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Abstract

Assessing the Impacts of Land-Use Change and Ecological Restoration on CHs and CO2
Fluxes in the Sacramento-San Joaquin Delta, California: Findings from a Regional
Network of Eddy Covariance Towers

by
Sara Helen Knox
Doctor of Philosophy in Environmental Science, Policy, and Management
University of California, Berkeley

Professor Dennis Baldocchi, Chair

The Sacramento-San Joaquin Delta in California was drained for agriculture and
human settlement circa 1850, resulting in extreme rates of soil subsidence and CO:
emissions due to peat oxidation. As a result of this prolonged ecosystem carbon
imbalance where ecosystem respiration exceeded primary productivity, much of the
land surface in the Delta now lies 5 to 8 m below sea level. To help reverse subsidence
and convert Delta ecosystems from net carbon sources to carbon sinks, land managers
have begun converting drained agricultural lands back to flooded ecosystems including
wetlands and irrigated rice paddies. However, this comes at the cost of increased CHs
emissions, a much more potent greenhouse gas than CO..

To evaluate the impacts of drained to flooded land-use change on the biosphere-
atmosphere exchange of COz and CHa in the Delta, I conducted a full year of
simultaneous eddy covariance measurements at two conventional drained agricultural
peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy
and two restored wetlands). This research showed that the drained sites were large CO:
and greenhouse gas (GHG) sources. However, this study also found that converting
drained agricultural peat soils to flooded rice paddies or wetlands can help reduce or
reverse soil subsidence and reduce GHG emissions, despite the potential for
considerably higher CHa emissions. In particular, wetlands offer the greatest potential
for reversing subsidence since both restored wetlands were large net carbon sinks.

Since natural and managed ecosystems can exhibit large year-to-year variation in
CO:z and CHs exchange, I analyzed 6.5 years of measurements from the irrigated rice
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paddy to investigate the factors atfecting CHa fluxes across diel to interannual
timescales and quantify interannual variability in CO: and CHa budgets. Using wavelet
analysis, I found that photosynthesis induced the diel pattern in CHas flux, but soil
temperature influenced its amplitude. At the seasonal scale, linear and neural network
models indicated that photosynthesis and water levels were the dominant factors
regulating daily average CHa fluxes. However, across years, much of the variability in
annual and growing season CHs sums was driven by soil temperature. Soil
temperature also strongly influenced ecosystem respiration, resulting in large
interannual variability in the net carbon budget at the paddy. This study emphasizes
the need for long-term, continuous measurements particularly under changing climatic
conditions.

With a growing interest in including wetlands in carbon markets worldwide due
to their ability to accumulate large amounts of carbon, there is a need for models that
can accurately and cheaply predict wetland CO:2 and CHs fluxes. In the final chapter of
this dissertation, I combined eddy covariance CO: fluxes measurements, flux footprint
analysis, and near-surface (i.e. digital cameras) or satellite remote sensing data to
investigate the potential of using the light use efficiency approach to accurately and
cost-effectively model photosynthesis in wetland systems. Through this analysis, I
showed that digital camera and Landsat imagery can be used to model carbon uptake in
wetlands, providing inexpensive means of monitoring carbon cycling in these
environments that can be used in carbon markets.

By measuring trace gas exchange across multiple sites for multiple years, this
dissertation provides new and important insights on the impacts of land use change in
the Delta, improves our understanding of factors influencing CO: and CHs fluxes from
agricultural and restored wetlands across diel to interannual timescales, and presents
cost-effective and accurate ways of estimating photosynthesis in restored wetlands by
combining flux measurements with near-surface and satellite remote sensing. This
work helps bridge understanding between biometeorology, biogeochemistry and
climate policy, and provides valuable information to help inform management
decisions regarding carbon and water management of the Delta.
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Chapter 1: Introduction

Wetlands play a key role in global carbon dynamics due to their large soil carbon
pools, high methane (CHs) emissions, and potential for carbon sequestration (Bridgham
et al., 2006). Although wetlands comprise only 5-8% of the earth’s land surface, it is
estimated that they store roughly 20 to 30% of the carbon in terrestrial soil reservoirs
(Mitsch et al., 2013). Most of this carbon resides in peatlands, defined as wetland
environments with > 40 cm of surface organic matter (Bridgham et al., 2006). The ability
of these ecosystems to accumulate large amounts of carbon is largely a result of limited
rates of decomposition in anaerobic soils and, in some cases, potential for high
productivity. However, worldwide peatlands have been drained for agricultural or
forestry purposes due to the high economic benefit of the fertile soil, which has resulted
in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2)
concentrations. This also includes many of the world’s major river deltas which are
sinking as a result of soil loss and compaction following drainage (Syvitski et al., 2009).
This type of land-use conversion has important consequences for global biogeochemical
cycling and climate through changes to carbon dynamics and the energy exchange
between the land and atmosphere.

The Sacramento—-San Joaquin Delta (hereafter the Delta) in California is just one
example of a delta peatland that has undergone rapid environmental change, with large
changes to the carbon cycle, as a result of drainage and conversion to agriculture. Prior
to drainage, the Delta existed a network of tidal marshes at the confluence of the
Sacramento and San Joaquin Rivers, covering an area of ~1400 km? (Drexler et al.,
2009a). These extremely productive ecosystems with low rates of decomposition
accumulated up to 15 m of peat as the marsh surface kept pace with gradual sea-level
rise over about 7000 years. Wide-scale drainage of the Delta for agriculture near the
end of the nineteenth century converted the most extensive stretch of wetlands on the
Pacific coast into a network of islands with some of the most productive farmland in the
state. However, agricultural cultivation since then has resulted in extreme rates of soil
subsidence due to peat compaction and oxidation, and today the land surface of Delta
islands now lies on average 5 to 8 m below sea level (Drexler et al., 2009b). Islands in
the Delta, better described as saucers or bowls, maintain an artificially low water table
through an extensive and fragile levee network and continual pumping (Mount &
Twiss, 2005). However, as the land continues to sink, the risk of levee failure and
ensuing flooding increases. Levee failure would cause saltwater intrusion into the
Delta, threatening an important supply of water for over 22 million people (Miller et al.,
2000).



Land managers and other Delta stakeholders recognize that the continued
practice of drained agriculture in this region is unsustainable and consequently there is
strong interest in converting drained lands back to flooded conditions, including
restored wetlands or flooded rice paddies. The flooded nature of these environments
can decrease the rate of peat oxidation by physically impeding the transport of oxygen
required by most microbial metabolism into the soil. As such, this slows rates of
decomposition and can help reverse net carbon loss. Although converting lands back to
tflooded conditions helps reduce the loss of soil carbon as CO, it also creates ideal
conditions for the production of CHs, a much more potent greenhouse gas (GHG) than
COz. Therefore, even relatively low rates of CHi emissions can offset the benefit of CO-
sequestration in terms of the net GHG benefit.

The second chapter of this dissertation evaluated the impact of drained to
tflooded land-use change on CO: and CHs fluxes in the Delta. The objective of this
research was to analyze the net carbon and GHG trade-offs of land-use conversion from
drained agricultural peatlands (a pasture and a corn field) to flooded land-use types (an
irrigated rice paddy and two restored wetlands). To achieve this objective, I studied
one year of simultaneous and direct ecosystem-scale measurements of CO: and CHs
fluxes collected with eddy covariance flux towers at these five sites. Through analysis
of annual CO: and CHs4 budgets, I determined that ecosystem respiration consistently
exceeded CO: uptake by photosynthesis at the drained sites. This carbon imbalance
made these sites large sources of CO: to the atmosphere. Moderate CHa emissions were
observed at the pasture due to the presence of cattle and flooded depressions in the
tield, however, when factoring the carbon removed from the field through harvest, the
corn site was the largest carbon and GHG source. Flooding resulted in lower rates of
ecosystem respiration at the rice paddy that were roughly equal to rice photosynthesis,
making the rice paddy near CO: neutral. When considering harvest and CHi emissions
at this site, the paddy acted as both a carbon and GHG source, although carbon loss and
GHG emissions were lower than at the drained peatland sites. The wetland sites
offered the greatest potential for reversing subsidence; CO: uptake by the high
photosynthetic capacity of the wetland plants exceeded ecosystem respiration, resulting
in large carbon sequestration. However, the wetlands were also the largest sources of
CHas. Nonetheless, even when factoring the greater global warming potential of CHa,
the wetlands were still more beneficial from a GHG perspective than the drained sites.
This work concluded that converting drained agricultural peat soils to flooded land-use
types can help reduce or reverse soil subsidence and reduce GHG emissions.

Although the second chapter provided a baseline analysis of net CO: and CHas
budgets across key ecosystems in the Delta, it represented only a single snapshot in
time. However, natural and managed ecosystems can exhibit large year-to-year
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variability in carbon and GHG exchange, highlighting the need to consider interannual
variability in COz and CHa fluxes. In the third chapter, I focused on temporal variability
in CO2 and CH4 exchange and analyzed 6.5 years of flux measurements from the
irrigated rice paddy, which represents the longest and most comprehensive data set of
eddy covariance measurements of wetland rice GHG fluxes in the world. The goals of
this work were to investigate the factors affecting CHa fluxes across diel to interannual
timescales and quantify interannual variability in CO2 and CHs budgets. 1 used a
combination of linear regression models, neural network modeling, and wavelet
analysis to investigate the biophysical controls on CHas fluxes from the rice paddy.
Wavelet analysis suggested that photosynthesis induced the diel pattern in CHs flux,
but soil temperature modulated its amplitude. At the seasonal scale, neural network
models explained considerably more of the variance in daily average CHas flux than
linear models due to their competence in modeling nonlinear relationships, and
emphasized the importance of photosynthesis and water levels in regulating daily
average CHu fluxes. However, at the interannual scale, much of the variability in
annual and growing season CH4 sums was driven by soil temperature. Higher soil
temperatures also increased the annual and growing season ratio of CHs flux to
ecosystem productivity, an observation that may help improve global estimates of CHa
flux from rice agriculture. Finally, soil temperature strongly influenced ecosystem
respiration, resulting in large year-to-year variability in the net carbon budget at the
paddy. This study therefore stresses the need for long-term measurements particularly
under changing climatic conditions.

While eddy flux measurements can provide important insights into the factors
controlling CO:z exchange within and among sites, bridging to larger spatial scales can
be achieved by combining CO: flux and remotely sensed data. Furthermore, with a
growing interest in carbon market-funded wetland conservation and restoration, this
approach can also be used to develop low cost remote sensing-based models of carbon
exchange in these environments suitable for carbon market and Cap-and-Trade
systems. In the fourth chapter of this dissertation, I evaluated the potential of using
digital cameras, a form of near-surface remote sensing, as simple and cost-effective
means of estimating photosynthesis at the restored Delta wetlands, and assessed the
suitability of using Landsat data to model productivity in these environments for
regional upscaling. I showed the potential of using camera-based greenness indices and
eddy covariance data to develop and parameterize a light use efficiency (LUE) model to
predict daily photosynthesis. The LUE model combining camera and meteorological
data was able to explain most of the variation in daily photosynthesis at the restored
wetlands and accurately predict annual and multiyear CO: uptake. However, model
performance decreased somewhat with increasing site complexity, highlighting the
need to explicitly consider spatial heterogeneity in LUE models. Ialso tested a similar
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model using Landsat-based indices and found that although model performance was
high at the homogeneous site dominated by emergent vegetation, model data-model
agreement was lower at the site comprised of a mixture of open water and vegetation,
indicating limitations of Landsat data. Nonetheless, this research showed that digital
camera and Landsat imagery can be used to model photosynthesis in restored wetlands,
providing inexpensive means of monitoring carbon cycling in these environments that
can be used in carbon markets, thereby advancing the opportunity to counteract the
widespread degradation of wetlands worldwide.

Using a multi-site multi-year approach, this dissertation works toward a better
understanding of the impacts of drained to flooded land-use change on CHs and CO2
exchange, improving our understanding of the factors controlling these fluxes across a
range of temporal scales, and developing cost-effective and accurate ways of estimating
carbon cycling in restored wetlands by combining flux measurements with near-surface
and satellite remote sensing. With a growing interest in wetland restoration for carbon
sequestration and GHG mitigation, the results of this dissertation have important
management implications for land managers and policy makers both in the California
Delta and elsewhere. This work also highlights important challenges and new tools for
future studies measuring CO2 and CH4 exchange from complex landscapes where fluxes
can vary in both space and time. This dissertation provides new insights into COz and
CHa fluxes from drained and restored peatland ecosystems, bridging understanding
between biometeorology, biogeochemistry and climate policy.



Chapter 2: Agricultural peatland restoration: effects of land-use change on
greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta

2.1. Abstract

Agricultural drainage of organic soils has resulted in vast soil subsidence and
contributed to increased atmospheric carbon dioxide (CO2) concentrations. The
Sacramento-San Joaquin Delta in California was drained over a century ago for
agriculture and human settlement and has since experienced subsidence rates that are
among the highest in the world. It is recognized that drained agriculture in the Delta is
unsustainable in the long-term, and to help reverse subsidence and capture carbon (C)
there is an interest in restoring drained agricultural land-use types to flooded
conditions. However, flooding may increase methane (CHa) emissions. We conducted
a full year of simultaneous eddy covariance measurements at two conventional drained
agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a
rice paddy and two restored wetlands) to assess the impact of drained to flooded land-
use change on CO: and CHx fluxes in the Delta.

We found that the drained sites were net C and greenhouse gas (GHG) sources,
releasing up to 326 g C-CO2m? yr' as COz2 and 11.4 g C-CHs m? yr?! as CHa.
Conversely, the restored wetlands were net sinks of atmospheric CO, sequestering up
to 506 g C-CO:2m? yr'. However, they were large sources of CHs, with emissions
ranging from 43.8 to 65.2 g C-CHs m? yr'. In terms of the full GHG budget, the restored
wetlands could be either GHG sources or sinks. The rice paddy was near CO:z neutral,
however, when considering harvest and CHa emissions, it acted as both a C and GHG
source. Annual photosynthesis was similar between sites, but flooding at the restored
sites inhibited ecosystem respiration, making them net CO: sinks. This study suggests
that converting drained agricultural peat soils to flooded land-use types can help
reduce or reverse soil subsidence and reduce GHG emissions.

2.2, Introduction

The worldwide drainage of peatlands for agricultural or forestry purposes has
resulted in vast soil subsidence, due to changes in physical conditions and enhanced
rates of microbial decomposition (Hirano et al., 2012, Rojstaczer & Deverel, 1993,
Stephens et al., 1984, Syvitski et al., 2009). In addition to degrading peat soils and
associated habitat, these ecosystems have become globally significant sources of carbon
dioxide (CO2) to the atmosphere, as large amounts of carbon (C) are lost to the
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atmosphere through oxidation (Armentano, 1980, Couwenberg et al., 2010, Drosler et
al., 2008). Nonetheless, this practice is widespread due to the high economic benefit of
the fertile soil (Kramer & Shabman, 1993).

The Sacramento-San Joaquin Delta (referred to hereafter as the Delta) in
California was drained over a century ago for agriculture and human settlement and
has since experienced subsidence rates that are among the highest in the world
(Rojstaczer & Deverel, 1995, Stephens et al., 1984). Prior to drainage, the Delta
consisted of a network of tidal marshes at the confluence of the Sacramento and San
Joaquin Rivers that covered an area of approximately 1,400 km? (Drexler et al., 2009a,
Shlemon & Begg, 1975). These highly productive ecosystems with low rates of
decomposition accumulated up to 18 m of peat as the marsh surface kept pace with
gradual sea-level rise over several thousand years (Atwater & Belknap, 1980, Shlemon
& Begg, 1975). Since drainage, agricultural cultivation has caused high rates of peat
soil oxidation and surface elevations have subsided to more than 8 m below sea level in
some regions (Deverel & Leighton, 2010, Deverel & Rojstaczer, 1996, Drexler et al.,
2009b). Today the Delta exists as a network of islands that maintain an artificially low
water table through an extensive levee network and continual pumping (Mount &
Twiss, 2005). As the land continues to subside, the risk of levee failure and subsequent
flooding also increases. This would cause saltwater intrusion into the Delta, threatening
a critical supply of water for California, as the Delta is a transfer point for agricultural
and municipal water for more than 22 million people (Miller et al., 2000).

Slowing subsidence and converting drained Delta ecosystems from net C sources
to C sinks is key to the long-term sustainability of the Delta and protection of
California’s water transfer infrastructure. Restoring degraded agriculture systems to
tflooded land-use types such as rice paddies and restored wetlands has been recognized
as a potential management option for the Delta that can prevent further peat oxidation
(Hatala et al., 2012b, Miller et al., 2000, Miller et al., 2008). Furthermore, it creates
additional benefits such as providing habitat for wildlife. The flooded status of these
environments decreases the rate of peat oxidation by physically impeding the transport
of oxygen required for most microbial metabolisms into the soil. Consequently, rates of
ecosystem respiration (ER) are lower in these flooded environments than in traditional
agricultural systems, and the reduction in CO: production can help reverse net C loss
(Eugster et al., 2010, Hatala et al., 2012b, Hendriks et al., 2007, Herbst et al., 2013, Miller et
al., 2000). Earlier investigations in the Delta have confirmed this result through
comparison of conventional drained agricultural crops and pastures, which were large
C sources, with flooded agricultural systems (i.e. rice) (Deverel & Rojstaczer, 1996,
Hatala et al., 2012b). Wetlands are among the most effective terrestrial ecosystems at
building soil organic matter and sequestering C (McLeod et al., 2011, Mitsch et al., 2013,
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Rocha & Goulden, 2009). Consequently, wetland restoration has been broadly
proposed as a way to mitigate fossil fuel emissions (Bernal & Mitsch, 2013, Maljanen et
al.,, 2010, Poffenbarger et al., 2011, Zedler & Kercher, 2005). High C sequestration rates
are expected from restored marshes in the Delta since the region has a long and warm
growing season with abundant water and sunlight (Brinson et al., 1981, Miller & Fujii,
2010). Miller et al. (2008) investigated the subsidence reversal potential of two restored
wetlands in the Delta and found that land-surface elevations increased by an average of
4 cm yr! in both wetlands over a nine year period.

However, managing the Delta for enhanced CO: sequestration is expected to
alter the fluxes of other greenhouse gases (GHGs). While the conversion from drained
to flooded land-use types will help stop the net emissions of CO:2 due to peat oxidation,
flooding is expected to increase the emissions of methane (CHs) (Hatala et al., 2012b,
Herbst et al., 2013, Miller, 2011, Teh et al., 2011), a GHG with a global warming potential
(GWP) 25 times greater than CO2 over a 100 year time scale (Forster et al., 2007).
Therefore, even relatively low rates of CHs emissions could offset the benefit of CO:
sequestration in terms of the net GHG effect. This is often observed in natural
wetlands, particularly in more northern wetlands (Blais et al., 2005, Bridgham et al.,
2006, Whiting & Chanton, 2001), however, overall the CHs budgets of wetland
ecosystems remain highly uncertain (Bridgham et al., 2006). Despite a growing interest
in peatland restoration for C sequestration (Drosler et al., 2008, Maljanen et al., 2010),
few studies have measured integrated, near-continuous CO: and CHas fluxes from
restored wetlands (e.g. Hendriks et al., 2007, Herbst et al., 2013, Miller, 2011, Reid et al.,
2013, Waddington & Day, 2007, Waddington et al., 2010).

In this study, we measured year-round fluxes of CO2 and CH4 from three land-
use types in the Delta spanning a range of inundated conditions using the eddy
covariance (EC) technique to assess the short-term consequences and tradeoffs of the
conversion from drained to flooded land-uses on C capture and GHG emissions. Our
study investigated a total of five field sites (Figure 2.1) comprising three representative
land-use classes: (1) Conventional drained agricultural sites: a drained and grazed
degraded peatland pasture and a corn field, (2) Agricultural wetland site: a rice paddy,
and (3) Restored wetland sites: a newly restored wetland (2010) and a long-term restored
wetland (1997). The first goal of this study was to compare the annual C balance of the
three different land-use types. We hypothesized that the conventional drained
agricultural sites would be large net sources of C while the rice paddy and restored
wetlands would be net C sinks and thus viable land-use types for stopping or reversing
soil subsidence in the Delta. Our second objective was to quantify the impacts of land-
use conversion from drained to flooded ecosystems on CHs fluxes due the greater GWP
of CHa relative to COz. This has implications for the overall GHG budgets of these sites
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and is important for GHG accounting protocols and verification. We hypothesized the
higher CHa emissions from the flooded sites could result in these ecosystems being net
GHG sources despite their potential for C sequestration.
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Figure 2.1. Location of the five Delta sites. All field sites are located in the Sacramento-
San Joaquin Delta, inland of San Francisco Bay. Since these sites are all within ~16 km of
each other, they share the same basic meteorology, enabling a direct comparison of
differences in the carbon and greenhouse gas budgets between sites. Pasture and corn
together cover over 60% of the primary Delta, while rice and wetlands each currently
cover less than 1% of the Delta.



2.3. Materials and methods

2.3.1. Study sites

The locations and overall characteristics of the five sites in this study are
described in Table 2.1. All sites are located in the Sacramento- San Joaquin Delta
of California, which is roughly 100 km inland from the Pacific Ocean (Figure 2.1). The
region experiences a Mediterranean climate, with hot, dry summers and cool, wet
winters. The growing season typically extends from February to November. The 30-
year mean air temperature (1981-2010) recorded at a nearby climate station (Antioch,
CA) is 16.4 °C and mean annual precipitation is 335 mm.

i) Conventional drained agricultural sites: The two business-as-usual land-use types
are a grazed degraded peatland pasture on Sherman Island (Pasture) and a cornfield on
Twitchell Island (Corn). Flux measurements at the Pasture began in April 2007. Two
invasive plants make up the dominant cover types in the pasture: from December-April
the canopy is dominated by mouse barley (Hordeum murinum L.), a long-naturalized Cs
grass in this region, and from April-October the canopy is dominated by pepperweed
(Lepidium latifolium L.), a perennial forb. This site (~0.9 km x ~0.4 km), which has been a
pasture for over 20 years, is fenced and grazed year-round by ~100 cattle. The cattle
tend to congregate in the far end of the field opposite the flux tower during the day in
the summer months, however, they commonly pass by the tower in the evening and
during the winter months. Their presence in the flux footprint notably impacts CHa
fluxes and to a much lesser extent CO: fluxes (Baldocchi et al., 2012, Detto et al., 2010).
The site is located on degraded peat soil, where the upper 0.6 m of soil is silt loam that
overlays a deep peat layer (Hatala et al., 2012b). The water table is largely maintained
below the soil surface throughout the year by continual pumping. While the drained
portion of the Pasture is a small CHa source (Baldocchi et al., 2012), strong sources of
CHa exist from cattle, flooded depressions in the field and drainage ditches (Baldocchi et
al., 2012, Teh et al., 2011). The typical daytime flux footprint is confined to the well-
drained portions of the field, but the elongated nighttime flux footprint crosses drainage
ditches and wetter portions of the pasture that are hot-spots for CHs production
(Baldocchi et al., 2012, Detto et al., 2010).

EC measurements at the cornfield were made from May 2012 to May 2013. The
site (~1 km x ~1.2 km) is also on degraded peat soil. The water table is kept below the
crop-rooting zone by an actively managed drainage network. During this study, the
tield was planted May 20 — 21, 2012 and was harvested November 1 -8, 2012. The field
remained fallow during winter. The variety of corn planted was ES-7477 hybrid corn
commercialized by Eureka seeds, and the field was fertilized once at seeding with 118
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Table 2.1. Site characteristics. These sites capture a range of hydrologic conditions within the Delta: the conventional
drained agricultural sites are drained year-round, the agricultural wetland is flooded for over half the year but is drained
for field preparation and planting, herbicide and fertilizer application and harvest, and the restored wetlands are

01T

permanently flooded.
Conventional drained agricultural sites Agriculture wetland site Restored wetland sites
Pasture Corn Rice Young wetland Old wetland
Location 38.0366°N, 38.1047°N, 38.10875°N, 38.0498°N, 38.1074°N,
121.7540°W 121.6433°W 121.6530°W 121.7650°W 121.6469°W
Elevation (m) -7 -5 -5 -3 -9
Measurement period 1 March 12012- 9 May 2012- 1 March 2012- 1 March 2012- 1 August 2012-
considered in this study 1 March 2013 9 May 2013b 1 March 2013 1 March 2013 1 August 2013
Average annual air 14.9 15.3 14.5 15.0 15.6
temperature* (°C)
Average annual soil 16.0 16.4 15.8 15.8 12.5
temperature? (°C)
Average peak growing 22.2 21.9 20.3 19.8 16.6
season soil temperature
(C)
Annual precipitation® (mm) 263 290 3904 3904 2784
Total incoming radiation 7001 7140 7050 7050 7137
(M]J m=2 yr1)
Mean (min, max) -65 (-92, -37) -82 (-86, -76) 9 (-30, +17) +107 (+102, +109) +26 (+6, +32)
peak growing season
water table depthe (cm)
Peak PAI 22 3.0 4.1 N/A N/A
Peak aboveground biomass N/A 2201 2050 2303e 1357¢
(g DM m?)
Typical vegetation Hordeum murinum L. Zea mays Oryza sativa Schoenoplectus acutus  Schoenoplectus acutus

Lepidium latifolium L.
*Corresponds to the measurement period considered in this study.

Typha spp. Typha spp.

PMeasurements only began on May 229, therefore to complete a full year of measurements, fluxes from May 9* — May
22nd were extrapolated based on the first 13 days of measurement and meteorological variables were either extrapolated
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or estimated based on measurements from other sites.

“Corresponds to August & September 2012.

4Values estimated from a nearby California Irrigation Management Information System (CIMIS) station on Twitchell
Island since measurements weren’t available at these sites.

*From Byrd et al. (2014).



kg N ha' in the form of urea ammonium nitration solution (UAN 32%).

ii) Agricultural wetland site: The rice paddy on Twitchell Island (Rice) represents
the agricultural wetland land-use class. Micrometeorological measurements at this site
began in April 2009 upon conversion from traditional corn and alfalfa agriculture. The
rice site is a pilot project managed by the California Department of Water Resources
(CADWR) to assess the potential of growing rice in the Delta. Prior to 1990, rice was
not farmed in the Delta due to cool nighttime growing season temperatures. However,
with the development of new varietals capable of withstanding these conditions,
currently there are ~20 km? of rice farmed in the Delta. The field where this site is
located is ~0.55 km x 0.7 km. The field was flooded for more than half the year,
however, it was drained several times during the year for cultivation and planting,
fertilizer and herbicide application, and harvest. Due to late precipitation in winter
2012 the field was plowed, harrowed, and leveled for planting in early May, which is
about a month later than previous years (Hatala et al., 2012b). The rice variety M104, a
cold weather cultivar, was planted on May 17, 2012. The field was fertilized with 11-52-
0 mono-ammonium phosphate fertilizer at a rate of 68 kg acre during planting and
then again with 30-0-20 ammonium sulfate fertilizer on June 16, 2012 at a rate of 68 kg
acre. The rice field was first treated with herbicide in mid-June (3.65 g acre™ Regiment,
324 g acre™ Prowl, 32 g acre! SYL-TAC, 324 g acre UN-32, and 4.1 g acre™! Sandea),
and then again with Propanil Flowable Herbicide (i.e. SuperWham!) in mid-July to
control a weed infestation. The crop was harvested November 13-16, 2012. Following
harvest of the rice grains, the remaining plant residue was left on top of the soil, and the
tield was re-flooded for the following winter to provide habitat for migrating birds.

ii1) Restored wetland sites: CO2 and CHa fluxes were also measured at a long-term
restored wetland (Old wetland) and newly restored wetland (Young wetland). In 1997,
the Old wetland (0.028 km?) was constructed in the central part of Twitchell Island
(Miller, 2011, Miller et al., 2008). We began GHG measurements at this site in July 2012.
The wetland was built on a former agricultural field by excavating surface soil, which
was used to construct berms around the area excavated for the wetland. Schoenoplectus
acutus (tule) shoots and rhizomes were planted in the eastern portion of the site prior to
tflooding, and cattails (Typha latifolia, T. domingensis, and T. angustifolia) from adjacent
waterways were allowed to disperse naturally to the pond via windborne seeds. In
October 1997, the sites was flooded to a constant water depth of ~25 cm. Following
flooding, the site was rapidly colonized by cattails, and presently approximately 100%
of the pond is filled with emergent macrophytes. Several floating aquatic plants
(Ludwigia peploides and Lemna sp.) and submerged aquatics are also present in the
ponds.
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A considerably larger (1.21 km?) restored wetland was constructed in 2010 on a
drained peatland pasture on Sherman Island (Young wetland), with flux measurements
initiated shortly after (October, 2010). During wetland construction, a heterogeneous
bathymetry was excavated to preserve existing wetland vegetation and generate
regions of shallow water (a few centimeters) and adjoining areas of deeper water (up to
2m). Consequently, this site is spatially heterogeneous, consisting of a mix of open
water and vegetation patches, where the abundance and spatial aggregation of the
vegetation strongly affect CHs fluxes at this site (Matthes et al., 2014). Today, this mixed
configuration presents a contrast to the Old wetland, where the site and flux footprint is
much more homogenous and dominated entirely by emergent vegetation. Both
wetlands support both Schoenoplectus acutus and Typha spp., but differ in relative
dominance between them.

2.3.2. Eddy covariance measurements

We employed the EC method to measure 30-min fluxes of CO2 (NEE; umol m= s
1), CHs (nmol m? s1), latent heat (LE; W m?), and sensible heat (H; W m?). A similar set
of EC instrumentation was deployed at each site (Table 2.1). At each tower, a sonic
anemometer measured high frequency wind velocity in three coordinates (u, v, w; m s™)
and temperature (Tsonic) (Table 2.1). Fluctuations in CO2 and H20 molar density (pco:
and pm20) were measured with open-path infrared gas analyzers (Table 2.1). Open-path
CHas sensors, based on wavelength modulation spectroscopy, were used to measure
fluctuations in CHs molar density (pcns), with the exception of the Pasture, where CH4
mixing ratio (xcus) was measured with a closed-path tunable diode laser fast methane
analyzer (FMA). AC power was available at the Pasture, therefore we used a scroll
pump (BOC ESDP 30A, Edwards, Tewksbury, MA, USA) which requires 770 W of
power and provides a flow rate of ~ 40 L min! at the FMA cell pressure (19 kPa).
Extensive field testing was conducted to evaluate the performance of the FMA sensor at
this site (Detto et al., 2010) and comparisons between the magnitude of 30-min fluxes
showed good agreement between open-path and closed-path flux systems (Detto et al.,
2011). CHa fluxes were not measured at the Corn as CHs emissions were assumed to be
negligible from this site since the water table was well below the soil surface throughout
the study. We used either digital dataloggers systems (LI-7550A; LI-COR
Biogeosciences, Lincoln NE, USA) or Campbell CR1000 dataloggers (Campbell
Scientific, Logan, UT, USA) to record raw turbulence data at 10Hz.

Fluxes were calculated using the 30-min covariance of vertical wind speed (w)
and the appropriate scalar after applying a series of standard corrections using in-house
software (Detto et al., 2010, Hatala et al., 2012b). First, this software removed artificial
spikes in the 10 Hz data and diagnostic instrument values that corresponded with poor
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Table 2.2. Description of the eddy covariance flux measurement systems and analysis.

Conventional drained Agriculture wetland Restored wetland sites
agricultural sites site
Pasture Corn Rice Young wetland Old wetland

Eddy covariance height 3.2 5.15 3.25 3.7 4.64

(m)

Sonic anemometer, WMP 1352 WMP 1352 WMP 1352 WM 1590 WM 1590
CO:z analyzer LI-7500 LI-7500 LI-7500 LI-7500 LI-7500
and CHs analyzer FMA N/A LI-7700 LI-7700 LI-7700

Threshold friction 0.15-0.20 0.15 0.15 0.15-0.185 0.20
velocity (m s?)

Filtered wind directions = N/A 180-200° & 0-190° N/A 290-240°

355-10°
= Percentage of 26-31% 35-42% 48-52% 24-38% 58-59%
observations rejected?

Energy balance closure 0.90 0.76 0.97 0.70 0.84

“The % of observation rejected varies depending on which flux measurement is considered.



readings, which were primarily associated with precipitation or fog events. Next,
coordinate rotations were used to align the streamlines with the surface of each site
resulting in zero mean w and v within each 30-min block. Where open-path sensors
were used, the Webb-Pearman-Leuning correction was applied to account for the effect
of air density fluctuations (Detto & Katul, 2007, Webb et al., 1980), and the relevant
additional spectroscopic corrections for pcus fluctuations measurements with the LI-
7700 instrumentation were also applied (McDermitt et al., 2011). For the closed-path
sensor, CHs measurements were adjusted to eliminate air density variations due only to
the effects of water vapor since it is assumed that high frequency temperature
fluctuations were dampened when sampling through the tube (Detto et al., 2010, Detto
& Katul, 2007). Fluctuations in Tsic were calculated from fluctuations in the speed of
sound following crosswind and humidity corrections (Kaimal & Gaynor, 1991,
Schotanus et al., 1983). After calculating the fluxes, we filtered flux values with low
friction velocity (1*) to constrain our analysis to turbulent conditions. Friction velocity
thresholds (Table 2.1), which varied seasonally, were identified as values above which
nighttime NEE no longer varied with increasing u*. Fluxes were further filtered for
spikes in 30-min mean densities, variances and covariances with thresholds varying
seasonally and between sites. Lastly, fluxes from wind directions outside the footprint
of each site were filtered from the data set and omitted from this analysis (Table 2.1).
The percentage of 30-min fluxes excluded from this analysis is given in Table 2.1.
Additionally, for the closed-path CHs measurements, we used a procedure similar to
the one outlined in Aubinet et al. (1999) and Humphreys (2004) in order to correct for
the high frequency flux losses resulting from sensor separation and attenuation of
fluctuations of xcus down the sampling tube. No high frequency corrections were
applied to fluxes measured using open-path sensors since flux losses amounted to less
than 5%, which is well within the accuracy of an individual flux measurement (Aubinet
et al., 1999).

Energy balance closure at these sites, defined as the energy balance ratio (Wilson
et al., 2002), ranged between 0.72 and 1.24 (Table 2.1). These values fall within the range
generally observed at sites within the FLUXNET network (Stoy et al., 2013, Wilson et al.,
2002). At all sites we accounted for radiant energy absorbed in photosynthesis as in
Leuning et al. (2012), and we approximated heat storage in the water column at the Rice
and Old wetland as in Drexler et al. (2004) since water depth was relatively uniform
across these sites. At the Young wetland, an EB closure greater than 100% is likely
related to the difficulty in adequately estimating net radiation (Rn) and storage terms at
this site where the distribution of water and vegetation is spatially heterogeneous.
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2.3.3. Gap-filling, NEE partitioning and annual budget computation

The artificial neural network (ANN) technique was used to gap-fill half-hourly
fluxes with meteorological variables (Moffat et al., 2007, Papale et al., 2006). The ANN
routine was optimized for both representativeness and generalizability. To avoid the
ANN being biased towards environmental conditions that typically have better data
coverage such as summertime and daytime measurements, the explanatory data were
divided into natural data clusters using a k-means clustering algorithm (MATLAB,
2014). Data used to train, test, and validate the ANN were proportionately sampled
from these clusters. For generalizability, the simplest ANN architecture with good
performance (< 5% gain in model accuracy for additional increases in architecture
complexity) was chosen for 20 extractions of the training, test, and validation data.
Within each extraction, each tested ANN architecture was re-initialized 10 times, and
the initialization with the lowest root-mean-square-error was selected to avoid local
minima. When the optimum ANN architecture for each extraction was determined, the
resultant prediction was saved. The median of the 20 predictions was used to fill each
gap and the spread of the predictions was used to provide a measure of uncertainty
resulting for the ANN gap-filling procedure. The only variable that was not gap-filled
was CHs flux at the Pasture, as extra precaution is needed to interpret eddy flux CHa
measurements in intensively grazed pastures (Baldocchi et al., 2012). CHa fluxes at this
site were strongly influenced by the combined effects of CHa emissions from cattle, and
by the collapsed nocturnal boundary layer and elongation of the flux footprint over CHa
hot spots (Baldocchi et al., 2012). Rather than integrating all CH4 flux measurements we
used the method described in Baldocchi et al. (2012) to estimate conditional averages,
which we used to bound the annual CHs budgets. This resulted in a lower bound that
is representative of CHa emitted from the drained portion of the pasture with less
influence from cows, and an upper bound that is representative of CHs emissions from
the drained and wet portions of the field and includes CHs emitted by cows.

The EC method measures the net exchange of CO: between the land surface and
the atmosphere, which represents the sum of ecosystem photosynthesis (gross
ecosystem production; GEP) and ecosystem respiration (ER). NEE can be partitioned
into GEP and ER by separately considering the day and night observations, as
photosynthesis only occurs during daylight hours. Winds in the Delta are strong even
during the night (Hatala et al., 2012b), thereby minimizing the need to account for the
uncertainties related to nighttime EC measurements due to atmospheric stratification
and stability (Massman & Lee, 2002). Consequently, NEE was partitioned into GEP
and ER using a method similar to Reichstein et al. (2005). Briefly, an Arrhenius-type
model after Lloyd and Taylor (1994) is used to describe the temperature dependence of
nighttime NEE (i.e. ER since GEP is assumed to be zero at night), and this model is then
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extrapolated to daytime periods. GEP was then calculated as the difference between
NEE and ER.

We computed annual budgets by integrating the gap-filled and partitioned
fluxes over the course of a full year. The dates over which the annual sums were
calculated are given in Table 2.1 as they are not the same for all sites due to differences
in the timing of the deployment of the sites. The net C balance was estimated as the
annual sum of NEE after accounting for the loss of C from the system via CH4 emissions
and harvest. As such, the C balance reflects the net ecosystem C balance as opposed to
the C balance from an atmospheric perspective as measured by the EC method (Chapin
et al., 2006). The net GHG budget was derived from annual sums of COz and CHg,
assuming that 1 g CHa is equivalent to 25 g CO: with respect to the greenhouse effect
over a time horizon of 100 years, and we assumed that C removed from the sites
through harvest would eventually be release to the atmosphere as CO.. The GHG
budgets did not account for secondary emissions at the sites such as emissions related
to pumping water off the islands or from farming machinery due to the difficulties in
constraining these values. To estimate the amount of uncertainty in the ANN gap-
filling procedure for the annual budget of each scalar, we calculated the integrated
annual budget using the full range of predictions used to fill each gap (i.e. based on the
20 extractions from the ANN), and calculated the 95% confidence interval from the
distribution of the 20 annual budgets. In this study, fluxes towards the surface are
negative and fluxes away from the surface are positive, therefore negative NEE
represents net CO: uptake and positive NEE indicates a net CO: source.

2.3.4. Supporting measurements

Micrometeorological instrumentation was deployed at each site to accompany
EC measurements. Air temperature (Tsir) and relative humidity were measured with an
aspirated and shielded thermistor and capacitance sensor (HMP45C or HMP60; Vaisala,
Vantaa, Finland). Precipitation was measured at the Pasture and Corn with a tipping
bucket rain gauge (TR-525I or TR-525M; Texas Electronics Inc., Dallas, TX, USA) and
water table depth was measured using pressure transducers (CS450 or CS451; Campbell
Scientific, Logan, UT, USA or PDCR 1830; GE Druck, Billerica, MA, USA) at all of the
sites except the Pasture where measurements were made manually from a well during
tield visits. Ruxet was measured with a four-component net radiometer (CNR1; Kipp and
Zonen, Delft, Netherlands or NRO1; Hukseflux, Delft, Netherlands), except at the Rice
and Young wetland where it was measured with a double-sided net radiometer (NR
Lite; Kipp and Zonen, Delft, Netherlands). Quantum sensors were used to measure
incoming and outgoing photosynthetically active radiation (PAR) (PAR-LITE or PQS 1;
Kipp and Zonen, Delft, Netherlands). Ground heat flux at the Pasture, Corn and Rice
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was measured as the average of three replicate ground heat flux plates (HFPO1 or
HFPO01SC; Huskeflux Thermal Sensors, Delft, Netherlands) buried just below the soil
surface at each of these sites. At all sites we measured soil temperature (T) at soil
depths of -0.02, -0.04, -0.08, -0.16, and -0.32 m with copper constant thermocouples. We
report the mean of three sample replicates at each depth. Similarly, water temperatures
were measured just above the soil surface at the Rice, 0.02 and 0.04 m at the Young
wetland, and 0.04, 0.8, and 0.16 m at the Old wetland. All supporting measurements
were sampled every 10 s, and the 30 min average values were stored on CR10X, CR23X
or CR1000 dataloggers (Campbell Scientific, Logan, UT, USA).

2.3.5. Vegetation sampling and monitoring

Plant area index (PAI) was measured every 1 to 2 weeks at the Pasture, Corn and
Rice sites during the growing season using an LAI-2000 Plant Canopy Analyzer (LI-
COR). Measurements were made every 10 m along a 100 m transect. At the Corn and
Rice, destructive measurements of aboveground biomass were also made by clipping all
vegetation within five randomly sampled 400 cm? plots. At all sites, canopy phenology
was monitored using digital camera images. Digital cameras were mounted near the
top of each flux tower to record images year-round. JPEG images with red, green, and
blue channels were recorded every 30 minutes. An analysis of a pre-defined “region of
interest” (ROI) in the foreground of each image was conducted using the PhenoCam
GUI application available as a pre-compiled MATLAB® program (PhenocamGUI v1.1;
http://phenocam.sr.unh.edu/webcam/tools/) to calculate a normalized green channel
brightness (% Green) for the ROIs as in Richardson et al. (2007). The % Green index was
selected to monitor canopy phenology since it reveals clear seasonal patterns that can be
associated with canopy development and senescence and is a good descriptor of NDVI
(Migliavacca et al., 2011, Richardson et al., 2007, Westergaard-Nielsen et al., 2013).

2.4. Results

2.4.1. Weather conditions, water table management, and phenology

As a result of the Delta’s Mediterranean climate, trends in meteorological
variables at the sites followed a strong seasonal cycle (Figure 2.2a,b). Mean annual T
was similar across sites despite somewhat different measurement periods (Table 2.1),
and values were just below the 30-year (1981-2010) mean of 16.4 °C from the Antioch
Climate Station located 10 km from the Pasture site. Annual precipitation at the sites
ranged from 263 to 390 mm (Table 2.1), with a mean of 322 mm across sites that is
comparable to the 30-year average of 335 mm. Total incoming radiation ranged
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between 7001 and 7140 MJ m yr! with differences between sites attributable to
differences in measurement periods. Ts at the flooded sites were lower than at the
drained sites, particularly during the peak growing season (T5grw) when the rice and
wetland canopies were closed (Table 2.1). Ts and Tsgrow were lowest at the Old wetland
which was due to the tall, dense, and closed canopy at this site.
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Figure 2.2. Typical pattern of the Mediterranean climate experienced at the sites, which
is characterized by warm summers and cool winters (Tuir) (a), and high incoming
radiation (Rg) and low precipitation (Ppt) during the summer months and wet winters
(b), and differences in water table management across sites (c). Measurements in (a)
and (b) are only plotted for the peatland pasture since the values for the other sites are
almost identical. The gray shaded area in (a) bounds the minimum and maximum daily
air temperature and the dash-dot line in (c) reflects the fact that measurements were
made manually during weekly or bi-weekly field visits.
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Water table depth at the Pasture and Corn was maintained below the soil surface
throughout the year by continual pumping (Figure 2.2c). Nonetheless, at the Pasture
CHa4 is produced within flooded drainage ditches and in zones of saturation in the soil
profile (Teh et al., 2011). Water levels at the Rice were regulated to ~0.05 to 0.10 m above
the soil surface for just over half the year, but the field was drained for about 80 days
(March 1to May 19, 2012) for cultivation and planting, approximately 20 days (May 28
to June 19, 2012) for fertilizer and herbicide application, about 50 days (September 30 to
November 21, 2012) for harvest, and then again for another 20 days when the field was
prepared for planting the following spring (February 10 to March 1, 2013) (Figure 2.2c).
Water table depth at Young wetland was always well above the soil surface, and while
the Old wetland was generally flooded to a depth of ~25 cm, accidental drops in the
water table to or below the soil surface occurred periodically due to mechanical
problems with the pumps.

As indicated from the % Green index derived from the digital camera images, the
restored wetlands had a much longer growing season than the crops (Figure 2.3); the
wetlands began greening up as early as mid-March and canopy senescence did not
begin until November, whereas the growing season at the Rice and Corn sites only
extended from June to October. The secondary peak in % Green at the Corn site in
April was due to an invasion by grasses in spring. Peak % Green occurred in the
summer months, with the exception of the Pasture where the index decreased during
this time as the pepperweed’s small white flowers masked the true “greenness” of the
site (Sonnentag et al., 2011).

2.4.2. Temporal variability of CO: fluxes and annual budgets

The general pattern of NEE at all sites followed a similar seasonal cycle (Figure
2.4) with most photosynthesis occurring in spring and summer when incoming solar
radiation was greatest (Figure 2.5). The highest rate of net CO: uptake at the Pasture (~
-6 g C-CO2 m?2d™?) occurred in late spring, corresponding with pepperweed growth.
Despite the lack of precipitation and low soil moisture during this period, plant growth
was possible since the pepperweed can tap the shallow water table. Low rates of
photosynthesis during the rainy season were due to the presence of winter grasses at
this site (Figure 2.5), which grow slowly over this time period due to low temperatures.
Although peak GEP was greatest at the Corn due to canopy architecture and Cs-type
photosynthesis, peak net CO: uptake (~ -5 g C-CO2 m2d"') was lower than at the Pasture
as a result of higher rates of ER (Figure 2.5). On an annual timescale, GEP at the Pasture
was greater than at the Corn, since although the Corn had higher rates of growing
season photosynthesis, year-round growth at the Pasture compensated for the lower
canopy photosynthetic capacity. The highest rates of net CO: release at the drained
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sites corresponded to the return of the winter rains, and reached values up to 10 g C-
CO:2 m?2d!during this period. The increase in ER following the start of the rainy season
occurs as moisture at the surface reactivates microbial activity resulting in large pulses
of CO:z emissions following the first rains (Huxman et al., 2004, Ma et al., 2012).
Although budgets of GEP at the Corn and Pasture were largely comparable to those at
the flooded sites, the drained land-use types were net sources of CO: to the atmosphere
on an annual basis due to high rates of ER (Table 2.3). The Pasture was the largest net
source of CO: to the atmosphere, releasing 326 g C-CO: m when integrated over a year,
while the Corn was a slightly smaller net CO2 source (276 g C-CO2 m?yr™).
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Figure 2.3. Time series of relative green brightness (% Green) for the conventional
drained agricultural sites (a), and the agriculture and restored wetland sites (b). The
pattern of % Green generally reaches a maximum at all sites during the summer
months, except at the Pasture. This index does not appropriately reflect vegetation
cover at this site as the greenness index decreases during this time despite high cover,
as the pepperweed’s small white flowers cause a decrease in site greenness. It is also
clear from the seasonality of greenness index that while the crops are highly productive,
their growing season is much shorter than that of the restored wetlands.
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Figure 2.4. Seasonal variability of net ecosystem CO: exchange (NEE) for the
conventional agricultural sites (a), and the agriculture and restored wetland sites (b).
Net ecosystem exchange at all sites follows a similar seasonal cycle with peak carbon
uptake in the spring and summer and net carbon emissions in the wintertime.

Growing season NEE at the flooded sites was quite similar with maximum net
CO:z uptake ranging between -10 and -12 g C-CO2 m d*! (Figure 2.4). Wintertime NEE
at these sites rarely exceeded 2 g C-CO2 m? d-!since flooding and cool temperatures
inhibited ER (Figure 2.5). The periods of increased net CO: emissions at the Rice in
spring and fall coincided with drainage events that resulted in large pulses of CO: to the
atmosphere, which are attributable a combination of degassing due to reduced
hydrostatic pressure and increased ER. On an annual basis the flooded sites ranged
from being strong CO:z sinks to near CO: neutral due largely to lower rates of ER (Table
2.3). Flooding resulted in comparably low annual sums of ER at the Rice and Old
wetland, but despite similar rates of growing season photosynthesis (Figure 2.5), yearly
GEP was considerably greater at the Old wetland due to its longer growing season
(Figure 2.3). Consequently, the Old wetland was a much larger annual net COz sink,
sequestering 506 g C-CO2 m? yr, whereas the rice paddy only sequestered 34 g C-CO:
m yr'. While NEE budgets at the Old and Young wetlands differed somewhat (by 88 g
C-CO2m?), the partitioning of NEE into ER and GEP differed notably between sites
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(Table 2.3); although the Young wetland captured more CO: through photosynthesis
than the Old wetland, this was offset much higher rates of ER, leading to only modest
differences in CO:2 budgets between these sites. The higher productivity at the Young
wetland compared to the Old wetland was likely due to the rapid expansion of new
vegetation during the 2012 growing season as the Young wetland continues to fill in
over time, and high rates of respiration may be attributable to higher GEP as ecosystem
respiration scales with productivity (Janssens et al., 2001).
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Figure 2.5. Daily partitioned net ecosystem exchange for the conventional agricultural
sites (a), and the agriculture and restored wetland sites (b). Peak gross ecosystem
production (GEP) occurs during the summer growing season. Flooding and cool
temperatures inhibit wintertime ecosystem respiration (ER) at the rice paddy and
restored wetlands, whereas autumn rains at the drained sites stimulate ER and drainage
at the Rice for planting and harvest cause large pulses of CO: to the atmosphere.
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Table 2.3. Annual sums of net and partitioned CO: fluxes, CHas fluxes, harvest, and total ecosystem carbon and
greenhouse gas budgets. Error bounds reflect the 95% confidence interval for the gap-filling procedure. Note that there
are no error bounds for ecosystem respiration since it is modeled based on the relationship between nighttime net CO:
exchange and air temperature and is independent of the gap-filling procedure.

NEE GEP ER CHa Harvest Cbudget GHG budget
Site g C-CO:m gC-CO:m? gC-CO2m? gC-CHim? gCO2eqm? gCm? gCm? gCOeqm?
2
Pasture! 326 -1450 1773 5.85 195 N/A 332 1390
+68 +68 +1.51 +50 +70 +300
to11.4 to 381 to 337 to 1575
+2.64 +88 +71 +337
Corn 276 -1338 1614 N/A N/A 293 569 2086
+24 +23 +24 +88
Rice -34 -1433 1400 6.97 233 162 135 702
+58 +58 +1.92 +64 +60 +276
Young -418 -2754 2335 65.2 2176 N/A -353 644
wetland +32 +32 +1.51 +50 +33 +166
Old wetland -506 -1874 1368 43.8 1464 N/A -462 -390
+53 +53 +2.47 +83 +55 +276

'The upper and lower bounds for the CHs budget at the Pasture are representative of different field conditions.
Additional details are given in the body of the paper.



2.4.3. Seasonal course of CH: fluxes and annual budgets

Large differences in both the magnitude and seasonal pattern of CHs fluxes were
observed across sites (Figure 2.6). CH4 emissions at the Pasture were a mixture of fluxes
from lower CHs-emitting upland soils, high CHs-emitting drainage ditches, and CHa
emitted by cattle (Baldocchi et al., 2012, Teh et al., 2011). CHas fluxes during the dry
season generally ranged between 0 and 50 mg C-CHs m? d!. Greater CHs effluxes were
observed during the rainy period, when daily CHa fluxes ranged between 10 and 330
mg C-CHs m? d!. We constrained the annual CHa budget at the Pasture to range
between 5.85 and 11.4 g C-CHs m? yr, with the lower end representative of the drained
portion of the field with little influence from the cows and the upper end comprising
both the drained and wet portions of the field and greater influence from the cattle.

The CHa fluxes at the Rice were comparable in magnitude to those at the Pasture,
but followed a different seasonal pattern (Figure 2.6a); CHs emissions at the Rice largely
tracked GEP (Figure 2.5), and large pulses of CHu to the atmosphere occurred during
drainage of the field in late September 2012 and in mid-February 2013 (Figure 2.2c).

The release of CHs upon drainage can be attributed to a combination of degassing due
to reduced hydrostatic pressure and to decreased CHs4 oxidation due to the more rapid
transport of CHa through the soil profile (Han et al., 2005, Hatala et al., 2012b). Once the
tield was well drained, CHu fluxes were quite low, rarely exceeding 20 mg C-CHs m? d-
1. Over the course of a year, the rice paddy released 6.97 g C-CHs m? to the atmosphere.

Growing season CHa emissions at the restored wetlands were an order of
magnitude greater than those at the Rice or Pasture, with peak emissions of 590 mg C-
CHs m? d'at the Young wetland and 390 mg C-CHs+ m? d*! at the Old wetland. Again
CHas emissions followed a seasonal pattern that largely paralleled GEP, with the
exception of the pronounced peak in daily CHas flux at the Old wetland in early July
2013, which was the result of a sudden water table drawdown (Figure 2.2¢c). On a
yearly basis, the Young wetland released the largest amount of CHs to the atmosphere
(65.2 g C-CH4 m?), while the Old wetland released somewhat less CHa (43.8 g C-CHs m-
2) (Table 2.3).

2.4.4. Annual C and GHG budgets

As expected from the high rates of subsidence on Delta islands, conventional
agricultural sites were both large net C and GHG sources (Table 2.3). While the Pasture
was the largest annual CO: source to the atmosphere (Table 2.3), if we account for the
fact that 293 g C m? was removed from the cornfield through harvest, total C loss was
greatest at the Corn site (569 g C m? yr!). The drained sites were large GHG sources,
with emissions ranging between 1390 and 2086 g COzeq m? yr, which is considerably
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greater than GHG emissions from the flooded land-use types.
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Figure 2.6. Seasonal course of daily integrated CHa flux for the drained and flooded
agricultural sites (a) and restored wetland sites (b). CH, fluxes were generally low at the
rice paddy and pasture sites, while fluxes at the restored wetlands were up to an order
of magnitude greater (note the difference in the vertical axis in (a) and (b)). With the
exception of the pasture, CHs emissions largely followed a pattern that was closely
related to that of gross ecosystem production. CHs emissions were also strongly
influenced by water table dynamics. Note that CHa fluxes at all sites were gap-filled
with the exception of the Pasture, therefore integrated daily CH4 emissions at this site
were only estimated for days when there was a measured flux for at least half of the
possible 48 half-hour intervals.

Although the Rice was a small atmospheric sink for CO2 (Table 2.3), if we
consider the amount of C removed from the field through harvest (162 g C m?) and CHa
emissions, the rice paddy acted as both a net C and GHG source (135 g C m? yr! and
702 g CO2eq m? yr, respectively). The restored wetlands could be either a GHG source
or sink depending on CHi emissions: while NEE at the wetlands was roughly
comparable, higher CHu fluxes at the Young wetland relative to the Old wetland
resulted in the former site being a net GHG source (Table 2.3). Regardless of the
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differences in GHG flux totals, the restored wetlands were both strong C sinks,
sequestering between 353 and 462 g C m= yr..

2.5. Discussion

2.5.1. CO: fluxes

Due to high rates of soil subsidence, the practice of drained agriculture in the
Delta is unsustainable in the long-term. Like other drained and degraded peatlands
(e.g. Hirano et al., 2012, Nieveen et al., 2005, Veenendaal et al., 2007), the Pasture was a
large net source of CO: to the atmosphere (Table 2.3), as reported for previous years
(Hatala et al., 2012b). Corn is generally a C sink or C neutral, even when considering
harvest (Bernacchi et al., 2005, Hollinger et al., 2005, Suyker et al., 2004), however, high
rates of peat oxidation resulted in the Corn being a large net CO: source.

The results of this study showed that converting drained Delta landscapes back
to flooded conditions offers a promising intervention to halt C loss and associated
subsidence. Rice agriculture is one possible flooded land-use type that can slow
subsidence by limiting ER, as the rice paddy was an atmospheric sink for CO: (Table
2.3), in agreement with an earlier study at this site (Hatala et al., 2012b). Growing
season net CO: uptake at the Rice was on the lower range of values reported for other
studies (e.g. Alberto et al., 2012, Bhattacharyya et al., 2014, McMillan et al., 2007, Miyata
et al., 2005, Saito et al., 2005), which was largely due to higher rates of ER at our site with
high soil organic C content as GEP at the Rice typically exceeded values measured
elsewhere.

Wetland restoration is the most promising management option for reversing
subsidence in the Delta, as the restored marshes were the largest C sinks (Table 2.3).
We found that NEE budgets at the Young and Old wetlands were over an order of
magnitude greater than values reported for temperate and northern peatlands (e.g.
Drewer et al., 2010, Nilsson et al., 2008, Olson et al., 2013, Rinne et al., 2007, Roulet et al.,
2007, Saarnio et al., 2007), and nearly twice as large as values reported for other
temperate Typha marshes (Bernal & Mitsch, 2013, Bonneville et al., 2008, Rocha &
Goulden, 2008). In contrast, Whiting and Chanton (2001) reported NEE budgets
ranging from -896 to -1139 g C-CO2 m? yr'! for Typha marshes in the Southeast USA,
which exceeds values at the Delta wetlands. However, these rates were estimated from
monthly or bi-monthly chamber measurements, and while the chamber method is ideal
for assessing the spatial variability of fluxes, EC is more suitable for assessing temporal
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variability and up-scaling both spatially and temporally (Hendriks et al., 2010). C
sequestration rates in restored Delta marshes were also in the upper range of values
reported in the literature for other wetland types (c.f. Table 5 in Bernal & Mitsch, 2012,
c.f. Table 2 in Mitsch et al., 2013). High rates of net CO: uptake at our sites are
attributable to the Delta’s long, warm growing season with abundant water and
sunlight (Brinson et al., 1981). A handful of studies have measured C budgets at other
created or restored wetlands and reported net CO: uptake rates lower (Bernal &
Mitsch, 2013, Herbst et al., 2013, Waddington et al., 2010) or within the range (Badiou et
al., 2011, Hendriks et al., 2007) observed in this study.

2.5.2. CH: fluxes

While flooding is an effective means of sequestering C, it also has secondary
effects on GHG budgets through increased CHs production. CH4 emissions at the
Pasture were low relative to CHa4 fluxes at the restored wetlands (Table 2.3), but
comparable to fluxes measured at other drained peatlands (Kroon et al., 2010, Schrier-
Uijl et al., 2010). Despite the rice paddy being flooded for more than half the year, less
CHas was emitted annually than at the Pasture (Table 2.3). Furthermore, CHs fluxes at
the Rice were considerably lower than values measured from rice paddies elsewhere in
California (Cicerone & Shetter, 1981, Cicerone et al., 1983, McMillan et al., 2007), and by
other studies of CHs emissions from rice agriculture around the world (Bhattacharyya et
al., 2014, Ding et al., 1999b, Holzapfel-Pschorn & Seiler, 1986, Huang et al., 1997a,
Meijide et al., 2011, Seiler et al., 1983). Lower CHi emissions in our study could be
related to the presence of oxidizing agents, notably ferric iron at this site (Ye et al., 2015),
the fact that these soils contain a large abundance of lignin and other aromatics, lipid,
and aliphatics, which are not readily decomposable due to their chemical recalcitrance
under anoxic conditions [Ye et al., 2016], cooler soil temperatures relative to tropical or
subtropical sites (Conrad, 2002, Schiitz et al., 1990), differences in rice cultivar (Huang et
al., 1997a), and the relatively recent conversion of this site to rice agriculture which
influences the amount of labile soil organic C, redox dynamics, and microbial
community changes (Eusufzai et al., 2010).

Numerous studies have shown a strong relationship between NEE or plant
productivity and CHs flux, as vegetation is the primary source of C substrate for
methanogenic metabolism (Chanton et al., 1993, Hatala et al., 2012a, Whalen, 2005,
Whiting & Chanton, 1993). Since annual NEE at the restored wetlands was in the
upper range of values reported in the literature, it follows that CHs emissions from
these sites were also higher than values reported in other studies, particularly for more
northern wetlands (e.g. Drewer et al., 2010, Jackowicz-Korczynski et al., 2010, Olson et
al., 2013, Rinne et al., 2007, Roulet et al., 2007, Shurpali & Verma, 1998, Sun et al., 2013,
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Turetsky et al., 2014, Wille et al., 2008). Annual CHs budgets at a number of temperate
and tropical wetlands exceeded values reported in this study, including emissions from
marshes in the Midwestern USA (~60 g C-CHs m? yr?) (Kim et al., 1999, Nahlik &
Mitsch, 2010), marshes in the Southwestern USA (up to 130 g C-CHs m? yr') (Whiting &
Chanton, 2001), and tropical wetlands in Costa Rica (220 to 263 g C-CHs m? yr!)
(Nahlik & Mitsch, 2010). However, with the exception of the study by Kim et al. (1999),
these emissions were estimated from chamber measurements taken at most once per
month. Few studies have quantified CHs emissions from restored wetlands: mean
annual CHs emissions ranged between 68 and 17 g C-CHs m* yr! for two long-term
created marshes in Ohio, USA (Nahlik & Mitsch, 2010), between 31.3 and 32.3 g C-CHa
m yr! for a restored peatland in the Netherlands (Hendriks et al., 2007), and between 9
and 13 g C-CHs m? yr'!from a restored wetland in Denmark (Herbst et al., 2013).

2.5.3. Impacts of land-use change on C sequestration and GHG budgets

While the restoration of drained wetlands is often suggested as a means to
sequester C (Drosler et al., 2008, Maljanen et al., 2010), there are few comprehensive
studies that quantify the effects of restoration activities on C and GHG budgets. This
study corroborates the findings of the few recent investigations that also found that
while managed peatlands are large sources of C, re-wetting can convert these
ecosystems back to C sinks (Schrier-Uijl et al., 2013, Waddington et al., 2010). Although
the Rice was a net C source from an ecosystem perspective, it lost 434 to 237 g C m? yr!
less than the Corn and Pasture, respectively. Therefore, while rice agriculture in the
Delta does not reverse subsidence, it does experience subsidence rates up to an order of
magnitude lower than rates for conventional drained agriculture (Hatala et al., 2012b).
Restored wetlands are the land-use type with the greatest potential to capture C (Table
2.3) and reverse subsidence (Miller et al., 2008). Therefore, restoring drained and
degraded peatlands to natural wetlands may be critical to ensuring the long-term
sustainability of the Delta and other heavily subsided regions throughout the world
(Armentano, 1980, Syvitski et al., 2009).

In addition to stopping the degradation of peat soils and reversing subsidence,
another goal of drained to flooded land-use change in the Delta is to reduce GHG
emissions. This is part of a growing interest in California and elsewhere in wetland
restoration and management for C sequestration and possible inclusion in C finance
markets (Emmert-Mattox et al., 2010, Murray et al., 2011). In addition to being large
sources of C, the drained agricultural sites were significant GHG sources (Table 2.3).
GHG balances for these sites represent conservative estimates as the budget of nitrogen
GHGs was unaccounted for, and N20 emissions at the Corn have been found exceed
400 g CO2eq m? yr! (Morris, 2014) while even larger N2O fluxes have been measured at
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the Pasture (Teh et al., 2011). In all cases, flooding reduced GHG emissions (Table 2.3),
even when factoring in N2O emissions from the Rice, which are comparable to those at
the Corn (Morris, 2014). Wetland restoration provides the most benefit from both a
subsidence and GHG standpoint, with the potential of converting drained peatlands
from GHG sources to GHG sinks (Table 2.3). Furthermore, N2O emissions from natural
wetlands are generally low compared with terrestrial soil environments due to the low
rates of N2O production (Page & Dalal, 2011). Additional benefits from wetland
restoration include flood protection and the provision of key habitat for many species.
While the EC method is a valuable tool to monitor trace gas fluxes from a range of land-
use types (Baldocchi et al., 2001), this study is unique in assessing the impacts of
restoring drained and subsided agricultural peatlands to flooded ecosystems on CO:
and CHas fluxes. With a growing global interest in peatland rewetting for C
sequestration (Couwenberg et al., 2010, Maljanen et al., 2010), there is a strong need for
turther research on the short and long-term effects of restoration activities on C and
GHG exchange, particularly since restored and natural wetlands can exhibit large
interannual variability (Chu et al., 2015, Herbst et al., 2013, Strachan et al., 2015).
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Chapter 3: Biophysical controls on interannual variability in ecosystem scale
CO: and CHs exchange in a California rice paddy

3.3. Abstract

We present six and a half years of eddy covariance measurements of fluxes of
methane (Fcus) and carbon dioxide (Fcoz) from a flooded rice paddy in Northern
California, USA. A pronounced warming trend throughout the study associated with
drought and record high temperatures strongly influenced carbon (C) budgets and
provided insights into biophysical controls of Fco: and Fcrs. Wavelet analysis indicated
that photosynthesis (GEP) induced the diel pattern in Fcus, but soil temperature (Ts)
modulated its amplitude. Forward stepwise linear models and neural networking
modeling were used to assess the variables regulating seasonal Fcrs. As expected due to
their competence in modeling non-linear relationships, neural network models
explained considerably more of the variance in daily average Fcus than linear models.
During the growing season, GEP and water levels typically explained most of the
variance in daily average Fcrs. However, Ts explained much of the interannual
variability in annual and growing season CHs sums. Higher Ts also increased the
annual and growing season ratio of Fcrs to GEP. The observation that the Fcus to GEP
ratio scales predictably with Ts may help improve global estimates of Fcus from rice
agriculture. Additionally, Ts strongly influenced ecosystem respiration, resulting in
large interannual variability in the net C budget at the paddy, emphasizing the need for
long-term measurements particularly under changing climatic conditions.

3.4. Introduction

Wetland rice paddies are a major source of atmospheric methane (CHs)
(Reeburgh, 2003, Whalen, 2005), the second most important greenhouse gas (GHG)
following carbon dioxide (CO2) (Myhre et al., 2013). Numerous studies over the past
decades have measured CHi emissions from rice fields throughout the world (cf.
Aulakh et al., 2001, Yan et al., 2005). Previous studies have identified a number of
factors and processes controlling CHi emissions, including soil properties (Huang et al.,
1997a, Neue & Sass, 1994, Sass et al., 1994, Yagi & Minami, 1990), agricultural practices
such as floodwater management (Alberto et al., 2014, Corton et al., 2000, Linquist et al.,
2015, Wassmann et al., 2000a, Yagi et al., 1996) and fertilizer application (Bronson et al.,
1997, Cicerone et al., 1992, Corton et al., 2000, Lindau et al., 1991, Naser et al., 2007, Sass et
al., 1991a, Schiitz et al., 1989a, Wassmann et al., 2000a, Yagi & Minami, 1990), cultivar
selection (Ding et al., 1999a, Huang et al., 1997a, Wassmann & Aulakh, 2000), grain to
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biomass ratios (Denier van der Gon et al., 2002), and climate (Neue & Sass, 1994, Sass et
al., 1991b, Schiitz et al., 1990, Wassmann et al., 2000b, Yan et al., 2005). In addition, CH4
is strongly regulated by the ecological function of rice plants since they are the primary
transport mechanism of CHs from the soil to the atmosphere with diffusion being the
dominant mechanism for gas exchange in rice (Chanton et al., 1997, Den van der Gon &
Van Breemen, 1993, Wassmann & Aulakh, 2000). Rice plants also promote CHs
oxidation via transport of atmospheric oxygen through aerenchyma, and they are an
important source of carbon (C) substrates for methanogenic metabolism (Cicerone et al.,
1992, Hatala et al., 2012a, Huang et al., 1997b, Wassmann & Aulakh, 2000). Even in
wetland ecosystems, where soil organic carbon can exceed 90%, there is strong evidence
to suggest that CHa production is fueled by recent plant photosynthates in the form of
exudates in the rhizosphere with limited contributions from recalcitrant soil organic
matter (Bridgham et al., 2013, Strom et al., 2003). However, considerable uncertainty
remains regarding the quantitative relationships between CH4 emissions from rice
paddies and the biophysical processes driving these fluxes (Huang et al., 1997a), which
contributes to the large uncertainty (25 to 300 Tg CH4 yr, with a median value of 53 Tg
CHas yr') in global CH4 budgets from rice agriculture (Bridgham et al., 2013).

Methane emissions from rice fields have predominantly been measured using
the closed chamber technique (cf. Aulakh et al., 2001). While chambers are
advantageous for assessing spatial variability and treatment effects on fluxes, are easy
to manipulate, and relatively inexpensive, placing a chamber over the plant-soil
environment can introduce a number of potential biases due to direct interaction with
the near-surface environment (Baldocchi, 2003, Chanton et al., 1997, Meijide et al., 2011).
Furthermore, measurements are performed over a limited area and are often discrete in
time, which provides challenges for estimating robust annual budgets since CHa
emissions from rice show large spatio-temporal variability (Holzapfel-Pschorn & Seiler,
1986, Khalil & Butenhoff, 2008, Schiitz et al., 1989a). In recent years, the eddy
covariance technique has emerged as an alternative means of measuring trace gas
exchange since it provides quasi-continuous measurements at the ecosystem scale
without interfering with the processes of gas exchange between the surface and the
atmosphere (Baldocchi, 2003). While the eddy covariance method has largely been used
to measure CO2, water, and energy fluxes, the development of open-path sensors
suitable for remote and fast CHs measurements (Detto et al., 2011, McDermitt ef al.,
2011) has allowed a growing number of studies to measure CHs fluxes using this
method (e.g. Baldocchi et al., 2012, Chu et al., 2014, Hatala et al., 2012b, Hendriks et al.,
2010, Hendriks et al., 2007, Herbst et al., 2013, Knox et al., 2015, Koebsch et al., 2015,
Kroon et al., 2010, Matthes et al., 2014, Petrescu et al., 2015, Rinne et al., 2007, Sturtevant
& Oechel, 2013, Sturtevant et al., 2012). However, to date few studies have used this
method to measure CHs emissions from flooded rice paddies on seasonal or annual
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time scales (Alberto et al., 2014, Bhattacharyya et al., 2014, Hatala et al., 2012a, Hatala et
al., 2012b, Knox et al., 2015, Meijide et al., 2011).

Concurrent near-continuous measurements of CHs, CO:2 and water vapor, along
with ancillary physical variables (e.g. temperature, water depth, radiation) can improve
our understanding of the major controlling factors of CHs emission across a spectrum of
timescales (hours to years) (Baldocchi, 2014, Chu et al., 2014, Koebsch et al., 2015).
Considerable insight can be gained by exploring which of these variables are strongly
correlated with CHs exchange and under what conditions, even if these variables, such
as ecosystem respiration of CO: or ecosystem photosynthesis and evapotranspiration,
may not represent direct drivers of CHs production, oxidation or transport processes
(Morin et al., 2014, Sturtevant et al., 2016). For examples, previous studies observed
tight couplings between rice photosynthesis and CH4 exchange across periods of hours
(Hatala et al., 2012a) to seasons (Chanton et al., 1997, Huang et al., 1997b, Sass et al.,
1990), highlighting the connection between recent photosynthates and CHs4 production
and/or the influence of stomatal conductance on CHs transport. Additionally, exploring
the relationship between evapotranspiration and CHas flux can provide insight into the
influence of plant activity and vegetation dynamics on CHs transport (Morin et al., 2014,
Sturtevant et al., 2016), including the role of transpiration in driving diel variations in
CHa4 emission (Chanton et al., 1997). Ecosystem respiration has also been found to be an
important predictor of CHs flux, improving the prediction of CHs emissions beyond the
contribution of other direct environmental drivers alone, highlighting the complex and
non-linear relationships of these environmental drivers on metabolic processes across
the microbial community (Morin et al., 2014). Simultaneous measurements of COz and
CHa fluxes from rice fields over annual time periods also allow the quantification of CO:
to CHa ratios that can be used to assess the potential of estimating the flux of one gas
from the other (McMillan et al., 2007, Stallard, 1998, Whiting & Chanton, 1993) and the
extent to which net CO: uptake can offset the radiative effect of CHs emissions, which
currently remain uncertain since only a limited number of studies have simultaneously
quantified annual budgets of both CHs and CO:from rice agriculture (Bhattacharyya et
al., 2014, Hatala et al., 2012b, McMillan et al., 2007).

In this paper we present results from a six and a half year study of simultaneous
measurements of CHs, CO:2 and water fluxes from a flooded rice field in Northern
California using the eddy covariance method. To our knowledge, this is the longest and
most comprehensive dataset of eddy covariance measurements of wetland rice
greenhouse gas fluxes in the world. Our objectives were to investigate factors affecting
CHa fluxes across diel to interannual timescales and quantify interannual variability in
CO:z and CHs4 budgets. Specifically, we addressed the following questions: 1) How do
CHa fluxes at the rice paddy vary across diel, seasonal and interannual timescales? 2)
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What is the net C balance and CO: to CHas ratio of the site and how does this vary from
year to year? and 3) What biophysical factors are important for predicting CHs fluxes
and how do these factors vary across timescales? The severe drought and associated
record high temperatures experienced in California during the latter half of the study
produced strong variability in environmental drivers, which provided a broad range of
conditions to investigate the biophysical regulators of COz and CHs exchange in
wetland rice systems.

3.5. Materials and methods

3.3.1. Study site and crop management

Our study site is located on Twitchell Island in the Sacramento-San Joaquin
Delta, California, USA (referred to hereafter as the Delta) (Figure 3.1), which is located
approximately 100 km inland from the Pacific Ocean. The region experiences a
Mediterranean-type climate characterized by hot, dry summers and cool, wet winters.
The 18-year average temperature (1998-2015) recorded at a nearby weather station
located ~1 km northwest of our site on Twitchell Island is 15.1 °C and mean annual
precipitation is 326 mm. The Delta exists as a network of islands that maintain a water
table below sea level through an extensive levee network and pumping (Deverel &
Leighton, 2010, Mount & Twiss, 2005) following the drainage of the Delta’s tidal
marshes over a century ago. Agricultural cultivation since drainage has caused high
rates of peat soil oxidation, where today the land surface in the Delta lies up to 8 m
below sea level (Deverel & Rojstaczer, 1996, Drexler et al., 2009b).

Prior to 1990 rice was not farmed in the Delta due to the lack of appropriate
cultivars for the cool nighttime growing season temperatures. However, with the
development of new varietals and the potential for rice agriculture to slow subsidence
in the Delta by lowering rates of ecosystem respiration under flooded conditions
(Hatala et al., 2012b, Knox et al., 2015), today there are about 20 km? of rice farmed in the
region. The Twitchell Island rice paddy is a pilot project managed by the California
Department of Water Resources, and the land was converted from traditional drained
corn and alfalfa to rice (Oryza sativa) in 2009. Figure 3.1 shows the progressive increase
in the size of flooded rice agriculture and wetlands on Twitchell Island throughout the
study. During the first year, the east-west fetch was less than 500 m, however, by 2014
rice covered 2.44 km? of land and the total area of flooded vegetation was 5.7 km?
(Figure 3.1). As described by Baldocchi et al. (2016), during the first few years of the
study, the small and relatively isolated extent of flooded rice promoted an ‘oasis effect’
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that enabled warm dry air to be entrained across the top of the planetary boundary
layer. However, by the sixth year of the study, the area of the flooded rice and wetlands
approached a horizontal scale that appeared to inhibit the “oasis effect’. As suggested
from co-spectral analysis and analysis with a coupled surface energy balance-planetary
boundary model, this likely resulted in water and heat advection in the earlier years of
the study (Baldocchi et al., 2016). However, the co-spectral densities for w'c’ and w'm’
overlapped one another during 2009 (when there was an “oasis effect’) and 2014 (when
there was no evidence for an ‘oasis effect’), suggesting that there was likely no CO: or
CHas advection and therefore minimal influence on CO:2 and CHs fluxes and budgets.

nce 1997 Flux footprint
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ew rice since 2010 - New rice since 2012 Wetland since 2014

Growing season, day Fallow season, night

= = = = Growing season, night @  Flux towers

Figure 3.1. Flux tower location, climatological footprint, and extent of flooded rice and
wetlands on Twitchell Island, CA, USA throughout the study period. The tower was
primarily located at Location 1 throughout the study (38.10875°N, 121.6530°W), except
from July 22, 2009 to November 17, 2010 when it was moved 300 m to the south
(Location 2; 38.105530°N, -121.652097°W). For the climatological footprint, data are
separated by season (growing season vs. fallow season), and day and night status and
contours represent the 85% flux footprints. The extent of rice on the island varied
throughout the study, and by 2014 the area of flooded rice and wetlands on the island
approached 6 km?.

The rice paddy lies ~5 m below sea level and is located on degraded peat soil
with the top-most layer consisting of a silt loam which overlays a deep peat layer. The
soil is characterized by low bulk density (0.65 and 0.57 g cm™ at a depth of 0-30 cm and
30-45 cm below the soil surface, respectively) and high C content (15% and 31% at a
depth of 0-30 cm and 30-45 cm below the soil surface, respectively) (Hatala et al., 2012b).
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Crop management practices are summarized in Table 3.1, and varied somewhat from
2009 to 2015 as changes were made in attempts to improve yields. The field was
typically disced once or twice and ring rolled for planting in late-March to mid-April,
with the exception of the 2012 growing season when planting was delayed until mid-
May due to late rainy season precipitation. Rice varieties M104 or M206, both semi-
dwarf, cold weather cultivars were planted at a density of 14 — 17 g m?2. Between 2009
and 2012 the field was fertilized both at planting and just before flooding, however,
from 2013 onward fertilizer was only applied once shortly before flooding (Table 3.1).
The site was treated with herbicide one to three times throughout the growing season
depending on weed infestations (Table 3.1). The field was flooded throughout the
growing season, and harvested between late September and late October. With the
exception of 2014, the rice straw was chopped and left on the field after harvesting of
the grain. The paddy was re-flooded throughout the winter to provide habitat for
migrating birds and reduce rates of peat soil oxidation. Few plants grew within the
field during the flooded winter period, and therefore wintertime photosynthesis
represented typically < 10% of annual gross photosynthetic uptake.

3.3.2. Eddy covariance measurements

We used the eddy covariance method to measure 30-min average fluxes of CHs
(Fcrw; nmol m? st), CO:2 (Feoz; pmol m? s?), latent heat (LE; W m™?), and sensible heat (H;
W m2) (Baldocchi et al., 1988). The EC instrumentation was mounted on a tower at an
average height of 3.15 m. The tower was primarily located near the northeastern
portion of the field (Location 1), except from July 22, 2009 to November 17, 2010 when it
was moved 300 m to the south (Location 2). As the field is homogeneous, the location
of the tower is likely to have minimal influence on ecosystem-scale Fco2 and Fcrs. High
frequency three dimensional wind speed (1,v,w; m s!) and temperature (Tsonic) were
measured with a sonic anemometer (Gill WindMaster or WindMaster Pro; Gill
Instruments Ltd, Lymington, Hampshire, England). Fluctuations in CO: and H.O
molar density were measured with an open-path infrared gas analyzer (LI-7500; LI-
COR Biogeosciences, Lincoln, NE, USA). Prior to January 17, 2012, CHs mixing ratio
(Xcu,) was measured with a closed-path tunable diode laser CHa analyzer (Los Gatos
Research (LGR), Mountain View, CA, USA). Two types of LGR analyzers were used; a
fast greenhouse gas analyzer (FGGA) that simultaneously measures concentrations of
COz, CHs, and H20 (June 4, 2009 to August 17, 2010), and a fast methane analyzer
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Table 3.1. Cultivars planted, planting, harvest, fertilizer and herbicide application dates, peak plant area index (PAI),

yield at 14% moisture content, and grain carbon.

2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
Variety M104 M206 M104 M104 M206 M206 M206
Plant date 15 Apr 16 Apr 22 Apr 17 May 2 Apr 28 Apr 16 Apr
Harvest date  20-25 Oct 28-29 Oct 12-14 Oct 13-15 Nov 20 Sep 2 Oct 23 Sep
Fertilizer 15 Apr 16 Apr 22 Apr 17 May 2 May 5 Jun 31 May
application 100 Ib ac” of 100 Ib ac” of 1001b ac'of  1001bac’of 100 Ib ac'of 150 1Ib ac'of 100 Ib ac?of
11-52-0 11-52-0 11-52-0 11-52-0 15-15-15 15-15-15 15-15-15
23-24 May 5-9 Jun 14 Jun 16 Jun
150 Ib actof 150 Ib actof 2001b actof 200 1b ac'of
30-0-20 30-0-20 30-0-20 30-0-20
Herbicide 22 May 8 Feb 10 Jun 31 May 1 May 4 Jun 1Jun
application Bispyribac Alecto, Mist Regiment, Regiment, Regiment, Regiment, Regiment,
sodium & Control, Prowl], Syl- Prowl], Syl- Prowl, Syl- Prowl, Syl- Prowl], Syl-
Pendimethalin Sharl EW Tac Uan-32, Tac Uan-32, Tac Uan-32, Tac Uan-32, Tac Uan-32,
3 Jun Sandea Sandea Sandea Sandea Sandea
Regiment, 5 Jul 6 Jun 25 Jun
Prowl], Syl- Sprayed for Clincher CA, SuperWham
Tac Uan-32, water grass Mor-Act
Sandea from Adjuvant,
helicopter Tri-Fol
19 Jul
SuperWham
Peak PAI 6.7 7 4.6 4.1 4.6 5 3.5
Yield (t ha) 4.7 4.5 6.0 5.6 7.3 5.7 7.4
Grain
carbon?
(g Cm?) 172 163 220 205 266 208 269

*Calculated from yields as in Hollinger et al. (2005) assuming the fraction of carbon in the grain is 0.43 based on
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(FMA) (August 17, 2010 to January 17, 2012). Following January 17, 2012 an open-path
CHas analyzer, based on wavelength modulation spectroscopy, was used to measure
fluctuations in CHs molar density (LI-7700; LI-COR Biogeosciences, Lincoln, NE, USA).
The specifications and details of the external pump required to operate the closed-path
system are given in Detto et al. (2011) and Hatala et al. (2012b). Extensive field-testing
was done to evaluate the performance of the closed-path CHa sensors at this site (Detto
et al., 2010), and good agreement was observed in the magnitude of 30-min fluxes
between the open-path and closed-path flux systems (Detto et al., 2011). Raw
turbulence data was initially recorded with a Campbell CR1000 datalogger (Campbell
Scientific, Logan, UT, USA), and following May 7, 2012 using a digital datalogger
system (LI-7550A; LI-COR Biogeosciences, Lincoln NE, USA). Prior to July 27,2013
anemometer readings and trace gas densities were recorded at 10 Hz intervals, but
thereafter the data was collected at 20 Hz since it resulted in slightly less high frequency
attenuation.

Fluxes were calculated using the 30-min covariance of vertical wind speed (w)
and scalars of interest after applying a series of standard corrections using in-house
software (Detto et al., 2010, Hatala et al., 2012b) as outlined in Knox et al. (2015). Briefly
these included despiking high frequency data, applying coordinate rotations, correcting
for effects of air density fluctuations, filtering fluxes with low friction velocity (0.12 to
0.15 m s, varying somewhat seasonally) and spikes in 30-min mean densities, variances
and covariances, and rejecting fluxes from winds between 0°-190° for Location 1 and
outside of 200°-350° for Location 2, which was estimated based on the relationship
between wind direction and fluxes, and the flux footprint calculated a 2-D footprint
model (Table 3.1). Unlike previous versions of the in-house software that used a default
time lag between w and scalars defined by the user, a variable lag was calculated based
on a maximum cross-correlation method. The software was also updated to filter fluxes
with large vertical rotation angles (> +7°) and flagged fluxes using the stationarity test of
Foken and Wichura (1996). The percentage of 30-min fluxes excluded annually from
this analysis, including periods of power loss and sensor malfunction, ranged between
43 and 54% for Fcoz, and 44 and 61% for Fcrs with the exception of the first year of
measurement when 82% of the data was excluded due to the late deployment of the
CHas analyzer (June), and generator outages and sensor malfunction. However, much
less data was excluded during the growing season (13-32% for Fco2 and 13-38% for Fcra
again with the exception of 2009 when 77% of the data was excluded) due to the
prevalence of clear sunny days and robust and persistent winds that flow through the
Carquinez Strait between the cool coast and the warm interior valley (Table 3.1).

No high frequency corrections were applied to fluxes computed using open-path
sensors since co-spectral analysis indicated that flux losses were less than 5% (Knox et
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al., 2015), which is well within the accuracy of individual eddy covariance flux
measurements and of the correction algorithms (Aubinet et al., 1999, Massman & Lee,
2002, Moore, 1986). However, corrections for the closed-path CHs measurements were
applied to account for the high frequency flux losses due to sensor separation and
attenuation of xcy, fluctuations down the sampling tube. When the FGGA was present,
corrections were calculated as in Detto et al. (2011) by taking advantage of the
additional CO: channel. When the FMA sensor was present and we couldn’t take
advantage of the additional CO: channel, we used a procedure similar to the one
outlined in Aubinet et al. (1999) and Humphreys (2004) as described in Knox et al.
(2015). Fcra corrected for spectral loss agreed to within about 3% with CH4 emissions
measured using an open path sensor for periods when both systems were present for
comparison (August 17, 2010 to September 21, 2010 and January 17, 2012 to April 25,
2012).

Energy balance closure, defined as the slope between daily net radiation and the
residual of the energy balance (Wilson et al., 2002), was 0.84 for the entire study period,
and ranged between 0.81 and 0.89 when calculated for individual years. In addition to
the ground heat flux, storage terms included radiation energy absorbed in
photosynthesis calculated as in Leuning et al. (2012) and heat storage in the water
column approximated as in Drexler et al. (2004). Energy balance closure reported in this
study falls within the range typically observed at sites within the FLUXNET network
(Stoy et al., 2013, Wilson et al., 2002), and on the upper end of values reported for
wetland sites (Malone et al., 2014, Stoy et al., 2013), where lower closure is typically
observed due to the difficulties in estimating storage terms (Malone et al., 2014).

3.3.3. Gap-filling, flux partitioning, and budget estimations

Half-hourly fluxes were gap-filled using an artificial neural network (ANN)
method (Baldocchi & Sturtevant, 2015, Dengel et al., 2013, Knox et al., 2015, Moffat et al.,
2007, Morin et al., 2014, Papale et al., 2006). To facilitate representativeness, explanatory
data were divided into a maximum of 20 natural data clusters using the k-means
method. To avoid biasing towards conditions with better flux data coverage, data used
to train, test, and validate the ANN were proportionately sampled from these clusters.
Several architectures of increasing complexity were tested to facilitate generalizability
of the neural network. The architecture of each neural network was initialized ten times
with random starting weights, and the initialization resulting in the lowest mean
sampling error was used. The simplest architecture, whereby additional increases in
complexity resulted in < 5% reduction in mean square error, was selected and the
prediction saved. This procedure was replicated with twenty re-samplings of the data,
and the median prediction was used to fill missing half-hours.
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While ecosystem photosynthesis (gross ecosystem production; GEP) and
respiration (ER) are not directly measured via the eddy covariance method, net CO:
fluxes (Fcoz) can be partitioned into GEP and ER by separately considering daytime and
nighttime observations because photosynthesis only occurs during daylight hours.
Since winds in the Delta are strong even at night (Baldocchi & Sturtevant, 2015, Hatala
et al., 2012b, Knox et al., 2015), uncertainties in nighttime eddy covariance
measurements due to atmospheric stratification and stability are minimized (Massman
& Lee, 2002). Fco2 was gap-filled separately for daytime and nighttime observations.
Predictions from the ANN resulting from the nighttime gap-filling were used to model
ER for all data (daytime and nighttime values) and GEP was calculated by subtracting
gap-filled Fco: from modeled respiration (Fcoz = ER - GEP) (Baldocchi & Sturtevant,
2015). In this study, negative Fco: values indicated net CO: uptake while positive values
indicate net CO: release, while both GEP and ER are presented with positive signs.

For half hourly fluxes, the entire observation period was used to train, test, and
validate the ANNs. Explanatory variables used to gap-fill daytime Fcoz included air
temperature (T.), photosynthetically active radiation (PAR), vapor pressure deficit
(VPD), water table depth (WTD), friction velocity (u), decimal day of year since the
start of the study, and sine and cosine functions to represent seasonal changes.
Explanatory variables used to gap-fill nighttime Fco: and partition ER included the
same variables as daytime Fco2 with the exception of PAR and VPD. Unlike Fcoz, LE
and Fcus were not gap-filled separately for daytime and nighttime data. Explanatory
variables used to gap-fill LE were the same as daytime Fcoz, and variables used to gap-
fill Fcr included soil temperature (Ts) at 2 cm depth, WTD, u+, GEP, ER, LE, decimal day
of year, and sine and cosine functions, which represent the main environmental drivers
of CHs emissions or variables that strongly covary with Fcr (Chu et al., 2014, Morin et
al., 2014, Sturtevant et al., 2016, Treat et al., 2007). The optimal neural network for both
daytime and nighttime Fcoz gap-filling included 2 hidden layers with 15 and 8 hidden
nodes, respectively, while most often the optimal neural network for Fcrs gap-filling
included 2 hidden layers with 10 and 5 hidden layers, respectively.

Gap-filling and partitioning routines performed very well; daytime (nighttime)
neural network predictions for Fco: gave a model r? of 0.95 (0.76) with a RMSE of 2.4
(1.5) pmol m? s, for Fcrs model r? was 0.79 with a RMSE of 30 nmol m*? s, and for LE
model 12 was 0.93 with a RMSE of 0.82 mmol m? s?!. We also tested the Reichstein et al.
(2005) algorithm to estimate ER and found negligible differences in the results
presented below while annual budgets of GEP and ER differed on average <10%
between the two flux partitioning methods.

Annual and seasonal sums of Fcoz, GEP, ER, and Fctu were calculated by
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integrating gap-filled and partitioned fluxes over time. For annual budgets, half hourly
fluxes were integrated from April 1 to April 1 of the following year. For figures, labels
refer to the year that includes the growing season (e.g. 2009 is used as the label for 2009-
2010). Growing season budgets were calculated by integrating fluxes from planting to
harvest of a given year, while fallow season budgets were calculated from harvest of
one year to planting of the following year. To estimate the amount of uncertainty in the
ANN gap-filling procedure for the annual and seasonal budgets, we calculated the
integrated budget using the full range of predictions used to fill each gap (i.e. based on
the 20 extractions from the ANN), and calculated the 95% confidence interval from the
distribution of the 20 annual or seasonal budgets (Knox et al., 2015).

3.3.4. Footprint model

To model the spatial origin of the flux measurements, we used an analytical two-
dimensional footprint model (Detto et al., 2006, Hsieh et al., 2000). The flux tower
footprint shows the spatial portion of the landscape represented by each half hourly
eddy covariance flux measurement. The footprint model uses wind speed and
direction, roughness length (zo; m), displacement height (d; m), boundary layer stability,
and turbulence data to trace the probability that a certain air parcel measured at the
tower at the level of the eddy covariance instrumentation originated from any
particular point within the landscape. We used the method of Pennypacker and
Baldocchi (2015) to derive continuous estimates of canopy height, zo and d. We show
the 85% analytical footprint (i.e. the areal extent from which 85% of the measured flux
originated), because as the analytical footprint approaches 100%, the area of the
footprint expands rapidly, although there is only a small contribution to the measured
flux from this extensive area (Matthes et al., 2014). The climatological footprints in
Figure 1 clearly indicate that at both the diel and annual scale, measured fluxes
predominantly originated from the rice paddy, and illustrate that the diel patterns we
observe are in fact true biological signals and not an artifact of differences in wind
direction and hence flux footprint between night and day.

3.3.5. Meteorological and vegetation measurements

Meteorological conditions including Ti, relative humidity, WTD, incoming solar
radiation, net radiation (Rxt), PAR, ground heat flux, Ts at depths of -0.02, -0.04, -0.08, -
0.16, and -0.32 m below the ground surface, and water temperature (Twv) were
characterized with a standard set of sensors as described in Knox et al. (2015). Gaps in
T. were filled using data from a nearby weather station on Twitchell Island while gaps
in other meteorological variables were filled with a 2-D interpolator that conserves the
mean diurnal variation. There were few gaps in meteorological measurements (e.g. <
1% for PAR for the entire observation period), however, ground sensors were removed
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from the soil for approximately two weeks to a month for each planting and harvesting
event.

Plant area index (PAI) was measured approximately weekly or bi-weekly during
the growing season. Measurements were made using a LAI-2000 Plant Canopy
Analyzer (LI-COR Biogeosciences, Lincoln, NE, USA). Measurements were recorded
every 10 m along a 100 m transect extending west, the predominant wind direction at
the site. The fraction of photosynthetically active radiation (FPAR) absorbed by the
canopy was calculated from PAI using the Beer-Lambert law (Ruimy et al., 1999)
assuming a light extinction coefficient of 0.6 (Monteith, 1969). FPAR was then
multiplied by PAR to estimate absorbed PAR (APAR). Canopy phenology and crop
management were monitored with a digital camera (Richardson et al., 2007).

3.3.6. Data analysis

We used a combination of linear regression models, neural network modeling
and time series analysis to investigate the biophysical controls on Fcus from the rice
paddy. Different data analysis techniques were used for each timescale of interest,
taking advantage of the analysis technique most suitable to each timescale.

3.3.6.1. Interannual and seasonal timescales

Due to the limited number of data points (n =6 or 7 years or growing seasons,
respectively), pairwise linear regression models were used to explore the factors
predicting CHas fluxes at the interannual scale. At the seasonal scale, we took advantage
of the significantly larger number of daily average flux and environmental variables to
explore neural network models (Dengel et al., 2013, Knox et al., 2015, Morin et al., 2014),
in addition to linear models, for daily average Fcus (referenced simply as ‘daily Fcnd
hereafter). We used a statistical model selection process similar to Morin et al. (2014) to
assess the effectiveness of Tu, Ts, WTD, u+, GEP, ER, LE in predicting daily Fcru since
these are the primary variables regulating or covarying with Fcus (Chu et al., 2014,
Koebsch et al., 2015, Morin et al., 2014, Sturtevant et al., 2016, Treat et al., 2007). Both
environmental variables and fluxes of carbon and water were included as potential
drivers of Fcus because they can represent strongly shared mechanisms between Fcrs
and other environmental or flux variables even if they are not directly linked by
causality, and thus their inclusion can provide empirical predictive power for Fcrs
(Morin et al., 2014).

We divided daily Fcru into growing season and fallow season periods to capture
differences in processes. Models were developed across years for both the growing and
fallow seasons, and for each individual growing season (excluding 2009 due to the
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limited sample size). Individual fallow periods were not modeled due to the lack of flux
coverage in winter; on average there were 153 measurements of daily Fcns during the
growing season (excluding 2009) and only 58 measurements in the winter period.

First we created multivariate linear regression models to investigate the
relationships between environmental and flux drivers and daily Fcus. Daily Fcrs was
estimated by taking the mean of quality controlled half-hourly fluxes for days with gaps
of less than 8 hours, and values were log-transformed before being fit with linear
models (Chu et al., 2014, Treat et al., 2007, Yan et al., 2005). We used a forward stepwise
approach, where driving variables were ranked based on their pairwise correlation with
Fcru and additional variables were included in the model if: 1) there was a significant
pairwise correlation, 2) their effect in the model was significant, 3) they improved the
overall R? of the model, and 4) their inclusion resulted in an AIC reduction (Morin et al.,
2014). The order in which the variables were added to successive multiple regression
models was assessed by minimizing the AIC score of the model, and the model was
expanded in a stepwise hierarchical manner to include variables until the addition of
variables resulted in an increase in the AIC score, suggesting an overparameterized
model.

Once we found the optimal linear model, a similar stepwise approach was used
for the ANNSs, where the variables from the linear model were used one by one and the
incremental increase in R? and AIC values were calculated. To decrease processing
time, rather than testing all potential variable orders, we included variables in the same
order in the ANNSs as in the linear models (Morin et al., 2014). Following the addition
of all variables identified as significant in the linear models, we also tried including
those that weren’t identified as significant since neural networks can better capture non-
linear relationships. However, in the majority of cases if a variable was rejected from
the linear models it was also rejected from the ANNs, with the notable exception of
WTD in neural network of fallow season Fcus. Slight modifications to the ANN were
made to account for a decrease in sample size when using daily Fcrs rather than half
hourly fluxes. Unlike the ANN gap-filling procedure described above, explanatory
data were not divided into clusters and the fraction of the random samples going to the
training, validation, and testing subsamples was 50%, 30%, and 20%, respectively. In
addition, the complexity of the neural network architecture was decreased, ranging
from one hidden layer with 3 nodes to 2 hidden layers with 5 and 3 nodes, respectively.
In this case, for each added variable, we ran the ANN for one neural network
architecture at a time (again with 20 extractions), and then chose the best architecture
based on the calculated AIC value.
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3.3.6.2. Diel timescale

Due to their near-continuous nature, eddy covariance flux observations are also
well suited for time series analysis (Hatala et al., 2012a, Koebsch et al., 2015, Novick et
al., 2015, Stoy et al., 2005, Torrence & Compo, 1998). We used the continuous wavelet
transform (CWT) with the Morlet mother wavelet to explore the correlation and time
lag between Fcus and biophysical factors at the diel scale. Relative to Fourier analysis,
wavelet transforms are much better suited for spectral analysis of nonstationary time
series such as eddy covariance data (Katul et al., 1998, Stoy et al., 2005, Torrence &
Compo, 1998). The wavelet coherence spectrum represents the local correlation
between two signals in time-frequency space from which a phase angle can be
calculated and used to establish potential causal relationships (Grinsted et al., 2004).
The statistical significance of wavelet power was tested against the null hypothesis of a
red noise first order autoregressive process with lag-1 autocorrelation (Grinsted et al.,
2004). For diel time periods with significant wavelet coherence, the phase angle was
used to calculate the time lag between the two signals. To avoid spurious correlations
between Fcus and driving variables, we did not use gap-filled data, and instead replaced
missing values with the median for the whole growing season (Hatala et al., 2012a), and
time series were standardized to have a zero mean and unit variance (Hatala et al.,
2012a, Stoy et al., 2005). All analyses described above were performed using MATLAB
(MathWorks Inc., 2015, version 8.6.0).

3.6. Results

3.4.1. Weather conditions and water table management

Due to the severe drought and record high temperatures experienced in
California from 2012 to 2015 (Griffin & Anchukaitis, 2014), climatic variability was
greater than expected, and there was an increasing trend in temperature over the course
of the study (Table 3.2; Figure 3.2a,b). Mean annual T. was coolest in 2010-2011 (14.0
°C), with largely negative deviations in mean monthly T, while 2014-2015 was the
warmest year of the study (15.8 °C), with predominantly positive deviations in Ta
(Figure 3.2a). Soil temperatures showed a similar pattern as T. (Figure 3.2b), however,
the range in mean annual and seasonal T (> 3.0 °C) was larger than that of T. (> 1.8 °C)
(Table 3.2) since rice management (e.g. PAI and water regulation) in addition to T
played a role in modulating T.

Water table depth at the paddy was actively managed throughout the study and
the drought did not result in water restrictions at the site. The field was typically
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tflooded 45 to 60 days after planting and drained 30 to 45 days before harvest (Figure
3.2d). Therefore, over the course of the growing season there was standing water on the
tield between 64 and 112 days, with water levels generally maintained at 10 to 20 cm
above the soil surface. In addition, the field was flooded for about 65 to 135 days
during the fallow winter period.
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Figure 3.2. Monthly anomaly (grey bars) and time series of daily micrometeorological
variables (solid lines), including (a) air temperature (Ts), (b) soil temperature at 32 cm
depth (T5), (c) photosynthetically active radiation (PAR), and (d) water table depth
(WTD). Dotted and dashed lines indicate planting and harvest dates, respectively.

3.4.2. CO: fluxes

While the rice paddy was generally a net CO: sink during the growing season,
large interannual differences were observed, with the site ranging from a large net CO:
sink in the 2010 growing season (-607 g C-CO2 m?) to near CO2-neutral in 2015 (8 g C-
CO2m?) (Table 3.2; Figure 3.3). Large interannual variability was also observed in
growing season GEP and ER (Figure 3.3); GEP budgets differed by more than 500 g C-
CO:2m? yr'! over the 7 growing seasons, while cumulative growing season ER ranged
from 782 to 1152 g C-CO: m* (Table 3.2). Interannual variability in growing season ER
was strongly related to mean growing season Ts (Figure 3.8b). In addition, early
drainage (i.e. a month earlier than the average drainage date) of the rice paddy in the
2015 growing season (Figure 3.2d), coupled with warm late-summer temperatures
(Figure 3.2b), resulted in high rates of respiration and positive Fcoz in the later part of
the growing season (Figure 3.3d,c), contributing to the near neutral net CO: budget that
season.
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Table 3.2. Annual, growing and fallow season mean air (Ts) and soil temperature (Ts) at 2 cm depth, and sums of
photosynthetically active radiation (PAR), net COz2 flux (Fcoz), gross ecosystem production (GEP), ecosystem respiration
(ER), CHa4 flux (Fcn4), and annual carbon (C) budget. The annual carbon budget includes the amount of C lost as CHs and
removed from the field through harvest. Error bounds indicate the 95% confidence interval for the gap-filling procedure.

Annual Growing Fallow Season Annual Growing Fallow
Season Season Season
Ta (°C) GEP (g C-CO2m?)
2009-2010 15.0 19.6 9.7 2009-2010 1340 + 152 1268 +73 67 +134
2010-2011 14.0 18.6 9.0 2010-2011 1648 + 74 1535 + 59 97 + 59
2011-2012 14.0 18.7 10.7 2011-2012 1328 + 94 1182 + 60 195+ 78
2012-2013 14.7 19.0 8.8 2012-2013 1304 + 130 1198 + 85 69 +70
2013-2014 15.4 20.2 11.6 2013-2014 1555 + 96 1431+ 70 146 + 66
2014-2015 15.8 20.5 12.0 2014-2015 1445 + 107 1343 + 86 89 + 80
Ts (°C) -- 19.4 -- 1014 +75
ER (g C-CO2m?)
2009-2010 14.6 18.4 10.1 2009-2010 1173 £ 124 782 +29 406 + 107
2010-2011 15.1 18.7 11.0 2010-2011 1252 + 54 928 + 32 362 +42
2011-2012 15.0 19.6 11.3 2011-2012 1361 + 66 921 +21 502 + 64
2012-2013 15.8 19.8 11.1 2012-2013 1336 £ 76 904 + 39 296 + 54
2013-2014 16.5 20.9 13.3 2013-2014 1601 + 60 1095 + 12 600 + 55
2014-2015 17.6 22.0 13.7 2014-2015 1761 + 60 1152 +18 567 + 58
2015-2016 -- 21.4 -- 2015-2016 -- 1022 £ 25 --
PAR (mol m?) Fcra (g C-CH4 m?2)
2009-2010 14427 10427 4044 2009-2010 6.4+4.3 25+2.5 4.0+20
2010-2011 14423 10533 4331 2010-2011 12.1+2.0 6.2+0.7 7.0+2.1
2011-2012 14636 9506 6426 2011-2012 7.8+1.0 40+04 3.0+1.0
2012-2013 15249 9337 3625 2012-2013 6.7+1.8 41+03 21+14
2013-2014 15273 9960 6619 2013-2014 13.7+2.0 8.9+0.2 5.0+2.0
2014-2015 15332 9281 5449 2014-2015 19.3+1.4 11.1+0.2 8114
2015-2016 -- 9436 -- 2015-2016 -- 93+04 --
Fcoz (g C-CO2m?) C budget
2009-2010 -167 + 96 -486 + 26 339 +91 2009-2010 5+96 - --

2010-2011 -396 + 46 -607 £ 19 264 + 47 2010-2011 -232 + 46 - --
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2011-2012
2012-2013
2013-2014
2014-2015
2015-2016

-33 £49
32 +65
46 + 34
316 + 50

-261 £ 28
-294 + 36
-335+10
-192 £10
8+15

307 + 39
227 £ 49
455+ 33
478 +51

2011-2012
2012-2013
2013-2014
2014-2015

253 +49
237 £ 65
312+ 34
524 + 50




When including the fallow season, the site ranged from being a strong net sink of
COz1in 2010-2011 (-396 g C-CO2 m? yr') to a considerable net source in 2014-2015 (316 g
C-CO2m? yr?) (Table 3.2). Annual Fco: was significantly related to annual ER (p <0.05,
r>=0.67), but not GEP (p = 0.43, r> = 0.16), suggesting that interannual variability in Fcoz
at the paddy was driven more by changes in ER than GEP. Similar to growing season
ER, interannual variability in annual ER was strongly related to mean annual T (Figure

3.8a), which explains why the rice paddy was a net COz sink in the earlier, cooler years,
and a net CO: source in the later, warmer years (Table 3.2).
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Figure 3.3. Times series of half-hourly (grey circles) and daily (solid lines) (a) gross
ecosystem production (GEP), (b) ecosystem respiration (ER), (c) net ecosystem CO:
exchange (Fcoz), and (d) net ecosystem CHs4 exchange (Fcrs). Half-hourly fluxes were
not gap-filled and daily data were integrated from gap-filled half-hourly data using the
artificial neural network method. Shaded grey areas in the background of all panels
indicate periods when the field was flooded. Dotted and dashed lines indicate planting
and harvest dates, respectively. Herbicide application dates are indicated by the black
downward pointing arrows and fertilizer application dates are indicated by the upward
facing grey arrows in (a). Panicle initiation and heading dates are indicated in (d) by

black and grey dashes, respectively.
3.4.3. Temporal variability in CHs fluxes and annual budgets

Daily Fcrs increased throughout the growing season, reaching a maximum
toward grain ripening, with a large pulse of CHs to the atmosphere following drainage
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of the field for harvest (Figure 3.3d). Although the overall seasonal pattern of Fcrs was
similar between years, the magnitude of the fluxes varied by an order of magnitude
(Figure 3.3d). Lowest daily Fcrs was observed in the 2009 summer period when, prior
to drainage, emissions were <20 mg C-CHsm™ d". In contrast, daily Fcus during the
growing season of 2014 exceeded 200 mg C-CHsm? d! prior to the drop in WTD for
harvest. Emissions during the fallow season were generally low (~10 to 30 mg C-CHam-
2 d!) except when the field was drained for planting, which caused a large release of
stored CHs (Figure 3.3d).
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Figure 3.4. (a) — (g) Mean diel variation in CHas flux (Fcrs) during the growing season
when the field was flooded, and (h) amplitude of the mean diel variation in Fcruas a
function of mean growing season soil temperature (Ts) at 2 cm. The shaded area in (a) -
(g) indicates the standard deviation. Note the difference in the vertical axes.

Strong diel variation in Fcru was observed during the growing seasons of 2011,
2013, 2014, and 2015 while weak or no consistent diel patterns were observed in other
years (Figure 3.4; Figure 3.5 to Figure 3.7). In years with strong daily variation in Fcrs,
the diel peak in Fcrs occurred in mid-afternoon between 14:00 and 15:30 hours.
Furthermore, in addition to large differences in the magnitude of the fluxes, the

49



amplitude of the diel cycle varied strongly between years, increasing exponentially with
mean growing season Ts (Figure 3.4h). No diel patterns were observed when the field
was flooded during the winter months.

Annual CHs budgets varied considerably throughout the study, with over three
times more CH4 emitted in 2014-2015 than in 2009-2010 (Table 3.2). Growing season
CHa4 emissions ranged from 2.5 to 9.3 g C-CHs m in 2009 and 2014, respectively, and
wintertime Fcru was greatest in 2014-2015 (8.1 g C-CHs m?) and considerably less CHa
was released over the 2012-2013 fallow period (2.3 g C-CHs m™).
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Figure 3.5. Wavelet coherence between soil temperature (Ts) and CHa flux (Fcns) for the
rice paddy during each growing season. Significant coherency (at the 5% level with 500
Monte Carlo simulations of AR-1 autocorrelation) is outlined by the black lines. The
direction of the arrows show the phase angle between the two time series, where an
arrow to the right with no inclination indicates no lag between the time series. The cone
of influence represents the limit where wavelet power drops to e of the edge values.
The solid vertical light gray lines indicate when the field when the field was fully
flooded (ranging from mid-May to mid-June) and drained (ranging from mid-August to
late September). The solid vertical dark gray lines show the approximate dates of
panicle initiation (ranging from early July to mid-August) and heading (ranging from
late July to early September).
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Figure 3.6. Wavelet coherence between ecosystem photosynthesis (GEP) and CHa flux
(Fcru) for the rice paddy during each growing season. Significant coherency (at the 5%
level with 500 Monte Carlo simulations of AR-1 autocorrelation) is outlined by the black
lines. The direction of the arrows show the phase angle between the two time series,
where an arrow to the right with no inclination indicates no lag between the series. The
cone of influence represents the limit where wavelet power drops to e of the edge
values. The solid vertical light gray lines indicate when the field when the field was
tully flooded (ranging from mid-May to mid-June) and drained (ranging from mid-
August to late September). The solid vertical dark gray lines show the approximate
dates of panicle initiation (ranging from early July to mid-August) and heading
(ranging from late July to early September).

3.4.4. CH:emission predictors

3.4.4.1. Interannual scale

Interannual differences in annual and growing season CH4 emissions were not
significantly correlated with annual or growing season GEP (p > 0.24), Fcoz (p > 0.24), or
the number of drained or flooded days (p > 0.14). However, like ER (Figure 3.8a and
3.8b), annual and growing season Fcrs were significantly correlated with mean annual
or growing season Ts, respectively (Figure 3.8d,e). Over the full year, Fcris was most
strongly related to T at intermediate depths (8 and 16 cm) since warmest Ts and
presumably greatest CHs production were observed near the soil surface in the summer
and deeper in the soil profile in winter, while during the growing season Fcrs was most
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significantly correlated with Ts at 2 cm. As expected from these observations, there was
a strong relationship between annual or growing season ER and Fcus (p = 0.029, r? = 0.74
and p = 0.0011, r> = 0.90, respectively). Increasing Ts also resulted in a significant
increase in the annual or growing season CHito GEP ratio (Figure 3.8g,h). Over the
whole year, the ratio of Fcrs (g C-CHs m? yr!) to GEP (g C-CO2 m? yr!) ranged from
0.5% in 2009-2010 to 1.4% in 2014-2015 (Figure 3.8g), while during the growing season
this ratio varied between 0.2% in 2009 and 0.9% in 2015 (Figure 3.8h). No variables
were found that were significantly correlated with interannual differences in
cumulative fallow season Fcns, including Ts (Figure 3.8f) or fallow season ER (p = 0.42).
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Figure 3.7. Wavelet coherence between latent heat flux (LE) and CHas flux (Fchs) for the
rice paddy during each growing season. Significant coherency (at the 5% level with 500
Monte Carlo simulations of AR-1 autocorrelation) is outlined by the black lines. The
direction of the arrows show the phase angle between the two time series, where an
arrow to the right with no inclination indicates no lag between the series. The cone of
influence represents the limit where wavelet power drops to e? of the edge values. The
solid vertical light gray lines indicate when the field when the field was fully flooded
(ranging from mid-May to mid-June) and drained (ranging from mid-August to late
September). The solid vertical dark gray lines show the approximate dates of panicle
initiation (ranging from early July to mid-August) and heading (ranging from late July
to early September).
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Figure 3.8. (a) Cumulative annual ecosystem respiration (ER) as a function of mean
annual soil temperature (Ts) at 8 cm, (b) growing season ER as a function of mean
growing season Ts at 2 cm, (c) fallow season ER as a function of mean fallow season Ts
at 32 cm, (d) annual CH4 emissions (Fcrs) as a function of mean annual soil temperature
(Ts) at 8 cm, (e) growing season Fcus as a function of mean growing season Ts at 2 cm, (f)
tallow season Fcus as a function of mean fallow season Ts at 32 cm, (g) ratio of annual
Fers (g C-CHa m? yr') to GEP (g C-CO2 m? yr') as a function of mean annual Ts at 8 cm,
(h) ratio of growing season Fcrs (g C-CHs m?) to GEP (g C-CO2 m?) as a function of
mean growing season Ts at 2 cm, and (i) ratio of fallow season of Fctu (g C-CHs m?) to
growing season GEP (g C-CO: m?) as a function of mean fallow season Ts at 32 cm.

3.4.4.2.Seasonal scale

Unsurprisingly, the neural network models consistently resulted in overall
higher R? values than the multiple linear models (Table 3.3). Across all growing seasons
and within individual growing seasons, GEP and WTD were typically selected as the
top two variables in the models. Both daily GEP and WTD were positively correlated
with daily Fcns, but exhibited non-linear relationships with daily Fcis. WTD acted
primarily as an ‘on-off switch” for Fcus, with the exception of drainage of the field for
harvest when large pulses of CHs were released to the atmosphere, comprising between
~20-26% of the total CHa released throughout the growing season (Figure 3.3d). During
the flooded summer period (excluding the end-of-season CHs pulse), daily Fcrs was
strongly related to daily GEP (Figure 3.9). Analysis of covariance indicated that the
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Table 3.3. Statistical tests (correlation coefficient (R), coefficient of determination (R?), and Akaike Information Criterion
(AIC)) for the significance of biophysical drivers in the models of daily methane flux (Fcts), including pairwise linear®,
stepwise multivariate linear®, and hierarchical neural network models.

Pairwise Stepwise Linear Neural Network
R R? AIC R? AIC
Growing season

2009-2015 GEP 0.622 0.386 2853 0.258 7704
WTD 0.575 0.424 2793 0.462 7431

ER 0.168 0.458 2737 0.713 6853

LE 0.452 0.469 2718 0.751 6716

u 0.147 0.470 2718 0.765 6671

Ta 0.309 0.471 2717 0.814 6462

Ts 0.195 0.474 2712 0.825 6420

2015 WTD 0.716 0.509 456 0.310 1248
GEP 0.620 0.671 402 0.930 931

Ts 0.307 0.682 398 0.943 914

LE 0.631 0.697 392 0.954 898

ER -0.168 0.704 391 0.964 839

u 0.348 0.702 *393 - -

T. 0.275 0.702 *393 0.976 830

2014 GEP 0.729 0.528 454 0.396 1321
WTD 0.704 0.557 445 0.942 981

LE 0.569 0.588 435 0.947 980
Ta 0.216 0.605 430 0.945 *1004

u 0.059 - - - -

Ts -0.057 - - - -

ER -0.009 - - 0.973 935
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2013

2012

2011

2010

GEP
ER
WTD
LE
Ts

Ta

GEP
Ta
LE
WTD
Ts
ER

GEP
WTD
ER
Ta
LE

Ts

WTD
GEP
LE
Ta

0.731
0.499
0.493
0.448
0.282
0.410
0.102

0.551
0.359
0.238
0.469
0.319
0.148
0.042

0.731
0.722
0.296
0.413
0.608
0.111
0.103

0.69
0.609
0.466
0.318

0.532
0.580
0.594
0.656
0.657
0.663

0.299
0.344
0.348
0.399
0.397

0.531
0.574
0.649
0.656
0.654

0.472
0.481
0.488
0.496

507
491
486
461
461
460

391
382
382
371
*373

224
212
185
183
*185

387
386
385
384

0.474
0.944
0.957
0.962
0.984
0.986

0.289
0.379
0.725
0.731

0.539
0.642
0.781
0.792

0.708
0.877
0.905
0.910

1322
1000
968
961
787
*790

811
800
709
691

733
706
642
642

853
731
720
*735
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ER

Ts

Fallow season
2009-2014 ER
LE
Ts
WTD
Ta
u

0.133
0.071
-0.07

-0.39
0.237
-0.38
0.301
-0.345
0.062

0.15
0.201
0.215
0.216
0.216

1079
1060
1055
*1056
*1057

0.089
0.303
0.444
0.617

2649
2566
2500
2442

“Pairwise relationships indicate the direct (i.e. not incremental) correlation of each variable with daily Fcrs
*Daily Fcru values were log-transformed before being fit with linear models

*Indicates that this variable was rejected from the model

Note: italic p-values indicate that the pairwise relationships were not significant and therefore not included in the
stepwise linear models. Also, variables rejected from the stepwise linear models were tested in the neural network
models and the results were only presented if the addition of the variable improved the overall R? of the model, and was

justified by a reduction in the AIC of the model



parameters of the linear regression model of log-transformed daily Fcus against daily
GEP differed significantly between years, while pairwise comparisons of the slopes
using Bonferroni critical values showed that regression coefficients were clustered into
two groups, where slopes in 2009 to 2012 were significantly different from those 2013 to
2015 (Figure 3.9). Regression coefficients appeared to be strongly influenced by mean
growing season Ts, with smaller slopes observed in cooler years (2009 to 2012), and
significantly larger slopes observed in warmer years (2013 to 2015) (Table 3.2),
explaining the increasingly non-linear relationship observed between daily GEP and
Fcrs in the latter years of the study (Figure 3.9). Within more than half the individual
growing seasons, ANNs using just GEP and WTD as input variables were able to
explain more than 90% of the variance in daily Fcr (Table 3.3), accurately capturing the
non-linear relationships associated with CHi emissions. However, across all growing
seasons, GEP and WTD together only accounted for 46% of the variance in daily Fcrs,
indicating that additional variables are needed to account for the interannual variability
in CH4 emissions.

While mean growing season Ts was a significant factor explaining interannual
differences in cumulative growing season Fcrs (Figure 3.8e), across all growing seasons
ER rather than temperature appeared as the third variable in the ANN model, strongly
increasing model R? (Table 3.3). The overall positive correlation between ER and CHa
emissions indicates that ER and Fcns, both products of microbial metabolism, were
similarly affected by environmental regulators across years. The fact that ER improved
the model beyond the contribution of other direct environmental drivers, including
temperature, suggests that the common effects of these environmental drivers on soil
respiration and Fcrs are complex and non-linear.

While ER strongly informed the model across all growing seasons, within
individual years, there was frequently no significant relationship between ER or Ts and
Fcrs. Since rice paddies are managed ecosystems, the timing of planting and flooding
had a strong influence on the relationship between Ts and Fcr, whereby planting in
mid-April to mid-May followed by flooding a month of more later resulted in a
decoupling between Ts and Fcrs; during the period of active rice growth daily Fcra
increased while daily mean T typically decreased of remained near constant (Figure
3.2b and Figure 3.3d). Consequently, even when there was a significant relationship
between these variables, ER or Ts (or Ti) were typically only added as one of the later
variables, resulting in only minor increases in model R2.
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Figure 3.9. Linear regression models of log-transformed daily CHa4 emission (Fcrs)
against daily gross photosynthesis (GEP) during the growing season from the time
when the field was flooded to when water levels began to drop in preparation for
harvest. Separate model parameters are fitted for each year. The lack of a significant
relationship in 2009 is likely due to the larger amount of data that was excluded in that
year (c.f. Materials and methods). Greek letters indicate statistically separate regression
coefficients (i.e. slopes). Note the difference in the vertical axis in (f) and (g).

Within most years there was no significant relationship between u- and Fcrs, and
across all years, ur was only selected at the fifth variable in the model, explaining only
minor variations in daily Fcru. LE was typically the third or fourth variable added to
the models, but generally also only resulted in relatively small increases in model R

During the fallow season, across all years (and within years; data not shown)
daily Fcrs was negatively correlated with Ts and ER (Table 3.3). Conversely, across all
years there was a significant positive relationship between fallow season Ts and ER (r =
0.75, p <0.001). The overall negative correlation between daily ER and Fcrs during the
fallow season suggests that during this period, their response to environmental drivers
differed. LE was added as the second variable in the ANN model of fallow season daily
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Fcns, explaining an additional 21% of the variance in daily Fcrs. Although WTD wasn'’t
a significant predictor of fallow season Fcrs in the stepwise linear model, the ANN was
able to model the non-linear interaction between daily Fcus and WTD, which is
important for capturing the pulse of CHs to the atmosphere following water table
drawdown in spring, as these CHa pulses accounted for on average > 50% of the total
CHas emitted during the fallow period.

3.4.4.3. Diel scale

The diel pattern in Fcrs from rice paddies has often been attributed to diel
variation in Ts (Khalil et al., 1998, Meijide et al., 2011, Schiitz et al., 1989a), which would
be confirmed by the diel peak in Ts is temporally leading or coinciding with the peak in
Fcru (Hatala et al., 2012a). However, in all years with a pronounced and consistent diel
pattern in growing season Fcru (2011, 2013, 2014, and 2015), Ts lagged Fcrs between 1.3 +
0.04 hours (2015) and 5.2 + 0.06 hours (2011) (Figure 3.10e,f,i,j, k, L m). In contrast, the
peak in GEP led that of Fcrs with a mean time lag varying between 1.6 + 0.03 hours in
2011 and 4.4 + 0.04 hours in 2015 (Figure 3.10e,1,i,j,k,1,m). While the time series of both
growing season Ts and Fcrs and GEP and Fcris were strongly coherent at the diel
timescale (Figure 3.5 and Figure 3.6), the time lag between GEP and Fchs in combination
with phase-locked behavior (as indicated by the unimodal distribution of the phase
angle; Figure 3.10f,j,1,n) provides strong support that GEP and not T likely caused the
diurnal pattern in Fcra. Although there is limited direct evidence for a link between
stomatal conductance and CHa flux for rice plants, as stomata do not appear to be the
major release site of CH4 from rice plants (Nouchi & Mariko, 1993) (rather most CHa is
released from the culm and both the abaxial epidermis of the lower portion of leaf
sheath and near the junction of the nodal region and leaf sheath), we also investigated
the hypothesis that canopy stomatal conductance (Gs) regulated CHa flux. Gs was
calculated for the rice growing season by inverting the Penman-Montheith equation for
LE, where the available energy was approximated using the sum of H+LE (Humphreys
et al., 2006). Figure 3.11 shows that Gs increased following sunrise and then began to
decrease around noon each day. Although Gs led the diurnal peak of CHs flux (Figure
3.11), if Gs were driving Fcrs, we would expect to see a corresponding increase in Fcru
much earlier, with peak CHi emissions when stomatal conductance is greatest. Hatala
et al. (2012a) found similar results for the 2011 growing season at the rice paddy, and
turther analysis using Granger causality showed that there was no direct causal link
between Gs and Fcrs. This differs from other wetland plant species that also diffusively
transport oxygen to roots (e.g. Scheonoplectus acutus), where stomatal aperture was
found to regulate CHs emissions, with greatest CHa flux observed during peak light
availability when stomatal aperture was largest (Sturtevant et al., 2016, Van Der Nat et
al., 1998).
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Although gas transport in rice plants occurs primarily through molecular
diffusion (Chanton ef al., 1997, Den van der Gon & Van Breemen, 1993), a minor
component may be due to transpiration-induced bulk flow as suggested from isotopic
evidence and peak diel Fcru coinciding with maximum daily transpiration rates
(Chanton et al., 1997). In this study, LE and Fcru were also significantly coherent at the
daily period (Figure 3.7), and varied nearly in phase (Figure 3.10f,j,Ln), indicating that
the diel variation in Fcrs could also in part be associated with transpiration.
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Figure 3.10. (a,ce,g ik m) Standardized (i.e. zero mean and unit variance) mean diurnal
variation in CHa flux (Fcrs) (black line), photosynthesis (GEP) (dotted line), soil
temperature (T5) at 2 cm (gray line), and latent heat flux (LE) (dashed line) during the
growing season averaged over the same period as Figure 3.4, and (b,d,f,h,j,Ln)
distribution of the phase angles between Fcis and GEP (dark gray bars), Ts (light gray
bars), or LE (black bars) at the daily timescale for periods when there was significant
coherence.
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Figure 3.11. Standardized (i.e. zero mean and unit variance) mean diel variation in CHa
flux (Fcrs) (black line) and stomatal conductance (Gs) (gray line) during the growing
season when the field was flooded.

3.7. Discussion

3.5.1. Interannual variability in Fcra

Soil temperature, which experienced large variability throughout the study due
to record high temperatures experienced during this period (Griffin & Anchukaitis,
2014), explained much of the interannual variability in annual and growing season ER
and Fcrs. This likely results from increased microbial activity with higher soil
temperatures (Conrad, 2007, Yvon-Durocher et al., 2014) and in the case of Fcns, stronger
temperature effects on CHs production than consumption, which is consistent with
greater temperature sensitivity of methanogenesis than methanotrophy (Le Mer &
Roger, 2001). This is also supported by the positive correlation between annual or
growing season ER and Fcus; increased overall microbial activity (i.e. enhanced ER)
resulted in greater CHa emissions, suggesting higher temperatures disproportionately
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influenced CHs production over CHs consumption (Morin et al., 2014).

While several studies found that wetland net ecosystem production (NEP, where
NEP = —Fco2) or plant biomass were positively correlated with Fcus (Bellisario et al., 1999,
Chanton et al., 1997, Huang et al., 1997b, Sass et al., 1990, Whiting & Chanton, 1993), in
this study, the growing season Fcrs to GEP ratio varied considerably from year-to-year,
and GEP was not significant predictor of Fcrs. However, the ratio of annual or growing
season Fcr to GEP was significantly correlated with mean Ts, which is consistent and
expected from the considerably higher temperature dependence of ecosystem-level CHa
emissions relative to photosynthesis (Yvon-Durocher et al., 2014), and follows the
findings of Yvon-Durocher et al. (2014) who observed an increase in the CHs to CO2
ratio with seasonal increases in temperature across a range of wetland sites. Our
observation of an increase in the ratio of CHi to GEP with increasing temperature has
implications for upscaling Fcrs from both rice paddies and wetland ecosystems.

Using the relationship between Fcrs and rice productivity, several studies have
estimated CHi emissions from rice paddies at regional to global scales assuming that a
constant fraction of net primary productivity (NPP) is released as CHs (Aselmann &
Crutzen, 1989, Bachelet et al., 1995, Bachelet & Neue, 1993, Taylor et al., 1991).
However, given the large interannual variability in the ratio of Fcru to photosynthesis,
upscaling CHs fluxes by estimating emissions as a constant fraction of NPP ignores an
important source of variability (Cao et al., 1995, Denier van der Gon et al., 2000). Our
results suggest that instead of estimating Fcrs as a constant fraction of productivity, Fcra
can be estimated as a variable fraction of GEP, which changes linearly with Ts. This
relationship can potentially be used to help improve global estimates of CHs emissions
from rice paddies. However, whether this relationship holds across or within other
sites remains to be tested since few studies have made simultaneous measurements of
CO:2 and CHas fluxes from rice paddies over the course of a full growing season or year.
Based on a limited number of studies, the ratios of Fcus to GEP reported for other rice
paddies are slightly higher than the values measured in this study, which is consistent
with warmer temperatures at these locations (Table 3.4). The Fcus to GEP ratio may also
be influenced by other factors known to influence CH4 emissions. For instance, Huang
et al. (1997a) found that the carbon ratio of seasonal CHs emission to NPP (deduced
from grain yield) varied from 1.2% to 5.4%, with an average value of 2.8%, and that this
ratio was soil and variety dependent. Additional variables that could influence this
correlation include fertilizer type and application rate (Cicerone et al., 1992, Lindau et
al., 1991, Naser et al., 2007, Schiitz et al., 1989a, Yagi & Minami, 1990, Yan et al., 2005),
grain to biomass ratio (Denier van der Gon et al., 2002) and floodwater management
(Alberto et al., 2014, Linquist et al., 2015, Wassmann et al., 2000a, Yagi et al., 1996).
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Table 3.4. Growing season mean air temperature (1s), net CO2 flux (Fco2), CHs emissions (Fcrs) and ratio of CHa flux (Fcrs)
to GEP from the literature as compared to the values reported in this study.

Location Growing Mean T« Fcon Fcra Fcne/GEP Reference
season °O) (gC-CO2m?) (g C-CHam?) (%)
California, USA 2009 19.6 -486 2.5 0.2 This study
California, USA 2010 18.6 -607 6.2 04 This study
California, USA 2011 18.7 -261 4.0 0.3 This study
California, USA 2012 19.0 -294 4.1 0.3 This study
California, USA 2013 20.2 -335 8.9 0.6 This study
California, USA 2014 20.5 -192 11.1 0.8. This study
2015 19.4 8 9.3 0.9 This study

Average 19.4 -310 6.6 0.5 This study
Laguna, Philippines 2008 DS» 27.2 -241 Alberto et al. [2012]
Laguna, Philippines 2008 WSp 27.7 -375 Alberto et al. [2012]
Laguna, Philippines 2009 DS 27.2 -402 Alberto et al. [2012]
Laguna, Philippines 2009 WS 27.7 -293 Alberto et al. [2012]
Laguna, Philippines 2010 DS 27.2 -311 Alberto et al. [2012]
Odisha, India 2012 WS 31 -355 o4 1.3 f ;ngChmy ya et al.
Odisha, India 2012-2013DS 234 341 129 2 f ;’;ﬁ?ehm/ ya et al.
Ibaraki, Japan 2002 20.7 -400 Saito et al. [2005]
Ibaraki, Japan 2003 23 -354 9.3 1.3 Miyata et al. [2005]
Okayama, Japan 2003 20 -438 Miyata et al. [2005]
Texas, USA 1994 & 1995 25.2 1.44 Huang et al. [1997a]
California, USA 2002 -789 McMillan et al. [2007]

DS - Dry season

WS — Wet season

‘Note that air temperature (1) was reported instead of soil temperature (T5) since most studies did not report Ts
dBased on the mean carbon ratio of CH4 to NPP of 2.8% and assuming NPP = 0.5GPP



Cumulative growing season Fcrs, which ranged from 2.5 to 11.1 g C m(or 13 to
71 mg C-CHs m? d'), was low compared to other rice systems (cf. Table 4-9 IPCC, 1997,
Yan et al., 2005). For continuously flooded rice without organic amendment, CHs
emissions are estimated to average 135 mg C-CHs m? d! (Yan et al., 2005). Low CHas
production in some peatlands has been attributed the fact that these soils have large
amounts of high molecular weight organic compounds that can be very resistant to
microbial degradation (Bridgham et al., 2013), which is in agreement with a recent study
at our site that showed the highly organic soil contained a large abundance of lignin
and other aromatics, lipid, and aliphatics, which are likely not readily decomposable
due to their chemical recalcitrance under anoxic conditions and can also be highly
inhibitory to soil microorganisms (Ye et al., 2016). Cooler soil temperatures at our site
(typically in the range of 4 + 2 °C cooler; c.f. Table 2 Huang et al. (1998)) compared to
tropical or subtropical sites may also explain lower CHs fluxes (Neue & Sass, 1994,
Wassmann et al., 2000b). Additional factors potentially contributing to low Fcruat our
site may be differences in rice cultivar (Ding et al., 1999a, Huang et al., 1997a, Wassmann
& Aulakh, 2000), soil properties (Aulakh et al., 2001, Bachelet & Neue, 1993, Sass et al.,
1994) including the presence of electron acceptors, particularly ferric iron at this site (Ye
et al., 2015), and the relatively recent conversion of this site to rice agriculture which
influences the amount of labile soil organic C, redox dynamics, and microbial
community changes (Eusufzai et al., 2010). Seasonal CHas totals lower than the ones
reported in this study are generally observed in rice paddies with little or no organic
amendments and/or mid-season or intermittent drainage (e.g. Alberto et al., 2014, Bossio
et al., 1999, Bronson et al., 1997, Cicerone et al., 1992, Ding et al., 1999a, Eusufzai et al.,
2010, Linquist et al., 2015, Nishimura et al., 2004, Yagi & Minami, 1990, Yagi et al., 1996).
Despite high C content soils and prolonged flooding periods, rice in the Delta emits less
CHa relative to rice crops in warmer climates while also reducing the loss of soil
through peat oxidation.

3.5.2. Seasonal variability in Fcra

While daily Fcrs in natural wetlands has been found to be strongly explained by
Ts (Chu et al., 2014, Herbst et al., 2013, Sturtevant et al., 2016), the lack of a relationship
between growing season Fcrs and Ts is commonly reported in the literature (Cicerone et
al., 1983, Huang et al., 1997b, Huang et al., 1998, Neue & Sass, 1994, Sass et al., 1990,
Schiitz et al., 1990), since the timing of management decisions can mask the relationship
between Fcus and soil temperature. Instead the seasonal variability in Fcris may be due
to the influence of other overriding factors such as plant growth and development (Le
Mer & Roger, 2001, Sass et al., 2000). The relationship between plant productivity and
Fcru is well established (Chanton et al., 1997, Hatala et al., 2012b, Huang et al., 1997b,
Whiting & Chanton, 1993), and similarly we observed a strong relationship between
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daily Fcrs and GEP throughout the growing season, with GEP being an important
predictor of daily Fcus. Increased productivity can enhance CHas emissions by providing
a greater number and larger diameter conduits from the reducing soil to the
atmosphere and by providing C substrates for CHs production (Chanton et al., 1997, Le
Mer & Roger, 2001). Another possible effect of increased plant activity would be an
increased supply of oxygen to the rhizosphere stimulating CHs oxidation, however, the
results from this study suggest a net stimulation of CHa4 production by rice plants.
Although variations in Fcus during the crop cycle were not attributed to temperature
variations, Ts did appear to have a strong influence on the amount of fixed C respired as
CHs, as indicated from the significantly larger slopes and increasingly non-linear
relationship between daily GEP and Fcrs in the warmer, latter years of the study.

Water table depth was also a major controlling factor of seasonal Fcus, both
during the growing season and fallow period. WTD plays a key role in regulating the
balance between CHa production and oxidation by influencing the depth of anaerobic
and aerobic zones in the soil (Whalen, 2005). Fluctuations in water levels were also
associated with large pulses of CHa to the atmosphere. As expected, ANNSs better
captured the non-linear influence of WID on Fcra.

Friction velocity and LE had considerably less influence on daily Fcrs than GEP
and WTD over the course of the growing season. Increased turbulent mixing (i.e.
higher ur) can enhance CHs transport, although turbulent mixing has typically been
found to be more important in regulating shorter-term (e.g. hourly) CHs fluxes (Chu et
al., 2014, Koebsch et al., 2015). LE has been observed to be an important driver of Fcrs in
wetlands across multiple timescales, as increased evaporation can enhance convective
mixing at the water surface enhancing CHu transport, and CHs exchange and
transpiration are linked through the mechanism of internal gas transport in wetland
plants (Morin et al., 2014, Sturtevant et al., 2016). However, the weaker dependence of
daily Fcrs on LE observed in this study can be explained by the fact that that
transpiration likely dominated LE for most of the growing season and that plant-
mediated gas transport in rice plants appears to be independent (Neue et al., 1997, Seiler
et al., 1983) or only weakly dependent on transpiration rates (Chanton et al., 1997).
However, during the fallow period, LE was an important driver of Fcrs, potentially
reflecting enhanced convective mixing and CHas transport with increased evaporation.

As observed by Morin et al. (2014), ER was an important variable for explaining
CHas emissions. Across growing seasons, ER likely represented the end result of
complex non-linear processes that similarly influenced CHs exchange, in particular the
influence of T since it was a significant driver of year-to-year differences in CHa
emissions. Incorporating ER in gap-filling models for CHa4 can therefore inform more
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about CHa fluxes than models using only direct drivers (Morin et al., 2014). While there
was a positive relationship between ER and Fcus across growing seasons, a negative
relationship was observed across fallow seasons. This negative relationship likely
reflects differences in the transport pathways between CO: and CHs during this time,
due in large part to solubility differences. COz is highly soluble in water, and many
lakes (similar to our flooded and fallow rice field), are oversaturated with CO: and
therefore there is a high rate of diffusive loss of CO: at the air-water interface,
particularly in the winter when productivity is low (Casper et al., 2000). Conversely,
CHa4 is much less soluble, with lower concentrations predicted in the surface water as a
consequence of oxidation at the oxic/anoxic boundary, and therefore CHa is more
transport limited, with ebullition expected to be the dominant pathway of CH4 emission
to the atmosphere (Casper et al., 2000). As a result of these differences in transport
pathways, ER and Ts were positively correlated, while Fcus was negatively correlated
with ER and Ts during the fallow season.

3.5.3. Diel variability in Fcra

Understanding drivers of diel variations in Fcrs has important implications for
improving mechanistic models of CHs flux and for daily and seasonal extrapolation of
studies that only measure daytime Fcus (Hatala ef al., 2012a). While some studies report
a diel pattern in CH4 emissions from rice paddies (e.g. Bronson et al., 1997, Chanton et
al., 1997, Ding et al., 1999a, Satpathy et al., 1997, Schiitz et al., 1989a, Yagi & Minami,
1993), others found none (Cicerone et al., 1983, Yagi & Minami, 1990). Diel variations
have often attributed to daily fluctuations in temperature (Den van der Gon & Van
Breemen, 1993, Holzapfel-Pschorn & Seiler, 1986, Khalil et al., 1998), however, several
studies found no or poor correlations among these variables (Aulakh et al., 2001). Using
wavelet coherence (Grinsted et al., 2004, Torrence & Compo, 1998) we showed the
diurnal pattern in Fcrs can largely be attributed to GEP and not T, consistent with an
earlier study at this site that reported on the diel pattern for the 2011 growing season
(Hatala et al., 2012a). Additional support for this finding comes from the fact that no
diel fluctuation in Fcru was observed during the fallow season although Ts showed a
distinct diel variation, and from stable isotope labeling studies that showed a strong
transient link between rice photosynthesis and Fcus, with time lags between CO:
assimilation and CH4 emission from about 2 hours to 3 days (Dannenberg & Conrad,
1999, Minoda & Kimura, 1994, Minoda et al., 1996). Although GEP appeared to induce
the diel pattern in Fcrs, we found that mean T significantly influenced the amplitude of
diel CHas fluctuations, again suggesting that the amount of photosynthetic C respired as
CHa is strongly dependent on Ts. Temperature can also influence CHa transport
through rice plants with conductance for CHs increasing with temperature (Le Mer &
Roger, 2001). The increase in the amplitude of diel CHa variations with temperature
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also helps explain why diel patterns were observed in some years but not others.

Our results also suggest that, in addition to photosynthesis, diel variations in Fcrs
may in part be linked with transpiration, as a minor component of gas transport in rice
may be due to transpiration-induced bulk flow (Chanton et al., 1997). However, since
diel patterns were only observed in some years, while transpiration-induced bulk flow
is expected to occur in all years, it is unclear whether daily fluctuations are linked with
transpiration. Furthermore, other studies have found that plant-mediated gas transport
is independent of transpiration rate (Neue et al., 1997, Seiler et al., 1983). Similar to
previous studies, we also ruled out the role of stomatal conductance in driving diel Fcru
(Chanton et al., 1997, Hatala et al., 2012a, Nouchi & Mariko, 1993) since Fcus appears to
be independent of stomatal opening as CHu is released to the atmosphere from various
parts of the rice plant including from the culm and both the abaxial epidermis of the
lower portion of leaf sheath and near the junction of the nodal region and leaf sheath
(Nouchi & Mariko, 1993), with the development of nodes providing the major release
pathway of CHas to the atmosphere at later growth stages (Wang et al., 1997). Although
this study strongly suggests that photosynthesis primarily caused the diel variation in
Fcr, more studies are needed to explicitly understand the role of temperature,
photosynthesis, transpiration, and other factors (e.g. methane oxidation and transport,
pH, microbial community changes) (Satpathy et al., 1997, Schiitz et al., 1989b) in driving
diel CHs patterns.

3.5.4. Interannual variability in net C budgets

By monitoring the rice field for seven growing seasons, we observed large
variability in seasonal and annual net CO: and C budgets. Net CO: uptake at the site
generally fell within the range of values reported for other irrigated rice paddies around
the world, with the exception of 2014 and 2015, when uptake was reduced or the site
was near-CO: neutral, respectively (Table 3.4). Considering the full annual C budget,
including the amount of C lost as CHs and removed from the field through harvest, the
site was on average a net C source, but showed considerable interannual variability
with values ranging between -232 to 524 ¢ C m? yr! (Table 3.2). Variability in net CO:
budgets was strongly linked to the variability in ER, which is perhaps not unexpected
as ER is a year-round process (Strachan et al., 2015), with higher ER and a shift towards
a positive C balance under warmer conditions. This is similar to studies of temperate
freshwater marshes where interannual climatic variability caused marsh C budgets to
vary considerably among years as a result of warmer temperatures enhancing ER and
Fers (Chu et al., 2015, Strachan et al., 2015). As observed in natural and restored
wetlands (e.g. Helfter et al., 2015, Herbst et al., 2013, Rocha & Goulden, 2008, Roulet et
al., 2007), we show that wetlands converted to agricultural land, a widespread practice
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due to the economic benefit of the fertile soil (Kramer & Shabman, 1993), can exhibit
strong interannual variability in CO2 and CHs budgets. This highlights the need for
more long-term flux measurements from both natural and managed wetlands under a
range of climate conditions, since a warming climate is likely to have a strong influence
on the net greenhouse gas balance and radiative forcing of these complex ecosystems
(Petrescu et al., 2015).

3.8. Conclusion

In this paper, we present six and a half years of eddy covariance measurements
of CO:z and CH4 exchange from an irrigated rice paddy located in Northern California,
and investigate the factors affecting CH4 emissions across diel to interannual scales by
using time series analysis and empirical modeling. Improved understanding of the
environmental drivers of CHs emissions is critical for improving our ability to
adequately model whole-ecosystem CHi emissions (Bridgham et al., 2013). Based on
wavelet analysis we showed that photosynthesis and not soil temperature was the
dominant factor influencing the diel pattern in CHas flux, although soil temperature
significantly influenced the amplitude of diel CHs fluctuations. Linear and neural
network models indicated that during the growing season, photosynthesis and water
levels explained much of the variance in daily average Fcns. This differs from natural
wetlands where soil temperature has frequently been observed to be an important
factor regulating seasonal CHs fluxes due to the strong impact of the timing of rice
planting and flooding on relationships with temperature. However, temperature
strongly influenced the amount of photosynthetic carbon respired as CHs. LE and u-
generally only explained minor variations in daily Fcrs during the growing season.
Unsurprisingly, ANNs explained much more of the variance in daily Fcus than the
linear models. ANNs were able to capture between 73% and 98% of the variance in
daily growing season CHi exchange and 62% of the variance in fallow season fluxes.
Ditferences in R? values between years and the percentage of unexplained variance may
be attributable to management as no management variables were included in the
models. Future work could focus on explicitly incorporating management variables
(e.g. fertilizer and herbicide application rates and timing, planting density, cultivar
type, straw residue, etc.) into empirical models of Fcra.

Soil temperature was a significant driver of interannual differences in annual and
growing season CHs sums. Temperature also had a strong influence on the annual and
growing season ratio of CHs flux to productivity, with this ratio increasing significantly
with mean soil temperature. While previous studies have upscaled CHs emissions from
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rice by simply relating them to primary production, our results suggest that the
relationship between the carbon ratio of CHs to photosynthesis and soil temperature
may help improve global estimates of CHs flux from rice paddies. More studies,
however, are needed to assess if this relationship holds across or within other rice
paddies and wetlands in general. The pronounced variation in temperature observed
throughout the study also had a strong influence on ecosystem respiration, which
resulted in large interannual variability in net carbon budgets at the paddy,
highlighting the need for long-term measurements particularly under changing climatic
conditions.
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Chapter 4: Using digital camera and Landsat imagery with eddy covariance
data to model gross primary production in restored wetlands

4.1. Abstract

Wetlands have the ability to accumulate large amounts of carbon (C), and
therefore wetland restoration has been proposed as a means of sequestering
atmospheric carbon dioxide (COz) to help mitigate climate change. There is a growing
interest in using the C services of wetlands to help reduce habitat loss and finance
restoration projects. However, including wetlands in C markets worldwide requires a
better understanding of COz and methane exchange in these systems and models that
can accurately and cheaply predict these fluxes. Remote sensing technology, including
both near-surface and satellite instruments/approaches, is an effective tool for modeling
C fluxes including gross primary productivity (GPP) from site to global scales. In this
study, we evaluate the potential of using digital cameras as simple and cost-effective
means of estimating GPP in restored wetland ecosystems, and assess the suitability of
using Landsat data to model GPP in these environments for regional upscaling. Our
research focused on restored temperate freshwater marshes due to the high C
sequestration potential of these systems.

As observed in other ecosystems, daily GPP was strongly correlated with site
greenness derived from camera imagery (GCCem). Based on this, we show the potential
of using GCCem and eddy covariance data to develop and parameterize a light use
efficiency (LUE) model to predict daily GPP. The LUE model combining GCCem and
meteorological data was able to explain up to 91% of the variation in daily GPP at the
restored marshes, and predict annual GPP budgets within 0% to 20% of observed
budgets. However, model performance decreased with increasing site complexity,
highlighting the need to explicitly consider spatial heterogeneity in LUE models. We
also tested a similar model using Landsat-derived indices, and found that although
model performance was high at a homogeneous wetland dominated by emergent
vegetation, data-model agreement decreased at a site comprised of a mixture of open
water and vegetation, reflecting limitations of Landsat data. Nonetheless, we show that
digital camera and Landsat imagery can be used to model photosynthesis in restored
wetlands, providing low-cost methods for monitoring carbon cycling in these systems
that can be used in C market-funded wetland conservation and restoration.
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4.2, Introduction

Wetlands play an important role in global carbon (C) dynamics due to their large
soil C pools, high methane (CHa) fluxes, and potential for C sequestration in soils and
biomass (Mitra et al. 2005, Bridgham et al. 2006). For example, although wetlands cover
only 2 to 6 % of the earth’s land surface, they store a considerable proportion of the C in
terrestrial soil reservoirs (~15 x 10 Pg) (Kayranli et al. 2009). Much of this C resides in
peatlands, defined as wetland environments with > 40 cm of surface organic matter,
which contain 16-33 % of the global soil C pool (Bridgham et al. 2006).

Due to their ability to accumulate large amounts of C, as a result of limited
decomposition rates in anaerobic soils and potential for high productivity, there has
been a growing interest in the greenhouse gas mitigation potential of wetland
restoration (Merrill et al. 2010, Mack et al. 2012, Hiraishi et al. 2014). Wetland
restoration and conservation projects can play an important role in managing
atmospheric C (Pendleton et al. 2012), provided conditions are optimized to minimize
CHas emissions. Freshwater marshes are especially productive ecosystems with a large
capacity to sequester COy, as rates of net primary productivity can be comparable to
that of tropical forests and intensive agricultural ecosystems (Rocha and Goulden 2009,
Miller and Fujii 2010). In addition to C sequestration, wetlands offer numerous
environmental co-benefits and ecosystem services, including wildlife habitat, improved
water quality, and flood protection (Costanza et al. 1997, Zedler and Kercher 2005).
Wetland destruction and degradation is widespread, with over 50 % lost globally
(Zedler and Kercher 2005). Consequently, there is broad interest in using greenhouse
gas offset programs and markets to help reduce habitat loss and finance restoration
project (Emmett-Mattox et al. 2011, McLeod et al. 2011). However, including wetlands
in C markets worldwide requires a better understanding of C cycling in these systems
and models that can accurately and cheaply predict C fluxes.

Remote sensing technology is an effective tool for modeling C fluxes including
gross primary productivity (GPP) and net primary productivity (NPP) from site to
global scales (Ruimy et al. 1999, Running et al. 2004, Xiao et al. 2004, Hilker et al. 2008).
Greenness indices from digital repeat photography, a form of near-surface remote
sensing, has recently been shown to be strongly correlated with canopy-scale
photosynthesis in deciduous broadleaf forests, evergreen needleleaf forests, grasslands,
croplands (Ahrends et al. 2009, Rossini et al. 2010, Migliavacca et al. 2011, Keenan et al.
2014, Toomey et al. 2015), however, whether camera-derived greenness can predict
canopy-scale photosynthesis in wetland ecosystems is largely unexplored (e.g.
Westergaard-Nielsen et al. 2013). Spaceborn remote sensing has traditionally been used
to provide regional and global estimates of GPP (Running et al. 2000, Heinsch et al.
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2006, Kalfas et al. 2011, Ryu et al. 2011). Current satellite remote sensing-based GPP
models have largely been developed and validated for forest, crop, and grassland
ecosystems (e.g. Heinsch et al. 2006, Sims et al. 2008, Sjostrom et al. 2011, Gitelson et al.
2012), with a limited number of studies focused on wetland ecosystems (Kang et al.
2014, Wu et al. 2015). Most of these satellite-based studies have used the light use
efficiency (LUE) approach to estimate GPP (Xiao et al. 2004), which is based on the work
by Monteith (1972) and Monteith and Moss (1977) relating gross photosynthesis to the
amount of photosynthetically active radiation absorbed by photosynthetic biomass and
the radiation use conversion efficiency of the vegetation (Heinsch et al. 2006).

Since 1999, the National Aeronautics and Space Administration (NASA) has
provided GPP estimates for the entire globe based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) 1 km products (e.g. Running et al. 2000, Running et al.
2004). While the MODIS GPP algorithm provides reasonable spatio-temporal patterns
and variability across a diverse range of biomes and climate types (Heinsch et al. 2006),
it has been shown to underestimate GPP in natural wetlands (Kang et al. 2014) and
tlooded rice agriculture (Xin et al. 2016), which has been attributed to the climate data,
pixel heterogeneity, and the light use efficiency parameter used in the model.
Furthermore, for some wetland types, the deciduousness of these systems and the
presence of standing litter can complicate estimation of the fraction of radiation
absorbed by photosynthetically active elements of plants (Rocha et al. 2008). The coarse
spatial resolution (1 km) of MODIS can also be problematic for estimating wetland GPP
as these ecosystems can be small in size, and highly distributed, fragmented or
disconnected from other habitat types (Byrd et al. 2014). Possible alternatives to MODIS
are the Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper (ETM),
and Landsat Operational Land Imager (OLI) products, which have considerably finer
spatial resolution (30 m pixel), spectral sensitivity in electromagnetic regions
characteristic of vegetation function and are available at no cost. Landsat data may
therefore provide useful information to facilitate the analysis of CO2 fluxes in wetland
ecosystems. With the opening of Landsat archives to free and web-based access, the use
of the sensor data with much greater spatial resolution may be well suited to accurately
estimating GPP in natural and restored wetland ecosystems.

Based on the broad interest of including wetlands in greenhouse gas offset
programs and markets, our aim is to provide accurate and inexpensive means of
modeling wetland GPP that is relevant to C market-funded wetland restoration, thereby
advancing the opportunity to counteract the widespread degradation of wetlands
worldwide. Specifically, the objectives of this study were to: 1) Evaluate the potential
use of digital cameras as a simple and low-cost means of estimating GPP in wetland
ecosystems, and 2) Assess the suitability of using Landsat data to model GPP in these
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environments. We combine eddy covariance CO: fluxes measurements, flux footprint
analysis, and near-surface or satellite remote sensing data to investigate the potential of
using the light use efficiency approach to accurately and cost-effectively estimate GPP
in wetland systems.

4.3. Materials and methods

4.4.1. Study sites

We focus on two freshwater marshes in the Sacramento-San Joaquin River Delta,
California, USA (hereafter, the Delta). This study was designed to help inform
methodologies to quantify greenhouse gas emission reductions from wetland
restoration, including the methodology currently being developed specifically for the
Sacramento-San Joaquin Delta (Deverel et al. 2016, Oikawa et al. 2016). Wetland
restoration in the Delta offers large C removal potential. Since drainage of the wetlands
in this region for agriculture around 1850, islands in the Delta have subsided between 3
and 8 m below sea level due largely to peat soil oxidation (Rojstaczer and Deverel 1993,
Deverel and Leighton 2010). This peat soil oxidation corresponds to roughly 200 Tg of
C lost since drainage, making it a large atmospheric C source (Oikawa et al. 2016).
Restoring drained and degraded peatlands in the Delta back to wetlands can help
recover soil C and reverse soil subsidence as these ecosystems can sequester over 350 g
C-CO2m? yr? (Knox et al. 2014). Previous studies in the Delta have shown that
converting a corn field to a wetland can have a greenhouse gas benefit up to 2.5 kg
COz2eq m? yr! after accounting for CHi emissions with a global warming potential of 32-
45 times greater than CO: over a 100 year time horizon (Knox et al. 2014, Neubauer and
Megonigal 2015).

Field measurements were collected at two restored wetland sites in the Delta:
West Pond wetland and Mayberry wetland (Figure 4.1). The West Pond site
(38.0498°N, 121.7650°W) is a 7 acre wetland that was built in 1997 (Miller et al. 2008,
Miller and Fujii 2010). The site is permanently flooded to a depth of ~25 cm, and
contains virtually no areas of open water. The wetland is narrow, only about 75 m
wide, and characterized by a high intermixing of emergent marsh species, including
Schoenoplectus acutus and Typha species. A dense layer of dead S. acutus stems 1 to 2 m
tall mixed with other plant litter has accumulated at this site. We began eddy
covariance measurements of CO, CHs, water and energy at this location in July 2012.

The Mayberry site is a considerably larger restored wetland (300 acres) that was
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constructed in 2010. Flux measurements at this site were initiated shortly after
construction (October 2010). Unlike the West Pond wetland, a heterogeneous
bathymetry was excavated to generate regions of shallow water (a few centimeters) and
adjoining areas of deeper water (1 —2 m deep). As a result, these wetlands are spatially
heterogeneous, consisting of a mix of open water and vegetation patches (Figure 4.1),
also comprised of Typha sp. and Schoenoplectus acutus. Vegetation dynamics at the site
are controlled by in-filling of vegetation following flooding in 2010, with percent cover
of emergent vegetation increasing from 0 to 63 % from 2010 to 2012, and changing very
little thereafter (Matthes et al. 2014). Plant litter only began accumulating at the site
following the 2012 growing season. Similar to the West Pond site, this wetland is
permanently flooded to maximize peat accretion and C sequestration.
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Figure 4.1. Flux tower locations and climatological footprints for the two restored
wetlands. For the climatological footprints, data were separated by year at the
Mayberry wetland since vegetation height and percent cover along with tower height
changed throughout the study. Data were not separated by year at West Pond since
tower height remained the same throughout the study and vegetation cover and height
was roughly similar between years. At both wetland sites, the contours represent the
85% flux footprints.

4.4.2. Eddy covariance flux measurements and micrometeorological data

Biosphere-atmosphere exchange of CO: (NEE), CHs, water and energy were
measured using the eddy covariance technique (Baldocchi et al., 1988) as described in
Knox et al. (2015). A suite of meteorological measurements including air temperature
(Ta), relative humidity, water table depth, incoming and outgoing shortwave and
longwave radiation, incoming and reflected photosynthetically active radiation (PAR),
and soil and water temperature accompanied flux measurements, with details given in
Knox et al. (2015). High-frequency 3-D wind speed components and virtual
temperature were measured with a sonic anemometer (Windmaster, Gill Instruments

74



Ltd., Lymington, Hampshire, UK) at 4.6 m, and between 3.7 and 5.7 m above the typical
water surface at the West Pond and Mayberry wetlands, respectively. The variable
sensor height at Mayberry reflects the fact that the tower was raised as the vegetation
increased in height over time. At all sites, open-path gas analyzers measured molar
concentrations of COz, H20O (LI-7500A, LI-COR Biosciences Inc., Lincoln, NE, USA), and
CHa4 (LI-7700, LI-COR Biosciences Inc., Lincoln, NE, USA). Raw flux measurements
were recorded at 10 Hz and eventually at 20 Hz on an analyzer interface unit (LI-7550,
LI-COR Biosciences Inc., Lincoln, NE, USA), and half hourly fluxes were calculated
using in-house MATLAB software (Mathworks Inc., Natick, MA, USA) (Detto et al.,
2011, Hatala et al., 2012b, Knox et al., 2015). Accompanying micrometeorological
measurements were recorded as 30-minute averages on a datalogger.

As outlined in other studies at these sites (Knox et al., 2015, Sturtevant et al.,
2016), flux measurements were gap-filled using an artificial neural network (ANN)
approach. Fco: was gap-filled with two separate ANNs, with one for daytime and
another for nighttime conditions. Ecosystem respiration (ER) was estimated by
extrapolating the ANN trained for nighttime Fcos to the entire day, and GPP was
calculated by subtracting gap-filled Fco: from modeled respiration (i.e. NEE = ER —
GPP).

4.4.3. Flux footprint modeling

We used an analytical two-dimensional footprint model to model the spatial
origin of the flux measurements (Detto et al., 2006, Hsieh et al., 2000). The eddy
covariance flux footprint indicates the spatial portion of the landscape represented by
each half hourly eddy covariance flux measurement. The footprint model uses wind
speed and direction, roughness length (z.; m), displacement height (d; m), turbulence
data and boundary layer stability to trace the probability that a certain air parcel
measured by the eddy covariance sensors originated from any particular point within
the landscape. This model has been tested against several data sets, and overall has
been shown to succeed at reproducing the source region for flux measurements at eddy
covariance towers in spatially heterogeneous ecosystems (Matthes et al., 2014). The
method of Pennypacker and Baldocchi (2015) was used to derive continuous estimates
of canopy height, zo and d. For the climatological footprints, data were separated by
year at the Mayberry wetland since vegetation height and percent cover along with
tower height changed throughout the study, resulting in considerable year-to-year
differences in the integrated cumulative flux footprint (Figure 4.1). Data were not
separated by year at the West Pond wetland since the tower height remained the same
throughout the study and dynamics of vegetation cover and height were roughly the
same between years. Here we show the 85% analytical footprint (i.e. the areal extent
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from which 85% of the measured flux originated), because as the analytical footprint
approaches 100%, the area of the footprint expands rapidly, although there is only a
small contribution to the measured flux from this extensive area (Matthes et al., 2014).

4.4.4. Digital camera set-up and image analysis

On both eddy covariance towers, a digital camera (i.e. “phenocam’) was installed
in a fixed position, leveled with the horizon, with a view across the top of the canopy.
Cameras were pointed toward the West, which corresponds to the dominant wind
direction (Figure 4.1), and enclosed in waterproof housings. At both sites, Canon
Powershot Series A provided JPEG images (image resolution of 10 MP, with three color
channels of 8-bit RGB color information, i.e. digital numbers (DN) ranging from 0 to
255) at 30-minute intervals for 12 hours per day. With the exception of automatic
exposure, all automatic camera settings were turned off (Richardson et al., 2009).

Time series were first visually inspected for camera shifts and changes in field of
view (FOV). The FOV remained largely unchanged at the West Pond wetland,
however, larger shifts in the FOV were observed at the Mayberry wetland as the
positioning of the camera changed a few times throughout the study (Figure 4.2).
Noting these changes, images were processed to extract regions of interest (ROI)
encompassing all portions of the wetland within the foreground (Figure 4.2).

To quantify canopy greenness, we calculated the green chromatic coordinate
(GCCeam), which is widely used to monitor canopy development and has been shown to
be strongly related to GPP (Ahrends et al., 2009, Migliavacca et al., 2011, Richardson et
al., 2007, Sonnentag et al., 2012, Toomey et al., 2015)

Gce,,, = DN @)
DN, +DN, + DN,
where DN is the digital number and R, G, and B indicate the red, green, and blue
channels, respectively. We also computed another color index, the excess green

(ExGeam) index

ExG,,,=2DN;—(DN, +DN,) 2)
which can be less noisy than GCCeam in some ecosystems, although GCCeanm is generally
more effective than ExGem in suppressing the effects of changes in scene illumination
(Sonnentag et al., 2012).

Color indices were calculated for the selected ROI for each image, and computed
for images recorded between 1300 to 1500, although images with underexposed ROlIs
(defined as <15% color saturation) were excluded. Daily GCCem and ExGem values

were calculated using a three-day running median filter. This reduced some of the
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unwanted variability in the GCCeam and ExGeam due to changes in scene illumination
compared to simply calculating a daily mean or median value. Sonnentag et al. (2012)
suggest using a moving window approach that assigns the 90 percentile of all daytime
values (0600 to 1800) within a three-day window to the centered day, resulting in three-
day ExGeam and GCCeam. We also tested this method but found that it did not
significantly increase correlations between camera-derived indices and daily GPP.
Furthermore, here we calculate a daily GCCeam value and reduced the computation time
by only selecting images for a subset of the day.

Mayberry (b)
(Jan 2011-Jun 2012)

Mayberry (c) Mayberry (d)
(Jul 2012-Mar 2014) (Apr 2014-Dec 2016)

4

Figure 4.2. Examples of the

AT T 1 A
digital camera images for West Pond (a) and Mayberry (b)-
(d). Asnoted in the above, the field of view (FOV) changed a number of times
throughout the study at the Mayberry wetland. Panels (b)-(d) show the major changes
in the FOV at Mayberry. Polygons indicated the region of interest (ROI) for extracting
image greenness.

{

Although the sites weren’t equipped with a reference panel (Richardson et al.,
2007), we assessed the overall quality of the retrieved signal and the day-to-day stability
of the imagery color balance by extracting a ROI from the white CH4 analyzer (LI-7700)
at the Mayberry wetland. The coefficient of variation of the GCCeam calculated for this
ROI was 0.23% during the 2013 growing season, which is over an order of magnitude
smaller than the GCCen calculated for the primary ROI, giving us confidence in the
quality of the retrieved signal (Migliavacca et al., 2011).
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4.4.5. Landsat data and vegetation indices

Spectral vegetation indices (VIs) were quantified from the archive of Landsat
satellite imagery: Landsat 5 TM for 2010-2011, Landsat 7 ETM+ for 2012 and Landsat 8
OLI for 2013-2015. For each year, the images representing cloud-free conditions over the
study area were selected as geo-registered, terrain-corrected Level 1T product
converted to surface reflectance with Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS; Masek et al. 2006). Five of the Landsat spectral bands
with 30 m spatial resolution were used in this study: blue (band 1: 450 — 520 nm for
Landsat 5 and 7 and band 2: 450 — 510 nm for Landsat 8), green (band 2: 520 — 600 nm
for Landsat 5 and 7 and band 3: 530 — 590 nm for Landsat 8), red (band 3: 630 — 690 nm
for Landsat 5 and 7 and band 4: 640 — 670 nm for Landsat 8), near-infrared (band 4: 760
—900 nm for Landsat 5, band 4: 770 — 900 nm for Landsat 7 and band 5: 850 — 880 for
Landsat 8), and shortwave-infrared (band 5: 1550 — 1750 nm for Landsat 7 and band 6:
1570 — 1650 nm for Landsat 8). Using Google Earth Engine, a cloud-based geospatial
data processing platform (https://earthengine.google.com/), Landsat pixels falling

within the 85% climatological footprint of EC towers (Figure 4.1) were selected for
subsequent analysis. Using their band reflectance values, seven VIs were quantified
(Table 4.1) and summarized as footprint averages for the GPP estimation.

In addition to Landsat-retrieved normalized difference vegetation index
(NDVIL), we also calculated broadband NDVI from radiometric measurements at West
Pond (NDVliwer) as described in Richardson et al. (2007) since this site was equipped
with both a four-component net radiometer and quantum sensors. Although
broadband NDVI could not be estimated at the Mayberry wetland since this site only
had a double-sided net radiometer, unlike West Pond, this tower was equipped with a
spectral reflectance sensor, built in-house with light emitting diodes, allowing us to
compute narrowband NDVI (NDVlIiwwer) as outlined in Ryu et al. (2010).
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Table 4.1. Landsat-derived vegetation indices used in this study.

Vegetation index

Formula

Reference

Enhanced vegetation index (EVIL)

Normalized difference vegetation
index (NDVLL.)

Green NDVI (GNDVIL)

Soil enhanced vegetation index
(SAVL)

Land surface water index (LSWIL)
Green chromatic coordinate (GCCvr)

& Excess green index (ExGr)

Gx(pNR—pred)/(pNIRFC 1% pred-C2 % poiuetL)

(PNIR—pred)/(PNIR+Pred)

(pNIR—pgreen)/(pNIR+pgreen)
(pnR—prea+L)/(pNir+pred)x (1+L)

(PNIR—pswIR)/(PNIR+PSWIR)

[Y) green/ ( PgreentPredt pblue)

2% Pgreen— (pred+pblue)

Huete et al. (2002)

Kriegler et al. (1969), Rouse et al.
(1974)

Gitelson and Merzlyak (1997)
Huete (1988)

Xiao et al. (2004)
Woebbecke et al. (1995)

Woebbecke et al. (1995), Meyer et
al. (1998)




4.4.6. Light use efficiency models
We used a light use efficiency (LUE) approach to estimate GPP

GPP =¢ex fAPAR x PAR (3)
where PAR is incident photosynthetically active radiation, ¢ is light use efficiency, and

tAPAR is the fraction of PAR absorbed by the canopy, which was estimated as (Rossini
et al., 2010, Xiao et al., 2004)

JAPAR = a, +a,VI 4)

where ao and a: are the coefficients relating VI, retrieved from either tower
measurements (i.e. GCCeam, EXGeam, NDVItower) or Landsat data (c.f. Table 4.1), and
fAPAR, and were estimated against observed GPP.

Light use efficiency (¢) is affected by temperature and water stress (Kang et al.,
2014, Xiao et al., 2004)

e=¢,xT,

scalar

X ‘/Vscalar (5)
where ¢o is the apparent quantum yield or maximum LUE and Tscatlar and Wecalar are the
scalars for the effects of temperature and water on canopy light use efficiency. In this

study, we used the down-regulation scalars from the satellite-based Vegetation
Photosynthesis Model (VPM) (Xiao et al., 2004).

o values vary with vegetation type, and in this study €0 was estimated from
eddy covariance measurements by fitting a non-linear (i.e. rectangular hyperbola)
model to the relationship between GPP and PAR, based on data collected during peak
growing season (mid-July to mid-August) (Frolking et al., 1998, Kang et al., 2014)

g, x PARxGPP_,_ +ER (6)
¢, x PAR + GPP

max

NEE =

where GPPmax is the maximum gross productivity. We used nonlinear least squares
regression to fit the light response curves with a rectangular hyperbola (MATLAB,
version 8.6.0, Mathworks Inc., Natick, MA, USA). This gave &o values of 0.47 g C mol
PPFD and 0.24 g C mol PPFD! for the West Pond and Mayberry wetlands,
respectively. Lower ecosystem-scale €oat the Mayberry wetland reflects the fact that
this is a heterogeneous canopy, and therefore at the canopy level o is influenced by the
presence of both vegetation and open water.

For all VIs tested in the LUE model, Tscalar was estimated at each time step using

the equation developed for the Terrestrial Ecosystem Model (Raich et al., 1991), which is
also used in the VPM model (Xiao et al., 2004)
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(7 =T )(T - Tor) )

scalar = 2
[(T =T )(T T )] - (T - Topt)
where Tmin, Tmax, and Topt are minimum, maximum, and optimal temperature for
photosynthesis, respectively. In this study, we used Tmin 0f 0°C, Topt of 22°C, and Tmax of
50°C.

When Landsat-retrieved VIs were used in the LUE model, Wscaar was calculated
using a simple approach utilizing a water-sensitive vegetation index (Xiao et al., 2004)

1+ LSWI (8)
scalar 1 + LSWIm R

where LSWlnax is the maximum land surface water index (LSWI; Table 4.1) within the
growing season, and was estimated separately for each year (Kang et al., 2014).

3.5.5. Model parameter estimates and evaluation of model performance

Best-fit model parameters were estimated using linear least square regression
implemented in MATLAB. At West Pond, model parameterization was conducted with
data from 2012, 2013 and 2015, while data from 2014 were used for validation.
Similarly, at Mayberry, all data excluding measurements from 2014 were used for
model parameterization and data from 2014 were again used in validation. We selected
2014 as the validation period since there were minimal gaps in model drivers that year.
Model performance was evaluated using the linear relationship between modeled and
observed daily GPP (slope and intercept), the coefficient of determination (R?), and the
root mean square error (RMSE). We also explored the model’s ability to predict annual
and multi-year GPP budgets. When estimating modeled GPP sums, gaps in PAR and Ta
were estimated using data from a nearby weather station. Continuous daily time series
for both Landsat-derived and tower-based VIs were obtained by piecewise cubic
interpolation (MATLAB).

4.4. Results
4.4.1. Seasonal dynamics of photosynthesis and vegetation indices

4.4.1.1. Tower-based indices

Both wetland sites exhibited clear seasonality in both daily GPP and GCCeanm,
with high values during the primary growing season and low values during the
inactive period (Figure 4.3). Both sites also showed considerable interannual variability
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in GPP, particularly at the recently restored Mayberry wetland (Figure 4.3). GCCecam
closely paralleled year-to-year differences in GPP at both sites (Figure 4.3a,b). At
Mayberry, with the exception of the first two growing seasons characterized by rapid
vegetation growth and expansion, GCCem tracked daily GPP nearly synchronously, and
was able to capture the decrease in GPP in the middle of the 2014 growing season
caused by a caterpillar infestation at the site. At the West Pond wetland, daily GPP
increased somewhat more slowly than GCCenm, reaching maximum values up to ~4
weeks after GCCam reached peak values, and then tended to decline before the decrease
in GCCem. Correlations between daily GPP and GCCen were high at both sites, ranging
between 0.65 and 0.89 (Table 4.2). Lower correlations were observed at the Mayberry
wetland in part due to the more heterogeneous nature of this site; as a result of the flux
footprint moving over the mosaic of open water and vegetation, there was considerable
day-to-day variability in GPP, however, this was not detected by GCCenm (Figure 4.3b).
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Figure 4.3. Time series of daily GPP (gray line; g C m? d') and GCCem (camera-derived
green chromatic coordinate, blue circles) for (a) West Pond and (b) Mayberry, and time
series of daily GPP (gray line; g C m? d!) and NDVlIiwwer (fower-based normalized
difference vegetation index, blue circles) for (c) West Pond, and (d) Mayberry.

Across all years, the relationship between daily GPP and GCCeam was essentially
linear at both wetland sites (Table 4.2; Figure 4.4), although at Mayberry this
relationship was influenced by the time since restoration. At this recently restored site,
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in the first two years following restoration (2011 and 2012), when emergent marsh
vegetation colonization and spread was rapid and there was very little accumulation of
standing leaf litter, there was a non-linear relationship between daily GPP and GCCeam,
with higher GCCem values for a given daily GPP value than in subsequent years (Figure
4.4b). Following 2012, daily GPP scaled linearly with GCCem and the relationship
between daily GPP and GCCem showed little variation between years, similar to the
older West Pond wetland (Figure 4.4a,b).
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Figure 4.4. Scatter plots of daily GPP (g C m? d!) vs. GCCeam for (a) West Pond, and (b)
Mayberry, and vs. NDVlIwwer for (c) West Pond, and (d) Mayberry). Linear (dark blue)
and quadratic lines (dashed light blue) are superimposed (see Table 4.2 for coefficients
of determination). Different years are represented by difference symbols (2011 =
squares, 2012 = circles; 2013 = upward-pointing triangles; 2014 = downward-pointing
triangles; 2015 = diamonds).

At West Pond, the relationship between daily GPP and ExGem was similar to that
observed for GCCem (Table 4.2), however, at Mayberry GCCeam somewhat
outperformed ExGem since GCCeam was better able to capture interannual variability in
GPP. Since GCCem was better correlated with daily GPP than ExGem, we focus on
GCCanm in the subsequent results.

83



Table 4.2. Coefficients of determination for linear (R?) and quadratic regression (R%quad)
of camera-derived greenness indices (GCCeam, EXGeam), tower-based NDVI (NDVlIiwower),
and Landsat-derived vegetation indices (EVIL, SAVIL, NDVI,, GNDVI, ExGt, GCCr,
LSWIL) with daily GPP, and number of samples (n) corresponding to each vegetation

index.
West Pond Mayberry

R? R2quad n R? R2quad n
GCCeam 0.88 0.89 1193 0.65 0.65 1650
GCCeam1®* 093 0.92 41 0.85 0.71 59
ExGeam 0.85 0.87 1193 0.55 0.55 1650
NDVIwower  0.70 0.78 1307 0.58 0.59 1305
EVIL 0.72 0.71 44 0.50 0.52 65
SAVIL 0.71 0.70 44 0.47 0.49 65
NDVIL 0.61 0.59 44 0.40 0.41 65
GNDVL 0.51 0.49 44 0.24 0.23 65
ExGL 0.63 0.68 44 0.38 0.36 65
GCCL 0.57 0.56 44 0.28 0.27 65
LSWIL 0.64 0.62 44 0.40 0.39 65

3GCCam_t indicates GCCeam measurements corresponding to the same dates as the
Landsat imagery. Note that in 2015 there were three days when Landsat imagery was
available but there were no available camera images, which explains the lower number
of samples for GCCem_t (n = 41) compared with the Landsat VIs (n = 44).

Broadband NDVI measured at West Pond using radiometric measurements and
narrowband NDVI estimated at Mayberry using an in-house built LED-sensor (both
NDVlIiower) also showed clear seasonality, however, at both wetland sites NDVIiower
showed poorer agreement with daily GPP compared with camera-derived indices
(Table 4.2). Furthermore, NDVIwwer at West Pond (and to a lesser extent at Mayberry)
appeared to saturate at high GPP values (Figure 4.4c,d), making GCCenm a better
predictor of interannual variability in GPP (Table 4.2; Figure 4.3).

4.4.1.2. Landsat-based indices

All VIs retrieved from Landsat data showed strong seasonality, although some
indices tracked GPP better than others (Table 4.2; Figure 4.5). Comparisons between
VIs and daily GPP showed that at both wetland sites EVIL and SAVIL had the strongest
relationship with GPP (Table 4.2), as the seasonal dynamics of these indices followed
the phase and amplitude of GPP better than the other VIs (Figure 4.5). Conversely, at
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both wetlands, GCCL and GNDVI. had the weakest relationship with GPP (Table 4.2).
While VIs generally paralleled GPP relatively well across years, there were two notable
discrepancies; all VIs at West Pond reached peaked values in 2015 although GPP was
lowest during that growing season, and VIs at Mayberry remained high in 2013 despite
a considerably drop in GPP that year. The regression of LSWIL against observed GPP
also showed that land surface water content was significantly correlated with
photosynthesis at both wetlands (Table 4.2). Again, GPP was better correlated with VIs
at West Pond (R? =0.49 to 0.72) than Mayberry (R? = 0.23 to 0.52) due to the more
homogenous and less dynamic nature of the West Pond wetland.
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Figure 4.5. Time series of daily GPP (gray line; g C m? d ') and normalized vegetation
indices (VInorm) obtained from Landsat (see Table 4.1 for the description of each VI) for
(a) West Pond and (b) Mayberry. Indices were normalized between 0 and 1 to allow all
Landsat-derived VIs to be plotted on the same figure.

4.4.2. Model performance

4.4.2.1. Tower-based indices

Performance of the LUE model using GCCenm as a proxy for fAPAR was strong,
with high data-model agreement, particularly at the older, more homogeneous West
Pond site (slope = 0.87, intercept = 0.71; R* = 0.90; RMSE = 1.32 g C m? d! calculated
during the validation period) (Table 4.3; Figure 4.6). Nonetheless, despite higher
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variability in GPP, model performance at the Mayberry wetland was also strong (slope
=0.75, intercept = 0.15; R?=0.91; RMSE = 1.47 g C m?2 d! calculated during the
validation period). At West Pond, the model overestimated GPP by only 3% during the
validation period (2014) and underestimated GPP by 2% across the entire observation
period (2013-2015) (Table 4.4). At Mayberry, discrepancies between measured and
modeled annual GPP sums were larger, again due to the more dynamic nature of GPP
within and across years, with the model overestimating GPP by 20% during the
validation period (2014), but underestimating GPP by only 4% for the whole record
(2011-2014) (Table 4.4). While modeled and observed daily GPP at Mayberry varied
nearly in phase, at West Pond modeled GPP tended to peak a few weeks before
observed GPP (Figure 4.6), largely as a result of daily GPP increasing somewhat more
slowly than GCCenm as described above (Figure 4.3). In addition, at both sites, the LUE
model tended to underestimate GEP during less sunny conditions.

0
0113 0114  01/15 01/12 0113 0114 01/15
Date (MM/YY) Date (MM/YY)

Modeled GPP (g C m?2d™)

2 2 6 10 14 18 2 2 2 6 10 14 18 2

observed GPP (g C m2d™") observed GPP (g C m2d™")
Figure 4.6. Modeled (blue circles), where GCCam was used as the vegetation index (VI)
in the LUE model, and observed (gray line) daily GPP (g C m* d!) for (a) West Pond,
and (b) Mayberry. For both wetlands, data from all years except 2014 were used in
model parameterization and data from 2014 were used in model validation. (c) and (d)
show data-model agreement for West Pond and Mayberry, respectively, where the dark
blue circles indicate the parameterization period, and the light blue circles indicate the
validation period. Solid dark blue and solid light blue lines indicate the line of best fit
for the parameterization and validation periods, respectively, and the dotted line
indicates the 1:1 line (see Table 4.3 for model performance statistics).
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Table 4.3. Comparison of observed and simulated daily GPP at the West Pond (WP) and Mayberry (MB) wetlands during
the parameterization (all years excluding 2014) and validation (2014) periods.

R? Slope Intercept RMSE n
(g Cm2d?) (g Cm2dY) (gCm2dY)
Param Val Param Val Param Val Param Val

WP GCCeam 0.91 0.90 0.94 0.87 0.16 0.71 1.29 1.32 1193
GCCeam_ L 0.93 0.91 0.96 0.88 0.16 0.62 1.12 1.20 41

ND VTiower 0.90 0.93 0.86 0.84 0.79 1.17 1.36 1.31 1307
EVIL 0.83 0.97 0.81 0.76 1.21 0.99 1.74 1.16 44
SAVILL 0.83 0.98 0.80 0.79 1.23 0.93 1.75 1.04 44
NDVIL 0.83 0.97 0.79 0.78 1.34 1.12 1.75 1.09 44
GNDVL 0.83 0.97 0.77 0.80 1.56 1.07 1.78 1.02 44
ExGL 0.79 0.85 0.74 0.70 1.64 2.23 1.97 1.78 44
GCCo 0.78 0.85 0.71 0.67 1.90 2.48 2.01 1.87 44

MB GCCecam 0.84 0.91 0.87 0.75 0.40 0.15 1.55 1.47 1650
GCCeam_ L 0.83 0.90 0.86 0.63 0.60 0.90 1.55 1.75 59

NDVlIcower 0.76 0.93 0.77 1.26 1.07 0.34 2.02 2.00 1305
EVIL 0.69 0.88 0.70 0.69 1.55 1.48 2.04 1.42 65
SAVLL 0.66 0.87 0.67 0.70 1.73 1.60 2.14 1.43 65
NDVILL 0.66 0.85 0.66 0.63 1.80 1.52 2.13 1.59 65
GNDVILL 0.62 0.80 0.59 0.63 2.19 2.33 2.26 1.81 65
ExGL 0.44 0.87 0.44 0.60 2.92 1.99 2.74 1.61 65

GCCL 0.42 0.80 0.40 0.56 3.21 2.56 2.78 1.90 65
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Table 4.4. Average annual air temperature (Ta; °C) and time-integrated sums of photosynthetically active radiation (PAR;
mol m?), eddy covariance estimated gross primary production (GPPobs; g C m?), modeled GPP (GPPpred; g C m?) for a
range of vegetation indices, and comparison between observed and predicted GPP (relative error?; RE (%)) at both
wetland sites.

GCCeam NDVTiower EVIL SAVIL NDVILL GNDVIL ExGr GCCL
GPPobs GPPpred RE GPPpred RE GPPpred RE GPPpred RE GPPpred RE GPPpred RE GPPpred RE GPPprea RE

WP 2013 1780 1733 -3 1572 -12 1572 -12 1595 -10 1636 -8 1673 -6 1764 -1 1804 1
2014 1513 1565 3 1442 -5 1442 -5 1462 -3 1507 0 1538 2 1708 13 1750 16
2015 1411 1317 -7 1710 21 1710 21 1726 22 1757 25 1766 25 1783 26 1830 30
2013-2015 4704 4615 -2 4724 0 4724 0 4783 2 4900 4 4977 6 5255 12 5384 14
MB 2011 974 1074 10  -- —~ 876 -10 904 -7 965 -1 919 -6 1443 48 1460 50
2012 2318 2318 0 1902 -18 1702 -27 1649 -29 1772 24 1688 -27 1482 -36 1543 -33
2013 1276 1227 -4 1653 30 1931 51 1954 53 1850 45 1961 54 1572 23 1589 25
2014 1405 1127 20 1896 35 1306 -7 1352 -4 1246 -11 1495 6 1355 -4 1476 5
2015 1514 - - - —~ 1252 -17 1294 -15 1185 -22 1388 -8 1406 -7 1470 -3

2011-2015 7487  5746> -4> 5451< 9 7067 -6 7153 -4 7018 -6 7451 O 7258 -3 7538 1

aRE = [(GPPprea-GPPobs)/ GPPobs] x 100% (Kang et al., 2014).

"Sum excludes 2015 due to the large gap in GCCem during peak growing season which makes gap-filling GCCeam
challenging and consequently annual integrated GPPpred highly uncertain that year. The RE compares GPPprea against
GPPobs across 2011-2014.

cSum excludes 2011 and 2015 due to the limited number of NDVIiower in those years (Figure 4.3). The RE compares GPPpred
against GPPobs across 2012-2014.



For both West Pond and Mayberry, model performance metrics indicated that
data-model agreement tended to be slightly better when GCCeam rather than NDVItower
was included in the LUE model (Table 4.3). Furthermore, when comparing observed
and modeled GPP sums, the relative error was consistently lower when GCCeam rather
than NDVIiwwer was used as a proxy for fAPAR (Table 4.4). As noted previously,
interannual dynamics of GCCen followed those of GPP better than NDVIiower since
GCCcanm, unlike NDVTiower, tended not to saturate.

4.4.2.2. Landsat-derived indices

All VIs resulted in overall reasonable agreement between predicted and
observed GPP at the West Pond wetland (slope = 0.67 to 0.80, intercept = 0.99 to 2.48; R>
=0.85 to 0.98; RMSE =1.02 to 1.87 g C m? d! calculated during the validation period).
When considering individual VIs, EVIL and SAVLL slightly outperformed the other
indices while GCCt and ExGr resulted in the poorest agreement between predicted and
observed GPP (Table 4.3). Despite the limited temporal frequency of Landsat, data
were acquired at sufficient intervals to adequately capture seasonal dynamics of GPP
(Figure 4.7). Interpolation of VIs between sampling dates resulted in overall good
agreement between observed and modeled GPP sums when integrated across years
(Table 4.4), with relative errors across the three full years of measurements (2013-2015)
as low as 0% and 2% when EVIL and SAVIL were included in the LUE model,
respectively. Although relative errors across years were small, they were larger for
individual years (Table 4.4). For instance, when considering EVIL, the Landsat-derived
VI resulting in best model performance, modeled GPP was underestimated by 12% in
2013 and overestimated by 21% in 2015 (Table 4.4; Figure 4.7).

Model performance across all VIs was lower at Mayberry, although again EVIL
resulted in best model performance (slope = 0.69, intercept = 1.48; R? = 0.88; RMSE = 1.42
g Cm?d! calculated during the validation period), while GCCt resulted in the lowest
tit between predicted and observed GPP (Table 4.3). Similar to West Pond, the relative
error across years was low (between -6% and 1%), although within years modeled GPP
could be strongly over or underestimated (Table 4.4).

4.4.2.3. Tower-based vs. Landsat-derived VIs

Comparisons between VIs and GPP showed that GCCeam followed the seasonal
and interannual dynamics of GPP better than other VIs (Figure 4.3; Figure 4.5). As
such, GCCean resulted in the best agreement between observed and predicted GPP
when compared to the other VIs explored in this study (Table 4.3). Although this is in
part related to the greater temporal frequency of GCCeam relative to the VIs obtained
from Landsat, even when GCCem was temporally downscaled to correspond to the
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same dates as the Landsat imagery (GCCem_1), camera-derived GCC was still better
correlated with daily GPP and resulted in stronger model performance compared with
all Landsat-based VIs (Table 4.2; Table 4.3).
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Figure 4.7. Modeled (blue circles), where EVI. was used as the VI in the LUE model,
and observed (gray line) daily GPP (g C m? d!) for (a) West Pond, and (b) Mayberry.
For both wetlands, data from all years except 2014 were used in model
parameterization and data from 2014 were used in model validation. (c) and (d) show
data-model agreement for the West Pond and Mayberry wetlands, respectively, where
the dark blue circles indicate the parameterization period, and the light blue circles
indicate the validation period. Solid dark blue and solid light blue lines indicate the
line of best fit for the parameterization and validation periods, respectively, and the
dotted line indicates the 1:1 line (see Table 4.3 for model performance statistics).

4.5. Discussion

Wetlands are important ecosystems for C storage and thus provide valuable
ecosystem services globally (Costanza et al. 1997, Syvitski et al. 2009). These systems
have been degraded globally at a rapid rate (Zedler and Kercher 2005) and the cost of
wetland restoration is high. With a growing interest in using C markets to fund
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wetland restoration projects (Merrill et al. 2010, Mack et al. 2012), including California’s
Cap-and-Trade program (Deverel et al. 2016), there is a need for models that can
precisely and cheaply predict C cycling in these ecosystems. In this study, we explored
the potential of using a simple light use efficiency approach combining camera-derived
greenness indices or Landsat-based vegetation indices and meteorological data to
inexpensively and accurately estimate wetland photosynthesis.

4.5.1. Digital camera imagery for GPP modeling — strengths and limitations

As observed in other ecosystems, including forests, grasslands, and crops
(Richardson et al. 2009, Migliavacca et al. 2011, Keenan et al. 2014, Toomey et al. 2015),
GPP was highly correlated with greenness derived from camera imagery at both
wetlands. At both sites, GCCen also strongly tracked interannual variability in GPP
better than tower-based NDVI measurements, highlighting that interannual variation in
annual GPP can be estimated using camera-derived color indices (Toomey et al. 2015).
In freshwater marshes, the accumulation of standing litter is important for controlling
interannual variability in CO: fluxes (Rocha and Goulden 2008, Rocha et al. 2008).
GCCuanm at both sites was able to capture year-to-year differences in litter accumulation,
with lower GCCenm values reflecting years with higher standing litter, which shades the
green leaves resulting in a reduction in GPP (Rocha et al. 2008).

We show that camera-based color indices combined with eddy covariance
measurements are highly valuable for developing and testing LUE models to predict
daily photosynthesis. Analysis of the LUE model highlighted that GPP can be
accurately predicted by combining GCCem and meteorological data, similar to the
results obtained by Migliavacca et al. (2011) for a subalpine grassland. We were able to
explain up to 91% of the variation in GPP, and predict annual GPP budgets within 0%
to 20% of observed budgets, and cumulative GPP across years to within 2% to 4% of
observed values. However, as a result of the considerable differences between the
wetlands, model parameters differed between sites (¢0 =47 g C mol PPFD" and 0.24 g C
mol PPFD, ao=-1.4 and -2.6 and a1 = 4.3 and 8.4 for West Pond and Mayberry,
respectively). This reflects one of the drawbacks of using empirical approaches for
estimating fAPAR (Hilker et al. 2008). Although re-parameterization of the model is
required when applying it to other wetlands types (or when large differences are
observed within wetland types), once the model has been developed for a
representative site, it can be applied to other similar environments at minimal costs (i.e.
the cost of a digital camera or webcam which runs from around $100 to $5000 USD;
Brown et al. (2016)). While the West Pond wetland is representative of a densely
vegetated freshwater marsh, most restored wetlands in the Sacramento-San Joaquin
Delta resemble the Mayberry wetland, consisting of a mosaic of open water and
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vegetation. From 2013 to 2015, over 3,000 acres of freshwater marshes were restored in
the Delta, with more restoration projects anticipated in the future. Eddy covariance flux
towers have recently been (or will be) installed at these newly restored sites and the use
of cost-effective camera instruments will be particularly beneficial for validating and
adapting the LUE model using measurements collected at these sites.

Since consumer-grade cameras are not calibrated scientific instruments, it is
important to understand the strengths and limitations of the information they produce
(Sonnentag et al. 2012, Brown et al. 2016). Camera hardware and image format have
considerable impact on image quality (Brown et al. 2016), and GCCeam and ExGeam
calculated for the same site and ROI using different camera types and models are not
directly comparable (c.f. Figure 8 in Sonnentag et al. 2012). As such, consistency in
camera hardware and image format, or the development of calibration protocols and
standards is important when developing and applying LUE models across sites,
particularly with a growing global digital camera — “phenocam” — network (Brown et
al. 2016). These limitations and uncertainties need to be addressed in order to improve
the reliability of camera-based color indices for monitoring and modeling canopy
phenology and photosynthesis.

Several studies have suggested the use of a gray reference panel placed in the
digital cameras’ FOV to provide a first-order means of assessing the continuity and
stability of GCCem over time and/or standardizing images taken under different
lighting conditions or across sites (Richardson et al. 2009, Migliavacca et al. 2011,
Sonnentag et al. 2012, Richardson et al. 2013). This is particularly important for
multiyear studies as the sensitivity of different camera channels was observed change
over time, and the drift appeared to be camera-specific (Ide and Oguma 2010). This was
not assessed in this study, and future research focused on calibration and standard
development is strongly needed to facilitate multi-site comparisons, and enhance the
value of long-term studies from individual sites (Richardson et al. 2013).

Due to the changes in tower set-up and camera location at the Mayberry site, the
FOV and ROI changed several times throughout the study (Figure 4.2). Despite these
changes in the FOV, GCCem and daily GPP were strongly correlated and high data-
model agreement was observed. However, the relationship between GCCcam and GPP
could have potentially been improved by minimizing changes in the FOV, since for
phenocam data it is recommended to maintain a consistent FOV to ensure long-term
data continuity and facilitate automated processing (Brown et al. 2016). Therefore,
studies should be designed to minimize changes in camera positioning and location to
maintain a continuous image record of a consistent FOV for as long as possible (Brown
et al. 2016).
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Our analysis also revealed a number of other limitations of using GCCeam to
model GPP. Similar to other studies, we observed that GCCeam did not always vary
synchronously with daily GPP (Keenan et al. 2014, Toomey et al. 2015), but rather daily
GPP tended to lag behind increases in canopy greenness in spring and lead decreases in
greenness in fall, particularly at the West Pond wetland. This was reflected in modeled
daily GPP reaching peak values before daily GPP estimated from eddy covariance
measurements. This is likely caused by seasonal variation in foliage pigments, and
accentuated by the viewing angle of the camera (Keenan et al. 2014, Toomey et al. 2015).
Although in this study we did not explicitly consider the spatial heterogeneity at
Mayberry, the greater complexity of this site notably influenced the reliability of using
camera-based indices for the development and parameterization of the LUE model.
This can be explained by the fact that there is a strong nonlinear relationship between
canopy greenness, canopy structure (i.e. seasonality of leaf area index and gap fraction),
and leaf physiology (Keenan et al. 2014). While directly addressing spatial
heterogeneity in LUE models is beyond the scope of this paper, this can potentially be
done by considering vegetation patches and open water separately (rather than treating
the canopy as a single entity as we did in this study, and is typically done by others),
similar to the two-layer LUE model proposed by Huemmrich et al. (2010).

4.5.2. Landsat-derived indices for GPP modeling — strengths and limitations

Although GCCen resulted in better data-model agreement relative to the other
VIs explored in this study, Landsat-derived VIs also resulted in overall good agreement
between predicted and observed GPP at the homogeneous West Pond wetland. We
chose Landsat data over MODIS imagery since despite the lower frequency of data
acquisition, greater spatial resolution is needed when considering wetlands in the
Sacramento-San Joaquin Delta and elsewhere since these ecosystems are often small
and fragmented within the landscape (Byrd et al., 2014). For example, in the Delta the
area of remaining wetlands represents only 3% of its historical extent. As observed in
other studies, EVIL outperformed the other Landsat indices we investigated, since this
index is designed to enhance the vegetation signal with improved sensitivity to high
biomass thus de-coupling canopy background signals and reducing atmospheric
influences (Hilker et al., 2008, Huete et al., 2002). This index is also a good estimate of
the amount of PAR absorbed by photosynthetically active vegetation (Kalfas et al., 2011,
Kang et al., 2014, Xiao et al., 2004), and Rocha et al. (2008) observed that NEE and surface
EVI were tightly correlated at a fresh water marsh in Southern California, with EVI
responding strongly to variations in standing litter that appears to drive GPP in these
systems. Although EVI. typically followed seasonal and interannual dynamics in GPP
at West Pond, EVI. reached peak values in 2015 although GPP was lower relative to
other years. This reflects the influence of a newly restored wetland built in 2013
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surrounding the West Pond wetland. Emergent vegetation at this recently restored site
expanded rapidly at the end of 2014 and during the 2015 growing season and the lack of
litter (Byrd et al., 2014), and the high reflectance of the young canopy (Ustin &
Trabucco, 2000) likely influenced band reflectance values in some of the Landsat pixels
falling within the flux footprint (Figure 4.1), contributing to the decoupling in the
dynamics of Landsat-based VIs and GPP in 2015. Nonetheless, despite the limited
temporal frequency of Landsat data, we show that LUE models using EVIL can
adequately predict daily and annual GPP in small, homogeneous wetland ecosystems,
allowing for regional upscaling of wetland photosynthesis and representing an
improvement over MODIS GPP. However, as with any empirical determination of
absorbed PAR, a direct conversion of satellite spectral reflectance of surface fAPAR over
large areas in difficult, since empirical relationships are site and sensor specific, can
vary in time and space, and may be unsuitable for application to large areas (Hilker et
al., 2008). This empirical approach is even more limited in dynamic, heterogeneous
wetland environments as observed by the poorer agreement between observed and
modeled GPP at Mayberry. Issues of patch size, data saturation and water inundation
need to be considered in these heterogeneous wetland sites (Byrd et al., 2014). In
particular, field spectra of emergent wetland vegetation show significant reduction in
near-infrared reflectance and shift in the red-edge position with progressive water
depth, which can highly influence VI-based estimates of wetland productivity (Byrd et
al., 2014, Kearney et al., 2009). This represents a drawback of estimating GPP using
Landsat data and explains in part why GCCem, which is less influenced by background
effects due to the viewing angle of the camera, is a better predictor of GPP in these
environments.

4.6. Conclusion

In this study, we show that digital repeat photography provides reliable
information on canopy greenness that can be used to model canopy-scale
photosynthesis in wetland ecosystems. By combining camera-derived greenness
indices and meteorological data in a LUE model, we accurately predicted seasonal and
interannual dynamics of C uptake in two restored temperate freshwater marshes. This
suggests that digital cameras provide a low-cost method for monitoring C cycling in
wetland environments. However, further work is needed to develop calibration
protocols and standards to ensure congruency of long-term datasets across sites.
Furthermore, future efforts should focus on explicitly considering spatial heterogeneity
when modeling photosynthesis using LUE models since model performance decreased
with increasing site complexity. Similarly, Landsat data also shows promise for
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modeling GPP in wetland environments, particularly in more homogeneous systems,
suggesting that this approach can be used for regional upscaling of wetland
photosynthesis. However, again Landsat-based model performance was lower at the
more heterogeneous site, reflecting potential limitations of Landsat data.

We conclude that digital repeat photography provides a simple and cost-
effective means of estimating photosynthesis in wetland ecosystems. Wetland gross
primary production can also be estimated in uniform systems using Landsat data,
which is valuable for regional estimates of photosynthesis. The LUE approach
presented in this study provides a valuable tool for C market-funded wetland
conservation and restoration, thereby providing opportunities to counteract the
widespread degradation of wetlands worldwide. Although in this study we focus only
on modeling C uptake, the model we present can be integrated into full biogeochemical
models designed for C market and Cap-and-Trade systems (e.g. Oikawa et al. 2016) to
accurately estimate both CO2 and CH4 exchange, which is critical for evaluating the
greenhouse gas mitigation potential of wetland restoration.
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