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ABSTRACT: Nature harnesses exquisite enzymatic cascades to
construct N-heterocycles and further uses these building blocks to
assemble the molecules of life. Here we report an enzymatic
platform to construct important chiral N-heterocyclic products,
pyrrolidines and indolines, via abiological intramolecular C(sp3)−
H amination of organic azides. Directed evolution of cytochrome
P411 (a P450 enzyme with serine as the heme-ligating residue)
yielded variant P411-PYS-5149, capable of catalyzing the insertion
of alkyl nitrene into C(sp3)−H bonds to build pyrrolidine
derivatives with good enantioselectivity and catalytic efficiency.
Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)−H
amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based
carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively,
underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.

■ INTRODUCTION
N-Heterocycles are ubiquitous in functional materials,
bioactive natural products, and pharmaceutical compounds
(Scheme 1a).1,2 Especially privileged are saturated cyclic
amines such as pyrrolidines, whose desirable structural and
pharmacokinetic/pharmacodynamic (PK/PD) properties help
make them one of the most common N-heterocyclic moieties
in drug molecules.3−5 A prevalent biosynthetic and biocatalytic
approach to forging chiral cyclic amines is intramolecular
condensation of aminoketones or aminoaldehydes followed by
reduction using imine reductases.6−15 This route requires
preoxidation at a given position and preinstalled carbonyl/
amino functionality on the substrates. Very recently, Hyster
and co-workers demonstrated new-to-nature photoenzymatic
hydroamination of olefins to synthesize cyclic amines.16

Chemists have been seeking catalytic C−H functionalization
methodologies for the synthesis of cyclic amines in order to
maximize atom and step economy (Scheme 1b);17 transition-
metal-catalyzed alkyl nitrene C−H insertion reactions are
attractive in this context. Compared to well-established
metallonitrenes with electron-withdrawing substituents on
the nitrogen, C(sp3)−H insertion with alkyl nitrenes is less
developed due to lower reactivity and propensity to undergo
an unproductive 1,2-hydride shift leading to the irreversible
formation of undesired imines.18 Another major challenge is to
achieve high stereoselectivity;18,19 stereoselective examples
with an environmentally benign 3d transition metal are even
rarer.20,21 We posited that importing this human-invented

chemistry into metalloenzymes could leverage the remarkable
selectivity and sustainability of enzymes to streamline the
construction of chiral cyclic amines.

Cytochrome P450 heme monooxygenases utilize molecular
oxygen and NAD(P)H to generate a high-valent iron-oxo
species22 to perform selective C−H functionalization trans-
formations that are challenging for small-molecule catalysts.
With tunable protein−substrate interactions in the chiral
environment of the active site, these biocatalysts use an earth-
abundant metal (iron) and exert exquisite control over
oxidation chemistries. Over the past decade, our lab and
others have ventured beyond the native oxidation activities of
P450s to develop an array of non-natural functions based on
transfer of reactive carbene- and nitrene-like intermediates.23,24

Enzymatic nitrene transfer reactions have expanded the
biocatalytic repertoire to include transformations ranging
from C−H sulfamidation to C−H amination/amidation.25−31

However, heme enzymes have not been demonstrated to
employ more challenging nitrene species bearing electron-
donating substitutions in asymmetric C−H functionalization
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processes. We thus set out to tackle this challenge with a heme
enzyme to perform cyclic amine synthesis.

■ RESULTS AND DISCUSSION
Azides, readily prepared from alcohols and bromides, serve as
atom-economical nitrene precursors for making the corre-
sponding pyrrolidines because they eliminate only nitrogen
gas.32 We commenced this investigation with model substrate
(4-azidobutyl)benzene 1a. A panel of hemoproteins previously
engineered for other nitrene and carbene transfer reactions was
screened for activity on 1a as whole Escherichia coli cell
catalysts. To our delight, a P411 (cytochrome P450 having a
Ser in place of Cys as the heme axial ligand) variant engineered
for carbene C−H insertion was able to catalyze the desired
transformation with a 4% yield and moderate enantioselectivity
(82:18 er). Control studies showed that free heme had no
activity in this reaction. This variant, renamed P411-PYS-5141
(see Section IX for sequence details), was subjected to four
rounds of site-saturation mutagenesis (SSM) and screening to
accumulate beneficial mutations L75E, Q437L, A330Q, and
M118 V, which improved the yield to 29% and the
enantioselectivity to 94:6 er. Four additional rounds of
evolution led to variant P411-PYS-5149 with 74% yield and
slightly decreased enantioselectivity (91:9 er) (Figures 1a and
1b). The absolute configuration of the pyrrolidine product 2a
was confirmed as R by comparing the enzymatically produced
product with the commercially available enantiomer (S)-2a
after benzoyl protection (see Section VIII in the Supporting
Information).

Evaluating the substrate scope of P411-PYS-5149 for
pyrrolidine synthesis (Figure 1c), we found that substrates
para-fluoro 1b, para-methyl 1c, and para-methoxyl 1d
generally afforded the corresponding pyrrolidine products in

moderate to good yield and enantioselectivity (up to 67% yield
and 99:1 er). The ortho-methyl substrate was not well-tolerated
in this system, however, presumably due to steric hindrance
between ortho substituents and the porphyrin (Figures S2 and
S7). Variant P411-PYS-5149 also showed promising initial
activity (3% yield, 85:15 er) with 2,5-difluoro substrate 1e,
which serves as a building block for the drug molecule
larotrectinib;33,34 further evolution for activity on 1e should
improve this activity. Other substrates bearing different
aromatic rings, such as naphthalene (1f), thiophene (1g),

Scheme 1. Background and Project Synopsis

Figure 1. (a) Directed evolution for enantioselective alkyl nitrene
transfer to make pyrrolidine 2a. Cytochrome P411 variant P411-PYS-
5149 was obtained after eight rounds of site-saturation mutagenesis
and screening from P411-PYS-5141 (see Section IX for sequences).
Indicated mutations are relative to P411-PYS-5141. Experiments
were performed using E. coli (OD600 = 30) expressing P411 enzymes
with 2.5 mM substrate 1a in M9-N buffer (pH = 7.4) at room
temperature under anaerobic conditions for 16 h. Yields were
quantified by liquid chromatography−mass spectrometry (LC-MS)
based on the calibration curve of 2a. Enantioselectivities were
measured by high-performance liquid chromatography (HPLC) on a
chiral phase after benzoyl protection. (b) Mutated residues (S72,
Q73, L75, F77, M118, A330, L436, and Q437) are highlighted in the
active site of P411 variant E10 (PDB ID: 5UCW). (c) Substrate
scope of enantioselective alkyl nitrene transfer. Experiments were
performed at analytical scale using E. coli (OD600 = 30) that expressed
the P411-PYS-5149 variant with a 2.5 mM substrate (1a−j) in M9-N
buffer (pH = 8.4) at room temperature under anaerobic conditions
for 16 h. Yields were quantified by LC-MS based on the calibration
curves of the corresponding reference products. Enantioselectivities
were measured by HPLC on a chiral phase after benzoyl protection of
the pyrrolidine products. a2h was obtained in 60% yield, 51:49 er with
variant P411-PYS-5148.
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and indole (1h), were also compatible. Surprisingly, variant
P411-PYS-5149 failed to provide high enantioselectivity
(bonds indicate uncertainty regarding the absolute config-
uration) for thiophene 1g and indole substrate 1h, even though
the yields were moderate (32% and 41%, respectively). We
also investigated more challenging substrates with unactivated
C(sp3)−H bonds. Azidobutylcyclohexane 1i and azido-4-
methylpentane 1j afforded small amounts (2−3% yield) of
product cyclized at the tertiary C−H position. It is likely that
these promising activities can be improved to synthetically
useful levels by further enzyme engineering, as has been
demonstrated many times.35−37

While evolving the cyclic amine synthases, we also
investigated the ability of the evolved enzymes to forge
indolines, another important class of bioactive N-hetero-
cycles.38,39 Aryl azides have been used as nitrene precursors
to synthesize indolines via nitrene C−H insertion, but rarely in
an asymmetric manner.40 We utilized 1-azido-2-propylbenzene
3a as the starting material for the initial enzyme screening. In
contrast to pyrrolidine synthesis via insertion of alkyl
metallonitrene into activated benzylic C−H bonds, indoline
synthesis requires aryl metallonitrene insertion into unac-
tivated aliphatic C−H bonds.

Upon testing the lineage of “pyrrolidine synthases”, we
found that variant P411-PYS-5148 afforded the best yield
(46%), although with negligible enantioselectivity (48:52 er)
for indoline synthesis from 3a. P411-PYS-5148 was used for
directed evolution of an “indoline synthase”. Mutations L437P
and L181N introduced during two rounds of mutagenesis and
screening generated P411-INS-5151, with improved activity
and enantioselectivity for indoline formation (64% analytical
yield, 60% isolated yield, and 92:8 er) (Figure 2a). The
absolute configuration of the methylindoline product 4a was
confirmed as S by comparing the enzymatic product with the
commercially available enantiomer (R)-4a (see Section VIII in
the Supporting Information).

We proceeded to probe the scope of the enzymatic indoline
synthesis (Figure 2b). Cyclization of 1-azido-2-butylbenzene
3b using evolved enzyme generated P411-INS-5151 predom-
inantly afforded a five-membered heterocycle, ethylindoline 4b,
with 13% yield and good selectivity (91:9 er). A plausible six-
membered tetrahydroquinoline product (4ba) through C−H
insertion at the subterminal site was not detected. A substrate
bearing a longer carbon chain (1-azido-2-pentylbenzene) also
showed initial activity (Table S4). Substitutions on phenyl
groups such as 3c and 3d yielded the corresponding indoline
products with good enantioselectivities. Finally, a 1.0 mmol
scale enzymatic reaction using substrate 1-azido-2-isobutyl-
benzene 3e bearing a tertiary C−H bond gave 4e in 40%
isolated yield.

As versatile synthetic intermediates, N-heterocycles can be
converted into various high-value-added compounds (for
example, methylindoline product 4a can be used in the
synthesis of indapamide (Figure 2c)).41,42 To demonstrate the
utility of the engineered enzymes in constructing synthetically
challenging molecules, we conducted two biocatalytic deriva-
tization reactions, one to synthesize an α-amino ester and
another to make a noncanonical amino acid, both bearing two
chiral centers. Cytochrome P411 variant L7_FL from a
carbene N−H insertion lineage43 accepted methylindoline 4a
and a lactone-based diazo substrate in the form of whole-cell
catalysts to provide the enantioenriched α-amino ester 5 in
good yield with excellent enantioselectivity and diastereose-

lectivity (47% yield, 98:2 er, and >96:4 dr). In a preparative-
scale reaction, the enzyme afforded α-amino ester 5 as a white
solid in 43% yield with identical selectivities. In another
demonstration, Thermotoga maritima tryptophan synthase
(TmTrpB) variant TmE3 from a ketone alkylation lineage44

coupled 4a and L-serine to provide the N-alkylated non-
canonical amino acid 6 in 30% isolated yield with excellent

Figure 2. (a) Directed evolution for enantioselective aryl nitrene
transfer: evolutionary trajectory for synthesis of methylindoline 4a.
P411-INS-5151 was obtained after two rounds of site-saturation
mutagenesis and screening starting from P411-PYS-5148 (see Table
S2 for sequence details). Indicated mutations are relative to P411-
PYS-5148. Experiments were performed using E. coli (OD600 = 40)
expressing enzymes with 5.0 mM substrate 3a in M9-N buffer (pH =
7.4) at room temperature under anaerobic conditions overnight.
Buffer was switched to M9-N (pH = 8.4) after condition optimization
on P411-INS-5151. Yields were quantified by LC-MS based on the
calibration curve of 4a. Enantioselectivities were measured by HPLC
in a chiral phase. (b) Substrate scope of the enantioselective aryl
nitrene transfer reaction. Experiments were performed at analytical
scale using E. coli (OD600 = 40) that expressed P411-INS-5151 with 5
mM substrate (3a−d) in M9-N buffer (pH = 8.4) at room
temperature under anaerobic conditions for 16 h. Yields were
quantified by LC-MS based on the calibration curves of the
corresponding reference products. Enantioselectivities were measured
by HPLC on a chiral phase. Reactions with 3e were performed at a 1
mmol scale using the same conditions as the analytical-scale reaction,
and the yield was an isolated yield. (c) Further enzymatic elaboration
of enzymatically produced methylindoline. Experiments were
performed using E. coli (OD600 = 30) expressing the P411 enzyme
with 10 mM substrate 4a in M9-N buffer (pH = 7.4) at room
temperature under anaerobic conditions overnight. The experiment
with tryptophan synthase was performed using purified enzyme with
10 mM 4a in phosphate buffer (0.1 M, pH = 8.0) at room
temperature overnight.
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diastereoselectivity (>94:6 dr). These biocatalytic derivatiza-
tion reactions using engineered enzymes demonstrate how
complexity can be built rapidly and under mild conditions for
the asymmetric synthesis of N-heterocycle-containing mole-
cules.

To better understand the alkyl/aryl nitrene C(sp3)−H
insertion processes, density functional theory (DFT) calcu-
lations were carried out on a model iron-porphyrin system
using substrates 1a (Figure S8) and 3b (Figure S9).45 In
agreement with previous results for enzymatic nitrene insertion
reactions, transformations for both 1a and 3b proceed via three
general steps (see Figures S8 and S9 for the full energy
profiles): (1) nitrene formation and nitrogen extrusion, (2)
hydrogen atom abstraction to initially generate a carbon-
centered radical, and (3) radical rebound to form correspond-
ing products 2a and 4b.25,46 Interestingly, for alkyl azide
substrate 1a, the nitrogen extrusion step is computed to have a
high energy barrier, reflecting the difficulty of activating alkyl
azides to eliminate nitrogen at room temperature in a
truncated system (Figure 3b, 24.6 kcal/mol vs the subsequent
HAT transition state of 13.5 kcal/mol).26,46 Experimental

observation reveals a noncompetitive kinetic isotopic effect
(KIE) of 1.4 and a competitive KIE of 3.2 (Figure 3a), which
also indicates the HAT step might not be involved in the rate-
determining step.

For the aryl azide substrate, this is reversed (Figure 3b). The
HAT step (20.8 kcal/mol) has a higher barrier than the
nitrogen extrusion step (18.0 kcal/mol); this is due to the 10
kcal/mol greater stability of the iron-aryl nitrene intermediate
vs the iron-alkyl nitrene intermediate. Thus, the aryl nitrene
species is both easier to form and less reactive. There is no
significant barrier to cyclization of the diradical intermediate to
a cyclic amine in either case. We docked each transition state
with the iron-porphyrin coenzyme into the enzyme structure
and performed 1 μs molecular dynamics simulations with the
whole enzyme and a water box to obtain an equilibrium
structure of the transition state and the catalytic active site.
These simulations indicate that no single residue contributes
strong stabilizing interactions; the preferred enantiomeric
transition state shape is complementary to the active site,
while the antipodal transition state experiences significant
destabilizing steric clashes (see Figure S10).

■ CONCLUSION
In conclusion, we have demonstrated new-to-nature enzyme-
catalyzed intramolecular C(sp3)−H amination via alkyl/aryl
nitrene intermediates to forge two key classes of chiral N-
heterocycles from simple azide precursors. This work
represents the first example of enzymatic intramolecular
alkyl/aryl nitrene C(sp3)−H insertion reactions. Using
directed evolution, we engineered two P411 variants, P411-
PYS-5149 and P411-INS-5151, which can catalyze pyrrolidine
and indoline synthesis, respectively, in moderate to good
efficiency and selectivity (up to 74% yield and 99:1 er). These
new biocatalysts can be coupled with other biocatalytic
transformations to construct complex molecules. DFT
calculations suggest that the selectivity is controlled by the
binding pose of substrates inside the enzymes’ active sites. This
biocatalytic platform provides a general and concise route for
the preparation of chiral N-heterocycles. More importantly, it
lays a foundation for future work toward the biocatalytic
construction of N-heterocycles of different sizes and
intermolecular alkyl and aryl nitrene C−H insertion reactions.
We envision that this alkyl/aryl nitrene C−H insertion system
can be used to prepare chiral N-heterocyclic building blocks for
synthetic chemistry and drug discovery.
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