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RESEARCH ARTICLE
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Abstract
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near com-

plete coverage of common and low-frequency genetic variation with minor allele frequency

�0.5% across European ancestry populations. Within the European Network for Genetic

and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-

scale meta-analysis of genome-wide association studies (GWAS), supplemented by

1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048

individuals of European ancestry. We identified two loci for body mass index (BMI) at

genome-wide significance, and two for fasting glucose (FG), none of which has been
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previously reported in larger meta-analysis efforts to combine GWAS of European ancestry.

Through conditional analysis, we also detected multiple distinct signals of association map-

ping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and

G6PC2). The index variant for one association signal at theG6PC2 locus is a low-frequency

coding allele, H177Y, which has recently been demonstrated to have a functional role in glu-

cose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to

drive association signals at established and novel loci were enriched for overlap with

enhancer elements, which for FG mapped to promoter and transcription factor binding sites

in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and

genetic fine-mapping of common and low-frequency variant association signals at GWAS

loci, integrated with genomic annotation in relevant tissues, can provide insight into the

functional and regulatory mechanisms through which their effects on glycaemic and obe-

sity-related traits are mediated.

Author Summary

Human genetic studies have demonstrated that quantitative human anthropometric and
metabolic traits, including body mass index, waist-hip ratio, and plasma concentrations of
glucose and insulin, are highly heritable, and are established risk factors for type 2 diabetes
and cardiovascular diseases. Although many regions of the genome have been associated
with these traits, the specific genes responsible have not yet been identified. By making use
of advanced statistical “imputation” techniques applied to more than 87,000 individuals of
European ancestry, and publicly available “reference panels” of more than 37 million
genetic variants, we have been able to identify novel regions of the genome associated with
these glycaemic and obesity-related traits and localise genes within these regions that are
most likely to be causal. This improved understanding of the biological mechanisms
underlying glycaemic and obesity-related traits is extremely important because it may
advance drug development for downstream disease endpoints, ultimately leading to public
health benefits.

Introduction
Quantitative human glycaemic and obesity-related traits, including fasting plasma glucose and
insulin (FG and FI), body mass index (BMI), and waist-hip ratio (WHR) are highly heritable
[1–5], and are well established risk factors for type 2 diabetes (T2D) and cardiovascular disease
[6–10]. Large-scale genome-wide association studies (GWAS) have proved to be extremely suc-
cessful in the identification of loci harbouring genetic variants contributing to these traits in
multiple ethnic groups [11–27]. This process has been facilitated by technical advances in the
development of imputation methods [28] that allow evaluation of association with genetic vari-
ants not directly assayed on genotyping arrays, but present instead in more dense phased refer-
ence panels, such as those made available through the International HapMap Consortium
[29,30]. However, the detected loci are typically characterised by common variant association
signals, defined by lead SNPs with minor allele frequency (MAF) of at least 5%, which extend
over large genomic intervals because of linkage disequilibrium (LD). They also often map to
non-coding sequence, making direct biological interpretation of their effect more difficult than
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for non-synonymous variants. The lead SNPs at GWAS loci are overwhelmingly of modest
effect, and together account for only a small proportion (generally less than 5%) of the overall
trait variance [17–19,26,27]. As a consequence, there has been limited progress in identifying
the genes through which GWAS association signals are mediated, and characterisation of the
downstream molecular mechanisms influencing glycaemic and obesity-related traits remains a
considerable challenge.

There has been much recent debate as to the role that low frequency and rare variation
(MAF<5%) might play in explaining the “missing heritability” of complex human traits [31–
33]. It has been hypothesized that some of these variants will have larger effects on traits than
common SNPs because they are likely to have arisen as a result of relatively recent mutation
events, and thus will have been less subject to purifying selection [34]. Unfortunately, such var-
iation is not well captured by traditional GWAS genotyping arrays, by design, even when sup-
plemented by HapMap imputation [35–37]. However, more recent, higher density reference
panels released by the 1000 Genomes (1000G) Project Consortium [38], constructed on the
basis of low-pass whole-genome re-sequencing, provide haplotypes at more than 37 million
variants for 1,094 individuals from multiple ethnic groups, and facilitate imputation of genetic
variation with MAF as low as 0.5% across diverse populations [39–41].

Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Con-
sortium, we sought to assess the advantages and limitations of high-density imputation for the
discovery and fine-mapping of loci for glycaemic and obesity-related traits. We considered 22
European ancestry GWAS (S1 Table), each imputed up to the 1000G “all ancestries” reference
panel (Phase 1 interim release, June 2011), in up to (after quality control): 87,048 individuals
for BMI; 54,572 individuals for WHR; 46,694 individuals for FG; and 24,245 individuals for FI
(S2 and S3 Tables). To account for the impact of overall obesity on central adiposity [18,27]
and insulin sensitivity [19], we considered WHR and FI after adjustment for BMI (denoted
WHRadjBMI and FIadjBMI, respectively). With these high-density imputed data, we aimed to: (i)
discover novel signals of association for glycaemic and obesity-related traits, including within
established GWAS loci; (ii) evaluate the impact of low-frequency variation to common SNP
GWAS signals; (iii) consider the contribution of genetic variants at GWAS loci in explaining
trait variance; and (iv) refine the localisation of potential causal variants underlying GWAS
association signals and assess the mechanisms through which they impact glycaemic and obe-
sity-related traits.

Results

Imputation quality
Within each study, we performed stringent quality control of the genotype scaffold before
imputation, minimally including sample and variant call rate and deviation from Hardy-Wein-
berg equilibrium (S1 Table). Each scaffold was imputed up to the 1000G multi-ethnic reference
panel (Phase 1 interim release, June 2011), which includes 762 European ancestry haplotypes,
using IMPUTEv2 [42], minimac [39] or specialist in-house software (S1 Table). Making use of
the multi-ethnic reference panel, including haplotypes from all ancestry groups, has been dem-
onstrated to reduce error rates and to improve imputation quality, particularly of lower fre-
quency variants [28]. Imputed variants were retained for downstream evaluation and
association testing if they passed traditional GWAS quality control thresholds (IMPUTEv2
info score� 0.4; minimac r2 � 0.3) [43].

We considered the quality of imputation (as measured by the IMPUTEv2 info score) of var-
iants from the 1000G reference panel in two contributing studies (S4 Table): the 1958 British
Birth Cohort from the Wellcome Trust Case Control Consortium (58BC-WTCCC, 2,802
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individuals from Great Britain); and the 1966 Northern Finnish Birth Cohort (NFBC1966,
5,276 individuals from Lapland and the Province of Oulu in Northern Finland). In
58BC-WTCCC, 98.8% of common SNPs (MAF�5%, 6.3 million) and 97.0% of low-frequency
variants (0.5%�MAF<5%, 3.8 million) passed imputation quality control filters, of which
72.9% are not present in HapMap reference panels. However, imputation of rarer variants
(0.1%�MAF<0.5%, 3.4 million) proved less successful in 58BC-WTCCC, with only 80.5%
passing quality control filters. The quality of imputation in NFBC1966 was comparable to that
observed in 58BC-WTCCC: 99.7% of common SNPs (5.9 million) and 94.4% of low-frequency
variants (3.7 million). However, amongst rarer variants, the quality of imputation was notice-
ably poorer in NFBC1966 (62.8%) than 58BC-WTCCC, presumably reflecting less representa-
tion of low-frequency haplotypes from the isolated Northern Finnish population in the 1000G
reference panel.

We have demonstrated that high-density imputation provides>90% coverage of low-fre-
quency variants present in the 1000G reference panel in two diverse European ancestry popula-
tions. Our study thus enables association testing with more than three million high-quality
variants with 0.5%�MAF<5% that would not have been directly interrogated in previous
GWAS of glycaemic and obesity-related traits that have been supplemented by HapMap imputa-
tion alone. With the sample sizes available in this study, we have estimated that for any of these
variants explaining at least 0.2% of the overall trait variance (i.e. effect size of 0.32 SD units for
1%MAF, and effect size of 0.15 SD units for 5%MAF), we have>99.9% power to detect their
association with BMI, WHR, and FG, and>93.9% power to detect their association with FI.

Discovery of novel loci and new lead SNPs
Within each study, we tested for association of each directly typed and well imputed variant
with BMI, WHRadjBMI, FG and FIadjBMI, separately in males and females, in a linear regression
modelling framework (Methods, S2 and S3 Tables). Association summary statistics were then
combined across studies in sex-specific and sex-combined fixed-effects meta-analyses for each
trait. Variants passing quality control in fewer than 50% of the contributing studies for each
trait were excluded from the meta-analysis. Association signals at genome-wide significance
(p<5x10-8) and with lead SNPs independent (r2<0.05) and mapping more than 2Mb from
those previously reported for the traits were considered novel. By convention, loci were labelled
with the name(s) of the gene(s) located closest to the lead SNP, unless more compelling biologi-
cal candidates mapped nearby (Table 1, S1, S2, S3 and S4 Figs).

We identified two novel loci achieving genome-wide significance for BMI in the sex-com-
bined meta-analysis: ATP2B1 (rs1966714, MAF = 0.46, p = 1.9x10-8); and AKAP6 (rs12885467,
MAF = 0.49, p = 4.5x10-8). For FG, we detected one novel locus in the sex-combined meta-
analysis at RMST (rs17331697, MAF = 0.10, p = 1.3x10-11) and a female-specific association at
EMID2 (rs6947345, MAF = 0.017, pMALE = 0.50, pFEMALE = 3.8x10-8). We did not identify any
novel loci at genome-wide significance, in either sex-combined or sex-specific analyses, for
WHRadjBMI or FIadjBMI. We observed no evidence of heterogeneity in sex-specific allelic effects
across studies at the lead SNPs at the novel loci (Table 1). With the exception of the sex-specific
association signal at EMID2, the lead SNPs at all other novel loci were common.

At AKAP6 and RMST, the common lead SNPs were present in HapMap (S5 Fig) but did not
achieve genome-wide significance in large-scale European ancestry HapMap imputed meta-
analyses conducted by the GIANT Consortium [17] (for BMI in up to 123,865 individuals) and
the MAGIC Investigators [16] (for FG in up to 46,186 individuals), despite substantial overlap
with cohorts contributing to our study. We have estimated that, amongst individuals contribut-
ing to our 1000G imputed meta-analyses for BMI/FG, a maximum of 59%/37% also
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participated in the previous GIANT and MAGIC studies (S5 Table). At RMST, our lead FG
SNP approaches genome-wide significance in the MAGIC meta-analysis (p = 6.5x10-6), and
this likely reflects stochastic variation. However, at AKAP6, our lead BMI SNP demonstrates
only nominal evidence of association (p = 0.012) in the GIANT meta-analysis, suggesting that
1000G reference panels have enabled higher quality imputation at this locus. To investigate
this assertion further, we compared the quality of imputation of the lead BMI SNP using Hap-
Map and 1000G reference panels in two contributing studies of diverse European ancestry. In
58BC-WTCCC/NFBC1966, there was a marginal improvement in the IMPUTEv2 info score
from 0.972/0.939 using reference haplotypes from CEU HapMap to 0.996/0.971 using those
from 1000G.

At ATP2B1, the common lead SNP was not present in HapMap (S5 Fig). The lead SNP for
BMI from the GIANT HapMap imputed meta-analysis [17] was rs2579106, achieving nominal
evidence for association (p = 6.4x10-5) in a reported sample size of 123,864 individuals. This
SNP reached near genome-wide significance in our 1000G imputed meta-analysis, despite the
smaller sample size (p = 3.3x10-7, in 86,955 individuals). Furthermore, the HapMap and 1000G
lead SNPs are in only modest LD with each other (EUR r2 = 0.22). Taken together, these data
suggest that the discovery of this novel locus has been due to improved coverage through
1000G imputation, despite the lead SNP being common.

We observed genome-wide significant evidence of association at 34 established loci for gly-
caemic and obesity-related traits, including GCKR with the same lead SNP for both FG and FI
(S6 Table). At 29 of these loci, our meta-analysis identified lead SNPs that were different from
previous reports in which they were first discovered, of which 23 were not present in HapMap
(S7 Table). At 18 of these 29 loci, the new lead SNP was in strong LD (r2�0.8) with that previ-
ously reported, and consequently both variants had similar MAF and allelic effect size (S6 Fig).
At a further nine of the 29 loci, the new and previously reported lead SNPs were in moderate
LD (0.2�r2<0.8) with each other. For these, there was greater difference in MAF and allelic
effect size for each pair of variants, but the new lead SNP was common and not consistently
less frequent (S6 Fig). At the remaining two loci, the new lead SNPs were not present in Hap-
Map and were in only weak LD with those previously reported (S7 Fig), mapping near BDNF
for BMI (r2 = 0.10) and RSPO3 for WHRadjBMI (r

2 = 0.04). At both loci, multiple distinct signals
of association have been recently reported by the GIANT Consortium in the largest meta-anal-
yses of BMI and WHRadjBMI in European ancestry individuals genotyped with GWAS arrays,
supplemented by imputation up to reference panels from the International HapMap Consor-
tium [29,30], and the Metabochip, in up to 339,224 and 224,459 individuals, respectively
[26,27]. At BDNF, our new lead SNP (rs4517468) was in moderate LD (r2 = 0.31) with the
index variant (rs10835210) for the GIANT secondary signal of association for BMI at this
locus, suggesting that they represent the same underlying effect on obesity.

At established loci, amongst the 29 lead SNPs identified in our 1000G imputed meta-analy-
sis that were different from the previous reports in which they were discovered, five of them
are present on the Metabochip: NRXN3 (BMI, rs7141420), SH2B1 (BMI, rs2008514),MC4R
(BMI, rs663129), LY86 (WHRadjBMI, rs1294437), and GCKR (FG/FIadjBMI, rs1260326). These
variants were thus directly interrogated in the largest European ancestry meta-analyses, to
date, of glycaemic and obesity related traits from the GIANT Consortium [26,27] and MAGIC
Investigators [19] that made use of this array. At all five of these loci, our new lead SNP is either
the same or is in strong LD (EUR r2>0.75) with that reported in the trait-equivalent Metabo-
chip effort. Four of these loci (all except NRXN3) were densely typed as “fine-mapping” inter-
vals on the array, providing evidence that 1000G imputation has been successful at predicting
genotypes at untyped variants in these regions, even though the GWAS scaffolds used in our
investigation were comparatively sparse.
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Multiple distinct association signals
We investigated the evidence for multiple distinct association signals in the glycaemic and obe-
sity-related trait loci achieving genome-wide significance in our study (four novel and 34 estab-
lished) (Table 1 and S6 Table). We undertook approximate conditional analyses, implemented
in GCTA [44], to select index SNPs for distinct association signals achieving “locus-wide” sig-
nificance (pCOND<10−5) to reflect the number of uncorrelated variants in a 2Mb window flank-
ing the lead SNP (Methods). We made use of summary statistics from the meta-analysis and
genotypes from 58BC-WTCCC and NFBC1966 to approximate the LD between genetic vari-
ants (directly typed and well imputed) and hence the correlation in parameter estimates in the
joint association model. Reassuringly, the index SNPs and association summary statistics
(effect sizes and p-values) from the joint model were highly concordant for both reference stud-
ies (S8 Table). Finally, we confirmed these GCTA association signals through exact reciprocal
conditional analyses by adjustment for genotypes at each index SNP as a covariate in the linear
regression model (Methods, Fig 1, Table 2).

We identified two distinct signals of association for WHRadjBMI mapping to the RSPO3
locus, indexed by rs72959041 (MAF = 0.079, pCOND = 2.5x10-10) and rs4509142 (MAF = 0.49,
pCOND = 5.8x10-6), corresponding to our new lead SNP and that previously reported [18],
respectively. More recently, both signals have also been reported by large-scale meta-analyses
undertaken by the GIANT Consortium [27]. Our new lead SNP (rs72959041) was reported as
the index variant for their secondary association signal at this locus, whilst the index variant
for our secondary signal of association (rs4509142) was in strong LD with their lead SNP
(rs1936805, r2 = 0.67). The GIANT Consortium also identified a third distinct signal of associa-
tion at this locus, stronger in females than in males, which was not detected in our conditional
analyses, and presumably reflects reduced power due to our smaller sample size. We also iden-
tified two distinct signals of association for FG each mapping to GCK (rs878521, MAF = 0.21,
pCOND = 1.3x10-18; rs10259649, MAF = 0.27, pCOND = 4.6x10-10) and G6PC2 (rs560887,
MAF = 0.31, pCOND = 2.2x10-66; rs138726309, MAF = 0.015, pCOND = 5.7x10-23). None of the
index variants for these distinct association signals was present in HapMap (S8 Fig), and only
rs10259649 in GCK was well represented by a tag in that reference panel (rs2908292, r2 = 1.00).

Trait variance explained by novel loci and new lead SNPs
We evaluated the additional heritability of glycaemic and obesity-related traits explained by
lead SNPs at novel and established loci after 1000G imputation in 5,276 individuals from
NFBC1966 (Methods). For each trait, we calculated the phenotypic variance accounted for by:
(i) previously reported lead SNPs at established loci; and (ii) new lead SNPs and index variants
for distinct association signals at novel and established loci from the present study. The greatest
increment in variance explained was observed for FG, where the novel loci and new lead SNPs
after 1000G imputation together account for an increase from 1.9% to 2.3%. We also observed
noticeable increments in variance explained after 1000G imputation for WHRadjBMI (from
1.1% to 1.3%) and BMI (3.2% to 3.5%). However, for FIadjBMI, only one new lead SNP at an
established locus was identified after 1000G imputation, providing a negligible improvement in
variance explained (from 0.46% to 0.47%).

Fine-mapping of novel and established GWAS loci
We sought to take advantage of the improved coverage of common and low-frequency varia-
tion offered by 1000G imputation to localise potential causal variants (MAF�0.5%) for the 42
distinct association signals achieving locus-wide significance in our conditional meta-analyses
(two distinct signals of association each at RSPO3, GCK, and G6PC2, one signal of association
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Fig 1. Regional plots of multiple distinct signals at WHRadjBMI locus RSPO3 (A), FG lociG6PC2 (B) andGCK (C). Regional plots for each locus are
displayed from: the unconditional meta-analysis (left); the exact conditional meta-analysis for the primary signal after adjustment for the index variant for the
secondary signal (middle); and the exact conditional meta-analysis for the secondary signal after adjustment for the index variant for the primary signal
(right). The sample sizes vary due to the availability of the well imputed index SNPs of the primary and secondary signals. Directly genotyped or imputed
SNPs are plotted with their association P values (on a -log10 scale) as a function of genomic position (NCBI Build 37). Estimated recombination rates are
plotted to reflect the local LD structure around the associated SNPs and their correlated proxies (according to a blue to red scale from r2 = 0 to 1, based on
pairwise EUR r2 values from the 1000 Genomes June 2011 release). SNP annotations are as follows: circles, no annotation; downward triangles,
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for both FG and FIadjBMI at the GCKR locus, and one signal of association at each of the other
34 novel and established loci). For each distinct signal, we constructed 99% credible sets of var-
iants [45] that together account for 99% probability of driving the association on the basis of
the (conditional) meta-analysis (Methods, S9 Table). At the 29 established loci where we iden-
tified a new lead SNP after 1000G imputation, the posterior probability of driving the associa-
tion signal was consistently higher than that for the variant previously reported (S9 Fig). The
greatest increases in posterior probability were observed at: GCKR (FG/FIadjBMI, increase from
2.6%/1.8% to 93.5%/89.6%); RSPO3 (WHRadjBMI, increase from 0.4% to 78.6%); PROX1 (FG,
increase from 13.2% to 76.9%); and NRXN3 (BMI, increase from 2.5% to 62.2%).

Credible sets are well calibrated for common and low-frequency variants provided that
imputation and meta-analysis provides complete coverage of variation with MAF�0.5% at
each locus. Smaller credible sets, in terms of the number of variants they contain, thus corre-
spond to fine-mapping at higher resolution. We considered 99% credible sets containing fewer
than 20 variants to be “tractable”, and amenable to follow-up through additional analyses of
functional and regulatory annotation (Table 3, S10 Table). The most precise localisation was
observed for FG loci including:MTNR1B (rs10830963 accounts for more than 99.9% of the
probability of driving the association); both distinct signals at G6PC2 (two variants each, map-
ping to<15kb interval); and one signal at GCK (indexed by rs878521, mapping to<25kb
interval). Of the 127 variants reported in these tractable credible sets, 74 (58.3%) were not pres-
ent in HapMap, and accounted for 42.4% of the probability of driving the association signals.
None of the HapMap variants in the tractable credible sets was of low-frequency, compared to
20.8% of those present only in 1000G (S11 Table).

The tractable credible sets included coding variants at just three loci implicated in FG:
GCKR, SLC30A8, and the low-frequency association signal at G6PC2. The lead SNP mapping
to GCKR (rs1260326) was the common coding variant L446P, which accounts for 93.5% of the
probability of driving the FG association signal, and was present in HapMap. At the SLC30A8
locus, the probability of driving the association for FG was shared between 7 SNPs, in strong
LD with each other, and including the coding variant R325W. This variant was present in Hap-
Map, and was sufficient to explain the association signal of the lead non-coding SNP for FG in
conditional analysis (rs11558471, p = 3.2x10-10, pCOND = 0.052) at the locus. SLC30A8 R325W
is also the lead SNP for T2D susceptibility at this locus in published European ancestry meta-
analyses from the DIAGRAM Consortium [46]. Finally, the low-frequency index SNP for the

nonsynonymous; squares, coding or 30 UTR; asterisks, TFBScons (in a conserved region predicted to be a transcription factor binding site); squares with an
X, MCS44 placental (in a region highly conserved in placental mammals).

doi:10.1371/journal.pgen.1005230.g001

Table 2. Loci with multiple distinct signals of association with glycaemic and obesity-related traits achieving “locus-wide” significance in condi-
tional analysis (pCOND<10

−5).

Trait Locus Index SNP Chr Position (b37) Alleles EAF Unconditional meta-
analysis

Conditional meta-analysis

Effect Other Effect (SE) p-value Conditioning SNP Effect (SE) p-value

WHRadjBMI RSPO3 rs72959041 6 127,454,893 A G 0.08 0.11 (0.010) 1.7x10-13 rs4509142 0.10 (0.020) 2.5x10-10

rs4509142 6 127,489,001 T C 0.49 0.04 (0.006) 2.9x10-12 rs72959041 0.03 (0.007) 5.8x10-6

FG G6PC2 rs560887 2 169,763,148 C T 0.69 0.09 (0.005) 1.5x10-72 rs138726309 0.09 (0.005) 2.2x10-66

rs138726309 2 169,763,262 C T 0.99 0.18 (0.020) 1.8x10-18 rs560887 0.21 (0.020) 5.7x10-23

FG GCK rs878521 7 44,255,643 A G 0.21 0.06 (0.005) 1.0x10-36 rs10259649 0.05 (0.006) 1.3x10-18

rs10259649 7 44,219,705 C T 0.27 0.05 (0.005) 8.6x10-29 rs878521 0.03 (0.005) 4.6x10-10

doi:10.1371/journal.pgen.1005230.t002
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secondary association signal mapping to G6PC2 (rs138726309, MAF = 0.015) was the coding
variant H177Y, which accounts for 11.2% of the posterior probability of causality at this locus.
For this association signal, none of the variants in the 99% credible set was present in HapMap,
and thus would have been overlooked without 1000G imputation. This coding variant has
recently been implicated in FG homeostasis in a meta-analysis of 33,407 non-diabetic individu-
als of European ancestry, genotyped with the Illumina exome array, and in agreement with our
study, demonstrates a stronger signal of association in conditional analysis after accounting for
the lead SNP at the G6PC2 locus [47].

The remaining variants in the tractable credible sets mapped to non-coding sequence. To
gain insight into potential regulatory mechanisms through which these variants might impact
glycaemic and obesity-related traits, we overlaid each of these credible sets, in turn, with chro-
matin state calls from eleven cell lines and tissues (Methods). Across all traits, 99% credible set
variants were enriched for overlap with enhancer elements (Fig 2). Focussing on FG, variants
within the 99% credible set showed significant enrichment (p<2.4x10-3) for active promoter
and transcription factor binding site annotations compared to all others (respectively: 3.8-fold,
Fisher's combined p = 9.4x10-5; and 7.2-fold, Fisher’s combined p = 2.1x10-13). Over cell types,
this enrichment was most prominent in pancreatic islets (Fig 2). More than half of islet-anno-
tated variants are not present in HapMap, and this would not have been observed without
1000G imputation. For example, at the novel FG RMST locus, 11 of the 14 variants in the 99%
credible set are not present in HapMap, but all overlap active islet chromatin marks (S10 Fig).

Discussion
Through meta-analysis of 1000G imputed GWAS of glycaemic and obesity-related traits, we
have identified two novel loci for BMI at genome-wide significance, and two for FG (including

Table 3. Association signals for glycaemic and obesity-related traits for which the 99% credible sets contain nomore than 20 variants.

Trait Locus Index SNP Chr Position
(b37)

99% credible set

Number of
variants

Distance Interval
start

Interval
stop

Number (%) of
variants not in
HapMap

Posterior probability
of variants not in
HapMap

BMI SEC16B rs539515 1 177,889,025 18 33,234 177,861,357 177,894,591 9 (50.0%) 44.6%

BMI GNPDA2 rs12507026 4 45,181,334 5 10,448 45,175,691 45,186,139 2 (40.0%) 49.0%

BMI FAIM2 rs7132908 12 50,263,148 17 64,525 50,215,905 50,280,430 12 (80.0%) 55.4%

BMI NRXN3 rs7141420 14 79,899,454 17 54,706 79,890,456 79,945,162 5 (29.4%) 13.0%

WHRadjBMI VEGFA rs6905288 6 43,758,873 3 2,431 43,757,896 43,760,327 1 (33.3%) 12.2%

WHRadjBMI RSPO3 rs72959041 6 127,454,893 4 140,679 127,389,101 127,529,780 4 (100.0%) 98.9%

FG PROX1 rs340876 1 214,158,132 5 7,161 214,156,514 214,163,675 2 (40.0%) 83.3%

FG GCKR rs1260326 2 27,730,940 3 21,523 27,730,940 27,752,463 1 (33.3%) 2.6%

FG G6PC2 rs560887 2 169,763,148 2 9,733 169,753,415 169,763,148 0 (0.0%) 0.0%

FG G6PC2 rs138726309 2 169,763,262 2 14,571 169,748,691 169,763,262 2 (100.0%) 99.3%

FG GCK rs878521 7 44,255,643 2 23,865 44,231,778 44,255,643 1 (50.0%) 18.1%

FG GCK rs10259649 7 44,219,705 14 70,709 44,183,433 44,254,142 8 (57.1%) 40.5%

FG SLC30A8 rs11558471 8 118,185,733 7 33,132 118,184,783 118,217,915 4 (57.1%) 41.8%

FG MTNR1B rs10830963 11 92,708,710 1 1 92,708,710 92,708,710 0 (0.0%) 0.0%

FG RMST rs17331697 12 97,868,906 14 22,285 97,846,621 97,868,906 11 (78.6%) 13.8%

FG
(female)

EMID2 rs6947345 7 101,071,933 12 97,459 100,995,671 101,931,130 12 (100.0%) 99.0%

FIadjBMI GCKR rs1260326 2 27,730,940 3 21,523 27,730,940 27,752,463 1 (33.3%) 6.5%

doi:10.1371/journal.pgen.1005230.t003
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Fig 2. Broad category functional annotation (A) and cell-type specific annotation (B) of credible set variants.On the x-axis is each category of broad
functional annotation (A) or cell-type specific annotation (B). The fraction of credible set variants that overlap with each category is shown on y-axis. The
overlapping variants are further broken down into either variants that exist in both the 1000 Genomes and HapMap reference panel (green) or those that exist
only in the 1000 Genomes reference panel (red). TFBS, transcription factor binding site; ncRNA, non-coding RNA; UTR, untranslated regions; GM12878,
lymphoblastoid cell line from European ancestry female; hESC, H1 human embryonic stem cells; hASC(t1), human pre-adipocytes; hASC(t4), mature human
adipocytes; HepG2, liver carcinoma cell-line; HMEC, human mammary epithelial cells; HSMM, human skeletal muscle myoblasts; HUVEC, human umbilical
vein endothelial cells; K562, human myelogenous leukemia cell-line; NHEK, normal human epidermal keratinocytes; NHLF, normal human lung fibroblasts.

doi:10.1371/journal.pgen.1005230.g002
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one low-frequency variant association signal that is specific to females). These loci were not
reported in larger meta-analysis efforts of European ancestry undertaken by the GIANT Con-
sortium (for BMI) and the MAGIC Investigators (for FG), despite the partial overlap of con-
tributing studies [16–19,26,27]. Improved coverage and quality of imputation for common and
low-frequency variation using 1000G reference panels has increased power. We also reported
new lead SNPs at 29 established glycaemic and obesity-related trait loci achieving genome-
wide significance in our meta-analyses, of which 23 were not present in HapMap, and identi-
fied multiple distinct signals of association for WHRadjBMI at RSPO3 and for FG at GCK and
G6PC2. Taken together, these novel loci, distinct association signals, and new lead SNPs have
increased the trait variance explained for glycaemic and obesity-related traits, although the
majority of the heritability remains unaccounted for.

Despite more than 90% coverage of low-frequency variation after 1000G imputation, in
diverse European ancestry populations, and equivalent power to detect association across the
allele frequency spectrum for a fixed proportion of trait variance explained, the new lead SNPs
at established and novel GWAS loci are predominantly common. These data argue strongly
against the “synthetic association” hypothesis, which posits that common lead SNPs at GWAS
loci will often reflect unobserved causal variants of lower frequency and greater effect size [32].
We recognise that our study has insufficient power to detect common or low-frequency associ-
ation signals of more modest effect (S12 Table). For example, we estimated that the power to
detect association in this study, at genome-wide significance, of a variant of 1% MAF, explain-
ing 0.05% of the overall trait variance (effect size of 0.16 SD units), was 88.0% for BMI, but just
42.1% for WHRadjBMI, 27.7% for FG, and only 2.6% for FIadjBMI. Furthermore, the contribution
of rare variants to glycaemic and obesity-related traits cannot be directly investigated with
these data because of the low quality imputation for MAF<0.5%, but will require interrogation
through deep whole-genome re-sequencing studies in large sample sizes.

We have demonstrated that integration of 1000G imputation, genetic fine-mapping, and
genomic annotation, facilitates fine-mapping of GWAS loci for glycaemic and obesity-related
traits, and has provided insight into potential functional and regulatory mechanisms through
which the effects of these association signals are mediated. In particular, variants in the 99%
credible set for the low-frequency association signal mapping to G6PC2 are completely absent
from HapMap, but include H177Y. The glucose lowering allele at this variant has been demon-
strated to result in a significant decrease in protein expression mediated through proteasomal
degradation, leading to a loss of G6PC2 function [47]. We also demonstrated enrichment for
overlap of functional elements with variants in the tractable credible sets mapping to non-cod-
ing sequence, in particular enhancers. For FG, additional enrichment was observed across cred-
ible set variants mapping to promoter and transcription factor binding sites in pancreatic islets,
in particular. Uncovering these types of enrichment is essential for prioritisation of variants for
functional follow-up, and can be incorporated in statistical models to elucidate causal alleles.
Also, at the level of an individual locus, functional annotation can help point to the underlying
molecular mechanism through which the GWAS signal is mediated. At G6PC2, for example,
the lead SNP, rs560887, in the 99% credible set for the second distinct (non-coding) association
signal at this locus (79.5% posterior probability) maps to an enhancer region that is active in
pancreatic islets and embryonic stem cells, but repressed in most other cell types. These obser-
vations are in agreement with recent reports of clustering of T2D-associated risk variants in
islet enhancers [48] and highlights a potential mechanism through which GWAS loci impact
glucose homeostasis and disease risk.

Despite the success of traditional GWAS genotyping arrays for the discovery of common
variant association signals for complex human traits, because of the structure of LD for varia-
tion with MAF>5%, the gold standard approach to directly interrogating lower frequency
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variation is through re-sequencing studies. However, in agreement with recently published
investigations of the contribution of low-frequency variants to a range of phenotypes [47,49–
51], our study highlights that effect sizes are modest, and require sample sizes for detection
that are financially infeasible through re-sequencing on the scale of the whole genome (or
exome). We have demonstrated, in this study, that imputation of existing GWAS scaffolds up
to reference panels from the 1000 Genomes Project Consortium [38] enables imputation of
more than 90% of low-frequency variants in diverse European populations, at no additional
cost other than computation and analyst time. Future GWAS of complex traits in European
ancestry populations will be further enhanced by the Haplotype Reference Consortium (www.
haplotype-reference-consortium.org). This effort will create a reference panel of more than
60,000 haplotypes from re-sequencing of multiple cohorts, predominantly of European ances-
try, enabling high-quality imputation to lower allele frequencies. Phase 3 of the 1000 Genomes
Project includes haplotypes from diverse populations from each the five major global ethnici-
ties, and thus would be expected to improve imputation quality over Phase 1 for low-frequency
variants in East Asian, South Asian, African and American ancestry groups. The viability of
imputation as an approach to recover genotypes at low-frequency variants in GWAS under-
taken in populations that are not well represented by the 1000 Genomes Project might require
whole-genome re-sequencing of some individuals from the study, in combination with haplo-
types from the existing reference panel.

Irrespective of the population under investigation, our study suggests that imputation is
unlikely to provide sufficient coverage of variation with MAF<0.5% to enable gene-based test-
ing of rare variants [52]. Imputation is restricted to those rare variants that are present in the
reference panel, which are much more likely to be population specific. Furthermore, imputa-
tion of rare variants that are present in the reference panel is generally poor, although it is not
clear how well calibrated the traditional metrics of quality (such as IMPUTEv2 info score) will
be. Thorough investigation of the impact of rare variation on phenotype will thus require re-
sequencing, although some success in discovering rare coding variants associated with complex
human traits has been achieved through exome array genotyping [47,53–55]. For the time
being, arrays that combine an imputation scaffold with direct interrogation of rare coding vari-
ation likely offer the most cost-effective approach to assaying variants across the frequency
spectrum.

In conclusion, our study has enabled discovery and fine-mapping of novel and established
association signals for glycaemic and obesity-related traits, and through integration with geno-
mic data from relevant tissues, has highlighted functional and regulatory processes through
which these effects are mediated. Improved understanding of the biological basis of the quanti-
tative human anthropometric and metabolic traits may advance our appreciation of the mecha-
nisms underlying downstream disease endpoints, including T2D and cardiovascular diseases,
ultimately leading to personalised treatment approaches, therapeutic development and public
health benefits.

Methods

Ethics statement
All human research was approved by the relevant institutional review boards, and conducted
according to the Declaration of Helsinki. All participants provided written informed consent.

Studies and samples
We considered 22 population-based and case-control GWAS of European ancestry in up to
(after quality control): 87,048 individuals for BMI; 54,572 individuals for WHRadjBMI; 46,694
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individuals for FG; and 24,245 individuals for FIadjBMI. Samples were limited to individuals of
at least 18 years of age. Case-control studies were stratified by disease status, with each stratum
analysed separately. Full details of study and sample characteristics are provided in S1 Table.

Genotyping and quality control
Samples were genotyped with a variety of GWAS arrays. Sample and SNP quality control was
undertaken within each study. Sample quality control included exclusions on the basis of
genome-wide call rate, extreme heterozygosity, sex discordance, cryptic relatedness, and outly-
ing ethnicity. SNP quality control included exclusions on the basis of call rate across samples
and extreme deviation from Hardy-Weinberg equilibrium. Non-autosomal SNPs were
excluded from imputation and association analysis. SNPs with MAF<1% were also excluded
from the genotype scaffold prior to imputation. Full details of the genotyping arrays and qual-
ity control protocols employed by each study are summarised in S1 Table.

Imputation
Within each study, the autosomal GWAS genotype scaffold was imputed up to the 1000
Genomes Project multi-ethnic reference panel (Phase I interim release, June 2011), which was
the most up to date available at the time analyses were undertaken. Imputation was performed
using IMPUTEv2 [42], minimac [39] or specialist in-house software. Poorly imputed variants
(IMPUTE info<0.4; minimac r̂2 < 0:3) [43], and those with minor allele count of less than
three (under a dosage model) were excluded from downstream association analyses.

Trait transformations and study-level association analyses
We utilised protocols for obesity-related and glycaemic trait transformations developed by the
GIANT Consortium [17,18] and MAGIC Investigators [19]. Full details of trait transforma-
tions, trait summary statistics and study-specific covariates are presented in S2 and S3 Tables.

BMI was calculated as the ratio of weight (kg) to squared height (m2). BMI was inverse nor-
mal transformed separately in males and females. Association of the transformed trait with
each variant passing quality control was tested in a linear regression framework under an addi-
tive model in the dosage of the minor allele after adjustment for age, age2 and study-specific
covariates, separately in males and females.

WHR was calculated as the ratio of waist circumference (m) to hip circumference (m).
Residuals were obtained after adjustment for age, age2, BMI, and study-specific covariates, sep-
arately in males and females, and were subsequently inverse-rank normalised. Association of
the transformed trait with each variant passing quality control was tested in a linear regression
framework under an additive model in the dosage of the minor allele, separately in males and
females.

FG was measured in mmol/L. Individuals with a diagnosis of diabetes (type 1 or type 2), dia-
betes treatment, and/or FG�7mmol/L, non-fasting state, or pregnancy were excluded. Individ-
uals from case cohorts (with diseases such as stroke and cardiovascular disease) were also
excluded if they had undergone hospitalization or blood transfusion in the 2–3 months before
measurements were taken. Association of the untransformed trait with each variant passing
quality control was tested in a linear regression framework under an additive model in the dos-
age of the minor allele after adjustment for age, age2 and study-specific covariates, separately in
males and females.

FI was measured in pmol/L with subsequent natural log transformation. Individuals with a
diagnosis of diabetes (type 1 or type 2), diabetes treatment, and/or FG�7mmol/L, non-fasting
state, or pregnancy were excluded. Individuals from case cohorts (with diseases such as stroke
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and cardiovascular disease) were also excluded if they had undergone hospitalization or blood
transfusion in the 2–3 months before measurements were taken. Association of the trans-
formed trait with each variant passing quality control was tested in a linear regression frame-
work under an additive model in the dosage of the minor allele after adjustment for age, age2,
BMI and study-specific covariates, separately in males and females.

Meta-analysis
Summary statistics from association testing of variants passing quality control, separately in
males and females, were corrected in each study for residual population structure through
genomic control [56] where necessary (S2 and S3 Tables). Subsequently, association summary
statistics were combined across studies in sex-specific and sex-combined fixed-effects meta-
analyses (inverse-variance weighting) for each trait, as implemented in GWAMA [57]. Hetero-
geneity in allelic effects between males and females for each trait at each variant was assessed
by means of an implementation of Cochran’s Q-statistic [58] in GWAMA [57]. Variants pass-
ing quality control in fewer than 50% of the contributing studies for each trait were excluded
from the meta-analysis. After filtering, the total numbers of variants reported for each trait
were: 9,953,165 for BMI; 9,954,794 for WHRadjBMI; 9,967,162 for FG; and 9,837,044 for
FIadjBMI. Sex-specific or sex-combined p<5x10-8 was considered genome-wide significant for
each trait. Associated loci are referred to by the name(s) of the nearest gene(s) to lead SNP,
unless there are more biologically plausible candidates mapping nearby.

Approximate conditional analysis
We performed approximate conditioning in established and novel glycaemic and obesity-
related trait loci in GCTA [44] on the basis of association summary statistics from the sex-com-
bined meta-analyses after variant filtering. We utilised genotype data from two reference stud-
ies to approximate LD between variants in diverse European populations, and hence
correlation between parameter estimates in the GCTA-COJO joint regression model:
58BC-WTCCC (2,802 individuals from Great Britain); and NFBC1966 (5,276 individuals from
Lapland and the Province of Oulu in Northern Finland). We identified “index” variants to rep-
resent each distinct association signal achieving genome-wide significance (p<5x10-8) in the
GCTA-COJO joint regression model for further validation.

Exact conditional analysis
We performed exact conditional analysis for each locus identified with multiple distinct associ-
ation signals in GCTA using imputed data from all contributing studies except Rotterdam
Study 1 (5,745 individuals). Within each study, we tested for association in the same linear
regression framework utilised for unconditional analysis, separately in males and females, but
included genotypes at each GCTA index SNP identified at the locus, in turn, as an additional
covariate in the model. At each established glycaemic and obesity-related trait locus, we also
performed conditioning on the previously reported lead SNP if it differed from that reported in
our unconditional meta-analysis. Subsequently, association summary statistics for each signal
were combined across studies in sex-specific and sex-combined fixed-effects meta-analyses
(inverse-variance weighting) for each trait, as implemented in GWAMA [57].

Trait variance explained
We estimated the variance explained for each trait using genotype data from NFBC1966 (5,276
individuals) in a multiple linear regression framework. For each trait, we considered two sets of
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variants: (i) previously reported lead SNPs for established loci; and (ii) new lead SNPs and
index variants for multiple distinct association signals in established and novel loci. We tested
for association of the trait: (i) with covariates only; and (ii) with covariates and the dosage of
the minor allele at each variant. For each set of variants, the trait variance explained was given
by the difference in the coefficient of determination (r2) between these two regression models.

Credible set construction
For each distinct signal for each trait, we calculated the posterior probability of driving the
association for the jth variant, πCj, given by

pCj ¼
LjP
kLk

;

where the summation is over all variants reported in the (conditional) meta-analysis across the
locus. In this expression, Λj is the approximate Bayes’ factor [59] for the jth variant, given by

Lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vj

Vj þ o

s" #
exp

ob2

j

2VjðVj þ oÞ

" #
;

where βj and Vj denote the allelic effect and corresponding variance from the (conditional)
meta-analysis for the association signal. The parameter ω denotes the prior variance in allelic
effects, taken here to be 0.04 [59]. A 99% credible set was then constructed by: (i) ranking all
variants in the locus according to their Bayes’ factor, Λj; and (ii) including ranked variants until
their cumulative posterior probability exceeds 0.99.

Functional and regulatory annotation
We interrogated coding variants in the 99% credible set for each association signal using
Ensembl and HaploReg [60]. Their likely functional consequences were predicted by SIFT
[61], PROVEAN [62] and PolyPhen2 [63].

We collected genomic annotation data from several sources. For regulatory state informa-
tion, we collected sequence reads generated for six assays (H3K4me1, H3K4me3, H3K27ac,
H3K27me3, H3K36me3, and CTCF) from 9 ENCODE cell types (GM12878, K562, HepG2,
HSMM, HUVEC, NHEK, NHLF, hESC, HMEC) [64], pancreatic islets [65], and adipose stem
cells (hASC t1, t4) [66]. Reads were mapped to the human genome reference sequence (hg19)
using BWA [67]. Regulatory states for all cell types were called from the aligned reads using
ChromHMM [68], assuming 10 states. We then assigned names to the resulting state defini-
tions as follows: active promoter (High H3K4me3, H3K27ac); strong enhancer 1 (H3K4me3,
H3K27ac, H3K4me1); strong enhancer 2 (H3K27ac, H3K4me1); weak enhancer (H3K4me1);
poised promoter (H3K27me3, H3K4me3, H3K4me1); repressed (H3K27me3); low/no signal;
insulator (CTCF); low/no signal; and transcription (H3K36me3). We also obtained transcrip-
tion factor binding sites (TFBS) established using chromatin immunoprecipitation sequencing.
This consisted of data on 147 proteins [64–66].

Finally, we used transcript information from GENCODEv14 [69] to define protein-coding
genes, 5’ and 3’UTR regions, and non-coding genes. For transcripts to be classified as protein-
coding, the ‘protein-coding’ tag needed to be set and further filtering for either presence in the
conserved coding DNA sequence (CCDS) database or experimentally confirmed mRNA start
and end was applied. From this set of transcripts, 5’UTR, exon, and 3’ UTR regions were
defined. For non-coding genes, transcripts labelled as ‘lncRNA‘, ‘miRNA’, ‘snoRNA’ or
‘snRNA’ were used as non-coding genes.
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Overlap between the annotations described above and variants in tractable credible sets was
determined using bedtools v2.17.0. We defined seven broad functional classes from these anno-
tation data: coding (protein-coding transcripts); ncRNA (non-coding RNA transcripts); UTR
(3’ and 5’UTR regions of coding transcripts); enhancers (strong and weak enhancer elements);
promoters (active and poised promoter elements); insulators; and TFBS (sites pooled across all
factors). We further used each of the cell line annotations as a distinct category. Each variant
was allowed to overlap multiple annotation categories.

For each broad functional class, Fisher’s exact test as implemented in R v3.0.1 (with alterna-
tive = “greater”) was used to compare whether the set of credible variants showed a higher fold
overlap of this annotation versus all of the others independently. The six resulting p-values for
each class were then combined using Fisher’s method. With 21 different functional class and
trait combinations, a Bonferroni adjusted significance threshold (p<2.4x10-3) was used.

Supporting Information
S1 Fig. Quantile-quantile plot of up to 9,967,162 single nucleotide polymorphisms (SNPs)
from the meta-analysis for (A) BMI, (B) WHRadjBMI, (C) FG and (D) FIadjBMI. The black
dots represent observed P values and the grey line represents the expected P values under the
null distribution. The red dots represent observed P values after excluding the previously iden-
tified signals described in S7 Table.
(TIFF)

S2 Fig. Genome-wide association results from the sex-combined (Manhattan) and sex-spe-
cific (Miami) meta-analysis for (A) BMI, (B) WHRadjBMI, (C) FG and (D) FIadjBMI. The
association P value (on -log10 scale) for each of up to 9,967,162 SNPs (y-axis) is plotted against
the genomic position (NCBI Build 37; x-axis). Association signals that reached genome-wide
significance (P< 5x10-8) are shown in green if novel and pink if previously reported.
(PDF)

S3 Fig. Regional plots for novel loci associated with BMI or FG identified through (A) sex-
combined and (B) sex-specific meta-analyses. Directly genotyped or imputed SNPs are plot-
ted with their meta-analysis P values (as -log10 values) as a function of genomic position (NCBI
Build 37). In each panel, the lead SNP from the meta-analysis is represented by a purple circle.
Estimated recombination rates are plotted to reflect the local LD structure around the associ-
ated SNPs and their correlated proxies (according to a blue to red scale from r2 = 0 to 1, based
on pairwise EUR r2 values from the 1000 Genomes June 2011 release). Gene annotations were
taken from the UCSC genome browser. SNP annotations are as follows: circles, no annotation;
downward triangles, nonsynonymous; squares, coding or 30 UTR; asterisks, TFBScons (in a
conserved region predicted to be a transcription factor binding site); squares with an X, MCS44
placental (in a region highly conserved in placental mammals).
(TIFF)

S4 Fig. Forest plots of the associations at novel loci for BMI (A, B) and FG (C, D). For each
study, sex (m, f) and sample size are displayed after the study name. Box size is proportionate
to the sample size.
(PDF)

S5 Fig. Regional plots for novel loci at or near (A) ATP2B1, (B) AKAP6, (C) RMST and (D)
EMID2 comparing the SNP coverage between 1000 Genomes imputed and HapMap
imputed SNPs. For each of the novel signals, all the SNPs imputed up to the 1000 Genomes
reference panel (left) or only those present in the HapMap panel (right) are plotted with their
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meta-analysis P values (as -log10 values) as a function of genomic position (NCBI Build 37). In
both plots, the lead SNP in HapMap panel is represented by a purple circle. Estimated recombi-
nation rates are plotted to reflect the local LD structure around the associated SNPs and their
proxies (according to a blue to red scale from r2 = 0 to 1, based on pairwise r2 values from the
1000 Genomes June 2011 release EUR). SNP annotations are as follows: circles, no annotation;
downward triangles, nonsynonymous; squares, coding or 30 UTR; asterisks, TFBScons (in a
conserved region predicted to be a transcription factor binding site); squares with an X, MCS44
placental (in a region highly conserved in placental mammals).
(PDF)

S6 Fig. Comparison of characteristics of previously reported and new lead SNPs at estab-
lished loci for glycaemic and obesity-related traits.Minor allele frequency (MAF) (A) and
effect size (B) of the previously reported lead SNP on the x-axis and the new lead SNP on the y-
axis. Details of the SNPs are presented in S7 Table.
(TIFF)

S7 Fig. Regional plots for known signals at (A) BDNF and (B) RSPO3 comparing the SNP
coverage between 1000 Genomes imputed and HapMap imputed SNPs. For each association
signal, all the SNPs imputed up to the 1000 Genomes reference panel (left) or only those pres-
ent in the HapMap panel (right) are plotted with their conditional meta-analysis P values (as
-log10 values) as a function of genomic position (NCBI Build 37) after adjustment for the other
index SNP at the locus. In each plot, the previously reported lead SNP is highlighted by the pur-
ple circle. Estimated recombination rates are plotted to reflect the local LD structure around
the associated SNPs and their proxies (according to a blue to red scale from r2 = 0 to 1, based
on pairwise r2 values from the 1000 Genomes June 2011 release EUR).
(TIFF)

S8 Fig. Regional plots for multiple distinct association signals at RSPO3 (A, B), G6PC2 (C,
D) and GCK (E, F) comparing the SNP coverage between 1000 Genomes imputed SNPs
and HapMap imputed SNPs. For each association signal, all the SNPs imputed up to the 1000
Genomes reference panel (left) or only those present in the HapMap panel (right) are plotted
with their conditional meta-analysis P values (as -log10 values) as a function of genomic posi-
tion (NCBI Build 37) after adjustment for the other index SNP at the locus. In each plot, the
lead SNP present in HapMap is represented by a purple circle. Estimated recombination rates
are plotted to reflect the local LD structure around the associated SNPs and their proxies
(according to a blue to red scale from r2 = 0 to 1, based on pairwise r2 values from the 1000
Genomes June 2011 release EUR). SNP annotations are as follows: circles, no annotation;
downward triangles, nonsynonymous; squares, coding or 30 UTR; asterisks, TFBScons (in a
conserved region predicted to be a transcription factor binding site); squares with an X, MCS44
placental (in a region highly conserved in placental mammals).
(PDF)

S9 Fig. Comparison of the posterior probability between previously reported and new lead
SNPs at established loci for glycaemic and obesity-related traits. Posterior probability (PP)
of the previously reported lead SNP on the x-axis and the new lead SNP on the y-axis. Details
of the SNPs are presented in S7 Table.
(TIFF)

S10 Fig. Expression and chromatin status of a novel FG-associated locus, RMST, in human
tissue. (A) Expression data of RMST are extracted from the Human Illumina BodyMap 2.0
and reads per kilobase of exon per million reads (RPKMs) are plotted across 17 human tissues.
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(B) Annotation of RMST in islet cells. Transcription factor binding ChIP sites (TFBS) and
chromatin states in islet cell lines from various resources are presented (see Methods).
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