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The Kolmogorov-Obukhov-She-Leveque
Scaling in Turbulence

Björn Birnir

Center for Complex and Nonlinear Science
and

Department of Mathematics
University of California, Santa Barbara

September 24, 2013

In fond memory of Mark I. Vishik.

Abstract

We construct the 1962 Kolmogorov-Obukhov statistical theory of turbu-
lence from the stochastic Navier-Stokes equations driven by generic noise.
The intermittency corrections to the scaling exponents of the structure func-
tions of turbulence are given by the She-Leveque intermittency corrections.
We show how they are produced by She-Waymire log-Poisson processes,
that are generated by the Feynmann-Kac formula from the stochastic Navier-
Stokes equation. We find the Kolmogorov-Hopf equations and compute the
invariant measures of turbulence for 1-point and 2-point statistics. Then pro-
jecting these measures we find the formulas for the probability distribution
functions (PDFs) of the velocity differences in the structure functions. In the
limit of zero intermittency, these PDFs reduce to the Generalized Hyperbolic
Distributions of Barndorff-Nilsen.
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1 Introduction
It has become clear, since Kolmogorov and Obukhov [16, 15, 21] proposed a
statistical theory of turbulence based on dimensional arguments, that noise plays
a big role in turbulent flow. The laminar flow is described by the deterministic
Navier-Stokes equation

ut +u ·∇u = ν∆u−∇p,(1)
u(x,0) = u0(x),

with the incompressibility conditions

∇ ·u = 0, (2)

where u(x, t), x ∈ R3, t ∈ R+ is the velocity of the fluid and ν is the kinematic
viscosity. Eliminating the pressure p using (2) gives the equation

ut +u ·∇u = ν∆u+∇{∆−1[trace(∇u)2]}. (3)

The turbulence of the fluid is quantified by the dimensionless Reynolds number
R = UL

ν
where U is a typical velocity of the flow and L is a typical length scale

associated with the flow. If R is small the flow is laminar and if R is sufficiently
large the flow is turbulent. Many studies, theoretical [8], numerical and exper-
imental, show that noise plays a big role in fully developed turbulence. For R
large enough laminar flow, although it still exists, is unstable and the fluid insta-
bilities magnify the small ambient noise that exists in any fluid flow. This noise
is quelled if R is small enough and then laminar flow is stable. The upshot is
that there is large noise driving fully developed turbulent flow and Kolmogorov’s
point of view is correct: turbulent velocity is a stochastic process described by the
stochastic Navier-Stokes equation

du = (ν∆u−u ·∇u+∇{∆−1[trace(∇u)2]})dt +d ft(u,x, t),(4)
u(x,0) = u0(x).

Here d ft denotes the stochastic forcing in fully developed turbulence.
Now the question becomes: what is the stochastic forcing (noise) in fully

developed turbulence? Can its form be traced back to the fluid instabilities or is it
of a general nature? It is fair to say that attempts made over the last two decades
to trace the noise back to the fluid instabilities have failed and the experiments
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indicate that the noise in fully developed turbulence is of a general nature. At the
same time it is clear that the noise cannot be white both in space and time because
it was shown by Walsh [29] that the solution of parabolic equation driven by such
noise is only continuous in space in two or lower dimensions. In three dimensions
and higher it is a distribution, discontinuous in space, contrary to the spatially
continuous fluid velocity observed in fully developed turbulence.

It turns out that the noise in fully developed turbulence is generic but not white.
It can be shown from general principle, see [10, 11], that with periodic boundary
conditions the generic noise has the form,

∑
k∈Z3

c
1
2
k dbk

t ek(x)+ ∑
k 6=0

dk|k|1/3dtek(x)+u
m

∑
k 6=0

∫
R

hkN̄k(dt,dz). (5)

Here the noise is both additive and multiplicative. The first two terms form the
additive noise and the third term consists of jumps multiplying the velocity u and
forms the multiplicative part of the noise. In the additive noise, each Fourier
component ek = e2πik·x comes with its own independent Brownian motion bk

t and

a deterministic term |k|1/3. The coefficients c
1
2
k and dk decay sufficiently fast so

that the Fourier series converges. In the multiplicative (multiplied by u) noise, N̄
is a (compensated) jump measure, counting the number of jumps. The sizes of the
jumps hk (corresponding to jumps in the velocity gradient) do not decay, but for
t < ∞, only finitely many hks, |k| ≤ m, are nonzero.

The argument in [10] is the following. The additive noise describes the mean
of the dissipation process in turbulent flow. It is a Fourier series with coeffi-
cients that are independent Brownian motions in the first term of the additive
noise above. Thus it is white in time but it is not white in space. The coefficients

c
1
2
k make it converge in L2, the space where we make sense of the noise. None of

the coefficients c
1
2
k vanish. Thus the noise in fully developed turbulence is non-

degenerate, and this is what experiments and simulations indicate. However, this
is not a complete description of the mean, there frequently is a bias in the flow and
associated are large deviation of the dissipation process. These large deviations
are described by the second term in the additive noise that is derived from the
large deviation principle or Cramer’s theorem, see [11]. These two terms give a
more complete description of the mean of the dissipation process and they must
scale in the same same way with the wave number k. This is the reason for the
factor |k|1/3 in the second term. It is clear from this argument that the first part of
(5) is a completely generic additive dissipation noise in L2(T3).

3



The second, multiplicative part of the noise in (5) stems from the jumps (or
near-jumps) in the gradient of the velocity ∇u. Large excursion of the velocity, or
jumps in ∇u, are observed in turbulent flow and associated with these excursions
are large dissipation events. These event are modeled by the last multiplicative
term in (5). It consists of u multiplied by a sum of jumps associated with the kth
wavenumer, where hk(·) is the size of the jump and N̄(dt, ·) is the compensated
number of jumps in an infinitesimal time interval dt. Compensation means that
one has to subtract the associated Lévy (mean) measure, see [11].

The important feature to notice about the noise (5) is that it has no structure
embedded in it. Let E denote the energy of the Navier-Stokes equation

E =
1

2|Ω|

∫
Ω

|u(x, t)|2dx. (6)

Here |Ω| denotes the volume of Ω and ”mean” refers to the fact that we are di-
viding the energy by the volume. The mean energy dissipation is now defined to
be

ε =− d
dt

E . (7)

The noise is white in time and the coefficient c1/2
k and dk barely make the Fourier

series converge in L2 so that the energy of the stochastic velocity is still defined.
Thus the noise is not white in space but it is as close to being white as it can
be and the energy still make sense. None of the coefficients c1/2

k and dk vanish.
Thus the noise is not degenerate and this seems to be a general feature of the
noise in fully developed turbulence. The noise is active in all directions in infinite
dimensional functions space and no Fourier component is missing in the noise.
The multiplicative noise consists of the simplest jumps imaginable multiplying
the velocity u. There is no structure in the jumps they depend on the wave number
k, or we think about them as jumps in the Fourier coefficients, but then the kth
jump imparts energy to every Fourier coefficient of u.

The structure of the turbulent velocity is created by the Navier-Stokes evo-
lution acting on the generic noise (5). We consider the stochastic Navier-Stokes
equation describing the turbulent velocity to understand this structure,

du = (ν∆u−u ·∇u+∇∆
−1tr(∇u)2)dt + ∑

k∈Z3

c
1
2
k dbk

t ek(x)

+ ∑
k 6=0

dk|k|1/3dtek(x)+u
m

∑
k 6=0

∫
R

hkN̄k(dt,dz),(8)
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u(x,0) = u0(x),

ek = e2πik·xs are Fourier component, bk
t are independent Brownian motions and the

coefficients c
1
2
k and dk decay sufficiently fast so that the Fourier series converges.

The hks are sizes of the jumps in the multiplicative noise, see the discussion of
the noise (5) above. The equation (8) defines the fluid velocity u as a stochastic
process, taking its values in L2(T3) for each t.

2 The Kolmogorov-Obukhov Statistical Theory of
Turbulence

It is clear, once we understand that the velocity in turbulent flow satisfies the
stochastic Navier-Stokes equation (8), that any theory of turbulence that can be
compared with simulations and experiments must be a statistical theory. In other
words, the pointwise values of the fluid velocity are not deterministic and the
only deterministic quantities that can be associated with the flow are statistical
quantities. In practice this means that one must take averages of simulations and
experiments and compare these with expectations of the corresponding stochastic
process.

In 1941, Kolmogorov and Obukhov [16, 15, 21] proposed such a statistical
theory. The main consequence and test of this theory was that the structure func-
tions of the velocity differences of a turbulent fluid

E(|u(x, t)−u(x+ l, t)|p) = Sp =Cplp/3

should scale with the distance (lag variable) l between them, to the power p/3.
E is the expectation computed by an ensamble average from simulations or ex-
periments. This theory was immediately criticized by Landau for not taking into
account the influence of the large flow structure on the constants Cp and later for
not including the influence of the intermittency, in the velocity fluctuations, on the
scaling exponents.

In 1962 Kolmogorov and Obukhov [17, 22] proposed a corrected theory were
both of those issues were addressed. They also pointed out that the scaling ex-
ponents for the first two structure functions could be corrected by log-normal
processes. For higher order structure functions the log-normal processes gave
intermittency corrections inconsistent with contemporary simulations and experi-
ments, see [1].

5



The correct intermittency corrections were found by She and Leveque [26] in
1994. She and Waymire [27] and Dubrulle [12] showed that these corrections
are produced by log-Poisson processes. These log-Poissonian processes give the
intermittency corrections that agree with modern direct Navier-Stokes simulations
(DNS) and experiments.

The structure functions are obviously not the only statistical quantity that one
would like to compute. The goal is to be able to compute the invariant measure for
the one point, two point, etc., statistics. Then one can compute all the statistical
quantities that can be simulated and measured. The mean, variance, skewness and
flatness are quantities that one can compute from the one point invariant measure.
The structure functions and the associated probability density functions (PDF) for
the velocity differences can be computed from the two point invariant measure.
This will be our goal and the surprising thing is that one can find a linear functional
differential equation for these measures, see [10, 11], and solve them although the
nonlinear stochastic Navier-Stokes equation (8) cannot be solved. We outline this
below but more details can be found in [11]. Hopf [14] was the first to show that
the characteristic function of the invariant measure satisfied a linear functional
differential equation, the theory of such equations has recently become available,
see [25].

3 The Stochastic Navier-Stokes Integral Equation
We write the stochastic Navier-Stokes equation (8) in integral form,

u = eK(t)e
∫ t

0 dqMtu0 + ∑
k 6=0

c1/2
k

∫ t

0
eK(t−s)e

∫ t
s dqMt−sdbk

sek(x),

+ ∑
k 6=0

dk

∫ t

0
eK(t−s)e

∫ t
s dqMt−s|k|1/3dt ek(x),(9)

where K is the linear (Navier-Stokes) operator

K = ν∆+∇∆
−1tr(∇u∇) = ν∆+D (10)

and the multiplicative factor

Mt = exp{−
∫

u(Bs,s)dBs−
1
2

∫ t

0
|u(Bs,s)|2ds},
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is a Martingale, with Bt ∈R3 an auxiliary Brownian motion. By Ito’s formula and
a computation similar to the one that produces the geometric Lévy process, see
[23],

3
∫ t

s
dq =

m

∑
k 6=0

{∫ t

0

∫
R

ln(1+hk)N̄k(ds,dz)+
∫ t

0

∫
R
(ln(1+hk)−hk)mk(ds,dz)

}
,

where mk is the Lévy measure of the jump process xk
t . The operator K does not

generate a semi-group because of its dependence on u but with some conditions
on u, see below, it generates a flow. The notation eK(t−s) f (s) simply means that
we solve the equation ft = K f , with initial data f (s) for the time interval [s, t].

The existence of unique turbulent solutions to the stochastic Navier-Stokes
equations (8) can be proven in some cases. For example if the equation is driven
by a strong swirling flow, see [9]. This result is not terribly surprising. If the
initial data had the symmetry of the swirl then the deterministic problem would be
two-dimensional and the global existence of the two-dimensional Navier-Stokes
equation is well known. It is also well-known that if the initial data is close to such
a two-dimensional flow then global existence can be extened to this case also, see
[2, 3], for another such example.

In [9] the author obtained the global bound for the Sobolev space norm of u,
based on L2(T3) with index 11

6
+
= 11

6 + ε, ε small, for a swirling flow,

E(‖u‖2
11
6
+(t))≤C, (11)

where E denotes the expectation and the constant C is independent of t. The
Sobolev space consists of Hölder continuous functions of Hölder index 1/3, as
pointed out by Onsager [24].

Suppose that
E(‖u‖2

3
2
+)≤C, (12)

then the operator K generates a flow denoted by eK(t) and limt→∞ eK(t) f0 = 0, for
f0 ∈ H1(T3), see [11].

Then using the bound (11), we get an estimate on the spectrum of operator K.
Recall from (10) that D is the pressure operator.

Lemma 3.1 Suppose that (11) holds, then the pressure operator is bounded by the
spectrum of the symmetric operator DT D with discrete spectrum λ2

k and satisfies
the estimate

−C|k|2/3 ≤−λk ≤ |∇∆
−1tr∇u ·∇Pk|2 ≤ λk ≤C|k|2/3, k ∈ Z3, (13)
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on the Hilbert space H
11
6
+

(T3), in the inertial range, see below. Pk is the projec-
tion onto the kth eigenspace of the symmetric operator. Moreover, in the inertial
range the operator K satisfies the bound

−C|k|2/3−4νπ
2|k|2 ≤ |KPk|2 ≤C|k|2/3 +4νπ

2|k|2, k ∈ Z3. (14)

We will use this estimate below in order to compute the structure functions of
turbulence or the moments of the velocity difference at two points in the fluid, in
the inertial range of turbulence, where 1/L ≤ |k| ≤ 1/η, ko = 1/η = (ε/ν3)1/4,
a constant. η = 1/ko is called the Kolmogorov length scale, ε is the energy dis-
sipation rate (7) and L is a typical length scale associated with the large eddies
in the flow. The above estimate implies that for a large Reynolds number where
ν is small and 1/L ≤ |k| ≤ 1/η, we can think of the spectrum of K growing as
a constant times |k|2/3, with the error 4νπ2|k|2, in the inertial range, see [11] for
more details.

The proof of Lemma 3.1 and the bounds (13) and (14) is given in [10] and
[11].

4 The Log-Poissonian Processes
The processes found by She and Leveque [26], and shown to be log-Poisson pro-
cesses by She and Waymire [27] and by Dubrulle [12], are produced by applying
the Feynman-Kac formula to the potential dq. Namely, e

∫ t
0 dq = e∑

m
k 6=0

∫ t
0 dqk and by

setting hk = β−1 and computing the mean of Nk
t

E(Nk
t ) =

∫
R

mk(t,dz) =−γ ln |k|
β−1

, (15)

we get that

3
∫ t

0
dqk =

∫ t

0

∫
R

ln(1+hk)N̄k(ds,dz)+
∫ t

0

∫
R
(ln(1+hk)−hk)mk(ds,dz)

= Nk(t) ln(β)+(β−1)(γ
ln |k|
β−1

).

This gives the term

e
∫ t

0 dqk = e(γ ln |k|+Nk lnβ)/3 =
(
|k|γβNk

)1/3
=
(
|k|γβNk

t

)1/3
, (16)
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in the (implicit) solution (9) of the stochastic Navier-Stokes equation. These are
exactly the log-Poisson processes found by the above authors. Then we get

lnE((eγ ln |k|+Nk lnβ)
p
3 ) = lnE((|k|γβNk)

p
3 ) = γ(

p
3
− βp/3−1

β−1
) ln |k|=−τp ln |k|,

for the logarithm of the pth moment, where τp are the intermittency corrections in
(23). Now the expression

τp =−γ(
p
3
− βp/3−1

β−1
)

implies that τ0 = 0 and τ3 = 0 independently of γ. The latter condition is re-
quired by the Kolmogorov 4/5th law, see [13]. However, to be consistent with the
spectral theory of the operator D above, that moves energy around in quanta of
|k|2/3, we should set γ = 2/3. This means that the log-Poissionian processes also
move energy in quanta of |k|2/3 in Fourier space. However, |k|2/3 is multiplied
by βNk

t in (16) above, namely the number of jumps on the kth level contribute to
the transfer of energy, and so far β is a free parameter. We follow [26] in mak-
ing the assumption that determines β, see also [28]. The basic assumption is that
the most singular structures in the turbulent fluid are one-dimensional vortex lines
that the highest moments capture. Thus (assuming 0 < β < 1) by the Lagrange
transformation, see [26],

τp =−
2
3

( p
3

)
+

2
3

1
1−β

− 2
3

βp/3

1−β
→−2

3

( p
3

)
+Co

as p→ ∞, where Co = 2 is the codimension of the one-dimensional vortex lines
and this implies that β = 2/3. We will make this choice of β.

Thus we see that the jumps multiplying u in the equation (8) produce the log-

Poisson processes (|k| 23
(2

3

)Nk
t )

1
3 in the integral equation for u.

u = eK(t)(
m

∏
k
|k|

2
3 (2/3)Nk

t )
1
3 Mtu0

+ ∑
k 6=0

c1/2
k

∫ t

0
eK(t−s)(

m

∏
j
| j|

2
3 (2/3)N j

(t−s))Mt−sdbk
sek(x)

+ ∑
k 6=0

dk

∫ t

0
eK(t−s)(

m

∏
j
| j|

2
3 (2/3)N j

(t−s))
1
3 Mt−s|k|1/3dt ek(x)
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since only the kth log-Poissonian processes are correlated with the kth Fourier
component. This equation clearly shows how the intermittency in the velocity (in
Equation (8)) causes intermittency in the dissipation through the Navier-Stokes
evolution, if we recall how the discrete (Poisson) distribution picks the kth term
(associated with ek) out of the product.

5 The Kolmogorov-Obukhov-She-Leveque Scaling
In 1962 Kolmogorov and Obukhov [17, 22] proposed a corrected statistical theory
of turbulence were both of the criticisms discussed in Section 2 were addressed.
This was Landau’s criticism for not taking into account the influence of the large
flow structure on the constants Cp and the later criticism for not including the
influence of the intermittency in the velocity fluctuations on the scaling exponents,
see Section 4. They presented their refined similarity hypothesis

Sp =C′p < ε̃
p/3 > lp/3, (17)

where l is the lag variable and the averaged energy dissipation rate is

ε̃ =
1

4
3πl3

∫
|s|≤l

ε(x+ s)ds, (18)

ε being the mean energy dissipation rate (7). They also pointed out that the scaling
exponents for the first two structure functions could be corrected by log-normal
processes. However, for higher order structure functions the log-normal processes
gave intermittency corrections inconsistent with contemporary simulations and
experiments.

In the refined similarity hypothesis (17) the averaged dissipation rate ε̃ will
depend on the large flow structure, so its addition addresses Landau’s objections
at least partially. The assumption is that

< ε̃
p/3 >∼ lτp,

because of intermittency, where the τp are called the intermittency corrections (to
the scaling). Consequently, intermittency corrections are produced,

Sp =C′p < ε̃
p/3 > lp/3 =Cplp/3+τp =Cplζp,

where
ζp =

p
3
+ τp (19)
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are the scaling exponents with intermittency corrections included, and the Cps
are not universal but depend on the large flow structure. We will see below that
starting with the stochastic Navier-Stokes equation (8) this scaling hypothesis in
fact holds.

The She-Leveque intermittency corrections are

τp =−
2p
9

+2(1− (2/3)p/3),

given by the log-Poissonian processes derived above. These intermittency correc-
tions are consistent with contemporary simulations and experiments, see [1], [7],
[26] and [28].

We will now show how the integral form (9) of the stochastic Navier-Stokes
equation can be used to compute an estimate for the structure functions of turbu-
lence.

In order to compute the structure functions of turbulence or the moments of
the velocity difference at two points in the fluid, we need to estimate the the op-
erator K above, compare Equation (13). Recall the eigenvalues λk > 0 that are
the square roots of the eigenvalues of the symmetric operator DT D above, with Pk
the projector onto the corresponding eigenspace. Then the equation (14) can be
reformulated as

−C|k|2/3−4νπ
2|k|2 ≤−λk−ν4π

2|k|2 ≤ |KPk|2
≤ λk +ν4π

2|k|2 ≤C|k|2/3 +ν4π
2|k|2,(20)

if u satisfies the bound
E(‖u‖ 11

6
+)(t)≤C. (21)

For a large Reynolds number ν is small and since |k|2 ≤ k2
o, ko = (ε/ν3)1/4, where

k0 is the inverse of the Kolmogorov length, we can now think of the spectrum of K
growing as a constant times |k|2/3 in the inertial range. ε is the dissipation rate (7).
The coefficient C is a constant times a Sobolov space norm of u, by the estimate
(11), see [9]. The lower estimate in (20) is the relevant one for the forward cascade
of energy.

Now estimates of the structure functions are possible and we get the following
result. Suppose that the coefficients ck and dk in equation (4) satisfy the conditions
∑k∈Z3\{0} ck < ∞ and ∑k∈Z3\{0} |k|1/3|dk| < ∞. Then the scaling of the structure
functions of (8) is

Sp ∼Cp|x− y|ζp, (22)
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where
ζp =

p
3
+ τp =

p
9
+2(1− (2/3)p/3), (23)

p
3 being the Kolmogorov-Obukhov ’41 scaling and τp the She-Leveque intermit-
tency corrections, when the lag variable |x− y| is small.

The values in equation (23) agree with experimental values in [7], they are
in agreement with Kolmogorov-Obukhov scaling hypothesis with intermittency
corrections, computed by She and Leveque, but disagree with the log-normal dis-
tribution [17, 22], for the intermittency corrections.

The estimate of the first structure function is straight-forward,

S1(x,y, t) = E(|u(x, t)−u(y, t)|) =

2 ∑
k∈Z3\{0}

dk

∫ t

0
e−λk(t−s)|k|1/3ds E([eγ ln |k|+Nk ln(β)]1/3)sin(πk · (x− y))

≤ 2
C ∑

k∈Z3\{0}
|dk|

(1− e−λkt)

|k|ζ1
|sin(πk · (x− y))|.(24)

We have estimated the spectrum of K(t) by −λk = −C|k|2/3 in the second line
(we use this approximation, ν = 0, throughout the computations) and also used
the expectation of the Poisson jump process

E([eγ ln |k|+Nk ln(β)]1/3) =
1
|k|τ1

,

from Section 4. We used the lower estimate in (20) and this makes the estimate
in (24) be an overestimate of the efficiency of the cascade. The measure of the
discrete process must be written as

∞

∑
l=−∞

δl,k

m

∏
j 6=l

δN j
t

∞

∑
j=0

(·)
m j

l
j!

e(−ml), (25)

where δl,k = 0, l 6= k,1, l = k is the Kronecker delta function, because Nk
t depends

on the kth Fourier component ek (or dbk
t and |k|1/3dt) but is independent of the

components with different wavenumbers. The δ functions in the product imply
that the probabilities of all the N j

t s, j 6= k consentrate at 0.
Now, if ∑k∈Z3\{0} |dk|< ∞, then we get a stationary state as t→ ∞

S1(x,y,∞)≤ 2
C ∑

k∈Z3\{0}

|dk|
|k|ζ1
|sin(πk · (x− y))|,

12



and for |x− y| small,

S1(x,y,∞)∼ 2πζ1

C ∑
k∈Z3\{0}

|dk||x− y|ζ1,

where ζ1 = 1/3+ τ1 ≈ 0.37.
A similar computation gives the second structure function,

S2 = E(|u(x, t)−u(y, t)|2)

≤ 2
C ∑

k∈Z3\{0}
ck

1− e−2λkt

|k|ζ2
sin2(πk · (x− y))

+
4

C2 ∑
k∈Z3\{0}

dk
2 (1− e−λkt)2

|k|ζ2
sin2(πk · (x− y)),

again by using the lower estimate in (20). As t→ ∞, we get

S2(x,y,∞)∼ 4πζ2

C2 ∑
k∈Z3\{0}

[dk
2 +(

C
2
)ck]|x− y|ζ2,

when |x− y| is small, where ζ2 = 2/3+ τ2 ≈ 0.696.
Similarly

S3 = E(|u(x, t)−u(y, t)|3)

≤ 23

C3 ∑
k∈Z3\{0}

[|dk|3(1− e−λkt)3 +3(C/2)ck|dk|(1− e−2λkt)(1− e−λkt)]

|k|

× |sin3(πk · (x− y))|,

and

S3(x,y,∞)∼ 23π

C3 ∑
k∈Z3\{0}

[|dk|3 +3(C/2)ck|dk|]|x− y|,

where ζ3 = 1.
All the structure functions are computed in a similar manner, for the pth struc-
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Table 1: Moments of a Gaussian
Order Raw moment Central

moment
Cumulant

1 M 0 M
2 M2 + σ2 σ2 σ2

3 M3 + 3Mσ2 0 0
4 M4 + 6M2σ2 + 3σ4 3σ4 0
5 M5 + 10M3σ2 + 15Mσ4 0 0
6 M6 + 15M4σ2 + 45M2σ4 + 15σ6 15σ6 0
7 M7 + 21M5σ2 + 105M3σ4 + 105Mσ6 0 0
8 M8 + 28M6σ2 + 210M4σ4 + 420M2σ6 + 105 σ8 105σ8 0

ture functions, we get that Sp is estimated by

Sp ≤
2p

Cp ∑
k∈Z3\{0}

σp · (−i
√

2)p U
(
−1

2 p, 1
2 ,−

1
2(M/σ)2)

|k|ζp
|sinp(πk · (x− y))|

=
2p

Cp ∑
k∈Z3\{0}

1
|k|ζp

2(p+1)/2µσp−1
√

π
Γ(1+

p
2
)1F1(

1− p
2

,
3
2
,− µ2

2σ2 )|sinp(πk · l)|, p odd,

=
2p

Cp ∑
k∈Z3\{0}

1
|k|ζp

2p/2σp
√

π
Γ(

p+1
2

)1F1(−
p
2
,
1
2
,− µ2

2σ2 )|sinp(πk · l)|, p even,

where U is the confluent hypergeometric function, l = (x− y) is the lag variable,
M = |dk|(1−e−λkt) and σ=

√
(C/2)ck(1− e−2λkt) and 1F1(a,b,z)=∑

∞
n=0

a(n)zn

b(n)n!
, a(n)=

a(a+1)(a+2) · · ·(a+n−1), is the generalized hypergeometric series. Thus the
coefficients of Sp are given by the raw moments of a Gaussian, the first few of
which are listed in Table 1. Now Sp(x,y,∞) is

Sp ∼
2pπζp

Cp ∑
k∈Z3\{0}

((C/2)ck)
p/2 · (−i

√
2)p U

(
−1

2
p,

1
2
,−

d2
k

Cck

)
|x− y|ζp,

to leading order for |x−y| small. We also obtain Kolmogorov’s 4/5 law, see [13],

S3 =−
4
5

ε(0)|x− y|

to leading order, were ε is the mean energy dissipation rate (7).
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6 An Infinite-dimensional Ito Process and the In-
variant Measure of Turbulence

The stochastic Navier-Stokes equation (9) was written in integral form above as

u = eKtPtMtu0 + ∑
k 6=0

c1/2
k

∫ t

0
eK(t−s)Pt−sMt−sdbk

sek(x)

+ ∑
k 6=0

dk

∫ t

0
eK(t−s)Pt−sMt−s|k|1/3ds ek(x)(26)

by the Feynman-Kac formula, where is the operator K generates the flow eKt ,
where K = ν∆+∇∆−1trace∇u∇ and

Mt = exp{−
∫

u(Bs,s)dBs−
1
2

∫ t

0
|u(Bs,s)|2ds}

is a Martingale with Bt ∈ R3 an auxiliary Brownian motion, see Section 3 and
[11].

Pt =
m

∏
k
(|k|2/3(2/3)Nk

t )
1
3 ,

by the computation of how the log-Poisson processes are produced, from the
stochastic Navier-Stokes equation, by the Feynman-Kac formula (16) above. Now
let C1/2, D ∈ L(H) be linear operators on H = L2(T3), defined by

C1/2u = ∑
k 6=0

C
1
2
k ûkek, Du = ∑

k 6=0
Dkûkek

for u=∑k 6=0 ûkek ∈ L2(T3), C1/2
k and Dk are 3 by 3 diagonal matricies with entries

c1/2
k, j and dk, j, j = 1,2,3 on the diagonal, and D̄k = |k|1/3Dk.

Next we define the variance

Qt =
∫ t

0
eK(s)PsMsCMsP∗s eK∗(s)ds (27)

and drift
Et =

∫ t

0
eK(s)PsMsD̄ds (28)

operators. The Kolmogorov-Hopf equation for the invariant measure can now be
written as

∂φ

∂t
=

1
2

tr[Qt∆φ]+ tr[Et∇φ], (29)
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where φ is a bounded function of u. This equation is simply the Kolmogorov
backward equation for the infinite-dimensional Ito process (26).

Then the solution of the Kolmogorov-Hopf equation (29) can be written in the
form

Rtφ(z) =
∫

H
φ(y)N(eKtPtMtz+Et I,Qt) ∗PPt (dy)

=
∫

H
φ(eKtPtMtz+EtI + y)N(0,Qt) ∗PPt (dy)

where z = u0 and PPt is the discrete Poisson law (25) of the log-Poisson process
Pt . Nm,Qt denotes the infinite-dimensional normal distribution on H with mean m
and variance Qt , see [25], I = ∑ek, and EtI ∈ H.

6.1 The Invariant Measure of Turbulence
We can now write a formula for the invariant measure of turbulence.

Theorem 6.1 The invariant measure of the stochastic Navier-Stokes equation on
Hc = H3/2+(T3) has the form

µ(dx) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q
−1/2EI|2N(0,Q)(dx)∑

k
δk,l

m

∏
j 6=l

δN j
t

∞

∑
j=0

p j
ml

δ(Nl
t− j).

(30)
Here |x|=< x,x >1/2 where < ·, ·> is the inner product on H, Q = Q∞, E = E∞,
mk = ln |k|2/3 is the mean of the log-Poisson processes (15) and p j

mk =
(mk)

je−mk

j! is
the the probability of Nk

∞ = Nk having exactly j jumps, δk,l is the Kronecker delta
function.

Suppose that the operator Q is trace-class, E(Q1/2H) ⊂ Q1/2(H) and that
eKtPtMt(H) ⊂ Q1/2

t (H), t > 0, where H = Hc, then, with u given, the invari-
ant measure µ is unique, ergodic and strongly mixing. We know that the above
invariant measure is unique for the strong swirl [9] and strong rotation [2, 3] but
it depends on u, and its uniqueness for general turbulent flows depends on the
uniqueness of u.

The proof of Theorem 6.1 uses the above machinery and is analogous to the
proof of Theorem 8.20 in [25], see [11] for details.
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7 The Invariant Measure for the Velocity Differences
We will now find the Kolmogorov-Hopf functional differential equation for the
invariant measure of the Navier-Stokes equation for the velocity differences

z = u−w = u(x, t)−u(y, t).

The previous measure was the measure determining the 1-point statistics but the
measure for the velocity difference will determine the 2-point statistics. We are
simplifying this a little using isotropy; namely, in general the velocity difference
is a tensor. The linearized Navier-Stokes operator is now

K̄ = ν∆−u ·∇+∇∆
−1tr((∇u+∇w)∇),

but otherwise the derivation is similar to the derivation of the 1−point measure
above. The formula for the 2−point measure is the same (30), but now the op-
erator K depends on the two points x and y and therefore the variance (27) and
the drift (28), will also depend on these two points. In fact the measure depends
on the lag variable x− y. A better way of capturing the dependence on the lag
variable is to write the difference of the inertial terms as

−u ·∇w+w ·∇u =−u ·∇(u−w)− (u−w) ·∇u+(u−w) ·∇(u−w)

This produces the new operator

K̃ = ν∆−u ·∇+ z ·∇−∇u+∇∆
−1tr((∇u+∇w)∇) = K−u ·∇+ z ·∇−∇u

with the understanding that now K is a function of ( (u+w)
2 ) through the pressure

term. The last three terms are removed by a combination of Feynman-Kac and the
Cameron-Martin formula (Girsanov’s theorem) and we get the martingale

Mt = exp{
∫ t

0
u(x−B−s + y,s) ·dB−s +

∫ t

0
z(Bs) ·dBs−

1
2

∫ t

0
|u(x−B−s + y,s)+ z(Bs),s)|2ds}

after a time reversal of the auxiliary Brownian motion Bt see [20]. The computa-
tion of the measure follows the procedure for the computation of the measure for
the 1-point statistics. The difference of the two equations (for u and w) is written
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as an integral equation

z = eK(t)e−
∫ t

0 ∇u dse
∫ t

0 dqMtz0 + ∑
k 6=0

c1/2
k

∫ t

0
eK(t−s)e−

∫ t
s ∇u dre

∫ t
s dqMt−sdbk

sek(x)

+ ∑
k 6=0

dk

∫ t

0
eK(t−s)e−

∫ t
s ∇u dre

∫ t
s dqMt−s|k|1/3ds ek(x)(31)

by the Feynman-Kac formula and Girsanov’s theorem where K is the operator

K = ν∆+∇∆
−1tr((∇u+∇w)∇), (32)

and
Pt = e

∫ t
0 ∇udse

∫ t
0 dqMt = e

∫ t
0 ∇uds

∏
k
|k|2/3(2/3)Nk

t Mt .

The variance is
Qt =

∫ t

0
eK(s)PsCP∗s eK∗(s)ds (33)

and the drift is
Et =

∫ t

0
eK(s)PsD̄ds, (34)

where D̄ = (|k|1/3Dk) . The Kolmogorov-Hopf equation for the Ito processes (31)
now becomes

∂φ

∂t
=

1
2

tr[Qt∆φ]+ tr[Et∇φ], (35)

with φ(z) is a bounded function of z. It is also the Kolmogorov backward equation
of the Ito process (31). Then the solution of the Kolmogorov-Hopf equation (35)
can be written in the form

Rtφ(z) =
∫

H
φ(y)N(eK(t)Ptz+Et I,Qt)

∗N(0,2ν) ∗PPt (dy)

=
∫

H
φ(eK(t)Ptz+EtI + y)N(0,Qt) ∗N(0,2ν) ∗PPt (dy)(36)

where PPt is the discrete Poisson law (25) of the log-Poisson process Pt . Here
z= z0, Nm,Qt denotes the infinite-dimensional normal distribution on H with mean
m and variance Qt , I = ∑ek,EtI ∈ H and N(0,2ν) the law of the three-dimensional
Brownian motion in the Martingale Mt . If Qt is of trace-class Qt ∈ L+(H), then
Rt is Markovian.
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Theorem 7.1 The invariant measure for the velocity differences (two-point statis-
tics) of the Navier-Stokes equation on Hc = H3/2+(T3) has the form

µ(dx,dy) = e<Q−1/2EI, Q−1/2x>− 1
2 |Q
−1/2EI|2N(0,Q)(dx)∗N(0,2ν)(dy)

× ∑
k

δk,l

m

∏
j 6=l

δN j
t

∞

∑
j=0

p j
ml

δ(Nl− j)(37)

where Q = Q∞, E = E∞. Here |x|=< x,x >1/2 where < ·, ·> is the inner product
on H, mk = ln |k|2/3 is the mean of the log-Poisson processes (15) and p j

mk =
(mk)

je−mk

j! is the the probability of Nk
∞ = Nk having exactly j jumps, δk,l is the

Kronecker delta function.

Suppose that the operator Q is trace-class, E(Q1/2H)⊂ Q1/2(H) and that

eK(t)Pt(H)⊂ Q1/2
t (H), t > 0,

where H = L2(T3), then, given u, the invariant measure µ is unique, ergodic and
strongly mixing. The proof of Theorem 7.1 is similar to the proof of Theorem 6.1,
see [11] for details.

It is easy to check that the moments of the invariant measure for the two-point
statistics give the estimates for the structure functions above. The variable in the
latter three-dimensional Gaussian N(0,2ν)(dy) in the invariant measure is the lag
variable.

The same comments as above apply to the measure (37) as the invariant mea-
sure for the one-point statistics (30). It is unique for the strong swirl [9] and
strong rotation [2, 3] but its uniqueness for general turbulent flows depends on the
uniqueness of u.

8 The Differential Equation for the PDF
We must compute the probability distribution function (PDF) for the velocity dif-
ferences, from the invariant measure (30), in order to compare with PDFs con-
structed from simulations and experiments. The simplest way of doing this is
to derive the differential equation for the density function from the Kolmogorov-
Hopf equation (35). We start with the Kolmogorov-Hopf equation

∂φ

∂t
=

1
2

tr[Qt∆φ]+ tr[Et∇φ] (38)
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where Qt and Et are respectively the variance (27) and drift (28), computed with
the operator K in (32). This can be done by redefining the underlying infinite-
dimensional Ito process approprietly, see [11]. We have to take the trace of the
functional variables to get the equation for the PDF. The resulting equation is

∂φ

∂t
=

1
2

∆φ+
1√
2t

c ·∇φ (39)

where ĉ(|k|) = (Q−1/2
t Et)k are the Fourier coefficients of c, after we scale by

the variance Qt . Now scaling the equation by −2t and sending t → ∞ gives the
equation

1
2

∆φ+ c ·∇φ = φ, (40)

with a trivial rescaling of time. This is the (stationary) equation for the distribution
function. Now the PDF is for the absolute value of the velocity differences w =
|u(x, t)− u(y, t)|, by the Equation (45) below, so the angle derivatives of w do
not appear, and ĉ = (Q−1/2E)k ∼ c̄|k|1/3/|k|1/3 = c̄ for k large, if we ignore the
intermittency corrections τp in (19). We will discuss below what this assumption
means and how the intermittency corrections are restored. Thus, taking the trace
of the spatial (lag) variables also, we get that c = c̄

w . In polar cordinates ∆φ =

φww + 2
wφw, in three dimensions. Thus (40) becomes

1
2

φww +
1+ c̄

w
φw = φ. (41)

This is the stationary equation satisfied by the PDF.
The above computation is clarified by the following example. Consider the

equation
φt = φxx +

c√
2t

φx

where φ = e−(x−a)2/b
√

πb
is a Gaussian. It is easy to check that this equation holds

if at = − c√
2t

and bt = 4, so a = −c
√

2t and b = 4t. Thus invariant measure is
produced by scaling out t,

φ(y)dy =
e−

(y+c)2
2

√
2π

dy =
e
(y− a√

b/2
)2

2
√

2π
dy = φ(x, t)dx.

where y = x/
√

2t. This invariant measure satisfies the stationary equation (40).
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9 The PDF for the Turbulent Velocity Differences
It is now possible to compute the probability density function (PDF) for the ve-
locity differences in turbulence. The form of the equation (41) suggests that we
should look for a solution of the form f = xaKλ where Kλ is a modified Bessel’s
function of the second kind, satisfying the equation,

Kxx +
1
x

Kx− (1+
λ2

x2 )K = 0.

A substitution of this ansatz into the equation (41) gives a = −c̄ and λ = c̄. The
solution is the generalized hyperbolic distribution, see Barndorff-Nilsen [4]. It
has an algebraic cusp at the origin and exponential tails and is constructed by
multiplying the modified Bessel’s function of the second kind Kλ, by x−λ. For the
zeroth moment we get a distinguished solution for λ = c̄ = 1+ 1

2 , namely the Nor-
mal Inverse Gaussian (NIG) distribution that was also investigated by Barndorff-
Nilsen [5] and used by Barndorff-Nilsen, Blæsild and Schmiegel to model PDF of
velocity increments for several data sets in [6].

The PDF of the NIG is

αδK1

(
α
√

δ2 +(x−µ)2
)

π
√

δ2 +(x−µ)2
eδγ+β(x−µ). (42)

The parameters are:

α heavyness of the tail, β asymmetry, δ scaling,

µ centering, γ =
√

α2−β2.

The NIG distribution has very nice properties that are summarized in [6]. In par-
ticular its characteristic function and all of its moments are easily computed. The
cumulant generating function µz+ δ(γ−

√
α2− (β+ z)2) is particularly simple

for the NIG and this make the moments easy to compute, see [6]. The first few
moments and the characteristic function of the NIG distribution are:

Mean µ+δβ/γ

Variance δα
2/γ

3

Skewness 3β/(α
√

δγ)(43)
Excess kurtosis or flatness 3(1+4β

2/α
2)/(δγ)

Characteristic Function eiµz+δ(γ−
√

α2−(β+iz)2).
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Thus we see that the probability density function of the velocity increment is
a normalized inverse Gaussian (NIG) distribution that is a generalized hyperbolic
distributions with index 1. Using the invariances of the NIG it is given by the
four-parameter formula

f j(x,α,β,δ,µ) =
αδ eδγK1

(
α
√

δ2 +(x−µ)2
)

π
√

δ2 +(x−µ)2
eβ(x−µ), j = 1,2, (44)

where, α measures how heavy the exponential part of the tail of the distribution is,
β measures how skew the distribution is, δ is a scaling parameter and µ determines
the location (center) of the distribution, γ=

√
α2−β2. K1 is the modified Bessel’s

function of the second kind with index 1. Now the 1st moment of the velocity
differences is

E(δ ju) = E([u(x+ s, ·)−u(x, ·)] · r) = E(|u(x+ s, ·)−u(x, ·)||r|cos(θ))

=
∫

∞

∞

(x f j)(x,α,β,δ,µ)dx,(45)

where j = 1, if r = ŝ is the longitudinal direction (that is the direction along the
lag vector s), and j = 2, if r = t̂ where t ⊥ s is a transversal direction, r̂ and t̂ being
unit vectors. θ is the angle between the vectors [u(x+ s, ·)−u(x, ·)] and r, and the
absolute value of the former is the reason why the angle derivatives wash out in
(41). The PDF is symmetric in the transversal direction, then β = µ = 0. In that
case there are only two independent adjustable parameters, α is the exponential
decay at x=±∞ and δ is the ”peakedness” at the origin. In the nonsymmetric case,
there are two more independent adjustable parameters, the skewness parameter β

and the centering parameter µ.
The PDF for the velocity increments has the asymptotics,

f j ∼
δeδγ

π

eβ(x−µ)

(δ2 +(x−µ)2)

for (x−µ) small. This is the algebraic (rational) cusp at the origin. The exponen-
tial tails are,

f j ∼
√

2δαeδγ−βµ

π3/2
e−α|x|+βx

|x|3/2

for |x| large.
The exponential tails of the PDF are caused by occasional sharp velocity gradi-

ents (rounded-off shocks), whereas the cusp at the origin is caused by the random
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and gentile fluid motion in the center of the ramps leading up to the sharp velocity
gradients, see Kraichnan [18].

For large values of the lag variable, the NIG distribution must also approxi-
mate a Gaussian. It turns out to do just that. Letting α,δ→ ∞, in the formulas for
f j(x) above, in such a way that δ/α→ σ, we get that

f j→
e−

(x−µ)2
2σ

√
2πσ

eβ(x−µ).

The parameter α,β,δ and µ depend on the lag variable in the two-point PDF as
discussed above, but they also depend on the intermittency correction τp in (19). It
turns out that the distribution functions for all of the moments can be expressed by
the NIG distribution function, see [10]. However, since the intermittency correc-
tions are different for the different moments, the NIG distributions for the different
moments have different parameters. Thus the moments of the velocity differences
are not the moments of the same NIG distributions, because of the intermittency
correction. In fact, the invariant measure (37) has both a continuous and a discrete
part and because of this each moment comes with its own PDF. All of these PDF
are solutions of the stationary equation (41) and they can be expressed in terms
of NIG distributions. However, their parameters α,β,δ and µ all depend on the
particular moment for which one is computing the PDF. Thus these parameters
are different for the different moments. This is the point of view taken in [10]
and [11] and it gives a good fit with the PDFs of all the moments computed from
simulations and experiments.

10 Intermittency
Making the parameter α,β,δ and µ depend on the intermittency corrections τp for
the different moments gives a satisfactory fit with experimental data and simula-
tions, but it is not fully satisfying theoretically. In particular it does not explain
how these parameters depend on τp. We now present a derivation to show how the
PDFs for the different moments depend on the intermittency corrections τp for the
pth moment. The starting point is to write the Kolmogorov-Hopf equation

∂φ

∂t
=

1
2

tr[Qp
t ∆φ]+ tr[E p

t ∇φ] (46)

where Qp
t and E p

t are respectively the variance (27) and drift (28), computed with
the operator K in (32), but for the pth moment φ = zp, where z = δu is the velocity
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difference. We have to take the trace of the functional variables to get the equation
for the PDF. The resulting equation is

∂φ

∂t
=

1
2

∆φ+
1√
2t

cp ·∇φ (47)

where ĉp(|k|) = ((Qp
t )
−1/2E p

t )k are the Fourier coefficients of cp, after we scale
by the variance Qp

t . Now scaling the equation by −2t and sending t → ∞ gives
the equation

1
2

∆φ+ cp ·∇φ = φ, (48)

with a trivial rescaling of time. This is the (stationary) equation for the distribu-
tion function. Now the PDF is for the absolute value of the velocity differences
w = |u(x, t)− u(y, t)|, by the Equation (45) above, so the angle derivatives of w
do not appear, and ĉp = (Q−1/2

p Ep)k ∼ c̄p|k|p/3+τp/|k|p/3+τ2p/2 = c̄p|k|τp−τ2p/2

for k large, where the τp and τ2p are intermittency corrections for zp and z2p re-
spectively. Thus, taking the trace of the spatial (lag) variables also, we get that
cp =

c̄p
w1−d , where d = τp− τ2p/2. In polar cordinates ∆φ = φww + 2

wφw, in three
dimensions. Thus (48) becomes

1
2

φww +
1+ c̄pwd

w
φw = φ. (49)

This is the stationary equation satisfied by the PDF, corresponding to the pth (and
2pth) moment.

Now the PDF is computed using the same method as in Section 9. We scale
time by 2 to get the equivalent equation

φww +2
1+ c̄pwd

w
φw = φ. (50)

Then we look for a solution of (49) of the form g(x) = xa f (x), where x = |w|, and
get the equation

f ′′+
1+2c̄p(xd−1)

x
f ′− (1+

(2c̄2
p + c̄p)xd + 1

4 − c̄2
p

x2 ) f = 0, (51)

by choosing a =−c̄p− 1
2 . When d = 0, (51) is a modified Bessel’s equation of the

second kind and we get the Generalized Hyperbolic Distribution, see [11], with
index λ = c̄+ 1

2 and a PDF g = Kλ

xλ
. Thus without intermittency the PDF of the

24



velocity differences is a Generalized Hyperbolic distribution with index c̄+ 1
2 and

f satisfies the equation,

f ′′+
1
x

f ′− (1+
(c̄+ 1

2)
2

x2 ) f = 0. (52)

In particular, when c̄ = 1
2 , we get the NIG distribution in Section 9.

In general the intermittency index d is

dp = τp−
1
2

τ2p = 1−2(
2
3
)p/3 +(

2
3
)2p/3

Thus d0 = 0 and d∞ = 1. In the latter case (51) becomes

f ′′+
1+2c̄p(x−1)

x
f ′− (1+

(2c̄2
p + c̄p)x+ 1

4 − c̄2
p

x2 ) f = 0. (53)

The equation (51) can be solved numerically or by a Laurent series. They do
not converge to a modified Bessel’s function of the second kind Kλ. The NIG was
an approximation, without intermittency, to the true PDFs given by fp(x)/x. We
get a sequence of PDF one for the pth and the 2pth moment, for each p, and not
even p = 1 (and 2p = 2) give a NIG or a Generalized Hypberbolic Distribution.
When c̄ = 1

2 , the equation (53) becomes

f ′′+ f ′− (1+
1
x
) f = 0. (54)

The solution of (54) has the form

f (x) = c1xe{−(1+
√

5) x
2}1F1[1+1/

√
5,2,
√

5x]+ c2xe{−(1+
√

5) x
2}U [1+1/

√
5,2,
√

5x],

where 1F1 is the hypergeometric function and U the confluent hypergeometric
function. Decay at ±∞ requires c1 = 0, so the resulting (unnormalized) PDF is

g(x) =
f (x)

x
= e{−(1+

√
5) x

2}U [1+1/
√

5,2,
√

5x],

the PDF of the velocity differences with infinite p = ∞ intermittency.
The PDFs computed by use of (51) are probably not the easiest way to fit to

simulations and experimental data. The NIG with varying parameters, in Section
9, is easier. The best way, theoretically and practically, may be to take a convolu-
tion of the Generalized Hyperbolic Distributions with index c̄+ 1

2 and a discrete
distribution as was done in the invariant measures (30) and (37). This works but
the computations are involved and will be published elsewhere.
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11 Conclusion
We have seen that the Navier-Stokes equation, for all but the largest scales in
turbulent flow, can be expressed as a stochastic Navier-Stokes equation (8). The
stochastic forcing results from instabilities of the flow, that magnify small am-
bient noise and saturate its growth into large stochastic forcing. This has been
modeled before by a Reynolds decomposition and by a coarse graining of the
flow. The stochastic force is generic and is determined by the general principles
of probability with a minimum of physical inputs. It consists of two components
additive noise and multiplicative noise and the additive component is determined
by the Central Limit Theorem and the Large Deviation Principle. The physical
input is that these two term must produce similar scalings because they are caused
by the same dissipative processes. This determines the rate in the large deviation
principle. The multiplicative noise multiplies the fluid velocity and models jumps
(vorticity concentrations) in the velocity gradient. It is expressed by a generic
Poisson process where only the rate needs to be given. This rate is determined
by the spectral analysis of the (linearized) Navier-Stokes operator and the require-
ment, following [26], that the dimension of the most singular vorticity structure
(filaments) is one. Thus the stochastic forcing is generic and determined with two
mild physical inputs.

The stochastic Navier-Stokes equation can be expressed as an integral equa-
tion (9) and the log-Poissonian processes found by She and Leveque and explored
by She and Waymire and Dubrulle are produced from the multiplicative noise by
the Feynman-Kac formula. This give a satisfying mathematical derivation of the
intermittency phenomena that had earlier been derived from empirical consider-
ations. Moreover, the integral equations show how the Navier-Stokes evolution
and the log-Poissonian intermittency processes act on the dissipation processes,
to product the intermittency in the dissipation. This is a mathematical derivation
of the experimental observation that intermittent dissipation processes accompany
intermittent velocity variations. Using the integral equation we get an upper esti-
mate on all the structure functions of the velocity differences in turbulence. The
evidence from simulations and experiments is that this upper bound is reached in
turbulent flow. Why the inertial cascade achieves this maximal efficiency in the
energy transfer remains to be explained.

We then built on Hopf’s [14] ideas to compute the invariant measure of tur-
bulent flow. This measure can be computed because it solves a linear functional
differential equation, see [25]. It turns out to be an infinite-dimensional Gaussian
multiplied by a (discrete) Poisson distributions. This Poisson distribution corre-
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sponds to the intermittency and the log-Poisson processes. Then by taking the
trace of the invariant measure we get the PDF of the velocity differences. We de-
rive the functional differential equation (PDE) for the PDF. This PDE (40) can also
be solved and the solutions turns out to be the Generalized Hyperbolic Distribu-
tions, see [11], a special case of which is the normalized inverse Gaussian (NIG)
distributions of Barndorff-Nilsen [5]. Their parameters are easily computed and in
[10] and [11] this is done for both simulations and experiments. However, in the
NIG distribution the parameters vary with the intermittency corrections. We also
compute PDFs with the intermittency corrections for the pth and 2pth moments
included. These are theoretically more satisfying but harder to use to fit simula-
tions and experimental data. In the limit of p→∞ we get a PDF with intermittency
given by the confluent hypergeometric function multiplied by an exponential.

It is interesting to notice that although the solution of the Navier-Stokes equa-
tion may not be unique or smooth the invariant measure of the velocity differences
(37) may still be well defined by Leray’s [19] existence theory. Moreover, differ-
ent velocities produce equivalent measures so the statistical observables of turbu-
lence can be unique although the turbulent velocity may not be. Indeed although
the measure depends on the velocity u, because of ergodicity of the measure, the
measures for different velocities are all the same.
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