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Abstract
Reaction-Diffusion Agent Based Models of Nucleocytoplasmic Transport
by
Mohammad Azimi

Joint Doctor of Philosophy with University of California, San Francisco
in Bioengineering

University of California, Berkeley

Professor Mohammad R. K. Mofrad, Chair

Selective yet efficient transport between the cell nucleus and cytoplasm is critical to
cellular function as the nuclear pore complex is a major point of regulation for gene
expression, signal transduction, immune response, oncogenesis and viral
propagation. The combined physical structure of the pore, biochemical interaction
of transport factors with pore components and the presence of the cellular milieu
create conditions under which selective and efficient nucleocytoplasmic transport
can occur. In this dissertation, [ explore the significance of structure and interaction
on transport of globular proteins and polymeric mRNA cargo through the crowded
pore. In the first part of this work, an agent based modeling software framework is
developed and validated for accurately simulating discrete and stochastic reaction-
diffusion systems. A simulation environment representing the structure of the
nuclear pore complex along with rules for the dynamics of protein movement and
interaction was created using in vivo and in vitro reported parameters. This setup
was then used to perform in silico experiments on the role of pore-cargo affinity in
optimizing transport efficiency. These experiments demonstrate the pore’s
sensitivity to cargo affinity in maintaining efficient transport and suggest that a
higher affinity binding site at the side of the pore where transport is terminated
increases efficiency by reducing futile shuttling of cargo complexes. In the final part
of this dissertation, I extend my agent based modeling framework to look at aspects
of mRNA export that have remained unaddressed in experimental works. Variations
in the number and spacing of transport receptors bound to the mRNA are shown to
play a critical role in transport efficiency. In these experiments, a single transport
receptor at the 5’ end appeared insufficient for facilitating export. Increasing
transport receptor coverage along the length of the mRNA improved the chances of
successful export. Additionally, it was observed that the presence of a transport
receptor near either the 5’ or 3’ terminus is required for successful export as it likely
promotes the emergence of a favorable threading conformation. Finally, it was
observed that the use of a single fluorescent tag to track and report mRNA export
time, as is standard in current experimental work, is likely to underestimate true
transport times. These findings have implications in the design of targeted delivery
and export of polymeric molecules into and out the nucleus.



To my son, Zayn Azimi.
Stay curious and seek knowledge and you’ll never stop growing.
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Section I:

The Nuclear Pore Complex -
Structure and Function



Introduction to the Nuclear Pore Complex

The characteristic feature that sets eukaryotic cells apart from prokaryotic cells is
the compartmentalization of most of the cell’s genetic material in the nucleus -
providing increased genomic stability and more efficient genome regulation [1].
This compartmentalization is achieved via the nuclear envelope (NE), a double lipid
bilayer that derives its shape and mechanical stability from a two-dimensional
meshwork of intermediate filaments termed the nuclear lamina [2]. The lamina is
anchored to the envelope via membrane proteins and the nuclear pore complex
(NPC). As one of the largest protein complex within a cell, the NPC penetrates the
nuclear envelope, establishing a selective yet efficient connection between the cell
cytoplasm and nucleoplasm (see Fig. 1). The structure and function of this pore is
evolutionarily conserved across distantly related eukaryotes [3].
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Figure 1. A schematic representation of the cell nucleus and its components. The
nucleus is composed of a double lipid bilayer termed the nuclear envelope (NE) -
consisting of an outer nuclear membrane (ONM) and inner nuclear membrane
(INM) - which derives its shape and structure from the lamina. The NE isolates the
majority of the cell’s genetic material within the nucleoplasm, while nuclear pore
complexes (NPCs) connect the nucleoplasm to the cytoplasm and regulate selective
transport between compartments.



Nuclear Pore Function

By connecting the cytoplasmic and nucleoplasmic compartments, the NPC links the
two major steps required for gene expression - transcription of DNA, which occurs
within the nucleus, to translation of mRNA in the cytoplasm - leading to the
synthesis of proteins. Sustaining the process of gene expression requires rapid
bidirectional transport of proteins responsible for genomic structure and function
(histones, DNA/RNA polymerases, transcription factors and splicing factors) from
the cytoplasm to the nucleus, the export of RNAs (mRNA, rRNAs and tRNAs) from
the nucleus to the cytoplasm and a continual shuttling back and forth of proteins
that play an integral role in transport between the cytoplasm and nucleus [4].

Molecules residing in the cytoplasm and nucleus can be categorized into one of
three cargo types based on their size and the presence of signaling sequences or
patches that determine their likelihood of transport. The first category of cargo are
comprised of molecules that are less than ~40 kDa (~5-9 nm in diameter), termed
passive cargo [5-7]. These molecules are capable of passive transport across the
NPC, relying solely on diffusive motion to overcome the barrier. Larger molecules
(~40 kDA to ~25 MDa or up to ~40 nm in diameter), fall within two categories
based on the presence or absence of import/export signals. Cargos that possess
either nuclear localization signals (NLS) or nuclear export signals (NES) are capable
of binding nuclear transport receptors (NTRs) and traversing the pore; these cargos
are termed active or facilitated cargo. The third category of cargo is termed inert
cargo as they lack signaling sequences that attract NTRs. As a result of their large
size and lacking affinity for NTRs, inert cargo are excluded from entering the pore
and traversing the nuclear envelope. A more detailed explanation of NLS/NES
interaction with NTRs and subsequent cargo complex formation and transport is
provided later in this chapter.

Transport Kinetics

Although the NPC serves as a barrier to large inert cargo, it is capable of selective yet
rapid transport of active cargo between compartments. In vivo experiments of
transport kinetics using the classical import pathway suggest transport rates of
approximately 1000 molecules per NPC per second, corresponding to a mass of
~100 MDa per NPC per second [8] - approximately the mass of the pore itself. It
may be tempting to extrapolate these transport rates to transport times, ie. 1 ms
transport time per molecule; however, single molecule tracking studies of the same
pathway have shown that transport events last approximately 10 ms, suggesting
that the pore is capable of simultaneous transport of multiple cargos in parallel
through a single pore [5]. It should be noted that these transport times vary by
cargo size [5,8-12] and reach values of ~100 ms for typical mRNA export and on the
order of ~1000 ms for very large mRNA molecules [13-15].



Permeabilities for passive cargos have been quantified and observed to decrease
logarithmically as a function of the cargo’s Stokes radius, ranging from an influx rate
of ~1 s'1 for small cargos (< 1nm Stokes radius) to ~10-# s-1 for larger passive cargos
(~2.5 nm Stokes radius) [6]. The permeability of cargos much larger than these in
size lacking affinity for transport receptors is negligible (inert cargo), while the
permeability of cargos with the capacity to recruit transport receptors or transport
receptors themselves are much higher than the permeability of similarly sized inert
cargos. Two examples are the transport receptors NTF2 (~30 kDa) and Importin-3
(~100 kDa) which have permeabilities of ~1 s and 0.4 s'! respectively [16,17].

Figure 2. Scanning electron micrographs of Xenopus oocytes as seen from outside
the nucleus (left) and the nuclear interior (right). Figure adopted from [18].

Finally, the overall kinetics of transport into and out of the nucleus are not only
governed by the rate of transport and permeability through each individual pore,
but are also a result of the total number of pores present on the surface of a nucleus.
The number of NPC per nucleus varies greatly between species and cell cycle and is
not simply a function of nucleus size. Across species, S. cerevisiae have been
observed to have on the order of ~100 pores per nucleus [19], while human nuclei
have several thousand pores per nucleus [8,20,21] and an astonishing ~5 x 107
pores per nucleus have been reported in a mature Xenopus oocyte [22]. Even within
species, the number of pores fluctuates over the life of the cell. For example, in S.
Cerevisiae, it was observed that nucleus contains the greatest number of pores, an
average of 142 pores per nucleus, during early mitosis when the nucleus’ volume is
at its peak (as opposed to 86 pores per nucleus during G1). However, the pore
density appeared to peak during S-phase and reached a minimum during late



anaphase, suggesting that the nucleus does not have a fixed pore density and
nucleus size does not regulate the number of pores that are present [19]. Scanning
electron micrographs of the nuclear envelope from the cytoplasmic and
nucleoplasmic sides are shown in Fig. 2 to illustrate the distribution and coarse
structure of the pores.

Links to Human Health and Disease

Serving as the physical link between the locations of transcription and translation
within the cell, the NPC serves as a major point of regulation for gene expression,
signal transduction, immune response, oncogenesis and viral propagation.
Subsequently, nucleocytoplasmic transport has been identified as a key player in
regulating human health and disease and is an emerging target for new therapies.
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Figure 3. The nuclear pore complex demonstrates a regulatory role that extends
beyond import and export of cargo to and from the nucleus (1). Genes localized to
the nuclear lamina are typically silenced (2), while genes bound to structural (3) or
mobile components (4) of the NPC are actively transcribed. Tethering of gene loops
to the nuclear basket has been shown to facilitate ‘transcriptional memory’ (5).
Figure adapted from [23].

Spatial localization and proximity of genes to nuclear pores has been shown to affect
gene expression [23,24]. Studies in yeast and higher eukaryotes have shown that
heterochromatin - highly condensed, gene-poor and transcriptionally silent regions
of chromosomes - preferentially associate with the nuclear periphery and that the
binding of genes to the nuclear lamin generally promotes transcriptional silencing
whereas localization to the nuclear interior allows for transcription [25-28].
Similarly, the gene-gating hypothesis proposed by Giinter Blobel suggested that



NPCs serve as gene-gating organelles that associate preferentially with actively
transcribed genes [29]. Recent findings have confirmed that components of the NPC
associate preferentially with promoters of active genes both near the pore and
within the nucleoplasm [23,30]. Additionally, tethering of genes to NPCs has been
reported to facilitate ‘transcriptional memory’ which results in efficient and
repeated transcription of genes within a gene loop [23,31]. This interplay between
NPC components and the genome (illustrated in Fig. 3) demonstrates the regulatory
role of the pore in gene expression that extends beyond simple import and export
events.

1
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Figure 4. Most viruses infect the cell during the quiescent state and subsequently
rely on the NPC for the transfer of viral genetic material to the nucleus. The
mechanism of transport varies by virus type, presence of a capsid and size of capsid
as shown here. Figure adopted from [32].

While the healthy function of cells requires ongoing signal transduction across the
nuclear envelope [33] and interactions between nuclear pores and the genome that
aid in gene expression, it has been shown that abnormalities in the composition of
the NPC and its components lead to a multitude of human diseases including heart
disease [34], reduced immune response [35] and neurodegenerative disorders [36-
38]. Additionally, mRNA export dysregulation and aberrant expression of export
factors have been linked to breast, lung, ovarian, prostate, cervical, pancreatic,
colon, lymphatic and brain cancers [39,40]. Finally, most DNA viruses and some
RNA viruses leverage the cell nucleus’ DNA replication, transcription and RNA
processing machinery for viral replication. Although most retroviruses wait for
nuclear envelope disassembly during mitosis to gain access to this nuclear
machinery, most other viruses gain access via transport through the nuclear pore



complex. Transport through the nuclear pore complex is associated with various
levels of viral capsid disassembly as illustrated in Fig. 4. While some viruses enter
the NPC without a capsid by leveraging transport receptors (RNA, DNA, ssRNA(RT)
viruses), others traverse the pore with intact capsids (ssDNA) and others bind their
capsid to the NPC and release their genetic material into the nucleus (dsDNA).
Similarly, export of viral material from the nucleus takes on different forms (ssRNA,
RNA, ssDNA and dsDNA) and may involve a capsid or be capsid-free. [32,41] As a
result, the NPC presents itself as a point of regulation for import and export of viral
material that may be a potential target of therapeutic interventions.

Nuclear Pore Structure

The NPC is a ~100 MDa macromolecular assembly of approximately 30 different
proteins termed nucleoporins (Nups). The dimensions of the pore have been
determined via cryo-electron tomography to be ~125 nm in diameter near the
peripheries and ~55 nm in diameter at the center, with an overall height of ~95 nm
[42]. The ~30 proteins that compose the NPC exist in several copies, each in
multiples of eight as a result of the pore’s eight-fold rotational symmetry. The
constitutive Nups compose five distinct regions of the NPC. The first two regions
consist of the membrane layer composed of coat nucleoporins and integral
membrane proteins of the pore membrane domain (POMs) that anchor the NPC to
the nuclear envelope and the scaffold layer composed of adapter nucleoporins that
connect the membrane layer to the channel layer and give the pore its structure. The
third region is the FG-Nups layer consisting of channel nucleoporins. While the
membrane and scaffold layers consist of highly structured proteins, mostly
composed of oa-helices and [B-propellers, the channel layer is composed of
nucleoporins containing regions rich in phenylalanine-glycine residues (FG-repeats)
that are natively unfolded and are thought to play a central role in the pore’s
selectivity mechanism. These three regions together comprise the symmetric core of
the NPC while the two remaining regions are distinct to the nuclear and cytoplasmic
sides of the pore and consist of the cytoplasmic filament and nuclear basket
nucleoporins. [3] Several cytoplasmic filament and nuclear basket Nups are FG-
repeat containing Nups and interact with cargo in transit. Additionally, some of
these Nups serve as catalysts in common import and export pathways and aid in the
emergence of transport directionality as discussed later in this chapter.

FG Nucleoporins

As mentioned above, 13 of the Nups that comprise the cytoplasmic, central channel
and nuclear basket regions contain natively unfolded regions, rich in phenylalanine
and glycine residues (FG-repeats). The regions containing FG-repeats provide
hydrophobic affinity for active cargo complexes while forming a barrier to inert



cargos. Analysis of amino acid composition of FG-Nups has revealed that these
proteins are significantly more enriched in charged and polar residues that
contribute disorder to protein structure [43].
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Figure 5. The structure of the nuclear pore complex consists of a symmetric NPC
core and asymmetric cytoplasmic filaments and nuclear basket (left). Each region of
the NPC is composed of multiple constitutive nucleoporins - Yeast and Human
homologs shown (right). Figure adapted from [44] and [3].
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Common motifs found within FG nucleoporins include FxFG and GLFG (where x
denotes any residue). Interestingly, most Nups are predominantly composed of
either one or the other motif. Similar motifs tend to reside near each other when
both FxFG and GLFG appear in the same Nup. In the case of Nsp1, a ~190 amino acid
GLFG-like region is followed by a ~430 amino acid FxFG-like region. Nups
containing predominantly FxFG motifs or stretches composed of FxFG contain
charged amino acids in spacers between motifs that result in dynamic, extended
coiled-coil conformations. Conversely, Nups or segments of Nups predominantly
composed of GLFG motifs contain relatively uncharged spacers and take on more
globular, collapsed coil conformations [45].

These properties of FG-Nups give them the ability to transport cargo complexes by
enabling simultaneous interaction with multiple binding partners. Additionally, the
unstructured nature of their binding sites allows them to conform to a range of
import and export receptors and the hydrophobic patches provide molecular
binding and unbinding rates with cargo that are conducive to efficient import and
export [43].



Models of Nucleocytoplasmic Transport and
Directionality

There is general consensus that the permeability barrier is formed by unstructured
and FG-rich regions of nucleoporins that occlude the pore and are responsible for
facilitating selectivity and transport. The physical behavior of these nucleoporins
remains the topic of much debate and has led to the proposal of multiple contrasting
models that attempt to explain the physical behavior responsible for experimentally
observed characteristics of Nups and selective transport. Some popular models of
transport include (i) selective phase, (ii) virtual gating, (iii) polymer brush, (iv)
forest and (v) reduction of dimensionality, which are illustrated in Fig 6.

The selective phase model (Fig. 6a), which was first proposed by the Gorlich group,
suggests that FG-repeats of unstructured domains of FG-Nups exhibit interrepeat
cohesion that results in the formation of a hydrogel barrier [46]. The hydrophobic
affinity between phenylalinines is believed to be crucial for the formation of this gel
[47]. The porosity in this meshwork is fine enough to inhibit the transport of inert
cargos while being coarse enough to allow entry of passive cargos. Active cargos
that bind to transport receptors possess hydrophobic affinity for FG-domains of the
Nups and locally “melt” the mesh in order to translocate. The mesh is thought to be
self-healing and reseals immediately after a cargo passes [48]. The sieve-like
properties of the NPC have been recapitulated in in vitro-formed hydrogels of
several nucleoporins that were determined to possess either $-amyloid or random
coil structures [49-51].

The virtual gating or entropic barrier model (Fig. 6b), which was first proposed by
the Rout group, suggests that any pore presents a barrier to transport and that the
entropic cost of diffusion across and subsequently the likelihood of transport are
dependent on cargo size. To overcome this entropic barrier, active cargo binds FG-
Nups. It's suggested that FG-Nups possess an ideal binding energy for transport
receptor-bound cargo such that the sum of the entropies of binding and diffusion
(~kT) can be cancelled out by the binding energy (AH), flattening the energy
landscape (AG) [52,53]. Similarly, the polymer brush, entropic brush or reversible
collapse model, which was first proposed by the Aebi group, suggests that the pore
and the FG-Nups that take on a brush-like configuration within the channel present
an entropic barrier to transport. The polymer brush model goes one step further
and suggests that transport receptors bind and collapse the unstructured regions of
FG-Nups that extend into the channel and that this collapse is reversed by the
addition of Ran guanosine triphosphate (RanGTP), a critical factor in transport
directionality [54,55].

The forest model, which was first proposed by the Rexach group, suggests that two
different gating mechanisms operate at the NPC in distinct locations, which they
refer to as Zone 1 and Zone 2. The region in the inner diameter of the pore (Zone 1)
is said to take on a hydrogel conformation while the peripheral region (Zone 2) is



said to take on an entropic brush conformation (see Fig. 6¢c) [56,57]. Through the
analysis of 20 different intrinsically disordered protein domains, Yamada et al.
observed that the domains could be clustered into two categories, one that had low
content of charged residues (2-4%) that took on globular configurations and a
second category of domains that contain higher content of charged residues (18-
35%) that took on relaxed or extended coil configurations. The distribution of
domain configurations was then used to classify FG-Nups into two distinct
categories - Nups which mostly contain globular configurations and therefore form
“shrubs” near the periphery, and Nups which contain domains that take on globular
configurations but are linked to the periphery via extended coil domains,
resembling “trees”. This bimodal distribution of structure of “shrubs” and “trees”
forms a “forest” landscape that leads to the emergence of bimodal function in which
very large active cargo are transported via Zone 1, smaller active cargo are
transported via Zone 2 and passive cargo can diffuse through either zone, depending
on cargo size and channel porosity which may depend on the degree of transport
receptor saturation. Interestingly, the Yang group recently demonstrated the
presence of a size-dependent radial distribution of cargo transport [11].

The reduction of dimensionality model, which was first proposed by Peters,
suggests that cargo efficiently translocate through the NPC via a two-dimensional
walk on the pore periphery, which is lined with FG motifs, that are saturated with
transport receptors and permanently collapsed - presenting a hydrophobic affinity
for cargo complexes (see Fig. 6d) [58,59]. In this model, selectivity is provided by
the central channel region, which contains Nups with unstructured, extended and
hydrophilic domains that repel inert cargo from entering the channel. Inert
molecules are then free to pass through a narrow cylindrical opening in the center
of the channel. This model builds on the virtual gating and polymer brush models by
suggesting that the saturation of FG-Nups by transport receptors leads to the
emergence of a two-dimensional surface rather than a volume occupied by FG-Nups.

(b)

(d)

Reduction of dimensionality model

Forest model
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Figure 6. Illustration of several competing models that attempt to explain the
mechanism of transport through the nuclear pore complex. These models attempt to
resolve the physical behavior of FG-Nups that occlude the pore and facilitate
selective transport. The models illustrated represent (a) the selective phase model
in which FG-Nups form a cohesive hydrogel that is locally disrupted by transport
receptors, (b) the virtual gate or polymer brush model in which the FG-Nups form
an entropic barrier to cargo that lack affinity for the Nups, (c) the forest model in
which the pore is composed of both hydrogel and entropic brush regions, and (d)
the reduction of dimensionality model in which collapsed Nups provide a two-
dimensional surface on which cargo can bind to and diffuse along. Adapted from
[60].

Although the mechanism governing selective transport is believed to be a result of
the physical behavior of nucleoporins, the directionality of transport is primarily
governed by the asymmetric distribution of key biochemical transport factors. This
was established when the Weis group demonstrated that direction of transport
through the pore can be inverted when the gradient of RanGTP is reversed across
the nuclear envelope (typically in high concentration in the nucleoplasm and in low
concentration in the cytoplasm - discussed in detail below) [61]. The affinity
gradient model emerged early on as a possible model for transport [62,63] but was
abandoned when it was shown that deletion of asymmetrical Nups (cytoplasmic or
nucleoplasmic) did not eliminate cell viability or NPC permeability [64,65].
Nevertheless, recent in vitro experiments by the Gorlich group show the presence of
similar high affinity binding sites for export cargo at the cytoplasmic face that may
assist in efficient cargo export by stalling cargo and preventing backflow [50,66].
Our recent computational models of nucleocytoplasmic transport (Section V)
confirm that the presence of a high-affinity binding site at the transport periphery
increases transport efficiency and that the affinity gradient model may be a valid
model that contributes to transport directionality.

11



Nucleocytoplasmic Transport Biochemistry

While the mechanism by which FG-Nups form a selective permeability barrier
remains elusive, the biochemical factors involved in facilitating transport are much
better understood, resulting in the availability of atomic structures, detailed
interaction pathways, steady-state concentrations and kinetic parameters.

Cargo Complex Formation

Large proteins destined for the nucleus (active cargo) typically possess a nuclear
localization signal (NLS) - a specific stretch of amino acids that contain basic
charged residues, typically a short lysine-rich sequence that occurs in either
monopartite or bipartite motifs (classical NLS), or longer arginine-rich sequences
(non-classical NLS) [67,68]. Similarly, export cargo contain a nuclear export signal
(NES) which typically consists of a leucine-rich or hydrophobic sequence of amino
acids [44]. The presence of an NLS/NES gives proteins the ability to recruit and bind
karyopherins (Kaps) or nuclear transport receptors (NTRs) that are categorized as
either importins or exportins depending on the direction in which they carry
NLS/NES containing cargo and may be collectively referred to as transportins (note:
although karyopherins may broadly be referred to as transportins, the name
transportin itself is used to refer to a specific class of karyopherin as well). While
some large proteins are capable of spontaneously transporting across the NPC in a
karyopherin-independent manner as a result of their surface hydrophobicity [69],
the vast majority of proteins are transported in a karyopherin-dependent manner.
The most well studied class of karyopherins belong to the Importin-f (Imp-f)
superfamily that are ~100-125 kDa in size that share ~20% sequence homology
and a structure composed of ~20 HEAT repeats, with structure and function
conserved across species [45]. The binding of NLS/NES-cargo to karyopherins
constitutes the formation of a “cargo complex”. The process by which cargo
complexes are formed in the cell’s crowded environment has been determined to be
the rate-limiting step in cargo transport rather than the physical translocation
between compartments [45].

One of the most well-studied nucleocytoplasmic transport pathways is the classical
import pathway in which cargo possessing a classical NLS requires the presence of
an adaptor protein Importin-a in order to bind the transport receptor Importin-f3
and form a cargo complex. It should be noted, however, that proteins can also bind
Importin-B directly without the aid of an adaptor protein (see Fig. 7). Interestingly,
some viruses have evolved NLS sequences capable of using both classical and
multiple non-classical modes of import, giving the virus flexibility over the rate-
limiting step in the import pathway and reducing import latency during infection
[67].

12



The formation of a cargo complex provides cargo with hydrophobic affinity for the
FG-motifs that occupy the pore channel - a feature that all models of NCT agree
upon and require. It has been demonstrated that karyopherins possess multiple FG
binding sites on their surfaces [70]. For example, experimental evidence confirms
that Imp-f contains two FG binding sites near the N terminus (between HEAT
repeats 5 and 6, another between HEAT repeats 6 and 7) as well as two FG binding
sites near the C terminus (between HEAT repeats 14 and 15, another between HEAT
repeats 15 and 16) [71-73]. Interestingly, computational methods have also been
used to confirm and identify FG binding sites - with up to six additional FG binding
sites having been identified on Imp-f3 using molecular dynamics simulations [74].

%l Nup2p(50)
/¢——@ RanGTP

H2A/H2B

Figure 7. An illustration of the transport pathway for import cargo with cargo
complex formation in the cytoplasm (classical and non-classical pathway), transport
through the channel, cargo-complex disassembly at the basket, transport receptor
recycling from nucleus to cytoplasm along with maintenance of the RanGTP
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concentration gradient across the pore via both cytoplasmic (RanGAP/RanBP2) and
nucleoplasmic (RanGEF) factors. Adapted from [44].

Transport Directionality and Cargo Complex Disassembly

As mentioned above, the primary determinant of transport directionality is the
asymmetric distribution of biochemical factors involved in facilitating transport.
Although transport through the pore itself does not require energy input,
maintaining efficient transport directionality requires energy via the Ras related
GTPase, Ran, which acts as a switch to terminate transport and prevent futile
shuttling of cargo between cytoplasm and nucleus. Ran is a ~25 kDa protein that
exists in two forms, GDP-bound (guanosine-5’-diphosphate) or GTP-bound
(guanosine-5’-triphosphate). The GDP-bound state is predominant in the cytoplasm
while the GTP-bound state is predominant in the nucleus. The high concentration of
RanGTP (and subsequently low concentration of RanGDP) in the nucleus is
maintained by the localization of Ran Guanine Nucleotide Exchange Factor
(RanGEF) RCC1 to the nucleus, which is responsible for stimulating the release of
GDP from Ran, allowing Ran to bind GTP. Conversely, the low concentration of
RanGTP (and subsequently high concentration of RanGDP) in the cytoplasm is
maintained by the localization of GTPase Activating Protein (RanGAP) and RanBP2,
which are involved in the hydrolysis of RanGTP to RanGDP. Finally, Nuclear
Transport Factor 2 (NTF2) is responsible for binding RanGDP in the cytoplasm and
recycling it to the nucleoplasm. Maintaining the Ran gradient is essential for
transport directionality [61] as well as other cellular functions such as spindle and
nuclear envelope assembly [75,76]. The pathway responsible for maintaining the
Ran gradient is illustrated in Fig. 7 alongside the nuclear import and transport
protein shuttling pathways.

Upon encountering and binding RanGTP, Importin-f releases bound cargo,
disassembling the cargo complex. The disassembly of import cargo complexes
occurs primarily in the nucleoplasm as a result of the high RanGTP concentration,
while the mechanism for RanGTP hydrolysis via RanGAP/RanBP2 in the cytoplasm
ensures that RanGTP is not readily available in the cytoplasm to prematurely
disassemble import cargo complexes and disrupt transport efficiency. RanGTP
mediated cargo complex disassembly is believed to be the result of two factors, (i)
overlap between cargo binding sites and RanGTP binding sites on Importin-f (N-
terminal binding site and the acidic loop within HEAT repeat 8), resulting in steric
interference between RanGTP and the cargo, and (ii) a conformational change in the
structure of Importin-B in which its helical pitch increases after binding RanGTP,
resulting in an open conformation that no longer “grips” the cargo tightly [77,78].
The binding of RanGTP to Importin- and subsequent disassembly of the cargo
complex not only contributes to transport directionality but also ensures efficiency
by preventing futile cycling of cargo complexes between nucleoplasmic and
cytoplasmic compartments. This phenomenon was observed in our computational
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model when RanGTP concentrations were decreased and a subsequent decrease in
transport was observed (Section V). In addition to the RanGTP mediated cargo
disassembly, Nup50 (NupZ2p) coordinates import cargo complex disassembly for the
classical import pathway at the nuclear basket. Nup50 accomplishes this by
interfering with the binding between NLS-cargo and Importin-a, further
accelerating import cargo complex disassembly [79,80].

Transport Receptor Recycling

Following cargo complex disassembly, transport receptors must be recycled to their
respective compartment of origin in order to form new cargo complexes and
maintain cargo transport. Karyopherins of the Importin-f superfamily maintain
their affinity for FG-Nups even after they bind RanGTP and dislodge their cargo. This
allows the karyopherins to readily shuttle back to the cytoplasm where RanGTP
undergoes hydrolysis and detaches from the karyopherin, allowing it bind new
cargos. Importin-a, on the other hand, requires the aid of an exportin termed
Cellular Apoptosis Susceptibility protein (CAS) in conjunction with RanGTP to
translocate back to the cytoplasm. Nup50 (Nup2p), which was mentioned
previously as having a role in cargo complex disassembly, also aids in the assembly
of the Importin-a/CAS/RanGTP complex that is necessary for Importin-a recycling
to the cytoplasm [79-81]. Similar to the Importin-f/RanGTP complex that is
recycled to the cytoplasm, the Importin-oa/CAS/RanGTP complex relies on
RanGAP/RanBP2 mediated RanGTP hydrolysis to terminate export of the
karyopherin and to detach it from the export complex, making it available for
another round of cargo import. The transport receptor recycling pathway for
Importin-a and Importin-f3 is demonstrated in Fig. 7 (right side).

RNA Export Pathways and Kinetics

Aside from transport receptors that are recycled to the cytoplasm, much of what is
exported from the nucleus consists of ribonucleic acids (RNA) in the form of transfer
RNA (tRNA), microRNA (miRNA), small nuclear RNA (snRNA), ribosomal RNA
(rRNA) and messenger RNA (mRNA). Many of these molecules (tRNAs, miRNAs,
snRNAs, rRNAs and some mRNAs) follow a karyopherin mediated export pathway
that is similar to that of nucleocytoplasmic import and rely on the Ran cycle for
directionality. More specifically, tRNAs recruit Exportin-t (Los1) of the karyopherin
superfamily in complex with RanGTP to facilitate export, while miRNAs recruit
Exportin-5 (Msn5) in complex with RanGTP. The remaining RNAs (snRNAs, rRNAs
and some mRNAs) as well as many viral RNAs such as HIV-1 make use of Exportin-1
(Xpo1l, a.k.a. CRM1) in complex with RanGTP to achieve nucleocytoplasmic export
[82,83]. These exportins rely on the RanGAP/RanBP2-mediated hydrolysis of
RanGTP to provide RNAs with export directionality (similar to RanGTP, which acts
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as a molecular ratchet for protein import). Conversely, the bulk of mRNA is exported
from the nucleus via the NXF1/NXT1-mediated pathway. The dominant transport
pathway for each type of RNA is illustrated in Fig. 8.
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Figure 8. Major RNA export pathways shown for tRNA, miRNA, snRNA, mRNA and
rRNA. The bulk of mRNA are exported via an NXF1/NXT1-mediated pathway, while
other RNA are exported via transport receptors that belong to the karyopherin
superfamily in complex with RanGTP. Figure adopted from [82].

Following transcription, mRNA carry genetic information from the cell’s DNA to the
ribosomes that translate this message to functioning proteins, primarily via the
nuclear pore complex (NPC) and the NXF1/NXT1 pathway. A nascent pre-mRNA
must undergo multiple steps before it can be successfully recruited to the NPC and
exported from the nucleus. A newly transcribed pre-mRNA undergoes four
processing steps prior to being considered a mature mRNA: 1) capping of the 5’-
terminal end with 7-methylguanylate, 2) splicing to remove non-coding intron
regions, 3) 3’-terminal end cleavage and 4) polyadenylation [84]. During
transcription and prior to transport, a maturing mRNA must undergo mRNP
assembly in which a series of proteins bind it. Recruitment of proteins to the mRNA
is dynamic, with multiple proteins binding, recruiting other proteins, and
subsequently unbinding in an effort to produce an export-competent mRNP. The
transcription elongation-mRNA export (TREX) complex is a critical factor in
producing export-competent mRNA, as it recruits the export factor NXF1/NXT1
(Mex67/Mtr2) heterodimer via a set of core proteins termed the transcription
elongation (THO) complex and the associated protein Aly/REF (Yral). These are
subsequently removed from the mRNP prior to export, once NXF1/NXT1 are
successfully bound [85]. Once the mRNA is processed and export receptors are
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recruited, the mRNP is considered export-competent and is recruited to the NPC,
where it translocates to the cytoplasm via a series of binding and unbinding events
with phenylalanine-glycine (FG) Nups.

Unlike mRNA export pathways in which exportins of the karyopherin superfamily
are recruited, bulk mRNA export via the NXF1/NXT1-mediated pathway relies on a
different set of export factors to regulate transport directionality. Specifically, the
superfamily 2 DEAD-box ATPase DDX19 (Dbp5) is responsible for remodeling
mRNPs as they translocate through the NPC and reach the cytoplasmic filaments.
DDX19 is localized to the cytoplasmic Nup124 (Nup159) and is activated by the
export factor Glel and its cofactor inositol hexakisphosphate (IP6), which remodel
the mRNP, free transport receptors to return to the nucleus for a successive round
of transport, and prevent the return of the mRNP into the nucleus [86].

As was seen with the model of import directionality, in which a RanGTP
concentration gradient mediates directional transport, the presence of DDX19 at the
cytoplasmic side mediates directional transport of mRNAs. However, the size of a
typical mRNA (~2.2 kb) is larger than that of a typical protein that undergoes
nucleocytoplasmic import, and much larger mRNAs such as the Balbiani ring mRNA
(~37 kb) are known to translocate across the NPC. Subsequently, a model for
NXF1/NXT1-mediated nucleocytoplasmic export of mRNA was proposed in which
transport receptors are believed to bind multiple sites along the length of an mRNP.
The mRNP is exported and transport receptors are sequentially exposed to DDX19,
Glel and IP6 in the cytoplasm, resulting in local remodeling at each site, preventing
the mRNP from locally diffusing back into the NPC, as sites with detached transport
receptors will lack affinity for FG-Nups - creating a virtual “Brownian ratchet” in
which mRNPs are “ratcheted” through the NPC [87].

Although the mRNA ratcheting model appears feasible, to date, the number and
distribution of transport receptors that are required to bind an mRNP for efficient
transport remains unknown. Binding of the TREX complex, a factor involved in
transport receptor recruitment, has been observed at the 5’-terminal end of mRNA
[88]. Coincidentally, it has been reported that transport of very large Balbiani ring
mRNA occurs with the 5’-terminal end leading through the pore as seen in electron
microscopy (EM) experiments [89-91]. mRNA export orientation could be the result
of transport receptors bound at the 5’ end and a lack of receptors elsewhere.
However, other groups have observed the binding of transport receptor recruiting
factors such as REF along the length of the mRNA at the site of exon junction
complexes (EJCs) [92-94], suggesting that transport receptors are distributed at
multiple sites along an mRNA and lending support to the mRNA ratcheting model.
Nevertheless, this leaves unanswered questions as to why there exists a preference
for the 5’ end leading orientation of export if multiple other transport receptors are
present. One could speculate that reasons for this may be due to DNA being read
from 3’ to 5’ end during transcription and complementary mRNA being produced in
5’ to 3’ end. It is possible that the 5’ end simply recruits transport receptors before
other sites have a chance to. Another possibility is that the lack of an EJC near the 3’
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and the presence of a poly-A tail leaves a segment of the mRNA lacking affinity for
the pore. Although it would still be possible for the mRNA to initiate binding to the
pore via a transport receptor located somewhere along the length of the mRNA, this
would likely be a less favorable orientation for transport than threading through the
pore via a leading 5’ end orientation. Although the idea that transport receptors
bind EJCs seems promising, one must consider that many lower eukaryotes lack the
density of introns and subsequently EJCs as seen in higher eukaryotes (Fig. 9) [95].
This could suggest that even though the NXF1/NXT1-mediated export pathway is
present in yeast via the homologs Mex67/Mtr2, the mechanism by which mRNPs
mature and become export-competent may be slightly different. These questions
remain to be answered and an understanding of the number and distribution of
transport receptors that bind an export competent mRNP will provide significant
insight into mRNA export dynamics with potentially far-reaching impacts in
understanding human health and developing successful interventions for human
disease.
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Figure 9. Average number of introns per gene across eukaryotic species. Figure
adopted from [95].

In recent years, new molecular techniques have been developed for single molecule
tracking of mRNA export, which provide further insight into export kinetics. In
2010, Grinwald and colleagues used the MS2-GFP system [96] to track the
movement of 3-actin mRNA (~3.3 kb) through the NPC, with temporal resolution of
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20 milliseconds and spatial precision of 26 nm. They observed that, rather than
transport through the central pore (5-20 ms in duration), docking to and release
from the NPC are the rate limiting steps (each ~80 ms in duration) [14]. In 2012, the
Kubitscheck group used light sheet fluorescence microscopy to track single export
events of native mRNPs with hrp36 fluorescent tags with 20 millisecond temporal
resolution and 10 nm spatial resolution [13]. In these experiments, an average
transport time of 65 ms was observed for mRNA of all lengths that may be present
within the nucleus. In this work, a fluorescent hrp36 protein that natively binds
mRNA prior to export was introduced to the system. Since the protein binds mRNA
at multiple sites, fluorescent hrp36 was added at sufficiently low concentration to
ensure that each mRNA was tagged only once and to avoid tagging multiple proteins
within the imaging plane. Subsequently, the group reports an average transport
time of 65ms for the majority of mRNA, with transport times of up to several
seconds for what are likely very large mRNAs. They further observe mRNA arrest
strictly at the nuclear face of the pore that typically lasts ~50 ms.

The discrepancy between the transport times of these two methods (180 ms
compared to 65 ms) could be due to the fact that in the MS2-GFP system, a specific
mRNA of known length was tracked (B-actin mRNA, ~3.3 kb) whereas the hrp36
protein can bind mRNA of any length (average length of mRNA reported as ~2.2 kb).
To further complicate matters, longer mRNA have a greater number of hrp36
binding sites, suggesting that larger mRNAs are more likely to be tagged. However,
the typical length mRNAs tracked in the fluorescent hrp36 system also depends on
the expression levels for each mRNA. Taken together, this suggests a level of
uncertainty in the actual length of mRNAs tracked. Nevertheless, the fluorescent
hrp36 system allows for tracking of native mRNA without introduction of multimers
of RNA stem loops that bind MS2 coat proteins, which likely alter the size and
dynamics of the mRNA molecule [96]. It is likely that the addition of stem loops and
the coat protein is a significant source of discrepancy between the observed kinetics
of the two experiments, and likely explain why mRNA export was delayed at the
cytoplasmic surface in the MS2-GFP system and not the fluorescent hrp36 system
[15]. Interestingly, despite the discrepancy in transport kinetics between these
works, both single molecule tracking studies as well as the previous EM studies
report the observation of a rate-limiting step at the nuclear basket during transport.
In the case of the EM experiments, this was thought to be a result of the 5’-end
leading orientation of export and the time required for such a large polymer to be
oriented to satisfy this condition. It’s not clear whether the observance of this rate-
limiting step for smaller mRNAs is the result of the polymer searching for a
favorable export orientation or whether there is a quality control mechanism or
some unidentified processing step present at the nuclear basket that results in
delayed entry and transport. Answering this question requires significant
improvements in microscopy techniques. Alternatively, the effective computational
modeling of the system can provide further insight.

Finally, it should be noted that the above discussion only addresses nuclear export
of mRNA via CRM1 and NXF1/NXT1-mediated pathways via the NPC. In 2012,

19



Speese and colleagues identified an alternate pathway for nuclear export of DFz2C
mRNPs via budding of the nuclear envelope analogous to export pathways used by
viruses such as herpes [97,98]. There remain many questions as to why these
molecules are exported via nuclear budding as opposed to via the NPC (the authors
don’t exclude the possibility that some DFz2C mRNP could be exported via NPCs).
Possible explanations for an alternative transport pathway such as size limits, co-
export of multiple mRNPs, preserving mRNP structure for transcriptional
repression during export and pathways presenting alternate regulation have been
suggested [99]. This alternate pathway remains a topic of interest as more details
become available.
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Computational Models of Nucleocytoplasmic
Transport

Much has been learned about the nuclear pore complex structure and function as a
result of novel experiments over the past few decades. Improvements and
innovations in imaging will surely allow researchers to overcome limitations in
spatiotemporal resolution and resolve many of the questions that remain
unanswered. Additionally, over the past decade we have seen many applications of
computational modeling, simulation and visualization that aid in the understanding
of the structure, function, kinetics and mechanisms of the nuclear pore complex and
transport pathways. While many early applications related to systems biology and
modeling NCT pathways and coarse-grained models of structure, recent years have
seen the application of computation to biophysical modeling of all atomic
representations of entire nucleoporin structures and their dynamics. The
continuation of Moore’s Law combined with advances in parallel computing and
graphics processing unit (GPU) computing have enabled these discoveries and will
allow us to explore larger and more complex systems in the future [100,101].
Advances in spatiotemporal resolution on the experimental side coupled with
increasing system size and complexity on the computational side will continue to
bridge the gap between experiment and simulation. Here we review some
computational models of the NPC and NCT from recent years that span a wide range
of spatial and temporal scales.

Computational Models of Nucleoporin Structure and Interactions

There have been significant efforts by the Sali and Schulten labs over recent years to
leverage computational methods for determining nucleoporin structure and
interactions. In 2004, Devos and colleagues used multiple computational techniques
to predict a structure for Nup84, a core building block of the NPC that is comprised
of a complex of seven proteins. In order to do this, they used protein threading
software to assign structure folds based on similarity to already resolved protein
structures. Although this method did not provide the exact structure of the proteins
that make up Nup84, it helped determine regions of the Nups comprised of o-
solenoid and [-propeller domains, resulting in a coarse-grained view of the
structure. The same group recently demonstrated that these methods for protein
structure prediction produce reliable representations of structure by comparing
their computationally predicted structures to recently resolved crystal structures
that became available after their initial publication (shown in Fig. 10) [102]. This
approach was later extended beyond the Nup84 complex to assign folds to ~95% of
residues that compose the nuclear pore complex [103].

As an increasing number of crystal structures for proteins relating to
nucleocytoplasmic transport became available, the application of molecular
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dynamics (MD) simulations to studying protein-protein interactions involved in
transport became more feasible. In these MD simulations, proteins can be
represented by their constitutive atoms (all-atom simulations) or by beads
representing a grouping of atoms (coarse-grained simulations). The trajectory of the
protein and its interactions over time are determined by solving Newton’s equations
of motion for each particle, taking into account the forces between a particle and all
other particles in the system, including solvent. The computational cost associated
with performing all-atom simulations typically results in limitations to system size
(size and number of proteins/atoms considered) as well as limitations in simulation
temporal length. Coarse-graining methods as well as implicit solvation methods in
which the solvent is treated as a continuous medium rather than explicitly modeling
all water molecules have been developed to allow modeling of larger systems for
longer time scales. Isgro and Schulten used this modeling framework to identify
several FG-Nup binding sites on the surface of the transport receptors Importin-f3,
NTF2 and CAS and were able to confirm experimentally determined FG-Nup binding
sites and further identified several additional binding sites that were previously
undetected [74,104,105]. In these all-atomic simulations, the authors modeled short
peptides of the FG-Nup sequence and ran simulations for durations of ~250
nanoseconds as a result of the computational cost associated with modeling such
large systems. They further incorporated computational techniques to assess the
significance of novel binding sites by performing sequence alignment from
transport receptors of several distant species and assessing evolutionary
conservation of potential binding sites.

v
Nup145¢c « P

\ ) a 3iko

Nup84 ) . o
Y

Nup85

o
Seh1 Jewe

Sec13 / i

v

Nup145¢ | C 3bg0
p

5

\-/.’

Figure 10. Comparison of protein structures for the constituent proteins of the
Nup84 complex generated using computational protein structure prediction
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methods (left) and their respective crystal structures (right). Figure adapted from
[102].

Computational Models of Nuclear Pore Complex Structure and Dynamics

In 2007, Alber and colleagues developed an elegant method to weigh experimental
information about nucleoporins such as composition, size, shape, stoichiometry and
localization from proteomic, affinity purification, ultracentrifugation and electron
microscopy methods to determine a likely arrangement of the nucleoporins that
produces the NPC structure [106,107]. Given all the experimental information,
generating a likely structure was seen as an optimization problem, well suited for
computation. In their model, each nucleoporin was represented by a set of
connected spheres that accounted for molecular mass and Stokes radius.
Information from experiments was used to create a scoring function or “goodness of
fit” for potential configurations of the bead-representation of Nups. The authors
then used modeling methods that included molecular dynamics (MD) with
simulated annealing (SA) and conjugate gradient (CG) minimization to sample the
solution space of configurations that produced an optimum value based on the
scoring function, leading to a likely solution to detailed nucleoporin configuration
that produces the observed NPC structure. A schematic of the process is shown in
Fig. 11.
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and (iii) optimization of the scoring function using molecular dynamics (MD) with
simulated annealing (SA) and conjugate gradient (CG) minimization to sample the
solution space followed analysis of potential structures. Figure adopted from [107].

Other groups have used computational methods to look at the mechanical behavior
of the NPC rather than structural composition. Wolf and Mofrad performed normal
mode analysis (NMA) using the finite element method (FEM) to determine the
natural mode shapes and frequencies of the NPC under vibration [108]. Using their
FEM model, the authors demonstrated that the eightfold rotational symmetry of the
NPC is ideal for maximizing the bending stiffness of the structure and concluded that
the mechanical properties of the NPC accommodate transport of very large
molecules via their mechanical compliance in the necessary flexural modes.
Following this work, in 2009, Lezon and colleagues developed elastic network
models (ENMs) which are conceptually similar to FEMs to also perform normal
mode analysis on the NPC structure [109]. Interestingly, the authors observed
flexural modes that would assist in the transport of large cargo and concluded that
the eightfold rotational symmetry presented ideal dynamics that might have been
evolutionarily selected for.

Computational Systems Biology Models of Nucleocytoplasmic Transport

The early applications of computational modeling to nucleocytoplasmic transport
took the form of compartmentalized ordinary differential equation (ODE) models.
With these mass action approximation models, experimentally determined kinetic
rates are used to compute deterministic changes in species concentrations over
time. These models make the assumption that the distribution of reactants is
continuous in a well-mixed system in which reactant concentrations are sufficiently
high and rapidly diffusing to avoid the emergence of concentration gradients and
stochastic behavior. Although these models sacrifice significant spatial detail, they
are computationally efficient to solve and can span length (entire cell) and time
(thousands of seconds) scales that are comparable to experimental measurements
and are an excellent resource for performing sensitivity analysis in complex systems
[110].

Gorlich and colleagues demonstrated one of the first applications of ODE modeling
to the NCT pathway when they analyzed the RanGTPase system which is tightly
coupled to multiple nucleocytoplasmic import and export pathways to provide
directionality [16]. This model was used to predict that the steepness of the RanGTP
concentration gradient across the nuclear envelope was limited by the availability of
RanGAP in the cytoplasm, leakage of RanGTP across pores and the ability for NTF2
to import Ran into the nucleus and not limited by the availability of RanGEF in the
nucleus. Interestingly, the model was able to predict that affinity measurements
made in vitro were likely one to two orders of magnitude too high to reproduce
transport rates observed in vivo.
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Riddick and Macara later applied the two-compartment ODE model to the complete
classical import pathway and performed sensitivity analysis to identify additional
factors that may enhance or limit nucleocytoplasmic transport [17]. Their model
correctly demonstrated that Importin-a, Ran and NTF2 are limiting factors, as had
been confirmed by previous experiments. Additionally, the model predicted that
increases in Importin-f and RanGEF surprisingly inhibit import. These predictions
from the model were subsequently validated experimentally. In their subsequent
work, the authors expanded the simulations to a three-compartment model in which
the pore itself was treated as a compartment in which transport receptors had
affinities for nucleoporins [111]. This model was then used to understand the role of
Importin-a in the classical transport pathway and were able to demonstrate that the
use of the adapter protein, Importin-a, reduced overall import efficiency but
provided the cell with increased dynamic range for control of import rates, likely
having evolved to give the cell the flexibility to control transport rates under
different cellular conditions.

Computational Biophysical Models of Nucleocytoplasmic Transport Dynamics

Molecular dynamics methods have also been used to model the collective behavior
of Nups to get an understanding of their dynamic structure and how it contributes
to facilitating selective transport. Miao and Schulten used a combination of coarse-
grained and all-atomic MD simulations to determine how the dynamics of fully
extended, individually grafted Nups differed from an array of fully extended,
neighboring Nups grafted on a surface. Their simulations showed that an individual
Nup rapidly collapses into a globular conformation while the 5 X 5 array of Nups
grafted on a surface formed a collective brush-like structure. These observations
were considered to be supportive of both the virtual gate and the reduction of
dimensionality models and did not support the Nup conformation proposed by the
selective phase (hydrogel) model. Additional simulations were run using the grafted
Nup configuration in which most hydrophobic phenylalanine residues were
mutated to serines. The result of these simulations was still a brush-like
configuration, albeit less collapsed than the wild-type Nups (brush height of ~83 A
for wild-type vs. brush height of ~114 A for mutant). Additionally, when the wild-
type brush-like configuration was probed with the transport receptor NTF2, the
transport receptor was observed to enter the brush-like structure, while in the
mutant configuration, the transport receptor remained near the brush surface.
Finally, both structures were also probed with an inert molecule, which failed to
enter either the wild-type or mutant brush - suggesting that the observed
simulation-derived conformation of the wild-type Nups is capable of reproducing
both transport facilitating and excluding properties of the NPC [7,112]. Notably, the
computational cost of these simulations was so great that runs were limited to 4
microseconds in duration for the course-grained representation and to 10
nanoseconds in duration for the all-atomic representation.
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In 2011, Moussavi-Baygi and colleagues developed a two-dimensional coarse-
grained Brownian dynamics (BD) model of nucleocytoplasmic transport in which
they considered all the Nups in a planar segment of the NPC and their interactions
with single import cargo complexes for durations of up to 8 milliseconds [113,114].
Using this BD model, they were able to simulate the conformation that nucleoporins
adopted in the confined geometry of the central channel and its peripheries, which
was supportive of the virtual-gate model. They further probed this structure with
cargo complexes of varying size to determine the effect of cargo size on transport
time, transport path and nucleoporin interaction dynamics. Mean transport times of
2.6 milliseconds were recorded for cargos of 15 nm in diameter with an inverse
Gaussian distribution about the mean. Transport time for cargo ranging in size from
9 nm to 15 nm was observed to be ~2.6 milliseconds, regardless of size, while cargo
larger than 15 nm in diameter had longer transport times (i.e. a 30 nm cargo had a
transport time of 7.1 milliseconds). Interestingly, the authors observed that FG-
binding sites on cargo complexes were saturated throughout most of the transport
process, with binding site saturation peaking in the central channel >97% of the
time. Size dependent average trajectories of cargo are shown in Fig. 12.
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Figure 12. Cargo complex import trajectories averaged over 50 independent
replicate coarse-grained Brownian dynamics simulations for each cargo size ranging
from 5 nm to 30 nm in diameter. Figure adopted from [114].

Mincer and Simon developed a three-dimensional model of the pore by extending a
filament bending dynamics model [115] to account for repulsive terms leading to
polymer self-avoidance as well as the various modes of FG-FG and FG-karyopherin
binding [116]. Their model was able to reproduce many experimentally observed
phenomena such as size exclusion cutoffs for active and passive transport. Notably,
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the authors reported that their simulation results of FG-Nup conformation are most
consistent with a hybrid of both the selective phase and virtual gate models. In this
example, the authors were able to extend the model to three dimensions and
achieve millisecond time scales by using an even further coarse-grained model than
the previously mentioned Brownian dynamics model. More recently, Tagliazucchi
and colleagues developed a single chain mean field (SCMF) theory model similar to
coarse-grained MD in which they extended the three-dimensional model of the NPC
to account for the non-uniformity among nucleoporin sequences in terms of
electrostatic charge and hydrophobicity - a complex factor that was unaccounted
for in previous models [117]. Accounting for this additional detail, the authors were
able to demonstrate that the conformation of nucleoporins is most consistent with a
hybrid of both the selective phase and virtual gate models and also suggest that the
specific distribution of charge in the NPC may be optimized for facilitating the
transport of the negatively charged cargo complex.

27



Afterword

Our understanding of nuclear pore complex structure and function has far reaching
implications ranging from insight into biological phenomena such as gene
expression to treating human diseases such as cancer and viral infection.
Experimental approaches that contribute to our understanding of pore functions
and mechanisms by which import and export events occur have been limited by the
smallest spatiotemporal scales that these methods can explore, with researchers
continually pushing the envelope of experimental techniques to peer into the ever
more intricate details of this complex structure. Computational techniques spanning
a wide range of spatial and temporal scales have been adopted to gain a better
understanding of the pore at scales that have at times been unreachable with purely
experimental methods. Early models of computational models of transport
consisted of deterministic ODE models that achieved substantially long
spatiotemporal scales (macro-scale models) but downplay the effects of spatial
inhomogeneity due to diffusion, stochastic effects and steric effects. More recently
biophysical models have been applied to protein and multi-protein size scales at
limited temporal resolutions (nano-scale models). With advances in computing and
the application of modern coarse-graining approaches we’ve reached increased
spatial resolutions to system sizes containing the entire NPC and temporal scales in
the microseconds (micro-scale models). As experimental techniques continue to
push to new limits of spatiotemporal resolution, as is the case in recent single
molecule export studies of mRNA, we find that current micro-scale models are
inadequate for simulating these very large systems under observation that span
several micrometers in length and transport events that are on average tens to
hundreds of milliseconds and in extreme cases several seconds in duration (meso-
scale). Subsequently, there exists a need for a modeling framework that can
efficiently model phenomena at the meso-scale with sufficient accuracy that
accounts for factors such as spatial inhomogeneity in the system, steric effects
within the pore that play a major role in selectivity and the stochastic effects that
are inherent to such a system. In the next section, [ introduce agent based modeling
(ABM) as a framework, along with a methodology for using ABM to model reaction-
diffusion systems at the meso-scale.
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Aim 1: A major component of this work was the design, implementation and
validation of the molecular ABM framework as well as determining correct methods
for translating physical properties into ABM event probabilities as outlined in
Section III. While the molecular ABM framework was designed to be applicable to a
broad range of problems and systems, the initial design direction was heavily
influenced by the need to model cellular structures and processes of interest,
namely transport across the cell cytoskeleton and transport through the nuclear
pore complex.

Aim 2: The first sub-cellular transport phenomena of interest related to the role of
actin filament structure in modifying cytoskeletal transport directionality. I
hypothesized that the parallel geometric structure of filaments at the very leading
edge of the cell (filopodia) and their contrast to the dense branched geometric
structure of filaments that are adjacent but more internal (lamellipodia) may
contribute to the super-diffusive behavior of molecules at the leading edge of the
cell. The basic molecular ABM diffusion model was sufficient for testing this
hypothesis as shown in Section IV.

Aim 3: There are many questions and hypotheses relating to the nuclear pore
complex and nucleocytoplasmic transport that remain unanswered as a result of
limitations in both in vivo and in silico methods. In this work, [ pose and test the
hypothesis that a high-affinity binding site for cargo complexes at the terminal side
of the pore is advantageous to cargo transport. Furthermore, I aim to quantify the
contribution of this high-affinity binding site and a broad range of affinity gradients
to nucleocytoplasmic transport rates in an effort to determine the optimum design
qualities of selective yet efficient nanopores. To accomplish these aims and test
these hypotheses, an extension to the molecular ABM framework was required to
account for binding and unbinding events as shown in Section V.

Aim 4: Looking beyond protein transport, I aim to model the export of mRNA
molecules through the nuclear pore complex in an effort to understand the effects of
nuclear transport receptor density on transport rate and efficiency. Furthermore, I
hypothesize that the use of in silico single molecule tracking of mRNA export to
report transport times overestimates transport efficiency and underestimates
transport times. To accomplish these aims and test these hypotheses, an extension
to the molecular ABM framework was required to model the dynamics of the mRNA
molecule represented as a freely jointed chain as shown in section VI.
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Introduction to Agent Based Modeling

Agent based modeling (ABM), also referred to as multi-agent system (MAS) or
individual based modeling, is a modeling paradigm consisting of a collection of
discrete and autonomous entities, termed “agents”, that possess a set of governing
rules that allow them to assess their nearby environment and make decisions,
resulting in the emergence of complex behavior. ABMs are a natural extension of
cellular automata [1,2] with notable differences being that cellular automata are
limited to lattice geometries, operations are performed on lattice sites (termed
“cells”), the rules for updating a cell are typically the same for all cells within the
lattice and updates to all cells are made synchronously. These differences make
ABMs well suited for simulating a wide range of systems. Here I introduce the
principle components of an ABM, typical applications, capabilities/limitations and
existing modeling frameworks for performing simulations. I then introduce the
application of ABM to modeling reaction-diffusion systems, which [ refer to as
molecular agent based modeling (MABM). I will discuss the data structures and
algorithms that were developed in my MABM framework as well as the derivation of
methods for accurately representing physical properties within the model.

Principles of Agent Based Modeling

At the core of ABMs are the agents that comprise the system and are a
representation of real world entities. A typical model can consist of multiple types of
agents, each in multiple copies and with distinct properties that can be modified
throughout the course of simulation either independently or via interaction with
other agents. The agents reside in an environment that they can navigate and can
take the form of a discrete lattice, continuous space or a series of interconnected
nodes that comprise a network. Furthermore, the environment can be limited to a
single dimension or be comprised of multiple dimensions depending on the system
being modeled and level of detail desired. Discrete lattice environments can be
comprised of triangular, square or hexagonal elements in 2D or tetrahedronal, cubic
or rhombic dodecahedronal in 3D. In a continuous environment, neighbors are
defined by a distance cutoff. In network environments, neighbors are determined by
graph edges that connect two nodes. In a discrete lattice environment, two popular
neighborhood types exist - the von Neumann and Moore neighborhoods. The von
Neumann neighborhood consists of neighboring cells that share an edge with a
central cell; for example, in a 2D square lattice, the four cells orthogonally
surrounding a cell comprise its neighbors. The von Neumann neighbor can be
expanded to the extended von Neumann neighborhood in which cells sharing an
edge with the first set of von Neumann neighbors also belong to the central cell’s
neighborhood (see Fig. 1). In the Moore neighborhood, all cells in contact with (not
necessarily sharing an edge) a central cell belong to its neighborhood; for example,
in a 2D square lattice, the eight cells surrounding the central cell belong to its Moore
neighborhood. The choice of environment and neighborhood type is problem
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specific and has implications for computational cost, design of governing rules and
ultimately, model correctness. The selection of a discrete lattice environment leads
to computational efficiency in very large systems comprised of many agents by
limiting the search for neighboring agents at the cost of changes to degrees of
freedom in movement.

Figure 1. lllustration of various extended von Neumann neighborhoods on a 2D
square lattice. r=1 represents the standard von Neumann neighborhood with other
values of r representing extensions of it. [Weisstein, Eric W. "von Neumann
Neighborhood." From MathWorld]

Finally, governing rules determine the actions of agents and lead to emergent
behavior. Governing rules dictate events that agents undergo and are typically
assigned a likelihood of occurrence, referred to as event probability. Governing rules
can determine the actions or state of an agent based on interaction with (i)
neighboring agents, (i) interactions with the environment, (iii) both i and ii, or (iv)
the agent on its own without consideration for i or ii, at any given moment. These
rules can be defined using natural language rather than mathematical
representations, making ABMs more intuitive and simpler to adopt and
communicate.

Applications of Agent Based Modeling

Agent based models have traditionally been applied to macro-scale phenomena
involving human agents in which the system is modified to understand how various
outputs could be optimized. Examples of this include simulating and optimizing
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traffic flow, flow of occupants out of a crowded room during an evacuation, and
customer flow management. Other applications to simulating and optimizing flow
include models of computer networks in which ABMs can be used to test different
scenarios, identify points of weakness and help develop more efficient protocols.
ABMs have also been applied to financial markets to both understand the dynamics
of price fluctuations and to identify emergent patterns and human/machine trading
habits that can be taken advantage of for financial gain. Further applications of ABM
at the macro-scale involve models of ecology and climate. [3-8]

Agent based models have also seen application in areas relating to biology and
human health. The field of epidemiology has made significant use of ABMs to model
the spread of infectious disease. ABMs are well suited for accounting for key factors
in disease propagation, namely time, space and human-human interaction. Further
applications to human health involve population models of disease and associated
interventions to assess efficacy [9]. As previously mentioned, ABMs have
traditionally been applied to macro-scale, population-level systems. However, in
recent years, ABMs have increasingly been applied to modeling cell-scale
phenomena and more recently, sub-cellular phenomena involving the diffusion,
binding and unbinding of molecular species involved in signaling pathways [10-16]
- systems that have historically been modeled using deterministic mathematical
models which usually consist of a series of coupled ordinary differential equations
(ODEs). While traditional ABM software frameworks have been designed for
applications involving macro-scale problems, there is a need for specialized
frameworks that can accurately simulate sub-cellular phenomena. Recent
applications of ABM to sub-cellular biological problems use governing rules that
have not been validated to reproduce accurate physical phenomena such as
diffusion, steric effects, binding and unbinding. Below, I outline other methods for
modeling biochemical pathways before reviewing some of the existing general
purpose and specialized software frameworks for ABM and then detail my
implementation of a molecular agent based modeling framework and methods for
correctly simulating physical phenomena.

Computational Modeling Paradigms for Representing Biochemical Pathways

Before discussing ABM software frameworks, a brief explanation of the application
of traditional ODE models to simulating biochemical pathways and other less
commonly used models is provided with commentary about where ABMs may be
more appropriate and more informative.

Traditional deterministic models of biochemical pathways are based on the law of
mass action, which describes the kinetics of the system in terms reaction rates that
depend on a kinetic constant multiplied by the concentration of reacting species.
Given a set of interacting species, each with rate equations dependent on the
concentration of other species, there emerges a network of species with time-
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varying concentration that are interdependent on the rate of change of
concentration of the other species in the system. If initial conditions such as
concentrations and kinetic rates are provided, the time evolution of the
concentrations of the species in the network can be determined by solving a series
of ODEs iteratively to determine both the time evolution of the system as well as
steady state concentrations of the species. [17]

There are a number of assumptions made about the system when applying the law
of mass action, primarily that the number of molecules is evenly distributed
(continuous distribution rather than discrete). This assumption is valid for systems
in which the number of species, rate of diffusion and lifetime of these species is
sufficiently high such that species that are being consumed or produced redistribute
through the system rapidly so that the assumption of a continuous distribution
remains valid and the system is termed “well-mixed”. The Kuramoto length, Ix (Eq.
1), can be used to test the validity of the well-mixed system assumption for each
species in the system given its diffusion coefficient D, and average lifetime of the
reactant molecule 7 [18]. In the case that Ix >> L, where L represents the length of
the container, it can be assumed that a local fluctuation in species concentration will
quickly distribute across the system and the well-mixed assumption holds true.
However, when I << L, local fluctuations take a long time to redistribute throughout
the system and the species is no longer considered continuously distributed. Partial
differential equations (PDEs) can be used to account for inhomogeneities in species
distribution within a system. PDEs are more complex to implement and as a result,
most models that want to account for differences in species localization consist of
models containing multiple compartments in which the well-mixed assumption is
upheld in each compartment and species are allowed to move between
compartments with some rate corresponding to their flux [17].

1, =Dt (1)

Many biological systems of interest contain species that are present in discrete
numbers; this can occur when species concentrations are very low or when the
system size being considered is sufficiently small that the number of molecules
modeled is very few, and the continuum assumption breaks down. In such systems,
it’s likely that natural fluctuations in the number of species are significant enough
that deterministic models such as ODEs and PDEs cannot correctly capture the
behavior of the system. In a system where there exist on average n molecules of a
species, the typical stochastic fluctuation about the average is on the order of n*
[17]. In the case that the number of molecules in the system is greater than 102-103,
a deterministic solution is sufficient for capturing the behavior of the system.
However, when the number of molecules of a species falls below this limit,
stochastic fluctuations cannot be ignored as they can result in significant changes to
system dynamics and push the system to extreme states that a deterministic model
may fail to reach.
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More complex modeling paradigms have been developed to account for the natural
stochasticity in reaction-diffusion systems. The chemical master equation (CME) is a
deterministic ODE that describes the evolution of the probability density function
for a Markov process in a well-mixed system of discrete molecules [19,20]. In the
case that the well-mixed assumption doesn’t hold true, the reaction diffusion master
equation (RDME), an extension of CME for inhomogeneous systems in which the
system is divided into sub-volumes, each of which are assumed to be well-mixed,
can be used to model a discrete and stochastic system. The improvement in model
correctness associated with using these advanced methods comes at the expense of
increased computational cost. Furthermore, although CMEs and RDMEs can more
accurately capture the stochastic behavior of a system, they fail to capture specific
physical properties that affect the dynamics of a system, such as steric repulsion
between species in crowded environments or confined geometries.

PDE | | BD

Spatial Detail

Computational Cost

Figure 2. Relative computational cost and the spatial detail between different
modeling paradigms and on-lattice molecular ABM. Modeling paradigms enclosed
by the blue ellipse are capable of accounting for stochastic effects while modeling
paradigms enclosed by the pink ellipse are capable of accounting for steric effects
and can be used to track individual molecules throughout a simulation with greater
local precision.

In spite of their limitations, compartmentalized ODE models that ignore the effects
of stochasticity due to discreteness, inhomogeneities in the system and steric effects
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between species in confined and crowded environments have been applied to
studying transport through the nuclear pore complex (NPC) as outlined in Section I
[21]. There exist more physically accurate modeling paradigms such as Brownian
dynamics (BD) and molecular dynamics (MD) that can better capture the dynamics
of molecules in such systems. However, the sheer size of the nuclear pore complex
and the computational cost of BD and MD simulations has limited their applications
to modeling nucleocytoplasmic transport (NCT) to smaller subsets of the system or
very short time scales as discussed in Section I. As a result ODEs, although not ideal,
have continued to see application in modeling the NCT pathway as they are capable
of simulating large length scales spanning multiple NPCs and time scales on the
order of thousands of seconds, which are comparable to the length and time scales
achieved through in vivo experiments. This highlights the need for a meso-scale
modeling paradigm that can explore longer spatiotemporal scales with sufficient
consideration for physical phenomena such as diffusion and steric effects that are
critical in the confined geometry of the pore. I believe that on-lattice ABMs are well
suited to fill this gap at the meso-scale. Furthermore, there are many problems in
biology at this scale that can benefit from the availability of an ABM software
framework designed specifically for modeling reaction-diffusion systems at the
molecular scale. In the next section I will summarize the qualities of existing
frameworks and their limitations that prompted the development of a new
framework for molecular ABM. The qualities of different modeling paradigms in
comparison to on-lattice molecular ABM is illustrated in Fig. 2.

Computational Frameworks for Developing Agent Based Models

There are a substantial amount of software resources dedicated purely to agent
based modeling as shown in Table 1. The most popular of these software
frameworks are Swarm, MASON and NetLogo. Much of the popularity of Swarm and
MASON can be attributed to the open source nature of these frameworks that allows
modelers to adapt the software to best suit their needs but its adoption is limited to
advanced users. In the case of NetLogo, the ease of use makes the modeling
framework attractive for those unfamiliar with modeling and/or programming
while limiting its application to specific application areas that it was designed for.
The availability of multiple problem-specific software frameworks for deterministic
ODE models (Virtual Cell, Cell Designer, CellWare, Jarnac, etc.) have contributed to
the popularity and use of ODE models in systems biology modeling, often-times by
researchers that lack programming/modeling experience. The availability of such a
specific ABM modeling framework that has been tested to correctly reproduce
physical phenomena of interest at the meso-scale will contribute the following to
the field of computational biology: (i) standardized methods for translating physical
properties to modeling parameters that will improve reproducibility of results, (if)
data structures and algorithms that are optimized to efficiently simulate systems
with biochemical agent objects and governing rules and (iii) lower barrier to
adoption of a modeling paradigm that can provide new insights to biological
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problems that have traditionally only been approached using ODE models. Below |
describe significant aspects of my implementation of the molecular ABM software
framework.

Table 1. Comparison of popular agent based modeling toolkits and their attributes
and capabilities.

General Java

__ General, Al -_-
Open Source | High | Yes

General Java

General, Social Java

Java Moderate

General - Moderate Plug-in
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Data Structures and Algorithms for Molecular ABM

The following data structures and algorithms were implemented in FORTRAN90
primarily for its computational efficiency as a compiled language with support
across multiple platforms and highly efficient open source implementations of the
compiler and numerical/parallelization libraries. Secondly, FORTRAN’s learning
curve makes it easy for others to contribute to the implementation of the software
framework and future development. Significant efforts were made to port the
framework to Python but resulted in computational cost that was two orders of
magnitude greater for identical simulations. Implementation in Cython reduced
computational cost but still resulted in simulation times that were an order of
magnitude greater than the FORTRAN implementation.

The software framework consists of four main classes of objects consisting of
element, particle, reaction and polymer. Collections of objects of these classes are
used to form the system and simulate reaction-diffusion phenomena of small
molecules and larger polymers. Each class has properties, typically relating to
physical properties of the object or its current state that are set at run-time and may
vary throughout a simulation.

An ABM simulation consists of an environment in which agents can navigate and
interact in. In our framework, this environment consists of an array of objects of
type element. The fields of an element are listed in Table 2 and are basic descriptors
of an element’s position and spatial orientation with regard to other element objects.
Further descriptors are provided to identify the particles within any given element
object.
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Table 2. Fields belonging to an object of class element and their associated data
types.

Field Data Type Description
X real (scalar) X coordinate of an element object.
Y real (scalar) Y coordinate of an element object.
Z real (scalar) Z coordinate of an element object.
neighbors integer array Array containing index of neighboring

(numNeighbors) elements.

Number of particles present in the

numParticles integer (scalar)
element.

integer array Mapping of particles present in this

R (maxParticles x 2) | element to global array of particles.

Sum of the volumes of all particles within

sumVolume real (scalar) this element

The type of the current element. May

S RE integer (scalar) have an effect on how particles behave.

Agents representing molecules or polymers can navigate the constructed
environment and are represented as objects or collections of objects of the particle
class. The fields of an object of class particle are provided in Table 3 and are
descriptors for the physical properties such as the volume a molecule occupies, its
diffusion coefficient within different regions, and an initial concentration of the
molecule and whether or not that initial concentration should be maintained
throughout the simulation. Other descriptors are used to define the polymer’s
properties during post-simulation visualization as well as identifying objects of the
polymer class that comprise objects of the polymer superclass.

A three-dimensional array of particles is used to track all particles within the system
with the first dimension specifying particle type, the second dimension indexing
particle objects of a specific type. The third dimension contains information that
identifies which element object each particle object is located within. Although it
appears redundant, the ability to look up all particles within an element and the
ability to do the reverse-lookup of the element that a specific particle type belongs to
contributes significantly to reducing simulation time at an insignificant cost of
increased memory usage. This redundant tracking of objects enables: (i) movement
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events are only applied to particle objects rather than scanning across elements to
identify particles to move, (ii) reactions involving two particles don’t require
searching across all particles to identify neighboring reactants (only neighbors are
searched, an operation of less than O(n) rather than O(n?)). The algorithms that
define these events are discussed in further detail below.

Table 3. Fields belonging to an object of class particle and their associated data
types.

Field Data Type Description
numType integer (scalar) Internal identifier of particle object.
name character array (50) | Human readable name of particle object.

Fractional volume of an element that a

partVolume real (scalar) . .
particle occupies.
initConc integer array Initial number of particles in total across
(numElementTypes) | elements of specific type.
logical array Flag to identify if number of particles will
sastondis (numElementTypes) | remain constant throughout simulation.
diffc real array Probability of movement of this particle
(numElementTypes) | into element of specific type.
vizRGB real array (4) strlf;(ﬂ; ;‘tailg;lus and RGB values for
purposes.
isPolymer logical (scalar) Identifies whether this particle object is

used to construct polymers.

Agents are capable of interacting with other agents or individually transforming to
form new agent types to simulate reactions or binding/unbinding events. The
methods by which neighboring agents are selected to interact or individually
transformed are hardcoded and described in the algorithms below. However, user-
defined rules must be provided to inform the model of which agent types are
capable of interacting or transforming and the likelihoods by which these events
occur. These rules are treated as objects of class reaction with their associated fields
shown in Table 4. The fields of the reaction class are descriptors for how many
inputs and outputs constitute a specific reaction, the particle classes involved in a
specific reaction and the likelihood with which a reaction event will occur.
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Table 4. Fields belonging to an object of class reaction and their associated data

types.
Field Data Type Description
numRxnType integer (scalar) Internal identifier of reaction object.
numInputs integer (scalar) g)umber of inputs to reaction (either 1 or
rxnInputs integer array (2) ﬁ)riﬁz I?Z g)cztli‘zi;.le objects that are inputs
K real (scalar) :;g izt;lg]vg:t};m};mh inputs are
numOutputs integer (scalar) g:;r;ber of outputs of reaction (either 1
rxnOutputs integer array (2) Array of particle objects that are outputs

of the reaction.

Table 5. Fields belonging to an object of class polymer and their associated data

types.

Field Data Type Description
numPolyType integer (scalar) Internal identifier of polymer object.
polyName character array (50) I(;Ill;j?;fl readable name of polymer

polyLen integer (scalar) Length of polymer object.
monomerTypes integer array Sequgnce of particle objfects that
(maxPolymerLen) | constitute a polymer object.
polyCount integer (scalar) Number of copies of polymer object in

system.

Collections of objects of the particle class can be used to define objects of the
polymer superclass. The fields comprising an object of the polymer class are
provided in Table 5 and are descriptors such as the length of the polymer chain, the
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individual particles that construct a polymer and their copy number. Another three-
dimensional array polyNeighbor, keeps track of each particle object within a polymer
and the particles bound to it upstream and downstream by recording the element
object that they belong to as well as their mapping within the array of particles to
facilitate efficient movement operations on polymer objects.

There are two main event types in this molecular ABM framework, consisting of
movement and reaction (it should be noted that “reactions” in this model consist
entirely of binding and un-binding of molecules - typically proteins). In the case of
movement, the ABM rules governing agents must be set in a manner that correctly
accounts for the physics of diffusion. This means that a single particle must undergo
normal diffusion at a rate corresponding to its diffusion coefficient while a particle
in a crowded environment must undergo anomalous diffusion. Furthermore, the
size of particles in a crowded environment should determine the extent by which
their effective diffusive behavior is corralled and the number of particles capable of
occupying an element should similarly be governed by the size of those particles in
order to reproduce steric effects. The algorithm used in the movement subroutine is
outlined in Fig. 3 below followed by derivation of the relationship between diffusion
coefficient and simulation movement probabilities. Further details regarding
variations on the algorithm to reproduce steric effects and associated computational
cost as well as validation of the algorithm are discussed in Section IV of the text with
application to cytoskeletal diffusion. Objects of the polymer class behave as freely
jointed or ideal chains, the simplest representation of a polymer that can convey
information about its dynamics and a sufficient representation of long chain
polymers that exist in biological systems, such as RNA and DNA. Agents belonging to
a polymer object are restricted in their movement on the lattice in order to preserve
the connectivity of the adjacent agents and subsequently the polymer as a whole.
Any agent within the polymer object that doesn’t represent a terminal end (at
position n in the chain of agents) is free to move into a lattice site that is the
common neighbor of agents that are directly upstream (n+1) and downstream (n-1)
of said agent. The destination site must be a common neighbor of both upstream
and downstream connecting agents in order to preserve polymer connectivity.
Agents representing terminal ends of a polymer object (at position n or N in the
chain of agents) are free to move to a lattice site that is in the neighborhood of their
adjacent neighbor (either position 2 or N-1), excluding the single neighbor lattice
that is directly opposing the agent’s current lattice site. By introducing this
exclusion, all possible movements for polymer agents in the model are restricted to
ones that are into lattice sites diagonal from the lattice site that an agent occupies
and are of equal length allowing for the use of a single movement probability for all
agents of a single polymer object. Validation of accurate polymer dynamics is
presented in Section VL.

Reaction events may involve a single agent as a reactant or two neighboring agents
as reactants. In the case of a single reactant (ie. agent type A), every agent of that
type in the simulation experiences the reaction event with a fixed probability
corresponding to the reaction rate constant. If an agent is selected to undergo the
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reaction event (ie. the probability of reaction event is greater than a randomly
generated number), the reactant agent is removed from the simulation and product
agent(s) of a different type (ie. agent type B or agent types B and () are added to the
simulation, residing in the same element. In the case where two reactants are
involved (ie. agent types A and B), every agent of the first reactant type (ie. agent
type A) in the simulation is checked for a neighboring agent of the second reactant
type (ie. agent type B). If an agent of the second reactant type is present, the reaction
event may occur with a fixed probability corresponding to the reaction rate
constant. If the reaction is determined to occur (ie. the probability of reaction event
is greater than a randomly generated number) the reactant agents are removed
from the simulation and product agent(s) of a different type are added to the
simulation, residing in the same elements. The removal from or addition to of an
agent to the simulation following a reaction event requires that both the array of
particles and array of elements be updated to reflect the changes. The algorithm used
in the reaction subroutine is outlined in Fig. 4 below followed by derivation of the
relationship between reaction rate constants and simulation event probabilities.
Validation of accurate reaction dynamics and comparison with deterministic
solutions is presented in Section V.

It should be noted that the selection of polymer particles should be randomized in
order to avoid simulation artifacts such as preferential movement of one end of the
polymer. In the case of single particles (non-polymer), randomization of particle
selection should be randomized across types and objects of types in very crowded
systems in order to avoid simulation artifacts. Similarly, the selection of reaction
events should in all cases be randomized to avoid biasing the system towards
artificial equilibriums or outcomes. FORTRAN90 implementations of the movement
and reaction subroutines are provided in Appendix A and Appendix B respectively.
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Figure 3. Flowchart of the particle object movement algorithm used to simulate
diffusion of small molecules and long chain polymers. See Appendix A for a
FORTRAN90 implementation.
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Figure 4. Flowchart of the reaction event used to simulate binding and unbinding
events in the molecular ABM. See Appendix B for a FORTRAN90 implementation.
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Translating Physical Properties to ABM Event
Probabilities

When simulating reaction-diffusion systems, a range of physical properties such as
diffusion coefficients and reaction rate constants can be represented by event
likelihoods. In the molecular ABM, the event likelihoods considered are Pmove, Pon
and Posr as shown in Fig. 3 and Fig. 4. As expected, an agent representing a molecule
with a higher diffusion coefficient than another molecule would also have a higher
probability of movement and likewise for reactions. Translating diffusion
coefficients and reaction rate constants to event probabilities should be done in a
way that recapitulates real-world agent behavior. Given a real-world agent with a
specific diffusion coefficient, a probability of movement should exist that produces
the same mean square displacement over time observed for the agent in the
simulation. Likewise for a reaction event, a probability of binding/un-binding exists
that can produce the same steady-state concentration of their real-world
constituents over the same duration of time. Below I will outline the detailed
derivation of the equations used to translate diffusion coefficients and reaction rate
constants to probabilities that can be used as model parameters. Validation that
simulations run using probabilities output from these equations recapitulate the
starting values (diffusion coefficients and reaction rate constants) is provided in
Section IV and Section V.

Translating Diffusion Coefficients to Agent Movement Event Probabilities

Given a one-dimensional lattice (as shown in Fig. 5) with lattice length L, containing
a single agent at site X, at time t, we can determine the probability of finding the
agent at site X, at the next time step t+A4t using Eq. 2.

Py =P, =B T,=B,T,+P_, T, +P

nt+At n,t n+AL,t

I, (2)

AL

Xnoal | Xnal Xn Xn+ar | Xn+2aL

Figure 5. Discretized one-dimensional space with square lattices of length AL. This
spatial configuration is used to relate movement probability to diffusion coefficient.

55



Where Pnt, Pnart and Pn:ane represent the probability of finding the particle at
position Xu, Xu-aL and X+ aL respectively at time ¢; Tr and TL represent the probability
of the particle moving to the right or left respectively. Note that unless otherwise
noted, all probability terms represent the probability of the respective cell being
occupied. Equation 1 relays that the probability of a particle being found at X, at
time t+At can be determined based on the probability that the particle was initially
in that position and remained there (first term) less the probability that the particle
started in that position and moved to either the right or left cells (second and third
term) plus the probability that the particle was initially to the left or right of that cell
and moved to the right or left respectively (fourth and fifth term).

Taylor expansion of the terms in Eq. 1 gives:

P
Pn,t+At :Pn,t +At at,t +§(At2) (3)
o°P 1 0P 1 .OP
P, =P tAL—2+ A —2+ A —2L 4+ §(AL 4
ntALt nt ax 2 axz 6 ax3 ( ) ( )

Assuming that agents have equal probability of moving to the left or right in the one-
dimensional lattice (random diffusion, Tr = T, = T), we can simplify Eq. 2 and
substitute in the Taylor expansion terms from Eq. 3 and Eq. 4. to get the below
equation:

2 N2

P AtaP’” P (1-2T)+2T(P AL it (5)
+ L= -2T)+ +— 2
nt at n,t n,t 2 axz

Rearranging terms in Eq. 5 gives us a form of the equation (Eqg. 6) that is analogous
to Fick’s second law that demonstrates how diffusion causes the spatial distribution
of particle concentrations to change with time (Eq. 7).

oP,, T-(AL) 9’P,,

n,t 6
ot At ox’ (6)
oCc _0°C
or =D ox? (7)

The definition of P, the likelihood of a lattice site to be occupied by agents, is a
natural probabilistic description of concentration on a discrete lattice which allows
us to define diffusion in terms of movement probability, lattice size and timestep
length by combining Eq. 6 and Eq. 7:

_T-(ALY
At

D (8)
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As a sanity check we can verify that the right hand side of the Eq. 8 produces units
that are in agreement with the units of diffusion coefficient. Eq. 8 establishes the
relationship between an agent’s real-world diffusion coefficient and its equivalent
simulation-based movement probability. The validity of this relationship is
demonstrated in Section IV via direct comparison of ABM simulations with
simulations of diffusion in Langevin dynamics.

Translating Kinetic Off-Rate Constants to Agent Transformation or Unbinding
Event Probabilities

For the case where an agent undergoes transformation to another agent type (Eq. 9)
or the unbinding of a complex agent into its constituent agents (Eq. 10), we can use
the rate equation (Eq. 11) to determine the change in agent concentration over time.

k

A— 5B 9)
A—4 5B+ C (10)
_d[A]__

=== k,y[A] (11)

While Eq. 11 is expressed in terms of concentration, we can define an analogous
description of concentration in terms of number of discrete agents as is shown in Eq.
12:

Ny

[A]= VN (12)

Avagadro

Where [A] is the continuous concentration of agents of type A, Ny is the discrete
number of agents of type A, V is the volume of the system and Navqgadro is Avagadro’s
number. Substituting this definition of concentration in our ABM back into the rate
equation (Eq. 11) and simplifying produces the following relationship:

dN,
=k
dt o

N, (13)

In our ABM simulation the change in number of discrete agents of type A is defined
as:

AN,=-P

off ‘NA (14)

Where P, is the likelihood of a transformation or unbinding event of an agent.
Substituting Eq. 14 into the discrete form of Eq. 13 and rearranging the terms
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provides the relationship between real-world kinetic off rate and simulation-based
event probability (Eq. 15).

P, =k, At (15)

Again, as a sanity check we can verify that the right hand side of the Eq. 15 produces
a unitless value that is in agreement with the units of event probability. The validity
of this relationship is demonstrated in Section V via direct comparison of ABM
simulations with the respective deterministic ODE solution.

Translating Kinetic On-Rate Constants to Agent Binding Event Probabilities

For the case where two agents undergo a binding event (Eq. 16) or the
transformation of a pair of agents into a different pair of agents (Eq. 17), we can use
the rate equation (Eg. 18) to determine the change in agent concentration over time.

A+B—=—C (16)
A+B—t=»5C+D (17)
_dle]_

r=m=k, A8 (8)

Using our previous description of discrete “concentration” in a lattice cell from Eg.
12, we can rewrite Eq. 18 as:

dN., N,N,

d "V-N

(19)

Avagadro

In the ABM the change in number of agents that undergo binding or joint
transformation of can be defined in an analogous manner as Eq. 14 by considering
the number of interacting agents of type A and B that are neighboring each other in
the system (Ngg) and the likelihood of their interaction (Pox):

AN. =P, N, (20)

Additionally, Eq. 19 can be approximated for the case of discrete number of
molecules and time to be:
N, N At

AN, .=k ———— 21
C onv.N ( )

Avagadro
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Setting Eq. 20 and Eq. 21 equal to one another and solving for the probability of
interaction (Pon) produces:

P - N, N, At

on on NABV-N

(22)

Avagadro

The number of agent types of A and B neighboring one another (N4p) is related to
the probability of agents A and B neighboring each other at any time (P4p) and the
number of discrete lattice sites in the system (Nceis):

N, =PyN, (23)

cells

The probability of finding two agents of type A and B neighboring each other in the
system is related to the number of agents of each type, the number of cells in the
system and how many neighbors a cell is defined to have (Nneighbors):

NA NB

AB — N N 1 Nneighbors (24)

cells cells

Plugging Eq. 24 in to Eq. 23 and substituting back in to Eq. 22 gives us the overall
relationship between real-world kinetic on rate and simulation-based event
probability (Eq. 25).

At

P =k 25
on onv N ( )

cell” " neighbors N Avagadro

Where Veen is the volume of the system divided by the number of cells the system is
composed of. It should be noted that Eq. 25 is valid for the case where the two
interacting agents are of different types. In the case where two interacting agents
are of the same type, the event probability is halved. Again, as a sanity check we can
verify that the right hand side of the Eq. 25 produces a unitless value that is in
agreement with the units of event probability. The validity of this relationship is
demonstrated in Section V via direct comparison of ABM simulations with the
respective deterministic ODE solution.

In the case where we allow more than one agent to occupy a single lattice site at
once, a correction factor a should be added to Nneighsors in order to account for the
increased number of neighborhoods. This correction factor is a fractional value that
depends on the volumes that agent A and B occupy (V4 and Vs respectively) and
approaches the value of one in the limit of very small agent volumes (Eq. 26).

VitV
V

cell

a=1 (26)
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Selection of Simulation Timestep Size

The typical process for determining the largest possible timestep to use for a
simulation depends on the slowest occurring event in the system, whether that be
movement, transformation, binding or unbinding. As a first step, one should select
the fastest diffusing molecule (largest diffusion coefficient) that will be modeled and
plug the value in to Eq. 8, specifying a movement probability of one and the lattice
size used in order to solve for the largest possible timestep that could be used to
model the movement events. The next step is to pick the fastest first-order rate
constant (highest ko) and plug the value in to Eq. 15, specifying a movement
probability of one in order to solve for the largest possible timestep that could be
used to model first-order events. The next step is to pick the fastest second-order
rate constant (highest kon) and plug the value in to Eq. 25, specifying a movement
probability of one in order to solve for the largest possible timestep that could be
used to model second-order events (determine the appropriate cell volume and
number of neighbors based on lattice size, dimensionality and neighborhood
configuration). The final step is to then select from the three derived timesteps, the
timestep that is the smallest - this is the overall fastest occurring event in the
system and will occur with a likelihood of one every timestep throughout the
simulation (if the appropriate conditions are met) - all other events will occur with
lower likelihoods. As an aside, the inclusion of this event in the system is a main
determinant of computational cost since it is limiting the selection of a larger
timestep size.

60



References

1. Von Neumann |, Burks AW (1966) Theory of self-reproducing automata. Urbana,:
University of Illinois Press. xix, 388 p. p.

2. Wolfram S (1983) Statistical-Mechanics of Cellular Automata. Reviews of Modern
Physics 55: 601-644.

3. Bonabeau E (2002) Agent-based modeling: methods and techniques for
simulating human systems. Proc Natl Acad Sci U S A 99 Suppl 3: 7280-7287.

4. Brown DG, Robinson DT (2011) Ecology and Society: Effects of Heterogeneity in
Residential Preferences on an Agent-Based Model of Urban Sprawl. Ecology
and Society.

5. Eppstein MJ, Grover DK, Marshall JS, Rizzo DM (2011) An agent-based model to
study market penetration of plug-in hybrid electric vehicles. Energy Policy
39:3789-3802.

6. Farmer |D, Foley D (2009) The economy needs agent-based modelling. Nature
460: 685-686.

7. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape
panic. Nature 407: 487-490.

8. Li H, Tang M, Shang W, Wang S (2013) Securities Transaction Tax and Stock
Market Behavior in an Agent-Based Financial Market Model. Procedia
Computer Science 18: 1764-1773.

9. Auchincloss AH, Diez Roux AV (2008) A new tool for epidemiology: the usefulness
of dynamic-agent models in understanding place effects on health. Am ]
Epidemiol 168: 1-8.

10. Fallahi-Sichani M, Flynn JL, Linderman JJ, Kirschner DE (2012) Differential risk
of tuberculosis reactivation among anti-TNF therapies is due to drug binding
kinetics and permeability. ] Immunol 188: 3169-3178.

11. Miller ], Parker M, Bourret RB, Giddings MC (2010) An agent-based model of
signal transduction in bacterial chemotaxis. PLoS One 5: e9454.

12. Zhang XH, Tapia M, Webb ]JB, Huang YH, Miao S (2008) Molecular signatures of
two cattail species, Typha domingensis and Typha latifolia (Typhaceae), in
South Florida. Mol Phylogenet Evol 49: 368-376.

13. Gooch K, Reinhardt ], Krakauer D (2013) Complex Matrix Remodeling and
Durotaxis Can Emerge from Simple Rules for Cell-Matrix Interaction in
Agent-Based Models. ] Biomech Eng.

14. Nadell CD, Foster KR, Xavier ]B (2010) Emergence of spatial structure in cell
groups and the evolution of cooperation. PLoS Comput Biol 6: e1000716.

15. Bauer AL, Beauchemin CA, Perelson AS (2009) Agent-based modeling of host-
pathogen systems: The successes and challenges. Inf Sci (Ny) 179: 1379-
1389.

16. Bailey AM, Lawrence MB, Shang H, Katz A], Peirce SM (2009) Agent-based model
of therapeutic adipose-derived stromal cell trafficking during ischemia
predicts ability to roll on P-selectin. PLoS Comput Biol 5: e1000294.

17. Chen WW, Niepel M, Sorger PK (2010) Classic and contemporary approaches to
modeling biochemical reactions. Genes Dev 24: 1861-1875.

61



18. Grima R (2008) Multiscale modeling of biological pattern formation. Curr Top
Dev Biol 81: 435-460.

19. Dobrzynski M, Rodriguez ]V, Kaandorp JA, Blom JG (2007) Computational
methods for diffusion-influenced biochemical reactions. Bioinformatics 23:
1969-1977.

20.Van Kampen N (2011) Stochastic Processes in Physics and Chemistry: North
Holland.

21.Riddick G, Macara IG (2007) The adapter importin-alpha provides flexible
control of nuclear import at the expense of efficiency. Mol Syst Biol 3: 118.

62



Section IV:

Agent Based Modeling of
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Accounting for Diffusion in Agent Based Models of Reaction-Diffusion Systems
with Application to Cytoskeletal Diffusion

Abstract

Diffusion plays a key role in many biochemical reaction systems seen in nature.
Scenarios where diffusion behavior is critical can be seen in the cell and subcellular
compartments where molecular crowding limits the interaction between particles.
We investigate the application of a computational method for modeling the diffusion
of molecules and macromolecules in three-dimensional solutions using agent based
modeling. This method allows for realistic modeling of a system of particles with
different properties such as size, diffusion coefficients, and affinity as well as the
environment properties such as viscosity and geometry. Simulations using these
movement probabilities yield behavior that mimics natural diffusion. Using this
modeling framework, we simulate the effects of molecular crowding on effective
diffusion and have validated the results of our model using Langevin dynamics
simulations. Furthermore, we investigate an extension of this framework where
single discrete cells can contain multiple particles of varying size in an effort to
highlight errors that can arise from discretization that lead to the unnatural
behavior of particles undergoing diffusion. Subsequently, we explore various
algorithms that differ in how they handle the movement of multiple particles per
cell and suggest an algorithm that properly accommodates multiple particles of
various sizes per cell that can replicate the natural behavior of these particles
diffusing. Finally, we use the present modeling framework to investigate the effect
of structural geometry on the directionality of diffusion in the cell cytoskeleton with
the observation that parallel orientation in the structural geometry of actin
filaments of filopodia and the branched structure of lamellipodia can give
directionality to diffusion at the interface of filopodia-lamellipodia interface.

AUTHOR SUMMARY

Computational modeling of biological processes plays a key role in embodying
various sources of experimental information into a comprehensive understanding of
cellular behavior. These models give us the ability to perform in silico experiments
to test hypotheses, better understand how pathway components and parameters
affect the system and potentially lead to new experiments. Different modeling
methodologies cover a wide range of spatiotemporal scales with each methodology
being best suited to a particular class of problems based on the assumptions made
and computational costs incurred. Biochemical models range from computationally
inexpensive but spatially undetailed macro-scale continuum models to
computationally expensive and spatially detailed all-atomistic models. Agent based
modeling is emerging as a highly capable method for simulating biochemical
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systems at the meso-scale range of the modeling spectrum with application to
modeling cellular pathways. Agent based models of cellular pathways have
traditionally relied on arbitrary movement rules and rates for simulating diffusion
of biochemical components despite the fact that diffusion plays an important role in
determining how the system evolves through time as a result of phenomena such as
emergence of spatial gradients or molecular crowding. Subsequently, we explore
methodologies for the accurate modeling of diffusion in agent based models.
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Introduction

Diffusion is a key driver of many biological processes in living systems where ions
and molecules move down concentration gradients as a result of their thermal
motion within solutions. This phenomenon can be modeled using various
computational techniques that consume varying degrees of computational
resources correlated with the degree of molecular detail provided by the model. Of
specific interest are modeling techniques that account for diffusion and reaction of
molecules in biological systems.

Current methods for modeling reaction-diffusion systems generally rely on ordinary
differential equation (ODE) models in which the system is assumed to be well-mixed
and molecules of interest exist in high numbers, satisfying the continuum
assumption [1-3]. These models ignore both the spatial detail and the stochastic
behavior observed in natural systems. Other techniques with applications to
modeling cellular pathways include partial differential equation (PDE), chemical
master equation (CME) and reaction-diffusion master equation (RDME) models that
are capable of accounting for spatial varying levels of spatial detail and stochasticity
at the cost of increased computational time. These techniques are well-suited for
modeling a range of biological phenomena (ODE/PDE methods are ideal for
metabolic network models, CME/RDME methods are ideal for gene expression
models), with each technique limited by spatial, stochastic and computational cost
constraints [1-5]. On the other end of the modeling spectrum are more accurate
Brownian dynamics (BD) and Langevin dynamics (LD) models that explicitly
account for the diffusion and interaction of individual molecules with the ability to
track these individual molecules and assess the effects of spatial and environmental
properties that result in the emergence of phenomena such as molecular crowding.
These models have additional computational costs associated with them, resulting
in limitations to the simulation time and length scales. Recently, agent based models
(ABM) have been applied to simulating reaction-diffusion systems [6-9] and have
the potential to bridge the gap between spatiotemporally detailed but
computationally expensive BD/LD methods and the less detailed but
computationally inexpensive ODE/PDE/CME/RDME methods.

Agent Based Models

Agent based modeling is a robust computational technique used to simulate the
spatiotemporal actions and interactions of real-world entities, referred to as
“agents” in an effort to extract their combined effect on the system as a whole. Both
space and time are discretized in an agent based model, giving these autonomous
agents the ability to move and interact with other agents and their environment at
each time step over a given duration. Simple behavioral rules govern the movement
and interaction of each individual entity in an effort to re-create or predict more
complex behavior of multiple entities. Such a model attempts to simulate the
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emergence of complex phenomena that may not be apparent when simply
considering individual entities. Agent based modeling has seen applications in a
broad range of fields ranging from artificial intelligence and gaming to modeling
emergent social behavior such as the spread of disease and outcomes of financial
markets [10-14]. In their simplest form, these agent based models consist of a mesh
of “cells” that make up the discretized space that agents occupy. The agents occupy
these cells and are typically only aware of other agents within their “neighborhood”;
in the simplest form a neighborhood consists of adjacent cells. Agents are given the
ability to move into adjacent cells and to interact with other agents with some
probability in conjunction with governing rules that define what movement and
interactions are possible.

In a physical system we can attribute the diffusion of a particle in solvent to the
instantaneous imbalance of the combined forces exerted by collisions of the particle
with the much smaller solvent molecules surrounding it which are moving due to
random thermal motion. In an agent based model the same movement of this
particle due to collisions with much smaller solvent molecules can be implicitly
modeled by correlating the diffusion coefficient of the particle in the specific solvent
to some movement probability for that particle. Furthermore, in a physical system,
steric effects prevent two particles from coming closer than a certain distance from
one another or occupying the same position. This type of behavior can also be
replicated with an agent based model using governing rules that limit the number of
particles per discretized space. As a result of these simplifications, the process of
modeling particles diffusing throughout a space does not require computationally
intensive method for simultaneously calculating velocities of particles and the
effects of repulsive and attractive forces of these particles on other particles within
the system (as seen in BD/LD models). Rather, we can describe diffusion and
interaction in terms of natural language based on simple observations such as:
different particles move throughout space in a random manner, these movements are
related to particle size, and two particles tend to disfavor occupying the same space.
These descriptions based on natural language can be translated into simple logic
rules that govern the behavior of the system. Although ABMs seem ideal for
modeling reaction-diffusion systems, existing ABM frameworks do not consider the
accuracy of particle movement algorithms. Furthermore, particle movement
probabilities are oftentimes selected arbitrarily by the modeler without validating
that the molecules’ movement behavior represents realistic diffusion rates.
Subsequently, agent based modeling of biochemical systems can benefit from
validated movement algorithms and movement probability selection criteria.

We have outlined an approach for establishing the logic rules that govern particle
diffusion along with methods for translating key parameters such as diffusion
coefficients that have continuous and deterministic values into probabilities that can
be used as inputs to a discrete and stochastic agent based model. Additionally, we
validate these methods with single-particle and multi-particle simulations where
normal diffusion is modeled. Furthermore, we investigate the effects of molecular
crowding and high concentrations of macromolecules in the simulation volume as is
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seen in the cell cytoplasm along with their effect on effective diffusion coefficients,
comparing our results with Brownian dynamics simulations. We then investigate
the effect of allowing multiple particles to reside in a discrete cell of finite volume
and quantify and discuss advantages and disadvantages of various approaches of
enforcing finite cell volumes. Finally, we apply the ABM framework to investigate
the role of geometry on the directionality of diffusion and show how specific
geometries can promote diffusion in a particular direction while other geometries
hinder the movement of macromolecules in a particular direction as seen in the
filopodia and lamellipodia regions of the cell cytoplasm with regard to the diffusion
of G-actin.
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Results & Discussion

Relating Diffusion Coefficients to ABM Movement Probabilities

Given a lattice with discretization length of AL, the relationship between diffusion
coefficient (D) and movement probability (7) for a fixed timestep of At is shown in
Eq. (1) (see Methods for derivation).

2
5o T(A)
At (1)
At—0,AL—0

The relationship established in Eq. (1) allows us to take diffusion coefficient values
that are meaningful in a continuous and deterministic framework and apply them to
a discrete and stochastic agent based model via movement probabilities. The
relationship between mean square displacement and time can be used to validate
the relationship derived in Eq. (1) for simulating diffusion via ABM. This means that
movement probability associated with the diffusion coefficient being modeled
should result in displacement behavior and rate that would be seen in a physical

system. The mean square displacement <r2 > of a particle diffusing due to Brownian

motion is proportional to the time elapsed through the following relationship [15]:
<r2> =qDt” (2)

Where q is the numerical constant which depends on dimensionality, g = 2, 4 or 6
for dimensionalities of 1, 2 or 3 respectively and D is the diffusion coefficient and ¢ is
time. The exponent a is the anomalous diffusion exponent where a=1 for normal
diffusion while all other values of a represent anomalous diffusion. This means that
for normal diffusion, there is a linear relationship between the mean square
displacement of a particle and time. If we were to plot the calculated mean square
displacement versus time in our simulation, the linearity of this plot would
demonstrate whether simulated diffusion is normal or anomalous and the slope of
this plot would be related to our diffusion coefficient as described by Eq. (2).

To validate our model for the diffusion of a single particle, we simulated a
macromolecule with a Stokes radius of r=5x107 cm (diameter=10-¢ cm) that was free
to diffuse in a solvent in three dimensional space with a diffusion coefficient of
D=10% cm?/s. We ran our model for 500,000 time steps with a minimum sampling
size of 300 independent runs which resulted in a linear relationship between mean
square displacement and time (a@=0.9992, R?=0.9999) which implies that the model
successfully reproduces normal diffusion behavior. Furthermore, when modeling
multiple particles with different diffusion coefficients in very low concentration
(crowding effects are negligible), it was observed that using Eq. (1) to derive
movement probabilities for each particle type produced the same linear relationship
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between the measured mean square displacement and time (normal diffusion was
observed) with different slopes for each particle type that corresponded to the
diffusion coefficients being modeled. The deviation from linearity in this case was
on the same order as that of the single particle and is most attributed to the
stochastic nature of the model and the sampling size used. Additionally, it should be
noted that as At and AL become larger (more coarse grained models) the error in
the simulation also increases as a result of the approximations made in Eq. (1).
However, this discretization error is typically negligible when compared to the
variations resulting from the stochasticity of the model and more importantly, such
a change in discretization will result in the loss of detailed spatial and temporal
information.

Crowding effects on Diffusion and Multiparticle Occupation of Cells

The relationship between crowding due to increased concentration and the effective
diffusion at low time scales is shown in Eq. (3) (see Methods for derivation).

D(C)=(=CV sV 1) D(0) (3)

Where D(C) is the effective diffusion coefficient as a function of concentration and
D(0) is the diffusion coefficient of a particle in a low concentration system and C,
Velement and Ny represent concentration of crowding molecule, volume of a discrete
element and Avagadro’s number respectively and the product of these three terms
is equivalent to the probability of finding any discrete cell to be occupied by a
molecule (Po“=CVeiementN4). In order to determine how higher concentrations affect
particle diffusion we performed Langevin dynamics simulations utilizing the shifted
force form of the Lennard-Jones potential energy function that assessed the effective
diffusion coefficient of a particle as the concentration of particles in the system was
increased. The analytical relationship shown in Eq. (3) is in agreement with the
computational result from Langevin dynamics simulations shown in Figure 1 (circle
points). These results can be compared with the result of the two different diffusion
algorithms, all-neighbor attempt and single-neighbor attempt, used in the agent
based model as shown in Figure 1 (square and triangular points respectively). The
single-neighbor attempt algorithm results are in agreement with both the Langevin
dynamics simulation as well as the analytical relationship, showing that as
concentration of particles in the system increases, the effective diffusion coefficient
decreases linearly. The all-neighbor attempt algorithm that searches for
neighboring vacant cells results in unnaturally higher effective diffusion coefficients.

This higher effective diffusion coefficient of the all-neighbor attempt algorithm can
be attributed to the algorithm simulating “intelligent particles” that search for
vacancies rather than the behavior of “non-intelligent particles” that diffuse
randomly due to Brownian motion. The behavior exhibited by the single-neighbor
attempt algorithm is considered best suited for modeling the diffusion of passive
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“non-intelligent” molecules and macro-molecules such as proteins involved in
reaction-diffusion systems. Furthermore, this phenomenon is critical for modeling
macromolecular crowding and its direct effects on intracellular diffusion as well as
reaction Kkinetics in intracellular environments. Alternatively, the all-neighbor
attempt algorithm would be better suited for intelligent agents that can sense the
environment around them using means other than collisions. The implementation of
a single-neighbor movement algorithm is a very computationally efficient way of
providing detailed spatial information for diffusing particles while enforcing steric
repulsion and simulating molecular crowding.
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Figure 1. Effective diffusion coefficient versus normalized free particle
concentration (volume density) for two agent based model algorithms and a
Langevin dynamics simulation for comparison. The graph shows the single-
neighbor attempt algorithm to best represent diffusion at higher concentrations as
the effective diffusion of this algorithm decreases linearly with increased
concentration as does the Langevin dynamics model. As the graph shows, the
single-neighbor attempt and Langevin dynamics simulation exhibit the same
negative linear slope with a slight difference in offsets resulting from the different
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definition of particle volume between the two modeling techniques. Higher
concentration data points for Langevin dynamics have been omitted as the volume
definition of particles leads to volume overlap at this concentration.

The issue of crowding effects becomes more complex when considering systems
with particles of varying size. In the simplest case where the model allows for only a
single particle per cell, discretization errors can arise from small molecules
saturating the available vacancies and reducing the effective diffusion coefficient,
when in reality the volume density of the system has not been changed significantly.
This error arises from discretization and the simplification that the smallest
particles occupy the same volume as that of the largest particles. This issue can be
overcome by introducing an additional layer of complexity in the agent based model
where multiple particles are allowed to occupy a single cell. In this framework each
particle is given a volume value, typically a fraction of the discretized cell’s volume
which it occupies, ranging from 0 to 1. As this framework is adopted, multiple
particles are allowed to diffuse into a single cell and steric repulsion between
particles is no longer intrinsically observed as it was with single particles per cell,
raising concerns about individual cells’ volume limits being exceeded at high
concentrations of particles.

The most intuitive method for ensuring that the number of particles per cell does
not exceed the cell’s volume is to simply enforce that the movement of any particle
into a destination cell will not surpass that cell’s volume limit. Although this method
is seemingly straightforward and adds minimal computational cost (see flowchart,
Figure 2.a), it results in the emergence of artificially high diffusion for particles of
smaller size and artificially lower diffusion for larger particles (see Figure 3). In
addition, as Figure 3 depicts, the effective diffusion of particles obeying the volume
limit (VL) method is subject to artificial limitations resulting in the stair-step
behavior. For example, in a concentrated environment where the cell’s fraction
volume cannot exceed 1, no cell can contain more than a single particle of volume
fraction greater than 0.5. This means that when a three dimensional discretized
space of 1000 elements has 1000 particles of size 0.51 fractional volume or larger
(Figure 3b), no particles in the system will diffuse since any movement will result in
the volume limit being exceeded.

One method for rectifying the problem of artificially higher diffusion for smaller
particles in the volume limit method is by adding a probability term based on cell
capacity to the movement logic. In the combined reduced probability and volume
limit method (RP + VL) shown in Figure 3, as a cell’s occupied volume increases, the
probability of movement into that cell decreases. This adds additional
computational time due to the random number generation required each time the
cell’s volume is not exceeded and a move is attempted (see flowchart, Figure 2.b)
but has the added benefit that it better matches the true behavior of the diffusion of
multiple particles at physiologically relevant concentrations. However, as depicted
in Figure 3, this method of reduced probability combined with the volume limit is
only effective at accurately modeling concentrated systems with smaller particles.
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Finally, we can best match the actual diffusion behavior by removing the volume
limit and simply reducing the probability of movement based on the fraction of a
cell’s occupied volume (RP method shown in Figure 3). This method is the most
computationally intensive of the three as it requires a random number generation
for every attempted move, regardless of whether a cell is occupied or empty (see
flowchart, Figure 2.c). This method is the suggested method when investigating
systems with molecular crowding as it best conforms to the expected behavior of
multiple particles in a concentrated environment which can be attributed to the
steric repulsion that would prevent multiple particles from occupying the same
position in space at a particular time. The error at high concentrations with larger
particle sizes in the reduced probability method (RP) models each cell as an elastic
box capable of briefly exceeding the cell’s maximum volume. However, as shown in
Figure 3a, the error in this method is less than 5% at physiologically relevant
crowding volumes of 10% - 40% excluded volume [16-17].
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Figure 2. Flowcharts showing the algorithm of three various methods for simulating
steric repulsion of multiple particles per cell. a) the Volume Limit (VL) method is
the most computationally efficient, b) followed by the Reduced Probability + Volume
Limit (RP + VL) method and c) the Reduced Probability (RP) method being the least
computationally efficient. The degree of accuracy for which each method models
steric repulsion is illustrated in Figure 3.
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Figure 3. In systems of high concentration a) 500 particles in a system with 1000
cells, b) 1000 particles in a system with 1000 cells and c) 2000 particles in a system
with 1000 cells, it can be seen that three different methods for handling the
movement of multiple particles per cell result in significantly different behavior.
The volume limit method (VL) is the most computationally efficient by simply
limiting the movement of particles that would result in the fraction of occupied
volume of a cell exceeding 1. However, it is also the least accurate when dealing
with crowded environments. The combined reduced probability and volume limit
method (RP + VL) is slightly less computationally efficient but is much more
representative of crowded diffusion when the particles are of smaller volume. The
reduced probability method (RP) is the least computationally efficient of the three
but best represents the crowded diffusion for most particle sizes. Additionally, the
system with 500 particles in 1000 cells deviates the least from actual when using
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the RP method while the more crowded systems deviate more, confirming that the
RP method can accurately model physiologically relevant concentrations.

Geometry Effects on Diffusion

To demonstrate a biolgoical application of the proposed agent based diffusion
method, we have modeled the effect of structural geometry on diffusion
directionality. In this model, we show the effect of quasi-random versus parallel
structural geometries of filaments similar to what is seen in the structure of cell
actin filaments in the form of lamellipodia versus filopodia [18-19]. Actin dynamics
are thought to play a key role in cell motility [20-23]. Additionally, it has been
shown that the flow of actin monomers in the lamellipodia cannot be explained by
diffusion alone and may involve some form of active transport [24]. Moreover, due
to the parallel orientation of actin filaments in the filopodia, and their longer length
as a result of inhibition of the capping process, the actin monomers required for
polymerization of actin filaments of the filopodia must travel a greater distance to
where they are needed [19,25-27]. In this model, we investigate how the structural
geometry and orientation of these filaments affects the directionality of diffusion of
the monomers.
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Figure 4. Representatitve cross-sectional illustration of the xy-plane of the three-
dimensional simulation box of size Lx=400nm, Ly=200nm, and Lz=100nm with
periodic boundary conditions in the y-direction only. The parallel filaments in the
right half of the box (x>200nm) represent the filopodia while filaments in the left
half (x<200nm) represent the lamellipodia in the cell. The green particles represent
the freely diffusing actin monomers which are distributed in three-dimensional
space near x=200nm.
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The model environment consists of a simulation box of size Lx=400nm, Ly=200nm,
and Lz=100nm with periodic boundary conditions in the y-direction only. Figure 4
shows an illustration of a representative cross-sectional snapshot of the xy-plane of
the simulation box with the right half containing parallel filaments and the left half
containing a uniform density of filaments oriented at 68+2 degrees from one
another in three dimensional space (prior to discretization) [18,23,28-29]. This
configuration was chosen not only to investigate geometry effects on diffusion but
more specifically to model actin dynamics at the lamellipodia and filopodia
interface.
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Figure 5. Normalized free particle concentration as a function of position for
snapshots of time ranging from 1 to 2000 time steps with a time step increment of
74ps for a fixed actin filament volume density of 0.25 averaged over ten runs.
Initially at t=1 the distribution of particles is uniform whereas at each subsequent
time step shown, the filopodia region (x>200nm) is seen to have a higher free
particle concentration than the lamellipodia region (x<200nm).
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Actin filaments were initially generated in a non-discretized 3D environment with
continuous filaments spaced a uniform distance apart and oriented parallel to one
another within the filopodia region and conversely, filaments positioned randomly,
with uniform density and oriented 68+2 degrees from each other in the lamellipodia
region. The continuous actin polymers were then discretized into individual
particles representing pairs of g-actin monomers fixed in space that occupy the full
volume of each cell. It should be noted that the total number of particles (g-actin
monomer pairs) in the lamellipodia and filopodia are equal to avoid obstacle
concentration effects. Agent based modeling was used to investigate the effect of
various actin filament densities on the directionality of free actin diffusion. As
Figure illustrates, free particles diffuse more easily in the direction of the filopodia
(x>200nm) as opposed to the direction of the lamellipodia (x<200nm). The
simulation was run using characteristic values for the g-actin monomer diameter
and diffusion coefficient of AL=5nm and D=5.65um?/s [19,30-31] in a three
dimensional space with a movement probability of T=1 given that only one particle
type is diffusing in the simulation and the movement probability is maximized in
order to maximize computational efficiency. Subsequently, the time step of the
simulation can be determined to be At=74us using the relationship established in Eq.

(1)

In order to show the time progression of concentration differences between the
filopodia region and lamellipodia region at different fixed actin filament volume
densities, we calculate the ratio of the center of mass of diffusing particles in the
filopodia region to that of the lamellipodia. Eq. (4) shows the method used for
calculating the center of mass for each region where R represents the center of mass
and N; represents the number of freely diffusing actin monomers at position x;.

le.Nl.
55

Figure shows the ratio between the center of mass of particles diffused in the
filopodia to that of the lamellipodia as a function of time for different fixed actin
filament volume densities using simulation parameters of AL=5nm and D=5.65um?/s
in a three dimensional space with a movement probability of T=1 given that only
one particle type is diffusing in the simulation. The general trend seen from these
results is that there is an initial peak in the tendency of particles to diffuse into the
filopodia region (region with parallel filaments) for all fixed particle densities
greater than zero. Subsequently, this peak diminishes over time (ratio decreases
towards 1) as particles reach the x-direction extremes and begin to distribute
uniformly throughout space.

R=

(4)

In addition, it can be seen that as the density of fixed actin filaments is increased, the
tendency of particles to diffuse towards the region of parallel filaments is only
increased. This is most likely a result of random filaments generating a longer path
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that must be taken from the center of the simulation box to the left extreme whereas
the parallel filaments generate the shortest possible distance that can be taken from
the center of the simulation box to the right extreme which is effectively a reduction
of dimensionality.

1.8 T [ T '
- vy-— v N
4 - \\-z\"‘”
16 I~
= Prixea=0
A Priceg=0-166
e ,«" Y Prixed=0-29
14 O P339
~ / W Preq=0-5
(1'd
B N X :
t —e
/ ""“._,&\nn-
= A— —h— — A
A,
1 " . m
1000 2000 3000
t

Figure 6. Ratio between the center of mass of particles diffused in the filopodia to
that of the lamellipodia as a function of time for different fixed actin filament volume
densities. There is a tendency for particles to diffuse towards the filopodia region as
a result of the geometry of filaments in each region. This phenomenon is only
amplified as the density of fixed actin filaments is increased.
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Methods

Relating Diffusion Coefficients to ABM Movement Probabilities

Fick’s second law relates the effect of diffusion on the concentration field of particles
over time [32]. We can express this relationship in terms of the probability of
discretized cells being occupied rather than concentration, Eq. (5), by considering
the relationship between concentration and the probability of a cell being occupied
by an agent, Eq. (6).

occ 2 poce
oP :Da P

ot ox’ (>)
C — NParticles — P e ( 6)
N cell I/elementN A V;lement N A

Note that the variables Pocc, D, t, and x in Eq. (5) represent probability of finding an
occupied cell, diffusion coefficient, time, and position respectively while the
variables C, Nparticies, Ncell, Velement, Na, and P°cc in Eq. (6) represent concentration,
number of particles, number of cells, volume of each element, Avagadro’s number
and the probability of finding an occupied cell respectively.

The diffusion term in Eq. (5) is a factor dependent on temperature of the solvent,
size and shape of the particle, and viscosity of the solvent that quantifies the ratio of
Brownian forces to drag forces. Factors such as force and velocity are not explicitly
calculated in a simple agent based model and the coarse discretization of space that
limits the direction of movement would make such calculations meaningless.
Rather, in an agent based model, diffusion can be simulated by assigning a
probability of movement to each particle agent. The relation between movement
probability and a physically meaningful diffusion coefficient is derived below.

We consider a one-dimensional lattice with discretized segments of length AL as
shown in Figure to derive the relationship between a physical diffusion coefficient
and a movement probability to be used in our agent based model. We can define the
probability of finding a single particle at position X, at time t+At as:

P

nt+At

=F,—F ;=B T, +F_ Tx + P, T, (7)
Where Pn¢, Pn-art and Pn:an:e represent the probability of finding the particle at
position Xp, Xu-aL and X+ a1 respectively at time ¢; Tr and TL represent the probability
of the particle moving to the right or left respectively. Note that unless otherwise
noted, all probability terms represent the probability of the respective cell being
occupied. Eq. (7) states that the probability of a particle being found at X, at time
t+At can be determined based on the probability that the particle was initially in that
position and remained there (first term) less the probability that the particle started
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in that position and moved to either the right or left cells (second and third term)
plus the probability that the particle was initially to the left or right of that cell and
moved to the right or left respectively (fourth and fifth term).

n n+

Al
P T pT

nit R

\ 4
[+ At

Figure 7. Discretized one-dimensional space with square lattices of length AL
depicting how probabilities of particles existing in a cell at time ¢t combined with
movement probabilities result in a change in the probability of a particle occupying
a cell at time t+At as outlined by Eq. 7. Note that the circles in each cell do not
represent individual particles; rather they qualitatively represent probabilities of a
particle residing in that cell.
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Taylor expansion of the terms in Eq. (7) asA¢,AL — 0 gives the following
relationship:

0B, 2T (ALY’ 9°R,,
ot 2 At ox?

(8)

This assumes that movement probability in both directions are equal (T.+Tr=2T).
Eq. (8) relates how the transition probability affects the spatial distribution of
particles with time, similar to Eq. (5). Thus we can relate diffusion (D) to movement
probability (T), using discretization length (4L) and time (4t) as previously shown
in Eq. (1) for diffusion of a particle on a discrete cubic lattice.

Crowding effects on Movement Probability

The computational model and analytical solutions described thus far pertain to the
diffusion of a single particle in a discretized space. In addition, it is necessary to
validate the model behavior in high particle concentrations to ensure that the model
behaves in accordance with physical phenomena. Using the same approach used to
determine movement probability for a single particle in Eq. (1), we can analytically
derive the effective diffusion coefficient for a high concentration, multiple particle
system in a stochastic agent based model. Given the same one-dimensional
discretized environment from Figure , we can modify Eq. (7) to now incorporate the
effect of multiple particles.

P.xn=F,-B TP, —B TP b B+, TR (9)

n,t+At nt” R" n+ALt nt” L n—AL,t —AL,t" R n+ALt" L

Where Pve¢ represents the probability of finding the given cell to be vacant. Eq. (9)
states that the probability of a particle being found at X, at time t+At can be
determined based on the probability that the particle was initially in that position
and remained there less the probability that the particle started in that position and
moved to either the right or left cells plus the probability that the particle was
initially to the left or right of that cell and moved to the right or left respectively if
cell X, was vacant plus the probability of the particle in cell X, attempting to move to
the right or left into an occupied cell resulting in the particle remaining in cell X.
Taylor series expansion of the time and position varying terms along with the
relationship that Pvac = 1-Pocc gives the solution shown in Eq. (10).

P *d°P,
a n,t :(1 Pucc)zT (AL) a

10
ot 2 At 82 (10)

Note that Eq. (10) is similar to the relationship derived for the single particle
concentration field and has the same relationship relating movement probability to
diffusion coefficient as the single particle with an additional term related to the
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probability of cells being occupied by particles. As shown in Eq. (6), this probability
of cells being occupied by particles is directly related to the concentration of the
system (C:POCC/VelementNA)-

Model Details

Our agent based model consists of a three-dimensional discretized space that can be
bounded or unbounded in which various types of agents diffuse by moving between
neighboring cells of cubic shape with a given movement probability that
corresponds to the particle’s respective diffusion coefficient (Eq. (1)). In this model,
we incorporate a von Neumann neighborhood consisting of the six cells
orthogonally surrounding an agent in 3D space. Agents in this model can only
interact with other agents within their von Neumann neighborhood and can only
move in the direction of von Neumann neighborhood cells.

At higher concentrations, two methods for particle movement consisting of an all-
neighbor attempt and a single-neighbor attempt algorithm are assessed. These
movement methods differ in that an all-neighbor attempt is an intelligent agent
movement procedure in which all von-Neumann neighborhoods are searched at
random until an empty cell is found for the agent to move to while in the single-
neighbor attempt a von Neumann neighbor is selected at random, disregarding
whether it is occupied or vacant. If the cell is occupied the movement is rejected
and the agent remains in its current cell while movement into a vacant cell is
accepted with some probability correlated to the diffusion coefficient. In this
second method, rejected movements represent a collision between two particles
resulting in both particles remaining in their respective cells. Figure also shows the
process for single-neighbor attempt movements.

The model was developed using object oriented FORTRAN to maximize
computational efficiency. Agent based modeling benefits significantly from object
oriented programming since the concept of an object is similar to the concept of an
agent. Moreover, agent based modeling is very computationally efficient for large
systems and long time scales when compared to modeling techniques such as
Langevin dynamics as shown in Figure at the cost of reduced spatial and temporal
detail. Additionally, the discrete nature of the model makes it an ideal candidate for
parallelization and distributed computing, resulting in further computational
efficiency [33].
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Figure 8. Method for modeling diffusion using physically observed diffusion
coefficients (translated to movement probabilities) as an input in an agent based
model. Additional details regarding the movement algorithm (specifically the
single-neighbor attempt) are illustrated.
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ft of particles 400
Diffusion Coefficient 7.1x 107 cmi/fs
L of simulation box 52 nm
Simulation time 32 ms
At 0.16 ns 37.5ns
# of time steps ~108 ~10°%
o S nm N/A
Cutoff 1.10* N/A
Discretization N/A (4 nm)? 13x 13 x 13
Particle diameter 5nm 4 nm
Volume fraction occ. 0.186 0.182
COMPUTETIME 1.75 CPU hours 0.004 CPU hours

Figure 9. Benchmark showing compute time between a Langevin dynamics
simulation and an agent based model of 400 particles diffusing in the same size
simulation box and both simulations having the same fraction of volume occupied.
The agent based model used a discretized simulation box of 13 x 13 x 13 with cubic
cells of 4nm in length. The Langevin dynamics model incorporated the Cichocki and
Hinsen method [34] for simulating hard-spheres and utilized further optimizations
such as neighbor lists to maximize computational efficiency. *The Langevin
dynamics simulation cutoff was set lower than typical to simulate hard spheres to
match that of the agent based model. Typical Langevin dynamics models use higher
cutoffs resulting in additional computation time.
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Higher Affinity Importinf Binding at the Nuclear Basket Increases
Nucleocytoplasmic Import

Abstract

Several in vitro studies have shown the presence of an affinity gradient in nuclear
pore complex proteins for the import receptor ImportinB, at least partially
contributing to nucleocytoplasmic transport, while others have historically argued
against the presence of such a gradient. Nonetheless, the existence of an affinity
gradient has remained an uncharacterized contributing factor. To shed light on the
affinity gradient theory and better characterize how the existence of such an affinity
gradient between the nuclear pore and the import receptor may influence the
nucleocytoplasmic traffic, we have developed a general-purpose agent based
modeling (ABM) framework that features a new method for relating rate constants
to molecular binding and unbinding probabilities, and used our ABM approach to
quantify the effects of a wide range of forward and reverse nucleoporin-Importinf3
affinity gradients. Our results indicate that transport through the nuclear pore
complex is maximized with an effective macroscopic affinity gradient of 2000uM,
200uM and 10uM in the cytoplasmic, central channel and nuclear basket
respectively. The transport rate at this gradient is approximately 10% higher than
the transport rate for a comparable pore lacking any affinity gradient, which has a
peak transport rate when all nucleoporins have an affinity of 200uM for Importin.
Furthermore, this optimal ratio of affinity gradients is representative of the ratio of
affinities reported for the yeast nuclear pore complex - suggesting that the affinity
gradient seen in vitro is highly optimized.
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Introduction

The Nuclear Pore Complex and Nucleocytoplasmic Transport

Spatial segregation of genetic material in the nucleus from the cytoplasm gives
eukaryotes the ability to highly regulate gene expression and DNA replication. By
regulating import to and export from the nucleus, the nuclear pore complex (NPC)
plays a critical role in cell physiology - enabling rapid yet selective bi-directional
flow of material into and out of the nucleus to maintain cellular functions. For
example, RNA synthesized in the nucleus must be shuttled to the cytoplasm for
protein synthesis while proteins involved in the transcription of these RNAs must
simultaneously be shuttled into the nucleus. While small molecules (diameter of <9
nm) passively diffuse across the channel, larger molecules rely on an active (energy
dependent) mechanism for transport. This pore’s selectivity for active cargo
transport is achieved through a combination of structural features and biochemical
pathways that lead to a still elusive transport mechanism for which there exist
several competing hypotheses.

The NPC itself is a ~60MDa (in yeast) to ~125MDa (in vertebrates) macromolecular
assembly composed of multiple copies of ~30 different proteins termed
nucleoporins (Nups) that are evolutionarily conserved across eukaryotes and
embedded in the nuclear membrane with eight-fold radial symmetry [1-4]. These
Nups form eight cytoplasmic filaments that protrude from the nuclear envelope into
the cytoplasm and another eight that project into the nucleus and are bound by a
ring at their distal end to form a basket. The pore is anchored to the nuclear
envelope by a membrane layer that surrounds the scaffold layer (Fig. 1). This
scaffold layer provides structure and serves as an anchor for Nups that contain both
structured domains as well as highly unstructured domains - rich in phenylalanine-
glycine repeats -that are believed to be principally responsible for selective
transport (FG-Nups). The FG-rich regions of these Nups present an affinity for
hydrophobic patches present on transport receptor proteins involved in shuttling
cargo across the nuclear envelope. The mechanism by which these Nups regulate
transport remains a topic of much debate and has lead to the proposal of several
competing models such as Brownian affinity gating [2,5,6], selective phase [7-11],
affinity gradient [12,13], reversible collapse [14-16] and reduction of dimensionality
[17], among others. Additional details of NPC structure and function can be found in
our recent review [18].

While these models aim to explain the pore’s selectivity, other models were
proposed to resolve contributors to transport directionality. The affinity gradient
model emerged as a plausible explanation as a result of in vitro measurements in
yeast and vertebrae demonstrating the presence of an increasing affinity gradient in
Nups moving from the cytoplasm to the nucleus - suggesting that this affinity
gradient provided transport directionality to cargo bound to transport receptors
[12,13]. Other studies found that the source of directionality of import complexes
was a result of the steep RanGTP gradient present across the pore with high
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concentration of RanGTP in the nucleus, stemming from the presence of the
nucleotide exchange factor RanGEF (Ran Guanine nucleotide Exchange Factor) and
low concentrations of RanGTP in the cytoplasm due to hydrolysis via RanGAP
(GTPase activating protein). These studies showed that reversal of the RanGTP
gradient across the pore resulted in the reversal of transport directionality in spite
of any affinity gradient [19]. Nevertheless, the contribution of the observed affinity
gradient or a partial affinity gradient to transport efficiency remains unexplored
with traditional experimental methods. More specifically, it is unclear whether (i)
the presence of a Nup-Impf affinity gradient affects nucleocytoplasmic transport
rate and whether (ii) there exists an affinity gradient that can optimize transport
rate beyond that of the reported in vitro gradient. To answer these questions, we
have developed an agent based model to perform in silico measurements of Impf3
translocation across the NPC.

"‘i | \
FG Nups layer \ | \

/ Cytoplasmic filaments

Scaffold layer

Cytopl icRi
Membrane layer ytoplasmic Ring

o s 3 X
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Nuclear ring
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Figure 1. Schematic of the nuclear pore complex. The pore is anchored to the nuclear
envelope by a membrane layer that surrounds the scaffold layer. This scaffold layer
provides structure and serves as an anchor for Nups that contain both structured
domains as well as highly unstructured domains that are thought to form a barrier
that excludes non-interacting molecules while allowing for selective transport of
others. This central channel exhibits eight-fold rotational symmetry and has eight
cytoplasmic filaments as well as eight nuclear filaments protruding into the
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cytoplasm and nucleoplasm respectively. The nuclear filaments are bound via a ring,
resulting in a basket structure.

Agent Based Modeling

Agent based modeling (ABM) is a robust computational technique used to simulate
the spatiotemporal actions and interactions of real-world entities or “agents”, in an
effort to extract their combined effect on the system as a whole. Both space and time
can be discretized in an ABM, giving these autonomous agents the ability to move
and interact with other agents and their environment at each timestep over a given
duration. Simple behavioral rules govern the movement and interaction of each
individual entity in an effort to reproduce or predict more complex behaviors of
multiple entities. Such a model attempts to simulate the emergence of complex
phenomena that may not be apparent when simply considering individual entities.
Agent based modeling has seen applications in a broad range of fields ranging from
artificial intelligence and gaming to modeling emergent social behavior such as the
spread of disease and outcomes of financial markets [20-23]. In their simplest form,
on-lattice agent based models consist of a mesh of “cells” that make up the
discretized space that agents occupy. The agents occupy these cells and are typically
only aware of other agents within their “neighborhood”; in the simplest form a
neighborhood consists of adjacent cells. Agents are given the ability to move into
adjacent cells and to interact with other agents with some probability in conjunction
with governing rules that define what movement and interactions are possible (Fig.
2). On-lattice agent based models have previously been applied to biological
systems involving diffusion, binding and unbinding [24-26]; establishing methods
for event probability selection - relating diffusion and rate constants to event
probability - will improve model accuracy and enable quantitative analysis of
results from these models [27,28].

In the present work we develop a method for relating real world rate constants to
molecular binding and unbinding probabilities within the agent based model. We
then build upon our ABM framework [27] to explore the role of an affinity gradient
between Nups and the nuclear transport factor, Impf in nucleocytoplasmic import
efficiency. We model the system using affinity gradients derived from in vitro
experiments and compare these to NPCs lacking affinity gradients as well as a wide
range of forward and reverse affinity gradients in order to address the following
questions: (i) Does the presence of a Nup-Impf affinity gradient affect transport
rate? (ii) Does there exist an affinity gradient that can optimize transport rate
beyond that of the reported in vitro gradient?

To answer these questions, simulations were carried out using a computationally
efficient, spatiotemporally detailed, three-dimensional agent-based model
developed specifically for modeling molecular diffusion, binding and unbinding
events with consideration for physical factors such as molecular crowding and steric
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repulsion. In addition to movement and interaction rules, event probabilities govern
system dynamics in the agent-based model. Methods for accurate selection of
movement, binding and unbinding probabilities to best represent actual diffusion
coefficients and Kkinetic rate constants can build confidence in the output of agent
based models and deductions from these models. The procedure for relating real
world rate constants to molecular binding and unbinding probabilities is detailed in
the Materials and Methods.

Agent interacting with neighbor
in von Neumann Neighborhood

Information about
the environment

Figure 2. Simplified representation of the agent based model. Abstract cartoon
representation of the nuclear pore structure environment (not to scale) projected
onto a simplified, 2-dimensional, on-lattice ABM with agents representing proteins
that move within the system and interact with other agents within their von-
Neumann neighborhood. The actual model consists of a three-dimensional
representation of the NPC structure and physiologically relevant concentrations of
biochemical factors and channel dimensions. In our model, the purple region
representing the cytoplasmic periphery is treated as a compartmentalized volume
containing non-interacting Nup and Impp-interacting FG-Nup agents. Similarly,
central channel (blue) and nuclear basket (green) regions are represented by
compartmentalized volumes, containing both non-interacting and interacting Nup
agents at physiologically meaningful concentrations. Grey regions of the diagram
represent the scaffold and nuclear envelope regions of the model that are
impermeable to diffusing species.
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Materials & Methods

Probability Selection for Molecular Movement on an ABM Lattice

In our previous work we proposed a method for movement probability selection
based on molecular diffusion coefficient along with algorithms for realistic
consideration of crowding and steric repulsion [27] that was also used in the
current model:

Pmove = (1)

Here, movement probability of an agent is determined by its diffusion coefficient
( D), simulation timestep ( Ar) and lattice discretization length ( AL ). We
implemented the reduced probability (RP) method to account for the steric effects of
multiple agents occupying individual lattice sites [27].

Probability Selection for Molecular Binding and Unbinding Events on an ABM
Lattice

The simpler case of the molecular unbinding event, which is representative of a
first-order unimolecular reaction, can be modeled in the ABM using an unbinding
probability, for which derivation of the relationship between kinetic rate constant
and probability is trivial. The reversible binding of two molecules A and B is given in
Eq. (2), followed by the rate law for the unbinding event as a function of number of
bound molecules within the volume of interest (V ):

k

A+B = AB (2)
2 L — _kuﬂ L (3)
at V ’ NAvugadm V ’ NAvagadro

Change in the number of bound molecules (dN,,) is a function of elapsed time (0t ),
kinetic rate constant (&, ) and initial number of bound molecules (N ,;) (Eq. (3)).

Subsequently, the probability that two bound molecules become unbound is
independent of interaction with other molecules; this unbinding probability (P, ) is

shown in Eq. (6) in the limit of very small Ar.
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ON,p=—0t- Koy N a5 (4)

AN 5 = _Po_ﬁ'NAB (5)

Py = koAt (6)

For molecular binding of two molecules, representative of a second order reaction
between adjacent molecules on a lattice - factors such as number of lattice
neighbors and lattice size must be considered. This relationship can be derived from
the second order rate law as a function of number of unbound molecules within the
volume of interest as shown in Eq. (7).

2 NAB :k NA NB (7)
o\ V-Nyaarw) VN V-N

Avagadro Avagadro

Similar to the case of unbinding, change in number of bound molecules can be
expressed as a function of binding events in terms of number of unbound molecules
(N, and N, ) in the volume and their binding kinetic rate constant (%, ) (Eq. (8)) as

well as a function of binding probability (P, ) and the probability of finding
neighboring binding molecules within the lattice system (P, ,_,,.cs0rine )» EQ- (9)-

_k,,N,Not

on

oON,, =
BTYN

(8)

Avagadro
ANAB = PunPA—B—neighboring (9)

The likelihood of finding two unbound agents, A and B, neighboring each other on
the lattice (P,_ ) is a function of the number of unbound A molecules (N, ),

number of unbound B molecules (N, ), number of lattice cells (N,

B—neighboring
), where

cells

number of lattice cells in the system is much larger than the number of unbound
molecules and the number of lattice neighbors each cell has (N,,...., ), Eq. (10).

P N AN B
A—B-neighboring — neighbors
N
cells

(10)

Subsequently, the probability of a binding event between two neighboring

molecules (P, ) can be derived by solving for the likelihood of neighboring binding
molecules in the system (P, ) and combining with Eqgs. (8) and (9) as

shown in Eq. (11).

B—neighboring
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P, = Ko (11)

on \%
%Vcells ) Nneighbors ’ NAvagadro

The general form of the probability of binding provided in Eq. (11) is valid for two
molecules of different types. For binding events consisting of two molecules of the
same type, the probability is reduced by half. Furthermore, Eq. (11) represents the
case where the lattice is restricted to containing a single molecule per cell. In the
case where multiple smaller molecules can occupy a single cell (V,+V,<1), a

correction factor (« ) must be added to the number of neighbors since two unbound
agents within the same cell can bind one another. Eq. (12) provides an
approximation for the correction factor as a function of the sum of molecular
volumes and cell volume.

VitV

a=1 (12)

cell

It should be noted that timestep selection is governed by the smallest of all time
scales associated with diffusion or molecular interaction. In other words, the
simulation timestep should be selected in a manner so that movement or
binding/unbinding event probability does not exceed a value of one.

Comparison of On-Lattice ABM Method to Deterministic ODE Solution

The agent based modeling framework used was an extension of the framework
described in our previous publication, which explored methods for accounting for
diffusion in agent based models of reaction-diffusion. The combined Reduced-
Probability & Volume-Limit (RP+VL) method was used to govern diffusion behavior
[27]. Binding events occurred between neighboring agents or agents within the
same lattice point with probabilities as defined in Eq. (11), while unbinding events
occurred with probabilities as defined in Eq. (6). Binding and unbinding rules were
executed in random order for each agent type at each timestep to avoid the
possibility of biasing a particular agent type to a specific bound or unbound state.

In order to validate these methods, we used the binding relation given in Eq. (11) to
relate rate constants to event probabilities by modeling a system consisting of an
initial concentration of 3mM (2000 molecules in the well-mixed volume) molecules
of type A that undergo a irreversible binding event, A+ A— B. We compare the
time-course data of the model using a deterministic ordinary differential equation
(ODE) solver to that of the stochastic agent based model solution in Fig. 3 for
multiple rate constants. The ABM solution reproduces the average behavior of the
ODE solution without the unnatural smoothness that is seen in the deterministic
model.
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Figure 3. Comparison of ABM and ODE time course data. Comparison of time-course
data from an agent based model of molecular binding to that of the numerical
solution of the ordinary differential equation for the same event. Probability
selection using the relationship in Eq. 11 produces similar behavior to that of the
numerical solution in a well-mixed system at multiple rate constants with the
addition of stochasticity that is expected from natural systems.

ABM System and Simulation Details

The model environment consists of a 42,108 element, three-dimensional lattice
comprised of elements with dimensions of 5nm x 5nm x 5nm. The lattice size was
selected to accommodate the volume associated with the Stokes radius of the largest
single-agent species in the system, in this case Impf (Nups being represented by a
collection of multiple agents). Additionally, the model allowed for multiple agents of
the same or different species type to occupy the same lattice element at any given
time, so long as the available volume of a lattice element was not exceeded by agents
diffusing into it. Discrete lattice elements belong to one of six region types,
cytoplasmic, nuclear membrane, nucleoplasm, cytoplasmic filament periphery,
central channel or nuclear basket. The cytoplasmic region contains Impf3 molecules
at a steady state concentration of 2.5uM while the nucleoplasm contains RanGTP
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molecules at a steady state concentration of 1uM throughout the simulation [29].
The 35nm thick nuclear membrane which partitions the two compartments is
impermeable to all agent types and contains a single nuclear pore with diameter of
30nm at the center and 50nm at the peripheries. The cytoplasmic filament
periphery consists of a 50nm diameter region that extends 30nm into the cytoplasm
while the nuclear basket is composed of a basket shaped region that extends 55nm
into the nucleoplasm [4,30]. The cytoplasmic periphery, central channel and nuclear
basket each contain 24, 80 and 32 agents respectively, which represent the
distribution of FG Nups [31]. In addition to these FG agents, non-FG agents are
added to the channel to represent regions of the Nups that lack affinity for Impf3 but
play a role in sterically repelling molecules, with the sum of the volume of these
Nups corresponding to experimentally reported volumes [31]. Impf and RanGTP
agents are free to diffuse throughout the system while FG agents and non-FG agents
are restricted to movement within their respective pore regions in order to
maintain the permeability barrier. Imp3 and RanGTP agents bind with an on rate of
9.6x10% uM-1sec! [29] while ImpB binds and unbinds FG-Nup agents with a
dissociation constant that was varied from 200nM to 2mM [32].

For simulations where an influx rate was reported (units: Sec'l), the system was
initially brought to steady state. Subsequently, an in silico microinjection of inert
molecules ranging in size from a Stokes radius of 0.531 nm to 2.819 nm was
administered for validation of the model’s ability to reproduce the size exclusion
properties of the nuclear pore as demonstrated in prior experiments [33]. In
addition, the same microinjection was performed using Impf3 to compare the
model’s influx rate for the karyopherin to what had been reported in experiments
from other groups [29]. Simulations were run for a length of 25 to 75 seconds using
a timestep of 2.5x10-¢ seconds with 100 independent stochastic ABM simulations
performed for each configuration. Time course concentration data for each
configuration was averaged over the 100 independent simulations and data points
were fitted to Eq. (13) for comparison with experimental values reported by Mohr
and colleagues [33].
ct)=c,, (1-¢€") (13)

Where c represents concentration of microinjected species and k represents the
influx rate of a given species into the nucleus, which follows first-order kinetics [33].

For simulations where Impf transport rate was reported (units: molecules/Sec),
simulations were run for a length of 2.5 seconds using a timestep of 2.5x10-6
seconds. The system was allowed to reach steady state in the first 1 second and
linear regression was performed on the remaining 1.5 seconds of simulation data to
quantify the number of Impf3 transported to the nucleoplasm as a function of time.
The transport rate for each set of 100 simulations was averaged and reported along
with standard error.
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Importinf Multivalency and Nup-Impf Affinity

The transport receptor Impf has been shown to contain multiple hydrophobic
patches that serve as FG binding sites and are believed to play a critical role in the
shuttling of Impf3 and cargo transport [34]. It has been shown experimentally that
Impf3 contains two FG binding sites near the N terminus (between HEAT repeats 5
and 6, another between HEAT repeats 6 and 7) as well as two FG binding sites near
the C terminus (between HEAT repeats 14 and 15, another between HEAT repeats
15 and 16) [35-37]. Furthermore, Isgro and Schulten identified up to six additional
FG binding sites on Impf using computational methods [38]. Subsequently,
experimentally determined macroscopic affinities (or multivalent affinities) are the
result of combined microscopic affinities (or monovalent affinities) between FG
repeats and the multiple binding sites on Impf3 [32].

In our agent-based model, FG-Nups and Impf3 bind and unbind with a single
probability that corresponds to the macroscopic affinity and represents the
combined effect of microscopic affinities - a simplification that is common to other
models with coarse granularity [39-41]. This simplification is further justified when
considering that: (i) the high concentration of FG repeats that a Nup presents to
Impf (~150mM) results in the receptor strongly tending toward the fully bound
state [32], and (i) consideration that the on-rate for association of Impf8 with FG-
Nups has been approximated to be 107-108 M-1s-1 [12], which suggests that the
receptor reaches a fully bound state within the span of the timestep used in our
simulations (2.5x10¢ seconds). Finally, coarse-grained Brownian dynamics
simulations of cargo transport through the pore have confirmed that once Impp is
hydrophobically engaged with the pore, its monovalent binding sites become fully
saturated at the timescales used in this agent based model [42,43].

Model Validation

In silico experiments were performed to determine the model’s ability to
recapitulate experimentally-determined, size-dependent permeabilities for passive
cargos as well as for Impf3 [29,33]. These simulations served as a control to validate
the model and associated algorithms’ ability to simulate selective transport.
Following a simulated microinjection of non-interacting species in the cytoplasm,
the in silico pore is observed to inhibit the influx of larger species while allowing
smaller species to diffuse through the pore (shown in Fig. 4). Influx rates of non-
interacting species with Stokes radii of ~1nm are on the order of 0.1s'1 while larger
species with Stokes radii of >2.5nm have influx rates of less than 0.001sl. As
expected, a reduced influx rate was not observed for larger species that had affinity
for the FG-Nups. To test this behavior, experiments similar to those performed for
non-interacting species were repeated, replacing the non-interacting species with
2.5uM labeled Impf - in addition to the steady-state concentration of unlabeled
Impf. Influx of Impf into the nucleus was measured for 100 simulations, averaged
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and fit to Eq. 13. Influx rates of 0.367s'1 and 0.391s! were observed for a pore with
uniform Nup-Impf affinity of 200uM and a pore with the optimal Nup-Impf affinity
gradient respectively. These values are comparable with experimentally measured
influx rates of 0.4s1 for Impf3 [29].
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Figure 4. The agent based model recapitulates the experimentally observed size-
dependent permeabilities of passive cargos through the nuclear pore. Following a
simulated microinjection of non-interacting species in the cytoplasm, the in silico
pore is observed to inhibit the influx of larger species while allowing smaller species
to diffuse through the pore. This is in agreement with previous experimental
observations.

Finally, the model’s sensitivity to various simulation parameters was explored.
Previous studies have proposed that import receptors are the rate limiting species
in the import pathway [44,45]. Using the model, we observed a ~50% increase in
Impf shuttling when cytoplasmic Imp[ steady-state concentration was increased
two-fold. Conversely, there was no significant increase in Impf shuttling as nuclear
RanGTP concentrations were increased up to ten-fold (shown in Fig. 9). These
findings are discussed in further detail below. In addition to assessing sensitivity to
biochemical species, we assessed the model’s sensitivity to the simulation timestep

100



used. Cutting the simulation timestep in half (from 2.5x10-¢ seconds to 1.25x10-6
seconds) resulted in an average change in absolute Impf3 shuttling rates of 5.5+3.4%
for a range of Nup-Impf affinities. Nevertheless, the overall relationship between
Nup-Impf affinity and Impf transport rate were preserved, regardless of the
selected timestep.
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Results & Discussion
Transport in the Absence of an Affinity Gradient

Initially, Nup-Impf affinity was kept homogenous throughout the NPC’s three
regions - cytoplasmic periphery, central channel and nuclear basket - to investigate
how a uniform binding affinity affects transport rates. The results of these
simulations display a biphasic behavior in transport rate as channel affinity is
increased from 100nM to 4mM, with peak transport rate of 86.241+1.68 Imp[
translocations per second observed for a channel with a dissociation constant of
200uM (Fig. 5). Recent Brownian dynamics models of single-cargo transport have
shown a similar biphasic behavior in transport time as a function of Nup-cargo-
complex affinity [42]. It is worth mentioning that since Impp is the only transportin
considered in this model, relative transport rates are of more interest than absolute
transport rates (absolute transport rates of Impf3 may differ when considering the
effects of competing transport receptors).
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Figure 5. Impf transport rate through a pore with Nups of uniform affinity.
Transport rates for ABM simulations of Impf through a nuclear pore containing
Nups with uniform affinity (no gradient). Nup-Imp§ affinity is varied from 100nM to
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4mM. The transport rate exhibits biphasic behavior as a function of affinity. At very
high affinities (low Kp), Impf3 is tightly bound to Nups, resulting in slow transport
rates as the Nups become saturated. At very low affinities, Impf3 isn’t able to bind
Nups as efficiently, reducing its resident time at the pore periphery and
subsequently excluding it from the pore interior as a result of steric effects. Peak
transport of 86.24+1.68 transports per second were observed at a Nup-Impf3 affinity
of 200uM. Pores containing Nup bound Imp[3 agents that are capable of diffusing
locally exhibit increased transport rate compared to simulation configurations
where Impf3 becomes immobile once bound to an FG-Nup.

The presence of an optimal binding affinity for transport through a uniform channel
is not surprising. As expected, very low dissociation constants will result in
increased binding time between molecules, resulting in reduced mobility.
Conversely, high dissociation constants will result in a reduction in the time that
Impf is bound to the channel, similar to a molecule with no binding affinity, relying
on diffusion alone to traverse the Nup-obstructed channel. It was observed that the
optimal dissociation constant of 200uM for the uniform affinity pore was the same
as the optimal Nup-Impf affinity within the central channel of the pore with affinity
gradient (Fig. 6 and Fig. 7). Coincidentally, this is also the region with the highest
relative FG motif density [31].

The saddle point observed in the plot of Impf transport rate as a function of Nup-
Impf affinity is due to the motility of Impf3 when bound to high affinity Nups (Fig. 5
- No affinity gradient w/ diffusible Nup-Imp[3 agents). To confirm this, we repeated
the simulations but configured the system so that once an Impf3 agent bound to an
FG-Nup agent, the complex had a movement probability of zero. In this
configuration, the Impf transport rate decreased sharply as Nup-Impf affinity was
increased past 100uM (Fig. 5 - No affinity gradient w/ immobile Nup-Imp[3 agents).
Our assumption that Nup-Impf3 complexes are locally diffusive is based on the
presence of hydrophobic FG-pockets, which bind Impf3 on unstructured regions of
the Nups. Furthermore, Brownian dynamics models demonstrate that cargo
complexes continue to exhibit diffusive movement when bound to Nups lining the
nuclear pore, albeit at a lower rate than their unbound state [42]. The combination
of an increase in time bound between Nup and Impf at higher affinities and the
complex’s local mobility leads to an increase in likelihood that the Imp[3 overcomes
the Nup-dense central channel. However, the motility of Nup-bound Impf3 agents
has no effect on our primary parameter of interest - the Nup-Impf binding affinity
at which peak transport is observed.
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Figure 6. Transport rate as a function of cytoplasmic, central channel, and nuclear
basket Nup-Impf affinity. Impf transport rate (z-axis) as a function of cytoplasmic
(x-axis) and central channel (y-axis) Nup-Impf affinity ranging from 2uM to 2ZmM.
The four three-dimensional surfaces represent a range of nuclear basket affinities
ranging from 0.2uM to 200uM. Transport rates appear to be least sensitive to
cytoplasmic affinities and most sensitive to central channel and nuclear basket
affinities. Varying central channel affinities results in biphasic behavior with
maximum transport at Kp200uM. Transport rates appear to increase as nuclear
basket affinity is increased up to Kpx10uM and don’t appear to show significant
increase at higher affinities.
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Figure 7. Transport rate as a function of central channel affinity. Impf transport rate
appears most sensitive to central channel affinity, regardless of nuclear basket
affinity, with a peak transport rate when Nup-Impf affinities are on the order of
100uM. (Cyt: Cytoplasmic periphery, Nuc: Nuclear basket)

Simulation-Derived Transport Rates for Experimentally Measured Affinity
Gradients

The model was subsequently modified so that the affinity of the Nups in each region
for Imp matched that of the affinity reported in two previous experiments as
outlined in Table 1.

Using affinity gradients measured in vitro in yeast and vertebrates, our model
predicts transport rates that are approximately an order of magnitude lower than
the peak transport rate observed for pores with uniform 200uM affinity. The
presence of this affinity gradient brought about minimal gains in transport rate
when compared to pores lacking a Nup-Impf affinity gradient in the same nano-
molar affinity range. Low transport rates at these experimentally derived affinities
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can be attributed to the very slow off-rate between Imp[3 and Nups that act to hinder
transport and are in contrast to simulations where significantly higher transport
rates are seen in pores containing Nups with micro- to milli-molar affinities. It has
previously been suggested that affinities derived from in vitro experiments are too
tight to account for experimentally observed transport rates, with the simplest
reason being that the associated off-rates are much slower than the observed
transport times of in vivo cargo [10,44,46,47]. More recently, it has been shown that
in vivo affinities between Nup and Impf are likely much lower than in vitro
measurements claim due to the presence of non-specific competitors in the cell
milieu which are generally not considered in in vitro studies [32,48,49].

Table 1. Summary of affinity gradients and in silico derived transport rates.
Summary of in vitro affinity gradients for yeast and vertebrates and the agent based
model derived transport rate corresponding to each affinity gradient. The model
optimum affinity gradient is included for comparison. The ratio of gradients
between yeast and model optimum are comparable while the magnitude of the
individual affinities is approximately 1000 times weaker in the model optimum.

Cytoplasmic Central Nuclear in silico
Source Nup Affinity | Channel Nup | Basket Nup Transport Ref.
(uM) Affinity (uM) | Affinity (uM) | Rate (Sec?)
Yeast 1.5 0.2 0.01 12.23 £0.27 [13]
Vertebrates 0.2 0.1 0.01 7.58 £0.21 [12]
Model 2000 200 10 94.73 +1.92
Optimum

Nucleocytoplasmic Transport Sensitivity to Pore Affinity Gradient

To quantify the contribution of each region’s affinity to Impf transport rate, we
varied the in silico affinity of FG-Nup agents for Impf in each of the three regions
independently. The range of affinities explored spanned 2puM to 2mM in the
cytoplasmic periphery and central channel and 200nM to 200pM in the nuclear
basket (Fig. 6). This range allowed us to explore transport rates for moderate and
steep gradients in both forward and reverse affinity gradients.

As our results indicate, the transport rate appears mostly insensitive to the affinity
of FG-Nups in the cytoplasmic periphery for Impf3, especially when compared to that
of the other two regions. Varying the affinity of FG-Nups for Impf3 in the central
channel of the pore resulted in a clear biphasic behavior in transport rates observed,
with very low and high affinity Nups hindering the transport of Impf irrespective of
affinity in the other two regions. The contrast between the effects of affinity in the
cytoplasmic region compared to the central channel can likely be attributed to the
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difference in Nup density in each region; the higher Nup concentration within the
central channel [31] makes affinity a much more critical parameter. Very low
affinities prevent Impf from binding FG agents and traversing the channel as Imp(3
molecules are sterically repelled by the Nups - while very high affinities result in
longer binding and reduced mobility of Impf3 molecules. Our data suggest that a FG-
Impf3 Kp of 200uM in the central channel is ideal for transport irrespective of
cytoplasmic and nuclear basket affinities. Transport rates were observed to peak at
cytoplasmic FG-Impf Kp of 2mM, although this was not much higher (less than one
standard error) than transport rates observed with Kp ranging from 2uM to 4mM.
The relationship between cytoplasmic periphery Nup-Impf affinity and transport
rate is depicted in more detail in Fig. 8.
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Figure 8. Transport rate as a function of cytoplasmic affinity. Transport rate appears
insensitive to cytoplasmic Nup-Impf3 affinity as opposed to central channel and
nuclear basket Nup-Imp( affinity. An increase or decrease to affinity in the
cytoplasmic region by an order of magnitude results in a change in transport rate
that is within a standard error. (CC: Central Channel, Nuc: Nuclear basket)

Affinity of nuclear basket FG-Nups for Impf also plays a critical role in determining
transport rate. Our model indicates that as this affinity is increased, the transport
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rate is also observed to increase up to a limit that is dependent on the availability of
RanGTP. As shown in Fig. 9, for the standard case of nuclear RanGTP concentration
of 1uM, the transport of Impf increases as nuclear basket affinity is increased, up to
an affinity of 2uM. A decrease in Impf3 transport rates is observed at affinities higher
than 2uM (lower Kp), under standard RanGTP concentrations. When nuclear
RanGTP concentrations were increased, up to ten-fold, the absolute transport rate
was not observed to change significantly. Conversely, when Impf3 concentrations
were increased by as little as two-fold, there was a consistent ~50% increase in
Impf3 shuttling into the nucleus observed across all nuclear basket affinity
configurations. This is in agreement with previous studies that propose that import
receptors, rather than Ran, are the limiting species in the import pathway [44,45].
Although an increase in nuclear RanGTP concentration had little effect on Impf
shuttling, a decrease in nuclear RanGTP concentration was shown to reduce Impf(
shuttling from cytoplasm to nucleus. Nevertheless, a nearly ten-fold decrease in
nuclear RanGTP concentration only resulted in a ~17% average decrease in Imp[3
shuttling across nuclear basket affinity configurations shown in Fig. 9 - suggesting
that import is more sensitive to the availability of transport receptors than the
availability of Ran.

Our results suggest that the peak transport rate for Impf shuttling are produced
with a Nup-Impf affinity gradient consisting of 2000uM in the cytoplasmic fibril
region, 200puM in the central channel and 10uM in the nuclear basket which
produced a transport rate of 94.73 +1.92 transports per second. This produces a
regional Nup-Impf affinity ratio of 1:20:200 (nuclear : central channel
cytoplasmic). Despite the difference in magnitude, the in vitro measurements of
yeast affinity gradient exhibit a similar affinity gradient ratio of 1:20:150. It would
be speculative to state that competitors in the cellular milieu would decrease in vitro
affinities in a linear manner that would result in pM range affinities with the same
gradient ratio. However, recent experiments by the Rout group showing the
effective Kd after the addition of 0.1mg/mL of lysate as competitor hint at such a
relationship [32]. Furthermore, the difference between the in vitro affinity gradient
ratio and the in silico derived optimum is restricted to the cytoplasmic affinity (150
vs 200 respectively) which, as stated previously, is the least significant determinant
of overall transport rate among the three regions. Simulation using a 1500puM
cytoplasmic affinity instead of the optimum 2000uM to reproduce the affinity
gradient ratio seen in vitro resulted in less than a 1% reduction in overall transport
rate.

Finally, as indicated by these simulations, transport rates are relatively insensitive
to the Nup-Impf affinity in the cytoplasm. Varying the cytoplasmic affinity from the
optimum 2000uM to 200uM, eliminating the steep gradient between the
cytoplasmic and central channel Nups, results in only a 2% decrease in transport
rate, well within the standard error of our measurements. As previously mentioned,
this is not the case for central channel and nuclear basket Nups. This observation
supports the notion that a continuous affinity gradient isn’t necessary for efficient
transport [32]; rather, the majority of the pore can be composed of Nups with a
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moderate affinity for Impf (Kpx200uM) combined with high affinity Nups in the
nuclear basket (Kpx10pM) to achieve transport rates comparable to
computationally derived optimum values.
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Figure 9. Transport rate as a function of nuclear basket affinity. Transport rates are
very sensitive to nuclear basket Nup-Impf affinity, with maximum transport rates
emerging in the presence of a high affinity target for Impf3 in the nuclear basket.
Transport rates peak at an affinity of ~2uM with a slight decrease in transport rate
as affinities are increased beyond that. This peak in transport rate doesn’t appear to
be due to a lack of RanGTP to terminate transport at the nuclear periphery of the
pore since there aren’t significant changes to transport rate under very high nuclear
RanGTP concentrations. Conversely, when nuclear RanGTP concentrations are much
lower than physiological values, the effect on transport rate is more noticeable.

Interestingly, the idea of maximizing transport rate by inhibiting diffusion at a
terminal side of the pore is not limited to the Impf import pathway. Hydrogels
composed of Nup214 and Nup358 (which are located on the farthest cytoplasmic
side of the pore) have been shown to selectively inhibit the diffusion of CRM1, an
export receptor of the same karyopherin-f family as Impf, while allowing the
import receptor Impp to diffuse across rapidly [50,51]. Such a high affinity target for
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export receptors at the cytoplasmic side of the pore and likewise, as our model
shows, a high affinity target for import receptors at the nuclear side of the pore can
improve transport efficiency by reducing backflow of export and import complexes,
and increasing the likelihood that they interact with RanGAP and RanGTP
respectively.
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Conclusion

The presence of an affinity gradient, or at the very least, a high affinity target within
the nuclear basket for import cargo complexes has been observed but remains
contested. The effect of such affinity gradients on transport rates was not previously
explored in detail. We developed a coarse-grained, biophysical model of the nuclear
pore complex translocating Impf3 under various forward and reverse affinity
gradients. Our results are in agreement with previous reports that the affinity
gradient within the nuclear pore is not essential for cargo transport [2,52]; rather an
affinity gradient, or more specifically, a high affinity target within the nuclear basket
can increase overall transport rates. In fact, the reversal of the affinity gradient,
shown in Fig. 6, illustrates that net movement of the Impf3 molecules continues in
the same direction, albeit at a lower rate, indicating that the presence of a RanGTP
concentration gradient is more influential than the contribution of an affinity
gradient. Nevertheless, our results reveal that the slope of the affinity gradient that
maximizes transport through the pore is very similar to the slope of the affinity
gradient measured in vitro, albeit at much lower affinity values (UM vs. nM). These
lower affinity values are in agreement with the range of affinities reported in recent
experimental findings, suggesting that competitors present in vivo reduce the
effective affinity gradient. These findings could have additional implications for the
design and optimization of highly efficient artificial nanopores. These modeling
techniques can be used to further assess the role of nucleoporin density and
distribution along with channel geometry on transport efficiency and selectivity in
an effort to optimize the design and function of artificial nanopores.

Acknowledgements

The authors gratefully acknowledge discussions with and technical assistance by
Yousef Jamali, Jack Bulat, Ruhollah Moussavi Baygi, Steve Peter, Hanif Mahboobi,
Alex Javanpour and the rest of Molecular Cell Biomechanics Laboratory.
Additionally, we thank Yousef Jamali for graphic design work used in Fig. 1. Finally,
we are grateful for numerous fruitful discussions with Karsten Weis that helped
identify computational experiments of interest.

111



References

1. Reichelt R, Holzenburg A, Buhle EL, Jr., Jarnik M, Engel A, et al. (1990) Correlation
between structure and mass distribution of the nuclear pore complex and of
distinct pore complex components. | Cell Biol 110: 883-894.

2. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, et al. (2000) The yeast
nuclear pore complex: composition, architecture, and transport mechanism. ]
Cell Biol 148: 635-651.

3. Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. ] Cell Biol
123:771-783.

4. Loschberger A, van de Linde S, Dabauvalle M(C, Rieger B, Heilemann M, et al.
(2012) Super-resolution imaging visualizes the eightfold symmetry of gp210
proteins around the nuclear pore complex and resolves the central channel
with nanometer resolution. ] Cell Sci 125: 570-575.

5. Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear
transport: the hole picture. Trends Cell Biol 13: 622-628.

6. Zilman A, Di Talia S, Chait BT, Rout MP, Magnasco MO (2007) Efficiency,
selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol
3:el125.

7.Frey S, Gorlich D (2007) A saturated FG-repeat hydrogel can reproduce the
permeability properties of nuclear pore complexes. Cell 130: 512-523.

8. Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form
a three-dimensional meshwork with hydrogel-like properties. Science 314:
815-817.

9. Petri M, Frey S, Menzel A, Gorlich D, Techert S (2012) Structural characterization
of nanoscale meshworks within a nucleoporin FG hydrogel.
Biomacromolecules 13: 1882-1889.

10. Ribbeck K, Gorlich D (2001) Kinetic analysis of translocation through nuclear
pore complexes. EMBO ] 20: 1320-1330.

11. Ribbeck K, Gorlich D (2002) The permeability barrier of nuclear pore complexes
appears to operate via hydrophobic exclusion. EMBO ] 21: 2664-2671.

12. Ben-Efraim [, Gerace L (2001) Gradient of increasing affinity of importin beta for
nucleoporins along the pathway of nuclear import. ] Cell Biol 152: 411-417.

13. Pyhtila B, Rexach M (2003) A gradient of affinity for the karyopherin Kap95p
along the yeast nuclear pore complex. ] Biol Chem 278: 42699-42709.

14. Lim RY, Fahrenkrog B, Koser ], Schwarz-Herion K, Deng ], et al. (2007)
Nanomechanical basis of selective gating by the nuclear pore complex.
Science 318: 640-643.

112



15. Lim RY, Huang NP, Koser |, Deng |, Lau KH, et al. (2006) Flexible phenylalanine-
glycine nucleoporins as entropic barriers to nucleocytoplasmic transport.
Proc Natl Acad Sci U S A 103: 9512-9517.

16. Schoch RL, Kapinos LE, Lim RY (2012) Nuclear transport receptor binding
avidity triggers a self-healing collapse transition in FG-nucleoporin molecular
brushes. Proc Natl Acad Sci U S A.

17. Peters R (2005) Translocation through the nuclear pore complex: selectivity and
speed by reduction-of-dimensionality. Traffic 6: 421-427.

18.Jamali T, Jamali Y, Mehrbod M, Mofrad MR (2011) Nuclear pore complex:
biochemistry and biophysics of nucleocytoplasmic transport in health and
disease. Int Rev Cell Mol Biol 287: 233-286.

19. Nachury MV, Weis K (1999) The direction of transport through the nuclear pore
can be inverted. Proc Natl Acad Sci U S A 96: 9622-9627.

20. Berry BJL, Kiel LD, Elliott E (2002) Adaptive agents, intelligence, and emergent
human organization: Capturing complexity through agent-based modeling.
Proceedings of the National Academy of Sciences of the United States of
America 99: 7187-7188.

21. Bonabeau E (2002) Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of Sciences
of the United States of America 99: 7280-7287.

22.Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, et al. (2005) Pattern-oriented
modeling of agent-based complex systems: Lessons from ecology. Science
310: 987-991.

23. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape
panic. Nature 407: 487-490.

24.Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Agent-based
modeling of endotoxin-induced acute inflammatory response in human blood
leukocytes. PLoS One 5: €9249.

25. Bonchev D, Thomas S, Apte A, Kier LB (2010) Cellular automata modelling of
biomolecular networks dynamics. SAR QSAR Environ Res 21: 77-102.

26. Devillers ], Devillers H, Decourtye A, Aupinel P (2010) Internet resources for
agent-based modelling. SAR QSAR Environ Res 21: 337-350.

27.Azimi M, Jamali Y, Mofrad MR (2011) Accounting for diffusion in agent based
models of reaction-diffusion systems with application to cytoskeletal
diffusion. PLoS One 6: e25306.

28.Jamali Y, Jamali T, Mofrad MRK (In Press) An Agent Based Model of Integrin
Clustering: Exploring the Role of Ligand Clustering, Integrin Homo-
Oligomerization, Integrin-Ligand Affinity, Membrane Crowdedness and
Ligand Mobility. Journal of Computational Physics.

113



29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41

42,

43.

Riddick G, Macara IG (2005) A systems analysis of importin-{alpha}-{beta}
mediated nuclear protein import. ] Cell Biol 168: 1027-1038.

Adam SA (2001) The nuclear pore complex. Genome Biol 2: REVIEWS0007.

Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, et al. (2010) A
bimodal distribution of two distinct categories of intrinsically disordered

structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9:
2205-2224.

Tetenbaum-Novatt ], Hough LE, Mironska R, McKenney AS, Rout MP (2012)
Nucleocytoplasmic transport: a role for nonspecific competition in
karyopherin-nucleoporin interactions. Mol Cell Proteomics 11: 31-46.

Mohr D, Frey S, Fischer T, Guttler T, Gorlich D (2009) Characterisation of the
passive permeability barrier of nuclear pore complexes. EMBO ] 28: 2541-
2553.

Kutay U, [zaurralde E, Bischoff FR, Mattaj [W, Gorlich D (1997) Dominant-
negative mutants of importin-beta block multiple pathways of import and
export through the nuclear pore complex. EMBO ] 16: 1153-1163.

Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction

between FxFG nucleoporin repeats and importin-beta in nuclear trafficking.
Cell 102: 99-108.

Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M (2002) GLFG and FxFG
nucleoporins bind to overlapping sites on importin-beta. ] Biol Chem 277:
50597-50606.

Bednenko ], Cingolani G, Gerace L (2003) Importin beta contains a COOH-
terminal nucleoporin binding region important for nuclear transport. | Cell
Biol 162: 391-401.

Isgro TA, Schulten K (2005) Binding dynamics of isolated nucleoporin repeat
regions to importin-beta. Structure 13: 1869-1879.

Riddick G, Macara IG (2007) The adapter importin-alpha provides flexible
control of nuclear import at the expense of efficiency. Mol Syst Biol 3: 118.

Kolodkin AN, Bruggeman FJ, Plant N, Mone M], Bakker BM, et al. (2010) Design
principles of nuclear receptor signaling: how complex networking improves
signal transduction. Mol Syst Biol 6: 446.

. Cangiani A, Natalini R (2010) A spatial model of cellular molecular trafficking

including active transport along microtubules. ] Theor Biol 267: 614-625.

Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR (2011) Brownian dynamics
simulation of nucleocytoplasmic transport: a coarse-grained model for the
functional state of the nuclear pore complex. PLoS Comput Biol 7: €1002049.

Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR (2011) Biophysical coarse-
grained modeling provides insights into transport through the nuclear pore
complex. Biophys ] 100: 1410-1419.

114



44. Timney BL, Tetenbaum-Novatt ], Agate DS, Williams R, Zhang W, et al. (2006)
Simple kinetic relationships and nonspecific competition govern nuclear
import rates in vivo. ] Cell Biol 175: 579-593.

45.Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend
on importin beta concentration. J Cell Biol 174: 951-961.

46. Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, et al. (2005)
Nuclear transport of single molecules: dwell times at the nuclear pore
complex. ] Cell Biol 168: 233-243.

47.Yang W, Gelles ], Musser SM (2004) Imaging of single-molecule translocation
through nuclear pore complexes. Proc Natl Acad Sci US A 101: 12887-12892.

48. Cardarelli F, Bizzarri R, Serresi M, Albertazzi L, Beltram F (2009) Probing
nuclear localization signal-importin alpha binding equilibria in living cells. ]
Biol Chem 284: 36638-36646.

49. Cardarelli F, Tosti L, Serresi M, Beltram F, Bizzarri R (2012) Fluorescent
recovery after photobleaching (FRAP) analysis of nuclear export rates

identifies intrinsic features of nucleocytoplasmic transport. ] Biol Chem 287:
5554-5561.

50. Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, et al. (2013)
Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear
pore complexes. EMBO ] 32: 204-218.

51. Antonin W (2013) Don't get stuck in the pore. EMBO ] 32: 173-175.

52. Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR (2004) Minimal nuclear
pore complexes define FG repeat domains essential for transport. Nat Cell
Biol 6: 197-206.

115



Section VI:

An Agent Based Model of mRNA
Nuclear Export Kinetics

116



Introduction

RNA Export Pathways and Kinetics

Aside from transport receptors that are recycled to the cytoplasm, much of what is
exported from the nucleus consists of ribonucleic acids (RNA) in the form of transfer
RNA (tRNA), microRNA (miRNA), small nuclear RNA (snRNA), ribosomal RNA
(rRNA) and messenger RNA (mRNA). Many of these molecules (tRNAs, miRNAs,
snRNAs, rRNAs and some mRNAs) follow a karyopherin-mediated export pathway
that is similar to that of nucleocytoplasmic import, relying on the Ran cycle for
directionality. More specifically, tRNAs recruit Exportin-t (Los1) of the karyopherin
superfamily in complex with RanGTP to facilitate export, while miRNAs recruit
Exportin-5 (Msn5) in complex with RanGTP. The remaining RNAs (snRNAs, rRNAs,
and some mRNAs), as well as many viral RNAs such as HIV-1, make use of Exportin-
1 (Xpo1l, a.k.a. CRM1) in complex with RanGTP to achieve nucleocytoplasmic export
[1,2]. These exportins rely on the RanGAP/RanBP2-mediated hydrolysis of RanGTP
to provide RNAs with export directionality (similar to RanGTP, which acts as a
molecular ratchet for protein import). Conversely, the bulk of mRNA is exported
from the nucleus via the NXF1/NXT1-mediated pathway.

Following transcription, mRNA carries genetic information from the cell’s DNA to
the ribosomes that translate this message to functioning proteins, primarily via the
nuclear pore complex (NPC) and the NXF1/NXT1 pathway. A nascent pre-mRNA
must undergo multiple co-occuring steps before it can be successfully recruited to
the NPC and exported from the nucleus. A newly transcribed pre-mRNA undergoes
four processing steps prior to being considered a mature mRNA: 1) capping of the
5’-terminal end with 7-methylguanylate, 2) splicing to remove non-coding intron
regions, 3) 3’-terminal end cleavage and 4) polyadenylation [3]. Second, during
transcription and prior to transport, a maturing mRNA also binds a number of
protein factors to become a messenger ribonucleoprotein particle (mRNP).
Recruitment of factors to the mRNA is dynamic, with multiple proteins binding,
recruiting other proteins, and subsequently unbinding in an effort to produce an
export-competent mRNP. In this regard, the transcription elongation-mRNA export
(TREX) complex is crucial in producing export-competent mRNPs, as it recruits the
NXF1/NXT1 (Mex67/Mtr2) heterodimeric export factor via a set of core proteins
termed the transcription elongation (THO) complex and the associated protein
Aly/REF (Yral). These are subsequently removed from the mRNP prior to export,
once NXF1/NXT1 are successfully bound [4]. Once the mRNA is processed and
export receptors are recruited, the mRNP is considered export-competent and is
recruited to the NPC, where it translocates to the cytoplasm via a series of binding
and unbinding events with phenylalanine-glycine (FG) Nups.

The size of a typical mRNA (~2.2 kb) is larger than that of a typical protein that
undergoes nucleocytoplasmic import, and much larger mRNAs such as the Balbiani
ring mRNA (~37 kb) are known to translocate across the NPC. Subsequently, a
model for NXF1/NXT1-mediated nucleocytoplasmic export of mRNA was proposed,
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in which transport receptors are believed to bind multiple sites along the length of
an mRNP. Unlike mRNA export pathways in which exportins of the karyopherin
superfamily are recruited, bulk mRNA export via the NXF1/NXT1-mediated
pathway relies on a different set of export factors to regulate transport
directionality. The superfamily 2 DEAD-box ATPase DDX19 (Dbp5) is responsible
for remodeling the mRNP as it translocates through the NPC and reaches the
cytoplasm-facing Nups. DDX19 is localized to the cytoplasmic Nup124 (Nup159)
and is activated by the export factor Glel along with its cofactor, inositol
hexakisphosphate (IP6). Gle1l/IP6 also remodels the mRNP by freeing transport
receptors to return to the nucleus for a successive round of transport, and therefore
prevents the return of the mRNP into the nucleus [5]. These mRNP/export factor
interactions account for a virtual “Brownian ratchet” mechanism that ensures one-
way transport of the mRNP through the NPC [6].

Although the mRNA ratcheting model appears feasible, to date, the number and
distribution of transport receptors that are required to bind an mRNP for efficient
transport remains unknown. Binding of the TREX complex, a factor involved in
transport receptor recruitment, has been observed at the 5’-terminal end of mRNA
[7]. Coincidentally, it has been reported that transport of very large Balbiani ring
mRNA occurs with the 5’-terminal end leading through the pore as seen in electron
microscopy (EM) experiments [8-10]. mRNA export orientation could be the result
of transport receptors bound at the 5’ end and a lack of receptors elsewhere.
However, other groups have observed the binding of transport receptor recruiting
factors such as REF along the length of the mRNA at the site of exon junction
complexes (EJCs) [11-13], suggesting that transport receptors are distributed at
multiple sites along an mRNA and lending support to the mRNA ratcheting model.
Nevertheless, this leaves unanswered questions as to why there exists a preference
for the 5’ end leading orientation of export if multiple other transport receptors are
present.

One could speculate that the reasons for this may be due to DNA being read from 3’
to 5’ end during transcription and complementary mRNA being produced in 5’ to 3’
end. It is possible that the 5’ end simply recruits transport receptors before other
sites have a chance to. Another possibility is that the lack of an EJC near the 3’ and
the presence of a poly-A tail leaves a segment of the mRNA lacking affinity for the
pore. Although it would still be possible for the mRNA to initiate binding to the pore
via a transport receptor located somewhere along the length of the mRNA, this
would likely be a less favorable orientation for transport than threading through the
pore via a leading 5’ end orientation. Although the idea that transport receptors
bind EJCs seems promising, one must consider that many lower eukaryotes lack the
density of introns and subsequently E]JCs as seen in higher eukaryotes [14]. This
could suggest that even though the NXF1/NXT1-mediated export pathway is
present in yeast via the homologs Mex67/Mtr2, the mechanism by which mRNPs
mature and become export-competent may be slightly different. These questions
remain to be answered and an understanding of the number and distribution of
transport receptors that bind an export-competent mRNP will provide significant
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insight into mRNA export dynamics with potentially far-reaching impacts in
understanding human health and developing successful interventions for human
disease.

In recent years, new molecular techniques have been developed for single molecule
tracking of mRNA export, which provide further insight into export kinetics. In
2010, Grinwald and colleagues used the MS2-GFP system [15] to track the
movement of 3-actin mRNA (~3.3 kb) through the NPC, with temporal resolution of
20 milliseconds and spatial precision of 26 nm. They observed that, rather than
transport through the central pore (5-20 ms in duration), docking to and release
from the NPC are the rate limiting steps (each ~80 ms in duration) [16]. In 2012, the
Kubitscheck group used light sheet fluorescence microscopy to track single export
events of native mRNPs with hrp36 fluorescent tags with 20 millisecond temporal
resolution and 10 nm spatial resolution [17]. In these experiments, an average
transport time of 65 ms was observed for mRNA of all lengths that may be present
within the nucleus. In this work, a fluorescent hrp36 protein that natively binds
mRNA prior to export was introduced to the system. Since the protein binds mRNA
at multiple sites, fluorescent hrp36 was added at sufficiently low concentration to
ensure that each mRNA was tagged only once and to avoid tagging multiple proteins
within the imaging plane. Subsequently, the group reports an average transport
time of 65ms for the majority of mRNA, with transport times of up to several
seconds for what are likely very large mRNAs. They further observe mRNA arrest
strictly at the nuclear face of the pore that typically lasts ~50 ms.

The discrepancy between the transport times of these two methods (180 ms
compared to 65 ms) could be due to the fact that in the MS2-GFP system, a specific
mRNA of known length was tracked (B-actin mRNA, ~3.3 kb) whereas the hrp36
protein can bind mRNA of any length (average length of mRNA reported as ~2.2 kb).
To further complicate matters, longer mRNA have a greater number of hrp36
binding sites, suggesting that larger mRNAs are more likely to be tagged. However,
the typical length mRNAs tracked in the fluorescent hrp36 system also depends on
the expression levels for each mRNA. Taken together, this suggests a level of
uncertainty in the actual length of mRNAs tracked. Nevertheless, the fluorescent
hrp36 system allows for tracking of native mRNA without introducing multimers of
RNA stem loops that bind MS2 coat proteins, which likely alter the size and
dynamics of the mRNA molecule [15]. It is likely that the addition of stem loops and
the coat protein is a significant source of discrepancy between the observed kinetics
of the two experiments, and likely explain why mRNA export was delayed at the
cytoplasmic surface in the MS2-GFP system and not the fluorescent hrp36 system
[18].

Interestingly, despite the discrepancy in transport kinetics between these works,
both single molecule tracking studies as well as the previous EM studies report the
observation of a rate-limiting step at the nuclear basket during transport. In the case
of the EM experiments, this was thought to be a result of the 5-end leading
orientation of export and the time required for such a large polymer to be oriented
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to satisfy this condition. It’s not clear whether the observance of this rate-limiting
step for smaller mRNAs is the result of the polymer searching for a favorable export
orientation or whether there is a quality control mechanism or some unidentified
processing step present at the nuclear basket that results in delayed entry and
transport. Answering this question requires significant improvements in
microscopy techniques.

Alternatively, the effective computational modeling of the system can provide
further insight. Our results suggest different scenarios for mRNA export. The mRNP
trajectory data suggest that there is a rate-limiting step at the nuclear basket, which
could refer to finding a suitable mRNP configuration for entering the pore interior.
The duration of this step could vary largely for mRNPs of different sizes. The actual
translocation could be achieved by the action of Dbp5. An alternative hypothesis is
suggested by comparison of the Dbp5 binding time (55 ms) with the export duration
of the larger mRNPs (350 ms up to several seconds). Several Dbp5 molecules might
act in sequence on a single mRNP to achieve the required export factor release and
mRNP translocation. In this case the observed translocation pause is just valid for
the specific incorporation site of the labeling hrp36 that remains in the basket until
it is finally moving through the pore. Furthermore, several Dpb5 molecules could act
at different locations on a single mRNP simultaneously.

Agent Based Modeling

Agent based modeling (ABM) is a robust computational technique used to simulate
the spatiotemporal actions and interactions of real-world entities or “agents”, in an
effort to extract their combined effect on the system as a whole. Both space and time
can be discretized in an ABM, giving these autonomous agents the ability to move
and interact with other agents and their environment at each timestep over a given
duration. Simple behavioral rules govern the movement and interaction of each
individual entity in an effort to reproduce or predict more complex behaviors of
multiple entities. Such a model attempts to simulate the emergence of complex
phenomena that may not be apparent when simply considering individual entities.
Agent based modeling has seen applications in a broad range of fields ranging from
artificial intelligence and gaming to modeling emergent social behavior such as the
spread of disease and outcomes of financial markets [22-25]. In their simplest form,
on-lattice agent based models consist of a mesh of “cells” that make up the
discretized space that agents occupy. The agents occupy these cells and are typically
only aware of other agents within their “neighborhood”; in the simplest form a
neighborhood consists of adjacent cells. Agents are given the ability to move into
adjacent cells and to interact with other agents with some probability in conjunction
with governing rules that define what movement and interactions are possible (Fig.
1). On-lattice agent based models have previously been applied to biological
systems involving diffusion, binding and unbinding [26-28]; establishing methods
for event probability selection - relating diffusion and rate constants to event
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probability - will improve model accuracy and enable quantitative analysis of
results from these models [29,30].

In the present work we adopt a method for modeling a collection of agents as
dynamic polymers with properties representative of a freely diffusing mRNA
molecule. We then build upon our ABM framework [29] to understand how binding,
unbinding and diffusive events enable the efficient transport of long polymeric
molecules across the nuclear envelope. We model the system using diffusion,
binding and unbinding rates derived from in vitro experiments where possible. The
agent based simulations were designed to address the following questions: (i) How
does the number and distribution of transport receptors across an mRNA molecule
affect export efficiency? (i) Is tracking a single point of a polymeric chain
transporting through a narrow pore sufficient for quantifying transport times?

To answer these questions, simulations were carried out using a computationally
efficient, spatiotemporally detailed, three-dimensional agent-based model
developed specifically for modeling molecular diffusion, binding and unbinding
events with consideration for physical factors such as molecular crowding and steric
repulsion. In addition to movement and interaction rules, event probabilities govern
system dynamics in the agent-based model. Methods for accurate selection of
movement, binding and unbinding probabilities to best represent actual diffusion
coefficients and kinetic rate constants can build confidence in the output of agent
based models and deductions from these models. The procedure for relating real
world rate constants to molecular binding and unbinding probabilities is detailed in
the Materials and Methods.

Agent interacting with neighbor
in von Neumann Neighborhood

Information about
the environment

Figure 1. Simplified representation of the agent based model. Abstract cartoon
representation of the nuclear pore structure environment (not to scale) projected
onto a simplified, 2-dimensional, on-lattice ABM with agents representing proteins
that move within the system and interact with other agents within their von-
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Neumann neighborhood. The actual model consists of a three-dimensional
representation of the NPC structure and physiologically relevant concentrations of
biochemical factors and channel dimensions. In our model, the purple region
representing the cytoplasmic periphery is treated as a compartmentalized volume
containing non-interacting Nup and transport-receptor-interacting FG-Nup agents.
Similarly, central channel (blue) and nuclear basket (green) regions are represented
by compartmentalized volumes, containing both non-interacting and interacting
Nup agents at physiologically meaningful concentrations. Grey regions of the
diagram represent the scaffold and nuclear envelope regions of the model that are
impermeable to diffusing species.
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Materials & Methods

Probability Selection for Molecular Movement on an ABM Lattice

In our previous work we proposed a method for movement probability selection
based on molecular diffusion coefficient (Eq. 1) along with algorithms for realistic
consideration of crowding and steric repulsion [29] that was also used in the
current model:

Pmove = (1)

Here, movement probability of an agent is determined by its diffusion coefficient ( D
), simulation timestep ( Az ) and lattice discretization length (AL ). We implemented
the reduced probability (RP) method to account for the steric effects of multiple
agents occupying individual lattice sites [29].

Probability Selection for Molecular Binding and Unbinding Events on an ABM
Lattice

In our more recent work, we proposed and validated a method for probability
selection of binding and unbinding events in the ABM that was also used in the
current model. Probability selection of unbinding (Eq. 2) and binding (Eq. 3) can be
determined from kinetic rate constants as follows:

R)ﬁ' = koﬂ'At (2)

b kAt 3)

on \%
%\] cells ’ N neighbors ’ N Avogadro

Here, event likelihoods are determined from (k) and (k,,) which represent the

real-world Kkinetic rate constants, simulation timestep (At¢), system volume (V),
number of lattice cells (N, ), number of lattice neighbors each cell has (N, )

cells

and the number of particles in a mole (N .4, )-
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mRNA Dynamics

In the ABM, the mRNA is represented as a collection of bound agents, that are
limited in their movements through the constraint of maintaining connection with
their nearest neighbor to each side. Further, movements are only permitted in the
diagonal direction into the nearest neighbor(s) von Neumann neighborhood. This
ensures that all movements are of fixed length, and assures that a single movement
probability can accommodate all movement events of a specific agent type. The
probability of movement for agents belonging to the mRNA polymer was
determined through successive simulations in which movement probability of a
representative ABM polymer of length 2.2kb, composed of 130 agents in a cubic
lattice of length 5nm was varied to determine the effective diffusion coefficient of
the polymer. Effective diffusion coefficient was determined by calculating the mean
squared displacement over 5 millions timesteps with a minimum sampling of 1000
timesteps. A movement probability of 0.5 was determined to yield and effective
diffusion coefficient of ~0.01 pm?2/s, which is in agreement with previous in vivo
measurements of mRNA diffusion [31]. Analysis of mean square displacement as a
function of time also confirmed that diffusion of the ABM polymer followed a normal
diffusion regime, which is expected from previous reports and our own comparison
with Brownian dynamics simulations. Finally, to ensure that the agent based model
correctly recapitulated the behavior of a freely jointed chain, we simulated ABM
polymers of varying lengths to confirm that their average end-to-end length was in
agreement with the length-dependent prediction postulated by the freely jointed
chain model (Eqg. 4).

<E2> = NI 4)

Where R represents the total end-to-end vector of an ideal chain, N represents the
number of monomers in the chain, which is equivalent to the number of agents that
comprise a polymer chain in the ABM and [ which represents the length of one of the
monomers, which is equivalent to the discretization of the lattice in the ABM. We
observed that for very short length polymer chains of 5 agents, there was a ~10%
discrepancy between the predicted average end-to-end length (Eq. 4) and the
average end-to-end length from 10,000 randomly sampled ABM configurations. This
error was reduced to <1% when the number of monomers/agents was increased to
50. The error was determined to be negligible for the configuration of 130
monomers/agents that was used to simulate a typical mRNA.
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ABM System and Simulation Details

The model environment consists of a 42,108 element, three-dimensional lattice
comprised of elements with dimensions of 5nm x 5nm x 5nm. The lattice size was
selected to accommodate the volume associated with the Stokes radius of the largest
single-agent species in the system, in this case a collection of nucleotides
representing the persistence length of the mRNP. Additionally, the model allowed
for multiple agents of the same or different species type to occupy the same lattice
element at any given time, so long as the available volume of a lattice element was
not exceeded by agents diffusing into it. Discrete lattice elements belong to one of
six region types, cytoplasmic, nuclear membrane, nucleoplasm, cytoplasmic filament
periphery, central channel or nuclear basket. The cytoplasmic region contains a high
concentration of Dbp5 in complex with Gle1 and IP6 while the nucleoplasm in each
simulation contained a single 2.2kb mRNP, discretized into 130 agents. The 35nm
thick nuclear membrane which partitions the two compartments is impermeable to
all agent types and contains a single nuclear pore with diameter of 30nm at the
center and 50nm at the peripheries. The cytoplasmic filament periphery consists of
a 50nm diameter region that extends 30nm into the cytoplasm while the nuclear
basket is composed of a basket shaped region that extends 55nm into the
nucleoplasm [32,33]. The cytoplasmic periphery, central channel and nuclear basket
each contain 24, 80 and 32 agents respectively, which represent the distribution of
FG Nups [34]. In addition to these FG agents, non-FG agents are added to the
channel to represent regions of the Nups that lack affinity for transport receptors
but play a role in sterically repelling molecules, with the sum of the volume of these
Nups corresponding to experimentally reported volumes [34]. The collection of
agents representing the mRNP are free to diffuse throughout the system while FG
agents and non-FG agents are restricted to movement within their respective pore
regions in order to maintain the permeability barrier.

Distribution of transport receptors on the mRNA and their affinity for FG-Nups was
varied across simulations. For each configuration investigated, 100 replicate
simulations were generated and analyzed. Each simulation contained a single mRNA
with a random initial configuration in the nucleoplasm. The 5’ and 3’ termini of the
mRNA were tracked in each simulation. Additionally, a random site along the length
of the mRNA was also tracked to emulate the use of a fluorescently labeled hrp36
molecule for comparison with experiments carried out by Siebrasse et al. [17]. This
random site was varied across each simulation in the set of 100 replicates. Each
simulation was carried out for duration of 20 seconds using a timestep of 2.5
microseconds.

The location of the 5’ and 3’ termini along with the location of the randomly placed
hrp36 tag were tracked over the course of the simulation. To analyze these
trajectories, kymographs were generated illustrating the location of the 5’ and 3’
termini of the mRNA over time (see Fig. 2). The trajectories were further analyzed to
determine fraction of partial and successful transports per configuration, along with
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mRNA residence times in the nuclear basket and central channel for comparison
with previous in vivo observations.
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Figure 2. A collection of kymographs of 50 replicate simulations of mRNA export
using the default configuration of transport receptor to FG-Nup affinity of Kp=100
UM and nine transport receptors along the length of the mRNA. The green lines
represent the position of the 5’ end while the red lines represent the position of the
3’ end. The NPC central channel is centered at z=0 nm in each plot.

126



Model Validation

In silico experiments were performed to determine the model’s ability to
recapitulate experimentally-determined, size-dependent permeabilities for passive
cargos as well as for Impf3 [35,36]. These simulations served as a control to validate
the model and associated algorithms’ ability to simulate selective transport.
Following a simulated microinjection of non-interacting species in the cytoplasm,
the in silico pore is observed to inhibit the influx of larger species while allowing
smaller species to diffuse through the pore (shown in Fig. 3). Influx rates of non-
interacting species with Stokes radii of ~1nm are on the order of 0.1s'! while larger
species with Stokes radii of >2.5nm have influx rates of less than 0.001s'l. As
expected, a reduced influx rate was not observed for larger species that had affinity
for the FG-Nups. To test this behavior, experiments similar to those performed for
non-interacting species were repeated, replacing the non-interacting species with
2.5uM labeled Impf - in addition to the steady-state concentration of unlabeled
Impf. The influx rate of Impf into the nucleus was observed to be 0.367s'1. This
value comparable with an experimentally measured influx rate of 0.4s1 for Impf
[36].

\ —o—  Experiment (Mohr 2009)

oﬂ —e— Agent based model

0.1

Influx Rate (Sec‘1 )
0.01

0.001
!
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Figure 3. The agent based model recapitulates the experimentally observed size-
dependent permeabilities of passive cargos through the nuclear pore. Following a
simulated microinjection of non-interacting species in the cytoplasm, the in silico
pore is observed to inhibit the influx of larger species while allowing smaller species
to diffuse through the pore. This is in agreement with previous experimental
observations.
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Results

Effect of Nup-NXF1 Affinity on mRNA Export Time

Recent studies have reported an in vitro avidity for the NXF1 yeast homolog, Mex67
to the nucleoporin Nspl to be on the order of 100 nM [37]. It has been
demonstrated experimentally that the affinities between Nups and transport
receptors usually reported in vitro are much higher (~1000-fold) than actual in vivo
affinities [38]. The use of in vitro affinities in the ABM was shown to have
detrimental effects on transport rates in Section V, and it was demonstrated that
affinities ~1000x weaker were required to reproduce transport characteristics of
the NPC. To understand the export pathway’s sensitivity to affinity, the affinity
between NXF1 and FG Nups was varied from 20 uM to 200 pM (Fig. 4). The default
number of NXF1 transport receptors bound to the mRNA was set to nine to
represent the number of exon junction complexes present in a typical mRNA of this
length. When mRNA-bound NXF1 was modeled to have a dissociation constant of
200 pM, no nucleocytoplasmic transport was observed. As affinity was increased
incrementally towards 20 pM, the percent of simulations in which successful
transport was observed increased. Average residence times in the basket and
central channel for successful transport events slightly increased as well (Fig. 5a).
On the other hand, the fraction of unsuccessful transport events (Fig. 4, red) did not
appear to significantly change with affinity. Increasing NXF1’s affinity to FG Nups
appears to have caused more partial transport events (orange) to become successful
ones (green). In this context, partial transport was defined as the initiation of
transport from either the 5’ or 3’ end of the mRNA but failure in the export of the
other end. (This includes transports that were not completed in the observation
time, as well as rejected transports.)

The affinity between NXF1 and FG Nups in the ABM was then fixed at 100 uM. Mean
mRNA residence time at the basket was measured as 462.9+265.4 ms, with a mean
central channel residence time of 269.5+78.6 ms. Successful and partial transport
across the pore was observed in 21% and 68% of simulations, respectively. The
fraction of mRNA observed successfully trafficking out of the nucleus is in
agreement with experimental observations[17]; however, the residence times
observed in our in silico model appear to be significantly longer than those reported
in in vivo studies. A potential explanation for this difference is provided in the next
section.
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Figure 4. Chart showing the relative percent of successful (green), partial (orange)
and unsuccessful (red) transport events for different affinities between NXF1 and
FG-Nups.
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Figure 5. The effect of NXF1/FG-Nup affinity on nuclear basket and central channel
residence times for successful export events using either a) probes placed at 5’ and
3’ ends or b) a single probe located randomly along the length of the mRNA (error
bars represent one standard deviation).
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Comparison with Single Molecule Tracking Transport Times for mRNA Export

While single probes placed at either the 3’ end or a random site along the length of
the mRNA have previously been used in experimental studies of mRNA export, they
may inaccurately measure residence time in the pore as well as the fraction of
successful transport. A single probe imprecisely indicates the location of the mRNA,
leading to either over- or underestimation of true pore residence time. In addition,
the fraction of successful transports may be overestimated if a probe on a partially
transported mRNA reaches far enough ahead of the rest of the molecule within a
particular time cutoff.

We determined residence times in the nuclear basket and central channel by
tracking either a random site along the length of the mRNA or two probes placed at
the 5’ and 3’ ends. This method of tracking provides a more meaningful measure of
residence times for the whole polymer as compared to a single probe placed at any
location on the length of the mRNA. For the same simulations depicted in Fig. 5a
above, we tagged a single site along the length of the mRNA (randomized across 100
simulations) in order to measure residence times in a manner comparable to those
reported by previous experiments. For a 100 uM affinity, nine transport receptors
on the mRNA, and tracking using the single probe approach, the mean nuclear
basket and central channel residence times were 107.3+87.8 ms and 34.5+27.0 ms,
respectively. These are comparable to residence times measured in vivo (see Fig. 5b)
[17]. The corresponding residence times using the labeled termini approach yielded
462.9%£265.4 ms and 269.5+78.6 ms - both significantly higher. Wilcoxon rank-sum
test of residence times using a single tag compared to two terminal tags confirmed
that residence times were significantly different (p<<0.001) for all affinities except
for 120 uM and 160 uM (likely, due to a small number of transport events).
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Figure 6. Distribution of mRNA residence times in the nuclear basket for successful
export events as calculated using a single probe (ie. hrp36 tag) directly compared to
placement of probes at both 5’ and 3’ ends of the mRNA. Larger points indicate
higher frequency of specified measurement.
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Figure 7. Distribution of mRNA residence times in the central channel for successful
export events as calculated using a single probe (ie. hrp36 tag) directly compared to
placement of probes at both 5’ and 3’ ends of the mRNA. Larger points indicate
higher frequency of specified measurement.

Effect of Number and Distribution of mRNA-Bound NXF1 Transport Receptors

As previously mentioned, the default number of NXF1 transport receptors bound to
the mRNA was set to nine to represent the number of exon junction complexes
present in a typical mRNA of this length. Under this configuration, a Nup-NXF1
affinity of 100 pM yielded a frequency of successful transport events that was
agreeable with experimentally reported values (Fig. 4). We assessed the sensitivity
of mRNA export to the variation in the number of transport receptors for an mRNA
of fixed length (i.e. receptor density). Increasing the number of transport receptors
from the default nine to thirteen resulted in a significant increase in the number of
successful transport events (see Fig. 8) at the cost of increased basket and central
channel residence times (see Fig. 9). A decrease in number of transport receptors
from nine to seven resulted in no successful transport events observed.

We also explored the effect of transport receptor localization on transport kinetics.
The placement of transport receptors along the entire length of the mRNA resulted
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in more robust transport than under partial coverage. As seen in Fig. 8, keeping
transport receptor spacing fixed between trials, configurations of full-length
coverage, % length coverage and %2 length coverage yielded different rates of
successful transport of 21%, 11% and 3% respectively for configurations in which
partial coverage began at the 5’ end and extended to either % or 34 the length of the
mRNA polymer. The number of transport receptors also differed with nine, seven
and five transport receptors for the full length, 34 length and %: length
configurations, respectively. Interestingly, comparing transport likelihood between
the configuration of seven transport receptors uniformly distributed along the
length of the mRNA to that where the seven transport receptors are distributed
along the 34 of the length (starting at the 5’ end), we see that 11% of mRNA were
exported when the transport receptors were placed within the 34 length -
suggesting that transport receptor spacing (or density) is likely a greater factor in
determining export likelihood. Interestingly, when we positioned the five and seven
transport receptors in the center %2 and 3% length of the mRNA polymer, we did not
observe any transport and the number of partial transports was also reduced.
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Figure 8. Chart showing the relative percent of successful (green), partial (orange)
and unsuccessful (red) transport events for different distributions of nuclear
transport receptors (NTR) on an export competent mRNA. Note: all configurations
used the baseline NXF1 to FG-Nup affinity of 100 uM. NTR on ¥ and NTR on %
represent configurations where transport receptors were placed on the terminal %
and % length of the mRNA respectively with the same spacing as used in the
baseline configuration for a total of 5 transport receptors in the % configuration and
7 transport receptors in the 34 configuration. NTR on center ¥ and NTR on center %
represent configurations where transport receptors were placed in the center %
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and % length of the mRNA respectively with the same spacing as used in the
baseline configuration for a total of 5 transport receptors in the %2 configuration and
7 transport receptors in the % configuration - these configurations lacked transport
receptors near the 5’ and 3’ termini.
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Figure 9. Effect of varying nuclear transport receptor (NTR) distribution along the
length of an mRNA on nuclear basket and central channel residence times for
successful export events (error bars represent one standard deviation). Note: all
configurations used the baseline NXF1 to FG-Nup affinity of 100 uM. NTR on % and
NTR on % represent configurations where transport receptors were placed on the
terminal %2 and % length of the mRNA respectively with the same spacing as used in
the baseline configuration for a total of 5 transport receptors in the %2 configuration
and 7 transport receptors in the 34 configuration.

Dynamics of an mRNA Polymer Undergoing Export

Previous studies have reported the lengthening of mRNA as it approaches the
central channel [40]. This observation was for the Balbiani ring mRNA, which is
much larger than the mRNA modeled in our simulations (~37 kb compared to ~2.2
kb). Nevertheless, we wanted to explore if such lengthening would be observed in
our simulations. As shown in Fig. 10, the average end-to-end length of mRNA
approaching the basket dropped initially from that of the globular conformation
taken on when diffusing freely throughout the nucleoplasm. This reduced end-to-
end length is the result of the mRNA taking on a more compact conformation as
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NXF1 proteins bind multiple Nups in the basket. Average end-to-end length is
observed to increase as the polymer translocates through the central channel. This
behavior is consistent with what was observed in EM studies of mRNA export.
Notably, increased affinity and number of transport receptors result in increased
compaction of the mRNA polymer in the basket (see Fig. 10 - increased variability in
average end-to-end lengths of low Nup-NXF1 affinity transports can be observed on
the cytoplasmic side due to low sampling of successful transport events in those
configurations).
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Figure 10. Plot of end-to-end length averaged over 100 simulations for multiple
affinity and nuclear transport receptor (NTR) configurations in the ABM model.
Note: where unspecified, the number of transport receptors was set to the baseline
value of nine, distributed uniformly along the length of the mRNA. The x-axis
represents the position along the axis perpendicular to the nuclear envelope (z-
Distance) with x=0 set at the center of the central channel of the NPC. The first
dashed line from the left represents the distal edge of the nuclear basket, the second
dashed line from the left represents the nuclear edge of the central channel, the
third dashed line from the left represents the cytoplasmic edge of the central
channel and the fourth dashed line from the left represents the distal edge of the
cytoplasmic filaments.
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Discussion

Although accurate experimental techniques are ultimately essential for enhancing
our understanding of mRNA export dynamics, effective computational models can
aid in constructing hypotheses and experimental design while also revealing
potential systematic limitations. Using the agent-based modeling modality, we have
constructed a rudimentary model of mRNA export through the NPC that allows for
testing how several kinds of parameters affect this process. We first assessed the
impact of affinity between mRNA-binding nuclear transport receptor (NTR) NXF1
and the NPC’s FG Nups. As shown in Fig. 4, an affinity of 100 uM yielded mRNA
export efficacy that is most consistent with previous experimental observations.
Furthermore, residence time within both the nuclear basket and the central channel
was minimized under this affinity, Fig. 5. A balance between export likelihood and
pore residence time of an mRNA is suggested by these results. Taken in the context
of bulk export, this balance likely improves transport efficiency for other cargos.
This is done by creating a pore that can remain occluded rather than one that can
successfully export every mRNA that it encounters, which would result in very slow-
transporting mRNAs that virtually “clog” the pore.

Additionally, the effect of density of NTR binding to the mRNA was also examined.
Raising the density of NTRs bound to the mRNA lead to increased transport
efficiency, while lowering it dramatically ablated transport. These observations hint
at the degree of stringency behind the NTR-mediated method of export that cells
would have to evolve to leverage the biophysics that are relevant to this process. In
further support of this idea, while full coverage of the mRNA by NTRs appears to
favor optimal transport conditions, coverage of at least one mRNA terminus may be
necessary to ensure any successful export. To speculate on a potential explanation
for this requirement, having an NTR-covered terminus may ensure that the mRNA
can begin threading through the pore after sweeping the conformational space.
Because similar trends in NTR distribution-dependent export efficacy were
observed for case of 20 uM NXF1-Nup affinity (data not shown), they appear to be
independent of affinity.

Importantly, our model of mRNA export sheds considerable insight on potential
sources of systematic error that may be present in previously-utilized experimental
approaches aimed at studying this process. Our results demonstrate that, regardless
of affinity or NTR distribution, using a single mRNA tracking probe may lead to an
overestimation of transport rate. A single probe only provides a local snapshot for
the region along the mRNA that contains the tag. In addition, we observed that the
use of a single tracking probe consistently overestimated the number of successful
export events (data not shown). However, this over-estimation was in the range of
0-5% depending on affinity and transport receptor distribution. Subsequently, we
can conclude that the use of a single tracking probe is sufficient for determining the
fraction of successful mRNA export events. This is likely due to the relative duration
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of a typical mRNA export event being much shorter than the duration of observation
- in this case, ~1.0 second of pore residence compared to 20 seconds of observation.
As the difference between these durations is reduced, the confidence in single probe
measurements of transport likelihood becomes questionable.

With our ABM, we were able to observe the coarse elongation of the mRNA as it
threaded through the NPC (Fig. 10), which is consistent with previous experimental
findings. In addition, a collapse in configuration as the mRNA contacted the nuclear
basket was observed. Both our simulations and previous experimental findings
suggest that successful threading of the mRNA terminus is the rate-limiting step in
mRNA transport. As such, it could be speculated that by forcing the mRNA into a
more compact conformation, the basket reduces the number of entropic states that
the mRNA must search in order to find an optimal conformation for export through
the narrow central channel, thus accelerating the rate of transport. Crucially, such
behavior of the mRNA cannot be observed in experimental studies that utilize one
probe per mRNA molecule for labeling purposes.

As with other studies, ours has its own limitations that we wish to acknowledge. The
ABM that we have produced recapitulates only coarse-grained behavior of an
mRNA-like molecule as it transports through the NPC. Certainly, the detailed
numbers behind our findings should be taken with a grain of salt. In addition, while
it has been strongly suggested that different FG Nups within the NPC exhibit varying
affinities NTR-cargo complexes, our model utilizes homogeneous affinities and thus
potentially fails to capture intricacies in the export process. Despite these and other
limitations, however, the model does faithfully recapitulate some of the coarse
experimentally-observed processes, and therefore has potential for further
refinement in the future.

Finally, it should be noted that the above discussion only addresses nuclear export
of mRNA via CRM1 and NXF1/NXT1-mediated pathways via the NPC. In 2012,
Speese and colleagues identified an alternate pathway for nuclear export of DFz2C
mRNPs via budding of the nuclear envelope analogous to export pathways used by
viruses such as herpes [19,20]. There remain many questions as to why these
molecules are exported via nuclear budding as opposed to via the NPC (the authors
don’t exclude the possibility that some DFz2C mRNP could be exported via NPCs).
Possible explanations for an alternative transport pathway such as size limits, co-
export of multiple mRNPs, preserving mRNP structure for transcriptional
repression during export and pathways presenting alternate regulation have been
suggested [21]. This alternate pathway remains a topic of interest as more details
become available.
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Conclusion

These simulations highlight characteristics of mRNA export and may have further
implications for targeted delivery and export of polymeric molecules into and out
the nucleus - potentially in applications relating to gene therapy and/or disruption
of viral entry or exit into and out of the nucleus. The key observations we made
were that mRNA export appears very sensitive to the number of transport receptors
lining the mRNA. A single transport receptor at the 5’ end appeared insufficient for
facilitating export. Increasing transport receptor coverage along the length of the
mRNA improved the chances of successful export. Additionally, it was observed that
the presence of a transport receptor near either the 5’ or 3’ terminus is required for
successful export as it likely promotes the emergence of a favorable threading
conformation and facilitates transport. The observations made for transport
receptor number and distribution were observed to occur at other affinities, higher
and lower, than the standard configuration affinity. Subsequently, we concluded that
these effects were not an artifact of the affinity used in the standard configuration.
Finally, we observed that the use of a single probe is typically sufficient for
differentiating successful transports and failed transports, given that the
observation time is sufficiently longer than the time of transport. However, it
appears unlikely that a single probe can be used to correctly capture the transport
time of an mRNA threading through a pore.
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Appendix A:

FORTRAN 90 Implementation of
Agent Movement
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subroutine MOVE(noNeighbors,geometry,N,world,numTypes,maxParticles,pTypes)

integer N,geometry

TYPE (element) world(0:N-1)

integer numTypes,maxParticles

TYPE (particleTypes) pTypes(numTypes)
integer i,

integer k,dk

integer t,ttemp,told

double precision RND, grnd

integer oldEl,newEl, partType(2)

integer noNeighbors

integer leftMono, currMono, rightMono
integer leftMonolID(2), rightMonoID(2)
integer polyMoveTrack(0:maxParticles-1),numPolyMoved

do i=1,numTypes
if (pTypes(i).isPolymer.eq.0) then
do j=0,maxParticles-1
if(particles(i,j,1).ge.0) then
oldEl=particles(i,j,1)
RND=grnd()
k=INT(RND*noNeighbors)
if(k.lt.noNeighbors) then
newEl=world(oldEl).neighbor(k)
if( & (world(newEl).sumVolume+pTypes(i).partVolume).le.1.AND. &
world(newEl).numParticles.lt.maxPerCell.AND. &
oldEl.ne.newEl) then
RND=grnd()
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if(RND.It.pTypes(i).diffC(world(newEl).elementType)) then
RND=grnd()
if(RND.It.(1-world(newEl).sumVolume)) then
world(newEl).numParticles=world(newEl).numParticles+1
world(oldEl).numParticles=world(oldEl).numParticles-1
told=particles(i,j,2)
partType=world(oldEl).typeParticles(particles(i,j,2),:)
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(newEl).typeParticles(t,1)
enddo
world(newEl).typeParticles(t,:)=partType
world(oldEl).typeParticles(told,:)=(/0,0/)
world(newEl).sumVolume= world(newEl).sumVolume+pTypes(i).partVolume
world(oldEl).sumVolume= world(oldEl).sumVolume-pTypes(i).partVolume
particles(partType(1),partType(2),1)=newEl
particles(partType(1),partType(2),2)=t
endif
endif
elseif(world(newEl).numParticles.ge.maxPerCell) then
write(*,*) "ERROR, MAX PARTICLE PER CELL EXCEEDED"
endif
endif
endif
enddo
else
polyMoveTrack = 0
numPolyMoved = 0
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do while (numPolyMoved.lt.maxParticles)
j=INT(grnd()*maxParticles)
if (polyMoveTrack(j).eq.0) then
polyMoveTrack(j) = 1
if(particles(i,j,1).ge.0) then
currMono = particles(i,j,1)
if (polyNeighbor(i,j,1).eq.-1) then
rightMono = world(currMono).neighbor(polyNeighbor(i,j,2))
rightMonolD = (/ polyNeighbor(i,j,5), polyNeighbor(i,j,6) /)
RND=grnd()
k=INT(RND*noNeighbors)
newEl=world(rightMono).neighbor(k)
if((world(newEl).numParticles.lt.maxPerCell.AND. &
rightMono.ne.newELAND. &
currMono.ne.newEL.AND. &
k.ne.dirOpposing(polyNeighbor(rightMonolID(1),rightMonolD(2),1))) then
RND=grnd()
if(RND.It.pTypes(i).diffC(world(newEl).elementType)) then
RND=grnd()
if(RND.It.(1-world(newEl).sumVolume)) then
world(newEl).numParticles=world(newEl).numParticles+1
world(currMono).numParticles=world(currMono).numParticles-1
told=particles(i,j,2)
partType=world(currMono).typeParticles(particles(i,j,2),:)
t=0
ttemp=1
do while (t.le.maxPerCel, AND.ttemp.gt.0)
t=t+1
ttemp=world(newEl).typeParticles(t,1)
enddo
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world(newEl).typeParticles(t,:)=partType
world(currMono).typeParticles(told,:)=(/0,0/)
world(newEl).sumVolume= world(newEl).sumVolume+pTypes(i).partVolume
world(currMono).sumVolume= world(currMono).sumVolume-pTypes(i).partVolume
particles(partType(1),partType(2),1)=newEl
particles(partType(1),partType(2),2)=t
polyNeighbor(i,j,2) = dirOpposing(k)
polyNeighbor(rightMonoID(1),rightMonoID(2),1) = k
endif
endif
endif
elseif (polyNeighbor(i,j,2).eq.-1) then
leftMono = world(currMono).neighbor(polyNeighbor(i,j,1))
leftMonolD = (/ polyNeighbor(i,j,3), polyNeighbor(i,j,4) /)
RND=grnd()
k=INT(RND*noNeighbors)
newEl=world(leftMono).neighbor(k)
if((world(newEl).numParticles.lt.maxPerCell.AND. &
leftMono.ne.newEL.AND. &
currMono.ne.newEL.AND. &
k.ne.dirOpposing(polyNeighbor(leftMonoID(1),leftMonoID(2),2))) then
RND=grnd()
if(RND.It.pTypes(i).diffC(world(newEl).elementType)) then
RND=grnd()
if(RND.It.(1-world(newEl).sumVolume)) then
world(newEl).numParticles=world(newEl).numParticles+1
world(currMono).numParticles=world(currMono).numParticles-1
told=particles(i,j,2)
partType=world(currMono).typeParticles(particles(i,j,2),:)
t=0
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ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(newEl).typeParticles(t,1)
enddo
world(newEl).typeParticles(t,:)=partType
world(currMono).typeParticles(told,:)=(/0,0/)
world(newEl).sumVolume= world(newEl).sumVolume+pTypes(i).partVolume
world(currMono).sumVolume= world(currMono).sumVolume-pTypes(i).partVolume
particles(partType(1),partType(2),1)=newEl
particles(partType(1),partType(2),2)=t
polyNeighbor(i,j,1) = dirOpposing(k)
polyNeighbor(leftMonoID(1),leftMonoID(2),2) = k
endif
endif
endif
else
rightMono = world(currMono).neighbor(polyNeighbor(i,j,2))
rightMonolD = (/ polyNeighbor(i,j,5), polyNeighbor(i,j,6) /)
leftMono = world(currMono).neighbor(polyNeighbor(i,j,1))
leftMonolD = (/ polyNeighbor(i,j,3), polyNeighbor(i,j,4) /)
newEl=world(leftMono).neighbor(polyNeighbor(i,j,2))
if (polyNeighbor(i,j,1).ne.polyNeighbor(i,j,2).AND. &
polyNeighbor(i,j,1).ne.dirOpposing(polyNeighbor(i,j,2)).AND. &
world(newEl).numParticles.lt.maxPerCell.AND. &
rightMono.ne.newELAND. &
leftMono.ne.newELAND. &
currMono.ne.newEl) then
RND=grnd()
if(RND.It.pTypes(i).diffC(world(newEl).elementType)) then
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RND=grnd()
if(RND.It.(1-world(newEl).sumVolume)) then
world(newEl).numParticles=world(newEl).numParticles+1
world(currMono).numParticles=world(currMono).numParticles-1
told=particles(i,j,2)
partType=world(currMono).typeParticles(particles(i,j,2),:)
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(newEl).typeParticles(t,1)
enddo
world(newEl).typeParticles(t,:)=partType
world(currMono).typeParticles(told,:)=(/0,0/)
world(newEl).sumVolume= world(newEl).sumVolume+pTypes(i).partVolume
world(currMono).sumVolume= world(currMono).sumVolume-pTypes(i).partVolume
particles(partType(1),partType(2),1)=newEl
particles(partType(1),partType(2),2)=t
polyNeighbor(leftMonoID(1),leftMonoID(2),2) = polyNeighbor(i,j,2)
polyNeighbor(rightMonoID(1),rightMonolD(2),1) = polyNeighbor(i,j,1)
polyNeighbor(i,j,1) = dirOpposing(polyNeighbor(leftMonoID(1),leftMonoID(2),2))
polyNeighbor(i,j,2) = dirOpposing(polyNeighbor(rightMonolID(1),rightMonolID(2),1))
endif
endif
elseif (polyNeighbor(i,j,1).eq.polyNeighbor(i,j,2)) then
RND=grnd()
k=INT(RND*noNeighbors)
newEl=world(leftMono).neighbor(k)
if((world(newEl).numParticles.lt.maxPerCell.AND. &
rightMono.ne.newELAND. &
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leftMono.ne.newEL.AND. &
currMono.ne.newEL.AND. &
k.ne.dirOpposing(polyNeighbor(leftMonoID(1),leftMonoID(2),2))) then
RND=grnd()
if(RND.It.pTypes(i).diffC(world(newEl).elementType)) then
RND=grnd()
if(RND.It.(1-world(newEl).sumVolume)) then
world(newEl).numParticles=world(newEl).numParticles+1
world(currMono).numParticles=world(currMono).numParticles-1
told=particles(i,j,2)
partType=world(currMono).typeParticles(particles(i,j,2),:)
t=0
ttemp=1
do while (t.le.maxPerCelAND.ttemp.gt.0)
t=t+1
ttemp=world(newEl).typeParticles(t,1)
enddo
world(newEl).typeParticles(t,:)=partType
world(currMono).typeParticles(told,:)=(/0,0/)
world(newEl).sumVolume= world(newEl).sumVolume+pTypes(i).partVolume
world(currMono).sumVolume= world(currMono).sumVolume-pTypes(i).partVolume
particles(partType(1),partType(2),1)=newEl
particles(partType(1),partType(2),2)=t
polyNeighbor(i,j,1) = dirOpposing(k)
polyNeighbor(i,j,2) = dirOpposing(k)
polyNeighbor(rightMonoID(1),rightMonoID(2),1) = k
polyNeighbor(leftMonoID(1),leftMonoID(2),2) = k
endif
endif
endif
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endif
endif
endif
numPolyMoved = SUM(polyMoveTrack)
endif
enddo
endif
enddo

end subroutine MOVE
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Appendix B:

FORTRAN 90 Implementation of
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subroutine BIOCHEM(noNeighbors,N,world,numP,numTypes,maxParticles,pTypes,numrTypes,rTypes)

integer N

TYPE (element) world(0:N-1)

integer numP

integer numTypes,maxParticles,numrTypes
TYPE (particleTypes) pTypes(numTypes)
TYPE (rxnTypes) rTypes(numrTypes)
integer noNeighbors

integer i,j,r, k,dk,p

integer s,stemp,t,ttemp

double precision RND, grnd

integer rxnEl1,rxnEl2,pTyp1(2),pTyp2(2)
integer norxn

double precision RNDNeighbor

integer rxnsTrack(numrTypes),numRxnsComplete
integer leftMonoID(2), rightMonolID(2)

rxnsTrack =0
numRxnsComplete = 0
do while (numRxnsComplete.lt.numrTypes)
r=INT(grnd()*numrTypes)+1
if (r.lenumrTypes) then
if (rxnsTrack(r).eq.0) then
rxnsTrack(r) = 1
i = rTypes(r).rxnlnput(1)
do j=0,maxParticles-1
pTyp1(1)=i
pTyp1(2)=j
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rxnEll=particles(i,j,1)
if (rxnEl1.ge.0) then
if(rTypes(r).numlnput.eq.1) then
if (rTypes(r).numOutputs.eq.1) then
RND=grnd()
if(RND.It.rTypes(r).kO) then
world(rxnEl1).numParticles=world(rxnEl1).numParticles-1
world(rxnEl1).typeParticles(particles(pTyp1(1),pTyp1(2),2),:)=(/0,0/)
particles(pTyp1(1),pTyp1(2),:)=(/-1,-1/)
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume-pTypes(rTypes(r).rxnlnput(1)).partVolume
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl1).typeParticles(t,1)
enddo
s=-1
stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
s=s+1
stemp=particles(rTypes(r).rxnOutput(1),s,1)
enddo
world(rxnEl1).numParticles=world(rxnEl1).numParticles+1
world(rxnEl1).typeParticles(t,1)=rTypes(r).rxnOutput(1)
world(rxnEl1).typeParticles(t,2)=s
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume+pTypes(rTypes(r).rxnOutput(1)).partVolume
particles(rTypes(r).rxnOutput(1),s,1)=rxnEIl1
particles(rTypes(r).rxnOutput(1),s,2)=t
if (pTypes(i).isPolymer.eq.1) then
leftMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),3), polyNeighbor(pTyp1(1),pTyp1(2),4) /)
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rightMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),5), polyNeighbor(pTyp1(1),pTyp1(2),6) /)
polyNeighbor(rTypes(r).rxnOutput(1),s,1:6) = polyNeighbor(pTyp1(1),pTyp1(2),1:6)
if (polyNeighbor(pTyp1(1),pTyp1(2),1).ge.0) then
polyNeighbor(leftMonoID(1),leftMonoID(2),5) = rTypes(r).rxnOutput(1)
polyNeighbor(leftMonoID(1),leftMonoID(2),6) = s
endif
if (polyNeighbor(pTyp1(1),pTyp1(2),2).ge.0) then
polyNeighbor(rightMonoID(1),rightMonoID(2),3) = rTypes(r).rxnOutput(1)
polyNeighbor(rightMonoID(1),rightMonoID(2),4) = s
endif
polyNeighbor(pTyp1(1),pTyp1(2),1:6) =-1
endif
endif
elseif (rTypes(r).numOutputs.eq.2) then
RND=grnd()
if(RND.It.rTypes(r).kO) then
numP=numP+1
world(rxnEl1).numParticles=world(rxnEl1).numParticles-1
world(rxnEl1).typeParticles(particles(pTyp1(1),pTyp1(2),2),:)=(/0,0/)
particles(pTyp1(1),pTyp1(2),:)=(/-1,-1/)
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume-pTypes(rTypes(r).rxnlnput(1)).partVolume
t=0
ttemp=1
do while (t.le.maxPerCel.AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl1).typeParticles(t,1)
enddo
s=-1
stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
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s=s+1
stemp=particles(rTypes(r).rxnOutput(1),s,1)
enddo
world(rxnEl1).numParticles=world(rxnEl1).numParticles+1
world(rxnEl1).typeParticles(t,1)=rTypes(r).rxnOutput(1)
world(rxnEl1).typeParticles(t,2)=s
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume+pTypes(rTypes(r).rxnOutput(1)).partVolume
particles(rTypes(r).rxnOutput(1),s,1)=rxnEIl1
particles(rTypes(r).rxnOutput(1),s,2)=t
if (pTypes(i).isPolymer.eq.1) then
leftMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),3), polyNeighbor(pTyp1(1),pTyp1(2),4) /)
rightMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),5), polyNeighbor(pTyp1(1),pTyp1(2),6) /)
polyNeighbor(rTypes(r).rxnOutput(1),s,1:6) = polyNeighbor(pTyp1(1),pTyp1(2),1:6)
if (polyNeighbor(pTyp1(1),pTyp1(2),1).ge.0) then
polyNeighbor(leftMonoID(1),leftMonoID(2),5) = rTypes(r).rxnOutput(1)
polyNeighbor(leftMonoID(1),leftMonoID(2),6) = s
endif
if (polyNeighbor(pTyp1(1),pTyp1(2),2).ge.0) then
polyNeighbor(rightMonoID(1),rightMonoID(2),3) = rTypes(r).rxnOutput(1)
polyNeighbor(rightMonoID(1),rightMonoID(2),4) = s
endif
polyNeighbor(pTyp1(1),pTyp1(2),1:6) =-1
endif
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl1).typeParticles(t,1)
enddo
s=-1
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stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
s=s+1
stemp=particles(rTypes(r).rxnOutput(2),s,1)
enddo
world(rxnEl1).numParticles=world(rxnEl1).numParticles+1
world(rxnEl1).typeParticles(t,1)=rTypes(r).rxnOutput(2)
world(rxnEl1).typeParticles(t,2)=s
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume+pTypes(rTypes(r).rxnOutput(2)).partVolume
particles(rTypes(r).rxnOutput(2),s,1)=rxnEIl1
particles(rTypes(r).rxnOutput(2),s,2)=t
endif
endif
elseif(rTypes(r).numlnput.eq.2) then
RNDNeighbor=grnd()
do dk=0,noNeighbors-1+1
k=MOD(dk+INT(RNDNeighbor*(noNeighbors+1)),noNeighbors+1)
if(k.It.noNeighbors)then
rxnEl2=world(rxnEl1).neighbor(k)
else
rxnEl2=rxnEI1
endif
do p=1,maxPerCell
if(rxnEll.eq.rxnElI2.AND.particles(pTyp1(1),pTyp1(2),2).eq.p)then
goto 10
endif
pTyp2(1)=world(rxnEl2).typeParticles(p,1)
pTyp2(2)=world(rxnEl2).typeParticles(p,2)
if(pTyp2(1).eq.rTypes(r).rxnlnput(2)) then
if(pTypes(pTyp2(1)).diffC(world(rxnEl2).elementType).eq.0)then
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goto 10
endif
RND=grnd()
if(RND.It.rTypes(r).kO) then
world(rxnEl1).numParticles=world(rxnEl1).numParticles-1
world(rxnEl2).numParticles=world(rxnEl2).numParticles-1
world(rxnEl1).typeParticles(particles(pTyp1(1),pTyp1(2),2),:)=(/0,0/)
world(rxnEl2).typeParticles(particles(pTyp2(1),pTyp2(2),2),:)=(/0,0/)
particles(pTyp1(1),pTyp1(2),:)=(/-1,-1/)
particles(pTyp2(1),pTyp2(2),:)=(/-1,-1/)
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume-pTypes(rTypes(r).rxnlnput(1)).partVolume
world(rxnEl2).sumVolume= world(rxnEl2).sumVolume-pTypes(rTypes(r).rxnlnput(2)).partVolume
if(rTypes(r).numOutputs.eq.1) then
numP=numP-1
s=-1
stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
s=s+1
stemp=particles(rTypes(r).rxnOutput(1),s,1)
enddo
RND=grnd()
if(RND.le.1.0) then
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl1).typeParticles(t,1)
enddo
world(rxnEl1).numParticles=world(rxnEl1).numParticles+1
world(rxnEl1).typeParticles(t,1)=rTypes(r).rxnOutput(1)
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world(rxnEl1).typeParticles(t,2)=s
world(rxnEl1).sumVolume=world(rxnEl1).sumVolume+pTypes(rTypes(r).rxnOutput(1)).partVolume
particles(rTypes(r).rxnOutput(1),s,1)=rxnEIl1
particles(rTypes(r).rxnOutput(1),s,2)=t
if (pTypes(i).isPolymer.eq.1) then
leftMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),3), polyNeighbor(pTyp1(1),pTyp1(2),4) /)
rightMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),5), polyNeighbor(pTyp1(1),pTyp1(2),6) /)
polyNeighbor(rTypes(r).rxnOutput(1),s,1:6) = polyNeighbor(pTyp1(1),pTyp1(2),1:6)
if (polyNeighbor(pTyp1(1),pTyp1(2),1).ge.0) then
polyNeighbor(leftMonoID(1),leftMonoID(2),5) = rTypes(r).rxnOutput(1)
polyNeighbor(leftMonoID(1),leftMonoID(2),6) =s
endif
if (polyNeighbor(pTyp1(1),pTyp1(2),2).ge.0) then
polyNeighbor(rightMonoID(1),rightMonoID(2),3) = rTypes(r).rxnOutput(1)
polyNeighbor(rightMonoID(1),rightMonoID(2),4) = s
endif
polyNeighbor(pTyp1(1),pTyp1(2),1:6) =-1
endif
else
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl2).typeParticles(t,1)
enddo
world(rxnEl2).numParticles=world(rxnEl2).numParticles+1
world(rxnEl2).typeParticles(t,1)=rTypes(r).rxnOutput(1)
world(rxnEl2).typeParticles(t,2)=s
world(rxnEl2).sumVolume=world(rxnEl2).sumVolume+pTypes(rTypes(r).rxnOutput(1)).partVolume
particles(rTypes(r).rxnOutput(1),s,1)=rxnEI2
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particles(rTypes(r).rxnOutput(1),s,2)=t
if (pTypes(i).isPolymer.eq.1) then
leftMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),3), polyNeighbor(pTyp1(1),pTyp1(2),4) /)
rightMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),5), polyNeighbor(pTyp1(1),pTyp1(2),6) /)
polyNeighbor(rTypes(r).rxnOutput(1),s,1:6) = polyNeighbor(pTyp1(1),pTyp1(2),1:6)
if (polyNeighbor(pTyp1(1),pTyp1(2),1).ge.0) then
polyNeighbor(leftMonoID(1),leftMonoID(2),5) = rTypes(r).rxnOutput(1)
polyNeighbor(leftMonoID(1),leftMonoID(2),6) = s
endif
if (polyNeighbor(pTyp1(1),pTyp1(2),2).ge.0) then
polyNeighbor(rightMonoID(1),rightMonoID(2),3) = rTypes(r).rxnOutput(1)
polyNeighbor(rightMonoID(1),rightMonoID(2),4) = s
endif
polyNeighbor(pTyp1(1),pTyp1(2),1:6) =-1
endif
endif
elseif(rTypes(r).numOutputs.eq.2) then
s=-1
stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
s=s+1
stemp=particles(rTypes(r).rxnOutput(1),s,1)
enddo
t=0
ttemp=1
do while (t.le.maxPerCel.,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl1).typeParticles(t,1)
enddo
world(rxnEl1).numParticles=world(rxnEl1).numParticles+1
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world(rxnEl1).typeParticles(t,1)=rTypes(r).rxnOutput(1)
world(rxnEl1).typeParticles(t,2)=s
world(rxnEl1).sumVolume= world(rxnEl1).sumVolume+pTypes(rTypes(r).rxnOutput(1)).partVolume
particles(rTypes(r).rxnOutput(1),s,1)=rxnEIl1
particles(rTypes(r).rxnOutput(1),s,2)=t
if (pTypes(i).isPolymer.eq.1) then
leftMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),3), polyNeighbor(pTyp1(1),pTyp1(2),4) /)
rightMonolD = (/ polyNeighbor(pTyp1(1),pTyp1(2),5), polyNeighbor(pTyp1(1),pTyp1(2),6) /)
polyNeighbor(rTypes(r).rxnOutput(1),s,1:6) = polyNeighbor(pTyp1(1),pTyp1(2),1:6)
if (polyNeighbor(pTyp1(1),pTyp1(2),1).ge.0) then
polyNeighbor(leftMonoID(1),leftMonoID(2),5) = rTypes(r).rxnOutput(1)
polyNeighbor(leftMonoID(1),leftMonoID(2),6) = s
endif
if (polyNeighbor(pTyp1(1),pTyp1(2),2).ge.0) then
polyNeighbor(rightMonoID(1),rightMonoID(2),3) = rTypes(r).rxnOutput(1)
polyNeighbor(rightMonoID(1),rightMonoID(2),4) = s
endif
polyNeighbor(pTyp1(1),pTyp1(2),1:6) =-1
endif
s=-1
stemp=0
do while (s.le.maxParticles-1.AND.stemp.ge.0)
s=s+1
stemp=particles(rTypes(r).rxnOutput(2),s,1)
enddo
t=0
ttemp=1
do while (t.le.maxPerCel,AND.ttemp.gt.0)
t=t+1
ttemp=world(rxnEl2).typeParticles(t,1)
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enddo

world(rxnEl2).numParticles=world(rxnEl2).numParticles+1
world(rxnEl2).typeParticles(t,1)=rTypes(r).rxnOutput(2)

world(rxnEl2).typeParticles(t,2)=s

world(rxnEl2).sumVolume= world(rxnEl2).sumVolume+pTypes(rTypes(r).rxnOutput(2)).partVolume
particles(rTypes(r).rxnOutput(2),s,1)=rxnEI2

particles(rTypes(r).rxnOutput(2),s,2)=t

endif
goto 20
endif
endif
10 enddo
enddo
20 endif
endif
enddo
endif
numRxnsComplete = SUM(rxnsTrack)
endif
enddo

end subroutine BIOCHEM
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