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LECTURE I. 

1. INTRODUCTION. RECENT DOUBLING OF INFORMATION 

The title for these talks is both too ostentatious and too short, but in 

one line I could not add that I shall confine myself to Non-Strange Baryon 

Resonances which I'll call N*s. I'll show that the interesting information on 

most of these states has roughly doubled in the last year or so, permitting 

some interesting tests of SU(6) and the Quark Model. 

Until roughly last year, almost all quantitative information on N* reso­

nances came from Elastic Partial - Wave Analyses (nN ~ nN), which are 

still called "Elastic Phase Shift Analyses" or "EPSA" for short. Two excellent 

recent examples are the work of Almehed and Lovelace (CERN-72Y)and of Ayed, 

Bareyre and Lemoigne (Saclay 72)2). Some of the photon couplings had been 

measured in photo-production experiments (YN ~ rrN)3) , and one could not find 

an~ Argand Diagrams for N* ~ ~n, Np, etc. 

But suddenly there are several computer programs capable of doing a 

partial-wave analysis of 

P 
nN ~ I(J ) ~ Nnn 

in terms of the "Isobar Model", i.e. 

Nnn ~n + Np + NE + ••• 

(1 ) 

At first it seems scandalous that such information comes so late, but 

remember the situation in "EPSA". Resonances were not disentangled until good 

polarization data became available about 10 years ago. The equivalent to 

polarization in Nnn analyses is the interference between the various reso -

nance bands on an Nnn Dalitz plot. So one has to analyse the whole Dalitz plo~ 

using about 10,000 events at a single energy. That takes big programs, both 

experimental and computational. 

To convince you that the available information has really doubled recentl~ 

I present Table 1. Actually, more interesting than the new partial widths for 

~n, Np, ••• , is the fact that the ~ of the amplitude is now known for each 

channeL And we'll be able to compare the imaginary 

pole position with the new partial widths. 

part of the newly-found 

So when I say that we now know * "almost everything" about N s I mean that 

the only obvious reaction that has not been measured and analysed is nN ~ Nnn 

with a polarized target. That would be the most efficient way to find the 

couplin~, but in fact, if the forth-coming unpolarized analyses are really 

unique, the problem may be solved before the polarization experiments are 

done. 

. 
" 
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2. PARTIAL WAVE ANALYSIS OF nN ~ Nnn 

A total of five charge channels can be fitted :-

- + n p ~ nn n , 

+ + 
n p ~ pn nO, 

pn - nO, 

+ + nn n • 

(3 ) 

(4) 

At E 
C.m. 

-1520 MeV ~ 13 mb of the total inelastic n p cross section of 

15 mb is accounted for by reactions (3) while at E 
c.m. 

1700 MeV the numbers 

are respectively 21-22 mb out of ~ 25 mb. Reaction (4) is also large. 

Thus to restate more quantitatively my introductory co~nent, we conclude 

that if the Nnn final states can be understood we will have an essentially 

complete description of nN scattering at these energies. We will then be in a 

position to at~mpt a multichannel analysis of the nN reactions with the added 

knowledge that no further new experimental information will become available 

(although, of course, the present inelastic partial wave amplitudes may be 

somewhat modified in light of new results; e.g., polarization measurements 

in the inelastic reactions). 

In genera~ two methods have been followed : isobar model analyses of the 

whole final state5 ,6), and straight, quasi-two-body partial-wave analysis 

of specific reactions, e.g., nN ~ ~n (Ref. 7) which have been isolated by 

applying judicious cuts to the data to select this final state. 

2.1. Isobar model 

Groups at OXford8 ,9), Sac1ay 10) and LBL/SLAC 11 ) have used this technique, 

differing mainly in their methods of fitting the data. The method itself 

consists of writing the transition amplitude for reaching a given Nnn final sta­

te as a coherent sum of quasi-two-body processes as indicated in Fig. 1. 

The transition matrix is then written in an LS representation as 5,6) 

T(W,w
1 

,w
2

,e-,"') ~ A1JLL'siv CI XJLL 'S.2 (w w .0.. I'lI)F1(w w) 
'P ~ '" l' 2' '<7, 'P l' 2 ' (5 ) 

IJLL'S t 

FIG. l--The isobar model. 
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Table 1. Recent doubling of information available on a typical resonance: F35 

a. Entry in 1972 Particle Data Booklet. 

b. Extra information in 1973 

State I(JP) 

a. 12:Z2 Entries 

/:'(1890) 3/2 (5/2 +) F35 

b. 1923 or 1214 Additions 

Pole at 1824 - i 
282 

2 

Breit-Wigner "Refit" :-

edition, or 

Mass 

(MeV) 

1840 to 

1920 

1907 

to appear 

Width 

(MeV) 

135 to 

350 

NmT 

324 

in 1974 

Partial 

Mode 

Nn 

N1t1t 

[ 
[ /:'71" 

[Np 

No 

Sum 

Widths 

(MeV) 

50 

large 

55 ] 

219 ] 

.03 

324 

where: W,w1w2 ,e,¢ are the kinematic variables required to completely 

specify the ~eaction; CI is the product of isospin Clebsch-Gordon coeffi­

cients to reach different charge final states; XJLL'S£ contains all factors 

related to the angular momentum decompositions, including barrier factors; 

F£(w
1

,w
2

) is the Final State enhancement factor e.g., a Breit-Wigner or 

Watson final state interaction factor~2), where ~ is the orbital angular 

momentum in the decay of the isobar. The variable parameters, the partial 
. IJLL'S£ wave ampl~tudes, A are assumed to be dependent only on the total 

c.m. energy W. The differential cross section is 

The data are fitted in a variety of manners by the different 

groups, always treating each c.m. energy independently - Oxford8 ,9) fit 

invariant mass and angular projections of the data in n~p collisions for 

(6) 

1300 <E <1500; saClay10) fit moments of the angular distribution for several 

zones on the Dalitz plot. The old analysis covered n-p and n+p separately: n-p 

(1390 < E < 1580) and n + p (1650 < E .( 1970); the new analysis uses n + p and n P, 

starting at 1390 MeV; LBL/SLAC
11

) make maximum l~elihood fits to n~ reac­

tions for 1300 <E <1970 (ie., to all the kinematic variables). 

This isobar-model approach is optimistic in that one hopes to fit the 

whole reaction, making maximum use of all interference effects associated 

with the overlap of the various resonance bands. However, as we shall see 

this has proved to be possible ( for at least 10,000 events at each energy) 

and provides us with an immense amount of information. 

• 

.. 
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2.2. Single-Channel Partial-Wave analyses (e.g. nN ~ An). 

The LBL/SLAC13 ) collaboration,and an LBL/UC Riverside14 )groUp,have used 

this technique to analyse specifically 

nN ~ n /J. 

After applying cuts, one assumes that one has a pure sample of reactions 

(7) and then performs fits to the production angular distribution of the /J. 

and sometimes also its density matrix elements, in terms of the partial 

wave amplitudes, usually with an energy dependent formalism. [These single­

channel analyses throw away so much interference information that it is no 

longer possible to get unique fits at a single energy.] The major advantage 

of the single-channel analysis is that the formalism is easier to handle, 

whereas the great dangers lie in the assumption of a pure sample and in the 

energy_dependent parametrizations one uses. Furthermore, it is impossible to 

relate in phase, reactions such as 

nN ~ N P (8 ) 

to reaction (7) because the regions of interference which would define the 

phase are specifically removed from consideration. I feel that this method 

provides useful information but only on the large unambiguous partial waves 

present, and one should be much more skeptical of small effects13 ). 

2.3. Justification of the Isobar Model. 

We think that the Isobar Model is a theoretically adequate way to 

analyse the data, and Smadja15 ) estimates that the approximations involved 

affect our amplitudes by < 5%, Le. 6T < .025~ This is tiny compared to our 

stated accuracy of 6T ~ 0.1 (see sect. 5.2), or even our statistical error 

6T(stat.) ~ 0.03 at a single energy. Nevertheless the theoretical approxima­

tions are interesting, so I'll outline them. 

a) Even if only ~ final-state resonance were involved, we 

don't know precisely how to write the final state enhancement factor. 
12) i6 We all use Watson's e sin 6 because it's simple and consistent with 

observation, but it is not unique16 ) and it could be more complicated. 

b) Consider our case, when resonances overlap. For example, consider 
+ . 

n p ~ S11~ /J.-n (L'=O) + npo(L'=O). For the first term by definition we 

include the factor e i6 sin 6 for the Nand n composing the /J.. For the second 

(Np) term we do not provide for any /J.. But of course there is some proba-

bility that the n and the n from the P will be in an I = 1 
2 

p-wave. This 

what can introduce the 5% error in our results. The error is proportional 

to the overlap </J.nl Np> between /J.n and Np wave functions which in any case 

we have to calculate to compute the cross section. Eqs. (5) and (6). 

is 
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2.4. Isobar Model Analyses of 3n and K2n Production. 

The Illinois groups of Ascoli and Kruse have pioneered the isobar ana­

lysis of the 3n subsystem produced in the reaction np ~ p3n, according to 

the model 

Here ICJ
P

) = 1 (1+) corresponds to the partial wave associated with the A1 

meson, 1 (2+) corresponds to the A2, etc. I need not discuss the interesting 

results; you can read David Miller's contribution to these same proceedings. 

But I can mention that Ed Ronat at LBL is fitting 7 GeV n+p ~ p(Jn)+ events 

with the LBL/SLAC 11 ) programs and seems qualitatively to be confirming the re-

sults obtained with the 

metrization. It is 

Ascoli program, which uses a rather different para­

hard to write and debug these complicated programs (see 

Sect. 5), so this confirmation should be a relief to all concerned. The 

Nnn fits of Eq. (2) require up to 60 isobar-model waves, and so need ~ 10,000 

events at each energy; the In fits ofEq. (9) need only a dozen waves, and 

Ascoli and Kruse achieved their first fits with only - 15,000 events spread 

over half a dozen energies. 

In addition to 3n systems, isobar-model programs are now being used on 

* Knn (the problem of the Q- "meson") and on NKn (tI;te question of a Z1 
17) 

"resonance"). • 

3. CONNECTION a) BETWEEN ENERGIES AND b) TO ELASTIC PARTIAL WAVES 

Before we proceed, we should define some notation. Because there are pion 

beams, ani no P or !:, beams, we call the nN channel "number 1", and the reaction 

nN ~ 7tN we call "elastic". For each incoming partial wave, I(JP ), we define 

the T-matrix by 

o'(nN~Nn) ) 
o'(nN ~ Nnn) 

0'( nN ~ Ny) ] (10) 

The values of the magnitude and phase of T11 (I, J P , E
i

) are already 

known from "EPSA", and we want to take advantage of this valuable and expe.n­

sive information. 

After a single-energy Nnn fit we know the magnitude and relative phase of 

the inelastic terms T1 !:" T1P ' but one crucial overall phase is still 

free, and must be tied to that of T
11

• 

In addition, before we present an Argand Diagram, we want to impose two 

constraints : 

1. Continuity in Energy. 

2. Unitarity ~simultaneously on all the elements of the T-matrix. Specifi-
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cally the S-matrix, S = 1 + 2iT, must be unitary and symmetric. 

We can tie the overall inelastic phase to the EPSA phase, and impose 

these two constraints by means of an energy-dependent, multi-channel K-matrix 

fit simultaneously to the T11 amplitudes from EPSA and the off-diagonal T1j 
from our own fits. More details are given in Sect. 4 of Lecture II - here I 

want merely to outline the battle plan. For the moment let me just say that 
. P 

if we write the matrix equation for each J 

S 
1 +iK 
1-iK 

1 + 2iT, (11 ) 

then if K is real and symmetric, S will be unitary and symmetric (i.e. will~ 

tisfy unitarit~ and time-reversal invariance). Solving (11 ) for the T-matrix 
P for each J we have 

T 
K (12 ) 

1-iK 

so we can parametrize T in terms of a real, symmetric matrix. Moreover we shall 

write K as a sum of factorizable poles (corresponding to a sum of resonances 

in T) plus a non-factorizable background (linear in c.m. energy E) : 

3 Y. Y. 
K. L 1 J B. C .. E. + + lj E -E lj lJ 

R=1 R 
13) 

For each JP we then get K-matrix parameters from our fit to all availab~ 
amplitudes (typically three, but for D13 we need five) at 20 different energies. 

From the K-matrix parameters we can extract smooth Argand diagrams. This 

procedure is summarized in Fig. 2. [AS you can see, we go on even futher, 

but that is reserved for Lecture II, Sect. 6]. You should now have enough 

of an outline to understand the Argand plots at the end of this section. 

The final reaction, nN ~ NY (inverse photoproduction) has such a small 

cross section (a~e2) that unitarity is no help, and we do not include it in 

the K-matrix fit. Instead the K-matrix parameters from the hadronic reactions 

are used as starting values for a final energy-dependent K-matrix fit to 

photoproduction. This is discussed in Lecture II, Sect. 1. 

4. COUNTING AND NAMING THE WAVES 

How many isobar model waves can be fed by a single incoming nN partial 

wave, e.g. D13? If you peek ahead at Fig. 9, you will see that the answer is 

at least 5. 

a. D can feed two ~n waves, i.e. the ~ can be produced in aD-wave 
13 

(L = L' = 2 in the notation of Fig. 1), or even more likely in an S-wave 

(L' = 0, j~ = f, h' + l~ = 1. = f)· We call these waves~DD13 and~DS13 
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10,000 Nnn events at one energy Ei' 

I TRIANGLE - RUMBLE 

~ 
Output :-{About 24 partial wave amplitudes Ta (E i ), i.e one energy } 

point ready for 24 different Argand plots, 

Sorting '- From now on each incoming partial wave is treated separately, 

Ampli tudes T1a for 20 different energies, several channels, e, g. 

Channel '-

2 :­

J :-

4 :-

I K-MATRIX (JP) FIT 

~ 

Nn 

/'on 

Np 

etc., see Figs 7 -

from CERN or Saclay. 

} 
from ;riangle - Rumble 

1 J. 

Output: ~ f 
K-matrix parameters and smooth Argand Plots 

Input :~ /" ~ 

* I?' 
BREIT - WIGNER REFIT 

~ Output: B.~ Parameters near ER 

t TaB 

for 

+ B Q + C E. 
afJ as 

POLE - HUNT 

1 

) 

POLE - HUNT 

Output Pole Position 

i L 
~eal - 2 

Compare direct values 

with those obtained in­

directly from BW Refit, 

Fig. 2. Sequence of extracting Argand Plots and parameters for Resonances. 

'5" 
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and in fact find some of both amplitudes. 

D13 can in principle feed three pN waves. The spin of the p(j = 1 in 

fig. 1) can couple with the spin of the nucleon to form S = t or~. If 

S t, L' can take only one value, and we call the wave P1 DD
13

. If 

S ~,L' can be a D- or an S-wave, and we write P 3 DD 13 and p 3 DS
13

. 

In Fig. 9 we report evidence for only the last of these three waves. 

We give the name "E" to an s-wave dipion (I(JP ) = O(O+)J . Then an in­

coming nN D13 wave can feed only E DP 13 • 

So, if we include the nN channel, D13 ~ be coupled to 7 decay chan­

nels, and we find we need 5 of them (but 2,3 is more typical). 

If we confine our analysis to F waves or less (L ~ 3, L' ~ 3) we find 

that 14 incoming waves (7 with I = t - S11 through F17 - plus 7 with I = ~) 
can in principle feed 60 inelastic waves. Our program searches for all 60 

complex amplitudes (119 real numbers) but we find a need for only about half 

of them, and. in fact in the region at or below 1520 MeV, only for a quarter 

of them. 

5. CHECKS OF THE LBL/SLAC PROGRAMS 

5.1 The LBL/SLAC Analysis 

For the rest of this Lecture I shall concen~rate on the LBL/SLAC Nnn 

analysis, which is the only one which has presented Argand plots of all chan­

nels at 18 energies from 1300 to 2000 MeV. It is well documented. The most 
18) recent publication is by Cashmore ,in the Proceedings of the 1973 Purdue 

Conference. See also Refs. 6 and 11. 

This analysis has the following advantages : 

i) It spans the c. m. energy r.ange 1300 < E < 2000 except for a 100 MeV gap 

1540 < E < 1650, where the data are still being analysed by SaclaY. 

ii) It utilizes the data in the most efficient manner, making a simultaneous 

max. likelihood fit 11 ,19) to the three major channels at each energy 

- - + n p -4 nn n 

- -nO n p -4 pn (14 ) 

+ + nO n p -4 pn 

iii) We obtain excellent agreement with the inelastic reaction cross sections 

predicted by elastic phase shift analyses (EPSA). (We used 1970 solutions, 

by now, unfortunately, obsolete). 

iV) From the single-energy fits at each energy we have been able to establish 

two continuous solutions over the full energy range, thus prod.ucing 
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• = Generated T",-
-+-= Fitted T", .:!:. oTol- ~ P33 PP11 

B P33 5011 
C P33 0013 
0 P33 0015 
E P33 5031 
F RH3 0513 

0t- t.".. G RH3 PP13 
.~ H RH3 0013 t I RH3 PF13 

~. ~ +. J 51G F015 
K 5IG OF1S 

• --t-

XBL 726-934 

Fig. J - Results of a fit to 7500 Monte Carlo events 

generated at 1650 MeV to test Triangle/Rumble. 

This is Figure 8 of Herndon's thesis20 ). 

.... 
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··"tF=---------......;;..::::ta.., 

(lIeV) _2-,rr.,r- ,8JD (lIeV) '" a .... ,,-
19le) He.V 

XlII. 127-1289 

Fig. 4 - Dalitz plot for ~ 5000 n p ~ nn-n+ events at four 

speciment energies. Each projection shows two 

histograms :- dashed lines represent data, solid 

lines are predictions from the fit. This is Fig. 1.1 

of Ref. 11. 
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TABLE 2 

Summary of x2 at specimen energies. The predicted bin pop­
ulations are derived from maximum likelihood fits to the data. 

Ec.m. X2 
Nbins Number of Partial Waves 

1530 

1690 

1970 

0.75 

0.70 

~ 0.65 
~ 
~ 0.60 
~ 

790 

1086 

2372 

I:: 0.55 r!'---"-----h 

0.50 

0.45 

0040 
0.35 

681 15 

679 20 

702 24 

~, 

:: Data 

Predicted 

0.30 L:::i=:::::::~=~=:::=::::::::~=:::t::::::=-.....J 
1.10 1.20 1.30 lAO 1.50 

M(N1T-) (GeV) 

D··· n n n n 

" n n n 

2310A2 

FIG. 5 -Fits to the reaction 1T-P --1T+ 1T-n at a c. m. energy of 1690 MeV. 
The figure contains cos 8 vs cf> plots for individual regions of the Dalitz 
plot where cos 8 and cf> are the polar angles of the incident pion in a co­
ordinate system defined by the final state. The z axis lies along PN and 
the y axis lies along p _x P,,+-. The plots outside the Dalitz plot are the 
sums of the corresponlling plots within the boundary. 
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5.4 Adequacy of fits 

The satisfactory quality of our fits is illustrated by Table 2 and by 
2 

Figs. 4, 5, and 6. Table 2 represents the X at 3 energies in our analysis, 

the ratio X2/N being excellent at lower energies but deteriorating as the 

energy increases. There are enormous variations of structure within the data 

at a given energy and in general the model reproduces them well, as can be 

seen in Fig. 4 (a standard Dalitz plot) and in Fig. 5, which shows our 4-D 

representation of the fit to nn+n- at 1690 MeV. 

Figure 5 consists of 2-D plots of the angular variables, cos ~ and ¢ 
for individual regions of the Dalitz plot. We can also use our partial wave 

amplitudes to predict the cross section for 

n - p --+ nn 0 n 0 

and the good agreement with the experimental results is demonstrated in 

Fig. 6a. Finally, and this will be continually apparent throughout this talk, 

we have excellent agreement wi th th~ 1970 EPSA predictions. 

The remaining point that must be addressed is the question of uniqueness 

of the solutions. For energies below 1540 MeV we are fairly certain of a uni­

que solution because many random starting values always lead to one final 

solution. For energies greater than 1650 MeV we cannot be certain. We obtain ~ 

veral solutions at each energy from which we have identified the present solu­

tions by requiring reasonable agreement with EPSA predictions and continuity 

of the solution at the adjacent energy point. This continuity, in modulus and 

phase, is vitally important because it allows us to show Argand diagrams. 

:0 ,g 
b 

:0 ,g 
b 

7T -P .... n7T07To 7T P .... n7T-7T+ 

6 14 

III~ & a) 12 b) 

'I 
10 

r I~ I~ 4 I "I", 8 

"~"I I I '''1 ~ Ilh 3 6 
I" " t 2 .1. ,., I 4 J ! 

1 .Jt'j r " 2 

° ° 1.3 1.4 1.& 1.6 1.7 1.8 1.9 2.0 1.3 1.4 1.& 1.6 1.7 1.8 1.9 2.0 

.../5 (GeY) .../5 (GeY) 

-7T p .... P7T-7TO rr+p ... prr+rro 

12 12 

d) d I" 
10 c) 10 

I ,I r ,'Ii i' 8 

I LIIJlkl l 
8 , 

8 8 

4 ~ '1 1 'I ~I ~ ILII~ ~I 4 ~" , 
2 

I ' 

2 ,~" 

° 
, 

° 
• ....It

• 

1.3 1.4 1.6 1.6 1.7 1.8 1.9 2.0 1.3 1.4 1.6 1.6 1.7 1.8 1.9 2.0 

.../5 (GeY) .../5 (GeY) 2310A3 

FIG. 6 -Single pion production cross sections. Data points 
are indicated by , and the predictions from our partial wave 
amplitudes by x. 
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6. RESULTS: ARGAND DIAGRAMS FOR 1972 SOLUTIO~ ONLY 

6.1 1972 vs. 1973 Solutions 

Finally I can present some Argand Diagrams, but first a warning. As 

mentioned in Sect 5.1, paragraphs i) and iv), we are hampered by a gap in the 

available data between 1540 and 1650 MeV. Note on the figures following 

(7 through 12) that energy points M,N,O appear only on the elastic Argand 

plots, and note the energy gap in the inelastic T and ITI2 plots. 

We have found two solutions, which brWge this gap in different ways. One 

solution is old; we presented it at the 1972 Batavia Conference, and it is 

the only one for which I have Argand plots. 

The other "1973" solution is still being explored. We found it only after 

considerable prodding and help by distraught theorists, mainly Gilman and 

Faiman. It has three more waves (Pl PPll - which Saclay decided independently 

should be included - L\SPll , and L\FF
15

), and a higher like.lihood. All the big 

amplitudes are similar in both solutions, except for L\PPll , which is crucial 

for bridging the 1540 - 1650 MeV energy gap. The 1972 L\PPll amplitude moves 

fast at 1650 MeV (see Fig. 7), and (by continuity) also in the gap. So point 

R at 1690 MeV is nearly 180 0 out of phase with point K at 1520 MeV. The 1973 

amplitude is motionless at 1650 (!), so continuity keeps the phase for the 

1688 MeV region the same as at 1520. But PP11 is such a large wave, on both 

sides of the gap, that it influences all others. So the 180 0 difference 

between the 1972 and 1973 PPll solutions produces a similar change in all 

other waves. I don't think we'll clear up this ambiguity until Saclay reports 

amplitudes (or events) in the gap. 

6.2 Comments on selected Argand plots 

On the Argand plots of Figs. 7, ..• 11, the letters A through Z are the 

resul ts of each single-energy fit, 'wi th statistical errors cST R:: ,03 (twice 

the size of a letter), The magnitude of T comes directly from the fit. The 

phase has been calculated as discussed in Sect. 3, by a K-matrix fit to one 

or two large partial waves. In the region below 1540 MeV we used Pll ; above 

the 1540 to 1650 MeV gap we tied on to D15 and F
15

; in the 1920 region we rely" 

on F35' 

The smooth Argand curves come from the K-matrix fits detailed in Lecture ~ 

II. More details are given in the figure captions. 

I include the following partial waves, with some comments on each: 

Fig. 7 (Pll ). I have already mentioned the overwhelming importance of Pll in 

bridging the phase across the gap, Before this analysis EPSA told us that for 

the 1470 resonance xel = r(elastic)/r(total) was about 50 %j for 1780, 

xel ~ 15 %. Now we see that the inelasticity at 1470 is due both to L\ PPll 
(xL\ ';:,t 30 %) and EPS ll (x E ,;:::: 25 %). These estimates (and the signs) for many 
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reactions are in Table 2 of Lecture II. 

- Fig. 8 (p
1 

). Here is an example of an inelastic resonance which is barely 
J . 

visible in the nN channel, because of its weak coupling. We now see it is 

mainly a pN resonance; this was expected because it is seen strongly in photo­

production. 

- Fig. 9 (D
1J

), is visibly coupled to 5 decay channels. Two comments:-

i) There is a strong pDS
1J 

coupling although the D
1J

(1 520) is nearly 200 MeV 
2 

below Np threshold. Look at the clear pN circle, and the B.W. shape of IT NI • 
p 

ii) A D
1J

(1 700) has been hinted at in EPSA 1,2), and now appears in both EN 

and ~n. This state is required to complete the N* and ~(70, 1-) supermultiplet. 

- Fig. 10 (D
15

). I present this mainly for your inspection at the time that 

you read Sect. 6 of Lecture II. It is very clean (two good signals and little 

background) and was the first case in which we tested our ideas on Breit -

Wigner "refits". 

- Fig. 11 (F
J5

). This is the only case where we find that a ~ is seen only in 

the higher of the two L' states open to it, i.e. we see ~FFJ5' no ~FPJ5' 

This has been noted independently in the UCR/LBL 14) single-channel (~n) fit. 

FJ5 is the second, less "clean~ resonance you will read about in Lecture II, 

Sect. 6 and Table 4, on Breit-Wigner "refits". 

- Figs. 12 and 1 J. All" inelastic waves are summarized in this Figure. The 

single-energy amplitudes have been joined by straight lines to guide the eye 

and tally the energy. But this creates a wrong impression across the gap from 

1540 to 1650, which is too big an interval to join with a straight line. I 

have omitted the straight line but left the 5 arrows to indicate the gap. 

NOTE ADDED JAN. 1974 (during publication): By now we are convinced that the 1973 Solution ("B") is the 

better, and Argand plots are of course available. I have added summary Argand plots of this solution in the form of 

Figs. 13 and 14. For more details see A. H. Rosenfeld et ai., submitted to Phys. Rev. Letters, May 1974. 

The presence of two P11 states at low energies (",1470 and '" 1750) implies 

the need for two P
JJ 

states in most schemes, while the [56, L=2+] supermulti~t 
requires yet a third. There is evidence for one such state in EPSA at 

~1900 MeV\but there certainly is no such state in the region of 1700 MeV. The 

absence of these states at low energies, unless they have remarkably small nN, 

n~ , etc, couplings, or large mass splittings from their supermultiplet partners) 

must bring into question the present classification schemes. 

We'll return to the Argand Plots in Lecture II. 
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Fig. 12. Argand plots for Solution A (1972). The nominal energies come from the CERN 1972 partial wave 
analysis. Arrows on the Argand plots are spaced every 20 MeV, with wide arrows every hundred MeV; base of 
wide arrows mark integral hundreds of MeV. To show the 100-MeV gap in our data, the straight line joining the 
five gap arrows has been deleted. The + or - signs at the upper left of each circle show how to transform from 

. our "internal" sign convention to the "Baryon-first" convention. Lower-Q curves are plotted starting at Vs = 1400 
MeV; higher-Q waves only where first needed in the fits. Last arrowhead is always at 1940 MeV. 
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LECTURE II: FROM ARGAND DIAGRAMS TO PHYSICS 

In this lecture I shall discuss some physics which we can learn from 

the Argand plots explained and presented in Lecture I. 

This lecture has separately numbered figures, tables, and references, 

because I want to use 'part of the lecture as a contribution to the forthco­

ming (Sept. 73) conference at Aix-en-Provence. 

1. COMPARISON OF oP ~ nN AND nN ~ eN WITH THE QUARK MODEL 

In sections 2 and 3 of this lecture I shall take up various higher­

symmetry tests of ~n amplitudes; first I want to dispose of rN and PN. 

SU(3) tests of (Vector Meson) X (Nucleon) would need analyses such as 

K-p ~ K*N or pY, and I am not aware of any relevant results. 

~N and PN can be compared either:-

a) directly, using the notions of vector dominance, or 

b) separately, each with the quark model or SU(6). 

For a) we must transform our partial-wave amplitudes T(J
P

, L, L') with 

a 3 x 3 matrix into helicity amplitudes which are conventional for photon 

reactions: call them T('A = t), T( A = t), and the unobservable T for longitu­

dinal photons. In our analysis we have yet to propagate all the errors through 

this transformation,. so I shall say no more at present. 

I take up next the direct comparisons, b). 

1.1 ~N vs. the Quark Model 

At LBL, Moorhouse and Oberlack
1

) have recently done a partial-wave 

analysis of photoproduction, and have found really encouraging agreement 

with the quark model. Fig. II-1 is just a photograph of their summary table. 

To make a stringent comparison with the quark model we may take 

only the larger couplings of the prominent resonances, and only those where 

quark model predictions are "starred" in Fig. 1. We find seven such cases, 

underlined in Fig. 1, where the experimental sign is sure and which theore­

tically depend on, and only on, the Clebsch-Gordan coefficients of the quark 

model (the same in either the "relativistic" or "nonrelativistic" models. 

These 7 signs all agree! About 7 more signs which are less certain also agree 

[but not those for P11 (1470B and in general all 33 magnitudes agree within 

a factor of 3. I remind you that the chance of random agreement of say 10 

signs is 2-
10 ~ 10-3 , so I consider this to be an impressive systematic test 

of the quark model. 
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Fig. II-1. Comparison of pion photoproduction amplitudes with Quark Model. 

This a reproduction of Table 1 of Moorhouse and Oberlack (Ref. 1). 

Average resonance couplings from seven fits to the data compared with quark-model predictions. The result from 
the partial wave analysis is an average over seven fits and the error is the spread over the seven fits; directly underneath the partial 
wave analysis result we give the quark-model result for the usual assignment of the resonance to an {SU6} L, [SU3, 2 S + 1 [ multi­
plet. An asterisk denotes that the quark-model result does not involve a difference of two terms. Table 1 a comprises resonances as­
signed to the {56} L = 0+ and {70} L = 1- multiplets and table Ib the {56} L = 2+, {56}2 L = 0+ and {70 h L = 0+ multiplets 
where the suffix denotes radial excitation. In table 1 b we also give quark-model results for some resonances for which we do not 
have partial wave results since they are outside our data range. A 1/2 and A 3/2 denote decays through helicity-l/2 and helicitrj;3/2 
states, respectively, and superscripts + and 0 denote decays of charge + 1 and charge 0 particles respectively. Units are GeV-" X IO-J 

Table la 

N*Cmass) 

[SU3,2S'luark Ar/2 
+1]JP 

~ + I P33(l230) -142± 6 -259±16 g \i' [1O,4J 3/2+1 -1O~~_-IS7~_--, 

Sll (1545) 

[S,2J 1/2-
53±20 

156 

etc 

-4S±21 

-lOS 

d13(l512) 

[S,2J 3/r 
-26±15 194±31 -S5±14 -124±13 

S31 (1620) 

[10,2J l/r 

d33(1635) 

[IO,2J 3/2-

Sll (1690) 
[S,4J 1/2-

dI3(1700) 

[S,4J3I2-

dI5 (1670) 

[S,4J 5/r 

-34 

90±76 

47 

6S±42 

SS 

66±42 

o 

3±? 
0* 

11±12 
0* 

~-l -31 -109* 

22±52 
S4* 

20±? 
0* 

21±20 
0* 

-72±66 

-30 

-2S±? 
10* 

27±? 
-40' 

1O±40 -35±14 
3S* I -53* ___ I 

1.2 PN~. the Quark Model 

N*cmass) 

[SU3,2Squark 

+IJJP 

[S, 2J 3/2+ 

Table Ib 

-11 30 

-S±4 100±12 

30 0* 

11±14 -5±lS f I5 (1690) 

[8,2J 5/2+ -10 L-6_0_*_J 30' 0* 

" I ~ 
'-"-'+ 
'00 
~II 

" I '--l .. 
'-"-'+ 0 0 ell 

[10,4J 1/2+ -30 

[10,4J 3/2+ -30 50 

f35 (1S70) -60±? -100±' 

[IO,4J 5/r -20 -90 

f37(1950) -133±46 -100±41 

[10,4J 7/2+ ~~J_-::70* J 

Pll (1470) 

[S,2J 1/2+ 

Pll (1750) 

[8,2J 1/2+ 

-55±2S 

27 

26±2S 

-40 

2±25 

-IS 

27±22 

10 

Very recently, Moorhouse and Parsons
2

) have made the same quark model 

comparison for the photon's heavy relative, the rho meson, using our amplitu­

des for N ~ I(JP) ~ PN. Alas, neither the length of the table nor its contents 

are quite so impressive, so I shall not reproduce it. There are only J 

"starred" predictions, and they are indeed satisfied by our amplitudes. In ad-

dition there is an unstarred prediction forOFP which does not agree with 
r 3 35 

our solution. Another starred prediction awaits the bridging of the Sac lay 

gap. Tune in later for more details. 

2. SU(J) TESTS: nN ~ 6n vs KN ~ I(1J85)n. 

It is well, known that one of the major triumphs of SU(J) has been the 

agreement between "isoscalar coefficients" c
i 

and experimental signs for 

amplitudes T1~ for reactions like 
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T11 
2 

0<. g1 c 1 c 1 

T12 
2 

(1 ) 01... g1 c 1 c
2 

T13 
2 

oc. g1 c 1 c
3 

According to SU(3) these are all examples of elastic scattering with a 

coupling constant g( actually g:b and gF but let's ignore that annoyance), so the 

coefficients c. are just generalizations of Clebsch-Gordan coefficients. So far, 
1 

about six SU(3) multiplets are established (2 nonets, 2 octets, 2 decuplets) 

wich satisfy about 20 sign checks. I repeat that this cannot just be good 
-20 -6 luck because 2 ~ 10 • 

- (3 5 5+ 
Now we can compare our amplitudes for rr p ~ "2 ' 2" ' and 2" )~6iiwith a CHS 

1 . 3) f - ( '( 5 ana YSlS 0 K P ~ same)~i 1385)~. The relative signs of the two J=2" waves agrees 

with SU(3); the sign for DD if we chose our 1973 solution. 13 

3. COMPARISON OF ~n AMPLITUDES WITH su(6) AND QUARK MODEL 

In SU(6) the nucleon and A belong to the same 22 supermultiplet, so 

elastic scattering generalizes to reactions like 

and ~ Lln; 

We have to "waste" one reaction to define the overall phase (and thus the 

sign of c 2 /c 1 ), but then the other reactions via the same 1Q ~ 22 x n serve 

as sign checks. Unfortunately, just as in SU(3) there were really two cou -

plings (g = gF + gDh so in SU(6) there are again two for the ~n case , this 

time because of the fact that a resonance can decay 

values of L' (e. g. D1 3 ~ llDD1 3 and llDS
13

, see Sect. 

It is the open choice of the relative sign of 

which leads to the two alternative columns of Table 

Faiman-Rosner ~ "SU( 6) " 
w 

into /In via two different 

4a. of Lecture I) • 

the two L' couplings 

1 , labelled either: 

"Anti-SU( 6) " 
w 

Gilman-Kugler-Meshkov ~"(8,1)0 (1,8)0" "(3,"3\ -(3,3)_1" 

The Faiman-Rosner names are old, based on the argument about the two different 

values of L'. TIle group - theoretical names come from the transformations studied 

by Melosh4 ) who showed that indeed there are two couplings, with those two 

transformation properties. Note on Table 1, however, that the Quark Model 

does not put up with this ambivalence 

corresponds to the Anti-SU(6) choice. 

it predicts a unique column, which 

,. . 
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Table II-1 

* * Signs of the amplitudes for lTN -+ N -+ IT.6. for N 's in the 70 L = 1 and 56 L = 2. Products 
ofJ:he theoretical and experimental signs for decays through the (8,1)0= (1,8)0 and (3,3)1 
-(3,3t 1 terms are presented, with the overall phase chosen so that DD13(1520) is positive. 
Signs which are independent of which term dominates are denoted by a "*". Experiment ) 
and theory agree if within the 70 L = 1 or 56 L = 2 decays all the signs in a column agree.a 

. 5) SU(6) Anti-SU(6) Moorhouse 
2) 

Faiman-Rosner w w 
and Parsons 

6)} Gilman-Kugler-Meshkov • (8,1)0 - (1,8)0 (3.3\ - (3,3)_1 quark model 

DD13(1520) * 1 * 
--,~--------... --

+ + + 
DS13(1520) + + 

{Energy a) 

70 L=1- 56 L=O SD31(1640) + 

j 
?b) gap 

DS33(1690) + ?b) 

DS13(1700) + ? c) ?b) 

DD15(1670) * * * 

r 
~OnlYdiS-rP15

(16881 + + agree-

56 L=2- 56 L=O FF35(18!30) * * * ment 

* * * FF37(1950) 

a) Because of experimental inability so far to bridge 100 MeV gap between 1520 region 
and 1688 region, signs so far need not check across this gap. 

b) Moorhouse's"?" means he feels the experiment is uncertain. 
c) ? in Anti-SU(6) column means we feel experiment is uncertain. 

w 

Table II - 1 is taken from Gilman et al. 6 ) (but Faiman and Rosner give 

the same prediction); it gives the product of theoretical signs with our 

experimental signs for our 1972 solution. (For our 1973 solution change the 

two signs below the energy gap with respect to the 7 signs above). We see 

that the theorists badly need our 1973 solution (in fact they helped us 

find it). Only for that solution can one find a complete column of minus 

signs, by choosing Anti-SU(6) for 1Q decays and Straight-SU(6) for 22 
decays. As usual, tune in again after Saclay helps us bridge the gap. 
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4. ESTIMATING RESONANCE PARAMETERS "BY EYE". WITHOUT A K-MATRIX. 

We are through with the glamorous problem of signs and higher symmetries. 

The rest of this lecture deals with a more pedestrian question: "Is there a 

reliable way to parametrize a resonance?" We shall exploit our multichannel 

amplitudes to find two consistent descriptions, which are compared in Table 4. 
But be careful: some partial widths will differ by a factor two1depending 

in which description you chose. 

Before we go on to Fancy Method I (K-matrix fits and T-matrix poles~ 

I present in Table 2 the most conventional method of all --- "eye-ball" fits 

to the Argand plots of Lecture 1 according to the following recipe:-

1 ) We look at all Argand plots coupled to a given incoming partial wave 

(e.g. all three P
11 

channels of Fig. 7 of Lecture I), giving the most weight 

to the ones which look most resonant, and pick an energy where they all 

simultaneously seem to have the greatest speed. This is called the resonance 

energy. We then draw semi-circles through the points near the greatest speed, 

and estimate the radius r of each circle. Then r = Vx IX . (see below). 
e ex.. 

2) We get help from Elastic Phase Shift Analyses (EPSA, Refs. 7 and 8) 

in two ways: 

a) The Argand plots have already had their phases set to agree with 

some resonance seen strongly in EPSA -- e.g. P
11 

near 1520 MeV (see Lect.I, 

Sect. 6.2). 

b) We use the EPSA values Of r
tot and Xe in order to calculate 

Xinel • The numbers appearing in Table 2 in each inelastic channel are Jxelx
in

& 

and (below that) f. 1; the final column corresponds to the sum of the 1ne 
branching fractions for the given resonance. It should be noted that X

inel 
are very sensitive to variation in the X

el
' the elastic branching fraction. 

Finally, one might note that in many cases all decay modes of the 

resonance are essentially accounted for (~Xi~l). 
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Table II-2 

Resonance couplings estimated by eye for Nnn channels, with help from EPSA7 ,8). 

Each entry contains the partial wave considered, the amplitude at resonance 

and the partial width in MeV. 

Resonance 
E r

tot lI"A lI"A Np3 NP1 N€ Ex. x
e1 

(MeV) (MeV) 1 

PP11 PSll 
Pl1 1440 236 .52 +.29 -.25 .80 

124 36 28 

DS13 DD13 DS13 
D13 1520 119 .57 -.27 -.21 +.31 .94 

68 15 9.0 20.0 

SD31 SS31 
831 1630 160 .32 -.325 +.307 .95 

51 52 47 

DD15 
D15 1670 141 .40 -.46 .93 

56 75 

FP15 FP15 FD15 
F15 1690 133 0.6 +.31 +.27 +.24 .97 

80 21 16 13 

DS33 
D33 1670 207 0.16 +.37 .99 

172 

SS11 SPll 
811 1700 148 0.50 +.19 -.35 .81 

74 11 35 

DS13 DP13 
D13 1730 130 0.10 +.11 -.29 1.07 

13 17 109 

PP11 PSl1 
P11 1750 183 .15 -.345 +.21 1.21 

28 140 52 

PP13 
P13 1850 250 .25 -.44 1.03 

63 195 

FF35 FP35 
F35 1890 260 .15 +.10 -.29 .75 

40 16 140 

FF37 FF37 
F37 1930 230 .40 +.25 -.25 .71 

92 36 36 
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5. MULTICHANNEL K-MATRIX AND T-MATRIX FITS 

Our ability to account for all of the iTN inelasticity in many partial waves indicates 

that we are now in the position to perform multichannel fits, exploiting the constraints of 

unitarity to their fullest possible extent, in attempting to understand the iTN interaction. 

For this purpose we used a K matrix to parametrize our T -matrix elements ob­

tained from our isobar model fitting program. 

It is well known that for a partial wave which is coupled to several particle states, 

a real K matrix can be related to the Argand amplitudes by10) 

(3) 

where the Argand amplitude is related to T by 

A .. = Q~/2 T .. d/ 2 
IJ 1 1 J J 

(4) 

and Q is a diagonal matrix corresponding to the c. m. momentum of the particles in each 

channel. 

We now can make a reduced K-matrix equation by putting in the barrier penetra­

tion factors. We let 

K.. = B~/2 k .. B~/2 , 
IJ 1 IJ J 

_ 1/2 1/2 T .. - B. T .• B. , 

(5) 

IJ 1 IJ J 

where B is the Blatt-Weisskopf 11 ) barrier factor. Thus Eq. (3) becomes 

T .. - k .. = i l: T' l Q l Bl k l . 
IJ 1) 1 1 J 

(6) 

and Eq. (4) becomes 

A .. 
IJ 

d/2 B~/2 T •• d/2 B~/2 
1 1 IJ J J 

(7) 

In order to extend this prescription to isobars which do not have a fixed mass, we 

replace Ql Bl by their weighted average value Ql B l , where Ql Bl is defined by the inte­

gration of Q l Bl over a normalized Dalitz plot projection of this isobar's diparticle 
12) 

mass • C 

Because the isobars are not an othogonal set, they have an overlap with respect to 

one another. So off-diagonal terms will enter into the momentum matrix. Thus Eq. (6) 

becomes 

T:. - k •. = i l: T' l b.l k ., 
IJ IJ 1m 1 m mJ 

(8) 

where .t.
lm 

for the diagonal terms are 
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(9) 

and the off-diagonal terITlS are related to the overlaps between the isobar states. 

The reduced K ITlatrix is then paraITletrized by siITlple factorizable poles and linear 

background terITlS which are not factorizable. These paraITleters are then adjusted to fit 

the Argand aITlplitudes. The resulting K-ITlatrix paraITleters yielded" ridiculous" values 

for the ITlasses and partial widths of the resonances (i. e., if interpreted literally they 

correspond to resonances which are shifted by - 100 MeV froITl their nOITlinal value and 

have ITluch greater widths than expected froITl inspection of the Argand diagraITls). This is 

not surprising, the K-matrix is merely a good way to parametrize the T-matrix in terms of 

real numbers, and K-matrix pole positions and residues even change along with the,number of 

channels considered. 

5.1 Poles of the T -ITlatrix 

If we have a good representation of the Argand diagraITls, this iITlplies that we have 

a cOITlparatively good description of the T ITlatrix as a function of energy. In order to 

identify resonances and their properties we now search the T ITlatrix for poles in the COITl­

plex energy plane and deterITline the residues at these poles. The ITlotivations for this 

procedure are: 

i) we expect the pole positions and residues in the T ITlatrix to be independent of our 

paraITletrization of the T ITlatrix, providing, of course, that it is good. This ex­

pectation steITlS froITl the work on the P33(1236) resonance. 13,14) and investigation 

of our own12 ); 

ii) we expect the pole position and residue to be closely related to the Breit-Wigner 

paraITleters but the pole position does not equal M , 1/2 r , the conventional 
o 0 

Breit- Wigner paraITleters, and the residues are not necessarily equivalent to the 

widths. We expect these equalities to becoITle very poor when we either have large 

backgrounds or wide resonances. 

The results of these investigations are contained in Table 3, where we give the 

real and iITlaginary parts of the pole position together with the residue s of the 'T ITlatrix 
aa 

scaled by 2 X QB calculated at an energy E = Real (E 1)' These will correspond to 
a a po e 

the partial widths, and the residues of the 'T ITlatrix correspond to the couplings. Several 

COITlITlents about these results are in order: 

i) often the pole positions are a long way froITl the position one ITlight expect, e. g. , 

F35, F37, or P13; 

ii) 1/2 ~lr.l-:f - IITl(E l) inITlany cases (where r. is given by r. = 2XQ.B. (res
1
·)2). 

1 po ell 1 1 

However, it should be noted that even a pure Breit-Wigner will not have this prop-

erty. The way we have defined r. gives the closest agreeITlent with the equality for 
. . 12) 1 

a pure Brelt-Wlgner 

If the background becoITles largeJ the disagreeITlent becoITles worse. 

iii) The last point is further eITlphasized by the fact that the residues have large phases 

even after taking into account the phases associated with the kineITlatical factors. 
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Table II-J 

T-matrix poles and residues. Partial widths r. are calculated by 
~ 

r. = 2 x Q.B.(evaluated at E = Re E (pole)) ( residue. r. Entries for r. 
~ ~ ~ ~ ~ 

are r real! r imag ,!Irl in MeV. 

Wave Pole r lTN r r r r r NE Other r tot = ~ Iri I lTL:l.L lTL:l.L , NP3 NP1 channel 

1503 -i 65 
7 6 23 2 \ 

-6 0 35 10 (YjN) 67 2 
9 6 42 10 S11 

1652_i1OO 26 -3 -2 5 
-37 -9 -4 -32 (YjN) 91 2 45 9 5 32 

1385_i235 36 21 5 
-109 -25 -5 155 2 115 33 7 P11 

1724_i283 -39 47 31 
-115 5 -56 233 2 122 47 64 

1728_i159 1 42 
PB -25 -73 109 2 25 84 

1514-i 142 
88 5 3 34 -3 
13 36 14 6 0 176 2 89 36 14 34 3 DB 

1647 -i 117 
5 -8 0 -1 -57 

-15 -22 -2 4 -32 111 2 16 24 2 4 . 65 

1666-i 159 
68 91 

D15 -14 -10 161 2 69 92 

1672_i155 99 5 33 15 
F15 -17 11 -27 -16 182 2 101 12 42 21 

1600-i22. 
-3 22 -5 

S31 -20 16 102 149 2 20 27 102 

1657 -i 109 
7 -9 36 

D33 -4 -49 9 95 2 8 50 37 

1824_i282 
36 19 -20 

F35 -26 -18 -105 177 
2 44 26 107 ,., 

1866_i255 33 -5 -21 41 
F37 26 29 4 -31 gunk) 144 2 42 29 22 51 ~ 
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Argand diagrams for the first time. We hope to resolve these solutions 

as soon as the amplitudes in the middle of the Sac lay gap become available. 

5.2 Monte Carlo tests and sensitivity limits 

Before unleashing this big program on data, we tested it on Monte Carlo 

events. This is a fine way to debug the program. It also forcasts :-

a. The number of events that will be needed for a unique fit. 

b. The sensitivity of the analysis - at what ITI will we fail to find a 

Morite Carlo ~ave ? 

Fig. 3 shows the very satisfying result of one of these Monte Carlo tests. 

Larry Miller played God (or Prince Rainier). As such he :-

. 
a) Invented a secret list of eleven amplitudes (the dots of Fig. 3). 

Even the length (11) of the list was kept secret. 

b) Generated a Monte Carlo "experiment" of 7500 events at 1690MeV, 

corresponding to the 11 dots, and gave the "data summary tape" to another 

student, David Herndon. 

Herndon started with all 60 possible waves, and came up with the 11 

crosses on Fig. 3" plus 13 more "noise" waves, as big as the four smallest 

secret waves, but all inside the box shown on the figure, whose half-side is 

~.05. We conclude that our signal: noise is better than 1:1 only for lTI>.05. 

Given the extra uncertainties and systematic errors of real data (where 

our model can also not be perfect), we prefer to quote a "sensitivity" of 

ITI "'0.1. 

The same experiment fails when trEd with only 2500 instead of 7500 events 

(we find many solutions); and works poorly with 5000 events (several solutions). 

Hence our slogan that we need 'V 10,000 events at each energy in the region 

of1690 where we have to consider 60 waves. 

5.3 Sign checks 

Our programs can be internally consistent, pass the Monte Carlo tests of 

Section 5.2, and still have a wrong sign or sign convention, e.g. for a 

Clebsch-Gordan coefficient or a D-function. So we decided to put the same data 

through all the programs available, from oxford8 ,9) , SaClay10) and LBL/SLAC. 

None of the results agreed in all waves! We found a bug or a misunderstanding 

in both our own program and our version of Saclay's old program; Oxford won. 

Now that independent programs agree, we tend to believe them. 
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Table II-4. 

Comparison of resonance parameters from (a) coupling estimate and elastic phase shift 
analysis; (b) poles of the T -matrix; and (c) unitary (Breit- Wigner + background) fit. 

M 
r tot TTN TTl!. TTl!. Np N€ 

1670 141 56 75 Elastic/ coupling estimate a 

D15 1666 159 69 92 T -matrix pole b 

1692 176 71 105 Unitary (BW + background) c 

1690 133 80 21 16 13 Elastic/ coupling estimate a 

F15 1672 155 101 12 42 21 T -matrix pole b 

1682 153 88 15 33 17 Unitary (B W + background) c 

1890 260 40 16 140 Elastic/ coupling estimate a 

F35 1824 282 44 26 107 T -matrix pole b 

1907 324 51 55 219 Unitary (BW + background) C 

1520 119 68 15 9 20 Elastic/ coupling estimate a 
D13 

1514 142 89 36 14 34 T -matrix pole b 

1850 250 63 195 Elastic/ coupling estimate a 
P13 

1728 159 25 84 T -matrix pole b 

a) using results from elastic analyses 4) (Breit-Wigner and background fit to elastic 

Argand diagram) together with "eye-ball" estimates of coupling from Argand dia-

gram; 

b) T-matrix pole quantities from the K-matrix parametrization; 

c) unitary (Breit- Wigner plus background) refit to smooth Argand diagrams from K­

matrix parameters. 

\ 
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The implication of these statements is that it is not easy (and sometimes impossi­

ble) to relate pole parameters to the parameters of the Breit-Wigner amplitude which we 

normally discuss. This point will be demonstrated more in the following sections. 

It does appear, however, that these pole parameters are unique (if calculated in 

the same manner with equally good fit to data), and thus it will be necessary for any future 

theories to present the results on resonances in terms of the properties of the 

corresponding second sheet poles (or whichever sheet is appropriate in the specific multi­

channel problem) . 

6. UNITARY (BREIT-WIGNER AND BACKGROUND) FITS TO THE T-MATRIX 

In order to better estimate the conventional Breit-Wigner parameter~we assume that 

in the region of a pole our T-matrix amplitude can be described as a Breit-Wigner plus 

unitary background: 

where 

T(refit) = TBW + TBkgd , 

T~~ 
1J 

r. 
J 

~ r.r. 
1 J 

1 iSJ' Qj Yj e , 

and the background S-matrix (S = 1 + 2iT) is separately unitary, 

1 
0 .. + 2i Q~ 

1J . 1 
Q. 

J 

( 10) 

(11) 

(12) 

(13) 

As in Eqs. (3) and (4), TBkgd is parameterized as a K-matrix (this time a linear 
15) 

function of E) and the BW phase S. is adjusted by a matrix unitarity constraint 
J 

sBkgd r* = r. ( 14) 

Unfortunately a general multichannel solution of Eq. (14) is not possible, so we 

added Eq. (14) as an 'additional chi-square term and fitted e. as a polynomial in E 12). 
J 

One can see that as the number of channels increases the number of parameters 
rises sharply. Because of this limitation, these fits are time-consuming. 

Once the parameters of.the B.W. refit are found, we can recalculate T(refit) via 

Eq.(IO) and again hunt for its poles. We find that this (indirect) pole is close to that 

of the original amplitude, if (and only if) we have imposed the unitarity constraint (14). 

This agreement must mean that, near a resonance, Eq. (10) is a good approximation. Thus we 

have found a self-consistent way to parameterize a resonance, but we repeat our earlier 

warnings about the differences between pole parameters and BW parameters, both of which 

are plotted in Table 4: 

I) The 2 sets of parameters do not (and cannot) always agree. 



-34-

2) The BW parameters depend on the form chosen for the background, while of course 

the parameters of the pole itself should be stable against changes in the form of the 

background. 

7. RESULTS FROM THE DIFFERENT RESONANCE PARAMETERISATIONS 

In Table 4 we have compared the various parameters obtained for the resonances 

by the several methods discussed above: 

i) 

We think the lessons of this table are clear: 

for clear narrow resonances,' e. g., D13, F15, D15, one obtains reasonabi~' 

qualitative agreement although quantitatively there are factors of 2(or more)dis­

agreement in partial widths; 

ii) for wide resonances, e. g., P13, F35, the displacement of M (conventional) and 

Real (E l) can be on the order of 100 MeV. 
po e 

The above observations mean that one should be wary of using quoted resonance 

parameters without checking their origin and, further, the partial widths are only reli­

able to factors of - 2. 

8. CONCLUSIONS 

1) We have measured 23 couplings in sign and magnitude and this will be an im­

portant testing ground for any new theories. 

2) It is possible to obtain good representation of the Argand diagrams in all chan­

nels and then extract the pole structure of the T matrix. This has been done for all the 

resonances we observe with E < 2000 MeV. 

3) It is not possible in general to relate the pole parameters unambiguously to 

the parameters of Breit- Wigner. In order to obtain such quantities it is necessary to 

make a fit to the data with a unitary model resonance plus background. We have obtained 

such for three pronounced resonances. 

4) The uniqueness of the pole parameters indicated in analyses of elastic P33 

amplitude seems to be present in the inelastic waves we have considered. 

~ The various theoretical calculations are consistent with our resulw 

only for our 1973 continuation across the energy gap. It is clearly essential 

to obtain partial wave amplitudes in this region as soon as possible. 
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