
UCSF
UC San Francisco Previously Published Works

Title
A Randomized Controlled Trial of Lisinopril to Decrease Lymphoid Fibrosis in Antiretroviral-
Treated, HIV-infected Individuals

Permalink
https://escholarship.org/uc/item/58q8q7mm

Journal
Pathogens and Immunity, 2(3)

ISSN
2469-2964

Authors
Cockerham, Leslie R
Yukl, Steven A
Harvill, Kara
et al.

Publication Date
2017

DOI
10.20411/pai.v2i3.207

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58q8q7mm
https://escholarship.org/uc/item/58q8q7mm#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Pathogens and Immunity - Vol 2, No 3

www.PaiJournal.com

310

Research Article
Published August 2, 2017

A Randomized Controlled Trial of  
Lisinopril to Decrease Lymphoid  

Fibrosis in Antiretroviral-Treated, 
HIV-infected Individuals

AUTHORS
Leslie R. Cockerham1, Steven A. Yukl2, Kara Harvill3, Ma Somsouk4, Sunil K. Joshi2, Elizabeth 
Sinclair3, Teri Liegler3, Rebecca Hoh3, Sophie Lyons3, Peter W. Hunt3, Adam Rupert5

,
 Irini Sereti5, 

David R. Morcock6, Ajantha Rhodes7,8
, Claire Emson9, Marc K. Hellerstein9,10, Jacob D. Estes6, 

Sharon Lewin7,8, Steven G. Deeks3, Hiroyu Hatano3

AFFILIATED INSTITUTIONS
1Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
2Department of Medicine, San Francisco VA Medical Center, and University of California, San 
Francisco (UCSF), San Francisco, California

3HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, Uni-
versity of California, San Francisco, California

4Division of Gastroenterology, San Francisco General Hospital, University of California, San 
Francisco, California 

5National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 
Maryland

6Frederick National Laboratory, Leidos Biomedical Research, Frederick, Maryland
7Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 
Victoria, Australia

8Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 
Australia

9Kinemed, Inc., Emeryville, California
10Department of Nutritional Science and Toxicology, University of California, Berkeley, California



Pathogens and Immunity - Vol 2, No 3

www.PaiJournal.com

311

CORRESPONDING AUTHOR 
Leslie Cockerham 
Division of Infectious Diseases 
Medical College of Wisconsin 
9200 W. Wisconsin Ave., Suite 5100 
Milwaukee, WI 53226 
Tel: (414) 805-0738 
Fax: (414) 805-0748 
lcockerham@mcw.edu 

Presented in part at the 23rd Conference on Retroviruses and Opportunistic Infections, Boston, 
Massachusetts, February 22-25, 2016, Abstract 298.

SUGGESTED CITATION
Cockerham LR, Yukl SA, Harvill K, Somsouk M, Joshi SK, Sinclair E, Liegler T, Hoh R, Lyons 
S, Hunt PW, Rupert A, Sereti I, Morcock DR, Rhodes A, Emson C, Hellerstein MK, Estes JD, 
Lewin S, Deeks SG, Hatano H. A Randomized Controlled Trial of Lisinopril to Decrease Lym-
phoid Fibrosis in Antiretroviral-Treated, HIV-infected Individuals. Pathogens and Immunity. 
2017;2(3):310-34. doi: 10.20411/pai.v2i3.207

ABSTRACT
Background: In HIV infection, lymphoid tissue is disrupted by fibrosis. Angiotensin converting 
enzyme inhibitors have anti-fibrotic properties. We completed a pilot study to assess whether the 
addition of lisinopril to antiretroviral therapy (ART) reverses fibrosis of gut tissue, and whether 
this leads to reduction of HIV RNA and DNA levels. 

Methods: Thirty HIV-infected individuals on ART were randomized to lisinopril at 20mg daily 
or matching placebo for 24 weeks. All participants underwent rectal biopsies prior to starting the 
study drug and at 22 weeks, and there were regular blood draws. The primary end point was the 
change in HIV RNA and DNA levels in rectal tissue. Secondary outcomes included the change 
in 1) HIV levels in blood; 2) Gag-specific T-cell responses; 3) levels of T-cell activation; and 4) 
collagen deposition.

Results: The addition of lisinopril did not have a significant effect on the levels of HIV RNA or 
DNA in gut tissue or blood, Gag-specific responses, or levels of T-cell activation. Lisinopril also 
did not have a significant impact on lymphoid fibrosis in the rectum, as assessed by quantitative 
histology or heavy water labeling.

Conclusions: Treatment with lisinopril for 24 weeks in HIV-infected adults did not have an effect 
on lymphoid fibrosis, immune activation, or gut tissue viral reservoirs. Further study is needed 
to see if other anti-fibrotic agents may be useful in reversing lymphoid fibrosis and reducing HIV 
levels.

Clinical Trials Registration: NCT01535235

Keywords: Anti-Inflammatory Agents/*therapeutic use; CD4 Lymphocyte Count; Disease Reser-
voirs/*virology; HIV; Immunology; Lymphoid fibrosis;T-cell activation
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INTRODUCTION
An important feature of the pathophysiology of HIV infection is the disruption of the lymphoid 
architecture by collagen deposition [1]. This resultant fibrosis leads to damage of the fibroblas-
tic reticular cell network (FRCn). The FRCn is crucial for the delivery of cytokines and growth 
factors (such as IL-7) that promote survival and homeostatic proliferation of T cells [2-4]. Fibrosis 
of lymphoid tissues persists despite antiretroviral therapy (ART) [5-7]. Furthermore, collagen 
deposition is inversely associated with CD4+ T-cell reconstitution in lymphoid tissue [1, 6, 8], and 
the amount of collagen deposition before ART predicts the magnitude of peripheral T-cell recov-
ery after ART initiation [9-11]. 

Collagen deposition is linked to chronic immune activation and inflammation. In an effort to 
regulate the immune response, T-regulatory cells are recruited to lymphoid tissues and produce 
transforming growth factor β (TGF-β), which stimulates collagen production [3, 12, 13]. Previous 
studies have shown both a spatial and temporal association between TGF-β expression and colla-
gen deposition [12]. This process occurs rapidly after HIV infection and is progressive. Not only 
does this fibrosis disrupt the FRCn and T-cell homeostasis, but it may also prevent the effective 
interaction between Antigen Presenting Cells (APCs) and cytotoxic T lymphocytes and could be 
a factor in the ineffective clearance of HIV-infected cells [2, 4, 14]. However, collagen deposition 
has been shown to be a dynamic process that can be reversed [6, 15]. Therefore, it may be a mod-
ifiable barrier to restoring normal immune function and improving immune clearance of the viral 
reservoir.

Multiple studies have shown that angiotensin converting enzyme (ACE) inhibitors have anti-fi-
brotic properties through inhibition of TGF-β1 [16-19]. Due to the long clinical history of safely 
using ACE-inhibitors, and due to its putative anti-fibrotic potential, we conducted a randomized, 
double-blind placebo-controlled trial to examine whether addition of the ACE-inhibitor lisino-
pril decreases collagen deposition in the gut tissue and ultimately decreases the amount of HIV 
RNA and DNA in HIV-infected individuals receiving suppressive ART. As the degree of lymphoid 
fibrosis appears to be a strong determinant of T-cell recovery [8, 9] we enriched our study with 
individuals who failed to normalize their CD4+ T-cell counts with suppressive ART [20]. We hy-
pothesized that treatment with lisinopril would reduce lymphoid fibrosis in the gut, improve HIV 
specific responses, and decrease the levels of HIV RNA and DNA. 

METHODS
Study Participants
Thirty-one HIV-infected individuals on suppressive ART (HIV VL < 40-75 copies/mL) for ≥1 
year were enrolled in this randomized, placebo-controlled study (clinical trials registration 
NCT01535235). Enrollment was stratified by CD4+ T-cell counts of < 350 cells/μL (immunologic 
non-responders, INRs) and ≥ 350 cells/μL (immunologic responders, IRs) (see Consort diagram 
in supplementary materials). Exclusion criteria included a known history of diabetes mellitus, 
cardiovascular disease, or collagen vascular disease. Individuals with a serum creatinine of > 1.5 
mg/dL or who were already taking an ACE-inhibitor or angiotensin receptor blocker were also 
excluded. Study personnel and all authors were masked to the study group assignment until data 
collection and analyses were completed. Adherence to the study drug was measured at study visits 
by self-report and by pill count. All participants underwent sigmoidoscopy with rectal biopsies 
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prior to starting the study drug and at 22 weeks, and there were frequent blood draws. All partic-
ipants provided written informed consent. This study was approved by the University of Califor-
nia, San Francisco (UCSF) Committee on Human Research. An independent Data Monitoring 
Committee comprising 3 independent individuals from the scientific community met at 12 and 
36 weeks after the enrollment of the first subject and at 36 weeks after the enrollment of the last 
subject.

HIV RNA/DNA MEASUREMENTS
HIV RNA and DNA were measured in tissue from rectal biopsies prior to starting the study drug 
and again at week 22. Rectal biopsies were processed using a previously published method of col-
lagenase digestion and mechanical disruption [21]. Three replicates of 500 ng of DNA and RNA 
were assayed for total HIV DNA and RNA transcripts, respectively, using a published quantitative 
(q) PCR assay that uses primers and probe from the LTR region [22]. External standards were 
prepared for both DNA and RNA [23, 24]. The HIV DNA copy numbers were normalized to 
cellular input into the PCR as determined by DNA mass, and the cell equivalents were confirmed 
by qPCR for TERT [22]. The HIV RNA copy numbers were normalized to cellular input as deter-
mined by RNA mass and by qPCR for GAPDH [22]. 

Levels of cell-associated HIV RNA (CA-RNA) and DNA were measured from CD4+ T cells isolat-
ed from cryopreserved PBMCs at baseline, week 4, and week 24. The CD4+ T cells were isolated 
using an isolation kit (Stemcell Technologies, Vancouver, Canada; purity 97%), and RNA and 
DNA were extracted (Allprep isolation kit, Qiagen, Valencia, CA). For quantification of CA-RNA, 
a semi-nested real time q PCR was used with a first round amplification of 15 cycles, as previously 
described [25]. The second round used primers to gag [26]. The HIV RNA copy numbers were 
standardized to cellular equivalents using an 18s TaqMan gene expression assay (Thermo Fisher, 
Waltham, MA). The lower limit of detection for CA-RNA was 1 copy per well, and PCR amplifi-
cation of cDNA for CA-RNA was performed in quadruplicate with an intra-assay coefficient of 
variation (CV) of 32%. The HIV DNA was quantified as previously described [27], and PCR for 
HIV DNA was performed in triplicate for all samples with an intra-assay CV of 21%. In all assays, 
a control without reverse transcriptase was used. Full details are available in the Supplementary 
Materials.

T-Cell Immunophenotyping and Cytokine Flow Cytometry 
Immunophenotyping was performed on cryopreserved PBMCs and fresh rectal mucosal cells to 
measure T-cell activation and the frequency of Gag-specific CD4+ and CD8+ T cells as previously 
described [28, 29] The frequency of HIV-specific T cells, in PBMCs and isolated rectal mucosal 
cells, was measured by cytokine flow cytometry (CFC) as previously described [30, 31]. For full 
details of the immunophenoptyping and CFC see the Supplementary Materials.

Markers of Monocyte Activation
Several biomarkers of inflammation and innate immune activation have been associated with 
HIV disease progression and mortality [32-35]. These systemic inflammatory processes are 
thought to contribute to fibrosis and may also result in the production of pro-inflammatory 
molecules by activated cells, such as intestinal myofibroblasts [10, 36]. To determine whether 
treatment with lisinopril might alter this inflammatory milieu, we measured levels of markers of 
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inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), monocyte activation (soluble CD14 
[sCD14], soluble tumor necrosis factor α receptor I and II (sTNF-RI, sTNF-RII), and fibrosis 
(hyaluronic acid [HA]) from cryopreserved plasma specimens from the baseline visit, week 4, 
and week 24 visits. Plasma samples were analyzed for D-dimer concentrations using an ELFA 
(Enzyme Linked Fluorescent Assay) on a VIDAS instrument (bioMerieux Inc., Durham, NC). 
Determinations of IL-6 were performed using an electrochemiluminescense ELISA (Meso Scale 
Discovery, Gaithersburg, MD). Soluble CD14 and tissue factor analysis was performed using a 
standard ELISA (R&D Systems, Minneapolis, MN). All the tests listed were performed according 
to the manufacturer’s instructions.

Immunohistochemistry and Quantitative Image Analysis
Immunohistochemical staining was performed for collagen 1, myeloperoxidase positive PMNs 
(a marker of epithelial damage), Phospo-Smad3, and CD4+ T cells in the rectal biopsy tissue, and 
quantitative image analysis was performed as previously described [37, 38] and in the Supple-
mentary Materials. 

Measurement of Collagen Synthesis Rate Using 2H2O Heavy Water Labeling
We also investigated the use of 2H2O (heavy water) to quantify the rate of new collagen deposition 
in rectal tissue in treated HIV-infected individuals. The first 18 individuals enrolled in this study 
received outpatient oral doses of 2H2O for 4 weeks prior to each colorectal biopsy. Then 2H2O 
enrichment in total body water was quantified from weekly salivary swabs during 2H2O admin-
istration. Single 3 mm rectal biopsy pieces were subjected to sequential physical and chemical 
extraction methods to fractionate the extracellular matrix based on solubility in guanidine HCl 
[39]. Guanidine-soluble collagen represents more recently synthesized, less cross-linked collagen, 
while guanidine-insoluble collagen represents more mature cross-linked collagen [39]. Incor-
poration of the 2H2O tracer into collagen in rectal tissue was quantified by liquid-chromatogra-
phy-tandem mass spectrometry and the fractional synthesis rate (FSR, per week) was calculated 
for guanidine-soluble and guanidine-insoluble collagen, as previously described [39-41].

STATISTICAL ANALYSIS 
The primary end point was the change in HIV RNA and DNA levels in gut tissue. Inputs for de-
tectable effect calculations came from a previous study by our group [42]. In that study, the mean 
baseline GALT RNA was 53.3 copies per million rectal mononuclear cells (RMCs), with a residual 
standard deviation (SD) of 21.4 and within-subject correlation of 0.89. Based on these data, we 
estimated that the sample size of 15 treated and 15 control subjects would provide 80% power 
to detect a difference as small as 10.4 copies per million RMCs, or 20% of the baseline mean. 
Similarly, mean baseline GALT DNA was 3288 copies per million RMCs, with a residual SD of 
841 and within-subject correlation of 0.90. The sample size of 15 treated and 15 control subjects 
provided 80% power to detect a difference of 398 copies per million RMCs, or 12% of the baseline 
mean. These calculations accounted for a loss to follow-up (or unusable data) of 5% of subjects, as 
well as within-subject correlation of repeated observations.

Secondary outcomes included the change in 1) HIV RNA and DNA levels in PBMCs; 2) CD4+ 
and CD8+ total Gag-specific responses (IFN-γ, IL-2, TNF-α, or CD107a) in rectal tissue and 
PBMCs; 3) the percentage of CD38+HLA-DR+ CD4+ and CD8+ T cells in rectal tissue and PBMCs; 
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and 4) the rates of collagen turnover and amount of collagen deposition in rectal tissue. Levels 
were compared using the Wilcoxon rank sum test or the Wilcoxon signed rank test for paired 
samples. Linear mixed effects models with random intercepts and slopes were used to evaluate the 
association of the treatment group and responder status with the rates of change in HIV RNA and 
DNA levels in PBMCs, as well as T-cell activation and biomarker levels in PBMCs. Interaction 
terms between treatment group and time were used to determine whether the rate of change in 
these markers differed between the lisinopril-treated and placebo groups. All statistical analyses 
were performed using STATA/SE 12 (Stata Corp, College Station, TX).

RESULTS
Baseline Characteristics
Thirty-one individuals were enrolled in the study. One participant was withdrawn from the study 
at week 12 by investigators due to an increase in serum creatinine. Baseline characteristics of the 
participants were similar (Table 1). The median age of all participants was 54 years (IQR 47–57) 
and all participants were male. The median CD4+ T-cell count was 368 cells/μL (IQR 241–636). 

Table 1: Baseline Characteristics

Placebo (n = 15) Lisinopril (n =1 6)) P-value
Age (median, IQR) 54 (47-58) 53 (44-57) 0.31
Sex (% Male, n) 100% (15) 100% (15)
Race (%, n)

White 60% (9) 88% (14)
African-American 7% (1) 12% (2)
Latino/Hispanic 20% (3)
Asian 7% (1)
Pacific Islander 7% (1)

CD4+ T cell count (median, IQR) 392 (237-641) 362 (241-435) 0.87
CD8+ T cell count (median, IQR) 691 (416-1282) 654 (453-1187) 0.98
Baseline rectal HIV RNA 
(copies/106 rectal cells)

147 (57-358) 137 (53-447) 0.81

Baseline rectal HIV DNA 
(copies/106 rectal cells)

181 (80-225) 126 (42-177) 0.41

Data are % (no.) of patients, unless otherwise indicated. 
Abbreviations: IQR, interquartile range.

Adverse Events
No individuals voluntarily discontinued the study due to adverse events. Two individuals noted 
a mild dry cough, but continued study participation and the cough resolved in both individuals. 
One individual was withdrawn from the study due to an increase in serum creatinine at week 12, 
which had already returned to baseline at the time of discontinuation and was deemed not to be 
related to the study drug. At 24 weeks, individuals receiving lisinopril had a mean increase of 0.06 
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mg/dL in serum creatinine compared to the placebo group, which had stable creatinine levels, 
although this difference between groups was not statistically significant (placebo: +0.003 mg/dL 
change, P = 0.08). 

Cell-Associated HIV RNA and Proviral DNA
Baseline median CA-HIV RNA levels in rectal cells were similar between placebo and lisinopril 
groups at 147 (IQR 57–358) copies and 137 (IQR 53–447) copies/million gut cells, respectively. 
Total proviral HIV DNA levels in the gut were higher at baseline in the placebo group compared 
to the lisinopril-treated group, but this was not statistically significant (181 vs 126 copies/million 
gut cells, P = 0.41). Baseline median levels of CA-HIV RNA in the gut were higher among IRs 
compared to INRs (201 vs 59 copies/million gut cells, P = 0.02), but this was primarily driven by 
a single individual with a high HIV RNA level of > 4000 copies/million. Baseline levels of HIV 
DNA were more similar between the 2 responder groups (126 vs 172 copies/million gut cells, 
P = 0.16). Treatment with lisinopril did not affect the change in CA-RNA or proviral DNA in 
rectal cells (Figure 1), and CA-RNA and DNA were also similar in CD4+ T cells isolated from PB-
MCs between treatment groups both at baseline and after 24 weeks of treatment with study drug 
(Figure 2). Similarly, no difference was noted in the rate of change of HIV DNA or RNA over time 
between treatment groups using a mixed effects model. There was also no difference in response 
to treatment by immunologic responder status. 

T-Cell Activation and HIV-specific Responses
There was no difference in the percentage of CD38+DR+ CD4+ and CD8+ T cells between treat-
ment groups at baseline. However, INRs had elevated median levels of CD38+HLA-DR+ CD4+ and 
CD8+ T cells in rectal cells at baseline compared to IRs (CD4: median 11.1% vs 7.23%, P = 0.008, 
CD8: 24.0% vs 18.4%, P = 0.09) (Figure 3A) and this correlated negatively with the peripheral 
CD4+ T cell count (rho = -0.47, P = 0.009) (Figure 3B). The T-cell activation in PBMCs at base-
line was also negatively correlated with peripheral CD4+ T cell count (% CD4+CD38+HLA-DR+, 
rho -0.57, P = 0.001; % CD4+PD-1+, rho = -0.66, P = 0.0001), as has been seen previously in other 
studies [43]. The addition of lisinopril did not have a significant effect on the change in CD4+ and 
CD8+ T- cell activation or Gag-specific responses over time (data not shown).

Markers of Inflammation and Monocyte Activation 
We measured levels of IL-6, D-dimer, sCD14, sTNF-RI, sTNF-RII and HA from cryopreserved 
plasma specimens from the baseline visit, week 4 and week 24 visits. At baseline, several biomark-
ers of inflammation and coagulation were independently associated with demographic and clin-
ical factors such as age, baseline CD4+ T-cell count, and levels of T-cell activation (Supplemental 
Table 1). These covariates were included in linear mixed effects modeling when appropriate. How-
ever, there was no difference in the levels of IL-6, D-dimer, sCD14, sTNF-RI, sTNF-RII, or HA 
over time between treatment groups using a mixed effects model (data not shown). 

Measures of collagen deposition
We used immunohistochemistry and quantitative image analysis to determine whether adminis-
tration of lisinopril reduced the abundance of collagen I deposition in the lamina propia (LP), and 
when possible the follicular aggregates (FA) (n = 8), from rectal biopsies. At baseline, there was 
no correlation between the percentage of the area that stained positive for collagen 1 in the LP 
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or FA of rectal biopsies and covariates such as age, CD4+ or CD8+ T-cell counts or T-cell activa-
tion levels (data not shown). The IRs and INRs had similar percentages of collagen 1 deposition 
in the LP (37% and 37% respectively, P = 0.99) (Figure 4A) and FA (21% and 15%, P = 0.46) at 
baseline. In the LP, a median decrease in the percent change of collagen deposition of 4.7% (IQR 
-8.9% –6.3%) was seen in the lisinopril group at week 22 compared to a median decrease of 0.4% 
in the placebo group (IQR -12.1%–15.4%), however this change was not statistically significant 
(P = 0.63) (Figure 4B). Decreases in collagen deposition in the FA of both the placebo and lis-
inopril groups were seen, but were not significantly different (-12.8% and -17.8% respectively, 
P = 0.88).

A

B

Figure 1. Change in Log HIV RNA copies/per 106 rectal cells (A) and Log HIV DNA copies/per 106 rectal 
cells (B) from baseline to Week 22 in the placebo and lisinopril treatment groups. Each line represents an 
individual participant.
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A

B

Figure 2. Change in Log HIV RNA copies/per 106 CD4+ T cells (A) and Log HIV DNA copies copies/per 
106 CD4+ T cells from Week 0 to Week 24 in the placebo and lisinopril treatment groups.
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A

Figure 3. (A) Baseline levels of CD4+ T cell activation in rectal cells in immunologic non-responders and 
immunologic responders. (B) The correlation between the percentage of CD4+CD38+DR+ T cells in the 
rectal lymphoid tissue and the peripheral CD4+ T cell count. A linear prediction line is shown in red.

B
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A

C

Figure 4. (A) Baseline percent collagen deposition by immune responder status. Plus signs denote the me-
dian. (B) Percent change in collagen deposition in the lamina propia (LP) at week 22. (C) Baseline collagen 
synthesis rates (percent new per week) of guanidine-soluble and guanidine-insoluble collagen in all partic-
ipants measured by heavy water labeling. (D) Change in collagen synthesis rates (percent new per week) of 
guanidine-soluble collagen in the placebo and lisinopril groups at baseline and at week 22.

A total of 18 individuals underwent 2H2O labeling to measure collagen synthesis rates—10 par-
ticipants in the placebo group and 8 in the lisinopril group. Baseline levels of guanidine-insoluble 
and guanidine-soluble collagen did not differ significantly between groups or between IR and 
INR status (data not shown). Active collagen synthesis was measurable in both the guanidine-sol-
uble and guanidine-insoluble fractions. At baseline there was a significant difference in the base-
line median FSR of guanidine-insoluble collagen compared to guanidine-soluble in rectal tissue. 
The FSR of guanidine-soluble collagen in rectal tissue was much higher than guanidine-insoluble 
collagen, with a median FSR of 12.8% per week (IQR 12.3%–16.1%) compared to an FSR of 3.2% 
per week (IQR 2.9%–3.9%) in guanidine-insoluble collagen (Figure 4C). The calculated half-lives 

D

B
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of the collagen pools (assuming a steady-state in collagen pool size) is approximately 5 weeks for 
guanidine-soluble and approximately 23 weeks for guanidine-insoluble pools. Median collagen 
synthesis rates in rectal tissue did not differ significantly between the 2 treatment arms at baseline 
(placebo 13.3% vs 14.5%, P = 0.56) or at the end of treatment (14.2% vs 16.5%, P = 0.96) (Figure 
4D). Similarly to the immunohistochemistry findings, there was no association noted between 
baseline collagen FSRs and variables such as age, CD4+ T-cell counts, T-cell activation levels, or 
the level of collagen deposition (data not shown).

Gut damage and CD4+ T cell recovery
We used immunohistochemistry and quantitative image analysis to determine whether admin-
istration of lisinopril would improve the reconstitution of CD4+ T-cell populations in the LP or 
FA, the extent of infiltration of myeloperoxidase positive PMNs, or the levels of TGF-β–depen-
dent pSmad3 signaling, in rectal tissue. The median density of CD4+ T cells within the LP was 
higher in the placebo group compared to the lisinopril-treated group at baseline (1.02% vs 0.64%, 
P = 0.08) and increased during treatment in the lisinopril group compared to no change in the 
placebo group (0.24% vs -0.05%, P = 0.22) (Figure 5), although this was partially driven by 2 indi-
viduals. Neither the lisinopril nor placebo group had any change in CD4+ T cells in the FA; how-
ever, a reduction in the density of macrophages in the LP was noted in the placebo group with no 
change in the lisinopril group (data not shown). There were no differences in the percentage of 
myeloperoxidase positive PMNs or levels of pSMAD3 signaling between groups in either the LP 
or FA (data not shown). 

Figure 5. Change in density of CD4+ T cells as a percentage of area in the lamina propia from base-
line to week 22 in the placebo and lisinopril treatment groups.

DISCUSSION
In this randomized, double-blind, placebo-controlled study, we found that the addition of lisino-
pril to a suppressive antiretroviral regimen did not have a significant impact on lymphoid fibrosis 
or fibrogenesis rate in the rectum, as assessed by quantitative histology or 2H2O labeling, respec-
tively. Furthermore, we did not find any significant change in HIV DNA and RNA levels, T-cell 
and monocyte activation, or HIV-specific responses in either rectal tissue or blood over time. 
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Although we hypothesized that those individuals with poor immunologic recovery after starting 
ART might have increased levels of fibrosis at baseline and respond differently to an anti-fibrotic 
agent, we did not observe this.

Multiple studies have demonstrated elevated levels of TGF-β in HIV infection and a relationship 
between increasing lymphoid fibrosis and disease progression and poor immunologic recovery in 
treated HIV. Furthermore, the role of TGF-β mediated fibrosis is also being examined in HIV-as-
sociated cardiovascular disease [44]. This is an active area of investigation and an agent which 
reverses fibrosis could be expected to have favorable effects on immune function, disease progres-
sion, and potentially even comorbidities.

We chose lisinopril based on in vitro and in vivo data showing an ability of ACE-inhibitors to 
reduce TGF-β levels and resultant fibrosis in other tissues, as well as the record of safety and 
experience with this drug. However, given that we did not find a difference in collagen turnover 
or levels in rectal lymphoid tissue and did not see a change in pSMAD 2,3 expression, it may be 
that lisinopril does not have a similar effect in lymphoid tissues or has inefficient drug penetration 
in fibrotic tissues. Another possible reason why an effect of lisinopril therapy was not observed 
could be the small sample size, which is a limitation of this study. We did see an increase in the 
density of CD4+ T cells in the LP in the lisinopril-treated group compared to the placebo group, 
and it is unclear whether this might have been an early indication of some benefit to treatment 
with lisinopril. Therefore, increased duration of treatment may be required to see additional bene-
fits including changes in collagen levels. 

A recent study in rhesus macaques showed that the anti-fibrotic agent pirfenidone reduced levels 
of fibrosis in the paracortical T-cell zone of lymph node tissue when started prior to infection and 
after only 6 weeks of infection [45]. Given that lymphoid fibrosis starts early in HIV infection, an-
ti-fibrotic agents might be most beneficial when started early after infection. All of the individuals 
in our study were in the stage of chronic HIV infection, and many were later in the disease course 
with lower peripheral blood CD4+ T-cell levels. Nevertheless, data from the Berlin patient, pro-
vides hope that effective interventions in chronic disease could result in regression of lymphoid 
fibrosis [6]. Moreover, our data show for the first time that chronically HIV-infected individuals 
on suppressive anti-retroviral regimens exhibit active collagen synthesis in rectal tissue. Measured 
FSR values of approximately 13% replacement/week for the less cross-linked guanidine-soluble 
pool indicate a half-life of approximately 5–6 weeks. Dynamicity of lymphoid tissue collagen 
pools is consistent with the possibility of reversal of fibrosis if there were an effective anti-fibrotic 
therapy. However, chronically infected individuals who have increased levels of collagen deposi-
tion may require more prolonged periods of treatment to see effects on fibrosis levels. Again, this 
may be another reason why we did not see an effect of lisinopril treatment on collagen deposition.

This is the first study, to our knowledge, to look at the effects of a drug intervention with putative 
anti-fibrotic properties in HIV-infected individuals. Although we did not find an effect of lisino-
pril therapy on collagen levels or synthesis rates, an anti-fibrotic agent may nonetheless be useful 
as an adjuvant therapy to restore normal immune function and contribute to the eradication of 
the latent reservoir. This study does raise the need for further examination of the in vitro and in 
vivo effects of anti-fibrotic agents and the identification of biomarkers that might predict regres-
sion of fibrosis. 
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SUPPLEMENTARY METHODS

HIV RNA/DNA MEASUREMENTS IN RECTAL TISSUE
Rectal biopsies were dissociated using a published method [21]. Briefly, biopsies were subjected 
to three rounds of collagenase digestion, mechanical disruption (by passing through a blunt 16 
gauge needle), clarification (by passing through a 70 µm cell strainer), and washing. The 3 ali-
quots of strained and washed cells were then combined and counted, and aliquots were stored in 
RNAlater (Applied Biosystems) at -80C. For nucleic acid extraction, cells were lysed using 1 ml 
of Qiazol reagent (Qiagen), homogenized using QIAshredder spin columns (Qiagen), and cen-
trifuged at 12,000g for 15 minutes at 4°C. RNA was extracted from the aqueous layer using the 
miRNeasy Mini kit (Qiagen) with on-column DNAase treatment (Qiagen RNase-Free DNase Set) 
and eluted in RNase-free water. The DNA was extracted from the interphase using 0.5 ml of back 
extraction buffer (4M guanidine thiocyanate, 50mM Na citrate, and 1M Trizma base), followed 
by precipitation with 500 µl of isopropanol, 2 washes with 75% ethanol, and resuspension in EB 
buffer (Qiagen). The RNA and DNA concentrations were measured using a ND-1000 spectropho-
tometer (NanoDrop).

Three replicate samples of 500 ng of DNA from each donor were assayed for total HIV-1 DNA 
using a published quantitative real-time PCR (qPCR) assay [22] that uses primers and probe from 
the LTR region. Primers were F522-43 (5' GCC TCA ATA AAG CTT GCC TTG A 3'; HXB2 
522–543) and R626-43 (5' GGG CGC CAC TGC TAG AGA 3'; 626–643). The probe, 5' CCA 
GAG TCA CAC AAC AGA CGG GCA CA 3', was dual-labeled with 6-FAM(5') and Black Hole 
Quencher BHQ-1(3'). The reaction volume was 50 µl with 25 µl of 2× Gene Expression Master 
Mix (Applied Biosystems), 10pmol of each primer, 10pmol of probe, and 5 µl of DNA (100 ng/
µl). Cycling conditions were: 50°C for 2 minutes, 95°C for 10 minutes, then 60 cycles of 95°C for 
15 seconds and 59°C for 1 minute. External standards were prepared from pNL4-3 DNA, and the 
number of molecules was calculated by DNA mass, as determined by the ND-1000 spectropho-
tometer; absolute copy numbers were confirmed by droplet digital PCR [23]. Copy numbers of 
HIV-1 DNA were normalized to cellular input as determined by DNA mass (assuming 1 µg total 
DNA corresponds to 160,000 cells). As an alternative method of normalizing to cell numbers, all 
DNA samples were assayed for TERT by qPCR [22] with the conditions above, except with 2.5 µl 
of 20× TERT primer/probe mix [Applied Biosystems] and 3 µl of DNA. 

Three replicates of up to 500 ng of RNA from each sample were assayed for total processive 
HIV-1 RNA transcripts using a published qRT-PCR assay [22] that uses primers and probe from 
the LTR region (as above). The reaction volume was 50 µl with 25 µl of 2× One Step RNA-to-Ct 



Pathogens and Immunity - Vol 2, No 3

www.PaiJournal.com

330

mix (Applied Biosystems), 10pmol of each primer, 10pmol of probe, 1.25 µl of 40× RT (Applied 
Biosystems), and 5 µl of RNA (100 ng/µl). Cycling conditions were as follows: 48°C for 20 min-
utes, 95°C for 5 minutes, then 60 cycles of 95°C for 15 seconds and 59°C for 1 minute. External 
standards (1 to 105) of genomic HIV-1 RNA were prepared from supernatants of NL4-3-infected 
cells by sequential freeze-thaw (which lyses cells but not virions) , nuclease treatment (to digest 
any free nucleic acids), heat inactivation [24, 46, 47], RNA extraction (using the QIAmp Viral 
RNA Mini Kit), and then quantification of the RNA by replicate measurements using the Abbot 
Real Time assay. Copy numbers of HIV-1 RNA were normalized to cellular input into the PCR, 
as determined by RNA concentration (assuming that 1 ng RNA corresponds to 1000 cells). As an 
alternative method of normalizing to cell numbers, all RNA samples were assayed for GAPDH by 
qRT-PCR [22] with the conditions above, except with 2.5 µl of 20× GAPDH primer/probe mix 
[Applied Biosystems] and 3 µl of RNA.

HIV RNA/DNA MEASUREMENTS IN CD4+ T-CELLS
CD4+ T-cells were isolated from stored peripheral blood mononuclear cells (PBMC) using a CD4+ 
T-cell isolation kit (Stemcell Technologies,Vancover Canada; purity 97%) and RNA and DNA 
extracted (Allprep isolation kit, Qiagen). For quantification of cell-associated HIV RNA (CA-
RNA), a semi-nested qPCR was used with a first round amplification of 15 cycles to ensure that 
the following second round amplification was in the linear range between 1 to 46,000 input cop-
ies, as previously described by Pasternak, et al [25]. The second round used primers to gag [26]. 
Copy numbers of HIV RNA were standardized to cellular equivalents using an 18s TaqMan gene 
expression assay (Thermo Fisher) The lower limit of detection LLOD for CA-RNA was 1 copy per 
well. If there was detectable HIV RNA present but < 1 copy per well, this sample was included as 
0.5 copies/well. If there was no detectable signal, the sample was designated as zero. The PCR am-
plification of cDNA for CA-RNA was performed in quadruplicate with an intra-assay coefficient 
of variation (CV) of 32%. In all assays, a control without reverse transcriptase (RT) was used. If 
there was any amplification from the no RT control, ie, evidence of DNA contamination, a sec-
ond stored sample was re-extracted. If contaminating DNA persisted, the reading was excluded. 
In the 89 samples tested no DNA contamination was detected. The HIV DNA was quantified as 
previously described [27], and PCR for HIV DNA was performed in triplicate for all samples 
with an intra-assay CV of 21%. Integrated DNA was measured in total CD4+ T-cells as previously 
described [48]. 

T CELL IMMUNOPHENOTYPING AND CYTOKINE FLOW CYTOMETRY 
Immunophenotyping and Cytokine Flow Cytometry (CFC) were performed on cryopreserved 
PBMC and fresh colorectal mucosal cells to measure T-cell activation and the frequency of 
Gag-specific CD4+ and CD8+ T cells. Cryopreserved PBMCs were thawed and washed as previ-
ously described [49]. Mucosal lymphocytes were isolated from fresh colorectal biopsies by enzy-
matic digestion and mechanical disruption as previously described [29]. For Immunophenotyp-
ing both PBMC and mucosal colorectal cells were stained with LIVE/DEAD® Fixable Aqua Dead 
Cell Stain Kit (Invitrogen, Carlsbad, CA) to exclude non-viable cells and then stained with the 
following fluorescently conjugated monoclonal antibodies: CD8-QDOT®605 and CD4-PE-Texas 
Red® (Invitrogen); CD3-V450, PD-1 Alexa Fluor ®647, CCR5-PE-Cy™5 , CD38-PE and HLA-DR-
FITC (BD Biosciences, San Jose, CA, USA). Cells were then fixed in 0.5% formaldehyde and data 
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were acquired on a BD LSR II Flow cytometer (BD Biosciences), with ≥ 200,000 lymphocytes 
collected for each sample. Data were compensated and analyzed in FlowJo V9 (TreeStar, Ashland, 
OR). Populations of CD3+CD4+ and CD3+ CD8+ T cells were defined after standard, lymphocyte, 
singlet, and dead cell exclusion gates were applied to the data. Fluorescent-minus-one (FMO) 
controls were used to define positive gates for expression of CD38, CCR5, HLA-DR, and PD-1 on 
CD3+CD8+ and CD3+CD4+ T-cell populations. 

The frequency of HIV-specific T cells, in PBMC and isolated colorectal mucosal cells, was mea-
sured by CFC as previously described [30, 31]. Briefly, thawed and rested PBMCs and freshly-iso-
lated colorectal mucosal cells were stimulated with HIV-1 SF2 GAG overlapping peptide pools in 
the presence of Brefeldin A, monensin (Sigma-Aldrich), and CD107a-PECY5 (BD Bioscience). 
Following stimulation, cells were treated with EDTA, washed in PBS and stained with LIVE/
DEAD® Fixable Aqua Dead Cell Stain Kit as described above. The PBMCS were then fixed and 
permeabilized in FACS lyse and FACS Perm (both from BD Biosciences), and colorectal mucosal 
cells were fixed and permeabilized with BD Cytofix/Cytoperm (BD Bioscience). Cells were then 
stained with fluorescently labeled monoclonal antibodies CD3, CD4 and CD8 (described above) 
and IFN-γ-FITC, IL-2-PE, and TNFα-Alexa Fluor 700 (all BD Bioscience). Data from 500,000 
lymphocytes were acquired, compensated and analyzed as described above to define CD3+CD4+ 
and CD3+CD8+ T-cell populations. The FMO controls (using CD3-stimulated cells) and no-stim-
ulation controls were used to define positive gates for each of the individual functional markers 
on both T-cell populations and used to determine the frequency of each individual marker. The 
Boolean function in FlowJo was then used to calculate the frequency of each of the 16 possible 
combinations of these functional markers on each T-cell population.

IMMUNOHISTOCHEMISTRY AND QUANTITATIVE IMAGE ANALYSIS
Immunohistochemistry was performed on 5 μm rectal biopsy tissue sections mounted on Su-
perfrost Plus Microscope Slides (Fisher Scientific), which were dewaxed and rehydrated with 
double-distilled H2O (ddH2O). Heat-induced epitope retrieval (HIER) was performed by heating 
sections in 0.01% citraconic anhydride (containing 0.05% Tween-20), 1x Diva buffer (Biocare 
Medical), or Tris pH 8.6 solution (10mM Tris-HCL, 30mM NaCl and 0.025% Tween-20) in a 
pressure cooker (Biocare Medical) set at 122°C–125°C for 30 seconds. For samples stained for 
collagen 1 and Phospo-Smad3, after cooling, the slides were rinsed in ddH2O and then incubated 
for 10–20 minutes at room temperature in 20mM Tris-HCL containing 2mM CaCI2 and protein-
ase K (2.0–4.0 µg/ml). Slides were incubated with blocking buffer (TBS with 0.05% Tween-20 
and 0.25% casein) for 10 minutes. For CD4+ T cell IHC, slides were incubated with mouse an-
ti-CD68 (1:400; clone KP1, Dako), mouse anti-CD163 (1:400; clone 10D6; Novocastra/Leica) 
and rabbit monoclonal anti-CD4 (1:200; clone EPR6855; Abcam, Inc.) diluted in blocking buffer 
over night at 4oC. Slides were washed in 1X TBS with 0.025% Tween-20 and endogenous perox-
idases blocked using 1.5% (v/v) H2O2 in 1X TBS (pH 7.4) for 10 minutes. Slides were incubated 
with Mouse Polink-1 AP followed by Rabbit Polink-1 HRP for 30 minutes at room temperature. 
Sections were first incubated with Impact™ DAB (3,3'-diaminobenzidine; Vector Laboratories) 
to develop the CD4, washed and developed with Warp Red (Biocare Medical, Inc.) to mask the 
faint CD4 expressed on APCs and allowing for specific identification of CD4+ T cells. For col-
lagen 1, myeloperoxidase (MPO), and Phospo-Smad3 IHC, slides were incubated with mouse 
monoclonal anti-collagen Type I (Sigma; clone: COL-1) diluted 1:800, rabbit polyclonal anti-my-
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eloperoxidase (Dako; cat. no. A0398) diluted 1:1,000, or rabbit monoclonal anti-Phospo-Smad3 
(Epitomics; pS423/425; cat. No. 1880-1) diluted 1:5,000, and all were incubated for 60 minutes at 
room temperature. Detection was performed using Mouse Polink-2 HRP for collagen 1, Rabbit 
Polink-1 HRP for MPO, or Rabbit Polink-2 HRP for P-Smad3 (All GBI Labs) according to the 
manufacturer’s instructions. Sections were incubated with Impact™ DAB (3,3'-diaminobenzidine; 
Vector Laboratories) for 2–8 minutes, slides washed in ddH2O, counterstained with hematoxylin, 
mounted in Permount (Fisher Scientific), and scanned at high magnification (400×) using the 
Aperio AT2 System (Leica Biosystems) yielding high-resolution data for the entire tissue section. 
Representative regions of interest (ROIs; 0.04 mm2) were identified and high-resolution images 
extracted from these whole-tissue scans. The percentage of the area of the lamina propria that 
stained for CD4+ T cells (excluding APC CD4), collagen 1, myeloperoxidase (MPO) and Phos-
pho-Smad3 was quantified using Photoshop (CS5 and CS6; Adobe Systems), Noiseware 5 (Imag-
enomic) for noise reduction, and Fovea Pro 4 (Reindeer Graphics) image analysis tools. In brief, 
high resolution ROI images were analyzed by segmenting the positive area with color channel 
thresholding in Photoshop, and measuring the positive area percentage with Fovea. For collagen 
1, myeloperoxidase, and Phospho-Smad3 ROIs, stained with DAB, images were segmented by 
thresholding the CMYK yellow color channel and quantified as previously described [38]. Quan-
tification of CD4+ T cells was performed as previously described [50] on slides stained for CD4 
with DAB and myeloid cells (CD68+ CD163+) stained with Warp Red. Segmenting ROIs with 
both DAB and Warp Red staining required additional processing to avoid interference between 
the 2 stains, since they overlap in our analysis method. First, the Warp Red staining was masked 
by duplicating the image; converting it to the Lab color mode and binarizing color channel with 
a threshold chosen so that the Warp Red-stained areas became white, and the remaining area was 
black; pasting the binarized image as a new layer in the original image, and applying the “Lighter 
Color” layer blending mode masked Warp Red staining. Next, DAB-positive areas were measured 
by thresholding the CMYK yellow color channel as above. Then, we measured Warp Red staining; 
the masking layer was duplicated and inverted, making a new layer where the Warp Red-positive 
staining was black; the positive area percentage was measured as usual. This approach allows for 
specific quantification of both CD4+ T cells and myeloid lineage cells. 
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Supplementary Figure 1. Participant Flow Diagram - Participant Flow Diagram as per the Consolidated 
Standards of Reporting Trials (CONSORT) Guidelines
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Supplementary Table. Correlations between markers of Monocyte Activation and Demographic and Clinical 
variables

Variable rho P-value
Age
D dimer 0.4672 0.0092
IL-6 0.2564 0.1714
sCD14 0.1274 0.5024

STNF-R1 0.319 0.0858
sTNF-R2 0.4568 0.0112
HA 0.6522 0.0001
CD4 Baseline
D dimer -0.0231 0.9034
IL-6 -0.4613 0.0103
sCD14 -0.1733 0.3597
TNF-R1 -0.382 0.0372
TNF-R2 -0.3063 0.0997
HA -0.077 0.6859
CD4CD38DR
D dimer 0.1493 0.431
IL-6 0.4279 0.0183
sCD14 -0.0105 0.9563
TNF-R1 0.5226 0.0031
TNF-R2 0.4932 0.0056
HA -0.0151 0.9368
CD8CD38DR
D dimer 0.3803 0.3820
IL-6 0.3347 0.0706
sCD14 -0.0783 0.6808
TNF-R1 0.4385 0.0153
TNF-R2 0.5191 0.0033
HA 0.2114 0.2621
CD4PD1
D dimer 0.1108 0.5599
IL-6 0.574 0.0005
sCD14 0.3293 0.0756
TNF-R1 0.5491 0.0017
TNF-R2 0.3945 0.031
HA -0.1591 0.401
CD8PD1
D dimer 0.6291 0.6522
IL-6 0.1438 0.4483
sCD14 0.3602 0.0505
TNF-R1 0.3693 0.0446
TNF-R2 0.0986 0.6043
HA 0.0897 0.6375

Correlations with P-values of < 0.05 are in bold
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