , (10.55)

where limk→∞Bp(ζk) = z for some sequence {ζk} ⊂ C where ζk → Q.

It follows that if Gp is defined and continuous at z, then Q = Gp(z).

Proof. We will show the sequence

ζk =

gk Im(Q) ≥ 0

gk Im(Q) < 0
(10.56)
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satisfies the conclusion of the Lemma.

When Q ∈ R, then from hypothesis, Bp is continuous at Q. Then, gk, gk converge to Q, so

the eigenvalues of Bp(Qk), Bp(gk), Bp(gk) converge to Bp(Q). Since Q ∈ R, then Bp(Q) ∈ R.

From Lemma 7.6, Bp(Qk) converges to Bp(Q). Thus, our choice of ζk satisfies the conclusion

of the Lemma.

For Q ̸∈ R, Consider a diagonalization of Qk:

Qk = S−1
k gkSk . (10.57)

Then,

Bp(Qk) = Bp(S
−1
k gkSk)

= S−1
k Bp(gk)Sk

= S−1
k Bp(gk)Sk .

(10.58)

Recall that gk is the eigenvalue of Qk with Im(gk) ≥ 0. From the definition of ζk, it suffices

to show that we can choose suitable Sk for each of the following cases for x3 = Im(Q):

1. If x3 < 0, Sk converges to an invertible matrix S that switches the diagonal entries of

Bp(gk), i.e. SBp(gk)S
−1 = Bp(gk).

2. If x3 > 0, Sk converges to an invertible matrix that fixes the diagonal entries of Bp(gk),

i.e. SBp(gk)S
−1 = Bp(gk).

For the first case, where x3 < 0, computation shows that we may choose

Sk =

 iBk gk − Ak

g − Ak iBk

 (10.59)

to diagonalize the matrix. Since Qk → Q ∈ C, the diagonal terms of Sk converge to 0. When
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(x3)k < 0, the off-diagonal terms are:

gk − Ak = i

(√
(x1)2k + (x2)2k + (x3)2k − (x3)k

)
= i

(√
(x1)2k + (x2)2k + (x3)2k + |(x3)k|

) (10.60)

As Bk → 0, then (x1)k, (x2)k → 0 and (x3)k → x3, so this term converges to 2i |x3|. Hence,

Sk →

 0 2i |x3|

−2i |x3| 0

 . (10.61)

This matrix is invertible and switches the diagonal entries of the matrix.

If x3 > 0, we alter the previous Sk by dividing by Bk, choosing

Sk =



 i gk−Ak

Bk

g−Ak

Bk
i

 Bk ̸= 0

i 0

0 i

 Bk = 0 .

(10.62)

It suffices to check that Sk tends to its value at Bk = 0. For this, as the off-diagonal terms

are conjugates, we examine just one of them:

gk − Ak

Bk

=
i
(√

(x1)2k + (x2)2k + (x3)2k − (x3)k

)
(x1)k + i(x2)k

. (10.63)

Taking the absolute value of the right-hand side,

∣∣∣∣∣∣
i
(√

(x1)2k + (x2)2k + (x3)2k − (x3)k

)
(x1)k + i(x2)k

∣∣∣∣∣∣ =
√

(x1)2k + (x2)2k + (x3)2k − (x3)k√
(x1)2k + (x2)2k

. (10.64)

When (x3)k > 0, applying the Mean Value Theorem to the function f(t) =
√
(x3)2k + t2 for
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t ∈ [0,
√
(x1)2k + (x2)2k] yields√

(x1)2k + (x2)2k + (x3)2k − (x3)k
(x1)2k + (x2)2k

=
t′√

(x3)2k + (t′)2
, (10.65)

for some t′ ∈ (0,
√

(x1)2k + (x2)2k). Since (x3)k → x3 > 0 and Bk = (x1)k + (x2)k → 0, then

the following inequalities show that the off-diagonal terms converge to 0:

t′√
(x3)2k + (t′)2

≤
√
(x1)2k + (x2)2k
|(x3)k|

→ 0 . (10.66)

For the final point, if Gp is continuous at z, then

Q = lim
k→∞

ζk = lim
k→∞

Gp(Bp(ζk)) = Gp(z) . (10.67)

Consider the previous result, but with p replaced with X = p+ iq. From the addition

law (7.49) and the previous result, we could prove a result with two sequences ζk and ζ ′k

converging to Q and Qi for Bp and Biq. For general p, q we may not be able to use only one

sequence by replacing ζ ′k with iζk, as the limits of Biq along these sequences may be different.

But, in our situation, we can:

Corollary 10.9. Consider a sequence {Qk} ⊂ H such that Qk → Q ∈ C, where Q ̸= 0.

Then,

lim
k→∞

BX(Qk) =

z 0

0 z

 , (10.68)

where limk→∞BX(ζk) = z for some sequence {ζk} ⊂ C where ζk → Q.

It follows that if GX is defined and continuous at z, then Q = GX(z).

Proof. When BX is continuous at Q, we can just take ζk to be any sequence converging to Q.

When BX is discontinuous at Q, either g ∈ Ip or gI ∈ Iq. In either case, in the addition

law (7.49), only one of Bp or Biq is discontinuous at Q.
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Lemma 10.8 produces the appropriate ζk that works for the one of Bp or Biq that is

discontinuous at Q, and that ζk will also work for the other function that is continuous at Q.

For the final point, if GX is continuous at z, then

Q = lim
k→∞

ζk = lim
k→∞

GX(BX(ζk)) = GX(z) . (10.69)

Finally, we are ready to prove the following Proposition:

Proposition 10.10. If Qk converges to Q ∈ C where Q ̸= 0 and BX is discontinuous at Q,

then BX(Qk) → z ∈ C where z = x+ iy has

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

̸= (α′ − α)2 − (β′ − β)2

4
. (10.70)

Proof. From Theorem 8.13, g ∈ Ip or gI ∈ Iq. We will prove the first case, the second case is

similar.

From Corollary 10.9,

BX(Qk) →

z 0

0 z

 , (10.71)

where limk→∞BX(ζk) = z for some ζk → g. From the addition law (7.49),

BX(ζk) = Bp(ζk) + iBq(ζki)−
1

ζk
. (10.72)

If g ∈ Ip, then Bp is discontinuous at g. From Proposition 8.6,

lim
k→∞

Bp(ζk) =
α + α′

2
+

1± i
√

−Dp(g)

2g
. (10.73)

Since ζki→ ig ∈ R, then Bq is continuous at ig. From Proposition 8.6,

lim
k→∞

iBq(ζki) = iBq(gi) = i
β + β′

2
+

1 +
√
Dq(ig)

2g
. (10.74)
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Hence,

z =
α + α′

2
+ i

β + β′

2
± i

√
−Dp(g)

2g
+

√
Dq(ig)

2g
. (10.75)

From Lemma 4.7, z is on the hyperbola if and only if:

Re

((
z − α + α′

2
− i

β + β′

2

)2

− (α′ − α)2 − (β′ − β)2

4

)
= 0 . (10.76)

Substituting the expression for z into this and simplifying, z is on the hyperbola if and only

if:

Re

(
1± i

√
−Dp(g)

√
Dq(ig)

2g2

)
= 0 . (10.77)

Since g ∈ Ip, then
√

−Dp(g),
√
Dq(ig), g

2 ∈ R, so the real part of the previous equation is

1/(2g2), which is non-zero. Hence, BX(Qk) does not converge to a point on the hyperbola.

10.4 Proof when p and q have 2 atoms

In this section, we prove Theorem 10.1 and also make some observations about the 4 corners

of the rectangle R.

First, a summary of the results in the previous sections:

1. If Qk → 0, then |BX(Qk)| → ∞. (Theorem 8.13)

2. If |Qk| → ∞ and BX(Qk) converges, then BX(Qk) converges to one of {α + iβ, α +

iβ′, α′ + iβ, α′ + iβ′}. (Proposition 10.3)

3. If Qk → Q ̸= 0:

(a) If lk → 0:

i. If BX is discontinuous at Q, then BX(Qk) converges to z on the intersection

of the hyperbola with the open rectangle. (Proposition 10.4)

ii. If BX is continuous at Q:
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A. If g ∈ R or gI ∈ R, then l(Qk) ̸→ 0. (Proposition 10.5)

B. If g ̸∈ R and gI ̸∈ R, then BX(Qk) → BX(Q) = z, which is on the

intersection of the hyperbola with the open rectangle. (Proposition 10.6 )

(b) If Bk → 0:

i. If BX is continuous at Q, then BX(Qk) → BX(Q) = z, and whenever z is on

the hyperbola, z is not in the rectangle. (Proposition 10.7)

ii. If BX is discontinuous at Q, then BX(Qk) does not converge to a z on the

hyperbola. (Proposition 10.10)

As a corollary to these facts, we make an observation about the 4 corners of the intersection

of the hyperbola and rectangle:

Corollary 10.11. Let z ∈ {α+ iβ, α′ + iβ, α+ iβ′, α′ + iβ′} and suppose that GX(zϵ) is in

the domain of BX for sufficiently small ϵ > 0. Then,

lim
ϵ→0+

|GX(zϵ)| = ∞ . (10.78)

Proof. The proof is based on the results in the previous sections and noticing that only in

the situation where z ∈ {α + iβ, α′ + iβ, α + iβ′, α′ + iβ′} is possible is when |Qk| → ∞ and

BX(Qk) converges.

Recall that Qϵ = GX(zϵ). It suffices to show that for every sequence ϵk → 0+, |Qϵk | → ∞.

Suppose for the sake of contradiction that Qϵk is bounded for some ϵk → 0+.

If Qϵk → 0, then

z = lim
k→∞

zϵk = lim
k→∞

BX(Qϵk) , (10.79)

but from Theorem 8.13, the final limit diverges.

If Qϵk ̸→ 0, then we may pass to a subsequence and assume that Qϵk → Q ̸= 0. Then,

from the results in the previous sections, z ̸∈ {α+ iβ, α′+ iβ, α+ iβ′, α′+ iβ′}, a contradiction.
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Thus, it must be the case that

lim
ϵ→0+

|GX(zϵ)| = ∞ . (10.80)

We can verify the domain condition in Corollary 10.11 to get the following concrete result:

Proposition 10.12. Let z ∈ {α + iβ, α′ + iβ, α + iβ′, α′ + iβ′}. Then,

lim
ϵ→0+

|GX(zϵ)| = ∞ . (10.81)

Proof. Let Xz = z −X. Computation using Definition 7.12 shows that:

GX(zϵ) =

τ [((Xz)
∗Xz + ϵ2)−1(Xz)

∗] −iϵτ [((Xz)
∗Xz + ϵ2)−1]

iϵτ [((Xz)
∗Xz + ϵ2)−1] τ [Xz((Xz)

∗Xz + ϵ2)−1]

 . (10.82)

In light of Corollary 10.11 and the domain of BX described in Theorem 8.13, it suffices to show

that for z ∈ {α+ iβ, α′ + iβ, α+ iβ′, α′ + iβ′} and ϵ > 0, τ [((Xz)
∗Xz + ϵ2)−1(Xz)

∗] ̸∈ R ∪ iR.

We will just show that τ [((Xz)
∗Xz + ϵ2)−1(Xz)

∗] ̸∈ iR, the other case is similar. For

this, let Xz = p+ iq, where p, q are Hermitian, freely independent, and have 2 atoms. For

z ∈ {α+ iβ, α′ + iβ, α+ iβ′, α′ + iβ′}, p and q both have 0 as an atom. Hence, p and q are

either positive or negative operators. At this point, we also drop the subscript z so that

X = p+ iq.

Assume for the sake of contradiction that τ [(X∗X + ϵ2)−1X∗] ∈ iR. This is equivalent to

0 = Re τ [(X∗X + ϵ2)−1X∗] = τ [(X∗X + ϵ2)−1p] . (10.83)

Since p ≥ 0 or p ≤ 0, without loss of generality assume that p ≥ 0. Then,

τ [((X∗X + ϵ2)−1/2p1/2)∗(X∗X + ϵ2)−1/2p1/2] = τ [(X∗X + ϵ2)−1p] = 0 . (10.84)
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Since τ is faithful, then (X∗X + ϵ2)−1/2p1/2 = 0. Hence,

p = (X∗X + ϵ2)1/2[(X∗X + ϵ2)−1/2p1/2]p1/2 = 0 . (10.85)

But, this is impossible, as p has 2 atoms. Hence, τ [(X∗X + ϵ2)−1X∗] ̸∈ iR.

We prove one final Proposition before the proof of Theorem 10.1:

Proposition 10.13. Let z ∈ C and suppose there exists a sequence ϵk → 0+, such that

Qϵk → Q ̸= 0, where Q ∈ C. Then,

lim
ϵ→0+

GX(zϵ) = lim
ϵ→0+

Qϵ = Q . (10.86)

In particular, when GX is continuous at z, Q = GX(z).

Proof. If there is a sequence Qϵk → Q ̸= 0 where Q ∈ C, then Bϵk → 0. We proceed to

upgrade the convergence Bϵk → 0 along a specific sequence to Bϵ → 0 as ϵ→ 0+: If Bϵ ̸→ 0,

then from (7.85), on some sequence ϵ′k → 0+, lϵ′k → 0. From Bϵk → 0 and Propositions

10.7 and 10.10, z does not lie on the intersection of the hyperbola and rectangle. But, from

lϵ′k → 0 and Propositions 10.4 and 10.6, z does lie on the intersection of the hyperbola and

rectangle. This is a contradiction, so we conclude that Bϵ → 0.

Next, consider an arbitrary sequence ϵ′k → 0 such that Qϵ′k
→ Q′ ̸= 0, where Q′ ∈ C. To

prove the limit in the statement of the Proposition, it suffices to show that Q′ = Q.

Corollary 10.9 gives two sequences ζϵk , ζϵ′k ⊂ C such that ζϵk → Q, ζϵ′k → Q′, and:

lim
k→∞

BX(ζϵk) = lim
k→∞

BX(Qϵk) = z = lim
k→∞

BX(Qϵ′k
) = lim

k→∞
BX(ζϵ′k) . (10.87)

We consider the cases when BX is continuous or discontinuous at Q and Q′:

If BX is continuous at both Q and Q′, then since BX is invertible on its domain, it is
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injective. Hence,

BX(Q) = lim
k→∞

BX(ζϵk) = z = lim
k→∞

BX(ζϵ′k) = BX(Q
′) (10.88)

implies that Q = Q′.

If BX is continuous at exactly one of Q and Q′, assume BX is continuous at Q but not Q′.

From Proposition 8.11, BX is analytic in a neighborhood of Q, so from the Open Mapping

Theorem, for U ⊂ C open where Q ∈ U , Q′ ̸∈ U , BX(U) is an open set containing BX(Q) = z.

Since BX(ζϵ′k) converges to z also, then for sufficiently large k, BX(ζϵ′k) ∈ BX(U), but ζϵ′k ̸∈ U .

This contradicts the injectivity of BX .

Finally, consider if BX is discontinuous at both Q and Q′, i.e. Q ∈ Ip or Qi ∈ Iq, and

Q′ ∈ Ip or Q′i ∈ Iq.

From the proof of Proposition 10.10, the possible limits for BX(ζk) are:

z = lim
k→∞

BX(Qϵk)

=


α + α′

2
+ i

β + β′

2
± i

√
−Dp(g)

2g
+

√
Dq(ig)

2g
g ∈ Ip

α + α′

2
+ i

β + β′

2
+

√
Dp(g)

2g
± i

√
−Dq(ig)

2g
ig ∈ Iq .

(10.89)

Computation shows that:

z̃ =

(
z − α + α′

2
− i

β + β′

2

)2

− (α′ − α)2 − (β′ − β)2

4

=


1± i

√
−Dp(g)

√
Dq(ig)

2g2
g ∈ Ip

1± i
√
Dp(g)

√
−Dq(ig)

2g2
ig ∈ Iq .

(10.90)

There are analogous equations for Q′, where g is replaced with g′.

In these equations, we can determine if g ∈ Ip or ig ∈ Iq by observing that Re(z̃) < 0

for g ∈ Ip and Re(z̃) > 0 for ig ∈ Iq. Then, by observing Re(z̃) = 1/(2g2), we can recover g
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up to a sign. Finally, by examining Re(z), we can determine what g is. Hence, Q = Q′, as

desired.

The last point follows from Corollary 10.9.

Finally, we can prove Theorem 10.1:

Proof of Theorem 10.1. First, consider z on the support of the Brown measure of X. From

Theorem 4.18, z = x+ iy lies on the intersection of the hyperbola

H =

{
z = x+ iy :

(
x− α + α′

2

)2

−
(
y − β + β′

2

)2

=
(α′ − α)2 − (β′ − β)2

4

}
(10.91)

with the rectangle

R = {z = x+ iy : x ∈ [α ∧ α′, α ∨ α′], y ∈ [β ∧ β′, β ∨ β′]} . (10.92)

Recall that

Qϵ = GX (zϵ) = GX

z iϵ

iϵ z

 =

Aϵ iBϵ

iBϵ Aϵ

 . (10.93)

If Qϵ converges to some Q, then from Theorem 8.13, Q ̸= 0. Further, B ̸= 0: if B = 0, then

from Propositions 10.7 and 10.10, zϵ = BX(Qϵ) converges to z not on the intersection of the

hyperbola and rectangle, a contradiction.

Conversely, assume z has that Qϵ → Q where B ≠ 0. Then, from (7.79), lϵ → 0. From

Propositions 10.4 and 10.6, zϵ = BX(Qϵ) converges to z on the intersection of the hyperbola

and rectangle, and hence the support of the Brown measure of X.

All that remains to show is that when Qϵ does not have a limit as ϵ→ 0+, then z is on

the intersection of the hyperbola and rectangle.

First, we consider when Qϵ does not stay bounded as ϵ→ 0+. Choose a sequence ϵk → 0+

such that |Qϵk | → ∞. From Proposition 10.3, z is one of {α+ iβ, α+ iβ′, α′ + iβ, α′ + iβ′},

which are the boundary points of the intersection of the hyperbola with the rectangle.
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Now, suppose that Qϵ remains bounded as ϵ→ 0+ but has no limit. From Propositions

10.4 and 10.6, it suffices to show that lϵ → 0. For this, it suffices to show that for any

sequence ϵk → 0+, Bϵk ̸→ 0.

For the sake of contradiction, assume that there is some ϵk → 0+ where Bϵk → 0. Passing

to a subsequence, we may assume that Qϵk converges to Q ̸= 0. From Proposition (10.13),

Qϵ converges to Q, a contradiction to the assumption that Qϵ had no limit.
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CHAPTER 11

Atoms of the Brown measure

In this final chapter, we discuss the atoms of the Brown measure of X = p + iq in the

framework of the Quaternionic Green’s function GX and relate them to some of our previous

results.

In ([BV98], Theorem 7.4), the authors proved that an atom of µ ⊞ ν can occur at γ if

and only if there exists α, β ∈ R such that γ = α + β and µ({α}) + ν({β}) > 1, in which

case (µ⊞ ν)({γ}) = µ({α}) + ν({β})− 1.

In ([BSS18], Proposition 1), an analogue of this result was proven for the operator-valued

Cauchy transform and the sum of free operators that are not necessarily Hermitian:

Proposition 11.1. Let x, y ∈ (M, τ), where x, y ̸∈ C and are freely independent. If there

exists a projection p ̸= 0 and λ ∈ C such that (x+ y)p = λp, then:

1. p is the projection onto ker((x+ y − λ)∗(x+ y − λ)).

2. There exists projections p1, p2 ∈ (M, τ) and u1, u2 ∈ C so that:

• xp1 = u1p1, yp2 = u2p2.

• u1 + u2 = λ.

• τ(p1) + τ(p2) = τ(p) + 1.

We wish to conclude that the λ ∈ C where there exists such a p ≠ 0 correspond to the

atoms of the Brown measure of x+y, and that µ({λ}) = τ(p). If this were true, then we could

conclude that the atoms of the Brown measure of X = p+ iq are exactly of the form αi + iβj ,

where αi is an atom of p and βj is an atom of q. Further, we could conclude exactly what
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the weights of these atoms were. Note that these weights correspond to the intersection of

free projections of certain traces (Proposition 4.13) and the intersection of randomly rotated

subspaces of certain dimension (Lemma 5.1). These are the weights of the atoms when p

and q have 2 atoms (Theorem 4.18). When the atom is on ∂R, this also matches the weights

given in Proposition 5.7.

Recall from Lemma 4.12 that for a real probability measure µ and a sequence zn → s

non-tangentially to R, (zn − s)Gµ(zn) → µ({s}). We proceed to analyze the analogous limit

for the Quaternionic Green’s function for X ∈ (M, τ). This analysis comes from [BSS18],

translated to our notation for GX.

We wish to analyze the following limit for fixed z ∈ C:

lim
ϵ→0+

(zϵ − z)GX(zϵ) , (11.1)

where

zϵ =

z iϵ

iϵ z

 . (11.2)

By analogy from Lemma 4.12, we expect this limit to be µ({z}).

Let a = Xz = z −X. Computation with Definition 7.12 shows that

(zϵ − z)GX(zϵ) =

 ϵ2τ [(a∗a+ ϵ2)−1] iϵτ [a(a∗a+ ϵ2)−1]

iϵτ [a∗(a∗a+ ϵ2)−1] ϵ2τ [(a∗a+ ϵ2)−1]

 . (11.3)

For the diagonal terms, we rewrite the expression as an integral over the spectral measure of

a∗a:

ϵ2τ [(a∗a+ ϵ2)−1] =

∫ ∞

0

ϵ2

t+ ϵ2
dµa∗a(t) . (11.4)
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Since ϵ2/(t+ ϵ2) ≤ 1, then from the dominated convergence theorem,

lim
ϵ→0+

ϵ2τ [(a∗a+ ϵ2)−1] =

∫ ∞

0

lim
ϵ→0+

ϵ2

t+ ϵ2
dµa∗a(t)

=

∫ ∞

0

χ{0}(t) dµa∗a(t)

= τ(p) ,

(11.5)

where p is the projection onto ker(a∗a) = ker(a) = ker(z −X).

For the off-diagonal terms, we use the polar decomposition a = v |a| and the Cauchy-

Schwarz inequality with v and iϵ |a| (a∗a+ ϵ2)−1 to see that:

∣∣iϵτ [a(a∗a+ ϵ2)−1]
∣∣ ≤ τ [v∗v]1/2τ [ϵ2a∗a(a∗a+ ϵ2)−2]1/2 . (11.6)

Again, rewriting in terms of the spectral measure of a∗a,

τ [ϵ2a∗a(a∗a+ ϵ2)−1] =

∫ ∞

0

tϵ2

(t+ ϵ2)2
dµa∗a(t) . (11.7)

Since 2tϵ2 ≤ (t+ ϵ2)2, then from the dominated convergence theorem,

lim
ϵ→0+

τ [ϵ2a∗a(a∗a+ ϵ2)−1] =

∫ ∞

0

lim
ϵ→0+

tϵ2

(t+ ϵ2)2
dµa∗a(t)

=

∫ ∞

0

0 dµa∗a(t)

= 0 .

(11.8)

Hence,

lim
ϵ→0+

(zϵ − z)GX(zϵ) = τ(p) , (11.9)

where p is the projection onto ker(z −X).

In particular, when p ̸= 0, then

lim
ϵ→0+

|GX(zϵ)| = ∞ . (11.10)

236



This can applied to the Brown measure of X = p + iq when the χ{αi}(p) and χ{βj}(q) are

guaranteed to intersect because their traces are large. Note that this result does not imply

Proposition 10.12, since in that case the traces of all atoms of p and q are 1/2 and X = p+ iq

does not have any atoms. In particular, the situation of Proposition 10.12 gives an example

where:

lim
ϵ→0+

|GX(zϵ)| = ∞ , (11.11)

but

lim
ϵ→0+

(zϵ − z)GX(zϵ) = 0 . (11.12)

To possibly relate this limit to the Brown measure, we observe from the computation that:

lim
ϵ→0+

(zϵ − z)GX(zϵ) = lim
ϵ→0+

ϵ2τ [(a∗a+ ϵ2)−1] . (11.13)

This final limit can be related to the Brown measure when X is normal or X = Xn is a

random matrix. For instance, when X is normal,

ϵ2τ [(a∗a+ ϵ2)−1] =

∫
C

ϵ2

|z − w|2 + ϵ2
dµX(w) , (11.14)

and from the dominated convergence theorem the right-hand side converges to µX({z}) as

ϵ → 0+. When X = Xn is a random matrix where a∗a has empirical spectral distribution

1
n

∑n
i=1 δλi

,

ϵ2τ [(a∗a+ ϵ2)−1] = E

[
1

n

n∑
i=1

ϵ2

λi + ϵ2

]
. (11.15)

Applying the dominated convergence theorem as ϵ→ 0+,

lim
ϵ→0+

ϵ2τ [(a∗a+ ϵ2)−1] = E

[
lim
ϵ→0+

1

n

n∑
i=1

ϵ2

λi + ϵ2

]
= E[τ(p)] , (11.16)

where p is the projection onto ker(a∗a) = ker(a) = ker(z −X). Hence,

E[τ(p)] = E
[∫

C
χ{0}(z −X) dµXn(z)

]
= µXn({z}) . (11.17)
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In general, it is unclear if

lim
ϵ→0+

ϵ2τ [(a∗a+ ϵ2)−1] = µX({z}) . (11.18)
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