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from Metagenomic Data
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Abstract

Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic
units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in
priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids
amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-
finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs
from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles.
Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons
of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries
identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In
addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by
analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the
biosphere currently hidden from PCR-based surveys of diversity?
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Introduction

A central goal of ecology and evolution is to understand the

forces that shape biodiversity - the variety of life on Earth. It is

becoming increasingly clear that global biodiversity is mostly

microbial. It is estimated that there are millions of microbial

species on the planet, relatively few of which have been isolated in

culture [1–2]. Despite the recognized importance of microorgan-

isms, we still know little about the magnitude and variability of

microbial biodiversity in natural environments relative to what is

known about plants and animals. This is a major knowledge gap,

given that microbes are critical components of our planet,

responsible for key ecosystems services including the production

of agriculturally critical small molecules, the degradation of

environmental contaminants, and the regulation of human host

phenotypes.

Biodiversity science has traditionally focused on comparing

species richness across space, time and environments. Out of

necessity, microbial diversity studies usually examine the richness

(i.e. number) of operational taxonomic units (OTUs), where OTUs

are sequence similarity based surrogates for microbial taxa, which

can be difficult to define. In addition to richness, OTUs have been

used to characterize the abundance, range, and distribution of

microbes, thereby improving our understanding of both natural

ecosystems and human health [3–6]. OTUs are commonly

identified by aligning sequences of the small subunit of ribosomal

RNA (SSU-rRNA) from one or more samples and identifying

groups of related sequences using a hierarchical clustering

algorithm. This clustering is based upon a measure of distance

between all pairs of sequences, which is typically defined using

some variant of the percent sequence identify (PID) (e.g. [3,7–8]).

For example, researchers traditionally cluster sequences that are

no more than 3% diverged into the same OTU. This designation

has been proposed as being roughly equivalent to a species-level

classification [9], though evidence suggests that it may result in an

underestimate of the true number of species [10].

The SSU-rRNA sequences for OTU identification are tradi-

tionally amplified from a sample via polymerase chain reaction

(PCR) using universal primers. Each PCR product is then

individually sequenced. One of the biggest drawbacks of this

targeted sequencing approach is that it leverages PCR, which has

been shown to exhibit sequence-based biases at the level of

priming and extension [11–13]. In addition, the so-called

‘universal’ PCR primers used in such assays will fail to amplify
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sequences sufficiently diverged from those used to design the

primers. The result is that some taxa may be disproportionately

amplified or even missed [14]. Metagenomic approaches eliminate

this bias by sequencing randomly-sheared fragments (i.e., shotgun

sequencing) of environmental DNA, and, despite having their own

sources of bias [15], may therefore provide a potentially more

accurate characterization of microbial diversity. For example, the

analysis of metagenomic data from a relatively simple microbial

community revealed the presence of low-abundance acidophilic

Archaea overlooked by PCR-based surveys of diversity [16].

Because of the fragmentary nature of shotgun sequencing,

metagenomic reads frequently exhibit minimal, if any, sequence

overlap. PID-based evaluations using metagenomic data are thus

restricted to the subset of reads that mutually overlap and can

therefore be aligned to one another (e.g., [17] and [18]).

Alternative approaches have been adopted to describe microbial

diversity from non-overlapping metagenomic sequences, including

the binning of reads into a reference taxon by comparing each

read against reference sequence databases (e.g., [17], [19] and

[20]) and using de novo sequence assemblers to build SSU-rRNA

contigs (e.g., [21]). While these approaches have substantially

advanced the field of microbial biodiversity, they exhibit

significant limitations. The former is limited by the diversity

encoded in sequence databases, most of which was obtained via

targeted sequencing studies. The latter is restricted to the subset of

high-confidence assemblies, which can be difficult to produce in

many environments given that contig assembly may result in

chimeric SSU-rRNA sequences from complex communities [22]).

Despite the rapidly growing metagenomic data in microbial

ecology and human microbiome studies, no method currently

provides a means of characterizing microbial diversity directly

from non-overlapping metagenomic data. There is a great need

for new approaches that identify OTUs using metagenomic data.

We present PhylOTU, the first method that enables automated

identification of microbial OTUs directly from non-overlapping

metagenomic sequence reads. PhylOTU leverages a phylogenetic

tree of metagenomic SSU-rRNA reads, constructed using

probabilistic sequence profiles built from full-length SSU-rRNA

sequences from completed genomes, to identify and characterize

phylogenetic distances between SSU-rRNA reads in metagenomic

data sets. This phylogenetic distance (PD), rather than PID, is then

used to cluster reads into OTUs in a fashion similar to that utilized

for targeted sequencing data. Because the enormous volume of

sequence in most metagenomic libraries presents substantial

challenges in the form of sequence-alignment quality and the rate

of computational through-put, we developed and implemented

within PhylOTU a series of data quality control filters and efficient

data structures. We also developed an error rate metric for the

analysis of clustered data and used simulated sequences to quantify

the accuracy of PhylOTU. These investigations enabled us to

derive corrections for biases in phylogenetic methods, producing a

tool with similar accuracy to existing PID-based methods. We used

PhylOTU to describe microbial diversity in the global open ocean

by processing the 10,133,846 shotgun reads in the Global Ocean

Survey sequence library [21]. In addition, we compared the OTUs

identified by PCR-generated sequences to those identified by

shotgun sequences from the same samples. We find that analysis of

shotgun sequences reveals a novel part of the biosphere missed by

analysis of PCR-generated sequences. PhylOTU is freely available

for download at github (https://github.com/sharpton/PhylOTU)

and BioTorrents (http://www.biotorrents.net) [23].

Results

A Novel Workflow for Identifying OTUs from Shotgun
Data

Traditionally, OTUs are identified from a PCR-generated

targeted sequence library by aligning all pairs of sequences,

calculating each pair’s PID-based distance, and using this distance

to group sequences using agglomerative hierarchical clustering.

Due to the fragmentary nature of shotgun metagenomic reads, this

traditional approach is limited to the subset of overlapping

sequences; non-overlapping reads cannot be directly aligned to

one another. Even when reads can be aligned (e.g., to full-length

reference sequences), one still cannot calculate PID for sequences

that do not overlap. To overcome these limitations, we designed

PhylOTU, which uses a probabilistic sequence profile to align reads

and a phylogenetic tree to infer their similarity.

The general strategy PhylOTU employs is to leverage full-length

reference sequences to construct a probabilistic sequence profile of

SSU-rRNA. The profile is used to align metagenomic reads and

reference sequences, and this alignment is in turn used to compute

the phylogenetic distance between every pair of reads for input

into the clustering algorithm. A general workflow schematic of our

method is illustrated in Figure 1.

First, probabilistic profiles that encode the evolutionary diversity

and secondary structure of the SSU-rRNA sequence from Bacteria

and Archaea [24] are constructed via high-quality reference

alignments of full-length SSU-rRNA sequence [25]. These profiles

are pre-computed for use in different metagenomic analyses. For a

given metagenomic data set, SSU-rRNA homologous reads are

identified from the shotgun sequencing data via a BLAST search of

every metagenomic read against the small but phylogenetically

diverse SSU-rRNA STAP databases [26]. This relatively fast

search allows one to accurately differentiate SSU-rRNA homologs

of Archaea from those of Bacteria, which in turn accelerates and

improves downstream alignment and phylogenetic analysis.

Multiple sequence alignments of metagenomic reads are created

by aligning each SSU-rRNA read to the appropriate Bacterial or

Archaeal SSU-rRNA profile, using profile alignment methods

[24]. This read alignment is then mapped onto the reference

Author Summary

Microorganisms comprise the majority of the biodiversity
on the planet. Because the overwhelming majority of
microbes are not readily cultured in the laboratory,
researchers often rely on PCR-based investigations of
genomic sequence to characterize microbial diversity.
These analyses have dramatically expanded our under-
standing of biodiversity, but due to methodological biases
PCR-based approaches may only reveal part of the
microbial biosphere. Shotgun sequencing of environmen-
tal DNA, known as metagenomics, avoids the biases
associated with targeted amplification of genomic se-
quence and can provide insight into the diversity hidden
from traditional investigations. However, the fragmentary,
non-overlapping nature of shotgun sequence data makes
it intractable to analyze with existing tools. Here, we
present PhylOTU, a novel computational method that
enables accurate characterization of microbial diversity
from metagenomic data. We process over 10 million
metagenomic sequences obtained from the global open
ocean to identify novel Bacterial taxa and reveal the
presence of microorganisms overlooked by investigation
of PCR-based sequences from the same samples. These
results suggest that to fully characterize microbial biodi-
versity requires a novel bioinformatics toolbox for analysis
of shotgun metagenomic data.

Finding Metagenomic OTUs
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alignment used to build the profile, resulting in a multiple

sequence alignment of full-length reference sequences and

metagenomic reads. The final step of the alignment process is a

quality control filter that 1) ensures that only homologous SSU-

rRNA sequences from the appropriate phylogenetic domain are

included in the final alignment, and 2) masks highly gapped

alignment columns (see Text S1).

We use this high quality alignment of metagenomic reads and

references sequences to construct a fully-resolved, phylogenetic

tree and hence determine the evolutionary relationships between

the reads. Reference sequences are included in this stage of the

analysis to guide the phylogenetic assignment of the relatively

short metagenomic reads. While the software can be easily

extended to incorporate a number of different phylogenetic tools

capable of analyzing metagenomic data (e.g., RAxML [27],

pplacer [28], etc.), PhylOTU currently employs FastTree as a

default method due to its relatively high speed-to-performance

ratio and its ability to construct accurate trees in the presence of

highly-gapped data [29]. After construction of the phylogeny,

lineages representing reference sequences are pruned from the

tree. The resulting phylogeny of metagenomic reads is then used to

compute a PD distance matrix in which the distance between a

pair of reads is defined as the total tree path distance (i.e., branch

length) separating the two reads [30]. This tree-based distance

matrix is subsequently used to hierarchically cluster metagenomic

reads via MOTHUR into OTUs in a fashion similar to traditional

PID-based analysis [31]. As with PID clustering, the hierarchical

algorithm can be tuned to produce finer or courser clusters,

corresponding to different taxonomic levels, by adjusting the

clustering threshold and linkage method.

To evaluate the performance of PhylOTU, we employed

statistical comparisons of distance matrices and clustering results

for a variety of data sets. These investigations aimed 1) to compare

PD versus PID clustering, 2) to explore overlap between PhylOTU
clusters and recognized taxonomic designations, and 3) to quantify

the accuracy of PhylOTU clusters from shotgun reads relative to

those obtained from full-length sequences.

PhylOTU Clusters Recapitulate PID Clusters
We sought to identify how PD-based clustering compares to

commonly employed PID-based clustering methods by applying

the two methods to the same set of sequences. Both PID-based

clustering and PhylOTU may be used to identify OTUs from

overlapping sequences. Therefore we applied both methods to a

dataset of 508 full-length bacterial SSU-rRNA sequences (refer-

ence sequences; see above) obtained from the Ribosomal Database

Project (RDP) [25]. Recent work has demonstrated that PID is

more accurately calculated from pairwise alignments than multiple

sequence alignments [32–33], so we used ESPRIT, which

implements pairwise alignments, to obtain a PID distance matrix

for the reference sequences [32]. We used PhylOTU to compute a

PD distance matrix for the same data. Then, we used MOTHUR to

hierarchically cluster sequences into OTUs based on both PID

and PD. For each of the two distance matrices, we employed a

range of clustering thresholds and three different definitions of

linkage in the hierarchical clustering algorithm: nearest-neighbor,

average, and furthest-neighbor.

To statistically evaluate the similarity of cluster composition

between of each pair of clustering results, we used two summary

statistics that together capture the frequency with which sequences

are co-clustered in both analyses: true conjunction rate (i.e., the

proportion of pairs of sequences derived from the same cluster in

the first analysis that also are clustered together in the second

analysis) and true disjunction rate (i.e., the proportion of pairs of

sequences derived from different clusters in the first analysis that

also are not clustered together in the second analysis) (see Methods

Figure 1. PhylOTU Workflow. Computational processes are represented as squares and databases are represented as cylinders in this generalize
workflow of PhylOTU. See Results section for details.
doi:10.1371/journal.pcbi.1001061.g001

Finding Metagenomic OTUs
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and Figure S1). PhylOTU exhibits high true conjunction and

true disjunction rates at commonly employed PID thresholds

(e.g., 0.03, 0.06), demonstrating that PD-based clustering accu-

rately recapitulated PID-based clustering at the same threshold

(Figure S2).

On the other hand, when applying the same clustering

threshold to both distance matrices, PID-based clustering produces

a higher richness estimate (i.e., total number of OTUs) than PD-

based clustering (Table S1). Comparing the pairwise distance

distributions obtained from the PID- and PD- based approaches

finds that at relatively short distances (e.g., 0–0.03), PD-based

pairwise distances are shorter than the corresponding PID-based

distances, while at relatively long distances (e.g., greater than 0.1),

PD-based pairwise distances are longer than the corresponding

PID-based distances (Figure S3). These findings suggest that

differences in richness estimates result from the fact that PD-based

clustering tends to merge some clusters that are found to be

distinct, but closely related, by PID-based clustering. However, the

overall composition of the clusters is very similar: merging of

closely related clusters results in a significant reduction in estimat-

ed richness, but can produce a relatively small number of

conjunction and disjunction errors.

We subsequently investigated whether we could both maintain

accuracy of PD-based clustering, while at the same time obtaining

richness estimates more similar to PID-based results, which are

thought to approximately correspond to the number of distinct

microbial taxa in an environmental sample. First, we considered

changing the hierarchical clustering algorithm. It has been shown

that the choice of nearest-neighbor, average, or furthest-neighbor

linkage in hierarchical clustering algorithms results in substantially

different estimates of taxonomic richness, with average-linkage

clustering performing the best for PID-based approaches [33]. In

agreement with these earlier studies, we observed different OTU

richness estimates when these three different linkage methods were

employed in PhylOTU, with furthest-neighbor clustering produc-

ing richness estimates most similar to PID-based clustering for a

given threshold (Table S1). But there is a trade-off: employing a

different clustering algorithm generally reduces the accuracy with

which PhylOTU clusters recapitulate PID-based OTUs, implying

that while our estimate for richness may be improved by varying

the clustering algorithm, we might be finding the right number of

‘wrong’ OTUs. We reach a similar conclusion if we lower the PD-

clustering threshold. We naturally find a greater number of OTUs

with a lower threshold, so a threshold that produces a PID-like

OTU richness estimate can be identified. However, the accuracy

of PD clustering relative to PID clustering becomes systematically

lower as the PD threshold deviates from the PID threshold. Given

these results, PhylOTU implements average-linkage and a

threshold of 0.03 as default settings when clustering full-length

SSU-rRNA sequences into OTUs (Table 1).

Overall, our results imply that PhylOTU finds OTUs very

similar to PID-based methods in terms of cluster composition, but

that recapitulating PID-based clusters with high accuracy will

generally result in a lower richness estimate. We consider the

accurate clustering of sequences to be more critical than matching

OTU richness, given that an equal number of clusters may be

optimized between two methods while the accuracy of cluster

member composition is simultaneously low. Therefore, we recom-

mend using the default PhylOTU settings, which optimize

similarity to PID-based clusters, with the caveat that lower OTU

richness estimates may be produced.

PhylOTU Produces Taxonomically Meaningful Clusters
Next, we looked at how well PhylOTU clusters full-length

sequences relative to taxonomy-guided clusters. We obtained the

GenBank taxonomy information for each of the 508 full-length

reference sequences and clustered them into taxonomic groups at

the species level. We find that PhylOTU clusters sequences into

their proper taxonomic group with high true conjunction (96.5%)

and true disjunction (99.4%) rates at a clustering threshold of 0.03

(Table S2). However, similar to the results observed in the

comparison with PID-based OTUs, PhylOTU tends to underes-

timate richness relative to GenBank taxonomy. To provide a

reference for understanding these results, we conducted a similar

comparison of PID-based OTUs and taxonomic groups. PID and

PD clustering recapitulate taxonomic groups with similar accuracy

at a clustering threshold of 0.03. But, PID clustering produces a

slightly closer approximation of richness relative to the taxonomy

clusters, consistent with our direct comparison between PhylOTU
and PID-based OTUs (Table S2). The similarity between

taxonomy and PID-based OTUs is not surprising given the fact

many bacterial taxa were defined via PID-based clustering of

SSU-rRNA sequences (see Discussion).

PhylOTU Accurately Clusters Shotgun Reads
To investigate the performance of PhylOTU on metagenomic

reads versus full-length sequences, we generated 25 distinct

simulation data sets using metaPASSAGE (Riesenfeld et al.,

unpublished communication), a recently developed, highly

parameterized simulation pipeline which expands the function of

the MetaSim program [34]. For each simulation, 50 of the 508

reference SSU-rRNA sequences were drawn at random to

represent taxa detectable in the sample. These 50 sequences are

termed ‘‘source sequences’’ because they are used to generate the

simulated metagenomic data. Since most taxa in nature do not

have full-length SSU-rRNA sequences in current databases, we

used only the remaining 458 non-sampled sequences as the

reference sequences for each simulation. We designated the 50

source sequences as full-length PCR products to simulate a

targeted sequencing study for each simulated sample. To simulate

metagenomic sequencing of the same sample, we generated in silico

shotgun reads from the 50 source sequences with a read length

distribution chosen to be similar to a 454-sequence library (see

Methods). We simulated exactly one read per source and did not

simulate sampling or PCR bias to enable direct comparison of full-

length and shotgun PhylOTU results. For each in silico sample, we

separately applied PhylOTU to the 50 metagenomic reads and the

50 full-length sequences. We used two metrics to quantify the

performance of PhylOTU on metagenomic reads: 1) similarity

between the read and full-length sequence distance matrices, and

2) accuracy at which the algorithm clusters reads into OTUs

relative to clusters built from full-length sequences.

Comparing the PD matrices from metagenomic and full-length

data sets, we observe a strong correlation between the pairwise

distances computed on reads and full-length sequences. For each

of the 25 simulated samples, the read and corresponding full-

length-sequence distance matrices show a positive and significant

Table 1. Clustering thresholds applied to various OTU
identification analyses.

PID PD Full-length Sequence PD Shotgun Read

0.03 0.03 0.15

0.06 0.06 0.17

doi:10.1371/journal.pcbi.1001061.t001

Finding Metagenomic OTUs
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correlation (Mantel test, p,0.05; Figure S4). Having established

that pairwise PD measurements are on average similar between

metagenomic reads and full-length sequences, we next investigated

whether specific properties of individual metagenomic reads

systematically generate errors in metagenomic PD estimates

compared to full-length PD measurements. We hypothesized that

PD error might be higher in shorter reads, which contribute less

phylogenetic information than longer sequences, and in reads

from hyper-variable regions in the SSU-rRNA locus, which will

have higher than expected substitution rates. To explore these

hypotheses, we calculated, for each read, a measure of the relative

contribution by that read to the total PD error (see Methods). This

measure is designed to detect whether certain reads are placed on

particularly poorly estimated parts of the phylogeny. We

compared this relative error to read length, location within the

SSU-rRNA locus (mapped through a read’s midpoint position in

the multiple sequence alignment), and the amount of alignment

overlap the read shares with other reads. We detected no

significant correlation between relative PD error and rate variation

or alignment depth. We did find a slightly negative, but significant,

correlation between relative PD error and read length, suggesting

that short reads may contribute more error than long reads

(Spearman’s rho = 20.088, p = 0.0028). This signal disappeared

when reads less than 100 base pairs (bp) were removed from the

analysis. As a result, we incorporate a 100 bp read length cutoff in

our method. Further analyses are required to comprehensively

study the effects of read length and other attributes on PD

estimates.

Next, we compared the OTUs produced from metagenomic

and full-length sequences, using PhylOTU with identical clustering

settings. As illustrated in Figure 2, this analysis reveals that even at

low false conjunction rates (meaning that few reads whose

corresponding full-length sequences are in separate OTUs are

clustered together), PhylOTU tends to correctly put reads from the

same OTU in the full-length analysis into the same cluster. This

indicates that PhylOTU accurately discriminates between se-

quence-pair conjunctions: false conjunctions do not need to be

tolerated at a high rate to identify true conjunctions. Additionally,

PhylOTU clusters reads substantially better than randomly

permuting reads into OTU clusters.

We then determined whether the performance of PhylOTU on

metagenomic data could be improved by tuning the parameters of

the clustering algorithm. Taking the OTUs from full-length

sequences at a given clustering threshold as a gold standard, we

explored how the true conjunction rate and true disjunction rate

vary as functions of the threshold used to cluster the reads. There

exists a tradeoff between the true conjunction and true disjunction

rates as the threshold changes: at small threshold values, PhylOTU
accurately separates reads into distinct OTUs, while at high

threshold values, the algorithm accurately clusters sequences into

the same OTU (see Figure S5). Maximizing the true disjunction

rate subject to a minimum true conjunction rate of 80%, we

Figure 2. Relationship between false clustering rate and true clustering rate. Each read data set was clustered into OTUs at various
thresholds and compared to the corresponding full-length data set, which was clustered at several fixed PD thresholds (shown here are full-length
sequence cutoffs of 0.01, 0.03, 0.05 and 0.1). For each full-length sequence threshold, the true conjunction and false conjunction rates of the read
OTUs were calculated as a function of the read threshold. Solid lines represent the median value of the true and false conjunction rates across
simulations. Dashed lines represent the median value of the true and false conjunction rates derived from comparisons of randomly permuted
clusters relative to the source sequence clusters.
doi:10.1371/journal.pcbi.1001061.g002

Finding Metagenomic OTUs
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observe that increasing the read threshold relative to the full-

length sequence threshold greatly improves the agreement

between the two sets of OTUs. Interestingly, we find a nearly

linear relationship between the most accurate read clustering

threshold and the full-length sequence threshold (Figure S6). This

relationship and the accuracy of PhylOTU remains consistent up to

relatively large full-length sequence clustering thresholds (e.g.,

0.29, Figure S7). The linear relationship between read and full-

length sequence thresholds enabled us to identify adjusted

thresholds for metagenomic reads that accurately recapitulate

OTUs from full-length sequences (Table S3). PhylOTU obtains

80% accuracy (true conjunction rate = 80%, true disjunction rate

= 99.58%) at a read threshold of 0.09, and 90% accuracy (true

conjunction rate = 90%, true disjunction rate = 98.73%) at a

threshold of 0.18. Thus, simulations enabled us to select tuning

parameters of the hierarchical clustering algorithm in PhylOTU so

that the OTUs generated from shotgun read data closely resemble

those that would be identified if full-length PCR products were

available for each SSU-rRNA sequence in the read library.

Given this insight into the accuracy with which PhylOTU
clusters metagenomic reads under relatively simple simulation

parameters, we evaluated how PhylOTU performs using more

rigorous parameters that are reflective of situations encountered

during real studies. First, in some environmental samples, the

average read may be quite diverged from its closest reference

sequence. Second, in many studies the number of reads will be

greater than the number of reference sequences. To investigate

these two issues, we first used our simulated sequences to evaluate

the relationship between the mean phylogenetic distance from

each read to its nearest reference sequence (e.g., read-to-reference

distance) and the true conjunction rate. We found no significant

correlation (Spearman’s test). Next, we conducted additional

simulations based on sampling reads from full-length Bacterial

SSU-rRNA sequences in the SILVA database [35]. This

investigation allowed us to generate data sets with more reads

than reference sequences and where read-to-reference distances

exceeded those in our primary simulations. The latter property is

important because of known phylogenetic sampling biases,

especially for sequenced genomes [36]. For each of 15 indepen-

dent simulations, we randomly sampled 1,000 SSU-rRNA

sequences from the SILVA database, reflecting the approximate

number of SSU-rRNA reads expected when performing one run

of next-generation sequencing on a shotgun library. These 1,000

source sequences were then used to simulate metagenomic reads as

described above. Reference sequences were pruned from both the

source and simulation phylogenies and full-length source sequenc-

es and simulated reads were then clustered into OTUs. In these

simulations, the average distance between each read and its

nearest source is an order of magnitude greater than that observed

in our previous simulation analysis (0.182 versus 0.010 mean read-

to-reference distance), which is expected given that the SILVA
database is highly populated and comprised of phylogenetically

diverse sequence data. Evaluating the accuracy of PhylOTU under

these conditions reveals high true disjunction rates, similar to those

observed in the RDP reference library based simulations. True

conjunction rates are somewhat lower, but still meet our accuracy

standards. For example, at a read threshold of 0.15, PhylOTU
clusters metagenomic reads with an 80% true conjunction rate

and a 98.8% true disjunction rate (Figure S8, Table S4), when

compared to full-length sequences clustered at a threshold of 0.03

(corresponding to an 86.8% true conjunction rate and a 98.8%

true disjunction rate under RDP reference library based

simulation parameters). This suggests that read library size and

phylogenetic novelty do have a small impact on the accuracy of

PhylOTU, but that they can generally be compensated for by

appropriately tuning the clustering cutoff.

PhylOTU Reveals Novel Taxa from Global Ocean Survey
Reads

To demonstrate the utility of PID-based clustering of metage-

nomic data, we analyzed the pooled Global Ocean Survey (GOS)

metagenomic read library [21] with PhylOTU. This data set

represents the most extensive publicly available metagenomic

sequence library generated to date, with the exception of the

Illumina library generated by Qin et. al, which contains reads that

are too short to process via PhylOTU [37]. Additionally, many of

the GOS sampling sites were also explored with deep, targeted

sequencing of the SSU-rRNA locus enabling comparisons of

shotgun and PCR libraries. Despite the use of Sanger sequencing,

the mean SSU-rRNA metagenomic read length is roughly similar

to that used in our simulation analysis (518 bp). Thus, the GOS

read library represents the best opportunity to explore PhylOTU’s

ability to discover novel taxa from metagenomic data. Of the

10,133,846 Sanger sequenced reads in the library, PhylOTU
identifies 14,320 Bacterial SSU-rRNA homologs, of which 12,020

passed the method’s filters and could be used for OTU discovery.

Previous work using the same library was constrained to analysis of

4,125 high-confidence SSU-rRNA assemblies [21], the difference

resulting from the fact that many of the SSU-rRNA reads

identified by PhylOTU were either assembled in this prior analysis

or excluded from this early work given assembly constraints.

PhylOTU clusters the 12,020 SSU-rRNA reads into 833 OTUs at

a PD threshold of 0.15, which, according to our SILVA-based

simulation analysis, corresponds to a full-length threshold of 0.03.

Applying a cutoff of 0.09, which was identified as the appropriate

corresponding cutoff from the RDP reference library based

simulations, identifies 1,078 OTUs. We also identify 192 Archaeal

SSU-rRNA sequences, 79 of which pass the quality control filters

and cluster into 7 OTUs when using the 0.15 threshold and 10

OTUs when using a threshold of 0.09. This compares to the 811

total OTUs identified by Rusch et. al. via analysis of assembled

SSU-rRNA reads at the 97% identity level. We have made our

designation of OTUs derived from GOS metagenomic reads and

PCR sequences available at BioTorrents [23]. This comparison

reveals the ability of assembly-free methods such as PhylOTU to

identify novel taxa missed by approaches that rely upon assembled

contigs.

The GOS project also generated 6,413 full-length SSU-rRNA

sequences via targeted sequencing of PCR products from six of the

73 geographical sites surveyed [38]. We evaluated the ability of

PhylOTU to discover novel taxa in shotgun data by comparing the

OTUs identified from metagenomic reads to those identified from

full-length PCR data from these six sites. We applied PhylOTU to

both data sets and corrected for the difference in sequence types by

adjusting the read threshold relative to the full-length sequence

threshold according to our simulation analysis. Specifically, we

used a read threshold of 0.15 and a full-length sequence threshold

of 0.03 to evaluate diversity at approximately the species level. We

compared the number of OTUs identified per sequence across

methods by conducting a rarefaction analysis (Figure 3) [39]. For

each method and for subsets of the full data set from one to the

observed number of sequences, we drew 100 random subsets of

sequences from each data set and calculated the average number

of OTUs identified by each method for that number of sequences.

This allowed a comparison of the effect of read threshold and

sequencing method on the total number of OTUs and rate of

OTU accumulation. While there are more PCR SSU-rRNA

sequences (N = 6,413) and OTUs (N = 1,563) than metagenomic
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SSU-rRNA reads (N = 1,233) or OTUs (N = 242), when normal-

ized for the number of sequences in each library, the number of

OTUs identified per sequence are similar for the two libraries

(0.24 for PCR sequences, 0.20 for shotgun sequences). After

normalizing by the average sequence length for each library,

however, the shotgun sequence data generates three times as many

OTUs per sequenced SSU-rRNA base relative to PCR-generated

sequences (4.6361024 and 1.6661024 OTUs per sequenced base,

respectively).

Evaluating the intersection of OTUs identified by the two

libraries when they were pooled together and processed by

PhylOTU reveals a shared set of OTUs as well as unique OTUs

missed by each method (Figure 4). Because this pooled data set

contains both full-length sequences and shotgun reads, we

evaluated the distribution of sequences across OTUs for a range

of thresholds (Figure S9) and made comparisons between OTUs

obtained at thresholds appropriate for full-length sequence (0.03)

and shotgun reads (0.15). Specifically, at the 0.15 threshold, the

metagenomic library contains 80 OTUs that are not revealed

through analysis of the PCR library, while the PCR library

contains 1,254 unique OTUs at the 0.03 threshold. Normalizing

the number of unique OTUs by the number of sequences per

library finds that the PCR-based sequences encode more unique

OTUs per sequence (0.19) than shotgun sequences (0.06).

However, comparing the change in the number of OTUs uniquely

identified by shotgun sequence data to the change in the number

of OTUs uniquely identified by PCR sequence data across

thresholds suggests that shotgun sequences reveal unique OTUs

that are highly diverged from those identified using PCR-based

sequences (Figure S9). Despite the amount of sequencing

conducted, the steep slopes of the rarefaction curves indicate that

sampling has not been saturated at these geographical sites. Thus,

deeper sequencing through either method is warranted and may

either increase or reduce the number of unique OTUs.

We compared the sequences from the novel OTUs identified

from metagenomic reads to the Greengenes SSU-rRNA sequence

database to determine if any other PCR-based study revealed the

existence of these taxa [40]. Using traditional percent identity

cutoffs and the Greengenes database as a reference of nearest

neighbor percent identity (e.g., DNAML distance), we find that

many of the metagenomic read OTUs represent novel species,

genera and families. We further characterized the taxonomic

distribution of these novel OTUs via taxonomic classification

through comparison of the sequences to the RDP database. OTUs

unique to the metagenomic reads are predominantly members of

the Alpha- (19%) and Gamma-proteobacteria (11%), Actinobac-

teria (15%), and Bacteroidetes (12%). We also find that the

Bacteroidetes, Verrucomicrobia, Firmicutes, and Delta-proteobac-

teria are enriched in the OTUs unique to shotgun sequences

relative to OTUs unique to PCR data or shared between

Figure 3. Rarefaction analysis of OTUs identified from PCR and metagenomic sequencing at two different sequence similarity
cutoffs (solid = 0.03, dashed = 0.15). Rarefaction curves are shown for OTUs from PCR (blue) and metagenomic (red) sequencing libraries. Two
different sequence similarity cutoffs are used (solid = 0.03, dashed = 0.15). Curves represent the average number of OTUs per sequence from 100
random draws of subsets of sequences from each data set.
doi:10.1371/journal.pcbi.1001061.g003
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metagenomic and PCR data (Table S5). In addition, several

clades, including TM7, Planctomycetes, OD1, and WS3 were only

identified via analysis of metagenomic sequence. Reasoning that

the universal PCR primers traditionally employed in most targeted

sequencing studies (i.e., 8F, 27F, 1525R, 1429R [41–43]), may

inefficiently amplify or fail to amplify the SSU-rRNA sequences

uniquely identified via shotgun sequences, we searched SSU-

rRNA reads that overlap the universal priming sites for the

presence of sequence complementary to universal SSU-rRNA

primers. Of the shotgun reads that overlap a universal priming site

(N = 6), we find two that share a unique point mutation relative to

the remaining overlapping reads and the 8F and 27F primer

sequences (Figure S10). Prior work demonstrated that differences

between the primer and template sequences can result in PCR

amplification bias [43]. Our findings support the use of universal-

primer-sequence variants that include degenerate positions, such

as those described in [43], to improve the resolution of lineages

harboring this variant through PCR-based investigations. For the

remaining reads that do contain a universal priming site, we do

not know if the sequence they were generated from contains the

anti-sense priming site because these reads do not span the length

of the SSU-rRNA locus. Alternatively, these reads may have been

obtained from discontinuous rRNA, such as the rRNA sequence

found in the mitochondria of Chlamydomonas [44]. Should the

priming sites be located in relatively disparate parts of the genome,

discontinuous rRNA may fail to amplify even if the universal

primer sites are highly conserved.

Discussion

We have developed a novel method that enables comparison of

non-overlapping metagenomic SSU-rRNA reads and their

assignment into OTUs. This is the first automated procedure

that identifies OTUs directly from non-overlapping metagenomic

reads, which facilitates the identification of taxa potentially

overlooked by targeted sequencing studies and leverages the vast

quantities of shotgun sequencing data currently being produced by

environmental and microbiome studies. The key innovation

allowing us to compare non-overlapping reads is our use of

phylogenetic distance (PD) to cluster reads into OTUs in place of

PID. Building a phylogenetic tree requires that at least some of the

sequences within the input alignment overlap. Thus, we

incorporate high-quality, full-length reference sequences into the

SSU-rRNA sequence alignment to guide the phylogenetic

placement of metagenomic reads. The accuracy of this approach

is constrained, at least in part, by the phylogenetic diversity of the

Figure 4. Overlap between GOS OTUs revealed by PCR sequencing and metagenomic sequencing. PhylOTU was used to identify OTUs
from a data set comprised of both PCR and shotgun SSU-rRNA sequences obtained from six Global Ocean Survey samples. The 1,254 OTUs that
contained only PCR sequences at a clustering threshold of 0.03 were designated as OTUs unique to PCR, while those 80 OTUs that contained only
metagenomic sequences at the corresponding clustering threshold of 0.15 (see Results) were designated as OTUs unique to metagenomic
sequencing. The 309 OTUs identified by both PCR and shotgun sequencing was determined by using a clustering threshold of 0.03 (162 shared OTUs
are identified when a threshold of 0.15 is used). The total number of OTUs and the total number of SSU-rRNA sequences are shown on the left and
right of the Venn-Diagram for the PCR (threshold = 0.03) and metagenomic data (threshold = 0.15), respectively. The taxonomic distribution of each
set of OTUs is shown beneath the Venn-Diagram. Here, every sequence from each OTU was taxonomically classified into major clades of Bacteria
(approximately phylum level designations) using the Ribosomal Database Project classification software. The relative abundance of each taxonomic
group is plotted along the x-axis (specific values can be found in Table S5). Clades exhibiting less than 1% relative abundance across all sets of OTUs
are not shown.
doi:10.1371/journal.pcbi.1001061.g004
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reference sequences and the means by which the phylogenetic

algorithm processes missing data. For example, it is challenging to

assess distances between non-overlapping shotgun reads derived

from a similar place in the phylogeny, even via comparison to full-

length reference sequences. We determined the robustness of our

method by evaluating the OTU assignment accuracy of simulated

metagenomic reads relative to their full-length sources, finding

that the relative PD between a pair of reads is on average highly

consistent with the relative PD between full-length sources. This

result indicates that metagenomic reads can be assigned to OTUs

with high accuracy by simply scaling the clustering threshold.

We also tested whether clustering based on PD could accurately

recapitulate clustering based on PID for full-length reads where

both methods may be applied. Processing 508 full-length reference

sequences via both algorithms reveals that PD accurately assigns

sequences into OTUs when compared to the PID OTUs.

However, this analysis also reveals that PD results in lower

richness estimates relative to PID. This phenomenon appears to be

due to a difference in the relative distances between sequences.

Specifically, the phylogenetic approach appears to shorten the

estimated distance between closely related sequences, relative to

the PID approach. This is likely due to the fact that the PD

approach employs a weighted substitution model when calculating

distances, while the PID approach treats all substitutions with

equal weight. Thus, while the hierarchical structure of the clusters

is generally consistent between the two methods, as revealed by the

cluster composition accuracy analysis, sister OTUs in the PID

analysis tend to be merged together via the PD approach. For this

reason, it may be necessary to take into account this systematic

difference in order to compare the diversity results from a PD-

based study with a PID-based study.

A similar pattern is observed when the PD-based and PID-

based OTUs are compared to OTUs constructed from GenBank

taxonomy terms. Specifically, both methods accurately cluster the

508 full-length reference sequences at the species and genus level.

Both methods also tend to underestimate the richness, though PID

produces an estimate more in line with the taxonomy-guided

clusters. Though this analysis serves as a useful benchmark, a more

thorough investigation of richness estimation may be warranted in

future work for several reasons. First, GenBank taxonomy terms

do not necessarily recapitulate the true taxonomic signal or

correspond to monophyletic clades. Second, there are known

errors in taxonomic assignment and annotation of GenBank

sequences [45–46]. In addition, many of the taxonomy terms

found in GenBank were identified by using the PID approach to

classify sequence data. As a result, the reference used in this

comparison is necessarily biased towards the PID approach.

Regardless, this analysis exemplifies the fidelity with which

PhylOTU clusters sequences relative to a commonly adopted

interpretation of taxonomy.

Having demonstrated the accuracy with which sequences, both

full-length and shotgun, are clustered into OTUs using PD, we

applied PhylOTU to the Global Ocean Survey (GOS) metage-

nomic library. Previous characterizations of SSU-rRNA diversity

found in the GOS library were limited to full-length sequences

amplified via PCR and full-length contigs produced from high-

confidence read assemblies [21]. To demonstrate the ability to

discover novel taxa directly from metagenomic data, we compared

the PD-based OTUs from full-length PCR sequence to those

identified from metagenomic reads. Several conclusions can be

drawn. First, targeted sequencing produces more SSU-rRNA

sequence per sequenced base (since much of the metagenomic

library targets other genes), but fewer OTUs per sequenced SSU-

rRNA base compared to metagenomic sequencing. Second,

metagenomic sequences analyzed via PD reveal taxa missed by

the targeted sequencing study. In particular, PhylOTU clusters

metagenomic reads into OTUs belonging to several Bacterial

Phyla overlooked by the PCR-generated sequences. We were not

able to detect the presence of completely conserved universal PCR

priming sites for some of these sequences, which supports the

theory that some faction of the microbial biosphere may be hidden

from the view of PCR-based investigation. Deeper sequencing of

either library could erode the signal of library-specific OTUs.

Nonetheless, the distinct taxonomic composition of the metage-

nomic-only OTUs compared to the shared and PCR-only OTUs

(Figure 4, Figure S9, and Table S5) supports the hypothesis that

the shotgun libraries would continue to contain unique diversity

even after deeper sequencing of both libraries. Thus, we conclude

that there are real differences in the identified diversity and

composition of these communities depending on the sequencing

method employed.

Metagenomic sequencing is an increasingly common means of

investigating microbial communities. We expect methods, such as

PhylOTU, which enable analysis of unassembled, non-overlapping

reads to play an important role in the progress of this field. Future

developments will include robust characterization of sources of

phylogenetic error to improve methodological accuracy, optimi-

zation of PD-based richness estimations in conjunction with

optimized cluster composition, and the inclusion of more

sophisticated phylogenetic algorithms. Additionally, because the

output of PhylOTU includes estimates of abundances for the

resulting OTUs, future developments will explore the possibility of

using PhylOTU to conduct weighted analyses of community

structure by incorporating these abundance estimates. We also

anticipate that our phylogenetically-based framework can be

expanded beyond its current application to improve OTU

identification in several ways, including the incorporation of

phylogenetic structure and the utilization of multiple loci when

designating of OTUs. When coupled with PCR-based sequencing

investigations, this type of bioinformatic analysis of metagenomic

data should result in a more comprehensive view of microbial

biodiversity.

Methods

General Methodology
Identification of SSU-rRNA from metagenomic data.

Metagenomic reads were identified as SSU-rRNA homologs and

classified into their appropriate phylogenetic domain in the

following manner. First, each read was compared to the full-

length SSU-rRNA sequences found in the Bacteria and Archaea

STAP SSU-rRNA databases [26] via BLASTn. Reads exhibiting a

local alignment with any STAP sequence with an e-value less than

10-6 were designated as containing SSU-rRNA homologous

sequence. These reads were assigned to either the Archaea or

Bacteria based on the phylogenetic domain assignment of the

read’s top scoring BLAST hit. Finally, each read was trimmed to

SSU-rRNA sequence based on the local alignment boundary of its

top hit.

Multiple sequence alignment of SSU-rRNA sequences.

Evolutionary profiles based on stochastic context-free grammars of

the SSU-rRNA gene were produced for both the Bacteria and

Archaea using INFERNAL [24]. The Ribosomal Database Project’s

(RDP) hand-curated reference alignments [25] were used for

profile training. Trimmed SSU-rRNA reads were aligned to the

appropriate profile via cmalign using the rf, dna, hbanded and

sub options. These alignments were simultaneously stitched into

the corresponding reference alignment through the withali
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option in cmalign, producing a multiple sequence alignment of

SSU-rRNA reads and full length reference SSU-rRNA sequence.

Alignments were subject to quality control prior to downstream

analysis by 1) masking columns that encoded over 75% gaps, 2)

removing any sequence where over 15% of its characters

corresponded to an insert state relative to the profile, 3)

removing any sequence with over 50 internal (sequence

bounded) gap characters, and 4) removing any sequence whose

cmalign score per residue was less than 1 (Text S1).

Identification of OTUs. Quality controlled alignments were

subjected to phylogenetic analysis via FastTree using the dna
and pseudocounts options [29]. Importantly, FastTree goes

beyond assigning reads to lineages (i.e., ‘‘phylotyping’’) and

generates a fully-resolved tree from which branch lengths can be

extracted. Phylogenetic lineages representing full-length reference

sequences were pruned from the trees and the total path length

between all remaining pairs of lineages was used to create all-

versus-all PD distance matrices. PD distance matrices were then

queried by MOTHUR [31] to hierarchically cluster SSU-rRNA reads

into OTUs using average linkage. Other linkage methods (nearest-

and furthest-neighbor) were also explored.

Simulation Methodology
Generation of simulation data. The 508 full-length RDP

Bacterial reference SSU-rRNA sequences served as the pool for

simulated data. Simulated reference data sets were generated by

randomly sampling without replacement 423 of the RDP

sequences. This was done five distinct times to create five

different simulated reference data sets, or batches. For each

batch, the remaining 85 full-length sequences were appropriated

as source sequences. Simulated reads were generated from each

batch of source sequences five times, resulting in five simulation

sets for each of the five batches (a total of 25 simulation data sets).

To account for reads that run off the ends of the SSU-rRNA gene,

we also created simulations, with the same settings, in which

source sequences were concatenated to a 500-bp poly-N sequence

pad at the 59 and 39 ends, before generating reads. We additionally

created simulations from 1000 full-length Bacterial SSU-rRNA

sequences drawn at random from the SILVA database [35] to

explore the robustness of PhylOTU’s accuracy to increased

phylogenetic diversity and read abundance.

For a single simulation set, source sequences were used to

simulate an average of 5 reads per source via MetaPASSAGE
(Riesenfeld et al., unpublished communication), which utilizes

MetaSim [34] (see Text S2 for specific settings). Each simulated

data set was processed by PhylOTU through the alignment quality-

control stage. Simulated reads that passed the quality-control filter

were subjected to additional random subsampling to obtain data

sets containing one simulated read per source sequence. For the

simulations based on the reference sequence database, the

remaining 35 source sequences, i.e., those sources not represented

in the final set of simulated reads, were added back to the

reference data set for that simulation.

Analysis of methodological accuracy. Each set of

simulated reads and their corresponding full-length source

sequences were independently partitioned into OTUs using

PhylOTU. We assessed the extent to which the OTUs based on

simulated reads recapitulated the OTUs based on full-length

sequences as follows. We noted that two types of errors (relative to

the full-length clustering) occur when partitioning the simulated

reads into OTUs: they can be incorrectly grouped together in the

same OTU (false conjunction), or they can be incorrectly

separated into different OTUs (false disjunction). To specify the

nature of these errors more precisely, let Rbe an arbitrary set of

simulated reads, and as and af two clustering thresholds. We

constructed two partitions of R into OTUs: First, we partitioned R
using PhylOTU on input as. Second, we assembled a set of full-

length sequences corresponding to R, and partitioned this set using

PhylOTU with input af ; the second partition consisted of the

partition of simulated reads corresponding to this partition. Thus,

the second partition incorporated information contained in the

corresponding full-length sequences, and could be treated as the

‘‘correct’’ partition of R into OTUs. In general, our method for

quantifying error rates is applicable whenever two partitions can

be constructed, one of which is known to be correct. Let Qs R,asð Þ
and Qf R,af

� �
be the equivalence relations (specified as subsets of

R2~R|R) corresponding to these partitions, respectively. Then

the rate of false conjunctions for R is given by

Qf R,af

� �
\Qs R,asð Þ

�� ��
Qf R,af

� ��� ��{ Rj j
ð1Þ

and the rate of false disjunctions is given by

Qs R,asð Þ\Qf R,af

� ��� ��
R2\Qf R,af

� ��� �� ð2Þ

Note that Rj j is subtracted from the denominator in Expression

(1) because of the reflexivity of equivalence relations.

R is a random quantity (generated by a stochastic process), so

the quotients in Expressions (1) and (2) are random variables. The

error rates of PhylOTU at the threshold values as and af are the

expectation values of these random variables: the first expectation

value, which we refer to as nc as,af

� �
, gives the average false

conjunction rate at thresholds as and af , while the second,

nd as,af

� �
, gives the average false disjunction rate at thresholds as

and af . The error rates nc as,af

� �
and nd as,af

� �
can be calculated

for any algorithm used to construct OTUs from threshold values.

Moreover, the accuracy of PhylOTU is given by one minus these

error rates. Figure S1 provides an example of how these rates are

calculated.

We checked whether the PhylOTU algorithm outperformed the

following clustering random algorithm:

1. Given a threshold value, partition reads into OTUs using the

PhylOTU algorithm.

2. Randomly permute the OTU assignments of the read.

We expected that this algorithm would have much higher error

rates than the PhylOTU algorithm; if not, a substantial deficiency

in the PhylOTU algorithm would be indicated.

Calculation of per-read PD error. The weighted path

difference metric [47], an established means of comparing

phylogenetic distance matrices, was used to derive the relative

PD error contributed by each simulated read. The weighted path

difference E between the source distance matrix Mand a

simulated read distance matrix M ’, is defined as a scaled

Frobenius norm of M{M ’ð Þ, i.e.,

E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j

Mi,j{M ’i,j

� �2

2

r

where Mi,j is the PD between full-length source sequences i and j,
and M ’i,j is the PD between the corresponding simulated reads i
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and j. (Note that M and M ’ are symmetric matrices with zeros as

diagonal entries.) We define the relative PD error Si to be the relative

contribution to the square of the weighted path difference by read

i, that is:

Si~

P
j

Mi,j{M ’i,j

� �2

2E2 :

The normalization implies that
P

i Si~1, i.e., the relative PD

error for all reads sums to 1.

Implementation. PhylOTU is written in Perl and requires, in

addition to the aforementioned software packages, various R

packages plus Perl and BioPerl modules. A full list of requirements

can be found on the software download website at github (https://

github.com/sharpton/PhylOTU).

Supporting Information

Figure S1 Example showing how false conjunction and

disjunction rates are calculated. In the example, two samples of

reads are possible, one consisting of reads A, B, C, D, and E, and

another consisting of reads C, D, F, G, and H. In reality, the set of

possible samples and reads would be much larger, but for

simplicity, we have chosen this smaller set. For the purposes of this

example, we suppose that the probabilities of observing samples I

and II are 0.3 and 0.7, respectively. At the top of each panel in

grey, the partitions into OTUs based on the full length sequences

are shown, while the partitions based on the simulated reads are

shown in blue. The conjoined and disjoined columns give the pairs

of reads placed in the same OTU and different OTUs,

respectively, for the partition based on the full-length sequences.

The pairs highlighted in blue are correctly conjoined or disjoined

in the sample partitions. The rates of false conjunction for Samples

I and II are 3/4 and 1/2, respectively, while rates of false

disjunction are 2/6 and 0, respectively. Because the probabilities

of the samples are 0.3 and 0.7, the average rate of false

conjunction is (0.3)(3/4)+(0.7)(1/2) = 0.575, and the average rate

of false disjunction is (0.3)(2/6)+(0.7)(0) = 0.1. The average rates

provide a useful characterization of a clustering algorithm under a

given sampling scenario.

Found at: doi:10.1371/journal.pcbi.1001061.s001 (0.40 MB PDF)

Figure S2 PD-based clustering is accurate relative to PID-based

clustering. This graph illustrates the change in the True

Conjunction Rate (solid line) and the True Disjunction Rate

(dashed line) of full-length sequences clustered using PhylOTU

and PD relative to the clustering obtained when the same

sequences are clustered via percent identity (shown here is the PID

cutoff of 0.03). Average-neighbor hierarchical clustering, the

default PhylOTU setting, was used to generate these results.

Found at: doi:10.1371/journal.pcbi.1001061.s002 (0.09 MB PDF)

Figure S3 Distribution of corresponding PD and PID pairwise

distances. This figure illustrates the relationship between PD and

PID distances (less than 0.2) calculated for all pairs of the 508

references sequences used in our study. The red line indicates

identical distances estimated by PD and PID methods. The blue

and green lines identify the clustering threshold distance of 0.03

for PD and PID, respectively. The mass of points above the red

line for PD distances less than 0.03 indicates that among those

pairs that are closely related as per the PD calculation, the PID

method tends to estimate a larger corresponding distance (notably

the points above the green line and to the left of the blue line). This

observation could account for the difference in the estimated

richness between the two methods. Conversely, when estimated

PD distances are larger (e.g., distances greater than 0.1), the

corresponding PID distance tends to be smaller. These observa-

tions are likely the result of how distances are calculated in the two

approaches: PD leverages a weighted substitution model that

down-weights similar substitutions and corrects for multiple

substitutions, while the PID method weights all substitutions

equally.

Found at: doi:10.1371/journal.pcbi.1001061.s003 (0.26 MB PDF)

Figure S4 PhylOTU clustering of full-length sources and

simulated reads is positively correlated. For each of the 25 RDP

reference library-based simulations, we compared the source and

simulation PD distance matrices produced by PhylOTU using a

Mantel test. All 25 tests reveal a significant (p,0.05) and positive

correlation coefficient. The above histogram reveals the distribu-

tion of the correlation coefficients identified through this analysis.

Found at: doi:10.1371/journal.pcbi.1001061.s004 (0.09 MB PDF)

Figure S5 Derivation of methodological accuracy. Accuracy

plots, which capture the change in the true conjunction and true

disjunction rate as the simulated shotgun read clustering threshold

increases relative to a fixed full-length sequence clustering

threshold, were generated for several full-length sequence

thresholds. We show here the accuracy plot of the source

threshold of 0.03 as an example. The median true clustering

and true cutting rates are represented by the solid and dashed

black lines, respectively. The red line indicates the minimum

tolerated accuracy, which we designate to be 80%. The most

accurate read threshold is indicated by the solid blue line, which

represents the point where the true clustering rate is controlled at

the minimum accuracy and the true cutting rate is maximized. At

least three interpretations of an optimal thresholds could be

identified from this analysis, contingent upon the application: 1)

the threshold where the true conjunction rate (TCR) is fixed at a

controlled minimum accuracy and the true disjunction rate (TDR)

is maximized, 2) the threshold where the TCR and TDR intersect,

and 3) the threshold where the TDR is controlled and the TCR is

maximized. The standard hypothesis testing approach is to control

the type I error, which corresponds to controlling the TCR in this

analysis (Methods) and results in a larger estimate of taxonomic

richness.

Found at: doi:10.1371/journal.pcbi.1001061.s005 (0.11 MB PDF)

Figure S6 Relationship between full-length sequence clustering

threshold and adjusted shotgun read clustering threshold. The

relationship between full-length clustering thresholds and the

corresponding shotgun read clustering threshold that maximizes

the True Disjunction Rate while controlling the True Conjunction

Rate is plotted in black. Specifically, this curve represents a loess

smoothing of the most accurate thresholds we identified from the

reference library-based simulation analyses across a series of full-

length sequence clustering thresholds using the procedure

described in Figure S5.

Found at: doi:10.1371/journal.pcbi.1001061.s006 (0.08 MB PDF)

Figure S7 Change in accuracy as the full-length sequence

clustering threshold increases. The accuracy of clustering reads via

an adjusted threshold (black line) remains high, even at relatively

large full-length sequence clustering thresholds. The solid red line

represents the minimum tolerated True Conjunction Rate (TCR)

of 80%.

Found at: doi:10.1371/journal.pcbi.1001061.s007 (0.07 MB PDF)

Figure S8 Accuracy with which PhylOTU clusters shotgun

sequences simulated from the SILVA database relative to a full-

length cutoff of 0.03. We used the SILVA-based simulation data to
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construct accuracy plots as described in Figure S5. We show here

the accuracy plot corresponding to a full-length clustering cutoff of

0.03 as an example. The median true clustering and true cutting

rates are represented by the solid and dashed black lines,

respectively. The red line indicates the minimum tolerated

accuracy, which we designate to be 80%. The most accurate

read threshold is indicated by the solid blue line, which represents

the point where the true clustering rate is controlled at the

minimum accuracy and the true cutting rate is maximized. Despite

the increased rigor of these simulations, PhylOTU maintains

relatively high accuracy levels, albeit slightly lower than observed

during the reference library-based simulation.

Found at: doi:10.1371/journal.pcbi.1001061.s008 (0.11 MB

PDF)

Figure S9 The clustering threshold affects the rate of discovery

of unique and non-unique OTUs per sequence. We randomly

sampled 1000 sequences from the PCR (blue lines) and shotgun

(red lines) sequence libraries and counted the total number of

distinct OTUs (solid lines) as well as the number of OTUs unique

to each sequence library (dashed lines) identified by the sample

across clustering thresholds (100 bootstraps). In regards to the total

number of OTUs identified by each library, this analysis reveals

that the number of OTUs discovered per sequence depreciates at

similar rates in both libraries as the threshold increases.

Conversely, we find that the rate of change of unique OTU

discovery is not consistent between libraries: more unique OTUs

per sequence are discovered in the PCR-generated sequence

library at thresholds below 0.05, while the inverse is true at

thresholds greater than or equal to 0.05. Notably, the number of

unique OTUs per PCR sequence declines as the threshold

increases at a rate similar to the total number of OTUs discovered

per PCR sequence. This is not the case with shotgun data, where

the slope of the unique OTUs discovered per read is much flatter.

This may be the result of the increased phylogenetic diversity

discovered in the shotgun library and suggests that PCR sequences

tend to contribute less unique phylogenetic branch length than

shotgun reads.

Found at: doi:10.1371/journal.pcbi.1001061.s009 (0.09 MB

PDF)

Figure S10 Partial alignment of shotgun sequence from

uniquely metagenomic OTUs that overlap a universal SSU-rRNA

primer site. Of those sequences that cluster into OTUs that are

uniquely identified via analysis of shotgun sequence data

(clustering threshold of 0.15), 18 overlap a universal SSU-rRNA

primer site in the alignment. Here, we show the result of aligning

those 18 sequences as well as the 8F and 27F primers to the

INFERNAL SSU-rRNA model used in PhylOTU. We find that

two sequences contain a shared C-.T substitution that differen-

tiates them from all other sequences in the alignment (red column)

directly adjacent to the degenerate site in the 27F primer sequence

(blue column). Incorporation of a degenerate base at this position

in the universal primer sequence may enable more rigorous

characterization of those lineages that harbor this C-.T

transition.

Found at: doi:10.1371/journal.pcbi.1001061.s010 (0.02 MB

PDF)

Table S1 Hierarchical clustering algorithms affect both cluster-

ing accuracy and richness estimates. Full-length SSU-rRNA

sequences were clustered via both PID and PD approaches using

three difference linkage definitions in the hierarchical clustering

algorithm: nearest-neighbor (nn), average (avg), and furthest-

neighbor (fn). Here, we show the results of comparing each the PD

clusters (threshold of 0.03) to each of the PID clusters (threshold of

0.03) using the True Conjunction Rate (TCR) and True

Disjunction Rate (TDR) calculations described in the Methods.

In addition, we calculated the Richness Ratio for each

comparison, which is the number of OTUs identified by the PD

clustering divided by the number of OTUs identified by the PID

clustering.

Found at: doi:10.1371/journal.pcbi.1001061.s011 (0.02 MB

DOC)

Table S2 Both PID and PD clustering accurately recapitulates

taxonomy-guided clusters. Full-length reference sequences were

clustered based on their GenBank taxonomy at the species level.

These same sequences were then clustered using both the PID and

PD methods by employing a distance threshold of 0.03 across

three hierarchical clustering algorithms: nearest-neighbor (nn),

average-linkage (avg), furthest-neighbor (fn). Each of the PID and

PD clusters were compared to the taxonomy guided clusters using

the True Conjunction Rate (TCR) and True Disjunction Rate

(TDR) calculations described in the Methods. We also calculated

the Richness Ratio, which is the number of OTUs identified by

the PD or PID clustering method in question divided by the

number of OTUs identified via the taxonomy-guided clusters.

Found at: doi:10.1371/journal.pcbi.1001061.s012 (0.02 MB

DOC)

Table S3 Accuracy of adjusted shotgun read clustering cutoff

relative to full-length clusters when controlling the true conjunc-

tion rate and maximizing the true disjunction rate (TDR). Data

was obtained from the RDP reference library-based simulations.

Found at: doi:10.1371/journal.pcbi.1001061.s013 (0.02 MB

DOC)

Table S4 Accuracy of adjusted shotgun read clustering cutoff

relative to full-length clusters when controlling the true conjunc-

tion rate and maximizing the true disjunction rate (TDR). Data

was obtained from the SILVA-based simulations.

Found at: doi:10.1371/journal.pcbi.1001061.s014 (0.02 MB

DOC)

Table S5 Taxonomic distribution of OTUs identified via

comparison of GOS PCR-generated and shotgun-generated

SSU-rRNA sequences. This table documents the frequencies at

which major Bacterial taxonomic clades (approximately Bacterial

phyla) were represented by sequences clustered into three different

sets of OTUs identified by PhylOTU: those unique to PCR-

generated SSU-rRNA (PCR), those unique to shotgun sequenced

SSU-rRNA (WGS), and those reveal by both sequence libraries.

The RDP taxonomy classifier was used to determine the

classification of each sequence in question. Major Bacterial clades

were excluded from this table if their frequency was not greater

than or equal to 0.1% in at least one of the three sets of OTUs.

Found at: doi:10.1371/journal.pcbi.1001061.s015 (0.02 MB

DOC)

Text S1 Alignment quality control filters.

Found at: doi:10.1371/journal.pcbi.1001061.s016 (0.01 MB

DOC)

Text S2 MetaSim run time setting used during the PhylOTU

simulation analysis.

Found at: doi:10.1371/journal.pcbi.1001061.s017 (0.01 MB

DOC)
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