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Abstract

Greenberg’s (1963) Universal 34 states that “No language has
a trial number unless it has a dual. No language has a dual
unless it has a plural.” We present an associative model of
the acquisition of grammatical number based on the Rescorla-
Wagner learning theory (Rescorla & Wagner, 1972) that pre-
dicts this generalization. Number as a real-world category is
inherently structured: higher numerosity sets are mentioned
less frequently than lower numerosity sets, and higher nu-
merosity sets always contain lower numerosity sets. Using
simulations, we demonstrate that these facts, along with gen-
eral principles of probabilistic learning, lead to the emergence
of Greenberg’s Number Hierarchy.

Keywords: Linguistics; Language acquisition; Learning;
Computer simulation

Introduction
In many languages, the number of items in the referent of a
noun phrase is obligatorily encoded by an inflectional feature
on the head noun or other lexical category in a clause. For
example, in English we have distinction between the book,
which must refer to a single book, and the books, which must
refer to more than one.

While many languages show the same singular vs. plural
distinction that English does, this is not the only attested sys-
tem. Another fairly common type of language distinguishes
between the SINGULAR (exactly one), the DUAL (exactly
two), and the PLURAL (more than two). For example, in
Upper Sorbian (a Slavic language spoken in Germany), we
find singulars like hród ‘castle’ and dźěłam ‘(I) work’, duals
like hrodaj ‘two castles’ and dźěłamoj ‘(we two) work’, and
plurals like hrody ‘castles’ and dźěłamy ‘(we) work’ (Stone,
1993; Corbett, 2000). In Hmong Daw (a Hmong-Mien lan-
guage of Laos and southern China), personal pronouns distin-
guish three persons and three grammatical numbers (Jaisser,
1995, 118):

SING DUAL PLURAL
1ST kuv wb peb
2ND koj neb nej
3RD nws nkawd lawv

Beyond the singular and dual, some languages even dis-
tinguish a TRIAL (= exactly three) number. This four-way
distinction is found, for example, in the subject agreement
prefixes for human referents in Larike, a Central Malayo-
Polynesian language spoken on Ambon Island (Laidig, 1993;
Siewierska, 2013):

SING DUAL TRIAL PLURAL
1.INCL — itua- itidi- ite-
1.EXCL au- arua- aridu- ami-
2 a-/a- irua- iridu- imi-
3.HUM ma-/mei- matua- matidu- mati-
3.NONHUM i- iri-

While cross-linguistic typological studies have revealed
that there is a certain amount of variation among the gram-
matical number systems of diverse languages, that variation
has been found to fall within fairly strict limits. Greenberg’s
(1963) Universal 34 states that “No language has a trial num-
ber unless it has a dual. No language has a dual unless it has a
plural.” This Number Hierarchy can be expressed as a chain
of implicational relations: Trial→ Dual→ Plural→ Singu-
lar. Greenberg’s typological studies over a small corpus of
34 languages encouraged him to postulate numerous univer-
sal generalizations, both as absolutes and as tendencies. In
succeeding years many of his preliminary claims have had to
be modified or abandoned. The Number Hierarchy, however,
has proved to be remarkably robust.1

Many of the unattested language types in this domain are
silly: no language distinguishes between a prime vs. a com-
posite number of referents, or has a special suffix indicating
exactly 47 items. The non-existence of such languages does
not demand an explanation. However, some of the language
types that we do not find seem a priori more likely. For ex-
ample, while the two-way SING/NOT-SING (i.e., plural) dis-
tinction is very common, the superficially similar DUAL/NOT-
DUAL is essentially unattested. Along the same lines, while
dual marking is fairly common, trial is rare, quadral (= ex-
actly four) is only marginally attested, and markers for spe-
cific numbers greater than four are never found (at least in
spoken rather than signed languages). It is less obvious why
no known languages use these conceptually plausible number
marking systems.

Universals in linguistic theory
One of the fundamental goals of linguistic theory is to
offer explanations for why certain patterns recur cross-
linguistically and others do not. Debate around the status
of and explanations for language universals, recently high-
lighted by Evans and Levinson’s (2009) provocative argu-
ment against innatist language-specific representational bases

1It is not quite exceptionless, though, and the actual typologi-
cal situation is somewhat more complicated (Croft, 1990; Corbett,
2000; Evans, 2012).
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for universals, has been focused on two alternative models.
One hypothesis regarding the source of implicational uni-

versals like Greenberg’s Universal 34 is that they follow from
universal and innate properties of the human language fac-
ulty. These properties are specific to language and do not
follow from any more general properties of human cognition
or culture. By this view, universals like the Number Hierar-
chy reveal something about the underlying structure of hu-
man language and constraints on possible surface organiza-
tion (Noyer, 1992; Harbour, 2014). Specifically, under this
view Universal Grammar provides a range of possible mental
representations for grammatical number systems which are
able to capture attested systems but not the unattested ones.

As an alternative, one could attempt to derive universals
like the Number Hierarchy from language usage or general
complexity properties (e.g., Croft & Poole, 2008; Miestamo,
2009). This approach has proven to be quite fruitful for a
range of putative universals. But so far, the Number Hierar-
chy has resisted language-external explanation. For example,
it is not immediately obvious how a Singular-Plural system is
any simpler than a Dual-NotDual system, yet the first is the
most common type and the second is (virtually) unattested
(but see Evans, 2012). In fact, Seuren (2013) offers the Num-
ber Hierarchy as a best example of a universal which is very
unlikely to submit to an explanation that does not depend on
language-specific properties of Universal Grammar. This is
not an argument against grounding the Number Hierarchy in
properties of general cognition, merely an observation that
no convincing explanation along those lines has yet been pro-
posed. In what follows we develop a learning model sensitive
to realistic recurrences of set size and plausible assumptions
about the representation of numerosities.

Model
Children learn the concept of numerosity before they learn
morphosyntactic expressions of number (Barner, Thalwitz,
Wood, & Carey, 2007; Wood, Kouider, & Carey, 2009; Clark
& Nikitina, 2009) and well before they master number name
meanings (Slusser & Sarnecka, 2011). Learning the distinc-
tion between singular and plural sets does not appear to be de-
pendent on morphological marking (Li, Ogura, Barner, Yang,
& S.Carey, 2009).

Clark and Nikitina (2009) consider the use of two as a
general purpose plural marker by English-speaking two- and
three-year-old children. They argue that this arises at least in
part because two is the numeral larger than one that is used
most often by adults in child-directed speech. Furthermore,
their observations indicate that the trajectories of individual
children in learning grammatical number can vary quite a bit
and are sensitive to the frequency of forms in adult speech.
This frequency-sensitivity suggests that a general associative-
learning process is playing an important role in the develop-
ment of grammatical number.

Ramscar, Dye, Popick, and O’Donnell-McCarthy (2011)
developed a model of children’s acquisition of number names

(one, two, three, etc.) based on the Rescorla-Wagner the-
ory of associative learning, which as a side effect predicts the
subitizing limit (Kaufman, Lord, Reese, & Volkmann, 1949),
a constraint on the human ability to recognize the number of
items in a set without explicit counting.

Rescorla-Wagner learning
Rescorla and Wagner’s (1972) learning model, rooted in
Pavlovian learning theory, seeks to explain the way that as-
sociative learning gradually builds connections between per-
ceptual cues and specific outcomes over the course of many
learning trials. Early work in this direction (Hull, 1943)
showed that associative learning follows a negatively accel-
erated learning curve. R-W’s model extends this approach in
a way that can deal with compound cues AX . When the cues
A and X both occur with O on a learning trial, the update for
the association weights is given by:

VAX = VA +VX

∆VA = αAβ(λ−VAX )

∆VX = αX β(λ−VAX )

∆VA is the change in the strength of the association between
cue A and the outcome O after a learning trial in which A and
O occur together, VA is the previous weight of the association
prior to the current trial, and λ is the maximum conditioned
response. The learning rate depends on the salience of the
cue (αA and αX ) and the salience of O (β), and the learning
step size depends on the previous association weight of the
compound VAX .

One consequence of this model is that a cue which always
occurs when O does may not end up with a strong association
if some other cue is a better predictor of the outcome. Sup-
pose the compound cue AX consistently occurs with O, while
the cue BX consistently does not. We expect the sum VAX
to approach λ and VBX to approach 0, and as shown in Fig-
ure 1 that is what happens. Looking at the total strength of the
prediction in the lower graph, VBX initially grows with VAX ,
then begins to fall towards 0. Looking at the individual cue
weights in the upper graph, we see that initially A and X have
roughly equal weights and that X is competing with A and B
to explain the (non-)occurrence of O. After about 50 trials,
though, A wins the competition, and the learner has been able
to discriminate among the cues that are present with O to find
the ones which are the best predictors (Ramscar, Yarlett, Dye,
Denny, & Thorpe, 2010; Baayen, Milin, Ðurd̄ević, Hendrix,
& Marelli, 2011). In this model, learning is driven by pre-
diction error: VAX is the learner’s expectation prior to a trial,
and (λ−VAX ) or (0−VAX ) is how much that expectation is
violated on a positive or negative learning trial.

While it is not without problems, the R-W model has been
enormously influential in the development of animal asso-
ciative learning models. R-W learning has also been suc-
cessfully applied to model human causal reasoning (Lober
& Shanks, 2000; Danks, 2007), is closely related to both
connectionist (Gluck & Bower, 1988; Shanks, 1991) and
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Figure 1: Discriminative learning: when the (hypothetical)
compound cue AX occurs with O but the cue BX does not,
the model learns that A and not X is a predictor of O
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information theoretic (Gallistel, 2002) models, and is for-
mally equivalent to the perceptron (Dawson, 2008). In the
domain of language, R-W learning has been applied to a
range of problems, including modeling acquisition of plu-
ral forms (Ramscar & Yarlett, 2007; Ramscar, Dye, & Mc-
Cauley, 2013) and number names (Ramscar et al., 2011), and
word recognition (Baayen et al., 2011).

Input model
In order to construct a simulation of grammatical number ac-
quisition based on R-W learning theory, we first need a rep-
resentation of the input cues that a learner would be exposed
to. The ability to subitize, or recognize the numerosity of
small sets, is either innate or developed very early and can
be taken as a semantic primitive (Wynn, 1992; Piantadosi,
Tenenbaum, & Goodman, 2012). Following Ramscar et al.
(2011), we include numerosity of the set and all subsets as
cues. For example, a learner who encounters a set of one
item is only exposed to the cue ‘1’—a single-item set.2 A
learner who encounters a set of two items is exposed to the
cue ‘2’—a double-item set—and also to the cue ‘1’, since
encountering a double-item set entails encountering a single-
item (sub)set. A learner who encounters a set of three items
is exposed to triple-item, double-item, and single-item sets,

2The learner is also exposed to the cues associated with the item’s
other properties such as shape and size, which are ignored here for
simplicity.

Figure 2: Frequency of number mentions in COCA (Davies,
2008–; Ramscar et al., 2011) and fitted values
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etc. The learner’s task is to determine which sets (the cues)
best predict the use of each grammatical number marker (the
outcomes).

R-W learning is also potentially very sensitive to statistical
properties of the input. Thus, we also need an accurate prob-
abilistic model of the frequencies at which learners would be
exposed to various inputs. Specifically, we need to know how
often children encounter talk about sets of a given numerosity
while learning grammatical number.

In their simulation of number name acquisition, Ramscar
et al. (2011) report counts of number names from 1 to 7
used as prenominal modifiers in the Corpus of Contemporary
American English (COCA) and the Corpus del Español. The
distribution of English counts is shown in Figure 2. Using
the VGAM package in R (Yee, 2010), we found that a zero-
truncated negative binomial distribution (a mixture of Pois-
sons with no zero counts and gamma-distributed rates to ac-
count for overdispersion) provided a good fit to the counts in
both languages. Therefore, we generated random inputs for
our simulations by sampling from a zero-truncated negative
binomial fit to the English counts (size= 3, prob=0.6).

Results
For the first set of simulations, we ran 250 iterations of R-W
learning with randomly generated inputs as the cues and the
correct grammatical number for each input as the outcome.3

The trajectories for singular and plural outcomes are shown
in Figure 3. Learning what the singular means is easy: 1 is
the only cue that has a positive association with the outcome
SG. Plural is a bit more difficult, though: a single-item subset
is always present in sets of higher numerosity. The learner
therefore always encounters a cue of 1 when they encounter
any set and any number-marker outcome. But, after about 50
iterations, the model has succeeded at discriminating between
2 and 1 and has identified the former as a good predictor of
the outcome PL. The total activations in the lower graph show
that the model is correctly distinguishing singular and plural
sets after about 150 iterations.

3Source code for simulation of R-W learning is available at
http://github.com/rmalouf/learning.
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Figure 3: Simulated learning of a singular/plural distinction
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We repeated the simulation for a singular/dual/plural sys-
tem, in Figure 4. Learning proceeds in much the same way
as in the previous case, though in this system there are two
discrimination tasks to be solved: the learner must learn that
the cue 1 is not associated with DU nor is it associated with
PL. Additionally, it must learn that 2 is not associated with
PL, even though all plural sets include 2 as a member. As be-
fore, the learner is able to correctly label singular, dual, and
plural sets after about 150 iterations.

The next simulation considers the task of learning a
dual/non-dual distinction, a grammatical number system type
that is not found among human languages. The results are in
Figure 5. Parallel to the singular/plural system, in this system
the model needs to learn that 2 is a good cue for the out-
come DU but 1 is not, even though both cue 1 and cue 2 are
always present with outcome DU. Unlike the singular/plural
system, however, the model must also cope with the fact that 2
sometimes occurs with NONDU, for tripleton and higher sets.
Furthermore, the model needs to learn that 3 is a good cue
for NONDU. This is challenging, because 1 quickly becomes
a strong cue for NONDU in this system, and 3 never occurs
without 1.

After 250 iterations, the model has only begun to discrim-
inate 1 and 2 (in the topmost graph), and the activation for

Figure 4: Simulated learning of singular/dual/plural
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DU never does rise above NONDU for sets of numerosity 2.
Note that this is not to say that the dual/non-dual distinction
is unlearnable in general, only that it was not learned in 250
iterations. This suggests that some measure of relative degree
of learnability is a determinant for the observed distributions
of number marking.

The results in Figures 3–5 are traces of individual simula-
tions. The actual learning trajectory and the final weights in
the run depend on the particular randomly-generated training
examples that are provided in each learning trial. To see how
learning progresses in a population, we performed another set
of simulations. In these experiments, we combined 100 learn-
ers, each following its own trajectory. After each learning
trial, we calculated the fraction of the population which had
mastered the appropriate grammatical number system: e.g,
for the singular/dual/plural system, a ‘correct’ learner would
have to assign the highest total activation to SG for a single-
ton set, DU for a set with two items, and PL for higher nu-
merosities. As shown in Figure 6, the singular/plural and sin-
gular/dual/plural systems are learned quickly and reliably by
all members of the population. The same is not true for the
dual/non-dual system. Some members of the population learn
it quickly, but after 250 iterations less than 40% of the popu-
lation can use the system correctly. The dual/non-dual system
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Figure 5: Simulated learning of a non-dual/dual distinction
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offers a much more difficult discrimination task to the learner
than do either the singular/plural or the singular/dual/plural
systems.

To test what features of the system lead to this con-
trast in learning difficulty, we performed two more sets of
population-based simulations. In one, we removed subset
cues from the inputs, including only the numerosity of the
set as a whole. Given this input representation, the singu-
lar/plural distinction is learned very quickly, but both the sin-
gular/dual/plural and the dual/non-dual systems are learned
very slowly (and at similar rates).

In the second set of simulations, we altered the input prob-
ability distribution to make sets of numerosity two more fre-
quent than singletons (in contradiction to the real observed
frequencies in Figure 2). In this case, all three systems are
learned easily and quickly, and there is no distinction between
the attested and unattested systems.

Discussion
In general, these results suggest that the implicational organi-
zation of number distinctions identified in Universal 34 may
emerge from the interaction of a reliably common and skewed
distribution of set sizes with particular assumptions concern-
ing the representation of numerosities. The simulations repli-

Figure 6: Fraction of a simulated population of learners that
have mastered each system after k trials
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cate the expectations based on attested grammatical marking
strategies: SG versus PL is learned both early and easily, while
further distinguishing the DU takes longer, but is attainable.
In contrast, the differentiation of DU from NON-DU proves
a difficult discrimination to make. Given the success of the
simulations in achieving empirically attested patterns with-
out positing language specific representations, it was crucial
to explore the contribution of two basic assumptions of the
model, namely, our representation of numerosity and our as-
sumption concerning the role of exposure to the frequencies
of particular numerosities. When we expunged subset cues
from the representations, singular/dual/plural patterned with
dual/non-dual. This suggests the facilitating role of subset
organization for the emergence of singular/plural and singu-
lar/dual/plural versus dual/non-dual. When we altered the
frequencies for experienced numerosities so that duals oc-
curred more often than singulars, the difference between all
three patterns of number organization, i.e., singular/plural,
singular/dual/plural, and dual/non-dual disappeared: all were
learned equivalently well. This suggests that, as hypothe-
sized, real world experience has an important shaping influ-
ence on the organization of grammatical number systems.

While our model explains aspects of the intriguing restric-
tions on the morphosyntax of cross-linguistic number mark-
ing, it only defines the broad constraints on number organi-
zation in natural language. It ignores the specific strategies
that particular languages employ within the space of options
permitted by Universal 34. Further research is required to un-
derstand the dynamics which motivate, sustain and alter the
system of discriminations observed in specific languages. It
is in this interdependence between general constraints on the
organization of linguistic phenomena and the particularities
of their encodings that an understanding of natural language
is most likely to be found.
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Conclusion
In this paper, we present a view of grammatical number learn-
ing based on associative learning (Rescorla & Wagner, 1972;
Ramscar & Yarlett, 2007; Baayen et al., 2011). We show
that this model also provides a possible language-external ex-
planation for aspects of the Number Hierarchy. In particu-
lar, number as a real-world category is inherently structured
in two ways: sets of higher numerosity are mentioned less
frequently than sets of lower numerosity, and sets of higher
numerosity always contain sets of lower numerosity. Us-
ing corpus-based computational simulations (Ramscar et al.,
2011), we demonstrate that these facts, in interaction with
general principles of probabilistic learning, plausibly lead to
languages which violate the Number Hierarchy being much
more difficult to learn than languages which follow it, which
in turn motivates the emergence of the Number Hierarchy as
an implicational universal. This shows that even fairly ab-
stract properties of grammatical systems, when viewed from
a developmental perspective, can be seen to have a physical
or cognitive origin external to language.
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