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Abstract 14 

Background: 15 

Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of 16 

wildfires in Northern California surrounded the Bay Area covering the skies with smoke and raising 17 

the air pollutant concentrations to hazardous levels. This study uses the Fire Inventory from the 18 

National Center for Atmospheric Research database and the Community Multiscale Air Quality 19 

model to estimate the effects of wildfire emissions on air quality during the period from August 16 20 

to October 28 of 2020. In addition, low-cost sensor data for fine particulate matter (PM2.5) from the 21 

PurpleAir network is used to enhance modeled PM2.5 concentrations. The resulting impacts on ozone 22 

and PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping 23 

and Analysis Program – Community Edition.  24 

Results: 25 

Wildfire activity significantly increased direct PM2.5 emissions and emissions of PM2.5 and ozone 26 

precursors. Direct PM2.5 emissions surged up to 38 times compared to an average day. Modeling 27 

results indicated that wildfires alone led to a rise in ozone daily maximum 8-hour average by up to 28 
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10 ppb and exceeded PM2.5 air quality standards in numerous locations by up to 10 times. While 29 

modeled PM2.5 concentrations were lower than measurements, correcting these with PurpleAir data 30 

improved the accuracy. The correction using PurpleAir data increased estimates of wildfire-induced 31 

mortality due to PM2.5 exposure by up to 16%. 32 

Conclusions: 33 

The increased hospital admissions and premature mortality attributed to wildfires were found to be 34 

comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air 35 

quality standards. This suggests that widespread wildfire emissions can negate years of efforts 36 

dedicated to controlling air pollution. The integration of low-cost sensor data proved invaluable in 37 

refining the estimates of health impacts from PM2.5 resulting from wildfires.        38 

Keywords: Wildfires, air quality, low-cost sensors, health impacts  39 

  40 
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1) Background 41 

The year 2020 saw the largest number of acres burned due to wildfires in California in recorded 42 

history (Figure 1) and included 5 of the top 7 largest wildfires ever recorded in California. More than 43 

4.3 million acres burned in 8,648 incidents, and 33 people perished as a direct result of the fires 44 

(CalFire 2022). The largest fires started in mid-August, clustering across northern California and 45 

around the Bay area, which famously turned San Francisco daylight skies into an apocalyptic orange 46 

twilight for several days. Because of the large and widespread fires, the state experienced long 47 

episodes of elevated fine particulate matter (PM2.5, i.e., particulate matter with diameter smaller 48 

than 2.5 micrometers) concentrations (Li et al., 2021). Exposure to elevated concentrations of PM2.5 49 

is linked to increased respiratory and cardiovascular illnesses and can lead to increased mortality 50 

(Atkinson et al. 2014, Brook et al., 2010).  51 

Prior research has investigated the effects of recent wildfires on air quality and public health through 52 

two primary methodologies. One approach involves employing wildfire emissions and chemical 53 

transport models to simulate the contribution of wildfires to PM2.5 levels, as demonstrated by 54 

studies conducted by Shi et al. (2019) and Lassman et al. (2023). The other method utilizes direct 55 

measurements obtained from ground-based or satellite observations to map pollutant 56 

concentrations and subsequently estimates the portion attributed to wildfires, as seen in research 57 

by Wang et al. (2020) and Ahangar et al. (2022). 58 

Shi et al. (2019) specifically examined the impact of wildfires in Southern California in December 59 

2017, utilizing various satellite-based techniques and a chemical transport model to estimate 60 

wildfire emissions and their influence on PM2.5 concentrations and population exposure. Their study 61 

revealed that exposure to PM2.5 induced by wildfires in December accounted for over 40% of the 62 

total annual PM2.5 exposure in certain locations. Lassman et al. (2023) used a chemical transport 63 

model to compare two different wildfire emission schemes that are used by the air quality modeling 64 

community: the Fire Inventory from the National Center for Atmospheric Research (FINN, 65 
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Wiedinmyer et al., 2011) and the Surface Fire model (SFIRE, Mandel et al., 2012). Although SFIRE 66 

provided a more accurate representation of fire location and timing, the resulting PM2.5 modeling 67 

outcomes were only marginally more accurate than those obtained using FINN when compared to 68 

measured values of PM2.5. 69 

In another study, Wang et al. (2020) utilized a combination of monitoring and satellite data to map 70 

PM2.5 concentrations in California during the latter half of 2018. This research used low-resolution 71 

fire emissions and chemical transport models and assessed the direct and indirect economic impacts 72 

and capital losses incurred due to wildfire disruptions. 73 

Ahangar et al. (2022) explored PM2.5 concentration mapping over California's San Joaquin Valley in 74 

late summer and fall of 2020, utilizing regulatory monitors and low-cost sensors from the PurpleAir 75 

sensor network (PurpleAir, 2022). PurpleAir sensors use a low-cost technology to estimate 76 

concentrations of particulate matter and data is reported in real time to the PurpleAir website. 77 

Ahangar et al. employed a trajectory model to quantify the contribution of wildfires to total PM2.5 78 

concentrations, utilizing fire emissions estimates derived from satellite observations. Kramer et al. 79 

(2023) used data from regulatory monitors and PurpleAir sensors and used various interpolation 80 

techniques to estimate exposure to wildfire-induced pollution in Northern and Southern California.   81 

The goal of this study is to estimate the impact of wildfire emissions on air quality and public health 82 

in California from mid-August to late October in 2020. The methodology in this study integrates two 83 

approaches mentioned above. Specifically, it combines a wildfire emissions inventory and a 84 

comprehensive chemical transport model with ground-based observations to gauge the influence of 85 

wildfires on air pollution. Ground-based monitoring data are employed to refine the PM2.5 model 86 

estimates, thereby enhancing our understanding of the effects of wildfire emissions on PM2.5 87 

concentrations and population exposure. Furthermore, the air quality impacts resulting from 88 

wildfires are assessed in terms of health using the Benefits Mapping and Analysis Program – 89 

Community Edition model (BenMAP-CE, U.S. EPA, 2021).    90 
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 91 

a. 2020 Fire Season 92 

This study focuses on the period between August 16 and October 28, 2020. Initially, this period was 93 

marked by a series of wildfires in the northern portion of the state, primarily ignited by lightning 94 

strikes. These fires began as small, isolated, and scattered incidents but rapidly evolved into 95 

substantial fire complexes that persisted for weeks. The fire complexes, as depicted in Figure 2, 96 

included the August, Sonoma-Lake-Napa Unit (LNU), San Mateo-Santa Cruz Unit (CZU), Santa Clara 97 

(SCU), and the Butte/Tehama/Glenn (BTG) lightning complexes. Amongst these large wildfires, the 98 

August complex became the largest wildfire ever recorded in California. In early September, the 99 

Creek fire developed quickly in the Sierras producing a large pyrocumulonimbus cloud that reached 100 

altitudes of more than 15,000 meters above sea level. Around the same time, the El Dorado fire 101 

broke out in Southern California. At the end of October, fanned by strong Santa Ana winds, the 102 

Silverado and Blue Ridge fires ignited. In addition to in-state wildfires, large wildfires that originated 103 

in Oregon also contributed to air pollution in California, as satellite images (NASA Worldview 2020) 104 

showed smoke being transported southwards and reaching the San Francisco Area around mid-105 

September.            106 

2) Methods 107 

The modeling framework, illustrated in Figure 3, comprises multiple models designed to estimate 108 

different factors and processes related to air pollution formation. These models calculate the 109 

resulting impacts on both air quality and public health and are described in more detail in this 110 

section. In general terms, the framework includes a meteorological model to assess the weather 111 

conditions during the modeling period, models to estimate anthropogenic, biogenic and wildfire 112 

emissions, and a chemical transport model to analyze the formation and transport of air pollutants. 113 

Additionally, data from PurpleAir sensors are utilized to assess and refine certain correction methods 114 

for air pollution estimates. Finally, a comprehensive model is employed to evaluate the health 115 
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effects of air pollution induced by wildfires. Specific details on each individual model are described 116 

below. 117 

The modeling period spanned from August 16 to October 28, 2020. Meteorology fields for the study 118 

period were generated using the WRF model, version 4.2.1.  (Skamarock et al. 2019). The model was 119 

initialized with the National Center for Environmental Prediction Final (NCEP FNL) Operational Global 120 

Analysis data (NCEP 2021) and was run in nested mode with two domains: the outer domain at a 121 

12km grid resolution, and the inner domain at a 4-km grid resolution.  The model was run in 122 

staggered periods of 5 days, with modeling being reinitialized by reanalysis data every 3 days. The 123 

first 2 days were used for spin-up, and the remaining 3 days were used for air quality modeling. The 124 

following physics options were selected: (1) Purdue Lin scheme microphysics (Chen and Sun 2002), 125 

(2) YSU planetary boundary layer (PBL) scheme (Hong, Noh and Dudhia 2006), (3) NOAH land-surface 126 

(Campbell et al. 2019), (4) Grell G3D cumulus parameterization (Grell and Devenyi 2002), and (5) 127 

Rapid Radiative Transfer Model (RRTM)  longwave (Mlawer et al. 1997) with Goddard shortwave 128 

radiative transfer schemes (Matsui et al. 2018). 129 

Air quality was modeled using the Community Multiscale Air Quality model (CMAQ, Byun and 130 

Schere, 2006), version 5.3.2. Version 5.3.2 includes minor bug fixes with respect to version 5.3.1, 131 

which was documented and validated by Appel et al. (2021). Initial and boundary conditions were 132 

derived from concentration fields from the Whole Atmosphere Community Climate Model (WACCM) 133 

configuration of the Community Earth System Model 2 (CESM2) (Gettelman et al. 2019).  134 

Anthropogenic emissions were derived from the California Air Resources Board’s (CARB) emissions 135 

inventory. Area and off-road emissions were spatially resolved using source-specific spatial 136 

surrogates developed by CARB. On-road emissions were generated using CARB’s on-road emissions 137 

model EMmission FACtor (EMFAC) (EMFAC2017, CARB 2020) and spatially allocated using the 138 

Emissions Spatial and Temporal Allocator (ESTA) (CARB 2021). Dust and biogenic emissions were 139 

calculated inline in CMAQ. Inline biogenic emissions were based on the Biogenic Emissions Inventory 140 
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System version 3.61, which used the Biogenic Emissions Land-use Database (version 3) with 1-km 141 

resolution (U.S. EPA, 2016).   142 

Fire emissions were developed based on FINN version 1.5 (Wiedinmyer et al. 2011). Fire emissions 143 

included trace gas and particle emissions from open burning of biomass, which accounts for 144 

wildfires, agricultural fires, and prescribed burning. The emissions were estimated using satellite 145 

observations of fire detections and vegetation density from the moderate resolution imaging 146 

spectroradiometer (MODIS) instruments, land cover data, and emission factors specific for each type 147 

of land-use/land-cover. Resolution of fire emissions is 1 km, and their chemical speciation was 148 

converted to the Statewide Air Pollution Research Center (SAPRC)-07 chemical mechanism. The daily 149 

average and daily maximum wildfire emissions during the modeling period are shown in Table 1, 150 

along with average and maximum daily anthropogenic emissions. On average, wildfires emitted 151 

nitrogen oxides (NOX) at a comparable rate to that of anthropogenic emissions, whereas reactive 152 

organic gas (ROG) emissions from wildfires were more than 5 times higher than those from 153 

anthropogenic sources. NOX and ROG are precursors to ozone formation and secondary PM2.5. 154 

Wildfires also emitted significantly more PM2.5 precursors such as sulfur oxides (SOX) and ammonia 155 

(NH3) than anthropogenic sources.  Finally, direct emissions of PM2.5 from wildfires were nearly 9 156 

times larger than those from anthropogenic sources.  The day with the highest emissions was 157 

September 9, 2020, when the August Complex Fire and the Creek Fire were at their peak. In that 158 

day, PM2.5
 emissions from wildfires were 38 times the average emissions from anthropogenic 159 

sources. Overall, wildfires contributed severely to air pollutant emissions and impacted the air 160 

quality across large areas in the state.  161 

The air quality modeling evaluation for ozone and PM2.5 was based on observations extracted from 162 

the Air Quality System (AQS) database. A total of 172 stations measuring ozone and 120 stations 163 

measuring PM2.5 were included in the analysis. The overall model performance is evaluated based on 164 
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the following statistical parameters: mean bias (MB), mean error (ME), mean normalized bias (MNB) 165 

and mean normalized error (MNE). These parameters are defined as follows (Emery et al., 2017):  166 

 𝑀𝐵 = ଵே ∑ (𝑃 − 𝑂)  Eq. 1 167 

 𝑀𝐸 = ଵே ∑ |𝑃 − 𝑂|                  Eq. 2 168 

 𝑀𝑁𝐵 = ଵே ∑ (ೕିைೕ)ைೕ × 100                 Eq. 3 169 

 𝑀𝑁𝐸 = ଵே ∑ |ೕିைೕ|ைೕ × 100                 Eq. 4 170 

in which 𝑃  denotes model prediction on day j, 𝑂 denotes observed concentration on day j, and 𝑁 is 171 

the total number of observed data points. 172 

This study used data from PurpleAir sensors, which constitute a large network of low-cost monitors 173 

that measure particle pollution, to enhance the modeling of PM concentrations. PurpleAir sensors 174 

use laser technology to count suspended particles that range from 0.3 to 10 μm. The particle counts 175 

are then processed by a complex algorithm to calculate PM10, PM2.5 and PM1.0 mass concentration 176 

(PurpleAir, 2022).  Due to the limitations in low-cost sensor technology, bias in PM concentrations 177 

measured by PurpleAir sensors is expected. Previous studies analyzed the performance of PurpleAir 178 

sensors collocated with regulatory monitors, and correction factors using ambient meteorological 179 

parameters have been proposed. The United States Environment Protection Agency (U.S. EPA) 180 

analyzed many complex correction schemes and suggested that a simple linear correction using 181 

ambient relative humidity provides a good approximation at a national level (Barkjohn et al. 2021). 182 

Shulte et al. (2020) also proposed binning the correction algorithm into two spaces of low and high 183 

PM2.5 concentrations and including seasonality as an additional correction parameter. 184 

This study used data from 5,661 outdoor sensors spread throughout California and calculated the 185 

correction factors based on daily PM2.5 observations from 120 reference monitors. Sensors that were 186 

within 0.02-degree radius (~2 km) from regulatory monitors were used to calculate the linear 187 

correction parameters following the approach proposed by Barkjohn et al. (2021), and the 188 
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concentration binning used by Schulte et al. (2020), for two models: one for concentrations below 189 

35 μg/m3, and the other for concentrations equal or above 35 μg/m3. 190 

The linear correction scheme obtained using measurements from the period August 16-October 28 191 

was as follows: 192 

- For PM2.5 < 35 μg/m3¸ PM2.5 = 0.5225 × PA – 0.0768 × RH + 7.4352    R2=0.3938 193 

- For PM2.5 ≥ 35 μg/m3, PM2.5 = 0.7792 × PA + 0.0684 × RH – 5.8310    R2=0.6886 194 

in which PA denotes the PurpleAir PM2.5 data, and RH denotes the relative humidity. 195 

Two approaches were employed to interpolate PurpleAir corrected measurements and to blend 196 

them with modeling results: (1) using inverse squared distance weighting for PurpleAir 197 

measurements and model gradient adjustment based on the modeled daily PM2.5 values from the 198 

simulation that includes fire emissions, and (2) using kriging of the model-to-measured ratios. 199 

(1) Inverse squared distance weighting (ISDW) for PurpleAir measurements with model gradient 200 

adjustment: 201 

Inverse distance weighting is commonly used as an interpolation method to estimate concentration 202 

maps of air pollutants based on monitoring data. For example, inverse distance weighting is used by 203 

the Software for Model Attainment Test – Community Edition (SMAT-CE) developed by the U.S. EPA 204 

to determine attainment status over unmonitored areas (U.S. EPA, 2022). While the recommended 205 

exponent of the inverse distance weights can vary depending on the application (de Mesnard, 206 

2013), the SMAT-CE model uses inverse squared distance weighting as the default option.  207 

In this study, once all the daily PM2.5 were corrected, daily PM2.5 concentration maps were 208 

generated using interpolated PurpleAir measurements at the 4 km by 4 km grid level using inverse 209 

square distance weighting and gradient adjustment based on the modeled daily PM2.5 values from 210 

the simulation that included fire emissions. The PurpleAir sensors used in the interpolation were 211 

limited to the ones within a radius of 40 km from each cell centroid. Modeled values were also 212 
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included as artificial monitors to constrain grid cells that are far from monitors to concentrations 213 

informed by the modeled results. The expression used to calculate the Purple Air concentration 214 

maps is as follows: 215 

𝐶,௦ = (𝑀𝑜𝑑,௦ + ∑ ଵೖమ 𝑃𝐴 ௌ,ೝೞௌೖ,ೝೞேୀଵ )/(1 + ∑ ଵೖమேୀଵ ),                                      Eq. 5 216 

where Ci,fires is PM2.5 concentration in cell i, Dk is the distance of sensor k to cell i, PAk is corrected 217 

PurpleAir PM2.5 concentration from sensor k, and Modi,fires and Modk,fires are the modeled daily PM2.5 218 

concentration in cell i and at sensor location k, respectively. The distance, Dk, is expressed in terms 219 

of discreet cell lengths, where sensors in cell i have Dk=1, and every increment in cell distance is 220 

added as integer values.  221 

(2) Kriging of model-to-measured ratios 222 

Kriging is an advanced geostatistical procedure that generates an estimated surface from a scattered 223 

set of points by performing a regression that produces a least-squares estimate of the data (Remy 224 

et. al, 2011).  Kriging has been used to interpolate measured pollutant concentrations to determine 225 

air pollution exposure (Lassman et al., 2017, Yu et al., 2018, Kramer et al., 2023). Yu et al. (2018) 226 

compared various methods of interpolation for air pollution field estimations and suggested the 227 

blending of measured and modeled data by using ordinary kriging of the ratios of modeled-to-228 

observed concentrations. We constructed the experimental semivariogram for each individual day 229 

with the ratios of modeled daily PM2.5 over observed daily PM2.5. We tested three different 230 

semivariogram models: spherical, gaussian and exponential. Based on the sum of the squared of the 231 

residuals between the experimental semivariogram and the model, the spherical and gaussian 232 

models resulted in the best fit. 233 

Conversely, the estimated concentration maps adjusted to PurpleAir data without the impact of 234 

wildfires were calculated as follows: 235 

 𝐶,௦ = 𝐶,௦ × ௌ,ೝೞௌ,ೝೞ ,                                                             Eq. 6 236 
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where Ci,nofires is the PurpleAir-adjusted concentration without the contribution of wildfires in cell i, 237 

and Modi,nofires is the modeled daily PM2.5 concentration without wildfire emissions in cell i. 238 

BenMAP-CE version 1.5 was used to estimate the increase incidence of health end points due to 239 

wildfires (U.S. EPA, 2021). BenMAP-CE converts air pollutant concentration increments into health 240 

impacts with the use of concentration-response (C-R) functions. C-R functions are derived from 241 

epidemiology studies and provide the relation between a change in pollutant concentration and an 242 

increase in the incidence of a given health impact indicator from a baseline incidence rate.  Baseline 243 

incidence rates for this study are based on values developed in earlier analysis for Southern 244 

California (South Coast AQMD 2017a), and later used to determine the health and economic impacts 245 

from California fires in 2018 (Wang et al. 2019). Information on the concentration-response 246 

functions used in this study are summarized in Table 2 and their respective function forms are 247 

described in Table 3. In general, the functions depend on population (P), rate of incidence of a 248 

particular health end point (I), change in concentration of a pollutant (ΔC) and fitting parameters A 249 

and β. The baseline function represents the reference value of incidence of a particular health end 250 

point (e.g., hospital admission, death) with a zero change in air pollutant concentrations. The 251 

concentration-response function calculates an increase in incidence of a particular health end point 252 

due to a change in pollutant concentration (ΔC).   253 

3) Results 254 

a. Air Quality Modeling Results and Model Performance 255 

Model performance is presented in Table 4. The model overestimated ozone concentrations, most 256 

notably along coastal stations, with better performance in stations in the eastern portion of the Los 257 

Angeles Basin and in the Central Valley, where ozone concentrations are typically the highest (Figure 258 

4a). Generally, PM2.5 concentrations were underpredicted throughout the state, in part possibly due 259 

to the model inability to capture fully the effects of wildfires. As shown in Figure 4b, the largest PM2.5 260 
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underpredictions occurred east of the San Francisco Bay Area, which was highly impacted by wildfire 261 

smoke throughout the wildfire season.  262 

Results presented in this study for PM2.5 are consistent with the negative biases reported for CMAQ 263 

version 5.3.1 for California (Appel et al., 2021). Appel et al. (2021) reported model performance of 264 

CMAQ version 5.3.1 for the continental US in 2016 at 12 km resolution. Although in 2016 only 265 

moderate wildfire activity was recorded in California, the model performance was characterized by 266 

biases contained between +4% to -8% for ozone, and consistently negative and as low as -30% for 267 

PM2.5, like the biases shown in the present study. It is also likely that the exceptionally high wildfire 268 

activity recorded during the modeling period considered in this study may have negatively affected 269 

CMAQ’s ability to reproduce observed PM2.5 concentrations.      270 

An alternate method to evaluate model performance is to determine the model capability to predict 271 

exceedances with respect to U.S. EPA’s national ambient air quality standards (NAAQS). Figure 5 272 

presents scatter plots of modeled versus observed concentrations for daily maximum 8-hour ozone 273 

and daily PM2.5. The lines indicating each respective standard delineate four quadrants that define 274 

the model fitness to predict exceedances. Each subfigure in Figure 5 shows from top right and 275 

clockwise: true positive, false negative, true negative and false positive. The true positive rate (TPR) 276 

is the ability of the model to detect exceedances compared to observations. Conversely, the true 277 

negative rate (TNR) is the ability of the model to detect concentrations below the standard. The false 278 

negative rate (FNR) and the false positive rate (FPR) are the complementary values of TPR and TNR, 279 

respectively. In general, the model performed better when predicting exceedances for ozone, with 280 

TPR=55%, than for PM2.5, with TPR=46%, in part because the model showed a positive bias for ozone 281 

and a negative bias for PM2.5.   282 

b. Contribution of Wildfire Emissions to Air Pollution 283 

An additional air quality model simulation without including wildfire emissions was conducted for 284 

the same period between August 16 and October 28, 2020, to quantify the impact of wildfires on 285 
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ozone and PM2.5. Figure 6 shows the overall increase in daily maximum 8-hour ozone and daily PM2.5 286 

attributed to wildfire emissions during the modeling period, and the relative increase with respect to 287 

the simulation without wildfire emissions. The impact of wildfires was localized over the northern 288 

half of the state, near the location of the wildfires in Northern California. On average, daily 289 

maximum 8-hour ozone concentrations increased by up to 10 ppb, and many of the largest increases 290 

occurred in areas where ozone concentrations are typically high. In relative terms, daily maximum 8-291 

hour ozone concentrations increased on average by up to 20% in some northern California locations. 292 

Some stations experienced increases in daily maximum 8-hour ozone of over 70 ppb in the third 293 

week of August, which suggests that wildfire emissions alone led to exceeding the ozone standard. 294 

On average, the daily PM2.5 concentration increased by up to 39 μg/m3, which for some stations 295 

represented an increase of more than 400% over normal average values. For instance, some stations 296 

experienced increases of over 350 μg/m3 during the third week of August. Thus, considering that the 297 

NAAQS for daily PM2.5 is 35 μg/m3, on average many stations exceeded the daily PM2.5 due to 298 

wildfire emissions alone, and stations experienced daily PM2.5 over ten times higher than the daily 299 

PM2.5 standard during several days. 300 

Figure 7 and Figure 8 show the daily variation in PM2.5 emissions, the observed and modeled daily 301 

PM2.5 concentrations, and daily contribution of fires to total daily PM2.5 for the periods of August 16-302 

September 21 and September 22-October 28, respectively. PM2.5 concentrations were particularly 303 

underpredicted during the period of September 10-16, trailing the days with the highest emission 304 

increases due to wildfires. In addition, based on satellite images, that period was affected by wildfire 305 

smoke that originated from wildfires in Oregon, which were not included in the modeling setup.  As 306 

a result, the impact from wildfire emissions is believed to be underrepresented in the second week 307 

of September, and overall, modeling results suggest that the effects of wildfires on daily PM2.5 308 

presented here are underpredicted.      309 
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Biomass burning modeled in this study is a major source of atmospheric organic aerosol, typically 310 

referred to as brown carbon. Wildfires and brown carbon contribute to the planetary radiative 311 

balance and to the formation of secondary organic aerosol, although there are still model limitations 312 

in our understanding of the atmospheric transformations of brown carbon (Wong et al. 2019). Figure 313 

9 and Figure 10 present modeled daily concentrations of organic matter (OM) with and without the 314 

contribution from wildfires for the periods of August 16-September 21 and September 22-October 315 

28, respectively. They also show that, on average, secondary OM corresponds to more than 90% of 316 

the total OM, although the percentage of secondary OM in wildfire-driven OM is slightly smaller 317 

than that without the presence of fires because of the large contribution from direct OM emissions. 318 

Overall, results suggest that wildfires more than doubled the fraction of OM in aerosol, and the 319 

overall OM contribution to total PM2.5 during fire events was over 80%.   320 

c. Enhancement of PM2.5 Modeling with Low-Cost Sensor Data (PurpleAir)  321 

The use of PurpleAir adjustment improved model performance with respect to observations. Pure 322 

modeling results have an R2 value of 0.27 with respect to PurpleAir observations, whereas the R2 323 

values for ISDW and ordinary kriging with a spherical model are 0.74 and 0.76, respectively. Even 324 

though the gaussian model for kriging showed similar fitting to the experimental semivariogram, the 325 

R2 for the modeled adjusted values was less than 0.2. Consequently, ISDW and ordinary kriging with 326 

a spherical model, in addition to direct model outputs, were used to determine the health impacts 327 

from wildfires during the period of study.   328 

Figure 11 and Figure 12 show two samples of PurpleAir-adjusted daily PM2.5 concentration fields for 329 

two high PM2.5 events on August 22 and September 10, respectively. In general, PurpleAir-adjusted 330 

concentrations were higher than unadjusted model output concentrations. As shown in Figure 7, the 331 

model grossly underestimated PM2.5 in those events, and thus, the use of PurpleAir correction 332 

reduced substantially the negative bias of the modeled PM2.5.   333 

d. Health Impacts 334 
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Table 5 shows the health impacts related to increase in ozone and PM2.5 concentrations resulting 335 

from wildfires. PM2.5 impacts were calculated using both direct model outputs and PurpleAir-336 

adjusted PM2.5 concentrations. While ozone contributed to increased hospital admissions and 337 

mortality, PM2.5 is the major pollutant of concern regarding health effects. Using unadjusted model 338 

data, wildfires caused an additional 1,391 hospitalizations and 466 deaths. While these figures 339 

constitute a small fraction of California's total hospitalizations and deaths, it is important to note 340 

that annual air pollution-related deaths in the state are estimated at around 40,000 (Wang et al., 341 

2019). Consequently, wildfire-induced pollution estimated in this study accounts for a 1% rise in air 342 

pollution-related mortality. However, as discussed before, due to the negative bias of the air quality 343 

model with respect to PM2.5, health impacts using direct model output likely represents an 344 

underestimation of the wildfire impacts. The correction using ISDW of PurpleAir data increased the 345 

estimated hospital admissions by 35% and the estimated increased deaths by 16%, whereas the 346 

correction using kriging of model/PurpleAir ratios increased the estimated hospital admissions by 347 

10% and estimated deaths by 9%. Since air quality models tend to show negative bias for PM2.5, as 348 

reported by Appel et al. (2021) and previously discussed, the use of monitor-based corrections 349 

implemented in this study potentially improves the estimates of air quality and health impacts. 350 

Given that the performance of ISDW and kriging are very similar, health impact estimates from both 351 

methods are considered comparable within the uncertainty bounds.    352 

Distribution of health impacts was skewed towards counties with the largest population density, as 353 

shown in Figure 13. In previous studies, it was shown that higher PM2.5 concentrations during the 354 

2020 California wildfire season were also positively correlated with poverty and housing inequities 355 

(Kramer et al. 2023). While the largest fires occurred in the northern half of the state, the highest 356 

mortality was estimated to occur in Los Angeles County, which suffered a moderate impact from 357 

wildfires but houses one fourth of the state’s population. Figure 14 shows the impacts of PM2.5 using 358 

PurpleAir-adjusted concentrations.  Estimated county-level average changes in PM2.5 increased over 359 
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the northern half of the state, whereas the incidence of mortality increased the most over the 360 

Central Valley.   361 

4) Discussion and Limitations 362 

The increase in hospital admissions due to wildfires is comparable to the potential health impacts of 363 

air pollution in the South Coast Air Basin of California (SoCAB), which houses 17 million people out of 364 

the total 40 million in California. It is estimated that the drastic emission reductions needed to attain 365 

the ozone and PM2.5 NAAQS in the SoCAB (South Coast AQMD 2017b) would reduce the number of 366 

hospital admission by numbers similar to those corresponding to the increase due to wildfire 367 

emissions during the modeling period for 2020. Also, the impact of wildfires on premature deaths 368 

due to air pollution significantly offsets the premature deaths avoided by the drastic air pollution 369 

control strategies that are needed to attain the ozone and PM2.5 NAAQS.     370 

This study is based on wildfire emissions from the FINN database, which estimates daily emissions 371 

from satellite products that include MODIS fire detection and land cover classification. Dispersion 372 

and transport of air pollutants and smoke from fires is driven by meteorology, whereas secondary 373 

formation of air pollutants – ozone and secondary PM2.5 – depend on atmospheric physicochemical 374 

processes that transform primary pollutants. Hence, the results presented in this study depend on 375 

the ability of the used models to represent fire emissions, meteorology, and atmospheric chemistry. 376 

Moreover, this study demonstrates the use of low-cost sensor data as correction for the negative 377 

bias that the air quality model typically displays for PM2.5 concentrations.  378 

FINN database includes information of daily emissions and starting time of the fire but does not 379 

include hourly variation of emissions.  For this study, emissions were assumed to be at a daily 380 

constant rate since the start of the fire; however, this assumption may misrepresent how emissions 381 

interact with background air pollutants that follow a diurnal pattern. Alternative approaches are 382 

documented for cases in which FINN fire emissions are adjusted to follow a diurnal profile with 383 

minimum emissions at night and peak emissions in the early afternoon (Lassman et al., 2023).  384 
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The chemical transport model used in this study, CMAQ, does not include feedback effects of 385 

wildfire smoke to meteorology.  Studies using chemical transport models that account for feedback 386 

effects of PM on the radiative balance, planetary boundary layer height and temperature, have 387 

documented decreases in temperature of 1-4 K and decreases in PBL height of 50-400 meters (Jiang 388 

et al. 2012, Sharma et al., 2022). Lower temperatures can slow down the production of ozone 389 

whereas shallow PBL height can enhance the concentration of air pollutants. Also, smoke reduces 390 

the downward solar radiation, which reduces the isoprene biogenic emissions and lowers the 391 

photolysis rates, and in turn, can reduce the formation of ozone and secondary aerosol formation. 392 

Lassman et al. (2023) also quantified the effect of wildfires on wind speed and showed that the 393 

California wildfires in 2020 reduced wind speed, possibly contributing to slightly less ventilation and 394 

higher air pollutant accumulation than the results presented in this study suggest.  395 

5) Conclusions 396 

This study examines various modeling approaches for assessing the effects of wildfire emissions on 397 

ozone and PM2.5 between August 16 and October 28, 2020, a period marked by unprecedented 398 

wildfires in California. The research utilizes the FINN database in conjunction with the CMAQ model 399 

to estimate the impact of wildfire emissions on air quality. Additionally, the BenMAP-CE model is 400 

employed to evaluate the health consequences of air pollution resulting from wildfires. 401 

To address certain limitations in the modeling setup for predicting PM2.5 concentrations, PurpleAir 402 

data was incorporated. The findings indicate that the typically observed negative bias in PM2.5 403 

displayed by CMAQ is reduced by PurpleAir observations. This reduction in negative bias improves 404 

the capability to assess air quality and health impacts related to wildfires. Namely, the study reveals 405 

that incorporating PurpleAir data using two distinct methods increases the estimated health impacts 406 

of wildfires, resulting in a 9-16% rise in estimated wildfire-induced mortality. 407 

The study observes that California wildfires significantly contributed to elevated levels of ozone and 408 

PM2.5, with an average increase of 2.5 ppb in daily maximum 8-hour ozone and an average increase 409 
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of 12 µg/m³ in daily PM2.5 concentrations. These increases are anticipated to lead to a higher 410 

incidence of air pollution-related hospitalizations and premature deaths, potentially causing up to 411 

1,886 additional hospitalizations and 539 extra premature deaths. Some of the health impacts 412 

stemming from the fires are comparable to the benefits gained from long-term air pollution control 413 

strategies designed to meet ozone and PM2.5 air quality standards. Given the escalating frequency of 414 

wildfire events driven by climate change, the health benefits derived from reducing anthropogenic 415 

emissions are at times offset by wildfire impacts in the state. The incorporation of low-cost sensor 416 

data can enhance the predictive capabilities of air quality models during wildfire events, particularly 417 

when these models tend to underestimate particle pollution formation on their own. 418 

 419 

 420 

6) List of Abbreviations 421 

AQS  Air Quality System 422 

BenMAP-CE Benefits Mapping and Analysis Program – Community Edition 423 

CARB   California Air Resources Board 424 

CESM2  Community Earth System Model 2 425 

CMAQ  Community Multiscale Air Quality Model 426 

EMFAC  Emissions Factor Model 427 

ESTA   Emissions Spatial and Temporal Allocator 428 

FINN  Fire Inventory from the National Center for Atmospheric Research 429 

FNR  False negative rate 430 

FPR  False positive rate 431 

ISDW  Inverse Squared Distance Weighting 432 

MB  Mean bias 433 

ME  Mean error 434 

MNB  Mean normalized bias 435 

MNE  Mean normalized error 436 
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MODIS  Moderate Resolution Imaging Spectroradiometer 437 

NAAQS  National ambient air quality standards 438 

NCEP  National Centers for Environmental Prediction 439 

NOx  Nitrogen oxides 440 

OM  Organic matter 441 

PM2.5  Particulate matter with a diameter of 2.5 microns or smaller 442 

PurpleAir Low-cost sensor network by PurpleAir, Inc.  (www.purpleair.com) 443 

ROG  Reactive organic gases 444 

SFIRE  Surface Fire Model 445 

SoCAB  South Coast Air Basin of California 446 

SOx  Sulfur oxides 447 

TNR  True negative rate 448 

TPR  True positive rate 449 

U.S. EPA United States Environmental Protection Agency 450 

WACCM Whole Atmosphere Community Climate Model 451 

WRF   Weather Research and Forecasting model 452 
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Tables 645 

 646 

Table 1. California state-wide pollutant emissions from anthropogenic and wildfire emissions. 647 
Anthropogenic emissions represent the average daily emissions during the modeling period.   648 

 Emissions (metric tons per day) 
 ROG* CO NOX SOX PM2.5 NH3 
Stationary Sources       

Fuel Combustion 25.6 222.9 173.1 23.4 23.4 17.9 
Waste Disposal 51.8 4.3 4.3 1.4 2.6 28.1 
Cleaning and Surface Coatings 146.2 0.1 0.1 0.0 2.6 0.5 
Petroleum Production and Marketing 79.7 11.0 4.4 4.2 1.9 0.3 
Industrial Processes 55.6 33.1 59.6 24.1 40.4 10.9 
Total Stationary Sources 358.8 271.3 241.5 53.1 71.1 57.6 

Areawide Sources       
Solvent Evaporation 325.6    0.0 162.6 
Miscellaneous Processes 195.3 584.2 55.0 3.6 222.3 306.8 
Total Areawide Sources 520.9 584.2 55.0 3.6 222.3 469.3 

Mobile Sources       
On-road Motor Vehicles 191.2 1394.0 449.0 4.2 24.6 29.1 
Other Mobile Sources 224.1 1796.6 545.0 11.9 25.4 0.5 
Total Mobile Sources 415.3 3190.5 994.0 16.2 50.0 29.6 

Total Anthropogenic Sources 1295.1 4046.0 1290.5 72.9 343.4 556.5 

Fire Emissions Daily Average 6974.9 26563.3 1221.5 228.6 2985.8 734.7 
       
Max Daily Anthropogenic Emissions 1385.5 4984.5 1436.0 80.3 515.3 758.0 
Max Daily Fire Emissions  30972.9 116420.1 5281.1 1001.8 13089.6 3302.2 

   *ROG: Reactive organic gases 649 

 650 
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 651 

Table 2. Concentration Response Functions Used to Quantify Health Impacts. Function forms shown in Table 3.  652 

Endpoint Group Author 
Age 

Range 
Function  

Form β A 

Ozone      
Hospital Admissions, Asthma Moore et al., 2008 0-19 3 1.86E-06 2 
Hospital Admissions, Respiratory Katsouyanni et al., 2009 65-99 2 0.000614  
Mortality Bell et al., 2005 0-99 1 0.000186 0.00274 
      

PM2.5      
Hospital Admissions, Respiratory Zanobetti et al, 2009 65-99 5 0.00207  
Hospital Admissions, Acute Myocardial Infarction* Pope et al., 2006 0-99 4 0.00481  
Hospital Admissions, Acute Myocardial Infarction* Sullivan et al., 2005 0-99 4 0.00198  
Hospital Admissions, Acute Myocardial Infarction* Zanobetti and Schwartz, 2006 0-99 4 0.0053  
Hospital Admissions, Acute Myocardial Infarction* Zanobetti et al., 2009 0-99 2 0.00225  
Hospital Admissions, Other Cardiovascular Moolgavkar, 2000 18-64 2 0.0014  
Hospital Admissions, Other Cardiovascular Moolgavkar, 2003 65-99 2 0.00158  
Work Loss Days Ostro, 1987 18-64 2 0.0046  
Mortality Atkinson et al., 2014 0-99 1 0.000936 0.00274 

*These functions are representative of the same end point and same population. The results of these functions are averaged to estimate the overall change in hospital admissions due to 653 
acute myocardial infarction.654 
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 655 

Table 3. Forms of the concentration-response functions and the baseline functions to calculate 656 
health impacts as a function of change in pollutant concentration (ΔC), incidence rate (I), population 657 
(P), and fitting coefficients A and β.   658 

# Function Form Baseline Function 

1 1 − 1exp(𝛽 ∙ ∆𝐶)൨ ∙ 𝐼 ∙ 𝑃 ∙ 𝐴 I·P·A 

2 1− 1exp(𝛽 ∙ ∆𝐶)൨ ∙ 𝐼 ∙ 𝑃 I·P 

3 𝛽 ∙ ∆𝐶 ∙ 𝑃 ∙ 𝐴 I·P 

4 1 − 1(1 − 𝐼) ∙ exp(𝛽 ∙ ∆𝐶) + 𝐼൨ ∙ 𝐼 ∙ 𝑃 I·P 

5 ሾ1− exp(−𝛽 ∙ ∆𝐶)ሿ ∙ 𝐼 ∙ 𝑃 I·P 

 659 

 660 

 661 

Table 4. Overall air quality modeling performance for O3 and PM2.5 662 

 
Mean 

Observed 
Mean 

Modeled Mean Bias 

Mean 
Normalized 

Bias 

Mean 
Normalized 

Error 
Daily Max 8h O3 52.2 ppb 58.2 ppb 6.0 ppb 22.3% 29.2% 
Daily PM2.5 28.0 μg/m3 18.5 μg/m3 -9.5 μg/m3 -17.0% 54.4% 

   663 

 664 

 665 

 666 

 667 

  668 
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Table 5. Increase in incidence of major health impacts due to wildfire air pollution (units are in 669 
number of admissions, work loss days, and mortality events). Baseline incidence also included for 670 
reference. 671 

End Point  Increase  95% Confidence 
Interval 

Ozone     
 Hospital Admissions – Asthma  21  (10 – 31) 
 Hospital Admissions – Respiratory  39  (-13 – 89) 
 Mortality  24  (-1 – 48) 

PM2.5     

Model Only     
 Hospital Admissions – Respiratory  470  (271 – 655) 
 Hospital Admissions – Acute Myocardial Infarction  181  (0 – 333) 
 Hospital Admissions – Other Cardiovascular  680  (374 – 968) 
 Work Loss Days  420,661  (358,719 – 479,020) 
 Mortality  442  (340 – 539) 

ISDW     
 Hospital Admissions – Respiratory  1,108  (639 – 1,545) 
 Hospital Admissions – Acute Myocardial Infarction  213  (-9 – 392) 
 Hospital Admissions – Other Cardiovascular  505  (288 – 709) 
 Work Loss Days  492,690  (420,325 – 560,823) 
 Mortality  515  (397 – 628) 

Kriging     
 Hospital Admissions – Respiratory  518  (299 – 723) 
 Hospital Admissions – Acute Myocardial Infarction  200  (-10 – 369) 
 Hospital Admissions – Other Cardiovascular  750  (412 – 1,067) 
 Work Loss Days  463,351  (395,027 – 527,771) 
 Mortality  482  (371 – 588) 

Total Hospital Admissions       
 Model Only  1,391  (642 – 2,077) 
 ISDW  1,886  (916 – 2,765) 
 Kriging  1,528  (699 – 2,279) 
      

Total Mortality       

 Model Only  466  (340 – 587) 

 ISDW  539  (396 – 676) 
  Kriging  506  (370 – 636) 
     
Baseline Incidence       

 Baseline Hospital Admissions  406,341   

 Baseline Work Loss Days  51,488,353   
  Baseline Mortality  232,073   

 672 
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Figures 674 

 675 

Figure 1. Recorded area burned in wildfire events by year in California. (Source: CalFire, 2022) 676 

 677 

Figure 2. Cumulative PM2.5 emissions from wildfires during the period August 16-October 28, 2020. 678 

 679 

Figure 3. Diagram of the modeling setup for this study. Emissions and meteorological inputs are used 680 

to run the air quality model. Low-cost sensor data is used to analyze potential correction methods, 681 

and adjusted results are used to calculate potential health impacts using the health impact model.   682 

 683 

Figure 4. Mean normalized bias (MNB) during the modeling period for: (a) daily maximum 8-hour 684 

ozone (DMAO3) and (b) daily PM2.5. Values are normalized with observations, as described in Eq. 3-4. 685 

 686 

Figure 5. Comparison of observations and modeled concentrations for: (a) daily maximum 8-hour 687 

average of ozone and (b) daily average PM2.5. Diagonal shows the 1:1 modeled vs. observed ratio, 688 

and the vertical and horizontal lines show the National Ambient Air Quality Standards level for daily 689 

maximum 8-hour average of ozone (70 ppb) and daily average PM2.5 (35 μg/m3). The true positive 690 

rate (TPR) is the ability of the model to detect exceedances compared to observations. The true 691 

negative rate (TNR) is the ability of the model to detect concentrations below the standard.  The 692 

false negative rate (FNR) and the false positive rate (FPR) are the complementary values of TPR and 693 

TNR, respectively. 694 

 695 
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Figure 6. Overall contribution of wildfires during the modeling period to: (a) increase in daily 696 

maximum 8-hour ozone (DMAO3), (b) increase in daily PM2.5, (c) percentage increase in DMAO3 and 697 

(d) percentage increase in daily PM2.5 with respect to the case without fires. 698 

 699 

Figure 7. Contribution of fires to daily PM2.5 by day (August 16-September 21): (a) total daily PM2.5 700 

emissions from wildfires from FINN, (b) observed and modeled daily PM2.5 concentrations, and (c) 701 

modeled contribution of fires to total daily PM2.5. Whisker/box plot shows the minimum, 1st 702 

quartile, median, 3rd quartile, and maximum. Markers show outliers, which are defined as points 703 

that are more than 1.5 times the interquartile range (IQR, namely the height of the box) away from 704 

the top or bottom of the box.  705 

 706 

Figure 8. Contribution of fires to daily PM2.5 by day (September 22-October 28): (a) total daily PM2.5 707 

emissions from wildfires from FINN, (b) observed and modeled daily PM2.5 concentrations, and (c) 708 

modeled contribution of fires to total daily PM2.5. Whisker/box plot shows the minimum, 1st 709 

quartile, median, 3rd quartile, and maximum. Markers show outliers, which are defined as points 710 

that are more than 1.5 times the interquartile range (IQR, namely the height of the box) away from 711 

the top or bottom of the box.  712 

 713 

Figure 9. Comparison of daily OM concentrations without and with the contribution of wildfires 714 

(August 16-September 21): (a) modeled daily average secondary organic aerosol concentrations, (b) 715 

modeled contribution of secondary organic aerosol to total OM, and (c) modeled contribution of OM 716 

to total PM2.5. Whisker/box plot shows the minimum, 1st quartile, median, 3rd quartile, and 717 

maximum. Markers show outliers, which are defined as points that are more than 1.5 times the IQR 718 

away from the top or bottom of the box. 719 
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Figure 10. Comparison of daily OM concentrations without and with the contribution of wildfires 720 

(September 22-October 28): (a) modeled daily average secondary organic aerosol concentrations, (b) 721 

modeled contribution of secondary organic aerosol to total OM, and (c) modeled contribution of OM 722 

to total PM2.5. Whisker/box plot shows the minimum, 1st quartile, median, 3rd quartile, and 723 

maximum. Markers show outliers, which are defined as points that are more than 1.5 times the IQR 724 

away from the top or bottom of the box. 725 

 726 

Figure 11. Example of PurpleAir-adjusted daily PM2.5 concentrations on August 22, 2020: measured 727 

PurpleAir concentrations (top left), modeled concentrations (top right), PurpleAir-corrected model 728 

concentrations using ISDW interpolation (bottom left), and PurpleAir-corrected model 729 

concentrations using kriging (bottom right). 730 

 731 

Figure 12. Example of PurpleAir-adjusted daily PM2.5 concentrations on September 10, 2020: 732 

measured PurpleAir concentrations (top left), modeled concentrations (top right), PurpleAir-733 

corrected model concentrations using ISDW interpolation (bottom left), and PurpleAir-corrected 734 

model concentrations using kriging (bottom right). 735 

 736 

Figure 13. Overall impacts of wildfires on air quality and mortality by county using direct modeling 737 

results: (a) average increase in daily maximum 8-hour average of ozone, (b) increased mortality due 738 

to ozone increase, (c) average increase in daily average of PM2.5, and (d) increased mortality due to 739 

PM2.5 increase. 740 

 741 

 742 
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Figure 14. Overall impacts of wildfires using PM2.5 adjusted with PurpleAir data on air quality and 743 

mortality by county: (a) average increase in daily average of PM2.5 using ISDW, and (b) average 744 

mortality due to PM2.5 increase using ISDW, (c) average increase in daily average of PM2.5 using 745 

kriging, and (d) average mortality due to PM2.5 increase using kriging.   746 




