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1. INTRODUCTION

Peierls,l in 1933, developed a perturbation.theory for. quantum--—- """

statistical mechanics. -However, the general term in this theory
was hard to characterize; furthermore, spurious terms; which are
now known to cancel out, seemed to appear in the expression for
the total number of pérticles. In 1958, Montroll and W’érd2 gave a
rerturbation theory in which the spurious terms were absent and
the general term. was described; but their formalism, involving an
unnecessary expansion in powers of the fugacity, was exceedingly
complicated. In recent years any number of formalisms have been
proposed,5 These are all essentially equivalent, varying only in
details. The procedure of Glassgold, Heckrotte, and Watson
involves a contour integration, that of Bloch and de Dominicis
multiple temperature integrations, that of Luttinger and Ward
infinite sums.. Thouless,u however, has given a very. convenient
‘expression for the logarithm of the partition function.

To propose still another formalism would appear to be both
inconsiderate and imprudent. Our motivation is that the rules we
describe here arercoﬁsidéraﬁi&'simpler than anyigthéf-éféééription'
previously proposed. The rules are closely related to those given
by Thouless,l+ but we shall work with the self-energy operator in

terms of which one-can find not only the partition function but



- from the work of Darwin and Fowler that the avéragé

also the single-particle excitations. Furthermore it should be observed
that the derivation of the rules 1s not restricted to the single-~
particle self-energy operator but, rather, is quite general. Thus,
for example, one can easily use the method described here to obtain
explicit time-independent rules for the spaqe-time correlation function
of any two physicai bbéervables.

| The rules for calculating are given in Section II. These

rules were first obtaineiintuitively5 by the following reasoning: In

' quéntum statistical mechanics one computes the equilibrium properties

of & given system by ‘constructing an ensemble of similar systems,

then computing quantum mechanically the properties of each system

. in the ensemble and finally averaging over the ensemble. We know ,\

ove the ensenble

is strongly peaked in the neighborhood of the most probable system in

averaging procedure and (ii) the quantum-mechanical calculation of
thevproperties of oné system. Thus one i1s led to consider the quantum
mechanics of a system in é.state that is the most probable in the
ensemble, and consequently one expects that thevusual rules for ground-
state perturbation theory6wﬂIL be modified only by replacing the step
functions associated with particle and Hole lines with sinéle—particle
statistical-distribution factors of the most probable state. In Sec.
ITI we derive this result, starting from the ti@é-dependent formalism
for perturbation theory.7
Dzyaloshinskii has recently published & set of rules equivalent

to those of Sec. II, but without an explicit derivation of the general

term.



1. Formalism

!w The thermodynamic properties of a system can all be deduced

e —— e e i

from the grand potential & defined by

2 L | ‘5}{}

= - 3 log Tr Le P : (11-1)

where ¥ = H - N with H and N the Hamiltonian and number

operators. The pressure P, the number of barticles N , and the

entropy S are given by
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One can'.compute & j‘inuhdditionhtoica1Cﬁlating it directly from_ .its .

~definition (II-l), by an integration over temperature: of l{(ﬁ,p),

the ensemble .average of H:
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An alternative and more common method is to find & in terms of an
integrétion of the potential energy over the coupling constant.

The quantity H(p,n). we express in the form
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flw) = A[JB‘” T 3}‘1 (11-5)

(The + refers to bosons and fermions, respectively.) The spectral
function A(p,m) is & function of f and p, and is given in terms
of the Fourier transform of the single-particle Green's function

G(PJ (l)) by

Alp,w) = = él- In G <£: w+ ie) ‘ (11-6)

-

where & is real. The Green's function G , as a function of a complex
variable z , is related to the free-particle Green's function GO and

the self-energy operator Z(p,z) via the Dyson equation:

cmz) = oma) [1+ @) ema)] (11-7)

whefe
| 2, ol
- -l = : 8y
Golmz) = (z - g=+ 1) ‘ (11-8)
A1l of the above is well known and can be found derived, for
example, in reference 7.
Thé calculation of thermodynamic properties is:thus reduced to a calcu-

lation of the self-energy operator Z(p,z) . The rules for calculating % in
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perturbation theory follow. To find the nth-order contribution to Z(p, z):

1. Construct a graph by drawing n horizontal dashed lines at

different levels representing the potential and by Joining their 2n ends

with solid lines representing particles or holes, and having arrows to indicate

-direction, in such a way that one directed line enters and one leaves each end
-of a dashed line (e.g., Fig. 1). Have one solid line leave the graph going up
and one solid line enter the graph from the downward direction (the "external

‘lines") — =~ all other solid lines must connect ends of dashed lines. In

particular, it is acceptable to connect an end-of a dashed line to itself
(e.g., Fig. 2a), or one end of a dashed line to its opposite end (e.g., Fig. 2b).
Draw only graphs in which there are no unlinked parts and only graphs that

cannot be disconnected into two pieces by cutiing one solid line, Dbut draw all

graphs consistent with these rules. 1In nth order, each topographically

-distinct.diagram for X will yield n! different diagrams corresponding to

~the n! possible orderings'of the vertices from top to bottom. Assign a

distinct momentum, Ps» to each solid line and momentum p to the external

~

lines.
2. To compute the contribution of the graph, associate with each
line of momentum p, directed upward a~factor_v»EL;tAf (;257 - u)]. and with
~i ‘ Y 2m il LR

: . e |
‘each line of momentum D directed downward a factor -E f( S - 1). Do not
L ~ m

assign such factors to the external lines. A line joining a dashed line to

- itself 'is considered as directed downward. With each dashed line, "associate a

factor V(Ei, sy Dy gz), vhere D, and ij are the momenta of the directed

~

lines leaving the vertex on the left and right, respectively, and P and D,

~

are the momenta of the directed iines entering the vertex on the left and

right, respectively. The factor V(pi, pj, Pk’ pz) is just the matrix element

‘of the two-body potential. Each of the (n - 1) intervals between vertices



contributes a factor that is the inverse of the sum of
(a) pic/Em for each downward-going line of momentum p, crossing the

~

interval,
(v) .-pj2/2m for each upward-going line of momentum P, crossing the
interval,

(¢c) =z if both external lines do not cross the interwval,

. {(a) =z if Dboth external lines cross theuingé;;éi;“bF‘
(e) 0O 4if only one crosses.
Mhltiély,all the above factors togetﬁer along with an aedditional
(-l)z M 1} where £ 1s the number of closed loops formed by solid lines
representing fermions. Finally integrate over all. Py with a factor'(er)-5
for each three~dimensional momentum integration.
The potential V(p., P

v Py B

'pﬂ) is simply expressed in terms of the
Fourier transform of a local two-body spin-independent potential v(r) by

where
v(p) = j@'ip’r v(r) ar . (11-10)

For particies with spin, one must include the spin dependence of V
and also sum over spins of internal lines — — exactly as one does in ground-
state perturbation theory.

2. = Example

As an illustration of the rules, we evaluate the contribution for

fermions of the two third-order diagrams -of Fig. 1l:
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and . | v (I1-11)
Z(b)(g,Z-) =f [1- f ][l £ ]f £ fb,( -1)° d&d&dfbdpudp V(p p)V(p ) (p 52)

x (2)70(p 2,225 )8 (2,712 )-8 (2252, B /(z-el-e reg) (ereyme ) (2n)™

2
b

where f,  represents f L. - .
1 2m

3. Generalization .

We can sum & large class of diagrams, namely those corresponding to the
replacement .of GO by G in all internal lines, by rules that are essentially
the same as those given in Sec. ITI.l:

(a) Construct only. irreducible graphs.

(b) Calculate the contribution of an upward directed line gi by
assigning the factor A(Ei’wi).£l * f(wi)] and for a downward directed line
the factor iA(Ei,wi) f(wi). For the energy denominator the upward lines
contribute -(w, + u) and the downward lines (w, + W). Proceed as in

.Sec. II.l, and finally also integrate over all @, as well as D, -
These rules are greatly more complicated, since A must be obtained
self-consistently, but one diagram now includes an infinite class of the old

diagrams.
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III. FROOF OF RULES

The starting point from which we shall demonstrate the rules given in
Sec. II.1 is the time-dependent form of the perturbation expansion for I .
This expansion is described in detail in the appendix to reference 7. Briefly,
to calculate any order of perturbation theory in the time-dependent formalism,

one writes down all topologically distinct connected diagrams of that order and

evaluates thé'diéééémé’Bjﬂﬁégtiﬁéha. GO for each line, and a V fér”eécﬁM
vertex as %n time-dependent ground-state perturbation theory. The time
integraticis must be between +t = 0O and t = ;iB in order to include .
correctly the periodicity boundary condition obeyed by the tﬁermodynamic
Green's functions. In listing all the distinct diagrams no attention is paid
to different time orderings. The momentum parts and the numerical factors are
the same as in ground-state theory. Oné first calculates the Fourier coeffi-

cient of X :

-3P i (6 - t)
2(p,z,) = dt e ~* (6, 1)
0

where Vv 1is an even integer for b&sons, and an odd integer for fermions.
Then the Fourier-coefficient is continued from the z, to all complex =z .

Each nth-order diagram in this perturbation theory corresponds to n:
of the "ordered" diagrams one Writes down according to the rules of Sec. II-1 .
In order to demonstrate the equivalence of those rules to the time-dependent
perturbation theory, we must show how the contribution of an nth-order diagram
evaluated by the time-dependent theory splits into n:!: distinct contributions,
each equal to the contribution from one ordered-diagram evaluated by the rules
of Sec. II-1.

Consider a diagrem of nth order in V . The n vertices are labeled

with n different times; to.evaluate the diagram, one of these times is set



—g-
equal to zero, and the remaining n - 1 times are integrated from t =0
t = -if, These n - 1 time integrations can be split into (n - 1)! different
integrations‘corresponaing to different ordems of the n - 1 +times along fhe
line from O to -if. There are only (n - 1)! terms rather than n!. terms,
since one time has been arbitrarily chosen to be zero. We shall show that each
of thev (n - 1)! terms equals the contribution, evaluated by the rules of Secc.
II.1, of n "ordered" diagrams that differ only by a cyclic permutation of the
vertices.

Since in the {(n = 1)! terms in the time-dependent perturbation theory

the integrdation times are ordered, one can always replace the Go(p, t, tj)
~ i

that ocecur in the integral by . .. e

2
-ip=(t.-t.)/2m )
e P J/ {:1+ f(P——- N , (1II-1)

- 2m

e

Go} >(g) ti) t,j) =

if ti > tj’ or by

(11T-2)

[

1 e—l_‘p.:A(’bi»-,-vfbj )/en . 2
i 2m ’

= +
Go, (283 85) =%

if ti < tj . Thus to each G or forward-going line, there corresponds

o,> "’

a factor 1% f; and to each backward-going line, or G a factor T f .

0,<
There is an over-all factor of (_l>2n-l . At each vertex (tz), one will have
io,t
a factor e Le4 , Where
1 2 2 2 2 - ,
% = o (pa TR, " P, " Py ) (111-%)

where p and B, are the momenta of the lines leaving the vertex, and Do

~ ~ ~

and Dy are the momenta of the lines entering the vertex. For the external

lines, the factor ;f?gmj is replaced by z, . One must therefore calculate

the integral
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~ip . t t
s it ¢ 3
- /- .. _ nn n:; ltn—loh-l f 7 ltEGé o
1= J dc, € a1 s (1‘1',28 . (111-4)
o T T R i e
The results of the t2 integral can be written as
£ . (. :
> % 1(-1)}\2;%7\202
at, e = Z 5 (111-5)
2 Oé :
¢ =0, 1
~and it is clear that one can write I as
n
...... 2 }\'j
-3 - =D
b T = rﬁ\ * ln ‘L’e i (~1)J /TT‘r.’é\
Mo L T O, T T ’ Ui-6)
FTE O A=0, 1 }
f, ’WY;;ere
S T %t M T
g+ A e + N {c + 2 c ,_,+7_,:A,)'3 . (117-7;
kT k-l Lk-1 5 Tk-2 N k-2 7 Tk-3 k-3 B R ’

s n-1 R , R
The sum now contains 2 distinct terms, and we must rearrange it into n
different groups of terms so that all terms in each group have a common value

of exp(BPn). This is done by rewriting the sum as

ho}
T A,
n [l n-1 PMIh j=2 9 (171-8}
T . Z | i e (-1)
= . x
k=1 LT 5 =01 12" Mot |
; . } = =] e e =] =
+ (%n ] ;’ ’%kfl‘ 27y o)
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where the k = 1 term corresponds to taking all >\.i = 1.

. n

n-1, o\n-X . _ | 1 -l T e

) i (-1) expEB Z GJ_J (1= 1 J)“ }‘J
~ d=ket1 =2 —_—
I= Z — T Z =% . (TI-9)
. - k k-1 32
k=1 ZU z g ) i=2 )x.i =0, 1 -0
J J ket 1 M
ekl el

Call the summation in the braces Sk' Then

Sl =1, ) -

-1
82 =05
A
S, = <—l) : o, (o, + o) : (111-10)
3 Z 05+>\.02 02 ’ o
)\2=O,l
and in general
. , -]
e { (. @ o oot (T L ¢ 3 /‘ITT..1 )

5, = [ (c ) (vk 1t ke) ( O -r-u3> \UTUk o+ +c5+02;_J L EII-11)

This latter result follows from a. simple induction argument. Assuming the

result to be true for any arbitrary set. of Pi for i=2,3,-¢+,k=1, we can

write




But the term in brackets is such a sum of "order" -k-l. _involving

i

Q
i

3 = 05 + N 62 , and rence, by the inductive hypothesis we have

e
.= ) R G - (TI1-13)

% o, (oo, )

N,=0, L <

Computation of the xg summation then produces the general formula (III-11)

for Sk .

The integral I has thus been reduced to

‘'n

_ _ B( +...+g . )
Y P () E e e (TI-1k
e} (Gnﬂjn—f""+Ok+l>(dn—l+".+o R L T AR CIERERY) )

These n terms correspond to just n cyelic permutations of a given diagran.

Iet kX =1n . Then the summand is

n-1

4

). .o (gn+ .e .+g5) (gn+o‘n_l+ . .+(52)

) (IIT-15)
) &6n+0n 1

When z, is replaced by =z, the denominators clearly are the energy denominators
one writes down by following the rules in Sec. II for the original diagrax.

The k = n-1 term

n-1 Po, | ‘
i e ((dn—l)< . n_g)...(cn_l+-.-+q2) (—on%é (I11-16)

Bo

oo ~ N n \
differs from the Xk = n term by a factor e , and furthermore the o_ has

become cn and each factor has been reduced by On . Note that
Pz,

e dis just T 1. Thus the k =mn - 1 term corresponds to the

time-ordered diagram formed by moving the latést vertex n
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to the earliest time (a cyclic permutation). All energy denomirators
will clearly be reduced Dy —Un, and the last denominator (o ) will
change sign wnen it becowes the first denominator; the e wiil
change the'particles into holes and vice versa at the nth vertex,

eBw £(

since w) = 1+ f{w) . Thus .I- corresponds to the sum of

all duiagrams of nth order that are Just cyclic permutations or a

single diagram of Eﬁh‘order. Thus we have exhibited the correspondence
between the time-dependent perturbation diegrams and the ordered
diagrams as well as derived the rules of Sec. II.1. We leave it to

the reader to check that the detailed numerical factors are eguivalent

as well as to generalize the derivation to cover the situation of

Sec.'II-5. R T e
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