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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular dis-

ease, and type 2 diabetes are among a long list of “lifestyle” diseases that were rare through-

out human history but are now common. The evolutionary mismatch hypothesis posits that

humans evolved in environments that radically differ from those we currently experience;

consequently, traits that were once advantageous may now be “mismatched” and disease

causing. At the genetic level, this hypothesis predicts that loci with a history of selection will

exhibit “genotype by environment” (GxE) interactions, with different health effects in “ances-

tral” versus “modern” environments. To identify such loci, we advocate for combining
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genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle

change. In these populations, comparisons of individuals falling on opposite extremes of the

“matched” to “mismatched” spectrum are uniquely possible. More broadly, the work we pro-

pose will inform our understanding of environmental and genetic risk factors for NCDs

across diverse ancestries and cultures.

Introduction

Noncommunicable diseases (NCDs) such as cardiovascular disease (CVD), type 2 diabetes,

and Alzheimer’s disease are among the leading causes of death worldwide (Fig 1). NCDs are

often difficult to prevent and treat, because they result from complex and poorly understood

interactions between a person’s genetic makeup and their environment. For example, CVD

has a heritability of 40% to 50%, with dozens of loci now mapped through genome-wide asso-

ciation studies [1–3]. However, when tallied together in an additive framework, these loci

explain only a small fraction of the heritable genetic effect. This has led many to conclude that

environmental risk factors, such as a diet high in processed foods and low levels of physical

activity, interact with genetic variation to shape NCD risk [4,5]. In other words, genetic varia-

tion may predispose individuals toward physiological sensitivity or resilience in the face of

environmental perturbations, a phenomenon known as “genotype by environment” (GxE)

interactions.

Despite major interest in GxE interactions in the context of NCDs, scientists have struggled

in practice to identify them. There are many reasons for this, including that the relevant envi-

ronmental factors are often unknown, difficult to measure, or minimally variable within the

study population (e.g., most individuals in postindustrial contexts consume processed foods).

Further, large sample sizes are needed to test for interaction effects, and even more so to over-

come the multiple testing burden incurred by testing for interactions between many genetic

variants and many environments [6,7]. To overcome power issues, current state-of-the-art

approaches have leveraged very large studies such as the UK Biobank to scan for interactions

between genome-wide genetic variation and selected lifestyle factors (e.g., smoking, diet, or

physical activity) [8–11]. However, these studies have not delivered as expected and have only

Fig 1. Noncommunicable diseases are the leading cause of death worldwide. (A) Proportion of worldwide deaths attributable to

noncommunicable diseases (NCDs), communicable or infectious diseases, and injuries through time. (B) Proportion of deaths within the USA in

2019, broken down by the top 10 causes of death. NCDs are highlighted in green. For both panels, data were sourced from ourworldindata.org and

represent all ages.

https://doi.org/10.1371/journal.pbio.3002311.g001

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002311 September 11, 2023 2 / 19

http://ourworldindata.org/
https://doi.org/10.1371/journal.pbio.3002311.g001
https://doi.org/10.1371/journal.pbio.3002311


uncovered a handful of GxE interactions for NCDs such as obesity, type 2 diabetes, and

depression.

In this Essay, we argue for a complementary approach informed by anthropological meth-

ods, genomic tools, and evolutionary theory. In particular, we believe there is much to learn by

viewing GxE interactions through the lens of the “evolutionary mismatch” hypothesis and by

partnering with genetically and environmentally diverse small-scale, subsistence-level popula-

tions to map them. The evolutionary mismatch hypothesis posits that traits that evolved under

past selection regimes are often imperfectly or inadequately suited to modern environments,

leading to “mismatches” in the form of NCDs [12–16]. At the genetic level, we would thus

expect that previously neutral or beneficial alleles are now disease causing.

While we cannot go back in time to evaluate genotype–phenotype relationships in past

environments, we can collaborate with populations that practice nonindustrial, subsistence-

level lifestyles and thus fall further toward the “matched” end of the matched–mismatched

spectrum than individuals in postindustrial contexts (though we caution that, of course, no

modern population is perfectly representative of their evolutionary past). Further, many sub-

sistence-level populations are currently exposed to globalizing forces causing rapid environ-

mental shifts; this situation creates a quasi-natural experiment for studying the transition from

traditional to modern lifeways within a single group [17] (Fig 2A). Additionally, the ecology

and culture of many subsistence-level groups has already been well characterized through

long-term work with anthropologists (Fig 2B), setting the stage for integration of genomic

studies.

Uniting an evolutionary mismatch framework, long-term anthropological work with sub-

sistence-level groups, and cutting-edge genomic tools can increase our power to identify and

understand GxE interactions. Specifically, because the mismatch framework provides clear

expectations for the types of loci and environments we expect to affect NCDs, we can narrow

the search space considerably. Further, by focusing on populations where Western diets and

lifestyles are the exception rather than the norm, we can design studies that explicitly sample

environmental extremes, thereby boosting power. Finally, by studying many genetically dis-

tinct populations under a uniting intellectual framework, we can identify new loci that have so

far been invisible to studies focused on individuals of European descent. With these goals in

mind, we first review the evolutionary mismatch hypothesis and discuss its current support at

the phenotypic and genetic levels. Second, we propose recommendations for integrating mis-

match principles with molecular and genomic techniques, focusing on collaborations with

subsistence-level groups. Third, we discuss the payoffs for scientists and study communities

that would come from implementing these partnerships.

Overview of the evolutionary mismatch hypothesis

An evolutionary mismatch is a condition that is more common or severe in an organism

because it is imperfectly or inadequately adapted to a novel environment [27]. While mis-

matches are not unique to humans, their frequency may be unusually high in our species. This

is because human culture can generate rapid and profound environmental change: In just a

few generations, industrialization has transformed human diets, physical activity patterns, and

toxin exposure landscapes, and these changes presumably contribute to the long list of NCDs

that used to be rare or nonexistent [28–30].

For at least a century, a wide range of conditions have been assumed to be “diseases of civili-

zation” or “lifestyle diseases” [31,32], but mismatches need to be explicitly and rigorously

tested according to 3 criteria [33]. First, a mismatch condition should be more common or

severe in the “novel” (e.g., postindustrial) relative to the “ancestral” environment (or correlated
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with some continuous metric of novel versus ancestral; Fig 3A). Small-scale, subsistence-level

societies typically stand in as the best available proxy for the “ancestral” environment. This is

because modern subsistence-level societies on average experience a closer “match” between

their recent evolutionary history and their current environments relative to individuals in

postindustrial contexts, though we caution they are not themselves “ancestral” populations.

We also caution that modern subsistence-level groups (or any human group) will never be per-

fectly matched to their ancestral conditions on any time scale, given the near-constant fluctua-

tions in human cultures, ecologies, and lifestyles. Nevertheless, these populations do all

experience major environmental components consistent with the human evolutionary past,

namely, they eat diets devoid of, or low in, processed foods, engage in high levels of physical

activity, and never or rarely experience medical intervention.

In addition to the hypothesized mismatch condition being more prevalent in postindustrial

versus subsistence-level groups, the second criterion is that it should also be tied to some envi-

ronmental variable that differs between these groups (Fig 3B). One complication for achieving

Fig 2. Subsistence-level groups experiencing lifestyle change are a potential model for uncovering GxE interactions. (A)

Subsistence-level groups faced with urbanization, market integration, and modernization experience extreme variation in diet and

physical activity levels, pathogen and toxin exposures, and social conditions. This list of environmental components for which there

is extreme variation is not exhaustive and, in many cases, will also be population specific. We highlight a few broad categories that

tend to change consistently during lifestyle transitions. Bidirectional arrows indicate factors that could either increase or decrease

during urban transitions. (B) Studies such as The Turkana Health and Genomics Project [18,19], The Orang Asli Health and

Lifeways Project [20], The Pacific Planetary Health Initiative, Madagascar Health and Environmental Research [21–23], The

Tsimane Health and Life History Project [24], and The Shuar Health and Life History Project [25,26] all combine anthropological

and biomedical data collection in transitioning societies and are thus poised to uncover GxE interactions in the context of

evolutionary mismatch. We note that this list is meant to be illustrative and only includes projects directed by authors of this Essay; it

does not by any means cover all of the rich and ongoing projects of small-scale, subsistence-level groups.

https://doi.org/10.1371/journal.pbio.3002311.g002
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this is that NCDs arise from complex multifactorial causes, and thus, while between-popula-

tion comparisons are necessary, they can be confounded by many covariates that must also be

taken into account (e.g., sanitation, access to medical care, or age structure, given that risk for

most NCDs increases with age in postindustrial contexts [35]).

The third criterion is that it is necessary to establish a molecular or physiological mechanism

by which the environmental shift generates the proposed mismatch condition. At the genetic

level, this should manifest as a locus for which a variant exhibits a past history of positive selec-

tion and is associated with health benefits in the ancestral environment but health detriments in

the novel environment, or one for which past stabilizing selection has created a situation where

2 intermediate alleles have similar fitness in the ancestral environment, but one allele becomes

associated with health detriments in the novel environment (Fig 3C and Box 1).

Fig 3. Mismatch diseases must be tested according to 3 criteria. (A) Disease-related phenotypes must be more

common or severe in the novel versus ancestral environment. We note that here we show mean differences in the

phenotype between environments, but environmental effects could also impact trait variance. (B) These disease-related

phenotypes must be attributable to an environmental variable, which will most often differ in mean and range between

groups (e.g., physical activity influences cardiovascular health and is consistently higher in subsistence-level groups

relative to individuals in postindustrial contexts). (C) It is necessary to establish a mechanism by which an

environmental shift generates variation in disease-related phenotypes. At the genetic level, this could manifest as a

locus for which a variant exhibits a past history of positive selection and is associated with health benefits in the

ancestral environment but health detriments in the novel environment. A single locus with opposing effects is shown

here for simplicity, but in reality, most complex traits will have highly polygenic architectures and diverse patterns of

GxE interactions [34]. In panel C, horizontal lines represent haplotypes and the dark orange circle represents the

selected variant. In all panels, dark blue represents the novel environment and light blue represents the ancestral

environment.

https://doi.org/10.1371/journal.pbio.3002311.g003

Box 1. GxE interactions in population genetics: Definitions and
related concepts

In population genetics, the simplest conceptualization of a GxE interaction involves 3

genotypes for a single biallelic locus, with each of the 3 genotypes found in 2 different

environments and with fitnesses varying across these 6 conditions (Fig 3C). At equilib-

rium, this population will harbor, among other types of genetic variation, alleles that

have been selected to high frequency as a consequence of directional selection (i.e.,
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In addition to GxE interactions, a quantitative genetic concept relevant to evolutionary mis-

match is “decanalization” [16,38]. Canalization refers to the process of stabilizing selection

that selects for trait values that closely track some optimum in a given environment. However,

in the presence of rapid environmental change or other strong perturbations, the optimum

can shift and lead to decanalization [39]. While canalization acts to decrease genetic and phe-

notypic variance in a trait over time, decanalization involves an increase in the trait’s variance

that is generally thought to be associated with the unmasking of loci that only impact the trait

in the new environment [40]. Decanalization can thus be thought of as a specific form of evo-

lutionary mismatch. Evolutionary mismatch can occur without having a previously canalized

trait and is a more general term not necessarily linked to stabilizing selection. A final term that

is distinct from all of these is “robustness.” Robustness refers to a property of individual geno-

types, wherein they are able to retain an advantageous phenotype despite genetic or environ-

mental hazards [39]. In contrast, evolutionary mismatch and decanalization are population-

level phenomena.

Current evidence for evolutionary mismatch at the phenotypic level

Scientists have been relatively successful at testing the first 2 criteria for mismatch, especially

in the context of CVD, the single largest cause of mortality worldwide [41]. In support of the

first criteria, subsistence-level groups experience remarkably low rates of CVD [30,42,43] rela-

tive to individuals in postindustrial contexts, as well as minimal age-associated increases in

CVD or its biomarkers (e.g., hypertension, cholesterol) [44–46] (Fig 4A). Studies of small-

scale societies in the midst of socioeconomic transition have demonstrated within-population

effects of industrialization [18,47,48], strengthening the findings from between-population

comparisons.

In support of the second criteria, recent work has also isolated salient environmental

changes by which industrialization promotes CVD. People in subsistence-level communities

are generally very physically active, accruing 5 to 10 times more daily physical activity than

adults in postindustrial contexts [52,53]. Moderate to vigorous physical activity increases nitric

oxide production and arterial elasticity [54,55] and reduces inflammation, all of which are pro-

tective against CVD [56]. Within industrialized populations, individuals accruing daily physi-

cal activity similar to those of subsistence-level individuals experience similarly low rates of

selection on a trait value in a particular direction), and alleles that are at intermediate fre-

quency as a consequence of stabilizing selection (i.e., selection to keep trait values near

an optimum). If the environment changes quickly, previously selected alleles may now

be associated with a trait that is no longer beneficial, and even disease causing, but will

remain at a high frequency for some time before selection is able to purge them.

A few notes are important on this simple thought example. First, loci with no genetic

variation (e.g., fixed beneficial mutations) could still be involved in mismatches in the

new environment, but in the absence of genetic variation, we will be unable to identify

them. Second, most complex traits have highly polygenic architectures, and while our

simple examples (here and throughout) have focused on a single biallelic locus, the same

logic applies under polygenicity [36]. Third, stabilizing selection is thought to be the

most common mode of evolution shaping complex traits [37], and, thus, mismatch sce-

narios involving alleles that have previously undergone stabilizing selection may be the

most common.

PLOS BIOLOGY
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CVD, as well as NCD-related mortality [57] (Fig 4B). Although physical activity has a critical

role in averting CVD, it is not a panacea and several other factors are surely important. For

example, relative to individuals in postindustrial contexts, subsistence-level groups subsist on

diets dominated by unprocessed or minimally processed foods and experience different types

and degrees of social integration and inequality, all of which can impact CVD risk [58–60].

We note that while we have focused this section on CVD as an illustrative example of the

type of comprehensive evidence required for fulfilling the first 2 criteria of mismatch, several

other conditions also have relatively clear evidence. For example, inflammatory and autoim-

mune disorders have increased during the 20th century, which has been linked to a reduced

exposure to parasites and microorganisms (a phenomenon attributed to the “hygiene hypothe-

sis” or “old friends hypothesis”) [61–63].

Current evidence for evolutionary mismatch at the genetic level

As mentioned above, to fulfill the third criteria for mismatch, we would need to identify a

locus for which there is evidence of past selection (positive or stabilizing), and for which per-

formance of at least 1 allele varies across environments and confers inflated risk of an NCD in

the novel environment (Fig 1B and Box 1). One would think this would be easy to find, but in

fact, there are only a handful of clear cases, despite good evidence for the existence of GxE

interactions in general [64–67]. One clear example of mismatch involves variants in APOL1,

which provide resistance to trypanosome infections. Given the prevalence of trypanosomes

across Africa, beneficial alleles are found at high frequency in African populations, as well as in

African Americans. However, these same variants confer an increased risk of kidney disease in

African American individuals living in the USA [68,69].

Another example is related to the “thrifty genotype” hypothesis [68], which suggests that

individuals living in environments where food is unpredictably and periodically scarce should

experience selection to store body fat in times of plenty. Recently, an intriguing variant was

Fig 4. Evidence for evolutionary mismatch at the phenotypic level. (A) Mean levels of total cholesterol are much lower in selected subsistence-level

populations relative to adults in the USA (>18 years old) profiled as part of the US National Health and Nutrition Examination Survey (NHANES) [49]

(subsistence-level data from [17]). (B) Evidence that, within industrialized populations, individuals accruing daily physical activity similar to those of men and

women in subsistence-level societies experience similarly low rates of CVD as well as all-cause mortality from NCDs. Dose–response relationship between

minutes/week of moderate to vigorous leisure time physical activity and age-adjusted relative risk of death from a sample of 661,137 adults from the USA and

Europe [50]. The arrow for physical activity estimates in subsistence-level groups is based on studies of Hadza individuals (estimated at x = 944 minutes [43])

and Tsimane individuals (x = 924 minutes [51]).

https://doi.org/10.1371/journal.pbio.3002311.g004
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found in Samoans, who are also susceptible to extreme obesity when eating a Western diet: A

single amino acid variant (p.Arg475Gln) in CREBRF exhibits signatures of past selection and is

currently associated with a 1.3-fold increased risk of obesity (though puzzlingly, also a 1.6-fold

decreased risk of type 2 diabetes). Subsequent functional work in cell culture models demon-

strated that p.Arg475Gln has direct effects on metabolism, reducing energy use while increas-

ing lipid storage [70].

In addition to these well-characterized examples (see also Fig 2 of [71]), recent genomic

work has shown that, in aggregate, variants that serve as modern-day risk alleles for particular

NCDs (namely, CVD and autoimmune diseases) are more likely to show signatures of past

selection relative to nonrisk alleles [72–74]. More broadly, there is now ample evidence that

human populations can adapt to their local ecologies quite quickly (e.g., in thousands of years)

[75], setting the stage for mismatches when local conditions shift. For example, the high Plas-
modium vivax malaria risk experienced by West Africans has selected for changes to a key che-

mokine receptor encoded by DARC [76,77], whereas the spread of dairying in Europe has

selected for lactase persistence through changes in the regulation of LCT [78,79]. Both of these

changes have occurred within the last 10,000 years. As pathogen environments and diets inevi-

tably change, local adaptation sets the stage for mismatches to occur.

A new path forward: Integrating genomic tools and partnerships

with transitioning populations

In principle, GxE interactions are most simply identifiable using a mismatch framework by testing

for environmentally dependent genetic effects in transitioning populations. However, in practice,

this would be difficult because most NCDs arise from many small genetic effects distributed across

the genome. Further, the standard approach to resolve this needle-in-a-haystack problem—using

a massive sample size—is difficult in small-scale groups who typically have modest population

sizes. Sample sizes in the thousands, but not hundreds of thousands (e.g., biobank scale), are cur-

rently feasible; however, many anthropological studies have invested in long-term relationships

with particular communities and are thus able to generate highly longitudinal datasets [24], where

repeated samples and within-individual study designs could boost power. With these limitations

in mind, we discuss how advanced genomic methods can be combined with the mismatch frame-

work in a principled way to quantify the role of GxE interactions in NCDs.

First, we can improve GxE test power by focusing on genetic loci with already demon-

strated evidence for phenotypic relevance, for example, those with evidence for recent selec-

tion in the study group or those that have already been discovered in urban/industrialized

environments. For example, recent work on the APOE locus found that the E4 variant—a well-

known risk factor for CVD and Alzheimer’s disease in individuals in postindustrial contexts—

is associated with lower innate inflammation and may have beneficial effects on lipid modera-

tion and cognition in a high pathogen/low obesity environment [80–82]. We might expect

similar successes in elucidating GxE mismatches at other well-known risk loci that replicate

across postindustrial contexts (e.g., FTO, ADCY3, BRCA1/2), though we caution that candidate

gene studies should always be undertaken with care due to potential bias and replication issues

[83,84]. A related approach is to test for GxE enrichment at the level of known genes or path-

ways with evolutionary or phenotypic relevance in the study population. These set-based

approaches (i.e., that target predefined genes, genomic regions, or single nucleotide polymor-

phisms (SNPs)) may also perform well, even in cases where the specific causal variants are not

shared between the focal population and the dataset in which they were identified.

Second, polygenic approaches that integrate GxE signals across the genome can improve

power when studying complex traits such as NCDs. For example, recent methodological
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developments have extended the popular polygenic risk score (PRS) framework to allow for

PRS–environment interaction tests, thus providing a polygenic GxE test [85–87]. This

approach has so far been used to show how diet and other lifestyle factors modulate the genetic

risk of obesity, metabolic traits, and type 2 diabetes [40,88–90]. While polygenic approaches

such as the PRS sacrifice variant-level resolution, they yield much greater power to detect GxE

interactions, an invaluable exchange for quantifying evolutionary mismatch in transitioning

populations. Three downsides to PRS–environment interaction tests, however, are that com-

pared to single, large-effect allele results, one can be left with no suggestion of underlying

mechanism; power depends on the predictive power of the PRS as well as its portability, which

is a clear problem, given that most PRS work has focused on European ancestry individuals in

postindustrial contexts, and, thus, this is where the summary statistics to build a PRS in other

groups will have to come from (for the time being); and an underlying assumption is that risk

effects are systematically stronger in one environment than another [91]. Any work in this

area will consequently require replication across populations and will dramatically benefit

from biobank-scale datasets that are currently being built in underrepresented, non-European

ancestry contexts (e.g., [92,93]); these datasets will surely catalyze better multiancestry PRS

methods.

Third, and perhaps most feasibly with current sample sizes, we can add power and

interpretability for GxE interactions using intermediate molecular phenotypes such as gene

expression, DNA methylation, and chromatin accessibility. One approach is to impute these

functional genomic features from genotype data and then test them for environmental interac-

tion (e.g., akin to a GxE version of transcriptome-wide association studies) [94,95]. The impu-

tation step can use large, publicly available functional genomic datasets from US and

European cohorts but will improve when similar datasets are available for the study popula-

tions. A second approach is to directly measure gene expression, DNA methylation, or other

molecular features and identify variants that impact these features in different ways across dif-

ferent environmental contexts; this “molecular QTL” framework has so far proven very power-

ful and could be extended to transitioning populations [64,96–98]. Moreover, GxE molecular

QTLs can be validated experimentally by exposing cell lines or model organisms to stimuli

that mimic aspects of the environmental gradients experienced by transitioning populations;

indeed, this can pinpoint key components of the incredibly complex environmental shifts that

drive GxE interactions. A third option is to use functional genomic experiments to narrow the

search space, by first identifying regulatory elements that respond to mismatch-relevant envi-

ronments. For example, Garske and colleagues recently identified chromatin elements that

respond to dietary fatty acids in adipocytes and then focused GxE follow-up work on variants

in these responsive elements. By doing so, they were able to gain power to search for interac-

tion effects between genotype and dietary saturated fat intake on body mass index [99]. Similar

in vitro functional genomic experiments (using field-collected samples) could be leveraged to

target regions of the genome that may be most important for responding to key aspects of life-

style transitions.

Payoffs for NCD prevention and treatment

Testing the degree to which GxE interactions arise from evolutionary mismatch would answer

mechanistic questions about how GxE interactions manifest. For example, are loci that were

involved in adaptation to a population’s past environment more likely to exhibit GxE effects

when the environment shifts? To what degree does the nature of GxE interactions vary across

ancestries with distinct evolutionary histories? What is the envelope of “optimal” human envi-

ronmental conditions that do not provoke mismatch? Molecular insights into evolutionary
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mismatch would allow us to prioritize the study of genetic variants that may adversely affect

health outcomes in novel environments (i.e., those that have historically been under stabilizing

or positive selection). It would also enable prediction of potential future adverse environments

that could accelerate the onset of disease (i.e., those that represent strong deviations from the

human evolutionary past). Furthermore, it could help us refine explanations for already

observed ancestry-related differences in disease susceptibility. We emphasize that these are

potential outcomes if mismatch is rigorously tested according to the criteria we lay out and

subsequently supported; currently, its generalizability to the study of many complex traits and

NCDs remains unclear due to a need for more empirical data.

The studies we recommend would more broadly advance our understanding of health

issues in minority, Indigenous, and other underrepresented groups. Most subsistence-level

populations in low- and middle-income countries (LMICs) are facing rapid rises in NCD risk,

and the limited reports from these countries suggest that population responses to urbanization

and market integration are highly variable. Studies of European ancestry individuals in postin-

dustrial contexts are not well suited to explain why. Partnering with transitioning groups to

conduct evolutionarily and culturally informed studies is needed to better serve their health

concerns (Box 2).

Box 2. Ethical considerations of conducting genomic work with
subsistence-level populations

Community engagement and ethical research is fundamental to achieving the broader

vision of this Essay. There is widespread consensus that broader population representa-

tion in biomedical research is critical for reducing health disparities [100], but moving

forward on this agenda requires that we simultaneously acknowledge and learn from

past mistakes and abuses.

At the heart of ethical considerations in genetics research is a situation in which diverse

populations are dually underrepresented and underconsulted [101]. Recent work has

outlined best practices for overcoming these issues [101–108]. For example, Claw and

colleagues [102] suggest 6 principles of research ethics: understand community sover-

eignty and research regulations; engage and collaborate; build cultural competencies;

improve transparency; build local research capacity; and disseminate research in accessi-

ble formats. The common thread behind these principles is the importance of building

trustful and long-term relationships based on principles of dynamic consent, reciprocity,

beneficence, and sovereignty. In our own experience, building these sorts of relation-

ships takes time (typically years) but is essential to do before engaging in research.

Basic research with populations in LMICs can lead to important insights, yet the value-

added benefits from basic research (e.g., shaping health policy based on epidemiological

trends, and/or the development of novel treatment strategies) often can take decades to

materialize. Mechanisms for participant community involvement in these longer-term

benefits should be explicitly embedded in initial plans [100]. It is also important to rec-

ognize that community benefits can extend beyond the research itself. The needs and

desires of local communities will vary widely, but populations in LMICs may face prob-

lems that are deeply interconnected and often stem from systemic discrimination: poor

nutrition and sanitation (often due to environmental degradation), minimal access to
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Conclusions and future directions

The basic argument of this Essay is that we can further our understanding of evolution as

well as the genetic architecture of human disease by combining genomic tools with studies

of transitioning populations (as has been discussed previously [6,12,13,15,105,106], though

not in the context of genomics). This recommended path improves on current approaches,

which typically rely on “brute forcing” GxE scans across many SNPs and many environ-

ments. Instead, we advocate for using evolutionary theory to parse a priori which genotypes

and environments we expect to interact. More specifically, under a mismatch framework,

we expect genomic regions under positive or stabilizing selection in past environments to

be enriched for GxE interactions revealed in postindustrial environments. If this framework

proves true, leveraging its predictions could boost power and better position us to under-

stand and predict GxE interactions in the etiology of NCDs. More generally, the work we

propose would provide much needed insight into urgent health issues affecting vulnerable

populations around the world.

Because the interdisciplinary perspective we take here necessarily touches on several

fields, we did not attempt an exhaustive review of research on either evolutionary

mismatch or GxE interactions (instead, we refer readers to excellent existing work

[6,12,13,15,109,110]). However, there are several interesting new directions in these fields

that are worth highlighting. For example, a growing body of work has begun to conceptual-

ize the human microbiome as an evolved trait that is currently “mismatched” to its environ-

ment, often with serious health implications [111]. Given that the microbiome is under host

genetic control and can therefore be a target of natural selection [112] and that industriali-

zation can induce large scale changes in gut microbial communities [113–115], this is an

exciting area in which to investigate GxE interactions that generate mismatch diseases.

Another emerging research topic is sex differences in the response to lifestyle change: Sev-

eral recent studies have found that women experience greater NCD risk following economic

and nutritional transitions than men [18,25,116,117], yet how sex-specific genetic, physio-

logical, or environmental variation interact to produce this phenomenon is still unknown

[34]. Moreover, it is well established that early life experiences are important for predicting

NCD risk later in life [118–120], and the timing of lifestyle change, as well as the degree to

which individuals experience environmental mismatches within their lifetimes, may there-

fore be important to consider and to intersect with GxE frameworks (Box 3). In many cases,

long-term partnerships with focal communities have already led to the creation of longitu-

dinal datasets well positioned to take a life course approach. Moving forward, we expect

that longitudinal perspectives on environmental change, NCD risk, and GxE interactions

will be especially fruitful.

education, few economic opportunities, and loss of land rights. The priorities of commu-

nities will seldom match perfectly with the aims of scientists, especially when participant

communities lack basic infrastructure and face discrimination. Prioritizing solutions to

these problems is an opportunity to have great impact that will require cooperation

between researchers, study participants, universities, nongovernmental organizations,

governments, and funding bodies.
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societies are an underutilized yet potentially powerful model for studying early life influ-

ences on NCD risk. Many of these groups are currently experiencing rapid lifestyle

changes leading to (1) extreme variation in early life conditions within a single popula-

tion, and (2) frequent mismatch between early life and adult environments—a situation

that is thought to put individuals at risk for later life health issues [118–120]. Point 1 pro-

vides a clear opportunity to leverage the distributional extremes to study early life effects

on health [26,122]. Further, point 2 affords us the opportunity to compare outcomes

when individuals experience within-lifetime environmental “matches” versus “mis-

matches.” To date, studies of industrial transitions have come to mixed conclusions

about the importance of within-lifetime mismatches [18,47,123,124]. More work in this

area is urgently needed to understand when, why, and how early life experiences shape

adult health in these groups.

Genomic tools applied to populations undergoing lifestyle change could also provide

valuable insight into how early life experiences become “embedded” into lifelong physi-

ology. At the molecular level, this process is thought to be mediated by stable changes in

gene regulation (e.g., DNA methylation, chromatin accessibility, and gene expression).

However, many gene regulatory elements are also dynamic and responsive to environ-

mental perturbations throughout life. This fact leads to challenges in disentangling the

effects of early versus later life environments, especially when the two are highly corre-

lated (as is common in postindustrial contexts). By contrast, subsistence-level groups in

transition often experience decoupled early life and adult experiences, which could be

leveraged to disentangle early versus later life influences. Genotype data collected for the

same individuals could also be used to identify rarely studied GxE interactions where the

“E” encompasses early life experiences. Overall, integrative studies of transitioning pop-

ulations are primed to reveal which individuals will be most susceptible to NCDs during

lifestyle transitions as well as when in the life course these exposures matter most.
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