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Delay-Limited and Ergodic Capacities of MIMO
Channels with Limited Feedback

Erdem Koyuncu, Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract

We consider a fixed data rate slow-fading MIMO channel with a long-term power constraint P

at the transmitter. A relevant performance limit is the delay-limited capacity, which is the largest

data rate at which the outage probability is zero. It is well-known that if both the transmitter

and the receiver have full channel state information (CSI) and if either of them has multiple

antennas, the delay-limited capacity is non-zero and grows logarithmically with P . Achieving

even a positive delay-limited capacity however becomes a difficult task when the CSI at the

transmitter (CSIT) is imperfect. In this context, the standard partial CSIT model where the

transmitter has a fixed finite bits of quantized CSI feedback for each channel state results in zero

delay-limited capacity. We show that by using a variable-length feedback scheme that utilizes

different number of feedback bits for different channel states, a non-zero delay-limited capacity

can be achieved if the feedback rate is greater than 1 bit per channel state. Moreover, we show

that the delay-limited capacity loss due to finite-rate feedback decays at least inverse linearly

with respect to the feedback rate. We also discuss applications to ergodic MIMO channels.

I. Introduction

Minimizing the outage probabilities of MIMO systems with different assumptions on trans-
mitter/receiver channel knowledge and power constraints is a classical fundamental problem
of communication theory and has been the subject of many publications. In particular,
it is known [1], [2] that transmit precoding with power control provides the best-possible
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outage probabilities of a fixed-rate t × r MIMO system. A remarkable result of [1] is that
unless t = r = 1, then for any given long-term power constraint P > 0, transmission
with zero-outage probability is possible for all rates up to a positive delay-limited capacity
C(P ) > 0. Moreover, the capacity C(P ) grows with a multiplexing gain of m � min{t, r},
i.e., C(P ) = m log P + O(1) as P → ∞.

The results of [1] rely on the assumption that both the transmitter and the receiver knows
the channel state information (CSI) perfectly. In practice, the receiver can indeed acquire
the CSI via training sequences from the transmitter. Obtaining CSI at the transmitter
(CSIT) is however more difficult and requires feedback from the receiver. One complication
in this context is that the MIMO CSI is, in general, an arbitrary complex-valued matrix,
and therefore feeding it back unquantized would require “an infinite rate of feedback.” This
motivates the current paper where we study the delay-limited capacities of MIMO systems
with partial quantized CSIT. The core element of our partial CSIT model is a channel
quantizer that specifies for every channel state (i) the sequence of feedback bits to be fed
back from the receiver to the transmitter, and (ii) for each such sequence, the precoding
matrix to be used by the transmitter. We design optimal quantizers that maximize the
delay-limited capacity subject to the long-term power constraint P of the transmitter and
the rate constraint R of the feedback link measured in bits per fading block.

A. Related Work

There has been a lot of work on power control with rate-limited feedback. In particular,
distributed quantized power control algorithms for single-antenna cellular systems have been
studied in [3], [4]. Also, [5] has considered the quantized power control problem for single-
antenna CDMA systems. The achievable gains with limited-feedback power control have
been studied in [6], [7] for MISO fading channels. In the more general MIMO setting, [8], [9]
have determined the achievable diversity-multiplexing gains with quantized power control.
The limited-feedback power control problem has also been studied for relay networks [10].

Most of the previous work on limited feedback MIMO power control [6]–[9] have focused on
a particular class of quantizers that we shall here refer to as “fixed-length quantizers (FLQs),”
in which the number of feedback bits is a fixed natural number for every channel state.
According to these studies, for a fixed target data rate, the best possible outage probability
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with a rate-R FLQ decays as O(P −d) where d = ∑2R

i=1(rt)i is the outage exponent of the
system and r is the target multiplexing gain. Compared to the case of a no-CSIT system [11],
FLQs can therefore significantly improve the outage exponent of the system. On the other
hand, unlike the case of a full-CSIT system, FLQs fail to achieve zero outage probability for
any finite P and R. Hence, the delay-limited capacity of the MIMO channel with finite-rate
FLQs is zero. Moreover, for any R, the outage exponents of FLQs will decrease from d to 0
as the target multiplexing gain r increases from 0 to m [8]. In particular, transmitting within
a constant gap of the full-CSIT delay-limited capacity (i.e. transmitting with a multiplexing
gain of m) will result in constant outage probability even as P → ∞.

Outage probability and delay-limited capacity are relevant performance measures when
the channel codewords are assumed to span only a fixed finite number of, say B, fading
blocks. This is also commonly referred to as the “B-block fading” scenario [1]. If coding can
be performed over an arbitrarily large number of blocks (B → ∞), the relevant performance
measure is the ergodic capacity [12]. Ergodic capacities of MIMO channels with limited
feedback have previously been studied with different approaches based on Grassmannian line
packings [13]–[15], vector quantizer design algorithms [16]–[20], high resolution approxima-
tions [21], [22], random vector quantizers [23]–[28], and several other techniques [29]–[34]. The
performance gains of limited feedback in the context of different performance measures, such
as bit-error or symbol-error probabilities, have also been analyzed [35]–[37]. Also, achievable
rates in MIMO broadcast channels with limited feedback have been determined [38], [39].
In particular, using random quantizers, it is shown in [27] that for a general MIMO system
with a short-term power constraint, the ergodic capacity loss due to quantization decays at
least exponentially with the feedback rate.

B. Summary of Main Results

The previous studies (as outlined in Section I-A) leave one with the impression that outage
is unavoidable when the transmitter CSI knowledge is less than perfect, or when the receiver
feedback rate is finite. In other words, the delay-limited capacities with limited feedback are
zero regardless of how high the rate of feedback is. We show that the unachievability of a
non-zero delay-limited capacity in the existing work is due to the implicit assumption of
FLQs for feedback information. In fact, by using variable-length quantizers (VLQs) [40]–
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TABLE I: Capacity Losses with FLQs and VLQs Relative to a Full-CSIT System

FLQs VLQs

B-block delay-limited capacity

(short-term power constraint)
Capacity is 0. Capacity is 0.

B-block delay-limited capacity

(long-term power constraint)
Capacity is 0. O(1/R)

Ergodic capacity (short-term

power constraint)
O(exp(−c1R)) O(exp(−c1R))

Ergodic capacity (long-term

power constraint)
O(exp(−c2R)) O(exp(−c2R))

[45], which allow different number of feedback bits for different channel states, we show that
a positive delay-limited capacity can be achieved for any feedback rate greater than 1 bit
per channel state. Moreover, we show that the capacity with VLQs can be made arbitrarily
close to the capacity with perfect CSIT by allowing a sufficiently large (but finite) feedback
rate. In fact, our results demonstrate that the delay-limited capacity loss due to quantization
decays at least inverse linearly with the feedback rate. We also discuss generalizations to
multi-user MIMO multicast networks.

Analyzing general-rank quantized precoding systems is known to be much more challeng-
ing than analyzing the simpler rank-1 quantized beamforming systems [27], [33], [34]. An-
other contribution of this paper is a new set of versatile technical tools that are applicable to
a variety of quantized MIMO precoding problems. As applications of these tools (in addition
to the results above), we also show that the ergodic capacity loss due to quantization decays
exponentially with the feedback rate for both short-term and long-term power constraints.
The short-term case has previously been shown in [27]; we provide here a much simpler
proof that utilizes FLQs with an explicit construction as opposed to random FLQs.

In the light of the above main results, bounds on the capacity losses with FLQs and VLQs
for different capacity measures are shown in Table I as a function of the feedback rate R.
The bounds hold for every sufficiently large P , and c1, c2 are constants that are independent
of R and P .
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C. Organization of the Paper

The rest of the paper is organized as follows: In Section II, we introduce the system
model, the formal definitions of the channel quantizers and the corresponding delay-limited
capacities. In Section III, we study the limited-feedback delay-limited capacities with scaled-
identity covariance matrices. In Section IV, we consider the case of arbitrary covariance
matrices. In Section V, we extend our results to general B-block fading channels for B > 1. In
Section VI, we provide applications to ergodic channels with long-term or short-term power
constraints. Finally, in Section VII, we draw our main conclusions. Some of the technical
proofs are provided in the appendices.

D. Notation

The sets C, R, and Z are the sets of complex numbers, real numbers, and integers,
respectively. For any given z ∈ C, �(z) and �(z) represent the real and imaginary parts
of z, respectively, and |z| is the norm of z. For any set A, we denote by Am the set of all
m × 1 vectors whose components are members of A. Similarly, Am×n is the set of all m × n

matrices whose entries are members of A. The set A>0 is the set of positive elements of A,
and A≥0 is defined similarly. We use the notation [hij]r×t to represent a matrix with r rows, t

columns, and the entry hij in its ith row, jth column. For any given matrix A, the quantity
‖A‖ is the Frobenius norm of A. We denote by It the t × t identity matrix. We let CN (Q)
represent a circularly-symmetric complex Gaussian random variable with covariance matrix
Q, and n ∼ CN (Q) means that n is distributed as CN (Q). Finally, P(·) and E[·] represent
the probability and the expected value, respectively.

II. Preliminaries

We begin our discussion with the simple case of MIMO systems with scaled-identity
precoding matrices. We also assume that each channel codeword spans only one fading block.
We introduce the system model, and the notions of delay-limited capacities and quantizers.
We later generalize these definitions to MIMO systems with arbitrary precoding matrices,
and then to general B-block MIMO fading channels.
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A. System Model and Performance Measures

Consider a MIMO system with t transmitter antennas and r receiver antennas. Denote the
channel from the transmitter antenna j to the receiver antenna i by hij, and let H = [hij]r×t

represent the entire channel state. We assume that the components of H are independent
and identically distributed as CN (1). The transmitted symbol s ∈ C and the received vector
y ∈ C

r×1 have the input-output relationship y = Hs+n, where the noise vector n ∼ CN (Ir)
is independent of h. We assume that the receiver knows H perfectly.

Let λ = [λ1 · · · λm] denote the unordered positive eigenvalues of H†H or HH†. For a
fixed H, suppose that the input symbol s is chosen as s ∼ CN (σ

t
It) for some σ ≥ 0.

The channel capacity with this strategy is c(σ, λ) � ∑m
i=1 log(1 + σ

t
λi) nats/sec/Hz. The

transmission power (averaged over the Gaussian symbol s) is E[‖s‖2] = σ. For a given target
data transmission rate c ≥ 0, an outage event occurs if c(σ, λ) < c.

When H is random, we define the outage probability as the fraction of channel realizations
for which outage events occur. To be more precise, consider an arbitrary power-control
mapping σ : Rm

>0 → R≥0, and suppose that the transmitter transmits with power σ(λ) given
that the channel eigenvalues are given by λ. Then, for a given target data transmission rate
c ≥ 0, we define the outage probability with mapping σ as Pout(σ; c) � P(c(σ(λ), λ) < c).
The average transmission power consumed by the mapping σ is given by P(σ) � E[σ(λ)],
where the expectation is over all possible eigenvalues.

In this paper, our main focus is on mappings that can achieve zero outage probabil-
ity. Correspondingly, we define the delay-limited (zero-outage) capacity c(σ) � sup{c ≥
0 : Pout(σ; c) = 0} with σ as the supremum of all transmission rates where the outage
probability with σ is zero. With perfect CSIT, an optimal “full-CSIT mapping” σ� �
arg max{c(σ) : P(σ) ≤ P} exists [1] and provides the maximum achievable capacity (with
scaled-identity covariance matrices) c(P ) � c(σ�) of the MIMO channel subject to a long-
term power constraint P ≥ 0 at the transmitter. An explicit form of σ� is given by σ�(λ) =
min {σ ∈ R≥0 : c(σ, λ) = c}, where c satisfies E[σ�(λ)] = P . In other words, for each realiza-
tion of the eigenvalues, one spends just enough power to avoid outage for a target data rate
that should be chosen to satisfy the long-term power constraint of the transmitter.

In particular, for t = 1 and r > 1, we have the full-CSIT mapping σ�(λ1) = (r−1)P
λ1

for
a SIMO system with c(σ�) = log(1 + (r − 1)P ). For r = 1 and t > 1 (a MISO system),
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we can calculate σ�(λ1) = (t−1)P
λ1

with c(σ�) = log(1 + t−1
t

P ). For r = t = 1 (a SISO
system), c(σ�) = 0, ∀P ≥ 0 (Supporting any given positive data rate with zero outage
probability requires infinite average power.). In general, for t > 1 and r > 1, no simple closed-
form expressions are known for the full-CSIT mappings and the corresponding capacities.
However, asymptotic expressions are available for the P → ∞ regime. Specifically, for m �
min{t, r} and m � max{t, r}, it can be shown (see, e.g., [1] and [46]) that

c(P ) = m log P − m log
(

t
m∏

i=1

Γ(m − i + 1 − 1
m

)
Γ(m − i + 1)

)
+ o(1), m > 1. (1)

B. Channel Quantizers for Partial-CSIT Systems

The capacity-maximizing full-CSIT mapping σ� requires perfect knowledge of σ�(λ) at
the transmitter. In practice, for each channel state, σ�(λ) should then be fed back from the
receiver to the transmitter. Since σ�(λ) can assume an arbitrary positive real number, feeding
it back unquantized would require an infinite rate of feedback. We thus consider a partial-
CSIT scenario where the transmitter transmits with quantized power levels according to
the receiver’s finite-rate feedback information. Such a system can be modeled by a “channel
quantizer” as we describe in the following.

Let I be a countable index set. We use the notation {an}n∈I for the set {an : n ∈ I}. For a
given index set I, let {σn}n∈I be a set of quantized transmission power levels with {σn}n∈I ⊂
R≥0. Also, let {En}n∈I be a collection of mutually disjoint subsets of Rm

>0 with ∪n∈IEn = R
m
>0.

Finally, let {bn}n∈I ⊂ {0, 1}+ be a collection of feedback binary codewords, where {0, 1}+ �
{0, 1, 00, 01, . . .} is the set of all non-empty binary codewords. We assume the collection
{bn}n∈I forms a prefix-free code. We call the collection of triples q � {[σn, En, bn]}n∈I a
quantizer q. We call q an infinite-level quantizer if I is an infinite set. Otherwise, we call q

a finite-level (or, to be more specific, an |I|-level) quantizer.
The quantizer q corresponds to a feedback transmission scheme that operates in the

following manner: For a fixed channel state H, the receiver feeds back the binary codeword
bn, where the index n here satisfies λ ∈ En. Such an index n always exists and is unique as
{En}n∈I forms a disjoint covering of Rm

>0. The transmitter recovers the index n and transmits
with power σn. The recovery of n by the transmitter is always possible since bn’s are distinct.
We write q(λ) = σn whenever λ ∈ En to emphasize the quantization operation. We call the
set {σn}n∈I the quantizer codebook.
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For any b ∈ {0, 1}+, let �(b) denote the “length” of b. For example, �(0) = 1, �(01) = 2.
A quantizer q is called a fixed-length quantizer (FLQ) if �(bi) = �(bj) for every i, j ∈ I.
Otherwise, we call q a variable-length quantizer (VLQ). In either case, the quantization rate
R(q) � ∑

n∈I P(λ ∈ En)�(bn) measures the rate of feedback information from the receiver to
the transmitter. Also, since quantizers are special cases of the mappings discussed in Section
II-A, we let c(q) denote the capacity with a quantizer q.

C. Delay-Limited Capacities with FLQs and VLQs

Our goal is to design quantizers that maximize the delay-limited capacity of the channel
subject to the rate constraint of the feedback link and the power constraint of the trans-
mitter. Namely, we are interested in determining the capacities cR(P ) � sup{c(q) : P(q) ≤
P, R(q) ≤ R} and the quantizers that can achieve them. We also compare the capacities
cR(P ) with the capacity c(P ) = c(σ�) with perfect CSIT.

The capacity with full-CSIT grows logarithmically with P and provides a multiplexing
gain of m. In general, in order to achieve even a positive capacity, the transmitter should be
able to transmit with arbitrarily large powers so that outage events can be avoided even at
extremely ill-conditioned channel states. An important byproduct of this observation is that
a finite-rate FLQ (or, in general, a finite-level quantizer) cannot provide a positive capacity
at any P as an FLQ can support only a finite number of transmission powers. VLQs appear
as natural candidates in this context as a VLQ can utilize infinitely many, arbitrarily large
transmission powers while still retaining a finite feedback rate and a finite average power.

In the following, we show that VLQs can in fact achieve a positive delay-limited capacity
at any feedback rate and power constraint, i.e., for every P > 0 and R > 1, we have
cR(P ) > 0. Moreover, we construct a family of VLQs whose capacities converge to the full-
CSIT capacity uniformly as the feedback rate grows to infinity. In other words, we show
that as R → ∞, we have cR(P ) → c(P ) for every P ≥ 0. Later, we will show how to obtain
analogous results for general precoding matrices.

III. VLQs for Scaled Identity Precoding Matrices

A first natural idea for a VLQ design might be to directly quantize the optimal transmis-
sion power σ�(λ) using a scalar quantizer. However, the performance of quantizers designed
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in this manner are very difficult to analyze as there is no simple expression for the PDF of
σ�(λ). We thus take an indirect route by designing a vector quantizer for λ.

We begin by defining a set of auxiliary binary codewords. For n ∈ Z≥0, let an = 00n1,
and for n ∈ Z<0, let an = 10|n|−11. The set of auxiliary binary codewords {an}n∈Z =
{. . . , 1001, 101, 11, 01, 001, 0001, . . .} then defines a prefix-free code. For a given arbitrary
real number β > 1, let

E{−1}m � [ 1
β
, β)m (2)

b{−1}m � 0, (3)

σ{−1}m � σ�([ 1
β

· · · 1
β
]). (4)

Also, for any [i1 · · · im] ∈ Z
m\{−1, 0}m, we define

E[i1···im] � [βi1 , βi1+1) × · · · × [βim , βim+1) (5)

b[i1···im] � 1ai1 · · · aim , (6)

σ[i1···im] � σ�([βi1 · · · βim ]). (7)

Now, let K � {{−1}m} ∪ (Zm\{−1, 0}m). We consider the quantizer

qβ � {σκ, Eκ, bκ}κ∈K. (8)

For each β > 1, we have a different quantizer with different encoding cells and power
levels. As we shall explain in the following, the purpose of the parameter β is to control the
transmission power and the rate of the quantizer qβ.

In general, qβ quantizes the unordered eigenvalues λ = [λ1 · · · λm] to a quantized power
level qβ(λ). To gain intuition on the structure of qβ, we first discuss the special case m = 1
as illustrated in Fig. 1. The horizontal axis represents λ1 and the vertical axis represents the
instantaneous transmission power (with qβ or σ�) given λ1. Both axes are in the logarithmic
scale. The thick black line represents the full-CSIT mapping σ�(λ1) = α

λ1
, where α � (r−1)P ,

and the piecewise gray line represents the quantizer qβ.
First, we observe that for every β > 1 and any given λ1, the transmission power with qβ

is no less than the transmission power with the full-CSIT mapping σ�, i.e., for all β > 1
and λ1 > 0, we have qβ(λ1) ≥ σ�(λ1). Hence, the quantizer qβ can avoid outage whenever
σ� does, and therefore, we have c(qβ) ≥ c(σ�).
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1
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b1 = 1001
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[

1
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1
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)
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Cell −3
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[

1
β3 ,

1
β2

)

σ−3 = αβ3

b−3 = 11001

Cell 2

E2=[β2, β3)

σ2 = α/β2

b2 = 10001

· · ·· · ·

λ1

σ�(λ1)
qβ(λ1)

Fig. 1: The quantizer qβ for the special case m = 1.

Second, we observe that the quantizer qβ is a “log-uniform deadzone quantizer” meaning
that the lengths of all its cells (except the cell E−1) in the logarithmic domain is the same. One
motivation for choosing a log-uniform structure is that it leads to quantizers with bounded
transmission powers. Indeed, we have qβ(λ) ≤ β2σ�(λ) for every λ > 0, and therefore,
P(qβ) ≤ β2P(σ�) (To see why the first inequality is true, note that multiplying σ�(γ) by β2

is equivalent to shifting the thick black line in Fig. 1 above by 2 log β units. This shifted
version of σ� serves as an upper bound on qβ(λ) for every λ, which proves the inequality.).
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Fortunately, the log-uniform structure of qβ that guarantees its bounded power consump-
tion also guarantees a bounded feedback rate. Indeed, for n → −∞, the lengths of the quanti-
zation cells En decay exponentially with |n| as O(β−|n|). This results in P(λ ∈ En) ∈ O(β−|n|)
as the PDF f(λ1) = e−λ1λm−1

1 /Γ(m), λ1 ≥ 0 of λ1 is bounded from above. On the other
hand, as n → ∞, the PDF of λ1 decays so fast that we again have P(λ ∈ En) ∈ O(β−n).
Then, since �(bn) ∈ O(|n|), the quantization rate R(qβ) = ∑

n∈Z\{0} �(bn)P(λ ∈ En) =
O(∑n∈Z\{0} |n|β−|n|) = O(1) is finite for any β > 1.

Finally, as β → ∞, P(λ ∈ E−1) = P(λ ∈ [ 1
β
, β)) → 1, and thus, the (finite) rate

contributions of all the other quantization cells vanishes. Also, since the codeword b−1 for
E−1 has length 1, we have, as β → ∞, R(qβ) → P(λ ∈ E−1)�(b−1) → 1. Hence, the role of
the deadzone cell E−1 is to make sure that qβ supports feedback rates that are arbitrarily
close to 1 bit while still achieving a positive delay-limited capacity with bounded power.

For m > 1, the quantizer qβ is roughly the m-fold product of its special case where m = 1.
The log-uniform intervals for m = 1 become log-uniform hypercubes for m > 1. Similarly,
for a general m, the log-uniform structure provides a capacity of c(σ�) with finite average
power and finite feedback rate. Formal calculations lead to the following result.

Theorem 1. For every β > 1 and P ≥ 0, we have c(qβ) ≥ c(σ�) = c(P ), P(qβ) ≤ β2P(σ�) =
β2P , and R(qβ) ≤ 1 + k1

β−1 , where k1 is a constant that depends only on r.

Proof. See Appendix A.

We recall that the full-CSIT delay-limited capacity for a given power constraint P is
c(σ�) = c(P ). Theorem 1 shows that for any given P ≥ 0 and β > 1, we can achieve
a delay-limited capacity of c(P ) with an average power of β2P and a feedback rate of
1 + k1

β−1 . Therefore, the quantizer design parameter β controls the tradeoff between the
average transmission power and the feedback rate for a fixed target delay-limited capacity.
In this context, a large β translates to a large average transmission power but a low feedback
rate, while a small β means a low average transmission power but a high feedback rate.

We now investigate the tradeoff between the average feedback rate and the delay-limited
capacity for a fixed transmission power. In fact, for any given R > 1, applying Theorem 1
for the special case β = 1+ k1

R−1 , we observe that the capacity with a feedback rate of R > 1
is at least c(P ) with a power consumption of (1 + k1

R−1)2P . Equivalently, the capacity cR(P )
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with a feedback rate of R > 1 and a power constraint of P satisfies

cR(P ) ≥ c

(
P

(1 + k1
R−1)2

)
. (9)

Hence, at any feedback rate greater than 1 bit per channel state, and at any power constraint,
there is in fact a positive capacity that is achievable by a VLQ. Moreover, by allowing a
sufficiently large feedback rate, the capacity with partial-CSIT can be made arbitrarily close
to the capacity with full-CSIT.

It is also insightful to compare (9) with the existing results on the capacity of MIMO
broadcast channels with limited feedback [38], [39]. It is well-known that in MIMO broadcast
channels, to achieve the multiplexing gain of a full-CSIT system, the per-receiver feedback
rates should increase logarithmically with the transmission power [38]. The necessity for such
high feedback rates is due to the interference between the data streams that are intended
for different receivers. On the other hand, (9) shows that in the interference-free point-to-
point MIMO channels with the delay-limited capacity performance measure, one can achieve
the full-CSIT multiplexing gain with any feedback rate greater than 1 bit per channel state.
Hence, in contrast to MIMO broadcast channels, the rate loss due to quantization is bounded
uniformly, and moreover, it decays to zero as the feedback rate grows to infinity.

A. Extensions to Multi-User Networks

In this subsection, we extend the above results to multi-user MIMO multicast networks.
Suppose that we wish to achieve an outage-free multicast of the symbol s ∼ CN (σ

t
It) from

the t-antenna transmitter to K receivers with r antennas each. Let Hk ∈ C
r×t denote

the channel state from the transmitter to Receiver k, and λk = [λk1, . . . , λkm] denote the
unordered eigenvalues of H†

kHk. We define the delay-limited capacity in this case as the
supremum of all data rates that can be reliably decoded at every receiver with zero outage.
Using the same arguments as in the single-user case, the corresponding full-CSIT mapping
is σ�(λ1, . . . , λK) � min{σ : mink c(σ, λk) = c′}, where c′ satisfies E[σ�(λ1, . . . , λK)] = P .
The delay-limited capacity of the K-user MIMO multicast channel thus equals c′.

For limited-feedback purposes, we use the same encoder as the quantizer qβ at the re-
ceivers. In other words, for every k, Receiver k feeds back bik

whenever λk ∈ Eik
for some

ik ∈ K. Using the feedback bits from Receiver k, the transmitter can determine (in the
same manner as in the single-user MIMO system) the minimum amount of power to avoid
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outage at rate c′ at Receiver k up to β2-multiplicative accuracy. Hence, using the feedback
bits from all the receivers, the transmitter can determine the minimum amount of power
to avoid outage at all the receivers up to β2-multiplicative accuracy. Therefore, by (9), the
capacity of a MIMO multicast system with R bits of feedback per receiver at power level P is
at least the capacity of a MIMO multicast system with full-CSIT at power level P/(1+ k1

R−1)2.

IV. VLQs for General Precoding Matrices

We now consider the general scenario where the input symbol s of the MIMO channel is
chosen as s ∼ CN (Q) for some arbitrary covariance matrix Q ∈ C

t×t. Equivalently, we can
choose s ∼ XCN (It), where X ∈ C

t×t satisfies Q = XX†. We call X a precoding matrix
corresponding to Q. For a fixed H, the channel capacity with a precoding matrix X is

C(X, H) � log det(Ir + HXX†H†) nats/sec/Hz. (10)

Again, we assume that the channel codeword spans only one fading block.
Consider a mapping X : Cr×t → C

t×t that assigns the precoding matrix X(H) to channel
state H. Then, we define the capacity with X as

C(X) � sup{c ≥ 0 : P(C(X(H), H) < c) = 0}. (11)

Similar to the case of scaled-identity precoding matrices, a “full-CSIT mapping”

X� � arg max
X

{C(X) : E[‖X‖2] ≤ P} (12)

exists [1] and provides the maximum achiveable capacity C(P ) � C(X�) given power
constraint P . Similarly, we have X�(H) = arg minX {‖X‖ : C(X, H) = d}, where d is chosen
to satisfy E[‖X�‖2] = P .

For a more explicit form of X�, consider the decomposition H†H = Udiag([λ1 · · · λm 0 · · · 0])U†,
where U ∈ C

t×t is a unitary matrix. Then, the optimal precoding matrix is derived from
the water-filling solution [2, Lemma 1]

X� = Udiag
([√

(μ� − 1
λ1

)+ · · ·
√

(μ� − 1
λm

)+ 0 · · · 0
])

, (13)

where

μ� �
(

ed∏
i∈I�

λi

)1/|I�|
(14)
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is usually referred to as the water level, and I� ⊂ {1, . . . , m} is the unique index set that
satisfies μ� ≥ 1

λi
if and only if i ∈ I�. Note that we have omitted (and from now on will omit)

the H-dependencies of most quantities (such as X� and μ�) for brevity. To gain intuition on
how (13) and (14) are obtained (see [2, Lemma 1] for a detailed derivation), first note that
for a given channel state, the precoding matrix X� should achieve a mutual information
of d with the minimum possible (instantaneous) power. Without loss of generality, we can
assume that X� also results in the maximum mutual information among all other precoding
matrices with the same power. It then follows from [12] that X� should be of the form (13)
for some μ� > 0. Using the fact that X� should achieve a mutual information of d, i.e.
substituting X� to the equality C(X, H) = d, we have ∏m

i=1(1 + λi(μ� − 1
λi

)+) = ed. Solving
for μ�, we obtain (14). The constant d (and thus also μ�) should be chosen according to the
long-term power constraint of the transmitter.

For a SIMO system, the most general precoding matrices are scaled-identity matrices.
We obtain the mapping X� =

√
(r − 1)P/λ1, which is (not surprisingly) equivalent to the

mapping σ�(λ1) = (r−1)P/λ1 considered in Section III. In particular, we have C(P ) = c(P )
when t = 1. For a MISO system however, we have C(P ) = c(tP ) = log(1 + (t − 1)P ),
and therefore, there is a power/beamforming gain of t with a general precoding structure
when r = 1. For a general r and t, a similar power gain of t

m
≥ 1 is achievable: We have

C(P ) ≥ c( t
m

P ) for all P ≥ 0, and C(P ) = c( t
m

P ) + o(1) as P → ∞ [1].
The goal of this section is therefore to achieve the maximum capacity C(P ), which is in

general larger than the capacity c(P ) with scaled-identity precoding matrices only. Given a
feedback rate constraint of R and a power constraint of P , let CR(P ) denote the capacity
of the MIMO channel with general quantized precoding matrices. Our main result in this
section shows that there is a constant k > 0 such that for every sufficiently large R, we have

CR(P ) ≥ C(P ) − k

R
, ∀P ≥ 0. (15)

In the following, we provide an explicit construction of the VLQs that can achieve the
capacities claimed by (15). Our strategy is first to investigate what we call “perturbations”
on the optimal precoding matrix X� with full-CSIT. First, we define the notion of “pertur-
bation” for a general matrix and investigate the properties of perturbed matrices.

Definition 1. Let X = [xij]t×t ∈ C
t×t be an arbitrary matrix. We call Y = [yij]t×t ∈ C

t×t an
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ε-perturbation of X if for any i, j ∈ {1, . . . t}, we have |�xij −�yij| ≤ ε and |�xij −�yij| ≤ ε.

Now, given x ∈ R and ξ > 0, let Q(x; ξ) = sign(x)ξ �|x|/ξ�. We have |x| ≤ |Q(x; ξ)|. In fact,
|x| − |Q(x; ξ)| ≤ ξ, and therefore, Q(x; ξ) is a ξ-perturbation of x. We extend the definition
of Q(x; ξ) to an arbitrary complex matrix A = [aij]M×N via defining Q(A; ξ) = [Q(�aij; ξ) +
√−1Q(�aij; ξ)]M×N . The following lemma immediately follows from these definitions.

Lemma 1. For any ξ > 0 and any matrix A, the (quantized) matrix Q(A; ξ) is a ξ-
perturbation of A with ‖Q(A; ξ)‖ ≤ ‖A‖. Moreover, in the domain of all M × N matrices A

with ‖A‖ ≤ a, the matrix Q(A; ξ) can assume at most (1+ 2a
ξ

)2MN values. In other words, the
cardinality bound |{Q(A; ξ) : A ∈ C

M×N , ‖A‖ ≤ a}| ≤ (1 + 2a
ξ

)2MN holds for every a ≥ 0.

Proof. The first sentence in the statement of the lemma is a straightforward consequence of
the definitions. For the cardinality bound, note that if |x| ≤ a for some a > 0, then q(x; ξ)
can assume at most 2�a

ξ
� + 1 ≤ 1 + 2a

ξ
values. On the other hand, ‖A‖ ≤ a implies that the

real and imaginary parts of all the MN components of A have norms no greater than a.
Hence, when ‖A‖ ≤ a, the matrix Q(A; ξ) can assume at most (1 + 2a

ξ
)2MN values.

In the following, we find an upper bound on the data rate loss due to perturbations of an
optimal precoding matrix. For future reference, we first prove a more general result.

Proposition 1. For a given H with H†H = UΛU†, let X = U
√

N, where N = diag((ν −
1

λ1
)+, . . . , (ν − 1

λm
)+, 0, . . . , 0) ∈ C

t×t for some arbitrary ν ∈ R. Then, for every ε
√

ν-
perturbation X̂ of X, we have

C(X̂, H) ≥ C(X, H) − k2ε (16)

for every sufficiently small ε and some constant k2.

Proof. See Appendix B.

For our specific problem at hand, we need the following corollary.

Corollary 1. For a given H, let X� be as defined in (13)-(14). Then, for every ε
√

μ�-
perturbation X̂ of X�, we have C(X̂, H) ≥ C(P ) − k2ε for some constant k2 > 0 and every
sufficiently small ε.

Proof. By Proposition 1, we have C(X̂, H) ≥ C(X�, H) − k2ε = C(P ) − k2ε as desired.
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Suppose now that the transmitter knows μ� perfectly. Then, Corollary 1 and Lemma
1 lead to the following simple quantization scheme that utilizes the quantized precoding
matrix X′ � Q(X�; ε

√
μ�). By (13), we have ‖X�‖ ≤ t

√
μ�, and therefore, by Lemma 1, X′

can assume at most (1 + 2t
ε
)2t2 values. In other words, X′ can be represented by a rate-

R(ε) FLQ, where R(ε) � 2t2 log2(1 + 2t
ε
). Hence, the receiver, knowing μ�, quantizes the

optimal matrix X� to X′ and sends the corresponding R(ε) feedback bits to the transmitter.
Transmitter, knowing μ�, can recover X′. By Lemma 1, X′ is an ε

√
μ�-perturbation of X�,

and therefore, it provides a capacity of at least C(P ) − k2ε by Corollary 1. Also, since
‖X′‖ ≤ ‖X�‖ by Lemma 1, and E[‖X�‖2] = P , the average power consumption with X′ is
at most P . Therefore, we can achieve the capacity C(P ) − k2ε with a power consumption
of P and a (fixed-length) feedback rate of R(ε).

Obviously, the transmitter cannot know μ� perfectly. Here, we observe that we can at least
tolerate a “multiplicative uncertainty” regarding the knowledge of μ� at the transmitter. To
be more precise, for μ > 0 and ζ ≥ 1, let Hμ,ζ � {H : μ

ζ
≤ μ� ≤ μ}. Then, we have the

following result.

Proposition 2. For every μ > 0 and ζ ≥ 1, the following holds.

(i) For every H ∈ Hμ,ζ, the matrix Q
(
X�; ε

√
μ
ζ

)
is an ε

√
μ�-perturbation of X�.

(ii) For every H ∈ Hμ,ζ, we have ‖Q
(
X�; ε

√
μ
ζ

)
‖ ≤ ‖X�‖.

(iii) The bound
∣∣∣{Q

(
X�; ε

√
μ
ζ

)
: H ∈ Hμ,β

}∣∣∣≤ 2R(ε/
√

ζ) holds.

Proof. For (i), note that Q
(
X�; ε

√
μ
ζ

)
is an ε

√
μ
ζ
-perturbation of X� by definition. It is also

an ε
√

μ�-perturbation of X� as μ� ≥ μ
ζ

whenever H ∈ Hμ,ζ . (ii) holds by the definition of
Q(·). For (iii), first note that the real and imaginary parts of all the t2 components of X�

have norm no greater than t
√

μ� ≤ t
√

μ. It follows that q
(
X�; ε

√
μ
ζ

)
can assume at most

⎡⎣2
⎢⎢⎢⎣ t

√
μ

ε
√

μ
ζ

⎥⎥⎥⎦ + 1
⎤⎦2t2

=
[
2
⌊

t
√

ζ

ε

⌋
+ 1

]2t2

≤
[
2t

√
ζ

ε
+ 1

]2t2

= 2R(ε/
√

ζ) (17)

values.

Hence, if the transmitter only knows that μ
ζ

≤ μ� ≤ μ for some μ > 0 and ζ ≥ 1 (instead
of a perfect knowledge of μ�), we can utilize the quantized precoding matrix Q(X�; ε

√
μ
ζ
) to

achieve a capacity of C(P )−k2ε with a power consumption of P . The only difference is that
the required feedback rate will be R(ε/

√
ζ) instead of R(ε). The remaining issue is therefore
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to quantize μ� to (say) μ̂ in such a way that the inequalities μ̂
ζ

≤ μ� ≤ μ̂ always hold. This
can be accomplished using the log-uniform quantizer structure discussed in Section III.

For λ′ = [λ′
1 · · · λ′

m], let μ�(λ′) be defined as in (14) with respect to λ′
1, . . . , λ′

m. Let
μ{−1}m = μ�([ 1

β
· · · 1

β
]), and for [i1 · · · im] ∈ K − {0}, let μ[i1···im] � μ�([βi1 · · · βim ]). Let

μ̂ = μκ and b̂ = bκ whenever λ ∈ Eκ. We have the following.

Proposition 3. For every β ≥ 1, we have μ̂
β2 ≤ μ� ≤ μ̂.

Proof. See Appendix C.

We can now consider a quantization scheme that operates in the following manner. For
a given H, the receiver first calculates μ� and quantizes μ� to μ̂. The feedback bits for
this variable-length stage is given by the binary codeword b̂. Then, having calculated μ̂,
the receiver quantizes the optimal precoding matrix X� to Q(X�; ε

√
μ̂/β2). This fixed-length

stage requires R( ε
β
) feedback bits. The receiver first sends the feedback bits for the fixed-

length stage followed by the feedback bits b̂ for the variable-length stage (so that we have
a prefix-free code). The average feedback rate is no more than R( ε

β
) + 1 + k1

β−1 by Theorem
1. The transmitter, on the other hand, first recovers μ̂, and then reconstructs and uses
Q(X�; ε

√
μ̂/β2). According to Propositions 2, 3, and 4, this provides a capacity of at least

C(P )−k2ε with a power consumption of no more than P . In particular, choosing β = 1+ k3
R

and ε = k3
R

for some suitable constant k3 > 0 proves (15). We now formally present the main
result of this section as a theorem.

Theorem 2. There is a constant k > 0 such that for every sufficiently large R, we have
CR(P ) ≥ C(P ) − k

R
for every P ≥ 0.

V. Extensions to B-Block Fading Channels

The two previous sections were concerned with the limited-feedback delay-limited capac-
ities of “1-block fading channels,” i.e. fading channels for which the channel codeword is
assumed to span only one fading block. In this section, we extend our results to B-block
fading channels. As discussed in [1], in a B-block fading channel with channel matrices
H1, . . . , HB, one considers B precoding matrices, X1, . . . , XB that achieve the rate

1
B

B∑
b=1

log det(Ir + HbXbX†
bH

†
b) (18)
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with power 1
B

∑B
b=1 ‖Xb‖2. Let Hb = Ubdiag([λb1 · · · λbm 0 · · · 0])U†

b denote the spectral
decomposition of the channel matrix with index b. Using the same arguments as in the
case B = 1, the optimal collection of precoding matrices X1�, . . . , XB� that maximize the
capacity are then given by

Xb� = Ubdiag
([√

(μ� − 1
λb1

)+ · · ·
√

(μ� − 1
λbm

)+ 0 · · · 0
])

, b = 1, . . . , B, (19)

with1

μ� =
(

edB∏
[b i]∈I�

λbi

)1/|I�|
. (20)

Here, the constant d is chosen to satisfy the long-term power constraint of the transmitter,
and I� ⊂ {1, . . . , B} × {1, . . . , m} is the unique index set that satisfies μ� ≥ 1

λbi
if and only

if [b i] ∈ I�. The derivations of (19) and (20) follow the exact same steps as the derivations
of (13) and (14) for the single-block case. The corresponding B-block delay-limited capacity
with full-CSIT is

C(P ; B) � 1
B

B∑
b=1

m∑
i=1

E
[
(log(μ�λbi))+

]
. (21)

Now, let CR(P ; B) denote the capacity with rate R quantized CSI per block (so that we use
a total of RB feedback bits on average to quantize the collection H1, . . . , HB.). We wish to
generalize Theorem 2 by determining how CR(P ; B) relates to C(P ; B) for a general B.

We can observe that the expressions for the optimal precoding matrices for a B-block
channel are in the exact same form as the optimal precoding matrix for the single-block
case discussed in the previous section. The only difference is that now the power control
parameter μ� depends on all the eigenvalues of all the B channels, but still, the nature of
the dependence is the same. Hence, the arguments we have used to prove Theorem 2 applies
verbatim. We have the following theorem.

Theorem 3. There is a constant k > 0 such that for every B ≥ 1 and every sufficiently
large R, we have CR(P ; B) ≥ C(P ; B) − k

R
for every P ≥ 0.

Proof. We can first assume that the transmitter knows μ� perfectly, in which case the
sequence of quantized precoding matrices Q(Xb�; ε

√
μ�), b = 1, . . . , B provides a capacity

1In order to avoid cumbersome expressions, we use the same notation as in Section IV for variables such as μ�.

The B-dependence of these variables should be clear from the context.
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of at least C(P ; B) − k2ε by Lemma 1 and Proposition 1. The quantization of μ� can be
accomplished using the same variable-length strategy described in Section III, with the only
difference being that the quantizer of the eigenvalues should now be Bm dimensional instead
of m dimensional. These constructions result in a feedback rate amplification of at most B

(compared to the case B = 1), and thus the delay-limited capacity CR(P ; B) with a feedback
rate of R bits per block satisfies CR(P ; B) ≥ C(P ; B) − k

R
for every B, where k is the same

constant as stated in Theorem 2.

VI. Applications to Ergodic Channels

The quantizer constructions and the technical tools we have developed so far can be
applied to a variety of limited feedback problems that are concerned with the capacity of
MIMO systems. As side results, we discuss here applications to the limited-feedback ergodic
capacities of MIMO channels with both long-term and short-term power constraints. Note
that the ergodic channel can be considered as a B-block fading channel with B → ∞.

A. Ergodic Capacity with a Long-Term Power Constraint

Consider the now-ergodic MIMO channel H with spectral decomposition H†H = Udiag([λ1

· · · λm 0 · · · 0])U†. The ergodic capacity with full-CSIT (c.f. (21))

C(P ; ∞) �
m∑

i=1
E
[
(log(μ�λi))+

]
(22)

is achieved by transmitting via the precoding matrix

X� = Udiag
([√

(μ� − 1
λ1

)+ · · ·
√

(μ� − 1
λm

)+ 0 · · · 0
])

, (23)

where the water level μ� is now the solution to the equation
m∑

i=1
E
[
(μ� − 1

λi
)+

]
= P. (24)

One important observation is that, as shown by (24), the water level μ� is independent of
the channel realization H in the ergodic scenario. This is in contrast to the finite-block cases
we have discussed in the previous sections where μ� has exhibited dependency on the spe-
cific channel realization(s). In these finite-block cases, what made variable-length feedback
necessary was precisely this channel state dependency and the associated unboundedness of
the water level μ�. In the ergodic scenario, since μ� becomes a fixed constant (that could be
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made a-priori available to both the transmitter and the receiver), it follows from Proposition
1 that one can approach the full-CSIT capacity using fixed-length feedback only. Formally,
let CR(P ; ∞) denote the ergodic capacity with a long-term power constraint P and a fixed-
length feedback rate of R bits per channel state. Then, we have the following theorem.

Theorem 4. There is a constant k4 > 0 such that for every sufficiently large R, we have
CR(P ; ∞) ≥ C(P ; ∞) − k42− R

2t2 for every P ≥ 0.

Proof. By Proposition 1, for every given H, any ε
√

μ�-perturbation of the optimal precoding
matrix X� for H provides a capacity of at least C(X�, H)−k2ε. As discussed after Corollary
1 in Section IV, finding such a perturbed matrix is always possible as long as we have a
codebook of cardinality (1 + 2t

ε
)2t2 ∈ O(ε−2t2). This means that we can achieve an ergodic

capacity of E[C(X�, H) − k2ε] = C(P ; ∞) − O(ε) with a codebook of cardinality O(ε−2t2).
Letting ε = 2− R

2t2 concludes the proof.

Hence, variable-length feedback is not necessary in the case of ergodic channels, and one
can approach the full-CSIT ergodic capacity using fixed-length feedback only. Also, recall
that in the non-ergodic case, the difference between the quantized-CSIT and the full-CSIT
capacity decays at least inverse linearly with the feedback rate. In the ergodic case, the
difference decays at least exponentially with the feedback rate.

B. Ergodic Capacity with a Short-Term Power Constraint

Finally, we consider the limited-feedback ergodic capacity of the MIMO channel with a
short-term power constraint P . This problem was previously studied in [27] via random
vector quantizers and it was shown that the capacity loss due to fixed-length quantization
decays at least exponentially with the feedback rate. Here, we obtain the same result using
the structured non-random quantizers that we have introduced in the previous sections.
Hence, we can provide a simple explicit construction of a “good” quantizer that provides an
exponentially-decaying quantization loss.

For a MIMO channel with a short-term power constraint P , the ergodic capacity

C̃(P ) �
m∑

i=1
E
[
(log(μ̃λi))+

]
(25)

with full-CSIT is achieved by the precoding matrix

X̃ � Udiag
([√

(μ̃ − 1
λ1

)+ · · ·
√

(μ̃ − 1
λm

)+ 0 · · · 0
])

, (26)
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where the water level μ̃ satisfies
m∑

i=1
(μ̃ − 1

λ i
)+ = P. (27)

Unlike the long-term ergodic scenario discussed in Section VI-A, the optimal water level now
depends on H. On the other hand, (27) implies μ̃ ≥ P

t
, and thus the water level is bounded

from below for every H. Since we also have ‖X̃‖ = P for every H, a fixed-length feedback
strategy as suggested by Proposition 1 again becomes feasible. Formally, let C̃R(P ) denote
the ergodic capacity with a short-term power constraint P and a fixed-length feedback rate
of R bits per channel state. We have the following theorem.

Theorem 5. There is a constant k5 > 0 such that for every sufficiently large R, we have
C̃R(P ) ≥ C̃(P ) − k52− R

2t2 for every P ≥ 0.

Proof. Consider the quantized precoding matrix Q(X̃; ε
√

P
t
), which, by definition, is an ε

√
P
t
-

perturbation of X̃. Since μ̃ ≥ P
t
, it is also an ε

√
μ̃-perturbation of X̃ and thus achieves

a capacity of at least C(X̃, H) − O(ε) by Proposition 1. Moreover, since ‖X̃‖ =
√

P , the
matrix Q(X̃; ε

√
P
t
) can assume at most (1+ 2

√
t

ε
)2t2 = O(ε−2t2) values by Lemma 1. Therefore,

averaging out over all the channels, we can achieve an ergodic capacity of C̃(P )−O(ε) using
O(ε−2t2) quantized precoding matrices. Letting ε = 2− R

2t2 concludes the proof.

VII. Conclusions

We have studied the limited feedback delay-limited capacities of a fixed data rate slow-
fading MIMO channel with a long-term power constraint P at the transmitter. In this
context, the standard partial CSIT model where the transmitter has a fixed finite bits of
quantized CSI feedback for each channel state results in zero delay-limited capacity. We
have shown that by using a variable-length feedback scheme that utilizes different number
of feedback bits for different channel states, a non-zero delay-limited capacity can be achieved
if the feedback rate is greater than 1 bit per channel state. We have also shown that the
delay-limited capacity loss due to finite-rate feedback decays at least inverse linearly with
respect to the feedback rate. We have extended our results to B-block fading channels, and
to ergodic MIMO channels where one lets B → ∞. For the latter scenario, we have shown
that the ergodic capacity loss due to quantization decays at least exponentially with the
feedback rate and fixed-length feedback is sufficient to achieve this performance.
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We have thus presented a general unifying treatment of the limited-feedback capacities of
fixed data rate B-block MIMO fading channels from B = 1 all the way up to B = ∞. For
finite B, we have shown that variable-length feedback with power control is necessary and
sufficient to achieve a positive capacity and to approach the capacity with perfect CSIT.
For B = ∞, fixed-length feedback is sufficient to approach the capacity with perfect CSIT.

One complication in implementing variable-length feedback schemes is the fact that most
current wireless systems are designed with fixed-length feedback in mind. Nevertheless, our
results demonstrate that variable-length feedback can provide fundamental performance
gains over fixed-length feedback, especially for delay-limited applications and power control.
Hence, there is a need for designing new or modifying existing wireless communication
protocols so as to enable variable-length resource allocation in the feedback link. Some
initial work in this context for 802.11 networks can be found in [42].

Appendix A

Proof of Theorem 1

We first prove that c(qβ) ≥ c(σ�) and P(qβ) ≤ β2P(σ�). We need the following lemma.

Lemma 2. Let λ′ = [λ′
1 · · · λ′

m] ∈ R
m
>0 and β′ ≥ 1. Then, for any λ with λ′

i ≤ λi ≤ β′λ′
i for

every i ∈ {1, . . . , m}, we have σ�(λ) ≤ σ�(λ′) ≤ β′σ�(λ′).

Proof. Let σ = σ�(λ) and σ′ = σ�(λ′). We have c(σ, λ) = c(σ′, λ′) = c for some c > 0.
Note that in general, c(σ′′, λ′′) is an increasing function of σ′′ and the components of λ′′.
In particular, since λi ≥ λ′

i for all i, we obtain c(σ′, λ) ≥ c(σ′, λ′). But since we also have
c(σ′, λ′) = c(σ, λ), we obtain c(σ′, λ) ≥ c(σ, λ). This implies σ′ ≥ σ and proves the upper
bound on σ�(λ). The proof for the lower bound on σ�(λ) is similar and is thus omitted.

This leads to the following bounds on the power consumption of qβ.

Proposition 4. For every m ≥ 1, β > 1, and λ ∈ R>0, we have σ�(λ) ≤ qβ(λ) ≤ β2σ�(λ).

Proof. Letting λ′ = [ 1
β

· · · 1
β
] and β′ = β2 in Lemma 2, we obtain σ�(λ) ≤ qβ(λ) =

σ�([ 1
β

· · · 1
β
]) ≤ β2σ�(λ), which proves the claim when λ ∈ E{−1}m . Similarly, letting λ′ =

[βi1 · · · βim ] for [i1 · · · im] ∈ K\{0} with β′ = β, we obtain σ�(λ) ≤ qβ(λ) = σ�([ 1
β

· · · 1
β
]) ≤

βσ�(λ) ≤ β2σ�(λ) for λ ∈ E[i1···im], and this concludes the proof.
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In particular, the lower bound on qβ(λ) in Proposition 4 implies c(qβ) ≥ c(σ�), and the
upper bound on qβ(λ) in Proposition 4 implies P(qβ) ≤ β2P(σ�). What is left is now to
prove the upper bound on R(qβ).

Let Λ represent the random vector corresponding to the eigenvalues λ. We have

fΛ(λ) = K−1
m,m exp

(
−

m∑
i=1

λi

)
m∏

i=1
λm−m

i

∏
i<j

i,j∈{1,...,m}

(λi − λj)2, (28)

where Km,m is a normalizing constant. Note that the second product is equal to 1 when
m = 1. For m ≥ 2, we have (λi−λj)2 ≤ 2(λ2

i +λ2
j) ≤ 2 ∑m

i=1 λ2
i . This implies ∏

i<j(λi−λj)2 ≤c

2m2(∑i λ2
i )m2 ≤c

∑
i λ2m2

i , where “≤c” means that the inequality holds up to a constant
multiplier that depends only on t and r. Hence, for any m ≥ 1, we have ∏

i<j(λi − λj)2 ≤c

1 + ∑
i λ2m2

i , and therefore, the joint PDF of λ1, . . . , λm admits an upper bound of the form

fΛ(λ) ≤c

m+1∑
i=1

m∏
j=1

e−λj λ
aij−1
j (29)

for constants 1 ≤ aij ≤c 1. Now, let Zij ∼ Γ(aij, 1), i = 1, . . . , m + 1, j = 1, . . . , m be
m(m + 1) independent Gamma random variables. Let us also define the random vector
Zi = [Zi1 · · · Zim]. We have

fΛ(λ) ≤c

m+1∑
i=1

m∏
j=1

fZij
(λj) =

m+1∑
i=1

fZi
(λ). (30)

For a given λ ∈ R>0, let l(λ) = |ai| whenever λ ∈ [βi, βi+1) for some i ∈ Z. Also, for a given
λ ∈ R

m
>0, let L(λ) = |bκ| whenever λ ∈ Eκ for some κ ∈ K. Therefore, when λ ∈ E{−1}m , we

have L(λ) = |b{−1}m| = |0| = 1. Otherwise, λ ∈ E[i1···im] for some [i1 · · · im] ∈ Z
m\{−1, 0}m,

and we have L(λ) = |1ai1 · · · aim| = 1 + ∑m
i=1 l(λi). We now have

R(qβ) = E[L(Λ)] (31)

= E[L(Λ)|Λ ∈ E{−1}m ]︸ ︷︷ ︸
=1

P(Λ ∈ E{−1}m)︸ ︷︷ ︸
≤1

+E[L(Λ)|Λ ∈ Ec
{−1}m ]P(Λ ∈ Ec

{−1}m) (32)

= 1 +
∫

Ec
{−1}m

L(λ)fΛ(λ)dλ (33)

≤c 1 +
m+1∑
i=1

∫
Ec

{−1}m

L(λ)fZi
(λ)dλ (34)

= 1 +
m+1∑
i=1

E[L(Zi)|Zi ∈ Ec
{−1}m ]P(Zi ∈ Ec

{−1}m) (35)
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Since

Ec
{−1}m = R

m
>0 − [ 1

β
, β)m =

m⋃
j=1

({x ∈ R
m
>0 : xj ≥ β} ∪ {x ∈ R

m
>0 : xj < 1

β
}), (36)

we obtain

R(qβ) ≤ 1 +
m+1∑
i=1

m∑
j=1

(
E[L(Zi)|Zij ≥ β]P(Zij ≥ β) + E[L(Zi)|Zij < 1

β
]P(Zij < 1

β
)
)

. (37)

Let us recall that for any i ∈ {1, . . . , m}, we have L(Zi) = 1 + ∑m
k=1 l(Zik) whenever Zi ∈

Ec
{−1}m . Therefore,

R(qβ) ≤ 1 +
m+1∑
i=1

m∑
j=1

E
[
1 +

m∑
k=1

l(Zik)
∣∣∣∣∣Zij ≥ β

]
P(Zij ≥ β)+

m+1∑
i=1

m∑
j=1

E
[
1 +

m∑
k=1

l(Zik)
∣∣∣∣∣Zij < 1

β

]
P(Zij < 1

β
) (38)

= 1 +
m+1∑
i=1

m∑
j=1

⎛⎝1 + E[l(Zij)|Zij ≥ β] +
∑
k �=j

E[l(Zik)]
⎞⎠ P(Zij ≥ β)+

m+1∑
i=1

m∑
j=1

⎛⎝1 + E[l(Zij)|Zij < 1
β
] +

∑
k �=j

E[l(Zik)]
⎞⎠ P(Zij < 1

β
). (39)

We now estimate the terms that appear in the summation above. We have

P(Zij ≥ β) =
∫ ∞

β

xaij−1

Γ(aij)
e−x︸︷︷︸
=e− x

2 e− x
2

≤e− x
2 e− β

2

dx ≤ e− β
2

∫ ∞

β︸︷︷︸
≤
∫ ∞

0

xaij−1e− x
2

Γ(aij)
dx ≤ 2aij e− β

2 ≤c e− β
2 . (40)

Also,

P(Zij < 1
β
) =

∫ 1
β

0

xaij−1

Γ(aij)
e−x︸︷︷︸
≤1

dx ≤c
1

βaij
≤ 1

β
, (41)

and the last inequality follows since aij, β ≥ 1. Now,

E[l(Zij)|Zij ≥ β]P(Zij ≥ β) =
∞∑

n=1

∫ βn+1

βn
l(x)fZij

(x)dx (42)

≤
∞∑

n=1

∫ βn+1

βn

(
x

log β
+ 2

)
fZij

(x)dx (43)

=
∫ ∞

β

(
x

log β
+ 2

)
fZij

(x)dx ≤c e− β
2

(
1 + 1

log β

)
, (44)

For the first inequality, recall that for a given x ∈ [βn, βn+1) for some n ≥ 1, we have
l(x) = |an|. Since an = 00n1, we obtain l(x) = |an| = n + 2 ≤ log x

log β
+ 2 ≤ x

log β
+ 2. The last

inequality can be derived using the same arguments as in (40).
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Similarly, we obtain

E[l(Zij)|Zij < 1
β
]P(Zij < 1

β
) =

−2∑
n=−∞

∫ βn+1

βn
l(x)fZij

(x)dx (45)

=
−2∑

n=−∞

∫ βn+1

βn
(|n| + 1) fZij

(x)︸ ︷︷ ︸
≤c1

dx (46)

≤c

−2∑
n=−∞

(|n| + 1)(βn+1 − βn) (47)

= 3β − 2
β(β − 1) ≤c

1
β − 1 (48)

Also,

E[l(Zij)] = E[l(Zij)|Zij < 1
β
]P(Zij < 1

β
) + E[l(Zij)| 1

β
≤ Zij < β]P( 1

β
≤ Zij < β)

+ E[l(Zij)|Zij ≥ β]P(Zij ≥ β) (49)

We bound the first and the third terms using (48) and (44), respectively. Also, by the
definition of l(·), the second conditional expectation is equal to 2. Therefore,

E[l(Zij)] ≤c 1 + 1
β − 1 + e− β

2

(
1 + 1

log β

)
(50)

Applying the bounds in (40), (41), (44), (48) and (50) to (39), we obtain

R(qβ) − 1 ≤c e− β
2

(
1 + 1

log β
+ 1

β − 1 + e− β
2

(
1 + 1

log β

))
+ (51)

1
β

(
1 + β + 1

β − 1 + e− β
2

(
1 + 1

log β

))
. (52)

For β ≥ e, we use the bounds e− β
2 ≤c

1
β−1 , 1

log β
≤ 1, 1

β
≤ 1

β−1 , β+1
β−1 ≤c 1 to obtain

R(qβ) − 1 ≤c
1

β−1 + 1
(β−1)2 ≤c

1
β−1 . On the other hand, for 1 < β ≤ e, the bounds e− β

2 ≤ 1,
1 ≤c

1
β−1 , 1

log β
≤c

1
β−1 , 1

β
≤ 1, β+1

β−1 ≤ e+1
β−1 yield R(qβ) − 1 ≤c

1
β−1 . This concludes the proof.

Appendix B

Proof of Proposition 1

First note that (16) is trivial if ν ≤ mini λ−1
i . Hence, suppose that ν > mini λ−1

i and
let δ = ε

√
ν. We have the representation X̂ = X + δE, where each real and imaginary

component of E has norm no greater than 1. For notational convenience, let Ξ(X, H) =
det(It + XX†H†H) and note that C(X, H) = log Ξ(X, H). We first rewrite Ξ(X̂, H) as

Ξ(X̂, H) = det(It + (X + δE)(X† + δE†)H†H) (53)
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= det(It + XX†H†H + δ (EX† + E†X + δEE†)︸ ︷︷ ︸
�F

H†H) (54)

= Ξ(X, H) det(It + δ(It + XX†H†H)−1FH†H) (55)

= Ξ(X, H) det(It + δH†H(It + XX†H†H)−1F) (56)

Moreover, we have (It + XX†H†H)−1 = (It + UNU†UΛU†)−1 = (It + UNΛU†)−1 =
(UU† + UNΛU†)−1 = U(It + NΛ)−1U†, and this gives us

H†H(It + XX†H†H)−1 = UΛU†U(It + NΛ)−1U† = U Λ(It + NΛ)−1︸ ︷︷ ︸
�Z

U†, (57)

and Ξ(X̂, H) = Ξ(X, H) det(It + δUZU†F). Now, let W = [wij]t×t = δUZU†F. Let
ω1, . . . , ωt denote the eigenvalues of W, and D(a, r) = {z ∈ Z : |z − a| ≤ r} denote
the closed disk centered at a with radius r. According to Gershgorin circle theorem, we have

{ω1, . . . , ωt} ⊂
t⋃

i=1
D

⎛⎝wii,
∑
j �=i

|wij|
⎞⎠ ⊂

t⋃
i=1

D

⎛⎝0, |wii| +
∑
j �=i

|wij|
⎞⎠ ⊂ D(0, ‖W‖1), (58)

where for any complex matrix A = [aij]M×N , we let ‖A‖1 � ∑M
i=1

∑N
j=1 |aij|. Moreover, since

W is a Hermitian matrix, its eigenvalues are real. Therefore, −‖W‖1 ≤ ω1, . . . , ωt ≤ ‖W‖1,
and

Ξ(X̂, H) = Ξ(X, H)
t∏

i=1
(1 + ωi) ≥ Ξ(X, H)[(1 − ‖W‖1)+]t. (59)

We now estimate ‖W‖1. First, since ‖ · ‖1 is a sub-multiplicative norm, we have

‖W‖1 ≤ δ‖U‖1‖Z‖1‖U†‖1‖F‖1 = δ‖U‖2
1‖Z‖1‖F‖1. (60)

We now find upper bounds on each of the ‖·‖1 terms. For any complex matrix A = [aij]M×N ,
it can be shown using Hölder’s inequality that ‖A‖1 ≤ √

MN‖A‖. In particular, ‖U‖2
1 ≤

t2‖U‖ = t2. Regarding ‖Z‖1, note that

Z = diag
(

λ1

1 + (νλ1 − 1)+ , . . . ,
λm

1 + (νλm − 1)+ , 0, . . . , 0
)

. (61)

For any i ∈ {1, . . . , m}, if ν ≥ 1
λi

, then λi

1+(νλi−1)+ = 1
ν
, and otherwise if ν < 1

λi
, then

λi

1+(νλi−1)+ = λi < 1
ν
. In either case, λi

1+(νλi−1)+ ≤ 1
ν
, and therefore we have the estimate

‖Z‖1 ≤ t
ν
. For ‖F‖1, we obtain

‖F‖1 = ‖EX† + E†X + δEE†‖1 ≤ ‖E‖1‖X†‖1 + ‖E†‖1‖X‖1 + δ‖E‖1‖E†‖1
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= 2‖E‖1‖X‖1 + δ‖E‖2
1 ≤ 2t2‖X‖1 + δt4 ≤ 2t3‖X‖ + δt4 = 2t3

√√√√ m∑
i=1

(
ν − 1

λm

)+
+ δt4

≤ 2t3√νm + δt4 =
√

ν(2t3√m + εt4) ≤ 3t4√ν (62)

Combining the estimates on ‖U‖1, ‖X‖1, and ‖F‖1, we obtain ‖W‖1 ≤ 3t7ε. For ε ≤ 1
6t8 ,

we have ‖W‖1 ≤ 1, and therefore, according to (59),

Ξ(X̂, H) ≥ Ξ(X, H)(1 − ‖W‖1)t ≥ Ξ(X, H)(1 − 3t7ε)t ≥ Ξ(X, H)(1 − 3t8ε). (63)

Taking logarithms, and applying the bound log(1 − x) ≥ −2x, 0 ≤ x ≤ 1
2 , we obtain (16).

Appendix C

Proof of Proposition 3

Let λ′
1, . . . , λ′

m ∈ R>0 and ω ≥ 1. Let μ′ be defined as in (14) with respect to the eigenvalues
λ′

1, . . . , λ′
m, i.e. μ′ = ( 2R∏

i∈I′ λ′
i
)1/|I′| with i ∈ I ′ ⇐⇒ μ′ ≥ 1

λ′
i

for every i ∈ {1, . . . , m}. It is
sufficient to prove that for any H with

λ′
i

(64a)
≤ λi

(64b)
≤ ωλ′

i, ∀i ∈ {1, . . . , m}, (64)

we have
μ′

ω

(65a)
≤ μ�

(65b)
≤ μ′. (65)

To prove (65a) and (65b), we first note the inequalities

1
λj

(66a)
≥ μ� =

(
ed∏

i∈I�
λi

) 1
|I�| (66b)

≥ 1
λk

, ∀k ∈ I�, ∀j ∈ I ′ − I�, (66)

and

1
λ′

j

(67a)
≥ μ′ =

(
ed∏

i∈I′ λ′
i

) 1
|I′| (67b)

≥ 1
λ′

k

, ∀k ∈ I ′, ∀j ∈ I� − I ′. (67)

Suppose I ′ − I� �= ∅. Then, there is an index � ∈ I ′ − I� and obviously also � ∈ I ′. These
give us μ′ (67b)

≥ 1
λ′

�

(64a)
≥ 1

λ�

(66a)
≥ μ�, and proves (65b) when I ′ − I� �= ∅. If further I� − I ′ �= ∅,

then, there exists � ∈ I� − I ′ such that μ�

(66b)
≥ 1

λj

(64b)
≥ 1

ωλ′
j

(67a)
≥ μ′

ω
. This proves (65a) when

I ′ − I� �= ∅ and I� − I ′ �= ∅. Now suppose that I ′ − I� �= ∅ and I� − I ′ = ∅. We have
I ′ = (I ′ − I�) ∪ I�, and therefore,

μ�

μ′ = e
d( 1

|I�| − 1
|I′| ) (∏i∈I′ λ′

i)
1

|I′|

(∏i∈I�
λi)

1
|I�|

= e
d( 1

|I�| − 1
|I′| ) (∏i∈I′−I�

λ′
i)

1
|I′| (∏i∈I�

λ′
i)

1
|I′|

(∏i∈I�
λi)

1
|I�|

. (68)



28

On the other hand, according to (67b), we have(
ed∏

i∈I′ λ′
i

) 1
|I′|

≥ 1
λ′

k

, ∀k ∈ I ′ − I�. (69)

Multiplying all these |I ′ − I�| = |I ′| − |I�| inequalities, we obtain(
ed∏

i∈I′ λ′
i

) |I′|−|I�|
|I′|

≥ 1∏
k∈I′−I�

λ′
k

, (70)

and, equivalently, ⎛⎝ ∏
i∈I′−I�

λ′
i

⎞⎠ 1
|I′|

≥
(∏

i∈I�
λ′

i

ed

) 1
|I�| − 1

|I′|
(71)

Substituting (71) to (68), and applying (64b) to the denominator of (68), we have μ� ≥ μ′
ω

.
This concludes the proof of the lemma for the case I ′ − I� �= ∅.

Now, suppose I ′ − I� = ∅. If I ′ = I�, we have

μ′

ω
=

(
ed∏

i∈I�
(ωλ′

i)

) 1
|I�| (64b)

≤
(

ed∏
i∈I�

λi

) 1
|I�|

= μ�

(64a)
≤

(
ed∏

i∈I�
λ′

i

) 1
|I�|

= μ′, (72)

and thus (65a) and (65b) are easily proved. What is left is thus the case I ′ − I� = ∅ with
I� −I ′ �= ∅. First, note that there is an index � ∈ I� −I ′ such that μ�

(66b)
≥ 1

λ�

(64b)
≥ 1

ωλ′
�

(67a)
≥ μ′

ω
,

and this proves (65a). For (65b), starting from the fraction μ′
μ�

, we can go through the same
arguments as in (68) to find out that μ′

μ�
≥ 1. This concludes the proof.
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